

Towards Abstract Wiener Model Spaces

Gideon Chiusole¹ Peter Friz²

CIME 2023 - Cetraro, 14th of September 2023

¹TU Munich

²TU Berlin/WIAS

Motivation and Recollection

Reminder: Classical Definition

Gives rigorous meaning to

$$d\mu(\phi) = \frac{1}{Z} \exp\left(-\frac{1}{2}\|\phi\|_{\mathcal{H}}^2\right) \mathcal{D}\phi. \quad (1)$$

Definition

An **abstract Wiener space** is a quadruple consisting of

- a separable (real) Banach space E ,
- a separable (real) Hilbert space \mathcal{H} "Cameron-Martin space",
- a continuous, linear injection $j : \mathcal{H} \hookrightarrow E$, and
- a (centred Gaussian) probability measure μ on (E, \mathcal{B}_E) s.t.

$$\int_E \exp(i\ell(x)) d\mu(x) = \exp\left(-\frac{1}{2}\|\mathfrak{C}_\mu \ell\|_{\mathcal{H}}^2\right), \quad \ell \in E^*. \quad (2)$$

where $\mathfrak{C}_\mu : E^* \rightarrow E \subseteq E^{**}$ is the covariance operator of μ on E .

Reminder: Classical Definition

Gives rigorous meaning to

$$d\mu(\phi) = \frac{1}{Z} \exp\left(-\frac{1}{2}\|\phi\|_{\mathcal{H}}^2\right) \mathcal{D}\phi. \quad (1)$$

Definition

An **abstract Wiener space** is a quadruple consisting of

- a separable (real) Banach space E ,
- a separable (real) Hilbert space \mathcal{H} "Cameron-Martin space",
- a continuous, linear injection $j : \mathcal{H} \hookrightarrow E$, and
- a (centred Gaussian) probability measure μ on (E, \mathcal{B}_E) s.t.

$$\int_E \exp(i\ell(x)) d\mu(x) = \exp\left(-\frac{1}{2}\|\mathfrak{C}_\mu \ell\|_{\mathcal{H}}^2\right), \quad \ell \in E^*. \quad (2)$$

where $\mathfrak{C}_\mu : E^* \rightarrow E \subseteq E^{**}$ is the covariance operator of μ on E .

Examples include

Gaussian Measure μ	Hilbert Space \mathcal{H}	Banach Space E
Brownian Motion	$\left(W_0^{1,2}([0, 1]), \int_0^1 x'(s)y'(s) \, ds\right)$	$C[0, 1], \mathcal{C}^{\frac{1}{2}-\kappa}[0, 1], \dots$
Space-time White Noise	$\left(L^2(\mathbb{R}^d), \langle \cdot, \cdot \rangle_{L^2(\mathbb{R}^d)}\right)$	$\mathcal{C}_{\mathfrak{s}}^{0, -\frac{d+2}{2}-\kappa}(\mathbb{R}^d), \dots$
Dirichlet Gaussian Free Field	$\left(\dot{H}_0^1(U), \int_U \langle \nabla \phi, \nabla \psi \rangle \, d\lambda^d\right)$	$\dot{H}^{-\frac{d-2}{2}-\kappa}(U), \dots$
Mult. Gaussian $\mathcal{N}(0, \Sigma)$	$(\mathbb{R}^d, \langle \cdot, \Sigma^{-1} \cdot \rangle_{\mathbb{R}^d})$	$(\mathbb{R}^d, \langle \cdot, \cdot \rangle_{\mathbb{R}^d}), \dots$
β -fractional Brownian Motion	$\left(\dot{H}^{\beta+\frac{1}{2}}, \left\langle \cdot, (-\Delta)^{\beta+\frac{1}{2}} \cdot \right\rangle_{L^2}\right)$	$\mathcal{C}^{0, \beta-\kappa}, \dots$

What is it good for?

- **Large Deviation Principle:** Rate function of $(\mu_\varepsilon)_{\varepsilon>0}$ is $\frac{1}{2} \|\cdot\|_{\mathcal{H}}^2$
- **Cameron-Martin Theorem:** $\mu(\cdot) \sim \mu(\cdot + h) \Leftrightarrow h \in \mathcal{H}$
- **Malliavin Calculus:** \mathcal{H} -derivative is non-degenerate \Rightarrow Wiener functional has density
- **Support Theorems:** $\text{supp } \mu = \overline{j(\mathcal{H})}$
- **Structure theorem of Gaussian measures:** every Gaussian measure arises through an AWS and is characterized by \mathcal{H}

Brave New World:

Gaussian Stochastic Analysis → Rough Paths and Regularity Structures:

Theorem/Theory	Classical	RP & Reg. Structures
Large Deviation Principles	e.g. [5, Sec. 3.4]	[8], [11], [6], [10]
Cameron-Martin Theorem	e.g. [1, Sec. 4.2]	[8, Sec. 15.8]
Malliavin Calculus	e.g. [12]	[3], [13], [2]
Support Theorem	e.g. [7, Sec. 9.3]	[4], [9], [8, Sec. 15.8]
Underlying Structure	Abstract Wiener Spaces	???

Brave New World:

Gaussian Stochastic Analysis → Rough Paths and Regularity Structures:

Theorem/Theory	Classical	RP & Reg. Structures
Large Deviation Principles	e.g. [5, Sec. 3.4]	[8], [11], [6], [10]
Cameron-Martin Theorem	e.g. [1, Sec. 4.2]	[8, Sec. 15.8]
Malliavin Calculus	e.g. [12]	[3], [13], [2]
Support Theorem	e.g. [7, Sec. 9.3]	[4], [9], [8, Sec. 15.8]
Underlying Structure	Abstract Wiener Spaces	???

Brave New World:

Gaussian Stochastic Analysis → Rough Paths and Regularity Structures:

Theorem/Theory	Classical	RP & Reg. Structures
Large Deviation Principles	e.g. [5, Sec. 3.4]	[8], [11], [6], [10]
Cameron-Martin Theorem	e.g. [1, Sec. 4.2]	[8, Sec. 15.8]
Malliavin Calculus	e.g. [12]	[3], [13], [2]
Support Theorem	e.g. [7, Sec. 9.3]	[4], [9], [8, Sec. 15.8]
Underlying Structure	Abstract Wiener Spaces	???

Abstract Wiener Model Spaces

General Setup

- an **ambient space**: a separable Banach space $\mathbf{E} := \bigoplus_{\tau \in \mathcal{W}} E_\tau$, graded over a finite set \mathcal{W} with a function $[\cdot] : \mathcal{W} \rightarrow \mathbb{N}_{\geq 1}$ (**state space of enhanced noise**).

