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Critical 2d Stochastic Heat Flow (SHF)



Phase Transition on an Intermediate Disorder Scale

Recall the point-to-plane directed polymer partition functions

Z
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.

A phase transition occurs on the intermediate disorder scale
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i
is the expected overlap between two

independent SRW S and S
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More precisely, �̂c = 1, and
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The Critical Window Around �̂c = 1

Di↵usively rescale space-time and define the random measure

Z�N

N ;s,t(dx, dy), 0  s < t, x, y 2 R2

such that for ' 2 Cc(R2) and  2 Cb(R2),
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Q. Does Z�N

N ;s,t(dx, dy) converge to a unique limit as N ! 1? If yes,
the limit can be interpreted as the solution of the critical 2d SHE.



Moment Asymptotics In the Critical Window

Theorem 1 [BC’98, CSZ’19a, CSZ’19b, GQT’21] Let �̂ = �̂(✓) be in
the critical window, ' 2 Cc(R2), and  2 Cb(R2). Then as N ! 1,

(1) E
⇥
Z�N

N ;s,t(', )
⇤
!

R
'(x) g t�s

2
(y � x) (y)dxdy, where g is the

heat kernel;

(2) Var(Z�N

N ;s,t(', )) !
R
· · ·

R
'(x)'(x0)K✓

t�s
(x, x0; y, y0) (y) (y0),

where the correlation kernel K✓
t�s

(x, x0; y, y0) ⇠ C log 1
|x�x0| as

|x� x
0| ! 0 (similarly for |y � y

0| ! 0).

(3) limN!1 E
⇥
Z�N

N ;s,t(', )
3
⇤
exists and is finite.

(4) limN!1 E
⇥
Z�N

N ;s,t(', )
k
⇤
exists and is finite if ', 2 L

2(R2).

The limiting k-th moments for k � 3 are all expressed as infinite
series. All subsequential weak limits of Z�N

N ;s,t(', ) will have the
same moments. But they grow too fast to uniquely determine the
limiting law of Z�N

N ;s,t(', ).



Main Result: Critical 2d Stochastic Heat Flow

Main Result [CSZ’23] Let �N := �̂/
p
RN with �̂ = �̂(✓) := 1 + ✓

logN
.

Then as random measures on R2 ⇥ R2 (with vague topology),

(Z�N

N ;s,t(dx, dy))0st =)
N!1

Z ✓ := (Z ✓

s,t
(dx, dy))0st

in finite-dimensional distributions.

Furthermore, Z ✓ satisfies the scaling relation: for all a > 0,

(Z ✓

as,at
(d(

p
ax), d(

p
ay)))0st

dist
= (aZ ✓+log a

s,t
(dx, dy))0st.

We call Z ✓ the critical 2d stochastic heat flow, which can be regarded
as the solution of the critical 2d SHE.

[Clark’21, 22] proved similar results for the directed polymer on
the diamond hierarchical lattice.

Theorem 2 [CSZ’23+] Z ✓
0,t(1, dy) is almost surely singular w.r.t.

Lebesgue measure; and Z ✓
0,t(1, dy) ) 0 as t " 1.



Proof Strategy



Key Proof Ingredients

In the absence of a characterization of the limit Z ✓, we will show
that (Z�N

N ;s,t(', ))N2N forms a Cauchy sequence.

A. Coarse-Graining: leading to a family of coarse-grained models

Z (cg)
✏;s,t ( · |⇥N,✏) that approximate Z�N

N ;s,t in L
2. A mutilinear

polynomial of the coarse-grained disorder variables ⇥N,✏.

B. Time-Space Renewal Structure: renewal process interpretation of
second moment calculations, which leads in the continuum limit
to the Dickman subordinator;

C. Lindeberg Principle for multilinear polynomials of dependent

random variables: controls the e↵ect of changing ⇥N,✏ to ⇥M,✏ in

the coarse-grained model Z (cg)
✏ ( · |⇥);

D. Functional Inequalities for Green’s Functions of multiple random

walks on Z2: yields higher moment bounds for the coarse-grained
model, as input for the Lindeberg principle.

Can also be implemented for the solution of the mollified SHE using
the same coarse-grained models, which will give the same limit.



Coarse Graining of Chaos Expansion

Consider the averaged partition function ZN (', ) := Z�N

N ;0,1(', )

ZN (', ) =
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⌘
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where
⌘(n, x) := e

�N!(n,x)��(�N ) � 1 =: �NX(n, x).

