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Motivation and Recollection



Reminder: Classical Definition

Gives rigorous meaning to

dµ(ϕ) =
1

Z
exp

(
−1

2
∥ϕ∥2H

)
Dϕ. (1)

Definition
An abstract Wiener space is a quadruple consisting of

• a separable (real) Banach space E,

• a separable (real) Hilbert space H ”Cameron-Martin space”,

• a continuous, linear injection j : H ↪→ E, and

• a (centred Gaussian) probability measure µ on (E,BE) s.t.∫
E
exp (i ℓ(x)) dµ(x) = exp

(
−1

2
∥Cµℓ∥2H

)
, ℓ ∈ E∗. (2)

where Cµ : E∗ → E ⊆ E∗∗ is the covariance operator of µ on E. 2
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Examples include

Gaussian Measure µ Hilbert Space H Banach Space E

Brownian Motion
(
W 1,2

0 ([0, 1]),
∫ 1
0 x

′(s)y′(s) ds
)

C[0, 1], C
1
2
−κ[0, 1], . . .

Space-time White Noise
(
L2(Rd), ⟨·, ·⟩L2(Rd)

)
C0,− d+2

2
−κ

s (Rd), . . .

Dirichlet Gaussian Free Field
(
Ḣ1

0 (U),
∫
U ⟨∇ϕ,∇ψ⟩ dλ

d
)

Ḣ− d−2
2

−κ(U), . . .

Mult. Gaussian N (0,Σ)
(
Rd, ⟨·,Σ−1·⟩Rd

) (
Rd, ⟨·, ·⟩Rd

)
, . . .

β-fractional Brownian Motion
(
Ḣβ+ 1

2 ,
〈
·, (−∆)β+

1
2 ·
〉
L2

)
C0,β−κ, . . .
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What is it good for?

• Large Deviation Principle: Rate function of (µε)ε>0 is 1
2∥ · ∥

2
H

• Cameron-Martin Theorem: µ(·) ∼ µ(·+ h) ⇔ h ∈ H

• Malliavin Calculus: H -derivative is non-degenerate ⇒ Wiener functional has density

• Support Theorems: suppµ = j(H )

• Structure theorem of Gaussian measures: every Gaussian measure arises through an

AWS and is characterized by H
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Brave New World:

Gaussian Stochastic Analysis → Rough Paths and Regularity Structures:

Theorem/Theory Classical RP & Reg. Structures

Large Deviation Principles e.g. [5, Sec. 3.4] [8], [11], [6], [10]

Cameron-Martin Theorem e.g. [1, Sec. 4.2] [8, Sec. 15.8]

Malliavin Calculus e.g. [12] [3], [13], [2]

Support Theorem e.g. [7, Sec. 9.3] [4], [9], [8, Sec. 15.8]

Underlying Structure Abstract Wiener Spaces ???
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Abstract Wiener Model Spaces



General Setup

• an ambient space: a separable Banach space E :=
⊕

τ∈W Eτ , graded over a finite set

W with a function [·] : W → N≥1 (state space of enhanced noise).

Comes with projection maps

πτ : E → Eτ and π(k) : E →
⊕
τ∈W
[τ ]=k

Eτ (3)

and scaling and homogeneous norm

δε(x) =
∑
τ∈W

ε[τ ]πτ (x) and |||x|||E =
∑
τ∈W

∥πτ x ∥
1
[τ ]
τ , x ∈ E . (4)

• an abstract Wiener space (π(1)(E),H , j, µ) (state space of noise)

• a µ-a.s. defined measurable lift L̂ : E → E (enhancement)
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Two Philosophies

Naively one would like to define H := L̂|H (H ), but µ(H ) = 0 if dim(H ) = ∞.

⇒ L̂|H depends on the µ-a.s. version of L̂.

