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The equation

We consider the following differential equation in a Banach space E

dY (t) = AY (t)dt + σ(Y (t))dX (t), t ∈ (0, 1], Y (0) = y0 ∈ E (RDE)

⋆ A : D(A) ⊆ E → E is the generator of a semigroup (etA) ⊆ L (E)

⋆ σ : E → E is a sufficiently smooth function

⋆ X : [0, 1] → R is a α-Hölder continuous function for some α ∈
( 1

3 , 1
)

GOALS: existence, uniqueness, regularity properties for the mild solution Y to (RDE)
formally given by

Y (t) = etAy0 +

∫ t

0
e(t−s)Aσ(Y (s))dX (s), t ∈ [0, 1] (MILD)
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Motivation & Problems

Consider the SDE: Z(t) = σ(Z(t))dW (t), t ∈ (0, 1], Z(0) = ξ ∈ R

W Brownian Motion ⇒ integral formulation of the SDE: Z(t) = ξ +

∫ t

0
σ(Z(s))dW (s)

How can we define the stochastic integral
∫ t

0
σ(Z(s))dW (s)?

probabilistic definition of
∫ t

0
σ(Z(s))dW (s): Itô-Stratonovich

pathwise definition of
∫ t

0
σ(Zω(s))dWω(s), ω ∈ Ω ???

P-a.s. ω ∈ Ω:

Wω has not finite 1-variation

Wω (and σ(Zω)) α-Hölder continuous for every α < 1
2

Wω has finite p-variation for every p > 2
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We set I (f , g) :=

∫ ·

0
f (t)ġ(t)dt, f , g ∈ C 1([0, 1])

Negative result (Lyons ’91): ∄ a Banach space B ⊆ C([0, 1]) such that

Cα ⊆ B for every α < 1
2

I extends to a continuous map I : B× B → C([0, 1])

Positive result (Young ’36, Kondurar ’37): if α+ β > 1, then

I extends to a continuous map IY : Cα([0, 1])× Cβ([0, 1]) → Cβ([0, 1])

|IY (f , g)(s, t)− f (s)(g(t)− g(s))| ≤ Cα+β [f ]α[g ]β |t − s|α+β

IY (f , g)(s, t) = lim
|P|→0

∑
[u,v ]∈P

f (u)(g(v)− g(u)), 0 ≤ s < t ≤ 1, P partition of [s, t]

Consequences: let B = Cα([0, 1]), α ∈
( 1

2 , 1
)
.

I extends to a continuous map IY : B×B → B: Young Integral

What about the case α ≤ 1
2?
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Integration of 1-forms (Folmer ’81, Lyons ’98)

Assume X ∈ C 1,F ∈ C 2. Then

∫ t

s

F (X (r))dX (r)− F (X (s))(X (t)− X (s)) =

∫ t

s

(F (X (r))− F (X (s)))dX (r)

[
F (X (r))− F (X (s)) = F ′(X (s))(X (r)− X (s)) +

1
2
F ′′(ξ)(X (r)− X (s))2

]
= F ′(X (s))

∫ t

s

(X (r)− X (s))dX (r) + reminder

∫ t

s

(X (r)− X (s))dX (r) =

∫ t

s

X (r)dX (r)− X (s)(X (t)− X (s))

α ∈
( 1

2 , 1
)
⇒

∫ t

s

X (r)dX (r) = IY (X ,X )(s, t) Young Integral

α ≤ 1
2 ⇒

∫ t

s

X (r)dX (r) defines
∫ t

s

F (X (r))dX (r)
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Hölder Continuous Rough Paths (Lyons ’98)

Given α ∈
( 1

3 ,
1
2

]
, the space C α([0, 1];R) of a α-Hölder rough paths is given by the

couples X = (X ;X) such that ([0, 1]2< := {(s, t) ∈ [0, 1]2 : s ≤ t})

X : [0, 1] → R, sup
0≤s<t≤1

|X (t)− X (s)|
|t − s|α < ∞ (X ∈ Cα([0, 1];R))

X : [0, 1]2< → R, ∥X∥2α := sup
0≤s<t≤1

|X(s, t)|
|t − s|2α < ∞ (X ∈ C 2α([0, 1]2<;R))

X(s, u)− X(s, t)− X(t, u)=(X (t)− X (s))(X (u)− X (t)) (Chen’s Relation)

What is the meaning of X?

