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The equation

We consider the following differential equation in a Banach space E

dY(t) = AY(t)dt + o(Y(t))dX(t), te(0,1], Y(0)=w € E (RDE)
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dY(t) = AY(t)dt + o(Y(t))dX(t), te(0,1], Y(0)=w € E (RDE)
x A: D(A) C E — E is the generator of a semigroup (") C Z(E)
* 0 : E — E is a sufficiently smooth function

* X :[0,1] — R is a a-Hélder continuous function for some a € (3,1)
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The equation

We consider the following differential equation in a Banach space E

dY(t) = AY(t)dt + o(Y(t))dX(t), te(0,1], Y(0)=w € E (RDE)
x A: D(A) C E — E is the generator of a semigroup (") C Z(E)
* 0 : E — E is a sufficiently smooth function

* X :[0,1] — R is a a-Hélder continuous function for some a € (3,1)

GOALS: existence, uniqueness, regularity properties for the mild solution Y to (RDE)
formally given by

t

Y(t) = e“‘y0+/ e G (Y (s))dX (s), t e 0,1] (MILD)
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Motivation & Problems
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Motivation & Problems

Consider the SDE: Z(t) = o(Z(t))dW(t), t € (0,1], Z(0) =€ € R
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Motivation & Problems

Consider the SDE: Z(t) = o(Z(t))dW(t), t € (0,1], Z(0) =€ € R

t
W Brownian Motion =- integral formulation of the SDE: Z(t) = ¢ —|—/ o(Z(s))dW(s)
0
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Motivation & Problems

Consider the SDE: Z(t) = o(Z(t))dW(t), t € (0,1], Z(0) =¢ €R
t
W Brownian Motion =- integral formulation of the SDE: Z(t) = ¢ —|—/ o(Z(s))dW(s)
0

t
How can we define the stochastic integral / o(Z(s))dW(s)?
0
t
@ probabilistic definition of/ o(Z(s))dW(s): Ité-Stratonovich
0
t
@ pathwise definition of/ 0(Zu(s))dWo(s), w e Q 777
0

P-as. we Q
o W.,, has not finite 1-variation
e W, (and 0(Z,)) a-Hélder continuous for every @ < 1

o W, has finite p-variation for every p > 2
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We set I(f, g) = / F(£)&(t)dt, f,g € CH([0,1])
0
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We set I(f, g) = / F(£)&(t)dt, f,g € CH([0,1])
0

Negative result (Lyons '91): 3 a Banach space B C C(][0,1]) such that
° C"‘ngoreverya<%

@ | extends to a continuous map / : B x B — C([0,1])
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We set I(f, g) = / F(£)&(t)dt, f,g € CH([0,1])
0

Negative result (Lyons '91): 3 a Banach space B C C(][0,1]) such that
° C"‘ngoreveryoc<%

@ | extends to a continuous map / : B x B — C([0,1])

Positive result (Young '36, Kondurar '37): if @ + 8 > 1, then
o | extends to a continuous map /y : C%([0,1]) x C?([0,1]) — C?([0,1])
o |Iv(f,g)(s,t) = f(s)(g(t) — g())| < Casslflalglslt — s[**”

o Iv(f,g)(s,t) = |;!i\n—1>o Z f(u)(g(v) — g(u)), 0 <s <t <1, P partition of [s, t]

[u,v]EP

Davide Addona (Unipr) YDE & RDE in Infinite Dimension Parma 2025



We set I(f, g) = / F(£)&(t)dt, f,g € CH([0,1])
0

Negative result (Lyons '91): 3 a Banach space B C C(][0,1]) such that
° C"‘ngoreveryoc<%

@ | extends to a continuous map / : B x B — C([0,1])

Positive result (Young '36, Kondurar '37): if @ + 8 > 1, then
o | extends to a continuous map /y : C%([0,1]) x C?([0,1]) — C?([0,1])
o |Iv(f,g)(s,t) = f(s)(g(t) — g())| < Casslflalglslt — s[**”

o Iv(f,g)(s,t) = |;!i\n—1>o Z f(u)(g(v) — g(u)), 0 <s <t <1, P partition of [s, t]

[u,v]EP

Consequences: let B = C*([0,1]), a € (},1).
@ | extends to a continuous map Iy : B x B — B: Young Integral

e What about the case o < 17
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Integration of 1-forms (Folmer '81, Lyons '98)

Assume X € C1,F € C%. Then
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Integration of 1-forms (Folmer '81, Lyons '98)

Assume X € C1,F € C%. Then

[ FX)ax() — FXEX(@) = X(5) = [ (FOX(0) — FX())aX()
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Integration of 1-forms (Folmer '81, Lyons '98)

Assume X € C1,F € C%. Then

[ FX)ax() — FXEX(@) = X(5) = [ (FOX(0) — FX())aX()

[FX() — FX(5)) = F(X)X() — X(5)) + 5 F(€)(X(r) ~ X(5))]
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Integration of 1-forms (Folmer '81, Lyons '98)

Assume X € C1,F € C%. Then

/ FX())dX(r) — FX(S)(X() - X(3)) = / (FX() ~ FX())dX(7)
[FX() — FX(5)) = F(X)X() — X(5)) + 5 F(€)(X(r) ~ X(5))]

= F'(X(s))/t(X(r) — X(s))dX(r) + reminder
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Integration of 1-forms (Folmer '81, Lyons '98)

Assume X € C',F € C?. Then
/ FX())dX(r) — FX(S)(X() - X(3)) = / (FX() ~ FX())dX(7)
[FX() — FX(5)) = F(X)X() — X(5)) + 5 F(€)(X(r) ~ X(5))]
= F'(X(s)) / t(X(r) — X(s))dX(r) + reminder
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Integration of 1-forms (Folmer '81, Lyons '98)

Assume X € C1,F € C%. Then

| FX)ax() - Fx @) - x(s) = [ (Fx) = Fxsn)ax)
[FX() — FX(5)) = F(X)X() — X(5)) + 5 F(€)(X(r) ~ X(5))]
= F/(X(s)) / {(X(r) = X(5))dX(r) + reminder

/St(X( — X(s))dX(r) / X(F)dX(r) = X(s)(X(t) — X(s))

t
ac(3,1)=> / X(r)dX(r) = Iy(X, X)(s, t) Young Integral
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Integration of 1-forms (Folmer '81, Lyons '98)

Assume X € C',F € C>. Then
| FX)ax() - Fx @) - x(s) = [ (Fx) = Fxsn)ax)
[FX() — FX(5)) = F(X)X() — X(5)) + 5 F(€)(X(r) ~ X(5))]
— F'(X(s)) / {(X(F) = X(5))dX(r) + reminder

/t(X( — X(s))dX(r) /x YdX (r) = X(s)(X(£) = X(s))

t
ac(3,1)=> / X(r)dX(r) = Iy(X, X)(s, t) Young Integral

t

a<l= /tX(r)dX(r) defines/ F(X(r))dX(r)

s
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Holder Continuous Rough Paths (Lyons '98)
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Holder Continuous Rough Paths (Lyons '98)