Two options:

Bottom-Up:

Define L on H and extend to E

H E

H
⊕

τ∈W Eτ

j

L L̂

Top-Down:

Define L̂ on E and proxy-restrict to H

H E

H
⊕

τ∈W Eτ

j

L L̂
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Definition of Abstract Wiener Model Spaces

Definition
An abstract Wiener Model Space (E,H, ι,µ,L, L̂) consists of

1. an ambient space (W,E, [·])
2. a separable Hilbert space H with a continuous (non-linear) injection ι : H ↪→ E, called

enhanced Cameron-Martin space.

3. a Borel probability measure µ on E such that µ := π
(1)
∗ µ is centred Gaussian on E such

that H := π(1)(H) is the Cameron-Martin space associated to µ

4. a continuous two-sided inverse L : H → ι(H) of π(1)|ι(H), called skeleton lift

5. a measurable µ-almost surely right-inverse L̂ of π(1), called full lift such that L̂∗µ = µ

and for every τ ∈ W the measurable map πτ ◦ L̂ : E → Eτ lies in C(≤[τ ])(E,µ;Eτ ).
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Definition of Abstract Wiener Model Spaces - Diagram

classical

enhanced H ι(H) ⊆ E µ

CM
(
π(1)(E), π

(1)
∗ µ

)
︸ ︷︷ ︸

=:H

∼=

π(1)(E)︸ ︷︷ ︸
=:E

π
(1)
∗ µ︸ ︷︷ ︸
=:µ

ι

j

L L̂π(1) L̂∗

⇒ How to construct AMWS?
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Bottom-Up Construction



Bottom-Up Construction

Theorem
Let (W,E, [·]) be an ambient space, with E = E(1) s.t. (E,H , µ) is an abstract Wiener

space. let L : H → E be a skeleton lift and let (Φm)m∈N : E → H be an admissible

approximation s.t.

πτ ◦ L ◦Φm ∈ C(≤[τ ])(E,µ;Eτ ), m ∈ N, τ ∈ W (5)

where C(≤[τ ])(E,µ;Eτ ) denotes the inhomogeneous Eτ -valued Wiener-Ito-Chaos of order [τ ].

Then the following data constitutes an AWMS:

1. the ambient space E

2. the skeleton lift L : H → E

3. a separable Hilbert space H ∼= H together with ι = L

4. µ := L̂∗µ, where

5. L̂ := limm→∞ L ◦Φm. 10



Bottom-Up Construction: Diagram

classical

enhanced H E µ := L̂∗µ

H

∼=

θ

E µ

ι := L ◦θ

j

(Φm)m∈N

L
lim

m→∞
L ◦Φm︸ ︷︷ ︸

=:L̂

π(1) L̂∗
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Bottom-Up Construction: Degenerated Noise

classical

enhanced H E µ := L̂∗µ

H

∼=

θ

K ⊆ E µ

ι := L ◦j ◦ θ

j

(Φm)m∈N

L
lim

m→∞
L ◦Φm︸ ︷︷ ︸

=:L̂

π(1) L̂∗

12



Bottom-Up Construction: Large Deviation Principle

Theorem (LDP)
Let (E,H, ι,µ,L, L̂) be the AWMS obtained by the Bottom-Up construction via the data

E, (E,H , µ),L, (Φm)m∈N and recall the natural scaling

δε x =
∑
τ∈C

ε[τ ]πτ x, ε > 0, τ ∈ W. (6)

Then the family (δε∗ µ)ε>0 satisfies an LDP on E with good rate function

J (x) =

1
2∥π

(1)(x)∥2H , x ∈ L(H )

+∞ , else.
(7)
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Bottom-Up Construction: Exponential Integrability

Theorem (Exp. Integrability)
Let (E,H, ι,µ,L, L̂) be the AWMS obtained by the Bottom-Up construction via the data

E, (E,H , µ),L, (Φm)m∈N. Then the measurable function
∣∣∣∣∣∣∣∣∣L̂∣∣∣∣∣∣∣∣∣

E
is exponentially integrable,

in the sense that there exists an η0 > 0 s.t.

