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Definition
An abstract Wiener space is a quadruple consisting of

e a separable (real) Banach space F,
e a separable (real) Hilbert space .7#” " Cameron-Martin space”,
e a continuous, linear injection j : /# — FE, and

e a (centred Gaussian) probability measure p on (E,B ) s.t.

. 1 N
[ e Gee) aute) = exp (~31eutlly ) ee B )

where €, : E* — E C E** is the covariance operator of y on E. 5



Examples include

Gaussian Measure Hilbert Space 77 Banach Space F
2 . 1,2 1 / 1k
Brownian Motion (Wo ([0,1]), Jy ='(5)y'(s) ds) clo,1],Cz7"0,1],. ..
. . . 2 rmpd O,—%—H d
Space-time White Noise (L (R), (-, ‘>L2(Rd)) s (RY),
Dirichlet Gaussian Free Field (H&(U), J(V, Vi) d)\d) H=5~U),...
Mult. Gaussian N (0, ) (R, (-, 271 pa) (R, (-, )ga) s - -
. : . 541 1 e
[-fractional Brownian Motion (Hﬂ+2, <-, (—A)ﬁ+2~>L2> EhE=m




What is it good for?

Large Deviation Principle: Rate function of (1c)->0 is 3| - [|%,

Cameron-Martin Theorem: p(-) ~ u(- +h) < h €

Malliavin Calculus: J7-derivative is non-degenerate = Wiener functional has density

Support Theorems: supp . = j(H)

Structure theorem of Gaussian measures: every Gaussian measure arises through an
AWS and is characterized by 7



Brave New World:

Gaussian Stochastic Analysis — Rough Paths and Regularity Structures:

Theorem/Theory Classical RP & Reg. Structures
Large Deviation Principles | e.g. [5, Sec. 3.4] [8], [11], [6], [10]
Cameron-Martin Theorem | e.g. [1, Sec. 4.2] [8, Sec. 15.8]

Malliavin Calculus e.g. [12] [3], [13], [2]

Support Theorem e.g. [7, Sec. 9.3] [4], [9], [8, Sec. 15.8]
Underlying Structure
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Abstract Wiener Model Spaces



General Setup

e an ambient space: a separable Banach space E := @), E-, graded over a finite set
W with a function [-] : W — N> (state space of enhanced noise).
Comes with projection maps

m:E—>E and ¥:E- PE; (3)

TEW
[T]=k

and scaling and homogeneous norm
1
)= Y ellr(x) and ixllp = 3. I x|, x€E. (4)
TEW TEW

e an abstract Wiener space (7(V(E), 22, j, 1) (state space of noise)

e a y-as. defined measurable lift £ : E — E (enhancement)
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Two Philosophies

Naively one would like to define H := £| (), but u(#) = 0 if dim(#) = co.
= fl|j;r depends on the p-a.s. version of e,

Two options:

Bottom-Up: A Top-Down:
Define £ on 7 and extend to E Define £ on F and proxy-restrict to .7
H Drew Er H D.cw E-
4 v 2[ @
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Definition of Abstract Wiener Model Spaces

Definition K
An abstract Wiener Model Space (E, H, ., u, £, £) consists of

1. an ambient space (W, E, [])

2. a separable Hilbert space H with a continuous (non-linear) injection ¢ : H < E, called
enhanced Cameron-Martin space.
3. a Borel probability measure p on E such that p := 71,(‘1) w is centred Gaussian on E such

that # := 7)) (H) is the Cameron-Martin space associated to y
4. a continuous two-sided inverse £ : 7 — ((H) of TF(I)‘L(H), called skeleton lift

5. a measurable p-almost surely right-inverse £ of (1), called full lift such that £,y = p
and for every T € W the measurable map 7, 0 £ : E — E; lies in CEN(E, s E,).



Definition of Abstract Wiener Model Spaces - Diagram

enhanced H (H) C E v
cM (#O(B), 7V (1) (1)
classical (7r (E), ,u) ¢ / w w



Definition of Abstract Wiener Model Spaces - Diagram

enhanced H- (H) C E u
R < S I I

cM (#O(B), 7V (1) (1)
classical (7r (E), ,u) ¢ / w w

| = How to construct AMWS?|




Bottom-Up Construction




Bottom-Up Construction

Theorem
Let (W,E,[]) be an ambient space, with E = EV) s.t. (E, 1) is an abstract Wiener

space. let £: . — E be a skeleton lift and let (®.,)men : E — € be an admissible
approximation s.t.
mr0Lo®, e CSIMN(E w:E), meNrew (5)

where CSUD(E, u; E.) denotes the inhomogeneous E,-valued Wiener-Ito-Chaos of order [r].