Given v € (3, 1], the space ([0, 1]; R) of a a-Hélder rough paths is given by the
couples X = (X;X) such that ([0,1]% := {(s,t) €[0,1]* : s < t})

Davide Addona (Unipr) YDE & RDE in Infinite Dimension Parma 2025



Holder Continuous Rough Paths (Lyons '98)

Given v € (3, 1], the space ([0, 1]; R) of a a-Hélder rough paths is given by the
couples X = (X;X) such that ([0,1]% := {(s,t) €[0,1]* : s < t})
o X:[0,1] = R, sup 1X(t) = X(s)]

o<s<t<1 |t —s|®

< oo (X € C¥([0,1];R))
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Holder Continuous Rough Paths (Lyons '98)

Given v € (3, 1], the space ([0, 1]; R) of a a-Hélder rough paths is given by the

couples X = (X;X) such that ([0,1]% := {(s,t) €[0,1]* : s < t})
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Holder Continuous Rough Paths (Lyons '98)

Given v € (3, 1], the space ([0, 1]; R) of a a-Hélder rough paths is given by the

couples X = (X;X) such that ([0,1]2 := {(s,t) € [0,1]* : s < t})

e X:[0,1] = R, sup % < oo (X € C*(]0,1]; R))
e X:[0,12 = R, [[X|j2q := sup X(s, 0l < oo (X e C*([0,1]%;R))

o<s<t<1 |t — s[%@

o X(s,u) —X(s,t) — X(t,u)=(X(t) — X(s))(X(u) — X(t)) (Chen's Relation)

What is the meaning of X?
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Holder Continuous Rough Paths (Lyons '98)

Given v € (3, 1], the space ([0, 1]; R) of a a-Hélder rough paths is given by the

couples X = (X;X) such that ([0,1]% := {(s,t) €[0,1]* : s < t})

e X:[0,1] = R, sup % < oo (X € C*(]0,1]; R))
e X:[0,12 = R, [[X|j2q := sup X ) < oo (X e C*([0,1]%;R))

o<s<t<1 |t — s[%@

o X(s,u) —X(s,t) — X(t,u)=(X(t) — X(s))(X(u) — X(t)) (Chen's Relation)

What is the meaning of X?

t
a> 1= X(s0)= / (X(r) = X(5))dX(r), 0 < s < t < 1: Young Integral
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Holder Continuous Rough Paths (Lyons '98)

Given v € (3, 1], the space ([0, 1]; R) of a a-Hélder rough paths is given by the

couples X = (X;X) such that ([0,1]% := {(s,t) €[0,1]* : s < t})

e X:[0,1] = R, sup % < oo (X € C*(]0,1]; R))
e X:[0,12 = R, [[X|j2q := sup X ) < oo (X e C*([0,1]%;R))

o<s<t<1 |t — s[%@
o X(s,u) —X(s,t) — X(t,u)=(X(t) — X(s))(X(u) — X(t)) (Chen's Relation)
What is the meaning of X?

t
a> 1= X(s0)= / (X(r) = X(5))dX(r), 0 < s < t < 1: Young Integral

"

t
o € (3, 3] = X(s, t) possible choice for / (X(r) = X(s))dX(r) : infinitely many!
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Rough Integration
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Rough Integration

X e cHo,1]), FECG(R),0<s<t<1,
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Rough Integration
X e CH([0.1]), FECG(R), 0<s <t <1,

Integral: /t F(X(r))dX(r)
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Rough Integration
X e CH([0.1]), FECG(R), 0<s <t <1,

Integral: / F(X(r))dX(r) £ F(X(s))(X(t) — X(s))
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Rough Integration
X e CH([0.1]), FECG(R), 0<s <t <1,

Integral: /t F(X(r))dX(r) = F(X(s))(X(t) — X(s)) + /t(F(X(r)) — F(X(s)))dX(r)
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Rough Integration
X e CH([0.1]), FECG(R), 0<s <t <1,

Integral: /t F(X(r))dX(r) = F(X(s))(X(t) — X(s)) + /t(F(X(r)) — F(X(s)))dX(r)

Taylor: F(X(t)) — F(X(s)) = F'(X(s))(X(t) — X(s)) + %F"(i)(x(t) - X(s))* J
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Rough Integration
X e CH([0.1]), FECG(R), 0<s <t <1,

Integral: /t F(X(r))dX(r) = F(X(s))(X(t) — X(s)) + /t(F(X(r)) — F(X(s)))dX(r)

Taylor: F(X(t)) — F(X(s)) = F'(X(s))(X(t) — X(s)) + %F"(i)(x(t) - X(s))* J

Reminder: R(s,t) = O(|X(t) — X(s)|?) = F'(X(s))X(s, t) + O(|X(t) — X(s)|*)
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Rough Integration
X e CH([0.1]), FECG(R), 0<s <t <1,

Integral: /t F(X(r))dX(r) = F(X(s))(X(t) — X(s)) + /t(F(X(r)) — F(X(s)))dX(r)

Taylor: F(X(t)) — F(X(s)) = F'(X(s))(X(t) — X(s)) + %F"(f)(x(t) - X(s))* J

Reminder: R(s,t) = O(|X(t) — X(s)|?) = F'(X(s))X(s, t) + O(|X(t) — X(s)|*)

X € C*([0,1]), FE CA(R),0<s< t <L
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Rough Integration
X e CH([0.1]), FECG(R), 0<s <t <1,

Integral: /t F(X(r))dX(r) = F(X(s))(X(t) — X(s)) + /t(F(X(r)) — F(X(s)))dX(r)

Taylor: F(X(t)) — F(X(s)) = F'(X(s))(X(t) — X(s)) + %F"(f)(x(t) - X(s))* J

Reminder: R(s,t) = O(|X(t) — X(s)|?) = F'(X(s))X(s, t) + O(|X(t) — X(s)|*)
X € C*([0,1]), F€ C3(R),0<s <t <1:

* If a > 1 then R(s,t) = O(|t — s|**) and the limit

lim Z F(X(u))(X(v) — X(u)) = Iy(F(X), X) exists (Young Integral)
[u,v]EP(s,t)

[P(s,t)| =0
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Rough Integration
X e CH([0.1]), FECG(R), 0<s <t <1,

Integral: /t F(X(r))dX(r) = F(X(s))(X(t) — X(s)) + /t(F(X(r)) — F(X(s)))dX(r)

Taylor: F(X(t)) — F(X(s)) = F'(X(s))(X(t) — X(s)) + %F"(f)(x(t) - X(s))* J

Reminder: R(s,t) = O(|X(t) — X(s)|?) = F'(X(s))X(s, t) + O(|X(t) — X(s)|*)
X € C*([0,1]), F€ C3(R),0<s <t <1:
* If a > 1 then R(s,t) = O(|t — s|**) and the limit

|P(slitrﬂ_)0 Z F(X(u))(X(v) — X(u)) = Iy(F(X), X) exists (Young Integral)
’ [u,v]E€P(s,t)

