Abdulwahab Mohamed

University of Edinburgh

Joint work with llya Chevyrev and Tom Klose

11 September 2023



Motivation

@ Yang-Mills measure on M = [0,1]? formally is the Gibbs-type measure
1
pldA)* = exp (~[| F42.) dA

@ A= (Ay,Ay): M — g x g is connection 1-form
e 4 is curvature 2-form — additional geometric aspects

@ Goal: Study properties of the measure via rough Uhlenbeck compactness
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Notation

G =U(N) space of N x N unitary matrices

g = u(NV) space of N x N skew-Hermitian matrices

Forany g € G and Y € g we define Ad, Y := gYg~!

A € QY (M;g) is connection 1-form, i.e. A = (A1, As): M — gxg
Curvature of A denoted by F'4 is defined by

FA =01 As — 0 A1 + [A1, Ag]

For 1-form A, we recall
le(A) = 0141 + 02 A9
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e Gauge transformation g € C*°(M;G) acts on A € QY(M;g) by A9 = (AY, A9)
where

A? = gAig™" — i7"
o Gauge transformation defines equivalence relation:

A~vA = JgeC®(M;G)st. A9=A

@ gauge orbit space A := Q' (M;g)/C>®(M;G) is the relevant physical space



@ Each equivalence class [A]. has an axial gauge representative

o 1-form A is in axial gauge if Ay = 0 everywhere and A; = 0 on horizontal axis
1

e |
@ Yang-Mills measure under axial gauge is then 2D white noise:

1
'u,(dA)“ — ”E exp (—“82141”%2) dA



e Fact: 9,A; € C~'" as. (2D W.N.); stochastic argument = A; € cz

@ Main question: Can we study a representative with better regularity than the
axial gauge?

o e T~

AteC =
A2
wy A
A2
3
[43) /‘Z/\‘\/
A3



Main result: rough Uhlenbeck compactness

Theorem (Chevyrev-Klose-M., '23T) |

For any k > 0, there exists § > 0 and C' > 0 with the following property: if a sequence
(An)n>0 C QY (M;g) of 1-forms in axial gauge satisfies

lAn]l <4, (1)
then there exists a sequence of gauge transformations (gn)n>0 C C*°(M;G) such that
147" lc—~ < CllAnll-

In particular, A9" has a convergent subsequence in C~"~¢ for any € > 0. Finally, the
map A+ AY is continuous.

o Related work: Uhlenbeck (1982) and Chevyrev (2019)
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YM measure on M¢ = [0,¢]? for ¢ > 0 sufficiently small, can be gauge fixed to C°~
distribution and approximated by smooth functions.

@ The smallness of domain M¢ is needed to ensure || A, | <4



Proof technique

Step 1
@ Find g such that
divA9 =0

o — FElliptic SPDE

@ Solve with regularity
structures

@ Norm of solution is

bounded by “norm” of
model

Step 2
@ Define rough additive
functions

@ Bound model “norm” by
“norm” for additive
functions

o Advantage: easier to
control
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Singular Elliptic SPDE

o Recall AY = gA;g' — 0,99~ ' = AdyA; — ;g9
divA9 = 0 implies A9 = V+w where V+ = (02, —01)

Page 10 of 13

We set H = Ad,

We solve for (w, H) in the system of formal equations (with suitable B.C.)

{Aw = Oo(HA,) + [01w, Dow] + [0yw, HA4]

AHe;, = -0 [Hei,HAl] + 81[Hei,62w] — 62[H€Z',(91w],

i1=1,...,dimg

Use regularity structures to obtain solution under smallness assumption akin to

Gerencser—Hairer ‘19

Identify H: show that 3g € C*°(M; G) s.t., actually, H = Ad,

One obtains

[A%]lc—x S llwller-» S 1Z]lmoder



@ For a line ¢ we define

A(ﬂ)://x

o Fixae(4,3)

o For A in axial gauge, we define

[A(0) — A(0))
Alg = —_—
4 S;f} Area(l, ()«




Rough additive functions

e We define ¢; for t € [0,1] to be the ¢-th portion of the line
o lterated integral of A denoted by A

AL T) = /01 A() ® dA(T,).

o We define 00— A
A ) - )
[Allq = sup | (, )~ AGL)
Orolnof! M |0‘Area(€,€)a

@ The pair A = (A, A) is rough additive function with “norm”
Al == [Ala + [[Afla;

and metric ||A, Awa = |A— Ao+ |A - Al
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Next steps

e What about M = [0, 1]?? Gluing/patching solutions in small boxes
@ Arbitrary manifolds M, e.g. for starters M = T? (— no axial gauge)
@ Non-trivial principal G-bundle?

@ Open problem. Three dimensions

Thank you for your attention!
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