E
[
exp

(
η
∣∣∣∣∣∣∣∣∣L̂∣∣∣∣∣∣∣∣∣2

E

)]
=

∫
E
eη|||x|||

2
Edµ(x) <∞, ∀η < η0. (8)

Furthermore,

η0 := inf

{
1

2
∥π(1)h∥2H : h ∈ H, |||h|||E > 1

}
. (9)

14



Bottom-Up Construction: Cameron-Martin Theorem

Theorem (CM Theorem)
Let (E,H, ι,µ,L, L̂) be the AWMS obtained by the Bottom-Up construction via the data

E, (E,H , µ),L, (Φm)m∈N. Then for every h ∈ H

(Th)∗µ︸ ︷︷ ︸
=:µh

≈ µ . (10)

where T : L̂(E) → L̂(E) is an appropriate shift operator. Furthermore, the density has the

form

dµh

dµ
(x) = exp

(
C−1

(
π(1)h

)
(π(1) x)− 1

2
∥π(1)h∥2H

)
, x ∈ E, (11)

where C is the covariance operator associated to µ.
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Top-Down Construction



Top-Down Construction

Let (W,E, [·]) be an ambient space, µ a Borel measure on E s.t. µ := π
(1)
∗ µ is a centred

Gaussian measure on E, a measurable µ-a.e. right-inverse L̂ : E → E of π(1) s.t. L̂∗µ = µ

and

πτ ◦ L̂ : E → Eτ ∈ C(≤[τ ])(E,µ;Eτ ), τ ∈ W. (12)

Then the following data constitutes an AWMS:

1. the ambient space E

2. a separable Hilbert space CM(π(1)(E), π
(1)
∗ µ) together with ι = L̂

3. the measure µ

4. the skeleton lift L := L̂

5. the full lift L̂.

where CM(π(1)(E), π
(1)
∗ µ) denotes the Cameron-Martin space associated to the Gaussian

measure π
(1)
∗ µ on E. 16



Top-Down Construction: Diagram

Produce restriction of L̂ by perturbing on H .

classical

enhanced H E µ

CM(π(1)(E), π
(1)
∗ µ)︸ ︷︷ ︸

=:H

∼=

θ

π(1)(E)︸ ︷︷ ︸
=:E

π
(1)
∗ µ︸ ︷︷ ︸
=:µ

ι := L̂ ◦ θ

j

L̂
L̂π(1) L̂∗

17



Top-Down Construction: Proxy-Restriction

Recall that πτ ◦ L̂ : E → Eτ lies in C(≤[τ ])(E,µ;Eτ ). Denote by

Π[τ ] : C(≤[τ ])(E,µ;Eτ ) → C([τ ])(E,µ;Eτ ) the projection onto the top-chaos.

Define proxy-restriction L̂ 7→ L̂ as

L̂(h) := E
[(

Π[τ ]L̂
)
(·+ h)

]
, h ∈ H .

Assume L̂(·) = Hα(·) =
∏

αi∈α hαi(⟨ei, ·⟩) some Hermite polynomial. Then for any h ∈ H

hαi(⟨ei, x+ h⟩) =
n∑

k=0

(
n

k

)
hαi(⟨ei, x⟩)︸ ︷︷ ︸

E[...]=0
unless k = 0

⟨ei, h⟩n−k ⇒ E
[
L̂(·+ h)

]
=

∏
αi∈α

⟨ei, h⟩αi

︸ ︷︷ ︸
”leading part” of L̂
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Consistency



Consistency

Recall that classically:

H ⇝ (E, j, µ) L. Gross (13)

(E,µ)⇝ (H , j) X. Fernique/H. Satô (14)

In the enhanced setting:

H E

H
⊕

τ∈W Eτ

j

L L̂
Bottom-Up

Top-Down

19



Consistency Theorem

Theorem (Consistency)

Let (E,H,µ,L, L̂) denote the AWMS obtained by the Bottom-Up construction via

(W,E, [·]), (E,H , µ),L, (Φm)m∈N.