Comes with projection maps

$$\pi_\tau : \mathbf{E} \rightarrow E_\tau \quad \text{and} \quad \pi^{(k)} : \mathbf{E} \rightarrow \bigoplus_{\substack{\tau \in \mathcal{W} \\ [\tau]=k}} E_\tau \quad (3)$$

and scaling and homogeneous norm

$$\delta^\varepsilon(\mathbf{x}) = \sum_{\tau \in \mathcal{W}} \varepsilon^{[\tau]} \pi_\tau(\mathbf{x}) \quad \text{and} \quad \|\mathbf{x}\|_{\mathbf{E}} = \left\| \pi_\tau \mathbf{x} \right\|_\tau^{\frac{1}{[\tau]}}, \quad \mathbf{x} \in \mathbf{E}. \quad (4)$$

- an abstract Wiener space $(\pi^{(1)}(\mathbf{E}), \mathcal{H}, j, \mu)$ (**state space of noise**)
- a μ -a.s. defined measurable lift $\hat{\mathcal{L}} : E \rightarrow \mathbf{E}$ (**enhancement**)

Two Philosophies

Naively one would like to define $\mathbf{H} := \hat{\mathfrak{L}}|_{\mathcal{H}}(\mathcal{H})$, but $\mu(\mathcal{H}) = 0$ if $\dim(\mathcal{H}) = \infty$.
 $\Rightarrow \hat{\mathfrak{L}}|_{\mathcal{H}}$ depends on the μ -a.s. version of $\hat{\mathfrak{L}}$.

Two options:

Bottom-Up:

Define \mathfrak{L} on \mathcal{H} and extend to E

Top-Down:

Define $\hat{\mathfrak{L}}$ on E and proxy-restrict to \mathcal{H}

Two Philosophies

Naively one would like to define $\mathbf{H} := \hat{\mathfrak{L}}|_{\mathcal{H}}(\mathcal{H})$, but $\mu(\mathcal{H}) = 0$ if $\dim(\mathcal{H}) = \infty$.
 $\Rightarrow \hat{\mathfrak{L}}|_{\mathcal{H}}$ depends on the μ -a.s. version of $\hat{\mathfrak{L}}$.

Two options:

Bottom-Up:

Define \mathfrak{L} on \mathcal{H} and extend to E

Top-Down:

Define $\hat{\mathfrak{L}}$ on E and proxy-restrict to \mathcal{H}

Two Philosophies

Naively one would like to define $\mathbf{H} := \hat{\mathfrak{L}}|_{\mathcal{H}}(\mathcal{H})$, but $\mu(\mathcal{H}) = 0$ if $\dim(\mathcal{H}) = \infty$.
 $\Rightarrow \hat{\mathfrak{L}}|_{\mathcal{H}}$ depends on the μ -a.s. version of $\hat{\mathfrak{L}}$.

Two options:

Bottom-Up:

Define \mathfrak{L} on \mathcal{H} and extend to E

Top-Down:

Define $\hat{\mathfrak{L}}$ on E and proxy-restrict to \mathcal{H}

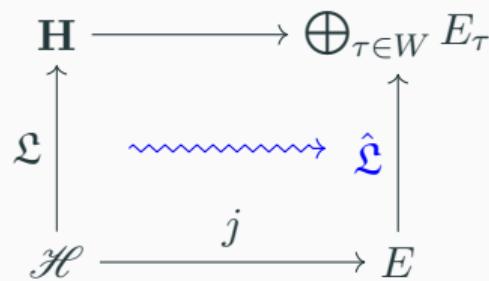
Two Philosophies

Naively one would like to define $\mathbf{H} := \hat{\mathfrak{L}}|_{\mathcal{H}}(\mathcal{H})$, but $\mu(\mathcal{H}) = 0$ if $\dim(\mathcal{H}) = \infty$.
 $\Rightarrow \hat{\mathfrak{L}}|_{\mathcal{H}}$ depends on the μ -a.s. version of $\hat{\mathfrak{L}}$.

Two options:

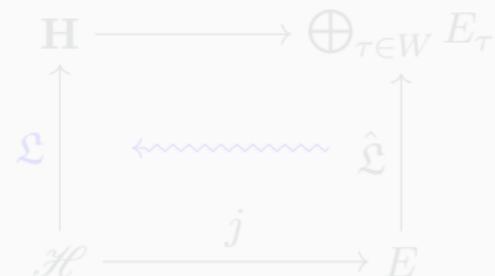
Bottom-Up:

Define \mathfrak{L} on \mathcal{H} and **extend** to E



Top-Down:

Define $\hat{\mathfrak{L}}$ on E and **proxy-restrict** to \mathcal{H}



Two Philosophies

Naively one would like to define $\mathbf{H} := \hat{\mathfrak{L}}|_{\mathcal{H}}(\mathcal{H})$, but $\mu(\mathcal{H}) = 0$ if $\dim(\mathcal{H}) = \infty$.
 $\Rightarrow \hat{\mathfrak{L}}|_{\mathcal{H}}$ depends on the μ -a.s. version of $\hat{\mathfrak{L}}$.

Two options:

Bottom-Up:

Define \mathfrak{L} on \mathcal{H} and **extend** to E

$$\begin{array}{ccc} \mathbf{H} & \longrightarrow & \bigoplus_{\tau \in W} E_\tau \\ \mathfrak{L} \uparrow & \rightsquigarrow & \uparrow \hat{\mathfrak{L}} \\ \mathcal{H} & \xrightarrow{j} & E \end{array}$$

Top-Down:

Define $\hat{\mathfrak{L}}$ on E and **proxy-restrict** to \mathcal{H}

$$\begin{array}{ccc} \mathbf{H} & \longrightarrow & \bigoplus_{\tau \in W} E_\tau \\ \mathfrak{L} \uparrow & \leftarrow \rightsquigarrow & \uparrow \hat{\mathfrak{L}} \\ \mathcal{H} & \xrightarrow{j} & E \end{array}$$

Definition of Abstract Wiener Model Spaces

Definition

An **abstract Wiener Model Space** $(E, H, \iota, \mu, \mathcal{L}, \hat{\mathcal{L}})$ consists of

1. an **ambient space** $(\mathcal{W}, E, [\cdot])$
2. a separable Hilbert space H with a continuous (non-linear) injection $\iota : H \hookrightarrow E$, called **enhanced Cameron-Martin space**.
3. a Borel probability measure μ on E such that $\mu := \pi_*^{(1)} \mu$ is centred Gaussian on E such that $\mathcal{H} := \pi^{(1)}(H)$ is the Cameron-Martin space associated to μ
4. a continuous two-sided inverse $\mathcal{L} : \mathcal{H} \rightarrow \iota(H)$ of $\pi^{(1)}|_{\iota(H)}$, called **skeleton lift**
5. a measurable μ -almost surely right-inverse $\hat{\mathcal{L}}$ of $\pi^{(1)}$, called **full lift** such that $\hat{\mathcal{L}}_* \mu = \mu$ and for every $\tau \in \mathcal{W}$ the measurable map $\pi_\tau \circ \hat{\mathcal{L}} : E \rightarrow E_\tau$ lies in $\mathcal{C}^{(\leq[\tau])}(E, \mu; E_\tau)$.