* If o € (3, %] then R(s, t) = F'(X(s))X(s, t) + O(|t — s[>**) and the limit exists:

plim ST [FX@)X(v) = X () + F (X ()X ()] J

[u,v]€P(s,t)
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Lyons '98: X = (X, X) a-Hélder rough path, o € (3, 1], F € CZ(R). The rough integral

372

’R<F<X>fx><$vt>=|p<s“m% > [FX@)X(v) = X(w)) + F' (X (u)X(u, v)]
’ [u,v]EP(s,t)

exists for every 0 < s <t < 1.
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Lyons '98: X = (X, X) a-Hélder rough path, o € (3, 1], F € CZ(R). The rough integral

372

’R<F<X>fx><$vt>=|p<s“m% > [FX@)X(v) = X(w)) + F' (X (u)X(u, v)]
’ [u,v]EP(s,t)

exists for every 0 < s < t < 1. Moreover, Igr(F(X), X) satisfies

[1r(F(X), X)(s, ) = F(X(s))(X(t) = X(s)) = F'(X(s))X(s, t)| < C(F, X)|t — s
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Lyons '98: X = (X, X) a-Hélder rough path, o € (3, 1], F € CZ(R). The rough integral

Ir(F(X), X)(s,t) = _ lim Y [FX @)X (v) = X(u) + F'(X(u)X(u, v)]

IPEBI=0 ep(s.o)

exists for every 0 < s < t < 1. Moreover, Igr(F(X), X) satisfies

[1r(F(X), X)(s, ) = F(X(s))(X(t) = X(s)) = F'(X(s))X(s, t)| < C(F, X)|t — s

Lyons solves a rough differential equation of the form
dY (£) = o(Y(£))dX(2), Y(0) = yo (e Y(£) = yo + le(o(Y), X)(0,£))

but the concept of solution and the techniques exploited are complicated and involved.
Another (but equivalent) definition of solution and proof of the existence and uniqueness

of solutions can be obtained by means of Sewing Lemma and Controlled Rough Paths,

introduced in '04 and generalized to the mild situation in "10 by Gubinelli.
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Sewing Lemma

Let NeN, a,8>0,[0,1]Y i={(ts,...,tn) €[0, 1]V :0<ts < ... <ty < 1}
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Sewing Lemma
Let NeN, a,8>0,[0,1]Y i={(ts,...,tn) €[0, 1]V :0<ts < ... <ty < 1}

x CP([0,1]%): functions A : [0,1]¥ — R such that sup s <0
0<ty<...<tn<1 |tN — tl‘B
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Sewing Lemma
Let NeN, a,8>0,[0,1]Y i={(ts,...,tn) €[0, 1]V :0<ts < ... <ty < 1}

x CP([0,1]%): functions A : [0,1]¥ — R such that sup A, - to)] < 00
0<ty<...<tn<1 |tN — tl‘B

* oy 0 C°([0,1]%) — C°([0,1]¥F1) defined as (for N = 1,2, (s, t,u) € [0,1]2)
(A5, 8) = A(t) — A(s),  (5:2A)(s, £, u) = A(s, u) — A(s, £) — A(t, u)
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Sewing Lemma

Let NeN, a,8>0,[0,1]Y i={(ts,...,tn) €[0, 1]V :0<ts < ... <ty < 1}

x CP([0,1]%): functions A : [0,1]¥ — R such that sup A, )]
0<ty<...<tn<1 |tN — tl‘B

* oy 0 C°([0,1]%) — C°([0,1]¥F1) defined as (for N = 1,2, (s, t,u) € [0,1]2)
(01A)(s, t) = A(t) — A(s), (62A)(s, t,u) = A(s, u) — A(s, t) — A(t, u)
x Chen's Relation: (82X)(s, t, u) = (61 X)(s, t)(01.X)(t, u), (s, t,u) € [0,1]
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Sewing Lemma

Let NeN, a,8>0,[0,1]Y i={(ts,...,tn) €[0, 1]V :0<ts < ... <ty < 1}

5 . A(ty,.... t
x CP([0,1]%): functions A : [0,1]¥ — R such that sup A, - to)] < 0
0<ty<...<tn<1 |tN — tl‘B

* oy 0 C°([0,1]%) — C°([0,1]¥F1) defined as (for N = 1,2, (s, t,u) € [0,1]2)

(61A)(s, t) = A(t) — A(s), (62A)(s, t,u) = A(s, u) — A(s, t) — A(t, u)
x Chen's Relation: (82X)(s, t, u) = (61 X)(s, t)(01.X)(t, u), (s, t,u) € [0,1]
G7([0,1]) := {A € C*([0,1]2) : &2A € C7([0,1]2)}
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Sewing Lemma

Let NeN, a,8>0,[0,1]Y i={(ts,...,tn) €[0, 1]V :0<ts < ... <ty < 1}

CP([0,1]¥): functions A : [0,1]%¥ — R such that sup [A(t, - t)]
0<ty<...<tn<1 |tN — tl‘B

* oy 0 C°([0,1]%) — C°([0,1]¥F1) defined as (for N = 1,2, (s, t,u) € [0,1]2)
(51A)(s,t) = A(t) — A(s),  (62A)(s, t,u) = A(s, u) — A(s, t) — A(t, u)
* Chen's Relation: (5,X)(s, t, u) = (61X)(s, £)(6:X)(t, u), (s, t,u) € [0,1]>
G([0,1]) = {A € C*([0,1]2) : 62A € C7([0, 1]2)}
Sewing Lemma (Gubinelli '04): Let 0 < @ <1 < . There exists a unique continuous
linear map / : C57([0,1]) — C*([0, 1]) such that /A(0) = 0 and
o |(31/A)(s,t) — A(s, )| < C(B,A)[t —s|”, (s, t) € [0,1]%

o JA(t)= lim " A(u,v), P partition of [0, ]
[u,v]EP
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Sewing Lemma

Let NeN, a,8>0,[0,1]Y i={(ts,...,tn) €[0, 1]V :0<ts < ... <ty < 1}

CP([0,1]¥): functions A : [0,1]%¥ — R such that sup [A(t, - t)]
0<ty<...<tn<1 |tN — tl‘B

* oy 0 C°([0,1]%) — C°([0,1]¥F1) defined as (for N = 1,2, (s, t,u) € [0,1]2)
(51A)(s,t) = A(t) — A(s),  (62A)(s, t,u) = A(s, u) — A(s, t) — A(t, u)
* Chen's Relation: (5,X)(s, t, u) = (61X)(s, £)(6:X)(t, u), (s, t,u) € [0,1]>
G([0,1]) = {A € C*([0,1]2) : 62A € C7([0, 1]2)}
Sewing Lemma (Gubinelli '04): Let 0 < @ <1 < . There exists a unique continuous
linear map / : C57([0,1]) — C*([0, 1]) such that /A(0) = 0 and
o |(31/A)(s,t) — A(s, )| < C(B,A)[t —s|”, (s, t) € [0,1]%

o JA(t)= lim " A(u,v), P partition of [0, ]
[u,v]EP

* Example: A(s, t) = f(s)(018)(s, t) = (02A)(s, t, u) = —(01f)(s, t)(d18)(t, u)
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Sewing Lemma

