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Critical 2d Stochastic Heat Flow (SHF)



Phase Transition on an Intermediate Disorder Scale

Recall the point-to-plane directed polymer partition functions

703 (z) = E{eml{ﬂw(n,sn)—A(/m} ‘ S = Z}

A phase transition occurs on the intermediate disorder scale
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where Ry = E{Zgil 1¢s, = SL}} is the expected overlap between two
independent SRW S and S’ starting at 0.

More precisely, BC =1, and
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where Y ~ N(0,1) and % = log 1?22.



The Critical Window Around 3, =

Diffusively rescale space-time and define the random measure
Z]%Ns t(dm?dy)a 0 <s< t, T,y € RQ

such that for ¢ € C.(R?) and ¢ € C)(R?),

Nst(SD V)= i Z @(%)Zz@’i,m(%y)w(%).

mzeZ?

Q. Does ZN s, (dx,dy) converge to a unique limit as N — oo? If yes,
the limit can be interpreted as the solution of the critical 2d SHE.



Moment Asymptotics In the Critical Window

Theorem 1 [BC’'98, CSZ’19a, CSZ’19b, GQT’21] Let 3 = () be in
the critical window, ¢ € C.(R?), and ¢ € Cy(R?). Then as N — oo,

(1) E[Z]%NS (o) ] = [(z) gf s (y — x) Y(y)dady, where g is the
heat kernel;

(@) Var(ZR7, ,(p.)) = [ - [ ol@)e(@) KL (0,253,000,
where the correlation kernel ths(a: z';y,y") ~ Clog ‘mim,‘ as
|z — 2’| = 0 (similarly for |y — ¢'| — 0).

(3) imy— 00 E[ Nos.t (@5 0) 3] exists and is finite.
(4) limy— 00 E[Zﬁfsyt(go,d))k] exists and is finite if ¢, € L*(R?).
o The limiting k-th moments for & > 3 are all expressed as infinite

series. All subsequential weak limits of ZPN Nes.t (9, 9) will have the
same moments. But they grow too fast to unlquely determine the

limiting law of Z37, , (¢, %).



Main Result: Critical 2d Stochastic Heat Flow

Main Result [CSZ’23] Let By := (/v/Rn with 3 = 5(0) :=1+ loggN'
Then as random measures on R? x R? (with vague topology),

(ZRY Az, dy))ocece = 27 = (20, (dz, dy))o<a<t
% N—oc0
in finite-dimensional distributions.
Furthermore, 27 satisfies the scaling relation: for all a > 0,

(22, . (d(Vaz), d(Vay))ozs<e ' (a 2715 (dz, dy))o<s<r-

We call 2% the critical 2d stochastic heat flow, which can be regarded
as the solution of the critical 2d SHE.

o [Clark’21, 22] proved similar results for the directed polymer on
the diamond hierarchical lattice.

Theorem 2 [CSZ23+] 2, (1,dy) is almost surely singular w.r.t.
Lebesgue measure; and th(lh dy) = 0 as ¢ 1 oco.



Proof Strategy



Key Proof Ingredients

In the absence of a characterization of the limit 2°¢, we will show
that (ZJ%J;VSJ(@, ¥))nen forms a Cauchy sequence.

A. Coarse-Graining: leading to a family of coarse-grained models
Qi((g)( |On () that approximate ZﬁN +in L?. A mutilinear
polynomial of the coarse-grained dlsorder variables Oy .

B. Time-Space Renewal Structure: renewal process interpretation of
second moment calculations, which leads in the continuum limit
to the Dickman subordinator;

C. Lindeberg Principle for multilinear polynomials of dependent

random variables: controls the effect of changing O  to O/ in
the coarse-grained model QZ(Cg)( -1©);

D. Functional Inequalities for Green’s Functions of multiple random
walks on 7Z?: yields higher moment bounds for the coarse-grained
model, as input for the Lindeberg principle.

Can also be implemented for the solution of the mollified SHE using
the same coarse-grained models, which will give the same limit.



Coarse Graining of Chaos Expansion

Consider the averaged partition function Zy(p, 1) := Zf\f/;vm(% )

e(F<) ;
Znlp )=+ 3 on@a(y— ) o) 1)
x,y€ZL?
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T, mr€L2 1=2
1<ny < <np<N

where
n(n,z) = efNema)=ABN) _1 = gy X (n, z).
Can interpret (ny,z1),..., (n.,z,) as a time-space renewal sequence.
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Coarse Graining of Chaos Expansion

Fix e € (0,1). Let N € N. Partition N x Z? into mesoscopic
time-space bozes on time-space scale of (e N, veN):

Ben(i,a) = ((i—1)eN,ieN] x ((a — (1,1))VeN,aVeN].  (2)