Definition of Abstract Wiener Model Spaces

Definition

An **abstract Wiener Model Space** $(E, H, \iota, \mu, \mathcal{L}, \hat{\mathcal{L}})$ consists of

1. an **ambient space** $(\mathcal{W}, E, [\cdot])$
2. a separable Hilbert space H with a continuous (non-linear) injection $\iota : H \hookrightarrow E$, called **enhanced Cameron-Martin space**.
3. a Borel probability measure μ on E such that $\mu := \pi_*^{(1)} \mu$ is centred Gaussian on H such that $\mathcal{H} := \pi^{(1)}(H)$ is the Cameron-Martin space associated to μ
4. a continuous two-sided inverse $\mathcal{L} : \mathcal{H} \rightarrow \iota(H)$ of $\pi^{(1)}|_{\iota(H)}$, called **skeleton lift**
5. a measurable μ -almost surely right-inverse $\hat{\mathcal{L}}$ of $\pi^{(1)}$, called **full lift** such that $\hat{\mathcal{L}}_* \mu = \mu$ and for every $\tau \in \mathcal{W}$ the measurable map $\pi_\tau \circ \hat{\mathcal{L}} : E \rightarrow E_\tau$ lies in $\mathcal{C}^{(\leq[\tau])}(E, \mu; E_\tau)$.

Definition of Abstract Wiener Model Spaces

Definition

An **abstract Wiener Model Space** $(E, H, \iota, \mu, \mathcal{L}, \hat{\mathcal{L}})$ consists of

1. an **ambient space** $(\mathcal{W}, E, [\cdot])$
2. a separable Hilbert space H with a continuous (non-linear) injection $\iota : H \hookrightarrow E$, called **enhanced Cameron-Martin space**.
3. a Borel probability measure μ on E such that $\mu := \pi_*^{(1)} \mu$ is centred Gaussian on E such that $\mathcal{H} := \pi^{(1)}(H)$ is the Cameron-Martin space associated to μ
4. a continuous two-sided inverse $\mathcal{L} : \mathcal{H} \rightarrow \iota(H)$ of $\pi^{(1)}|_{\iota(H)}$, called **skeleton lift**
5. a measurable μ -almost surely right-inverse $\hat{\mathcal{L}}$ of $\pi^{(1)}$, called **full lift** such that $\hat{\mathcal{L}}_* \mu = \mu$ and for every $\tau \in \mathcal{W}$ the measurable map $\pi_\tau \circ \hat{\mathcal{L}} : E \rightarrow E_\tau$ lies in $\mathcal{C}^{(\leq[\tau])}(E, \mu; E_\tau)$.

Definition of Abstract Wiener Model Spaces

Definition

An **abstract Wiener Model Space** $(E, H, \iota, \mu, \mathcal{L}, \hat{\mathcal{L}})$ consists of

1. an **ambient space** $(\mathcal{W}, E, [\cdot])$
2. a separable Hilbert space H with a continuous (non-linear) injection $\iota : H \hookrightarrow E$, called **enhanced Cameron-Martin space**.
3. a Borel probability measure μ on E such that $\mu := \pi_*^{(1)} \mu$ is centred Gaussian on E such that $\mathcal{H} := \pi^{(1)}(H)$ is the Cameron-Martin space associated to μ
4. a continuous two-sided inverse $\mathcal{L} : \mathcal{H} \rightarrow \iota(H)$ of $\pi^{(1)}|_{\iota(H)}$, called **skeleton lift**
5. a measurable μ -almost surely right-inverse $\hat{\mathcal{L}}$ of $\pi^{(1)}$, called **full lift** such that $\hat{\mathcal{L}}_* \mu = \mu$ and for every $\tau \in \mathcal{W}$ the measurable map $\pi_\tau \circ \hat{\mathcal{L}} : E \rightarrow E_\tau$ lies in $\mathcal{C}^{(\leq[\tau])}(E, \mu; E_\tau)$.

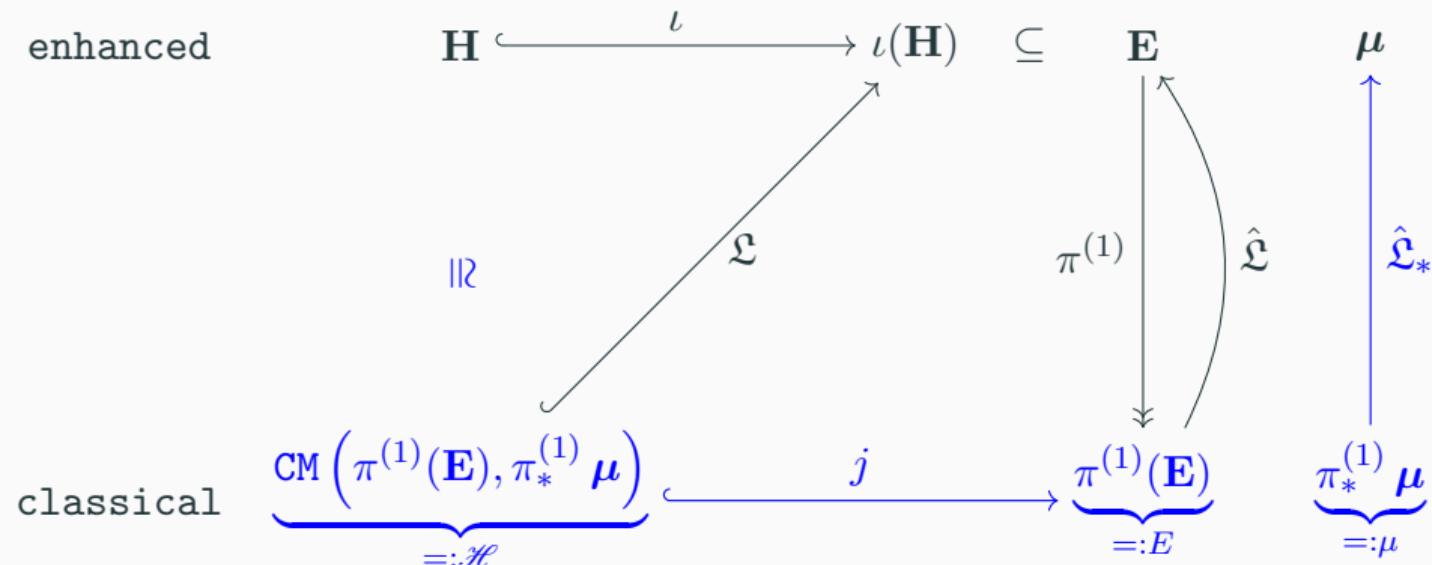
Definition of Abstract Wiener Model Spaces

Definition

An **abstract Wiener Model Space** $(E, H, \iota, \mu, \mathcal{L}, \hat{\mathcal{L}})$ consists of

