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Roughness in random systems

Many random systems are rough.

Examples:

Trajectories of stock prices

FTSE 100 Index

Liouville Quantum Gravity

Difficulty: calculus requires regularity of functions.

Goal: explain how to handle roughness.
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Stock prices

• Black–Scholes (1967), Merton (1973) – infinitesimal change in price
proportional to current price:

St+δt = St + σSt(Bt+δt − Bt) .

Brownian noise: Bt+δt − Bt is
▶ independent of past &
▶ distributed like normal random variable with variance δt.

• In differential form:
dSt

dt = σSt
dBt

dt .

• How to interpret this equation?

• If B is differentiable, then
St = S0eσBt .
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Black–Scholes–Merton model

• What if Bt is Brownian noise?

• Take discrete approximation: for N > 0, solve difference equation

S(k+1)/N = Sk/N + σSk/N(B(k+1)/N − Bk/N) .

where B0, B1/N , B2/N , . . . is symmetric random walk on 1√
N Z.

• Then the limit is given by

St = S0eσBt −σ2t/2 .

• What? Why σ2t/2 ?

• Can be guessed: average of eσBt is eσ2t/2.

• Brownian motion is rough: sensitive to approximation scheme.
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Itô calculus

Credit: Jacobs, Konrad

K. Itô: rewrite in integral form

St = S0 +
∫ t

0
σSr dBr

and define the integral
∫

σSr dBr as limit in
probability of Riemann sums

lim
n→∞

∑
[r,s]∈πn

Sr (Bs − Br ) .

Solve for S in space of stochastic processes.

Intrinsically probabilistic: difficult to control the solution map B 7→ S.
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Naive attempt

Try to solve SDE S : [0, T ] → Rn

d
dt St = f (S)dBt

dt

• dBt
dt is white noise,

• f smooth.

• Almost surely dBt
dt is in Hölder–Besov space C− 1

2 −κ, κ > 0.

• Integration adds one derivative ⇒ S ∈ C
1
2 −κ ⇒ f (S) ∈ C

1
2 −κ.

• − 1
2 − κ + 1

2 − κ < 0 ⇒ f (S) dBt
dt analytically ill-defined.

Theorem: there exists f such that any Banach space on which the solution map
B 7→ S is continuous cannot contain smooth functions and 2D Brownian motion.
[Lyons ‘91]
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Instability of solution map

Equations with two noises: dSt = f1(St) dB(1)
t + f2(St) dB(2)

t .
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Closer look

Consider B smooth ⇒ dSt = f (St) dBt well-posed.

Expand f in Taylor series

f (St) = f (S0) + f ′(S0)(St − S0) + . . .

and substitute back into equation:

St = S0 +
∫ t

0
f (Ss) dBs

= S0 + f (S0)
∫ t

0
dBs + f ′(S0)

∫ t

0

( ∫ s

0
dBr

)
dBs + . . .

If
∫ t

0

( ∫ s
0 dBr

)
dBs big (order ≥ t), cannot ignore second term.

Idea: View solution dSt = f (St) dBt as function of (Bt ,
∫ t

0

∫ s
0 dBr dBs).
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Rough paths

Theorem (Lyons ‘98)

Fix α ∈ ( 1
3 , 1

2 ). There exists a metric space of pairs (Bt ,
∫ t

0

∫ s
0 dBr dBs) with

sup
u ̸=t

|Bt − Bu|
|t − u|α + sup

u ̸=t

|
∫ t

u

∫ s
u dBr dBs)|

|t − u|2α
< ∞

such that solution map (Bt ,
∫ t

0

∫ s
0 dBr dBs) 7→ S is continuous.

For many stochastic B and approximations B(N)

lim
N→∞

(
B(N)

t ,

∫ t

0

∫ s

0
dB(N)

r dB(N)
s

)
=

(
Bt ,

∫ t

0

∫ s

0
dBr dBs

)
. (⋆)

(
∫ t

0

∫ s
0 dBr dBs defined as limN→∞

∫ t
0

∫ s
0 dB(N)

r dB(N)
s – Itô vs. Stratonovich)

The point:

• Probability enters only in showing (⋆).
• Alternative approach to SDEs, applies beyond (semi)martingales.
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Stochastic (Partial) Differential Equations

Model randomness:
∂th = ∆h + F (h, ∇h, ξ)

• stochastic quantisation equations (Yang–Mills, Φ4
d , Sine–Gordon)

• spread of populations (Parabolic Anderson Model)

• crystal growth (Khardar–Parisi–Zhang: ∂th = ∆h + (∂x h)2 + ξ)

Credit: Nils Berglund

Difficulties: solutions h are rough functions or distributions

⇝ non-linearity F (h, ∇h, ξ) ill-defined (e.g. (∂x h)2 in KPZ).
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Ultraviolet scaling

Consider cubic equation:

(∂t − ∆)u = −u3 + ξ.