α > 1
2 ⇒ X(s, t) :=

∫ t

s

(X (r)− X (s))dX (r), 0 ≤ s ≤ t ≤ 1: Young Integral

α ∈
( 1

3 ,
1
2

]
⇒ X(s, t) possible choice for “

∫ t

s

(X (r)− X (s))dX (r)
′′
: infinitely many!
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Rough Integration

X ∈ C 1([0, 1]), F ∈ C 2
b (R), 0 ≤ s < t ≤ 1,

Integral:
∫ t

s

F (X (r))dX (r)

Taylor: F (X (t))− F (X (s)) = F ′(X (s))(X (t)− X (s)) +
1
2
F ′′(ξ)(X (t)− X (s))2

Reminder: R(s, t) = O(|X (t)− X (s)|2) = F ′(X (s))X(s, t) + O(|X (t)− X (s)|3)

X ∈ Cα([0, 1]), F ∈ C 2
b (R), 0 ≤ s < t ≤ 1:

⋆ If α > 1
2 then R(s, t) = O(|t − s|2α) and the limit

lim
|P(s,t)|→0

∑
[u,v ]∈P(s,t)

F (X (u))(X (v)− X (u)) = IY (F (X ),X ) exists (Young Integral)

⋆ If α ∈
( 1

3 ,
1
2

]
then R(s, t) = F ′(X (s))X(s, t) + O(|t − s|3α) and the limit exists:

lim
|P(s,t)|→0

∑
[u,v ]∈P(s,t)

[
F (X (u))(X (v)− X (u)) + F ′(X (u))X(u, v)

]
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Lyons ’98: X = (X ,X) α-Hölder rough path, α ∈
( 1

3 ,
1
2

]
, F ∈ C 2

b (R). The rough integral

IR(F (X ),X )(s, t) = lim
|P(s,t)|→0

∑
[u,v ]∈P(s,t)

[
F (X (u))(X (v)− X (u)) + F ′(X (u))X(u, v)

]
exists for every 0 ≤ s < t ≤ 1.

Moreover, IR(F (X ),X ) satisfies∣∣IR(F (X ),X )(s, t)− F (X (s))(X (t)− X (s))− F ′(X (s))X(s, t)
∣∣ ≤ C(F ,X )|t − s|3α

Lyons solves a rough differential equation of the form

dY (t) = σ(Y (t))dX (t), Y (0) = y0 (i.e., Y (t) = y0 + IR(σ(Y ),X )(0, t))

but the concept of solution and the techniques exploited are complicated and involved.
Another (but equivalent) definition of solution and proof of the existence and uniqueness
of solutions can be obtained by means of Sewing Lemma and Controlled Rough Paths,
introduced in ’04 and generalized to the mild situation in ’10 by Gubinelli.
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but the concept of solution and the techniques exploited are complicated and involved.
Another (but equivalent) definition of solution and proof of the existence and uniqueness
of solutions can be obtained by means of Sewing Lemma and Controlled Rough Paths,
introduced in ’04 and generalized to the mild situation in ’10 by Gubinelli.
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Sewing Lemma

Let N ∈ N, α, β ≥ 0, [0, 1]N< := {(t1, . . . , tN) ∈ [0, 1]N : 0 ≤ t1 ≤ . . . ≤ tN ≤ 1}

⋆ Cβ([0, 1]N<): functions A : [0, 1]N< → R such that sup
0≤t1<...<tn≤1

|A(t1, . . . , tN)|
|tN − t1|β

< ∞

⋆ δN : C 0([0, 1]N<) → C 0([0, 1]N+1
< ) defined as (for N = 1, 2, (s, t, u) ∈ [0, 1]3<)

(δ1A)(s, t) = A(t)− A(s), (δ2A)(s, t, u) = A(s, u)− A(s, t)− A(t, u)

⋆ Chen’s Relation: (δ2X)(s, t, u) = (δ1X )(s, t)(δ1X )(t, u), (s, t, u) ∈ [0, 1]3<

Cα,β
2 ([0, 1]) := {A ∈ Cα([0, 1]2<) : δ2A ∈ Cβ([0, 1]3<)}

Sewing Lemma (Gubinelli ’04): Let 0 < α ≤ 1 < β. There exists a unique continuous
linear map I : Cα,β

2 ([0, 1]) → Cα([0, 1]) such that IA(0) = 0 and

|(δ1IA)(s, t)− A(s, t)| ≤ C(β,A)|t − s|β , (s, t) ∈ [0, 1]2<

IA(t) = lim
|P|→0

∑
[u,v ]∈P

A(u, v), P partition of [0, t]

