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Difficulty: calculus requires regularity of functions.

Goal: explain how to handle roughness.



= Black—Scholes (1967), Merton (1973) — infinitesimal change in price
proportional to current price:

Siist = St + 0S:(Biyse — Be) .

Brownian noise: B;is: — Bt is

» independent of past &
» distributed like normal random variable with variance dt.

= |n differential form:
LSt =S dB:
dt Tt dt

= How to interpret this equation?

= If B is differentiable, then
S = Spe”Br.



Black—Scholes—Merton model

= What if B; is Brownian noise?
= Take discrete approximation: for N > 0, solve difference equation
Stk+1y/n = Skyn + Sin(Birsnyn — Bign) -

where By, By/n, Bojn, - - . is symmetric random walk on ﬁZ.



Black—Scholes—Merton model

= What if B; is Brownian noise?
= Take discrete approximation: for N > 0, solve difference equation

Stkrry/n = Skyn + 0Skn(Bkry/v — Biyn) -

where By, By/n, Bojn, - - . is symmetric random walk on ﬁZ.

= Then the limit is given by
G = 50608t702t/2 .

= What? Why o°t/2 ?



Black—Scholes—Merton model

= What if B; is Brownian noise?

= Take discrete approximation: for N > 0, solve difference equation

Stk+1y/n = Skyn + Sin(Birsnyn — Bign) -
where By, By/n, Bojn, - - . is symmetric random walk on ﬁZ.

= Then the limit is given by
St _ 50608t702t/2 .
= What? Why o°t/2 ?

. 2
= Can be guessed: average of 5t is 7 t/2,



Black—Scholes—Merton model

= What if B; is Brownian noise?
= Take discrete approximation: for N > 0, solve difference equation

Stk+1y/n = Skyn + Sin(Birsnyn — Bign) -

where By, By/n, Bojn, - - . is symmetric random walk on ﬁZ.

= Then the limit is given by

G = G2
= What? Why azt/2 ?
= Can be guessed: average of e is e7’t/2,

= Brownian motion is rough: sensitive to approximation scheme.



I1t6 calculus

K. Itd: rewrite in integral form
t
St:SO+/ O'SrdBr
0

and define the integral fUS,dB, as limit in
probability of Riemann sums

lim Z S(Bs—B,).

Credit: Jacobs, Konrad [r,s]€mn

Solve for S in space of stochastic processes.

Intrinsically probabilistic: difficult to control the solution map B — S.



Naive attempt

Try to solve SDE S: [0, T] — R"

do . odB
TS =9,

= % is white noise,

= f smooth.
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Naive attempt

Theorem (Multiplication of distributions)
Suppose oo < 3. Multiplication

(f,g)— fg,
defined on
C® xC” —=(C>,
extends to continuous map
c*xc? =

if and only if a + 8 > 0.



Naive attempt
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de . odB
LS =)

= % is white noise,

= f smooth.

1 -
= Almost surely dd—“i‘ is in Holder—Besov space C™ 27", k > 0.

1k
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s 1 —k+1-k<0=f(S)4 analytically ill-defined.



Naive attempt

Try to solve SDE S: [0, T] — R"
dBt

d
aS f(S)

= % is white noise,

= f smooth.

1 -
= Almost surely dd“st‘ is in Holder—Besov space C™ 27", k > 0.

= Integration adds one derivative = S € Cir = f(S) e Q="

s 1 —k+1-k<0=f(S)4 analytically ill-defined.

Theorem: there exists f such that any Banach space on which the solution map

B — S is continuous cannot contain smooth functions and 2D Brownian motion.
[Lyons ‘91]



Instability of solution map

Equations with two noises: dS; = f(S;¢) ngl) + H(S) dB£2).
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Closer look

Consider B smooth = dS; = f(S;) dB; well-posed.

Expand f in Taylor series
£(Se) = f(So) + f'(S0)(Se — So) + . ...

and substitute back into equation:

t
st:so+/ £(Ss) dB.
0

t t s
:so+f(so)/ st+f’(50)/ (/ ds,) dBs + ...
J0 J0 0



Closer look

Consider B smooth = dS; = f(S;) dB; well-posed.

Expand f in Taylor series
£(Se) = f(So) + f'(S0)(Se — So) + . ...

and substitute back into equation:

t
st:so+/ £(Ss) dB.
0

t t rS
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If fot (/5 dB;) dBs big (order > t), cannot ignore second term.

Idea: View solution dS; = f(S;) dB:; as function of (B, fot J; 4B, dB).



Rough paths

Theorem (Lyons ‘98)

Fix o € (3,3). There exists a metric space of pairs (B, fot J; dB; dBs) with
t rs
B, — B dB,dB
sup| : U|+sup‘f"f“ :) < 00
u#t ‘t - u|a u#t |t - u|2a

such that solution map (B, fot fos dB; dBs) — S is continuous.
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Rough paths

Theorem (Lyons ‘98)

Fix o € (3,3). There exists a metric space of pairs (B, fot J; dB; dBs) with
t rs
B, — B dB,dB
sup| : U|+sup‘f"f“ :) < 00
u#t ‘t - u|a u#t |t - u|2a

such that solution map (B, fot fos dB; dBs) — S is continuous.

For many stochastic B and approximations B

ot ps ot °S
i (Bﬁ“”,/ / dBﬁ’V)dsg’V)> _ (Bt,/ / dB,st) . (%)
Wi=res Jo Jo o Jo
t s q - t s 1 (N) (N) A .
r s N— oo r s - .
(f, J; dB: dB; defined as lim Jy J5 B dBs™ ~ 1t6 vs. Stratonovich)

The point:

= Probability enters only in showing (x).