Zoom to small scales
ũ(t, x) = εβu(ε2t, εx).

(∂t − ∆)ũ = −ε2−2β ũ3 + ξ̃

where
ξ̃(t, x) = ε2+βξ(ε2t, εx).

For ξ ∈ C−2−β , ∥ξ̃∥C−2−β ∼ ∥ξ∥C−2−β . Non-linearity disappears if β < 1.

⇒ on small scales u locally looks like solution of (∂t − ∆)ũ = ξ.

E.g. For space-time white noise on R × Rd , ξ ∈ C>−3 ⇔ d < 4.
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SPDE - local theory

• regularity structures [Hairer, Invent. Math. ‘14]

• paracontrolled distributions [Gubinelli–Imkeller–Perkowski, FoM Pi ‘15].

Theorem (Bruned, Chandra, C., Hairer, Zambotti ‘14-‘17)
Sub-critical SPDEs on R+ × Td with stationary noise ξ

∂tA = ∆A + F (A, ∇A, . . .)ξ

admit local solutions via “renormalised” smooth approximations

∂tAε = LAε + F (Aε, ∇Aε, . . .)ξε +
∑n

i=1 Ci,εFi (Aε, ∇Aε, . . .) .

Probabilistic step: build object Z =
(
ξε, (G ∗ ξε):2: = , , . . .),

G = (∂t − L)−1. Renormalisation: (G ∗ ξε)2 7→ (G ∗ ξε):2: = (G ∗ ξε)2 − Cε.

Analytic step: continuous solution map Z 7→ A.

Algebraic step: find counterterms Fi .
Also [Otto, Weber, Sauer, Smith, Linares, Tempelmayr, Tsatsoulis ‘16-‘21]
and renormalisation group: [Kupiainen ‘16’, Duch ‘21].
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Summary

Eq

Renormalisation

Z×

Eq

Renormalisation

× ξ A

Probabilistic

Sol.

Sol.

Automatic local solution theory.

Global solution theory less developed - only specific equations
[Mourrat–Weber ‘17, Moinat–Weber ‘20, Gubinelli–Hofmanova ‘21, Bringmann–Cao ‘24,...].
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Infrared scaling - global solutions

Consider (∂t − ∆)u = −u3 + ξ and critical scaling ũ(t, x) = εu(ε2t, εx).

Then
(∂t − ∆)ũ = −ũ3 + ξ̃

where ξ̃(t, x) = ε3ξ(ε2t, εx). Then

∥ξ̃∥Cα ≲ ε3+α∥ξ∥Cα

Noise disappears for α > −3.

Large scale bound: choose ε > 0 such that ∥ξ̃∥Cα ≪ 1 but still order 1.

Then by local stability and coercivity at ξ = 0,

∥ũ∥∞ = ε∥u∥∞;B0(ε) ≲ 1 ⇒ ∥u∥∞;B0(ε) ≲ ε−1 ≲ ∥ξ∥1/(3+α)
Cα .
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Coercive equations

Consider a subcritical SPDE

(∂t − ∆)u = P(u, ∇u) + f (u, ∇u)ξ . (⋆)

We say (⋆) is coercive at ξ ∈ Cα if, for any solution in the ball B0(1),

|u(z)| ≲ ∥ξ∥ϱ
Cα + |||z|||−β

where |||z||| is distance of z to boundary of B0(1).

Theorem (C.–Gubinelli ‘25+)
Suppose (⋆) is coercive at ξ = 0 and f does not grow too quickly at ∞. Then
(⋆) is coercive for all ξ for a suitable ϱ.

Space-time localisation. Extends and simplifies [Moinat–Weber ‘20,
Chandra–Moinat–Weber ‘22, Bonnefoi–CMW ‘22, Jin–Perkowski ‘25]
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Idea of proof

• Take point z that maximises

C := |u(z)|
∥ξ∥ϱ

Cα + |||z|||−β

• Zoom with infrared scaling around z , so ũ(t, x) = εβu(z + (ε2t, εx)) solves

(∂ − ∆)ũ = P(ũ, ∇ũ) + f̃ (ũ, ∇ũ)ξ̃ ,

where f̃ (x , y) = f (ε−βx , ε−1−βy) and ξ̃(t, x) = ε2+βξ(ε2t, εx).

• Choose ε such that |ũ(0)| = 1. Subcriticality ⇒ if C ≫ 1, then ∥f̃ ξ̃∥ ≪ 1.

• Maximisation of z: ∥ũ∥∞;B0(1) ≤ 1 + δ.

• If C ≫ 1, coercivity and stability of equation at ξ̃ = 0 ⇒ |ũ(0)| < 1 − δ,
which contradicts scaling choice.
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Summary

Rough analysis: deterministic approach to stochastic equations.

• Keep track of underlying process and additional data.

• Calculus for rough objects.

• Scaling: guide for local and global solution theories.
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Thank you for your attention!