Let NeN, a,8>0,[0,1]Y i={(ts,...,tn) €[0, 1]V :0<ts < ... <ty < 1}

CP([0,1]¥): functions A : [0,1]%¥ — R such that sup [A(t, - t)]
0<ty<...<tn<1 |tN — tl‘B

* oy 0 C°([0,1]%) — C°([0,1]¥F1) defined as (for N = 1,2, (s, t,u) € [0,1]2)
(51A)(s,t) = A(t) — A(s),  (62A)(s, t,u) = A(s, u) — A(s, t) — A(t, u)
* Chen's Relation: (5,X)(s, t, u) = (61X)(s, £)(6:X)(t, u), (s, t,u) € [0,1]>
G([0,1]) = {A € C*([0,1]2) : 62A € C7([0, 1]2)}
Sewing Lemma (Gubinelli '04): Let 0 < @ <1 < . There exists a unique continuous
linear map / : C57([0,1]) — C*([0, 1]) such that /A(0) = 0 and
o |(31/A)(s,t) — A(s, )| < C(B,A)[t —s|”, (s, t) € [0,1]%

o JA(t)= lim " A(u,v), P partition of [0, ]
[u,v]EP

* Example: A(s, t) = f(s)(018)(s, t) = (02A)(s, t, u) = —(01f)(s, t)(d18)(t, u)

It feC*geCl a+pB>1, then IA=Iy(f g)
YDE & RDE in Infinite Dimension Parma 2025




Controlled Rough Paths

Davide Addona (Unipr) YDE & RDE in Infinite Dimension Parma 2025



Controlled Rough Paths

For F € CZ, We set R(s,t) := (01F(X))(s, t) — F/(X(s))(01X)(s, t) ~ (X(t) — X(s))?
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Controlled Rough Paths

For F € CZ, We set R(s,t) := (01F(X))(s, t) — F/(X(s))(01X)(s, t) ~ (X(t) — X(s))?
Example: If A(s,t) = F(X(s))(01X)(s, t) + F'(X(s))X(s, t), then
(62A)(s, t, u) = —R(s, t)(61.X)(t, u) — (61 F'(X))(s, t)X(t, u)

If (X,X) € €%([0,1]), a € (%, 1], then R(s,t) = O(|t — s[**) and IA = Ir(F(X), X)
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Controlled Rough Paths

For F € CZ, We set R(s,t) := (01F(X))(s, t) — F/(X(s))(01X)(s, t) ~ (X(t) — X(s))?
Example: If A(s,t) = F(X(s))(01X)(s, t) + F'(X(s))X(s, t), then
(62A)(s, t, u) = —R(s, t)(61.X)(t, u) — (61 F'(X))(s, t)X(t, u)

If (X,X) € €%([0,1]), a € (%, 1], then R(s,t) = O(|t — s[**) and IA = Ir(F(X), X)

How can we extend (beyond F(X)) the class of “functions under the integral sign"?
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Controlled Rough Paths

For F € CZ, We set R(s,t) := (01F(X))(s, t) — F/(X(s))(01X)(s, t) ~ (X(t) — X(s))?
Example: If A(s,t) = F(X(s))(01X)(s, t) + F'(X(s))X(s, t), then

(62A)(s, t, u) = —R(s, t)(1.X)(t, u) — (31 F'(X))(s, t)X(t, v)
If (X,X) € €%([0,1]), a € (%, 1], then R(s,t) = O(|t — s[**) and IA = Ir(F(X), X)

How can we extend (beyond F(X)) the class of “functions under the integral sign"?

Replacing F(X) and F’(X) with objects with the same properties!
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Controlled Rough Paths

For F € CZ, We set R(s,t) := (01F(X))(s, t) — F/(X(s))(01X)(s, t) ~ (X(t) — X(s))?
Example: If A(s,t) = F(X(s))(01X)(s, t) + F'(X(s))X(s, t), then

(62A)(s, t, u) = —R(s, t)(1.X)(t, u) — (31 F'(X))(s, t)X(t, v)
If (X,X) € €%([0,1]), a € (%, 1], then R(s,t) = O(|t — s[**) and IA = Ir(F(X), X)

How can we extend (beyond F(X)) the class of “functions under the integral sign"?

Replacing F(X) and F’(X) with objects with the same properties!

Gubinelli '04: D¥*(0,1) is the space of couples (Y, Y’) € C*([0,1]) x C*([0,1]):
RY(s,t) := (61Y)(s,t) — Y'(s)(01X)(s, t) = O(|t — s|*¥)

Y is controlled by X if 3Y” such that (Y, Y’) € D3*, Y’ Gubinelli derivative of Y
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Controlled Rough Paths
For F € CZ, We set R(s,t) := (01F(X))(s, t) — F/(X(s))(01X)(s, t) ~ (X(t) — X(s))?
Example: If A(s, t) = F(X(s))(61X)(s, t) + F/(X(s))X(s, t), then
(82A)(s, t, u) = —R(s, t)(61.X)(t, u) — (81 F'(X))(s, t)X(t, u)
If (X,X) € €%([0,1]), a € (%, 1], then R(s,t) = O(|t — s[**) and IA = Ir(F(X), X)

How can we extend (beyond F(X)) the class of “functions under the integral sign"?

Replacing F(X) and F’(X) with objects with the same properties!

Gubinelli '04: D¥*(0,1) is the space of couples (Y, Y’) € C*([0,1]) x C*([0,1]):
RY(s,t) := (61Y)(s,t) — Y'(s)(01X)(s, t) = O(|t — s|*¥)

Y is controlled by X if 3Y” such that (Y, Y’) € D3*, Y’ Gubinelli derivative of Y

Gubinelli '04: If (X,X) € €*([0,1]), e € (£, 3] and (Y, Y’) € DF, then

RO X050 = Jim 3 (V)X @) + ¥ (6, )
[u,v]eP
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Mild Integration: the Young Case

A: D(A) C E — E generates a semigroup (') C .Z(E), X € C*, a € (3,1)
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Mild Integration: the Young Case

A: D(A) C E — E generates a semigroup (') C .Z(E), X € C*, a € (3,1)

The equation: dY(t) = AY(t)dt + o(Y(t))dX(t), te(0,1], Y(0)=yo € E
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Mild Integration: the Young Case

A: D(A) C E — E generates a semigroup (') C .Z(E), X € C*, a € (3,1)

The equation: dY(t) = AY(t)dt + o(Y(t))dX(t), te(0,1], Y(0) =y € E

t
The mild solution: Y (t) = e"yo +/ e (Y (s))dX(s), t € [0,1] J
0

Davide Addona (Unipr) YDE & RDE in Infinite Dimension Parma 2025



Mild Integration: the Young Case

A: D(A) C E — E generates a semigroup (') C .Z(E), X € C*, a € (3,1)

The equation: dY(t) = AY(t)dt + o(Y(t))dX(t), te(0,1], Y(0)=yo € E

T i) ssllifian: Vi) = cZip - / (=g (s))dX(s), t € [0,1] J

t
* We aim at defining / e Af(r)dX(r), X € C*, for a class of £ : [0,1] — E:

/t f(r)dX(r) = /t (f(r) £ f(s))dX(r)
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Mild Integration: the Young Case

A: D(A) C E — E generates a semigroup (') C .Z(E), X € C*, a € (3,1)

The equation: dY(t) = AY(t)dt + o(Y(t))dX(t), te(0,1], Y(0)=yo € E

T i) ssllifian: Vi) = cZip - / (=g (s))dX(s), t € [0,1] J

* We aim at defining /te(tf’)Af(r)dX(r), X € C?, foraclass of f:[0,1] — E:
/t f(r)dX(r) = /t (f(r) £ f(s))dX(r)
= f(s)(X(1) *X(S))Jr/t (f(r) = f(s))dX(r)
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Mild Integration: the Young Case

A: D(A) C E — E generates a semigroup (') C .Z(E), X € C*, a € (3,1)

The equation: dY(t) = AY(t)dt + o(Y(t))dX(t), te(0,1], Y(0)=yo € E

T i) ssllifian: Vi) = cZip - / (=g (s))dX(s), t € [0,1] J

* We aim at defining /te(tf’)Af(r)dX(r), X € C?, foraclass of f:[0,1] — E:
/ t e f(r)dX(r) = / t eTOAF(r) £ f(s))dX(r)
= f(s)(X(t) - (S))+/ A(F(r) - f(s))dX(r)
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Mild Integration: the Young Case

A: D(A) C E — E generates a semigroup (') C .Z(E), X € C*, a € (3,1)

The equation: dY(t) = AY(t)dt + o(Y(t))dX(t), te(0,1], Y(0)=yo € E

T i) ssllifian: Vi) = cZip - / (=g (s))dX(s), t € [0,1] J

* We aim at defining /te(t”)Af(r)dX(r), X € C?, foraclass of f:[0,1] — E:
/ t A (r)dX(r) = / t T (r) £ "M (s))dX(r)
= F(s)(X(t) — X(s)) + / e IAF(r) — "M (s))dX (1)
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Mild Integration: the Young Case

A: D(A) C E — E generates a semigroup (') C .Z(E), X € C*, a € (3,1)

The equation: dY(t) = AY(t)dt + o(Y(t))dX(t), te(0,1], Y(0)=yo € E

T i) ssllifian: Vi) = cZip - / (=g (s))dX(s), t € [0,1] J

t
* We aim at defining / e Af(r)dX(r), X € C*, for a class of £ : [0,1] — E:
t t
/ A (r)dX (r) = / SOAE(r) £ A ())dX (r)
t
= X = X (@) + [ e — e H)ax(r)
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Mild Integration: the Young Case

A: D(A) C E — E generates a semigroup (') C .Z(E), X € C*, a € (3,1)

The equation: dY(t) = AY(t)dt + o(Y(t))dX(t), te(0,1], Y(0)=yo € E

T i) ssllifian: Vi) = cZip - / (=g (s))dX(s), t € [0,1] J

t
* We aim at defining / e Af(r)dX(r), X € C*, for a class of £ : [0,1] — E:
t t
/ A (r)dX (r) = / SOAE(r) £ A ())dX (r)
t
= X = X (@) + [ e — e H)ax(r)

* We have new increments §s n:
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Mild Integration: the Young Case

A: D(A) C E — E generates a semigroup (') C .Z(E), X € C*, a € (3,1)

The equation: dY(t) = AY(t)dt + o(Y(t))dX(t), te(0,1], Y(0)=yo € E

T i) ssllifian: Vi) = cZip - / (=g (s))dX(s), t € [0,1] J

t
* We aim at defining / e Af(r)dX(r), X € C*, for a class of £ : [0,1] — E:
t t
/ A (r)dX (r) = / SOAE(r) £ A ())dX (r)
t
= X = X (@) + [ e — e H)ax(r)

* We have new increments §s n:

(0s,1B)(s, t) := B(t) — e(“s)AB(s)7 (0s,2B)(s, t,u) = B(s,u) —
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CeY([0,1]; E) == {B € C*([0,1]%; E) : s 2B € C*([0,1]%; E)}
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CeY([0,1]; E) == {B € C*([0,1]%; E) : s 2B € C*([0,1]%; E)}

Mild Sewing Lemma (Gubinelli-Tindel '10): If 0 < o < 1 < S, then there exists a unique
continuous linear map /s : Cg’f([o, 1]; E) — C%([0,1]; E) such that /sB(0) = 0 and

® [(ds.11sB)(s, t) — B(s, t)| < C(B, B)|t — s’
@ IsB(t) = lim Z el" " B(u,v), P partition of [0, t]

|P|—0
[u,v]EP
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(10,11, £) = {B € C*([0, 112 E) : 6528 € C*([0, 1% E))
Mild Sewing Lemma (Gubinelli-Tindel '10): If 0 < o < 1 < S, then there exists a unique
continuous linear map /s : C;jf([o, 1]; E) — C%([0,1]; E) such that /sB(0) = 0 and

o |(6s,11sB)(s, t) — B(s, t)| < C(B, B)|t — s|”

@ IsB(t) = lim Z e""4B(u, v), P partition of [0, ]
[u,vleP

If B(s,t) = e (s)(01.X)(s, t), then (8s2B)(s, t,u) = —(ds.1F)(s, t)(61.X)(t, u)
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(10,11, £) = {B € C*([0, 112 E) : 6528 € C*([0, 1% E))
Mild Sewing Lemma (Gubinelli-Tindel '10): If 0 < o < 1 < S, then there exists a unique
continuous linear map /s : C;"f([o 1]; E) — C%([0,1]; E) such that /sB(0) = 0 and

o |(3s.1sB)(s,©) - B(s, )| < C(B, Bt ~ 5|

@ IsB(t) = lim Z e""4B(u, v), P partition of [0, ]
[u,vleP

If B(s,t) = e (s)(01.X)(s, t), then (8s2B)(s, t,u) = —(ds.1F)(s, t)(61.X)(t, u)

t "
IsB(t) =" / =9 F()dX ()" when ds1f € CT([0,1]2; E) with a +7 > 1

0
How to find a mild solution? Fixed point for I' : B — B given by

F(F)(t) = e“yo + Is(a(F))(t), t €[0,1],
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(10,11, £) = {B € C*([0, 112 E) : 6528 € C*([0, 1% E))
Mild Sewing Lemma (Gubinelli-Tindel '10): If 0 < o < 1 < S, then there exists a unique
continuous linear map /s : C;"f([o 1]; E) — C%([0,1]; E) such that /sB(0) = 0 and

o |(3s.1sB)(s,©) - B(s, )| < C(B, Bt ~ 5|

@ IsB(t) = lim Z e""4B(u, v), P partition of [0, ]
[u,vleP

If B(s,t) = e (s)(01.X)(s, t), then (8s2B)(s, t,u) = —(ds.1F)(s, t)(61.X)(t, u)

t "
IsB(t) =" / =9 F()dX ()" when ds1f € CT([0,1]2; E) with a +7 > 1

0
How to find a mild solution? Fixed point for I' : B — B given by

F(F)(t) = eyo + Is(a(£))(¢), t €]0,1], what is B?7?
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(10,11, £) = {B € C*([0, 112 E) : 6528 € C*([0, 1% E))
Mild Sewing Lemma (Gubinelli-Tindel '10): If 0 < o < 1 < S, then there exists a unique
continuous linear map /s : C;"f([o 1]; E) — C%([0,1]; E) such that /sB(0) = 0 and

o |(3s.1sB)(s,©) - B(s, )| < C(B, Bt ~ 5|

@ IsB(t) = lim Z e""4B(u, v), P partition of [0, ]
[u,vleP

If B(s,t) = e (s)(01.X)(s, t), then (8s2B)(s, t,u) = —(ds.1F)(s, t)(61.X)(t, u)
IsB(t) =" /t ¢ (s)dX(s)" when ds1f € C7([0,1]%; E) with a+ 17 > 1
How to findoa mild solution? Fixed point for [ : B — B given by

F(F)(t) = eyo + Is(a(£))(¢), t €]0,1], what is B?7?