= Alternative approach to SDEs, applies beyond (semi)martingales.



Stochastic (Partial) Differential Equations

Model randomness:
Oth = Ah+ F(h,Vh,¢)
= stochastic quantisation equations (Yang—Mills, d>‘c‘,, Sine—Gordon)
= spread of populations (Parabolic Anderson Model)

= crystal growth (Khardar—Parisi—-Zhang: 0:h = Ah + (9xh)? + £€)

oty W8

Difficulties: solutions h are rough functions or distributions

~ non-linearity F(h, Vh, ¢) ill-defined (e.g. (0xh)® in KPZ).



Ultraviolet scaling

Consider cubic equation:

(0 — A)u = —u® + £

Zoom to small scales
i(t, x) = e’ u(e’t, ex).

(0 — D)= -5’ + €

where
£(t, x) = e¥Pg(%t,ex).

For £ € C%75, ||€|lc=2-p ~ ||€||c—2—5. Non-linearity disappears if 3 < 1.

10



Ultraviolet scaling

Consider cubic equation:
(0 — A)u = —u® + £

Zoom to small scales

i(t, x) = e’ u(e’t, ex).

(0 — D)o = -5 + €

where
£(t, x) = e¥Pg(%t,ex).

For £ € C%75, ||€|lc=2-p ~ ||€||c—2—5. Non-linearity disappears if 3 < 1.

= on small scales u locally looks like solution of (0; — A)i = &.

E.g. For space-time white noise on R x RY, ¢ € >3 = d < 4. 10



SPDE - local theory

= regularity structures [Hairer, Invent. Math. ‘14]
= paracontrolled distributions [Gubinelli-Imkeller—Perkowski, FoM Pi ‘15].
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SPDE - local theory

= regularity structures [Hairer, Invent. Math. ‘14]
= paracontrolled distributions [Gubinelli-Imkeller—Perkowski, FoM Pi ‘15].

Theorem (Bruned, Chandra, C., Hairer, Zambotti ‘14-‘17)

Sub-critical SPDEs on Ry x T? with stationary noise &
A =NAA+ F(A VA, .. )¢
admit local solutions via “renormalised” smooth approximations

BeAT = LA® + F(AS, VA5, )E + 307 GFi(A°,VAS,...).

Probabilistic step: build object Z = (§ (Gx¢£5)* =_.2,907°,.. ),
G = (0: — £)7'. Renormalisation: (G * £%)? i (G % €)% = ( *E5)2 —

Analytic step: continuous solution map Z — A.

Algebraic step: find counterterms F;.

Also [Otto, Weber, Sauer, Smith, Linares, Tempelmayr, Tsatsoulis ‘16-'21]

and renormalisation group: [Kupiainen ‘16’, Duch ‘21].
11



Renormalisation

Probabilistic

Renormalisation

Automatic local solution theory.

Global solution theory less developed - only specific equations
[Mourrat-Weber ‘17, Moinat—Weber ‘20, Gubinelli-Hofmanova ‘21, Bringmann—Cao ‘24,...].

12



Infrared scaling - global solutions

Consider (0; — A)u = —u® + ¢ and critical scaling &i(t, x) = cu(e?t, ex).

Then
(B — D)o =—-i"+€
where &(t, x) = £3¢(%t,ex). Then

€lle~ < € l€]le=

Noise disappears for a > —3.

Large scale bound: choose ¢ > 0 such that ||£||ce < 1 but still order 1.

Then by local stability and coercivity at £ = 0,

- = 1/(3
[lloo = ellulloitoe) ST = lullooisoe) S e S NENFEH .

~

13



Coercive equations

Consider a subcritical SPDE
(0 — A)u = P(u,Vu) + f(u, Vu)§ . (%)
We say (*) is coercive at £ € C” if, for any solution in the ball By(1),
|u(2)] S I€lIge + Izl ="

where ||z|| is distance of z to boundary of By(1).

Theorem (C.—Gubinelli ‘25+)
Suppose (*) is coercive at £ =0 and f does not grow too quickly at co. Then
() is coercive for all £ for a suitable .

Space-time localisation. Extends and simplifies [Moinat—Weber ‘20,
Chandra—Moinat—Weber ‘22, Bonnefoi—-CMW ‘22, Jin—Perkowski ‘25]

14



Idea of proof

= Take point z that maximises

_lu2)]
€8 + 12177

= Zoom with infrared scaling around z, so @i(t, x) = e’ u(z + (£°t, ex)) solves
(0 — D) = P(i, Vi) + F(&i, VI)E

where f(x,y) = f(e Px,e 17 Py) and £(t, x) = e2P¢(%t, ex).
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15



Idea of proof

= Take point z that maximises

_lu2)]
€8 + 12177

= Zoom with infrared scaling around z, so @i(t, x) = e’ u(z + (£°t, ex)) solves
(0 — A)a = P(a, Vi) + (@, Vi),
where f(x,y) = f(e Px,e 17 Py) and £(t, x) = e2P¢(%t, ex).
= Choose ¢ such that |#(0)| = 1. Subcriticality = if C > 1, then ||f€|| < 1.
= Maximisation of z: ||#||co;,1) < 14 0.

= If C > 1, coercivity and stability of equation at £ =0 = |G(0)| <1 —4,
which contradicts scaling choice.
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Rough analysis: deterministic approach to stochastic equations.

= Keep track of underlying process and additional data.
= Calculus for rough objects.

= Scaling: guide for local and global solution theories.

16



Thank you for your attention!