⋆ Example: A(s, t) = f (s)(δ1g)(s, t) ⇒ (δ2A)(s, t, u) = −(δ1f )(s, t)(δ1g)(t, u)

It f ∈ Cα, g ∈ Cβ , α+ β > 1, then IA = IY (f , g)
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Controlled Rough Paths

For F ∈ C 2
b , We set R(s, t) := (δ1F (X ))(s, t)− F ′(X (s))(δ1X )(s, t) ∼ (X (t)− X (s))2

Example: If A(s, t) = F (X (s))(δ1X )(s, t) + F ′(X (s))X(s, t), then

(δ2A)(s, t, u) = −R(s, t)(δ1X )(t, u)− (δ1F
′(X ))(s, t)X(t, u)

If (X ,X) ∈ C α([0, 1]), α ∈
( 1

3 ,
1
2

]
, then R(s, t) = O(|t − s|2α) and IA = IR(F (X ),X )

How can we extend (beyond F (X )) the class of “functions under the integral sign”?

Replacing F (X ) and F ′(X ) with objects with the same properties!

Gubinelli ’04: D2α
X (0, 1) is the space of couples (Y ,Y ′) ∈ Cα([0, 1])× Cα([0, 1]):

RY (s, t) := (δ1Y )(s, t)− Y ′(s)(δ1X )(s, t) = O(|t − s|2α)

Y is controlled by X if ∃Y ′ such that (Y ,Y ′) ∈ D2α
X , Y ′ Gubinelli derivative of Y

Gubinelli ’04: If (X ,X) ∈ C α([0, 1]), α ∈
( 1

3 ,
1
2

]
and (Y ,Y ′) ∈ D2α

X , then

IR(Y ,X )(s, t) = lim
|P|→0

∑
[u,v ]∈P

(Y (u)(δ1X )(u, v) + Y ′(u)X(u, v))
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Mild Integration: the Young Case

A : D(A) ⊆ E → E generates a semigroup (etA) ⊆ L (E), X ∈ Cα, α ∈
( 1

2 , 1
)

The equation: dY (t) = AY (t)dt + σ(Y (t))dX (t), t ∈ (0, 1], Y (0) = y0 ∈ E

The mild solution: Y (t) = etAy0 +

∫ t

0
e(t−s)Aσ(Y (s))dX (s), t ∈ [0, 1]

⋆ We aim at defining
∫ t

s

e(t−r)Af (r)dX (r), X ∈ Cα, for a class of f : [0, 1] → E :∫ t

s

e(t−r)A

f (r)dX (r) =

∫ t

s

e(t−r)A

(f (r)±

e(r−s)A

f (s))dX (r)

=

e(t−s)A

f (s)(X (t)− X (s)) +

∫ t

s

e(t−r)A

(f (r)−

e(r−s)A

f (s))dX (r)

⋆ We have new increments δS,N :

(δS,1B)(s, t) := B(t)− e(t−s)AB(s), (δS,2B)(s, t, u) = B(s, u)− B(t, u)− e(u−t)AB(s, t)
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Cα,β
S,2 ([0, 1];E) := {B ∈ Cα([0, 1]2<;E) : δS,2B ∈ Cβ([0, 1]3<;E)}

Mild Sewing Lemma (Gubinelli-Tindel ’10): If 0 < α ≤ 1 < β, then there exists a unique
continuous linear map IS : Cα,β

S,2 ([0, 1];E) → Cα([0, 1];E) such that ISB(0) = 0 and

|(δS,1ISB)(s, t)− B(s, t)| ≤ C(β,B)|t − s|β

ISB(t) = lim
|P|→0

∑
[u,v ]∈P

e(t−v)AB(u, v), P partition of [0, t]

If B(s, t) = e(t−s)Af (s)(δ1X )(s, t), then (δS,2B)(s, t, u) = −(δS,1f )(s, t)(δ1X )(t, u)

ISB(t) =“

∫ t

0
e(t−s)Af (s)dX (s)

′′
when δS,1f ∈ Cη([0, 1]2<;E) with α+ η > 1

How to find a mild solution? Fixed point for Γ : B → B given by

Γ(f )(t) = etAy0 + IS(σ(f ))(t), t ∈ [0, 1], what is B???