Ten (i) Sen(a)
The renewal sequence (ny,x1),. .., (n., z,) visits a sequence of
mesoscopic time intervals Ten(i1), -+, Ten(ik), 1 <ip--- <ip < % For

each Tcn(i;), identify the mesoscopic spatial boxes of entry and exit
Scn(aj) and Scn(a)), a5, ) € Z2.

sV
)
ey 7%9
W cva) / / % j )
S A
—r — — D

Tew iy Tep (70 Tew lis) Tenlis)



Kernel Replacement and Coarse Grained Variable

Consecutively visited time-space boxes Bey (ij,a}) and Bey(ij11,2541)
are connected by random walk transition kernel

In.m (2, Y), (n,z) € By (ij,a}), (m,y) € Ben(ijr1,a541)-

We hope to use local central limit theorem to replace

Qn,m(x7 y) ~ (aj+1 - 3;), (3)

1
Jg%(ijﬂ—ij)
which decouples contributions from different visited time intervals
Ten (i) (to the chaos expansion of Zn (p,1)).
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Kernel Replacement and Coarse Grained Variable

If Scv(a) and Sy (a’) are the spatial boxes of entry and exit in the
time interval 7.y (i), then the contribution is

T

@N5(| a, a = 72 Z n17x1)Hqnj_l,nj(xjfl,:L'j)n(njaxj)7

r= 1(”17331)7 a(nraxr) Jj=2
z1E€ScN (), €SN (")
n1 < <np, i €Ten (i)

which we call a coarse-grained (CG) disorder variable.
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Kernel Replacement and Coarse Grained Variable

Complication: The kernel replacement

1

. . /A
Qn,m (T, Y) ~ Jg%(ijJrl_ij)(aJJrl aj),

induces a small error only for i1 —i;| large (say > K. = (log 1)%)
and [a;+1 — aj| not too large (say < Mcy/[ij11 —ij[, M. = loglog ).

Lemma (No Triple Visited Intervals) Let ZX* (¢, ) be the chaos
expansion of Zy(p,¥), where (ny,x1), -, (n,,z,) does not visit any
Ten(ij), Ten(ij1), Ten(ij42) with ijpr —ij,i542 —ij41 < Ke. Then

limlimsup | 237 (¢.4) — Zx (. 0)]l2 = 0.

N—o0




Kernel Replacement and Coarse Grained Variable

We can replace g, m (z,y) connecting Ten (i;) and e (ij41) with
ij4+1 —1i; > K. The result decoupling leads to a second type of
coarse-grained disorder variable © N76(|T: 3), with i= (i,1),

3 = (a,a’).Its chaos expansion visits Ty (i) and Ton (1), with Scy(a)
the spatial box of entry and S.y(a’) the spatial box of exit.
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Coarse-Grained Model

This leads to the Coarse-Grained Model

2D 010) = gy (e + ¢ Y

=L (i1,...0)

(31,---,37)
P(V/E) B(V/E)
~ N / Tz / 3
g%h(@sval |1aal Hq (| —| ’.7a_j—1)®(|j7aj) Q%(%—ﬂ)(afmq/}E) )

where © := @Nye(iﬂ., a) varies with N and e.
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Coarse-Grained Model

Note that Qi(cg)(% 1|©) has the same structure (self-similarity) as

Zn(p ) = % > on(@an(y — 2)en(y)

T, y€Z?

+N 1(1111(99N7:Ll Z (HQ7L7 ng_ 1 — Ti— 1)77(ni7l'i))qunr(l'TawN)-
z1

r=
1<ni<- <nr<N

Lemma (Coarse-Grain Approximation) Let © y . be the coarse
grained disorder variables on time-space scale (e/N, VeN). Then

lip Tim sup [| 229 (0, ¥1O.) — Zw (0, )| = 0. (1)
el0 Nooo



Lindeberg Principle

Since Zn (¢, 1) ~ (Cg)(go )|On ) for € small and N large, only
remains to show

LD (0,010 .) = 2L (p,0]Ons.c)
with an error that is uniform in large M > N and tends to 0 as € | 0.
Prove a Lindeberg Principle for multilinear polynomials of dependent

random variables [®.(©) := Efe(cg)(gp,w@)] to compare ®.(On ) and
®.(Opr,c). Need the following:

o Convergence of mean and covariance of Oy (i, 3) as N — oc.
o Control of the influence of each © N7€(T, a), more precisely, show
D E[|06 5 Pe(On,0)] B[O (1 3)])] < E[®(On )],
(i3
for N large and € small. Note that
SE[|00 55 @ (On.0)"JE[O.. (1 3)[2] ~ Deg(@)E[0.(On,0)?].
(i3

In our case, can show Deg(®, )~ log = uniformly in N large.