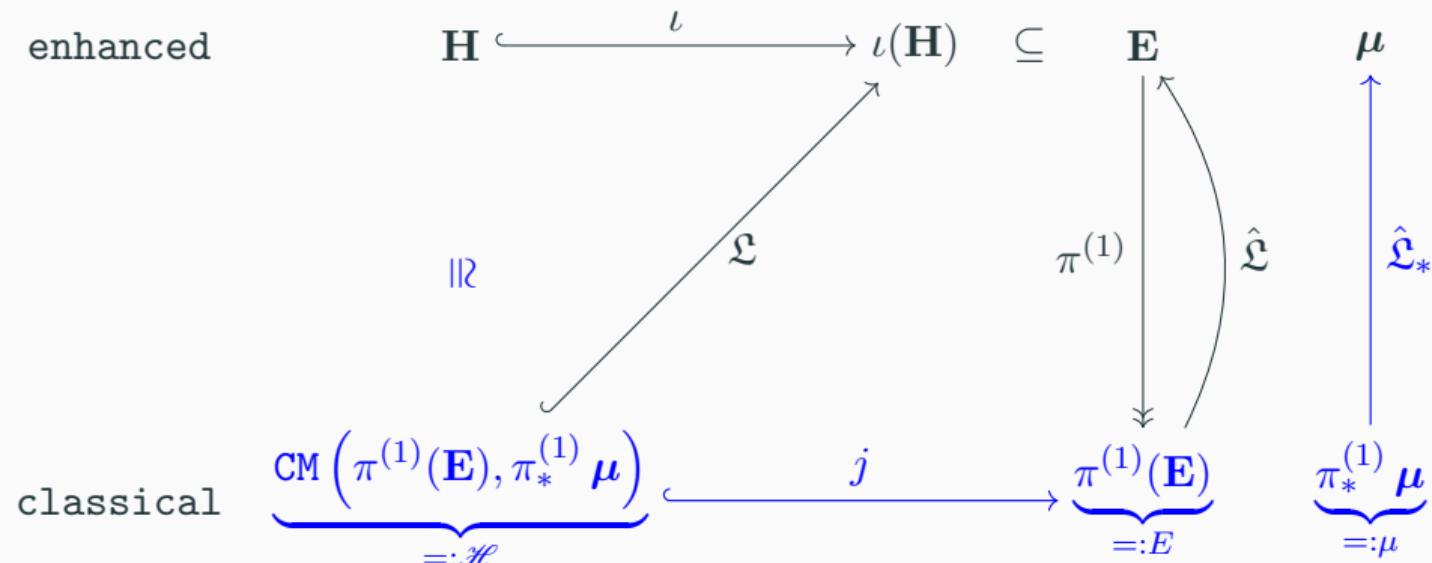
1. an **ambient space** $(\mathcal{W}, E, [\cdot])$
2. a separable Hilbert space H with a continuous (non-linear) injection $\iota : H \hookrightarrow E$, called **enhanced Cameron-Martin space**.
3. a Borel probability measure μ on E such that $\mu := \pi_*^{(1)} \mu$ is centred Gaussian on E such that $\mathcal{H} := \pi^{(1)}(H)$ is the Cameron-Martin space associated to μ
4. a continuous two-sided inverse $\mathcal{L} : \mathcal{H} \rightarrow \iota(H)$ of $\pi^{(1)}|_{\iota(H)}$, called **skeleton lift**
5. a measurable μ -almost surely right-inverse $\hat{\mathcal{L}}$ of $\pi^{(1)}$, called **full lift** such that $\hat{\mathcal{L}}_* \mu = \mu$ and for every $\tau \in \mathcal{W}$ the measurable map $\pi_\tau \circ \hat{\mathcal{L}} : E \rightarrow E_\tau$ lies in $\mathcal{C}^{(\leq[\tau])}(E, \mu; E_\tau)$.

Definition of Abstract Wiener Model Spaces - Diagram



→ How to construct AMWS?

Definition of Abstract Wiener Model Spaces - Diagram



⇒ How to construct AMWS?

Bottom-Up Construction

Bottom-Up Construction

Theorem

Let $(\mathcal{W}, \mathbf{E}, [\cdot])$ be an ambient space, with $E = E^{(1)}$ s.t. (E, \mathcal{H}, μ) is an abstract Wiener space. let $\mathfrak{L} : \mathcal{H} \rightarrow \mathbf{E}$ be a skeleton lift and let $(\Phi_m)_{m \in \mathbb{N}} : E \rightarrow \mathcal{H}$ be an admissible approximation s.t.

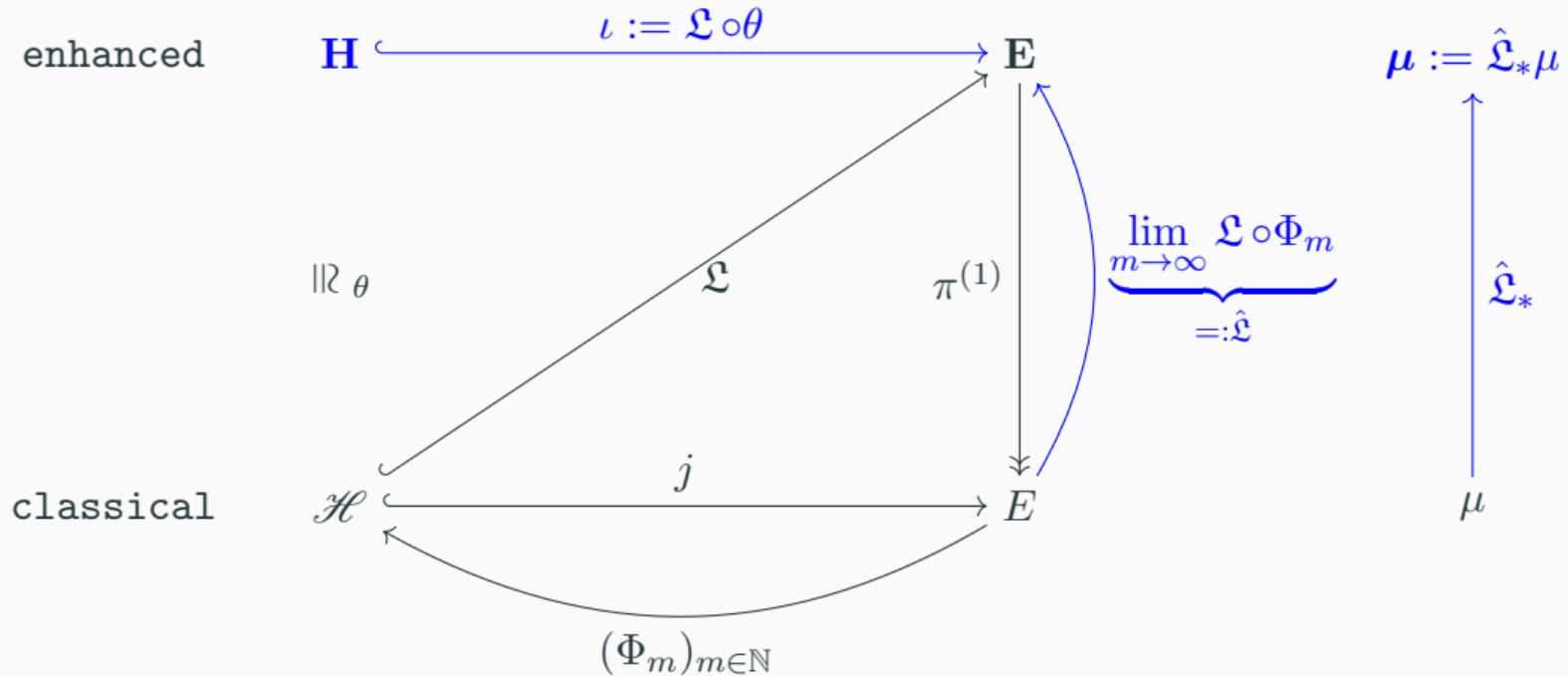
$$\pi_\tau \circ \mathfrak{L} \circ \Phi_m \in \mathcal{C}^{(\leq[\tau])}(E, \mu; E_\tau), \quad m \in \mathbb{N}, \tau \in \mathcal{W} \quad (5)$$

where $\mathcal{C}^{(\leq[\tau])}(E, \mu; E_\tau)$ denotes the inhomogeneous E_τ -valued Wiener-Ito-Chaos of order $[\tau]$.