5saf € C([0,1]%; E), o € CL(E; E), then

(95,1 (a(M))(s. t) = a(£(1)) — o (el f(s)) + ("9 — Id)(a(F))(s) + ... € C"7
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(10,11, £) = {B € C*([0, 112 E) : 6528 € C*([0, 1% E))
Mild Sewing Lemma (Gubinelli-Tindel '10): If 0 < o < 1 < S, then there exists a unique
continuous linear map /s : C;"f([o 1]; E) — C%([0,1]; E) such that /sB(0) = 0 and

o |(3s.1sB)(s,©) - B(s, )| < C(B, Bt ~ 5|

@ IsB(t) = lim Z e""4B(u, v), P partition of [0, ]
[u,vleP

If B(s, t) = e"*4F(s)(61X)(s, t), then (s2B)(s, t,u) = —(ds,1f)(s, t)(51.X)(t, u)
IsB(t) =" /t ¢ (s)dX(s)" when ds1f € C7([0,1]%; E) with a+ 17 > 1
How to find a mild solution? Fixed point for I : B — B given by
F(F)(t) = eyo + Is(a(£))(¢), t €]0,1], what is B?7?
5saf € C([0,1]%; E), o € CL(E; E), then
(651(c(F)))(s, t) = o(F(1)) — o (eIAF(s)) + (e 4 — Id)(a(F))(s) + ... € C"?

If (") is analytic, then ||e” — Id|| (p,(n,00).6) < Cr, n € [0,1]

./ !
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We assume that exist (E, ), >0, E, C Eg if n > 0, Eo = E, Ey = D(A) such that

e (g5, < CtO77, [[€ = Id| (g, ) < CE7%, t€[0,1], >0
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We assume that exist (E, ), >0, E, C Eg if n > 0, Eo = E, Ey = D(A) such that

||etAHg(EH75n) < Ctein, HetA — ldHZ(En,Ea) < Ctnie, te [0, 1], n > 0

Mild Sewing Lemma (2) (Gubinelli-Tindel '10, A-Lorenzi-Tessitore '22): If & <1 < 3,
then the map /s : C;aﬁ([o, 1]; E,) — C%([0,1]; E,) satisfies, for every € € [0, 1),

R € CP=5([0,1)%; B2, R(s,t) := (ds11sB)(s, t) — B(s, t)
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We assume that exist (E, ), >0, E, C Eg if n > 0, Eo = E, Ey = D(A) such that
||etAHg(EH75n) < Ctein, HetA — ldHZ(En,Ea) < Ctnie, te [0, 1], n > [

Mild Sewing Lemma (2) (Gubinelli-Tindel '10, A-Lorenzi-Tessitore '22): If & <1 < 3,
then the map /s : C;aﬁ([o, 1]; E,) — C%([0,1]; E,) satisfies, for every € € [0, 1),

Re CP7°([0,1]% Epic).  R(s,t) := (8s1lsB)(s, t) — B(s, t)

Theorem (A-Lorenzi-Tessitore '22): Let X € C*, a € (3,1), n € (1 — a, ), yo € E, and
o smooth.
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We assume that exist (E, ), >0, E, C Eg if n > 0, Eo = E, Ey = D(A) such that
||etAH9rg(5975n) < Ctein, He“‘ — ldef(En,Es) < Ct7779, te [07 1], n > 0

Mild Sewing Lemma (2) (Gubinelli-Tindel '10, A-Lorenzi-Tessitore '22): If & <1 < 3,
then the map /s : C;’f([o, 1]; E,)) — C°([0,1]; E,)) satisfies, for every € € [0,1),

Re CP7([0,1]2; Epic). R(s,t) := (d515B)(s, t) — B(s, t)

Theorem (A-Lorenzi-Tessitore '22): Let X € C*, a € (3,1), n € (1 — a, ), yo € E, and
o smooth. Then, there exists a unique fixed point Y for the operator I' : B — B, defined

as
t

r(Y)(t) =e"yo + /0 e Mo (y(s))dX(s), te0,1]
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We assume that exist (E, ), >0, E, C Eg if n > 0, Eo = E, Ey = D(A) such that
||etAHUrg(EwEn) < Ctein, HetA — ldH&f(En,Eg) < Ct7779, te [07 1], n > 0

Mild Sewing Lemma (2) (Gubinelli-Tindel '10, A-Lorenzi-Tessitore '22): If & <1 < 3,
then the map /s : C;’f([o, 1]; E,)) — C°([0,1]; E,)) satisfies, for every € € [0,1),

Re CP7([0,1]2; Epic). R(s,t) := (d515B)(s, t) — B(s, t)

Theorem (A-Lorenzi-Tessitore '22): Let X € C*, o € (%, 1), ne(l—a,a), o€ kE,and
o smooth. Then, there exists a unique fixed point Y for the operator I' : B — B, defined

as
t

F(Y)(t) = e”yo +/ e No(y(s)dX(s),  te[0,1]
0
Further, Y(t) € D(A) for every t € (0,1], it satisfies the integral representation

Y(t):)/o+/OtAY(s)der/ota(Y(s))dX(s), t €0,1]
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We assume that exist (E, ), >0, E, C Eg if n > 0, Eo = E, Ey = D(A) such that

e (g5, < CtO77, [[€ = Id| (g, ) < CE7%, t€[0,1], >0

Mild Sewing Lemma (2) (Gubinelli-Tindel '10, A-Lorenzi-Tessitore '22): If & <1 < 3,
then the map /s : C;’f([o, 1]; E,)) — C°([0,1]; E,)) satisfies, for every € € [0,1),

R € CP=5([0,1)%; B2, R(s,t) := (ds11sB)(s, t) — B(s, t)

Theorem (A-Lorenzi-Tessitore '22): Let X € C*, o € (%, 1), ne(l—a,a), o€ kE,and
o smooth. Then, there exists a unique fixed point Y for the operator I' : B — B, defined

as
t

F(Y)(t)zetAyo-i-/o e Mo (y(s))dX(s), te0,1]

Further, Y(t) € D(A) for every t € (0,1], it satisfies the integral representation