δS,1f ∈ Cη([0, 1]2<;E), σ ∈ C 1
b (E ;E), then

(δS,1(σ(f )))(s, t) = σ(f (t))− σ(e(t−s)Af (s)) + (e(t−s)A − Id)(σ(f ))(s) + ... ∈ Cη?

If (etA) is analytic, then ∥erA − Id∥L (DA(η,∞),E) ≤ Crη, η ∈ [0, 1]
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We assume that exist (Eη)η≥0, Eη ⊆ Eθ if η ≥ θ, E0 = E , E1 = D(A) such that

∥etA∥L (Eθ,Eη) ≤ Ctθ−η, ∥etA − Id∥L (Eη,Eθ) ≤ Ctη−θ, t ∈ [0, 1], η ≥ θ

Mild Sewing Lemma (2) (Gubinelli-Tindel ’10, A-Lorenzi-Tessitore ’22): If α ≤ 1 < β,
then the map IS : Cα,β

S,2 ([0, 1];Eη) → Cα([0, 1];Eη) satisfies, for every ε ∈ [0, 1),

R ∈ Cβ−ε([0, 1]2<;Eη+ε), R(s, t) := (δS,1ISB)(s, t)− B(s, t)

Theorem (A-Lorenzi-Tessitore ’22): Let X ∈ Cα, α ∈
( 1

2 , 1
)
, η ∈ (1 − α, α), y0 ∈ Eη and

σ smooth. Then, there exists a unique fixed point Y for the operator Γ : B → B, defined
as

Γ(Y )(t) = etAy0 +

∫ t

0
e(t−s)Aσ(y(s))dX (s), t ∈ [0, 1]

Further, Y (t) ∈ D(A) for every t ∈ (0, 1], it satisfies the integral representation

Y (t) = y0 +

∫ t

0
AY (s)ds +

∫ t

0
σ(Y (s))dX (s), t ∈ [0, 1]

and F (Y (t))− F (Y (s)) =

∫ t

s

⟨DF (Y (r)),AY (s)⟩dr +
∫ t

s

⟨DF (Y (r)), σ(Y (r))⟩dX (r)

B := {f ∈ C([0, 1];Eη) : δS,1f ∈ Cη([0, 1]2<;Eη)} ⇒ y0 ∈ Eη
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How can we weaken the condition y0 ∈ Eη? Sewing Lemma with singularities: γ ≥ 0

Cα
−γ((0, 1]N<;Eη) :=

{
B : (0, 1]N< → Eη : sup

0≤t1<...<tN≤1
(t1)

γ ∥B(t1, . . . , tN)∥η
|tN − t1|α

< ∞
}

Mild Singular Sewing Lemma (A-Lorenzi-Tessitore ’24, Neamtu-Hocquet ’24): Let
α ∈

( 1
2 , 1

)
, η > 1 − α, γ < α and B ∈ Cα

−γ((0, 1]2<;Eη) s. t. δS,2B ∈ Cα+η
−γ ((0, 1]3<;E).

Then, ISB, defined on (0, 1], extends to [0, 1] with values in Eη and

∥δS,1ISB(s, t)∥Eη+ε ≤ C(ε,B)|t − s|α−γ−ε, ε ∈ [0, α− γ)

Theorem (A-Lorenzi-Tessitore ’24): if X ∈ Cα, α ∈
( 1

2 , 1
)
, η > 1 − α, y0 ∈ Eθ with

θ ∈ [0, η] and 2η − θ < α, σ smooth.

Then, there exists a unique fixed point Y for the operator Γ : B → B, defined as

Γ(Y )(t) = etAy0 +

∫ t

0
e(t−s)Aσ(y(s))dX (s), t ∈ [0, 1]

Moreover, Y (t) ∈ D(A) for every t ∈ (0, 1].

B := {f ∈ Cθ−η((0, 1];Eη) ∩ Cb((0, 1];E) : δS,1f ∈ Cη([0, 1]2<;Eη)}

Davide Addona (Unipr) YDE & RDE in Infinite Dimension Parma 2025 14 / 17



How can we weaken the condition y0 ∈ Eη? Sewing Lemma with singularities: γ ≥ 0

Cα
−γ((0, 1]N<;Eη) :=

{
B : (0, 1]N< → Eη : sup

0≤t1<...<tN≤1
(t1)

γ ∥B(t1, . . . , tN)∥η
|tN − t1|α

< ∞
}

Mild Singular Sewing Lemma (A-Lorenzi-Tessitore ’24, Neamtu-Hocquet ’24): Let
α ∈

( 1
2 , 1

)
, η > 1 − α, γ < α and B ∈ Cα

−γ((0, 1]2<;Eη) s. t. δS,2B ∈ Cα+η
−γ ((0, 1]3<;E).