Can interpret (n1, x1), . . . , (nr, xr) as a time-space renewal sequence.
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Coarse Graining of Chaos Expansion

Fix ✏ 2 (0, 1). Let N 2 N. Partition N⇥ Z2 into mesoscopic

time-space boxes on time-space scale of (✏N,
p
✏N):

B✏N (i, a) := ((i� 1)✏N, i✏N ]| {z }
T✏N (i)

⇥ ((a� (1, 1))
p
✏N, a

p
✏N ]| {z }

S✏N (a)

. (2)

The renewal sequence (n1, x1), . . . , (nr, xr) visits a sequence of
mesoscopic time intervals T✏N (i1), . . . , T✏N (ik), 1  i1 · · ·  ik  1

✏
. For

each T✏N (ij), identify the mesoscopic spatial boxes of entry and exit
S✏N (aj) and S✏N (a0

j
), aj , a0j 2 Z2.

and
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Kernel Replacement and Coarse Grained Variable

Consecutively visited time-space boxes B✏N (ij , a0j) and B✏N (ij+1, aj+1)
are connected by random walk transition kernel

qn,m(x, y), (n, x) 2 B✏N (ij , a
0
j
), (m, y) 2 B✏N (ij+1, aj+1).

We hope to use local central limit theorem to replace

qn,m(x, y) 1

✏N
g 1
2 (ij+1�ij)

(aj+1 � a0
j
), (3)

which decouples contributions from di↵erent visited time intervals
T✏N (i) (to the chaos expansion of ZN (', )).
<
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Kernel Replacement and Coarse Grained Variable

If S✏N (a) and S✏N (a0) are the spatial boxes of entry and exit in the
time interval T✏N (i), then the contribution is

⇥N,✏(i; a, a
0) :=

1

✏N

1X

r=1

X

(n1,x1),...,(nr,xr)
x12S✏N (a),xr2S✏N (a0)
n1<···<nr, ni2T✏N (i)

⌘(n1, x1)
rY

j=2

qnj�1,nj (xj�1, xj)⌘(nj , xj) ,

which we call a coarse-grained (CG) disorder variable.
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Kernel Replacement and Coarse Grained Variable

Complication: The kernel replacement

qn,m(x, y) 1

✏N
g 1
2 (ij+1�ij)

(aj+1 � a0
j
),

induces a small error only for |ij+1 � ij | large (say � K✏ = (log 1
✏
)6)

and |aj+1 � a0
j
| not too large (say  M✏

p
|ij+1 � ij |, M✏ = log log 1

✏
).

Lemma (No Triple Visited Intervals) Let ZNT
N

(', ) be the chaos
expansion of ZN (', ), where (n1, x1), · · · , (nr, xr) does not visit any
T✏N (ij), T✏N (ij+1), T✏N (ij+2) with ij+1 � ij , ij+2 � ij+1 < K✏. Then

lim
✏#0

lim sup
N!1

kZNT
N

(', )� ZN (', )k2 = 0.
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Kernel Replacement and Coarse Grained Variable

We can replace qn,m(x, y) connecting T✏N (ij) and T✏N (ij+1) with
ij+1 � ij � K✏. The result decoupling leads to a second type of

coarse-grained disorder variable ⇥N,✏(~i,~a), with~i = (i, i0),
~a = (a, a0).Its chaos expansion visits T✏N (i) and T✏N (i0), with S✏N (a)
the spatial box of entry and S✏N (a0) the spatial box of exit.
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Coarse-Grained Model

This leads to the Coarse-Grained Model

Z (cg)
✏

(', |⇥) := g 1
2
(', ) + ✏
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(~a1,...,~ar)

g 1
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where ⇥ := ⇥N,✏(~i,~a) varies with N and ✏.
G(7,5)
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Coarse-Grained Model

Note that Z (cg)
✏ (', |⇥) has the same structure (self-similarity) as

ZN (', ) =
1

N

X

x,y2Z2

'N (x)qN (y � x) N (y)

+
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N

1X

r=1

qn1('N , x1)
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1n1<···<nr<N

⇣ rY

i=2

qni�ni�1(xi � xi�1)⌘(ni, xi)
⌘
qN�nr (xr, N ).