Moment Bounds for the Coarse-Grained Model

To apply Lindeberg, we need to bound
T o 3
E[|@N,E(|,a)|3] and E[|8@(15)<I>6(@N,6)| ]

and gain a factor < log 1 compared to ]E[|a@(ig)<1>€(@zv,e)|2].

e O N_E(T; d) is an averaged partition function comparable to Zn (g, ).
Hence need to bound E[Zy (¢, 1)].

® O3 2e(On.e) = Og15 ZL¥ (0,9 | On,c)
= 2D (65 | On.0) - On(13) - 209 (55 10 O]

Hence need to bound ]E[Qi(cg)(go, ¥ |On.)"].




Lindeberg Principle

for

Multilinear Polynomials

of
Independent Random Variables



Lindeberg Principle for Multilinear Polynomials

Theorem A [MOO’10] Let T be an index set, and let (1;)ier, (()iet
be i.i.d. random variables with E[(;] = E[;] = 0, E[¢?] = E[¢?] = 1,
and M := max{E[|¢;|*], E[|n:|®]} < oo.

Given a kernel ¢ : I C T — R of degree [, i.e., ¢(I) =0 for |I| > [, let

() =Y _oM][[m=">_ v

ICT iel ICT

Then for any f € C}(R), there exists C' > 1 depending only on the
law of n and ( s.t.

[BLA(2()) — FE)]] < 1"l MC" (miax Inf (V) *E[¥ ()°],  (5)
where Inf; (V) := E[(0;¥(n))?] = 3,5, v(I)>.
Remark The more classic Lindeberg principle assumes that ¥(n) has

bounded derivatives w.r.t. each n;, which does not hold here. But our
U(n) here has a special multilinear structure of bounded degree.



Proof of Lindeberg for Multilinear Polynomials

Proof. Assume |T| = N. Let ¢(©) =5, ¢ ... ¢V) = be the
successive replacements of each 7; by (;. Then

E[f(¥(C)) }jE[ (€M) = F(w(Ect 1))

with  f(U(C™)) = F(UECHY) = granc () = grinc ()

Ireim,¢(0)
and i ¢ (k) = Ghin.¢ (G6) = Ghon () — Gi) + =0

+ Rn,c("lk:) - R'M(Ck)a

(k= C})

with remainders

| Rc ()] < Hlgnyelloclmel® < 1" ool @2 (™) P i,
| Ry (Gl < 1" oo B8 (C D) 1G]



Proof of Lindeberg for Multilinear Polynomials

Since g.p.c(x) and 9 W (¢M)) = 9, ¥ (¢*~V) are independent of 7y,
C, while E[ny, — ¢ = E[n — (7] = 0, we have

N N
| > Elgnc ) = g (GOl < 201 o0 Y ENOWC )L (6)
k=1

Note that 9, ¥ ((*)) is a multilinear polynomial in ¢*) and

aw(cM) =3 "w) T <,

=k zeI\{k}
E[(0xT( C(“ Zu = Infy (¥).
EY

Using hypercontractivity for polynomial chaos expansions, we have

E[|0p®(¢)[3 (Z(’2|I|1/) ) < A nfp (D)3,

I3k
Since ¥(I) = 0 for |I] > I, the RHS of (6) can be bounded by

CyMc*(m aXIka ZZ¢ <C’fZchl(maXInf;C 2 lZiﬁ

k I3k I#0



Applying Lindeberg to Directed Polymer

For the averaged point-to-plane directed polymer partition function,
with p € C.(R?),

W(X) = % S on(@) (29 (@) = 1)
r€Z? ¢(%)

[} l
%Z In, (ON, 1) Z qu—m,i(ﬂ?i—-?77:—1)/3NX(”717-7?7:)~

T,eens z €22 1=2
1<ny<--<ny<N
By L? approximation, we can restrict to degree | = O(log N) when
B is in the critical window. Theorem A and the hypercontractivity
argument in the proof is too crude, which gives C* = CCUogN),

Instead, we work with the bound (6), which becomes

S Bl v g

T€7Z2,1<n<N )

where

Bn

a(nuL)\I/(X) N

ZJ%NO n (@Na )ZIﬁV]:]n’N(.'L', IL)



Applying Lindeberg to Directed Polymer

Therefore

3 f f
> E[l0aan¥X)F] = D SEEZRY . (on, ) |E[(ZR7, v (. )]
zez? zez2
1<n<N 1<n<N

It can be shown (see Part 3) that

E[(Z3% . (on-2))%], E[(ZR%, y(2,1))°] = o(N®)  for any 6 > 0.

Because ¢ € C.(R?), the dominant contribution in > (n,z) comes from

z = O(v/N), and there are O(N?) such (n, z), 2 (na) — 0as N — oo

Conclusion: Applying Lindeberg for multilinear polynomials of i.i.d.
random variables directly without coarse-graining can show that the
law of the averaged partition functions does not depend on the law of
the disorder w as N — oco. But coarse-graining is necessary to show
convergence to a uniquene limit.
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