Then, ISB, defined on (0, 1], extends to [0, 1] with values in Eη and

∥δS,1ISB(s, t)∥Eη+ε ≤ C(ε,B)|t − s|α−γ−ε, ε ∈ [0, α− γ)

Theorem (A-Lorenzi-Tessitore ’24): if X ∈ Cα, α ∈
( 1

2 , 1
)
, η > 1 − α, y0 ∈ Eθ with

θ ∈ [0, η] and 2η − θ < α, σ smooth.

Then, there exists a unique fixed point Y for the operator Γ : B → B, defined as

Γ(Y )(t) = etAy0 +

∫ t

0
e(t−s)Aσ(y(s))dX (s), t ∈ [0, 1]

Moreover, Y (t) ∈ D(A) for every t ∈ (0, 1].

B := {f ∈ Cθ−η((0, 1];Eη) ∩ Cb((0, 1];E) : δS,1f ∈ Cη([0, 1]2<;Eη)}

Davide Addona (Unipr) YDE & RDE in Infinite Dimension Parma 2025 14 / 17



How can we weaken the condition y0 ∈ Eη? Sewing Lemma with singularities: γ ≥ 0

Cα
−γ((0, 1]N<;Eη) :=

{
B : (0, 1]N< → Eη : sup

0≤t1<...<tN≤1
(t1)

γ ∥B(t1, . . . , tN)∥η
|tN − t1|α

< ∞
}

Mild Singular Sewing Lemma (A-Lorenzi-Tessitore ’24, Neamtu-Hocquet ’24): Let
α ∈

( 1
2 , 1

)
, η > 1 − α, γ < α and B ∈ Cα

−γ((0, 1]2<;Eη) s. t. δS,2B ∈ Cα+η
−γ ((0, 1]3<;E).

Then, ISB, defined on (0, 1], extends to [0, 1] with values in Eη and

∥δS,1ISB(s, t)∥Eη+ε ≤ C(ε,B)|t − s|α−γ−ε, ε ∈ [0, α− γ)

Theorem (A-Lorenzi-Tessitore ’24): if X ∈ Cα, α ∈
( 1

2 , 1
)
, η > 1 − α, y0 ∈ Eθ with

θ ∈ [0, η] and 2η − θ < α, σ smooth.

Then, there exists a unique fixed point Y for the operator Γ : B → B, defined as

Γ(Y )(t) = etAy0 +

∫ t

0
e(t−s)Aσ(y(s))dX (s), t ∈ [0, 1]

Moreover, Y (t) ∈ D(A) for every t ∈ (0, 1].

B := {f ∈ Cθ−η((0, 1];Eη) ∩ Cb((0, 1];E) : δS,1f ∈ Cη([0, 1]2<;Eη)}

Davide Addona (Unipr) YDE & RDE in Infinite Dimension Parma 2025 14 / 17



How can we weaken the condition y0 ∈ Eη? Sewing Lemma with singularities: γ ≥ 0

Cα
−γ((0, 1]N<;Eη) :=

{
B : (0, 1]N< → Eη : sup

0≤t1<...<tN≤1
(t1)

γ ∥B(t1, . . . , tN)∥η
|tN − t1|α

< ∞
}

Mild Singular Sewing Lemma (A-Lorenzi-Tessitore ’24, Neamtu-Hocquet ’24): Let
α ∈

( 1
2 , 1

)
, η > 1 − α, γ < α and B ∈ Cα

−γ((0, 1]2<;Eη) s. t. δS,2B ∈ Cα+η
−γ ((0, 1]3<;E).

Then, ISB, defined on (0, 1], extends to [0, 1] with values in Eη and

∥δS,1ISB(s, t)∥Eη+ε ≤ C(ε,B)|t − s|α−γ−ε, ε ∈ [0, α− γ)

Theorem (A-Lorenzi-Tessitore ’24): if X ∈ Cα, α ∈
( 1

2 , 1
)
, η > 1 − α, y0 ∈ Eθ with

θ ∈ [0, η] and 2η − θ < α, σ smooth.