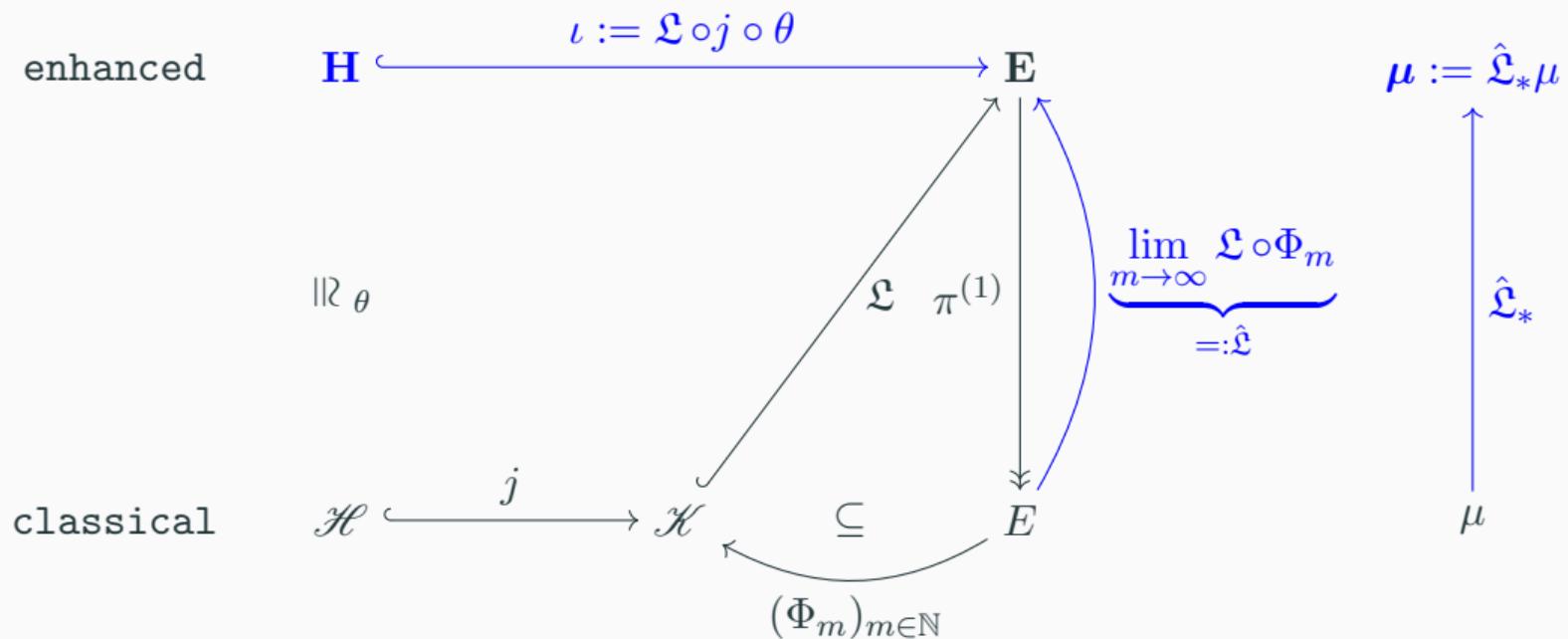
Then the following data constitutes an AWMS:

1. the ambient space \mathbf{E}
2. the skeleton lift $\mathfrak{L} : \mathcal{H} \rightarrow \mathbf{E}$
3. a separable Hilbert space $\mathbf{H} \cong \mathcal{H}$ together with $\iota = \mathfrak{L}$
4. $\mu := \hat{\mathfrak{L}}_* \mu$, where
5. $\hat{\mathfrak{L}} := \lim_{m \rightarrow \infty} \mathfrak{L} \circ \Phi_m$.

Bottom-Up Construction: Diagram



Bottom-Up Construction: Degenerated Noise



Bottom-Up Construction: Large Deviation Principle

Theorem (LDP)

Let $(\mathbf{E}, \mathbf{H}, \iota, \mu, \mathfrak{L}, \hat{\mathfrak{L}})$ be the AWMS obtained by the Bottom-Up construction via the data $\mathbf{E}, (E, \mathcal{H}, \mu), \mathfrak{L}, (\Phi_m)_{m \in \mathbb{N}}$ and recall the natural scaling

$$\delta^\varepsilon \mathbf{x} = \sum_{\tau \in \mathcal{C}} \varepsilon^{[\tau]} \pi_\tau \mathbf{x}, \quad \varepsilon > 0, \tau \in \mathcal{W}. \quad (6)$$

Then the family $(\delta_*^\varepsilon \mu)_{\varepsilon > 0}$ satisfies an LDP on \mathbf{E} with good rate function

$$\mathcal{J}(\mathbf{x}) = \begin{cases} \frac{1}{2} \|\pi^{(1)}(\mathbf{x})\|_{\mathcal{H}}^2 & , \quad \mathbf{x} \in \mathfrak{L}(\mathcal{H}) \\ +\infty & , \quad \text{else.} \end{cases} \quad (7)$$

Bottom-Up Construction: Exponential Integrability

Theorem (Exp. Integrability)

Let $(\mathbf{E}, \mathbf{H}, \iota, \mu, \mathcal{L}, \hat{\mathcal{L}})$ be the AWMS obtained by the Bottom-Up construction via the data $\mathbf{E}, (E, \mathcal{H}, \mu), \mathcal{L}, (\Phi_m)_{m \in \mathbb{N}}$. Then the measurable function $\|\hat{\mathcal{L}}\|_{\mathbf{E}}$ is exponentially integrable, in the sense that there exists an $\eta_0 > 0$ s.t.

$$\mathbb{E} \left[\exp \left(\eta \|\hat{\mathcal{L}}\|_{\mathbf{E}}^2 \right) \right] = \int_{\mathbf{E}} e^{\eta \|\mathbf{x}\|_{\mathbf{E}}^2} d\mu(\mathbf{x}) < \infty, \quad \forall \eta < \eta_0. \quad (8)$$

Furthermore,

$$\eta_0 := \inf \left\{ \frac{1}{2} \|\pi^{(1)} \mathbf{h}\|_{\mathcal{H}}^2 : \mathbf{h} \in \mathbf{H}, \|\mathbf{h}\|_{\mathbf{E}} > 1 \right\}. \quad (9)$$

Bottom-Up Construction: Cameron-Martin Theorem

Theorem (CM Theorem)

Let $(\mathbf{E}, \mathbf{H}, \iota, \mu, \mathfrak{L}, \hat{\mathfrak{L}})$ be the AWMS obtained by the Bottom-Up construction via the data $\mathbf{E}, (E, \mathcal{H}, \mu), \mathfrak{L}, (\Phi_m)_{m \in \mathbb{N}}$. Then for every $\mathbf{h} \in \mathbf{H}$

$$\underbrace{(\mathbf{T}_{\mathbf{h}})_* \mu}_{=: \mu_{\mathbf{h}}} \approx \mu. \quad (10)$$

where $\mathbf{T} : \hat{\mathfrak{L}}(E) \rightarrow \hat{\mathfrak{L}}(E)$ is an appropriate shift operator. Furthermore, the density has the form

$$\frac{d\mu_{\mathbf{h}}}{d\mu}(\mathbf{x}) = \exp \left(\mathfrak{C}^{-1} \left(\pi^{(1)} \mathbf{h} \right) (\pi^{(1)} \mathbf{x}) - \frac{1}{2} \|\pi^{(1)} \mathbf{h}\|_{\mathcal{H}}^2 \right), \quad \mathbf{x} \in \mathbf{E}, \quad (11)$$

where \mathfrak{C} is the covariance operator associated to μ .