Lemma (Coarse-Grain Approximation) Let ⇥N,✏ be the coarse
grained disorder variables on time-space scale (✏N,

p
✏N). Then

lim
✏#0

lim sup
N!1

kZ (cg)
✏

(', |⇥N,✏)� ZN (', )k = 0. (4)



Lindeberg Principle

Since ZN (', ) ⇡ Z (cg)
✏ (', |⇥N,✏) for ✏ small and N large, only

remains to show

Z (cg)
✏

(', |⇥N,✏) ⇡ Z (cg)
✏

(', |⇥M,✏)

with an error that is uniform in large M � N and tends to 0 as ✏ # 0.

Prove a Lindeberg Principle for multilinear polynomials of dependent

random variables [�✏(⇥) := Z (cg)
✏ (', |⇥)] to compare �✏(⇥N,✏) and

�✏(⇥M,✏). Need the following:

Convergence of mean and covariance of ⇥N,✏(~i,~a) as N ! 1.

Control of the influence of each ⇥N,✏(~i,~a), more precisely, show
X

(~i,~a)

E
⇥��@⇥(~i,~a)�✏(⇥N,✏)

��3⇤E
⇥
|⇥N,✏(~i,~a)|3

⇤
⌧ E

⇥
�✏(⇥N,✏)

2
⇤
,

for N large and ✏ small. Note that
X

(~i,~a)

E
⇥��@⇥(~i,~a)�✏(⇥N,✏)

��2⇤E
⇥
|⇥N,✏(~i,~a)|2

⇤
⇡ Deg(�✏)E

⇥
�✏(⇥N,✏)

2
⇤
.

In our case, can show Deg(�✏)⇡ log 1
✏
uniformly in N large.



Moment Bounds for the Coarse-Grained Model

To apply Lindeberg, we need to bound

E
⇥
|⇥N,✏(~i,~a)|3

⇤
and E

⇥��@⇥(~i,~a)�✏(⇥N,✏)
��3⇤

and gain a factor ⌧ log 1
✏
compared to E

⇥��@⇥(~i,~a)�✏(⇥N,✏)
��2⇤.

• ⇥N,✏(~i,~a) is an averaged partition function comparable to ZN (', ).
Hence need to bound E

⇥
ZN (', )4

⇤
.

• @⇥(~i,~a)�✏(⇥N,✏) = @⇥(~i,~a)Z
(cg)
✏

(', |⇥N,✏)

= Z (cg)
✏

(', �(~i,~a) |⇥N,✏) ·⇥N,✏(~i,~a) · Z (cg)
✏

(�(~i,~a), |⇥N,✏)

Hence need to bound E
⇥
Z (cg)
✏ (', |⇥N,✏)4

⇤
.

|
·
Gx,z(i.)

git ↳ GoNo****
G,,5(...) i.

-

-w
m

o
z"s(9, Jini) ON,al,a) ZaSia):4)=



Lindeberg Principle

for

Multilinear Polynomials

of

Independent Random Variables



Lindeberg Principle for Multilinear Polynomials

Theorem A [MOO’10] Let T be an index set, and let (⌘i)i2T, (⇣i)i2T
be i.i.d. random variables with E[⇣i] = E[⌘i] = 0, E[⇣2

i
] = E[⇣2

i
] = 1,

and M := max{E[|⇣i|3],E[|⌘i|3]} < 1.

Given a kernel  : I ⇢ T ! R of degree l, i.e.,  (I) = 0 for |I| > l, let

 (⌘) :=
X

I⇢T
 (I)

Y

i2I

⌘i =:
X

I⇢T
 (I)⌘I .

Then for any f 2 C
3
b
(R), there exists C > 1 depending only on the

law of ⌘ and ⇣ s.t.

��E[f( (⇣))� f( (⌘))]
��  kf 000k1MC

l(max
i2T

Infi( ))
1
2E[ (⌘)2], (5)

where Infi( ) := E[(@i (⌘))2] =
P

I3i
 (I)2.

Remark The more classic Lindeberg principle assumes that  (⌘) has
bounded derivatives w.r.t. each ⌘i, which does not hold here. But our
 (⌘) here has a special multilinear structure of bounded degree.