Then, there exists a unique fixed point Y for the operator Γ : B → B, defined as

Γ(Y )(t) = etAy0 +

∫ t

0
e(t−s)Aσ(y(s))dX (s), t ∈ [0, 1]

Moreover, Y (t) ∈ D(A) for every t ∈ (0, 1].

B := {f ∈ Cθ−η((0, 1];Eη) ∩ Cb((0, 1];E) : δS,1f ∈ Cη([0, 1]2<;Eη)}

Davide Addona (Unipr) YDE & RDE in Infinite Dimension Parma 2025 14 / 17



How can we weaken the condition y0 ∈ Eη? Sewing Lemma with singularities: γ ≥ 0

Cα
−γ((0, 1]N<;Eη) :=

{
B : (0, 1]N< → Eη : sup

0≤t1<...<tN≤1
(t1)

γ ∥B(t1, . . . , tN)∥η
|tN − t1|α

< ∞
}

Mild Singular Sewing Lemma (A-Lorenzi-Tessitore ’24, Neamtu-Hocquet ’24): Let
α ∈

( 1
2 , 1

)
, η > 1 − α, γ < α and B ∈ Cα

−γ((0, 1]2<;Eη) s. t. δS,2B ∈ Cα+η
−γ ((0, 1]3<;E).

Then, ISB, defined on (0, 1], extends to [0, 1] with values in Eη and

∥δS,1ISB(s, t)∥Eη+ε ≤ C(ε,B)|t − s|α−γ−ε, ε ∈ [0, α− γ)

Theorem (A-Lorenzi-Tessitore ’24): if X ∈ Cα, α ∈
( 1

2 , 1
)
, η > 1 − α, y0 ∈ Eθ with

θ ∈ [0, η] and 2η − θ < α, σ smooth.

Then, there exists a unique fixed point Y for the operator Γ : B → B, defined as

Γ(Y )(t) = etAy0 +

∫ t

0
e(t−s)Aσ(y(s))dX (s), t ∈ [0, 1]

Moreover, Y (t) ∈ D(A) for every t ∈ (0, 1].

B := {f ∈ Cθ−η((0, 1];Eη) ∩ Cb((0, 1];E) : δS,1f ∈ Cη([0, 1]2<;Eη)}

Davide Addona (Unipr) YDE & RDE in Infinite Dimension Parma 2025 14 / 17



How can we weaken the condition y0 ∈ Eη? Sewing Lemma with singularities: γ ≥ 0

Cα
−γ((0, 1]N<;Eη) :=

{
B : (0, 1]N< → Eη : sup

0≤t1<...<tN≤1
(t1)

γ ∥B(t1, . . . , tN)∥η
|tN − t1|α

< ∞
}

Mild Singular Sewing Lemma (A-Lorenzi-Tessitore ’24, Neamtu-Hocquet ’24): Let
α ∈

( 1
2 , 1

)
, η > 1 − α, γ < α and B ∈ Cα

−γ((0, 1]2<;Eη) s. t. δS,2B ∈ Cα+η
−γ ((0, 1]3<;E).

Then, ISB, defined on (0, 1], extends to [0, 1] with values in Eη and

∥δS,1ISB(s, t)∥Eη+ε ≤ C(ε,B)|t − s|α−γ−ε, ε ∈ [0, α− γ)

Theorem (A-Lorenzi-Tessitore ’24): if X ∈ Cα, α ∈
( 1

2 , 1
)
, η > 1 − α, y0 ∈ Eθ with

θ ∈ [0, η] and 2η − θ < α, σ smooth.

Then, there exists a unique fixed point Y for the operator Γ : B → B, defined as

Γ(Y )(t) = etAy0 +

∫ t

0
e(t−s)Aσ(y(s))dX (s), t ∈ [0, 1]

Moreover, Y (t) ∈ D(A) for every t ∈ (0, 1].

B := {f ∈ Cθ−η((0, 1];Eη) ∩ Cb((0, 1];E) : δS,1f ∈ Cη([0, 1]2<;Eη)}

Davide Addona (Unipr) YDE & RDE in Infinite Dimension Parma 2025 14 / 17



How can we weaken the condition y0 ∈ Eη? Sewing Lemma with singularities: γ ≥ 0

Cα
−γ((0, 1]N<;Eη) :=

{
B : (0, 1]N< → Eη : sup

0≤t1<...<tN≤1
(t1)

γ ∥B(t1, . . . , tN)∥η
|tN − t1|α

< ∞
}

Mild Singular Sewing Lemma (A-Lorenzi-Tessitore ’24, Neamtu-Hocquet ’24): Let
α ∈

( 1
2 , 1

)
, η > 1 − α, γ < α and B ∈ Cα

−γ((0, 1]2<;Eη) s. t. δS,2B ∈ Cα+η
−γ ((0, 1]3<;E).