Top-Down Construction

Top-Down Construction

Let $(\mathcal{W}, \mathbf{E}, [\cdot])$ be an ambient space, μ a Borel measure on \mathbf{E} s.t. $\mu := \pi_*^{(1)} \mu$ is a centred Gaussian measure on E , a measurable μ -a.e. right-inverse $\hat{\mathfrak{L}} : E \rightarrow \mathbf{E}$ of $\pi^{(1)}$ s.t. $\hat{\mathfrak{L}}_* \mu = \mu$ and

$$\pi_\tau \circ \hat{\mathfrak{L}} : E \rightarrow E_\tau \in \mathcal{C}^{(\leq [\tau])}(E, \mu; E_\tau), \quad \tau \in \mathcal{W}. \quad (12)$$

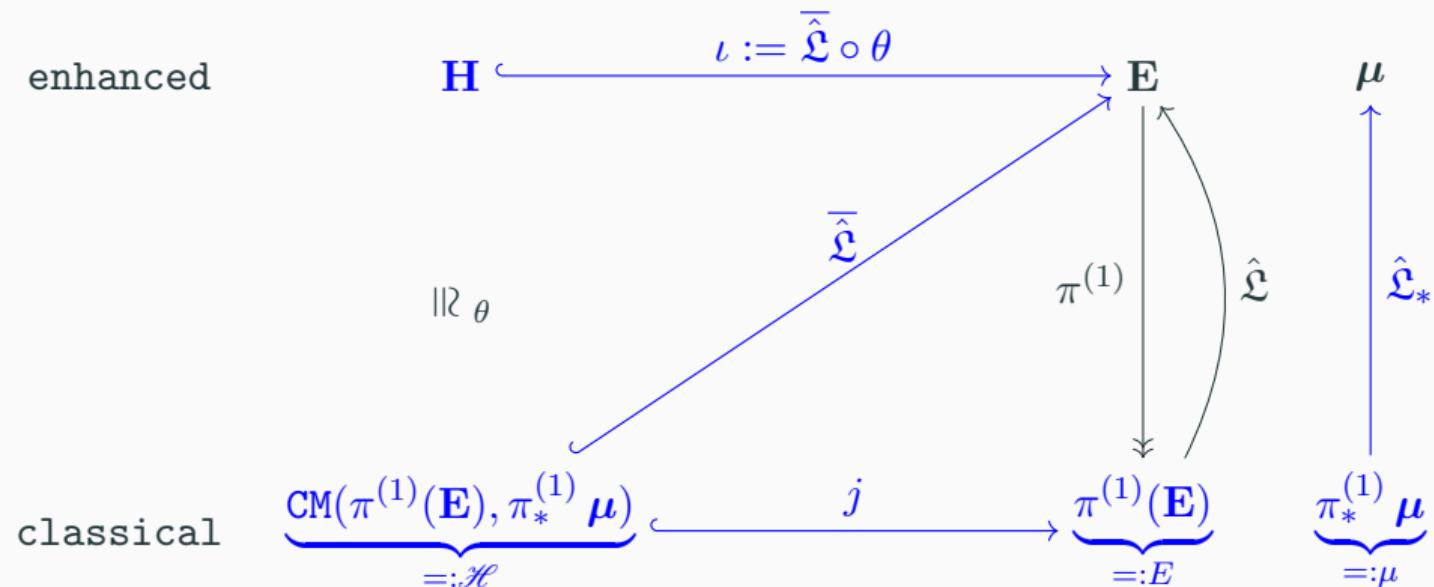
Then the following data constitutes an AWMS:

1. the ambient space \mathbf{E}
2. a separable Hilbert space $\text{CM}(\pi^{(1)}(\mathbf{E}), \pi_*^{(1)} \mu)$ together with $\iota = \overline{\hat{\mathfrak{L}}}$
3. the measure μ
4. the skeleton lift $\mathfrak{L} := \overline{\hat{\mathfrak{L}}}$
5. the full lift $\hat{\mathfrak{L}}$.

where $\text{CM}(\pi^{(1)}(\mathbf{E}), \pi_*^{(1)} \mu)$ denotes the Cameron-Martin space associated to the Gaussian measure $\pi_*^{(1)} \mu$ on E .

Top-Down Construction: Diagram

Produce restriction of $\hat{\mathfrak{L}}$ by perturbing on \mathcal{H} .



Top-Down Construction: Proxy-Restriction

Recall that $\pi_\tau \circ \hat{\mathfrak{L}} : E \rightarrow E_\tau$ lies in $\mathcal{C}^{(\leq[\tau])}(E, \mu; E_\tau)$. Denote by $\Pi_{[\tau]} : \mathcal{C}^{(\leq[\tau])}(E, \mu; E_\tau) \rightarrow \mathcal{C}^{([\tau])}(E, \mu; E_\tau)$ the projection onto the top-chaos.

Define proxy-restriction $\hat{\mathfrak{L}} \mapsto \bar{\hat{\mathfrak{L}}}$ as

$$\bar{\hat{\mathfrak{L}}}(h) := \mathbb{E} \left[\left(\Pi_{[\tau]} \hat{\mathfrak{L}} \right) (\cdot + h) \right], \quad h \in \mathcal{H}.$$

Assume $\hat{\mathfrak{L}}(\cdot) = H_\alpha(\cdot) = \prod_{\alpha_i \in \alpha} h_{\alpha_i}(\langle e_i, \cdot \rangle)$ some Hermite polynomial. Then for any $h \in \mathcal{H}$

$$h_{\alpha_i}(\langle e_i, x + h \rangle) = \sum_{k=0}^n \binom{n}{k} \underbrace{h_{\alpha_i}(\langle e_i, x \rangle)}_{\substack{\mathbb{E}[\dots]=0 \\ \text{unless } k=0}} \langle e_i, h \rangle^{n-k} \Rightarrow \mathbb{E} \left[\hat{\mathfrak{L}}(\cdot + h) \right] = \underbrace{\prod_{\alpha_i \in \alpha} \langle e_i, h \rangle^{\alpha_i}}_{\substack{\text{"leading part" of } \hat{\mathfrak{L}}}}$$

Top-Down Construction: Proxy-Restriction

Recall that $\pi_\tau \circ \hat{\mathfrak{L}} : E \rightarrow E_\tau$ lies in $\mathcal{C}^{(\leq[\tau])}(E, \mu; E_\tau)$. Denote by $\Pi_{[\tau]} : \mathcal{C}^{(\leq[\tau])}(E, \mu; E_\tau) \rightarrow \mathcal{C}^{([\tau])}(E, \mu; E_\tau)$ the projection onto the top-chaos.