Let H and L̂ be the enhanced Cameron-Martin space and the skeleton lift produced by

applying the Top-Down construction to the AWMS obtained through the Bottom-Up

construction.

Then

L̂ = L and H = H . (15)
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Applications



Application of Bottom-Up: Gaussian Rough Paths

Let X = (X1, . . . , Xd) be a centred, cont. Gaussian process with independent components

of finite ρ-variation, p > 2ρ. Define

E =

d⊕
i=1

C0,p−var([0, T ];R), H :=

d⊕
i=1

H Xi , µ(·) = P(X ∈ ·)

W (1) = {1, . . . , d}, W (2) = {ij : 1 ≤ i, j ≤ d}, W (3) = {ijk : 1 ≤ i, j, k ≤ d}

Eτ = C
0, p

[τ ]
−var

([0, T ]2,R), Φm =

m∑
i=0

⟨ei, ·⟩ei ... Karhunen–Loève approx.

(Using the shuffle relations) define for every 1 ≤ i, j, k ≤ d, 0 ≤ s, t ≤ T

[LGRP
i (h)](t)= hi(t) [LGRP

iij (h)](s,t)=
∫ t
s (h

i(s,r))2dhj(r)

[LGRP
ij (h)](s,t)=

∫ t
s hi(s,r)dhj(r) [LGRP

iji (h)](s,t)= [Lij(h)](s,t)·[Li(h)](s,t)−2[Liij(h)](s,t)

[LGRP
ii (h)](s,t)= 1

2
(hi(s,t))2 [LGRP

jii (h)](s,t)= [Lii(h)](s,t)·[Lj(h)](s,t)−[Liji(h)](s,t)−[Liij(h)](s,t)

[LGRP
ijk (h)](s,t)=

∫ t
s

∫ r
s hi(s,u)dhj(s,u)dhk(r) [LGRP

iii (h)](s,t)= 1
6
(hi(s,t))3 21
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Application of Top-Down: Rough Volatility with β-fractional Brownian motion

Let β ∈ (0, 1) and Kβ(t) :=
√
2β tβ−

1
2 1{t>0} be the Volterra kernel and Ŵ = Kβ ∗ ξ. Define

E = C0,− 1
2 ([0, T ];R), H = L2([0, T ]), µ = P(ξ ∈ ·)

W (1) = {Ξ}, W (i) = {ΞI(Ξ)i−1, I(Ξ)i}, i = 2, . . . ,Mβ

Eτ = {f : [0, T ]2 → R smooth}∥·∥Eτ , ∥f∥Eτ := sup
λ,φ,s

λ−[τ ]
∣∣∣⟨fs, φλ

s ⟩
∣∣∣

The proxy restriction is given by[
LRV
Ξ (h)

]
s
(·) = h·[

LRV
I(Ξ)m(h)

]
s
(·) = ((Kβ ∗ h)s,·)m[

LRV
ΞI(Ξ)m(h)

]
s
(·) = ((Kβ ∗ h)s,·)mh·
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Application of Top-Down: Rough Volatility with β-fractional Brownian motion

Let β ∈ (0, 1) and Kβ(t) :=
√
2β tβ−

1
2 1{t>0} be the Volterra kernel and Ŵ = Kβ ∗ ξ. Define

E = C0,− 1
2 ([0, T ];R), H = L2([0, T ]), µ = P(ξ ∈ ·)

W (1) = {Ξ}, W (i) = {ΞI(Ξ)i−1, I(Ξ)i}, i = 2, . . . ,Mβ

Eτ = {f : [0, T ]2 → R smooth}∥·∥Eτ , ∥f∥Eτ := sup
λ,φ,s

λ−[τ ]
∣∣∣⟨fs, φλ

s ⟩
∣∣∣

The proxy restriction is given by[
LRV
Ξ (h)

]
s
(·) = h·[

LRV
I(Ξ)m(h)

]
s
(·) = ((Kβ ∗ h)s,·)m[

LRV
ΞI(Ξ)m(h)

]
s
(·) = ((Kβ ∗ h)s,·)mh·

22
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