Proof of Lindeberg for Multilinear Polynomials

Proof. Assume |T| = N . Let ⇣(0) = ⌘, ⇣(1), . . . , ⇣(N) = ⇣ be the
successive replacements of each ⌘i by ⇣i. Then

E[f( (⇣))� f( (⌘))] =
NX

k=1

E
h
f( (⇣(k)))� f( (⇣(k�1)))

i
,

with f( (⇣(k)))� f( (⇣(k�1))) =: gk;⌘,⇣(⌘k)� gk;⌘,⇣(⇣k),

and gk;⌘,⇣(⌘k)� gk;⌘,⇣(⇣k) = g
0
k;⌘,⇣(0)(⌘k � ⇣k) +

g
00
k;⌘,⇣(0)

2
(⌘2

k
� ⇣

2
k
)

+R⌘,⇣(⌘k)�R⌘,⇣(⇣k),

with remainders

|R⌘,⇣(⌘k)|  kg000
⌘,⇣

k1|⌘k|3  kf 000k1|@k (⇣(k))|3|⌘k|3,

|R⌘,⇣(⇣k)|  kf 000k1|@k (⇣(k�1))|3|⇣k|3.



Proof of Lindeberg for Multilinear Polynomials

Since gk;⌘,⇣(x) and @k (⇣(k)) = @k (⇣(k�1)) are independent of ⌘k,
⇣k, while E[⌘k � ⇣k] = E[⌘2

k
� ⇣

2
k
] = 0, we have

���
NX

k=1

E[g⌘,⇣(⌘k)� g⌘,⇣(⇣k)]
���  2Mkf 000k1

NX

k=1

E[|@k (⇣(k))|3]. (6)

Note that @k (⇣(k)) is a multilinear polynomial in ⇣(k) and

@k (⇣
(k)) =

X

I3k

 (I)
Y

i2I\{k}

⇣
(k)
i

,

E[(@k (⇣(k)))2] =
X

I3k

 (I)2 = Infk( ).

Using hypercontractivity for polynomial chaos expansions, we have

E[|@k (⇣(k))|3] 
⇣X

I3k

c
2|I|

 (I)2
⌘ 3

2  c
3l Infk( )

3
2 .

Since  (I) = 0 for |I| > l, the RHS of (6) can be bounded by

CfMc
3l(max

k

Infk( ))
1
2

X

k

X

I3k

 (I)2  CfMc
3l(max

k

Infk( ))
1
2 ·l

X

I 6=;

 (I)2.



Applying Lindeberg to Directed Polymer

For the averaged point-to-plane directed polymer partition function,
with ' 2 Cc(R2),

 (X) :=
1

N

X

x2Z2

'N (x)| {z }
'( xp

N
)

(Z�N

N
(x)� 1)

=
1

N

1X

l=1

qn1('N , x1)
X

x1,...,xl2Z2
1n1<···<nl<N

lY

i=2

qni�ni�1(xi � xi�1)�NX(ni, xi).

By L
2 approximation, we can restrict to degree l = O(logN) when

�N is in the critical window. Theorem A and the hypercontractivity
argument in the proof is too crude, which gives Cl = C

O(logN).

Instead, we work with the bound (6), which becomes
X

x2Z2,1nN

E
⇥
|@(n,x) (X)|3

⇤
,

where

@(n,x) (X) =
�N

N
Z
�N

N ;0,n('N , x)Z�N

N ;n,N (x,1).

exer-ze 1



Applying Lindeberg to Directed Polymer

Therefore

X

x2Z2
1nN

E
⇥
|@(n,x) (X)|3

⇤
=

X

x2Z2
1nN

�
3
N

N3
E
⇥
(Z�N

N ;0,n('N , x))3
⇤
E
⇥
(Z�N

N ;n,N (x,1))3
⇤
.

It can be shown (see Part 3) that

E
⇥
(Z�N

N ;0,n('N , x))3
⇤
, E

⇥
(Z�N

N ;n,N (x,1))3
⇤
= o(N �) for any � > 0.

Because ' 2 Cc(R2), the dominant contribution in
P

(n,x) comes from

x = O(
p
N), and there are O(N2) such (n, x),

P
(n,x) ! 0 as N ! 1.

Conclusion: Applying Lindeberg for multilinear polynomials of i.i.d.
random variables directly without coarse-graining can show that the
law of the averaged partition functions does not depend on the law of
the disorder ! as N ! 1. But coarse-graining is necessary to show
convergence to a uniquene limit.
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