Define proxy-restriction $\hat{\mathfrak{L}} \mapsto \bar{\hat{\mathfrak{L}}}$ as

$$\bar{\hat{\mathfrak{L}}}(h) := \mathbb{E} \left[\left(\Pi_{[\tau]} \hat{\mathfrak{L}} \right) (\cdot + h) \right], \quad h \in \mathcal{H}.$$

Assume $\hat{\mathfrak{L}}(\cdot) = H_\alpha(\cdot) = \prod_{\alpha_i \in \alpha} h_{\alpha_i}(\langle e_i, \cdot \rangle)$ some Hermite polynomial. Then for any $h \in \mathcal{H}$

$$h_{\alpha_i}(\langle e_i, x + h \rangle) = \sum_{k=0}^n \binom{n}{k} \underbrace{h_{\alpha_i}(\langle e_i, x \rangle)}_{\substack{\mathbb{E}[\dots]=0 \\ \text{unless } k=0}} \langle e_i, h \rangle^{n-k} \Rightarrow \mathbb{E} \left[\hat{\mathfrak{L}}(\cdot + h) \right] = \underbrace{\prod_{\alpha_i \in \alpha} \langle e_i, h \rangle^{\alpha_i}}_{\text{"leading part" of } \hat{\mathfrak{L}}}$$

Consistency

Consistency

Recall that classically:

$$\mathcal{H} \rightsquigarrow (E, j, \mu) \quad \text{L. Gross} \quad (13)$$

$$(E, \mu) \rightsquigarrow (\mathcal{H}, j) \quad \text{X. Fernique/H. Satô} \quad (14)$$

In the enhanced setting:

$$\begin{array}{ccc} \mathbf{H} & \xrightarrow{\hspace{2cm}} & \bigoplus_{\tau \in W} E_\tau \\ \uparrow \mathfrak{L} & \swarrow \text{Top-Down} & \uparrow \hat{\mathfrak{L}} \\ \mathcal{H} & \xrightarrow{j} & E \\ & \searrow \text{Bottom-Up} & \end{array}$$

Consistency Theorem

Theorem (Consistency)

Let $(\mathbf{E}, \mathbf{H}, \mu, \mathfrak{L}, \hat{\mathfrak{L}})$ denote the AWMS obtained by the Bottom-Up construction via $(\mathcal{W}, \mathbf{E}, [\cdot]), (E, \mathcal{H}, \mu), \mathfrak{L}, (\Phi_m)_{m \in \mathbb{N}}$.

Let $\underline{\mathbf{H}}$ and $\overline{\hat{\mathfrak{L}}}$ be the enhanced Cameron-Martin space and the skeleton lift produced by applying the Top-Down construction to the AWMS obtained through the Bottom-Up construction.

Then

$$\overline{\hat{\mathfrak{L}}} = \mathfrak{L} \quad \text{and} \quad \underline{\mathbf{H}} = \mathbf{H}. \quad (15)$$

Applications

Application of Bottom-Up: Gaussian Rough Paths

Let $X = (X_1, \dots, X_d)$ be a centred, cont. Gaussian process with independent components of finite ρ -variation, $p > 2\rho$. Define

$$E = \bigoplus_{i=1}^d C^{0,p-\text{var}}([0, T]; \mathbb{R}), \quad \mathcal{H} := \bigoplus_{i=1}^d \mathcal{H}^{X_i}, \quad \mu(\cdot) = \mathbb{P}(X \in \cdot)$$

$$W^{(1)} = \{1, \dots, d\}, \quad W^{(2)} = \{ij : 1 \leq i, j \leq d\}, \quad W^{(3)} = \{ijk : 1 \leq i, j, k \leq d\}$$

$$E_\tau = C^{0, \frac{p}{[\tau]} - \text{var}}([0, T]^2, \mathbb{R}), \quad \Phi_m = \sum_{i=0}^m \langle e_i, \cdot \rangle e_i \dots \text{Karhunen--Lo\`eve approx.}$$

(Using the shuffle relations) define for every $1 \leq i, j, k \leq d$, $0 \leq s, t \leq T$

$$[\mathfrak{L}_i^{\text{GRP}}(h)](t) = h^i(t)$$

$$[\mathfrak{L}_{ij}^{\text{GRP}}(h)](s, t) = \int_s^t (h^i(s, r))^2 dh^j(r)$$

$$[\mathfrak{L}_{ij}^{\text{GRP}}(h)](s, t) = \int_s^t h^i(s, r) dh^j(r)$$

$$[\mathfrak{L}_{iji}^{\text{GRP}}(h)](s, t) = [\mathfrak{L}_{ij}(h)](s, t) \cdot [\mathfrak{L}_i(h)](s, t) - 2[\mathfrak{L}_{iij}(h)](s, t)$$

$$[\mathfrak{L}_{ii}^{\text{GRP}}(h)](s, t) = \frac{1}{2}(h^i(s, t))^2$$

$$[\mathfrak{L}_{jii}^{\text{GRP}}(h)](s, t) = [\mathfrak{L}_{ii}(h)](s, t) \cdot [\mathfrak{L}_j(h)](s, t) - [\mathfrak{L}_{iji}(h)](s, t) - [\mathfrak{L}_{iij}(h)](s, t)$$

$$[\mathfrak{L}_{ijk}^{\text{GRP}}(h)](s, t) = \int_s^t \int_s^r h^i(s, u) dh^j(s, u) dh^k(r)$$

$$[\mathfrak{L}_{iii}^{\text{GRP}}(h)](s, t) = \frac{1}{6}(h^i(s, t))^3$$

Application of Bottom-Up: Gaussian Rough Paths

Let $X = (X_1, \dots, X_d)$ be a centred, cont. Gaussian process with independent components of finite ρ -variation, $p > 2\rho$. Define

$$E = \bigoplus_{i=1}^d C^{0,p-\text{var}}([0, T]; \mathbb{R}), \quad \mathcal{H} := \bigoplus_{i=1}^d \mathcal{H}^{X_i}, \quad \mu(\cdot) = \mathbb{P}(X \in \cdot)$$

$$W^{(1)} = \{1, \dots, d\}, \quad W^{(2)} = \{ij : 1 \leq i, j \leq d\}, \quad W^{(3)} = \{ijk : 1 \leq i, j, k \leq d\}$$

$$E_\tau = C^{0, \frac{p}{[\tau]} - \text{var}}([0, T]^2, \mathbb{R}), \quad \Phi_m = \sum_{i=0}^m \langle e_i, \cdot \rangle e_i \dots \text{Karhunen--Lo\`eve approx.}$$