Y(t):)/o+/OtAY(s)der/ota(Y(s))dX(s), t €0,1]

and F(Y(t)) — F(Y(s)) = /t(DF(Y(r)),AY(s))dr+ /t<DF(Y(r)),cr(Y(r)))dX(

e

r).
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We assume that exist (E, ), >0, E, C Eg if n > 0, Eo = E, Ey = D(A) such that
||etAng(EwEn) < Ct07", HetA — ldH&f(En,Eg) < Ct7776, te [07 1], n > 0

Mild Sewing Lemma (2) (Gubinelli-Tindel '10, A-Lorenzi-Tessitore '22): If & <1 < 3,
then the map /s : C;’f([o, 1]; E,)) — C°([0,1]; E,)) satisfies, for every € € [0,1),

R € CP=5([0,1)%; B2, R(s,t) := (ds11sB)(s, t) — B(s, t)

Theorem (A-Lorenzi-Tessitore '22): Let X € C*, o € (%, 1), ne(l—a,a), o€ kE,and
o smooth. Then, there exists a unique fixed point Y for the operator I' : B — B, defined

as
t

F(Y)(t)zetAyo-i-/o e Mo (y(s))dX(s), te0,1]

Further, Y(t) € D(A) for every t € (0,1], it satisfies the integral representation

Y(t):)/o+/OtAY(s)der/ota(Y(s))dX(s), t €0,1]

and F(Y(t)) — F(Y(s)) = /t(DF(Y(r)),AY(s))dr+ /t<DF(Y(r)),cr(Y(r)))dX(r)_f

e

B:={f e C([0,1];E,) : 6s1f € C"([0,1]2;E,))} = yo € E, =
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How can we weaken the condition yo € E,? Sewing Lemma with singularities: v > 0
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How can we weaken the condition yo € E,? Sewing Lemma with singularities: v > 0

ce,((0,11%; Ey) = {B 2(0,1)Y - E, sup (151)AYM < oc}

0<ty<...<ty<1 [ty — ta|™
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How can we weaken the condition yo € E,? Sewing Lemma with singularities: v > 0

ce,((0,11%; Ey) = {B 2(0,1)Y - E, sup (151)AYM < oc}

0<ty<...<ty<1 [ty — ta|™

Mild Singular Sewing Lemma (A-Lorenzi-Tessitore '24, Neamtu-Hocquet '24): Let
a€(3,1),n>1—a,y<aand Be C%((0,1]%;E,) s. t. 8s2B € C*1"((0,1]%; E).

Then, IsB, defined on (0, 1], extends to [0, 1] with values in E, and

105,115 B(s, )|, . < C(e, B)|t =s|*"" % e € [0,a —7)
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How can we weaken the condition yo € E,? Sewing Lemma with singularities: v > 0

ce,((0,11%; Ey) = {B 2(0,1)Y - E, sup (151)AYM < oc}

0<ty<...<ty<1 [ty — ta|™

Mild Singular Sewing Lemma (A-Lorenzi-Tessitore '24, Neamtu-Hocquet '24): Let
a€(3,1),n>1—a,y<aand Be C%((0,1]%;E,) s. t. 8s2B € C*1"((0,1]%; E).

Then, IsB, defined on (0, 1], extends to [0, 1] with values in E, and

165,115 B(s, t)|[g, . < C(e,B)[t —s|*77%, e €[0,a—7)

Theorem (A-Lorenzi-Tessitore '24): if X € C, o € (% 1), n>1—a, yo € Ep with
6 € [0,n] and 2 — 6 < «, o smooth.
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How can we weaken the condition yo € E,? Sewing Lemma with singularities: v > 0

ce,((0,11%; Ey) = {B 2(0,1)Y - E, sup (151)7M < oc}

0<ty<...<ty<1 [ty — ta|™

Mild Singular Sewing Lemma (A-Lorenzi-Tessitore '24, Neamtu-Hocquet '24): Let
a€(31),n>1—a,y<aand Be C* ((0,1]3;E,) s. t. §s2B € C*1"((0,1]%; E).

-

Then, IsB, defined on (0, 1], extends to [0, 1] with values in E, and

165,115 B(s, t)|[g, . < C(e,B)[t —s|*77%, e €[0,a—7)

Theorem (A-Lorenzi-Tessitore '24): if X € C, o € (% 1), n>1—a, yo € Ep with
6 €10,n] and 2 — 0 < «, o smooth.

Then, there exists a unique fixed point Y for the operator ' : B — B, defined as

r(Y)(t)=e"yo + /Ot e(t_s)Acr(y(s))dX(s), t€[0,1]
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How can we weaken the condition yo € E,? Sewing Lemma with singularities: v > 0

ce,((0,11%; Ey) = {B 2(0,1)Y - E, sup (151)7M < oc}

0<ty<...<ty<1 [ty — ta|™

Mild Singular Sewing Lemma (A-Lorenzi-Tessitore '24, Neamtu-Hocquet '24): Let
a€(31),n>1—a,y<aand Be C* ((0,1]3;E,) s. t. §s2B € C*1"((0,1]%; E).

-

Then, IsB, defined on (0, 1], extends to [0, 1] with values in E, and

165,115 B(s, t)|[g, . < C(e,B)[t —s|*77%, e €[0,a—7)

Theorem (A-Lorenzi-Tessitore '24): if X € C, o € (% 1), n>1—a, yo € Ep with
6 €10,n] and 2 — 0 < «, o smooth.

Then, there exists a unique fixed point Y for the operator ' : B — B, defined as

r(Y)(t)=e"yo + /Ot e(t_s)Acr(y(s))dX(s), t€[0,1]

Moreover, Y (t) € D(A) for every t € (0, 1].

Davide Addona (Unipr) YDE & RDE in Infinite Dimension Parma 2025



How can we weaken the condition yo € E,? Sewing Lemma with singularities: v > 0

ce,((0,11%; Ey) = {B 2(0,1)Y - E, sup (151)7M < oc}

0<ty<...<ty<1 [ty — ta|™

Mild Singular Sewing Lemma (A-Lorenzi-Tessitore '24, Neamtu-Hocquet '24): Let
a€(3,1),n>1—a,vy<aand Be C* ((0,1]2; E,) s. t. 8s2B € C*1"((0,1]3; E).

Then, IsB, defined on (0, 1], extends to [0, 1] with values in E, and

165,115 B(s, t)|[g, . < C(e,B)[t —s|*77%, e €[0,a—7)

Theorem (A-Lorenzi-Tessitore '24): if X € C, o € (% 1), n>1—a, yo € Ep with
6 €10,n] and 2 — 0 < «, o smooth.

Then, there exists a unique fixed point Y for the operator ' : B — B, defined as
t
r(Y)(t) = e"yo +/ e Mo(y(s)dX(s),  telo,1]
0

Moreover, Y (t) € D(A) for every t € (0, 1].