Then, ISB, defined on (0, 1], extends to [0, 1] with values in Eη and

∥δS,1ISB(s, t)∥Eη+ε ≤ C(ε,B)|t − s|α−γ−ε, ε ∈ [0, α− γ)

Theorem (A-Lorenzi-Tessitore ’24): if X ∈ Cα, α ∈
( 1

2 , 1
)
, η > 1 − α, y0 ∈ Eθ with

θ ∈ [0, η] and 2η − θ < α, σ smooth.

Then, there exists a unique fixed point Y for the operator Γ : B → B, defined as

Γ(Y )(t) = etAy0 +

∫ t

0
e(t−s)Aσ(y(s))dX (s), t ∈ [0, 1]

Moreover, Y (t) ∈ D(A) for every t ∈ (0, 1].

B := {f ∈ Cθ−η((0, 1];Eη) ∩ Cb((0, 1];E) : δS,1f ∈ Cη([0, 1]2<;Eη)}

Davide Addona (Unipr) YDE & RDE in Infinite Dimension Parma 2025 14 / 17



Mild Integration: the Rough Case

Assume that X = (X ,X) ∈ C α, α ∈
( 1

3 ,
1
2

]
.

We have∫ t

s

e(t−s)Af (r)dX (r) = e(t−s)Af (s)(δ1X )(s, t) +

∫ t

s

e(t−r)A(f (r)− e(r−s)Af (s))dX (r)

When A = 0 and f is controlled by X , we replace f (r)− e(r−s)Af (s) with

f (r)− f (s) = f ′(s)(δ1X )(s, r) + R(s, r), R(s, r) = O(|r − s|2α)

Gubinelli-Tindel ’10, Gerasimovics-Hairer ’19: We say that f : [0, 1] → E is S-controlled
by X if there exists f ′ : [0, 1] → E such that (f ′ S-Gubinelli derivative of f )

R f
S(s, t) := (δS,1f )(s, t)− e(t−s)Af ′(s)(δ1X )(s, t), R f

S ∈ Cρ([0, 1]2<;E), ρ > α

For f S-controlled by X , we get∫ t

s

e(t−r)Af (r)dX (r) = e(t−s)Af (s)(δ1X )(s, t) + e(t−s)Af ′(s)X(s, t) + O(|t − s|ρ+α)
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Set B(s, t) = e(t−s)Af (s)(δ1X )(s, t) + e(t−s)Af ′(s)X(s, t). If f is S-controlled by X , then

(δS,2B)(s, t, u) = −R f
S(s, t)(δ1X )(t, u)− (δS,1f

′)(s, t)X(t, u)

If δS,1f ′ ∈ C ζ([0, 1]2<;E), ζ + 2α, ρ+ α > 1, then δS,2B ∈ Cµ([0, 1]3<;E), µ > 1

Mild Sewing Lemma ⇒ ISB(t) =“

∫ t

0
e(t−r)Af (r)dX (r)

′′
exists

Theorem (A-Lorenzi-Tessitore ’25): Let X ∈ C α([0, 1]), α ∈
( 1

3 ,
1
2

]
, η ∈ (1 − 2α, α),

y0 ∈ Eη+α, σ linear and bounded.

Then, there exists a unique fixed point Y for the operator Γ : B → B defined as

Γ(Y )(t) = etAy0 +

∫ t

0
e(t−s)Aσ(Y (s))dX (s), t ∈ [0, 1]

Moreover, Y (t) ∈ D(A) for every t ∈ (0, 1], it satisfies the integral representation

Y (t) = y0 +

∫ t

0
AY (s)ds +

∫ t

0
σ(Y (s))dX (s), t ∈ [0, 1]

and F (Y (t))−F (Y (s))=

∫ t

s

⟨DF (Y (r)),AY (r)⟩dr +
∫ t

s

⟨DF (Y (r)), σ(Y (r))⟩dX (r)(+?)

B = {f ∈ . . . : R f
S ∈ Cα+η([0, 1]2<;Eη), f ′ ∈ Cη([0, 1]2<;Eη)}
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