(Using the shuffle relations) define for every $1 \leq i, j, k \leq d$, $0 \leq s, t \leq T$

$$[\mathfrak{L}_i^{\text{GRP}}(h)](t) = h^i(t)$$

$$[\mathfrak{L}_{ij}^{\text{GRP}}(h)](s, t) = \int_s^t (h^i(s, r))^2 dh^j(r)$$

$$[\mathfrak{L}_{ij}^{\text{GRP}}(h)](s, t) = \int_s^t h^i(s, r) dh^j(r)$$

$$[\mathfrak{L}_{iji}^{\text{GRP}}(h)](s, t) = [\mathfrak{L}_{ij}(h)](s, t) \cdot [\mathfrak{L}_i(h)](s, t) - 2[\mathfrak{L}_{iij}(h)](s, t)$$

$$[\mathfrak{L}_{ii}^{\text{GRP}}(h)](s, t) = \frac{1}{2}(h^i(s, t))^2$$

$$[\mathfrak{L}_{jii}^{\text{GRP}}(h)](s, t) = [\mathfrak{L}_{ii}(h)](s, t) \cdot [\mathfrak{L}_j(h)](s, t) - [\mathfrak{L}_{iji}(h)](s, t) - [\mathfrak{L}_{iij}(h)](s, t)$$

$$[\mathfrak{L}_{ijk}^{\text{GRP}}(h)](s, t) = \int_s^t \int_s^r h^i(s, u) dh^j(s, u) dh^k(r)$$

$$[\mathfrak{L}_{iii}^{\text{GRP}}(h)](s, t) = \frac{1}{6}(h^i(s, t))^3$$

Application of Top-Down: Rough Volatility with β -fractional Brownian motion

Let $\beta \in (0, 1)$ and $K^\beta(t) := \sqrt{2\beta} t^{\beta-\frac{1}{2}} 1_{\{t>0\}}$ be the Volterra kernel and $\widehat{W} = K^\beta * \xi$. Define

$$E = \mathcal{C}^{0, -\frac{1}{2}}([0, T]; \mathbb{R}), \quad \mathcal{H} = L^2([0, T]), \quad \mu = \mathbb{P}(\xi \in \cdot)$$

$$W^{(1)} = \{\Xi\}, \quad W^{(i)} = \{\Xi \mathcal{I}(\Xi)^{i-1}, \mathcal{I}(\Xi)^i\}, \quad i = 2, \dots, M_\beta$$

$$E_\tau = \overline{\{f : [0, T]^2 \rightarrow \mathbb{R} \text{ smooth}\}}^{\|\cdot\|_{E_\tau}}, \quad \|f\|_{E_\tau} := \sup_{\lambda, \varphi, s} \lambda^{-[\tau]} \left| \langle f_s, \varphi_s^\lambda \rangle \right|$$

The proxy restriction is given by

$$\left[\mathfrak{L}_\Xi^{\text{RV}}(h) \right]_s(\cdot) = h.$$

$$\left[\mathfrak{L}_{\mathcal{I}(\Xi)^m}^{\text{RV}}(h) \right]_s(\cdot) = ((K^\beta * h)_{s, \cdot})^m$$

$$\left[\mathfrak{L}_{\Xi \mathcal{I}(\Xi)^m}^{\text{RV}}(h) \right]_s(\cdot) = ((K^\beta * h)_{s, \cdot})^m h.$$

Application of Top-Down: Rough Volatility with β -fractional Brownian motion

Let $\beta \in (0, 1)$ and $K^\beta(t) := \sqrt{2\beta} t^{\beta-\frac{1}{2}} 1_{\{t>0\}}$ be the Volterra kernel and $\widehat{W} = K^\beta * \xi$. Define

$$E = \mathcal{C}^{0, -\frac{1}{2}}([0, T]; \mathbb{R}), \quad \mathcal{H} = L^2([0, T]), \quad \mu = \mathbb{P}(\xi \in \cdot)$$

$$W^{(1)} = \{\Xi\}, \quad W^{(i)} = \{\Xi \mathcal{I}(\Xi)^{i-1}, \mathcal{I}(\Xi)^i\}, \quad i = 2, \dots, M_\beta$$

$$E_\tau = \overline{\{f : [0, T]^2 \rightarrow \mathbb{R} \text{ smooth}\}}^{\|\cdot\|_{E_\tau}}, \quad \|f\|_{E_\tau} := \sup_{\lambda, \varphi, s} \lambda^{-[\tau]} \left| \langle f_s, \varphi_s^\lambda \rangle \right|$$

The proxy restriction is given by

$$\left[\mathfrak{L}_\Xi^{\text{RV}}(h) \right]_s(\cdot) = h.$$

$$\left[\mathfrak{L}_{\mathcal{I}(\Xi)^m}^{\text{RV}}(h) \right]_s(\cdot) = ((K^\beta * h)_{s,\cdot})^m$$

$$\left[\mathfrak{L}_{\Xi \mathcal{I}(\Xi)^m}^{\text{RV}}(h) \right]_s(\cdot) = ((K^\beta * h)_{s,\cdot})^m h.$$

Thank you!

References

- [1] V. I. Bogachev.
Gaussian measures.
Number 62 in Mathematical Surveys and Monographs. American Mathematical Soc., 1998.
- [2] G. Cannizzaro, P. K. Friz, and P. Gassiat.
Malliavin calculus for regularity structures: the case of gpm.
Journal of Functional Analysis, 272(1):363–419, 2017.
- [3] T. Cass and P. Friz.
Malliavin calculus and rough paths.
Bulletin des sciences mathematiques, 135(6-7):542–556, 2011.

References (cont.)

[4] K. Chouk and P. K. Friz.

Support theorem for a singular SPDE: The case of gPAM.

Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 54(1):202 – 219, 2018.

[5] J.-D. Deuschel and D. W. Stroock.

Large Deviations.

Academic Press Inc., 1989.

[6] P. Friz and N. Victoir.

Large deviation principle for enhanced gaussian processes.

In *Annales de l'Institut Henri Poincaré (B) Probability and Statistics*, volume 43, pages 775–785. Elsevier, 2007.

References (cont.)

- [7] P. K. Friz and M. Hairer.
A course on rough paths.
Springer, 2020.
- [8] P. K. Friz and N. B. Victoir.
Multidimensional stochastic processes as rough paths: theory and applications, volume 120.
Cambridge University Press, 2010.
- [9] M. Hairer and P. Schönbauer.
The support of singular stochastic pdes.
arXiv preprint arXiv:1909.05526, 2019.

References (cont.)

- [10] M. Hairer and H. Weber.
Large deviations for white-noise driven, nonlinear stochastic pdes in two and three dimensions.
In *Annales de la Faculté des sciences de Toulouse: Mathématiques*, volume 24, pages 55–92, 2015.
- [11] A. Millet and M. Sanz-Solé.
Large deviations for rough paths of the fractional brownian motion.
In *Annales de l'IHP Probabilités et statistiques*, volume 42, pages 245–271, 2006.
- [12] D. Nualart.
The Malliavin calculus and related topics, volume 1995.
Springer, 2006.

References (cont.)

[13] P. Schönbauer.
Malliavin calculus and density for singular stochastic partial differential equations, 2018.