B = {f € Co_n((0,1]; E;) N Co((0, 1]; E) : 351 € C([0,1]%; Ey)}
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Mild Integration: the Rough Case

Assume that X = (X,X) € ¢, a € (3, 3].
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Mild Integration: the Rough Case
Assume that X = (X,X) € €%, o € (3, %]. We have

/ IR dX () = e IAF(s)(1X)(5, ) + / LA — N (5))dX (1)

S

Davide Addona (Unipr)

YDE & RDE in Infinite Dimension Parma 2025



Mild Integration: the Rough Case

Assume that X = (X,X) € €%, o € (3, %]. We have

- t
/ T (r)dX (r) = e TIAF(s)(01X) (s, t) + / A (r) — eI (s))dX (r)
When A = 0 and f is controlled by X, we replace f(r) — el"=4f(s) with

f(r)—f(s) = f(s)(01X)(s,r)+ R(s, r), R(s,r) = O(|r — s]*¥)
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Mild Integration: the Rough Case

Assume that X = (X,X) € €%, o € (3, 1]. We have

/.t e(t—s)Af—(r)dX(r) — e(tfs)Af-(s)(é*lX)(s7 t) + /t e(tfr)A(f(r) _ e(r—s)Af(S))dX(r)

When A = 0 and f is controlled by X, we replace f(r) — el"=4f(s) with
F(r) = f(s) = f()(0X)(s,r) + R(s. 1), R(s,r) = O(Ir — s**)

Gubinelli-Tindel '10, Gerasimovics-Hairer '19: We say that f : [0, 1] — E is S-controlled
by X if there exists ' : [0, 1] — E such that (f' S-Gubinelli derivative of f)

REi(s,t) == (65.1F)(s, t) — e=94F(s)(6:1X)(s,t), RE e CP([0,1]%;E), p> «
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Mild Integration: the Rough Case

Assume that X = (X,X) € €%, o € (3, %]. We have

- t
/ T (r)dX (r) = e TIAF(s)(01X) (s, t) + / A (r) — eI (s))dX (r)
When A = 0 and f is controlled by X, we replace f(r) — el"=4f(s) with

F(r) = f(s) = £(s)(0X)(s,r) + R(s, 1), R(s,r) = O(|r — s]**)
Gubinelli-Tindel '10, Gerasimovics-Hairer '19: We say that f : [0, 1] — E is S-controlled
by X if there exists ' : [0, 1] — E such that (f' S-Gubinelli derivative of f)

REi(s,t) == (65.1F)(s, t) — e=94F(s)(6:1X)(s,t), RE e CP([0,1]%;E), p> «

For f S-controlled by X, we get
ot
/ e (N dX(r) = eI () (01.X) (s, t) 4+ eI ()X (s, ) + O([t — s77)
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Set B(s, t) = e AF(s)(61X)(s, t) + e ~F'(s)X(s, t). If f is S-controlled by X, then
(65,2B)(s, t, u) = —R§(s, £)(81X)(t, u) — (J5,1F")(s, t)X(t, u) J
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Set B(s, t) = e AF(s)(61X)(s, t) + e ~F'(s)X(s, t). If f is S-controlled by X, then
(65,2B)(s, t, u) = —R§(s, £)(81X)(t, u) — (J5,1F")(s, t)X(t, u) J

If 6s1f" € C°([0,1]2; E), ¢ +2a, p+a > 1, then ds-B € C*([0,1]%;E), p > 1
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Set B(s, t) = e AF(s)(61X)(s, t) + e ~F'(s)X(s, t). If f is S-controlled by X, then
(65,2B)(s, t, u) = —R§(s, £)(81X)(t, u) — (J5,1F")(s, t)X(t, u) J

If 6s1f" € C°([0,1]2; E), ¢ +2a, p+a > 1, then ds-B € C*([0,1]%;E), p > 1
t 1"
Mild Sewing Lemma = IsB(t) =" / IR dX(r) exists
Jo
Theorem (A-Lorenzi-Tessitore '25): Let X € ¢°([0,1]), a € (3,3]. n € (1 — 20, @),
Yo € Eyta, o linear and bounded.
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Set B(s, t) = e "94F(s)(6:1.X)(s, t) + e "9AF'(s)X(s, t). If f is S-controlled by X, then
(05.2B)(s, t, u) = —Rs(s, t)(8:1.X)(t, u) — (35,1 F")(s, )X(t, u) J

If 6s1f" € C°([0,1]2; E), ¢ +2a, p+a > 1, then ds-B € C*([0,1]%;E), p > 1
*t 17
Mild Sewing Lemma = IsB(t) =" / e I (r)dX(r) exists
J0

Theorem (A-Lorenzi-Tessitore '25): Let X € ¢°([0,1]), a € (3,3]. n € (1 — 20, @),
Yo € Epta, o linear and bounded.

Then, there exists a unique fixed point Y for the operator I : B — B defined as

r(Y)(t) = etAyo—i—/t G (Y (5))dX(s), te[0,1]
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Set B(s, t) = e "94F(s)(6:1.X)(s, t) + e "9AF'(s)X(s, t). If f is S-controlled by X, then
(052B)(s, t, u) = —RE(s, t)(01X)(t, u) — (65,1F")(s, t)X(t, u) J

If 6s1f" € C°([0,1]2; E), ¢ +2a, p+a > 1, then ds-B € C*([0,1]%;E), p > 1
't 1"
Mild Sewing Lemma = IsB(t) =" / e I (r)dX(r) exists
Jo
Theorem (A-Lorenzi-Tessitore '25): Let X € ¢°([0,1]), a € (3,3]. n € (1 — 20, @),
Yo € Epta, o linear and bounded.

Then, there exists a unique fixed point Y for the operator I : B — B defined as
t
r(E) = o+ [P o(V(s)dx(s),  telo]
0
Moreover, Y(t) € D(A) for every t € (0, 1], it satisfies the integral representation

Y(t):yo+/OtAY(s)der/OtJ(Y(s))dX(s), te[0,1]
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Set B(s, t) = e "94F(s)(6:1.X)(s, t) + e "9AF'(s)X(s, t). If f is S-controlled by X, then
(052B)(s, t, u) = —RE(s, t)(01X)(t, u) — (65,1F")(s, t)X(t, u) J

If 6s1f" € C°([0,1]2; E), ¢ +2a, p+a > 1, then ds-B € C*([0,1]%;E), p > 1
*t 17
Mild Sewing Lemma = IsB(t) =" / e I (r)dX(r) exists
J0

Theorem (A-Lorenzi-Tessitore '25): Let X € ¢°([0,1]), a € (3,3]. n € (1 — 20, @),
Yo € Epta, o linear and bounded.

Then, there exists a unique fixed point Y for the operator I : B — B defined as

r(y)(t) = e yo+/0 g(y(s)dX(s),  te[0,1]

Moreover, Y(t) € D(A) for every t € (0, 1], it satisfies the integral representation

Y(t):yo+/OtAY(s)der/OtJ(Y(s))dX(s), te[0,1]

and F(Y(t))—F(Y(s))=/t<DF(Y(r)),AY(r)>dr+/t<DF( (r),a(Y(r)))dX(r)(
B={fe...:RLeC(0,1]%;E,), f € C"([0,1]%; E,)} u/'
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THANK YOU FOR YOUR ATTENTION!!
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