Then the following data constitutes an AWMS:
1. the ambient space E
2. the skeleton lift £ : ¢ — E
3. a separable Hilbert space H = 77 together with . = £
4. p = Q*M, where

5. £ :=lim,, .o £0®,,. 10



Bottom-Up Construction: Diagram

enhanced H LB el E o= fl*,u
lim £o®,,
IR g Y ey o I
=2
, J
classical HC © E 2

\_/

((I)m)mEN



Bottom-Up Construction: Degenerated Noise

enhanced

classical

L:=£Lojob .
H-« E ni=Lu
lim £o®,,
IR 6 e 7 N 2,
=2
J
H — A E K

<m

((bm)meN

12



Bottom-Up Construction: Large Deviation Principle

Theorem (LDP)
Let (E,H, ¢, pu, £, £) be the AWMS obtained by the Bottom-Up construction via the data

E,(E, 7, 1), L, (Pn)men and recall the natural scaling

(5€X:Zem7r7x, e>0,7€W. (6)
TeC

Then the family (65 p)e~¢ satisfies an LDP on E with good rate function

o {HTOR e 2 -

400 , €lse.

13



Bottom-Up Construction: Exponential Integrability

Theorem (Exp. Integrability)

Let (E,H,, p, £, L) be the AWMS obtained by the Bottom-Up construction via the data
E,(E, 7, n), L, (Pn)men. Then the measurable function ‘HQH‘E is exponentially integrable,
in the sense that there exists an 1y > 0 s.t.

2o (s

N
£

E)} _ /E MR g () < o0, ¥ < o, (8)

Furthermore,
1
no = inf {2\7#1)11”2% ‘heH,|h]g > 1} : 9)

14



Bottom-Up Construction: Cameron-Martin Theorem

Theorem (CM Theorem)
Let (E,H, ¢, u, £, L) be the AWMS obtained by the Bottom-Up construction via the data
E,(E, 7, u), L, (Pn)men. Then for every h € H

(Th)sp~ . (10)
~——
=Hn

where T : £(E) — £(E) is an appropriate shift operator. Furthermore, the density has the
form

dpy

_ 1
1,09 = <¢ ! (w(l)h) (7 x) — 2]7T(1)h||§f> , xcE, (11)

where € is the covariance operator associated to L.

15



Top-Down Construction




Top-Down Construction

Let W, E, []) be an ambient space, p a Borel measure on E s.t. p:= M W is a centred

Gaussian measure on £, a measurable p-a.e. right-inverse £:E>EofnM st f)*u =U
and

o0& E— E e CSIN(E wE), Tew. (12)
Then the following data constitutes an AWMS:

the ambient space E B
a separable Hilbert space CM(TI'(I)<E),7T£1) ) together with o = £
the measure B

the skeleton lift £ := &

5. the full lift £.

SRR

where CM(W(l)(E),m(Fl) p) denotes the Cameron-Martin space associated to the Gaussian

1
measure 7T£ )u on F. 16



Top-Down Construction: Diagram

Produce restriction of £ by perturbing on .

enhanced H-« Li=L£ol E n
: R
R g ol I P P
(1) (1) 1) (1)
classical i (Ej)y’ B J L,S_El u
= = =l

17



Top-Down Construction: Proxy-Restriction

Recall that 7, 0 £ : E — E, lies in CED(E, u; E;). Denote by
I, : CEIN(E, p; E;) — ¢PD(E, u; E;) the projection onto the top-chaos.

Define proxy-restriction £ £ as

~

&) =E [(Hms) -+ h)} . hes.

18



Top-Down Construction: Proxy-Restriction

Recall that 7, 0 £ : E — E, lies in CED(E, u; E;). Denote by
I, : CEIN(E, p; E;) — ¢PD(E, u; E;) the projection onto the top-chaos.

Define proxy-restriction £ E as
£() =K |(08) (- +n)], hesr.
Assume £(-) = Ho(-) = [1a,ca Na;((€i,-)) some Hermite polynomial. Then for any h € J#

ha, ({€i,  + h)) i < > ({es, x)){es, h,>”_k = E [Q( + h)} - H (e, h)®

TEL0 —
unless k =0 "leading part”’ of £

18



Consistency
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Recall that classically:

H ~ (E,j,;u) L. Gross (13)
(E,u) ~ (A,j) X. Fernique/H. Satd (14)
In the enhanced setting:
H ®TEW Er
Top—Down
£ £
Bottom-Up
J
H E

19



Consistency Theorem

Theorem (Consistency)

Let (E,H, pu, £, f)) denote the AWMS obtained by the Bottom-Up construction via
(W7 E7 [])7 (E7 %7 /1')7 Ea ((I)NL>m6N-

Let H and £ be the enhanced Cameron-Martin space and the skeleton lift produced by
applying the Top-Down construction to the AWMS obtained through the Bottom-Up
construction.

Then
£=¢ and H=H. (15)

20



Applications




Application of Bottom-Up: Gaussian Rough Paths

Let X = (Xy,...,Xg) be a centred, cont. Gaussian process with independent components
of finite p-variation, p > 2p. Define

d d
E=@Pc(0,TI;R), #=@#", ul)=PXec)

i=1 i=1
wO ={1,....d}, WO={ij:1<ij<d}, WO ={ijk:1<i,j,k<d}
E, = Co’ﬁ_var([O,T}Q,R), P, = Z(ei, -Ye; ... Karhunen—Loéve approx.
1=0

21



Application of Bottom-Up: Gaussian Rough Paths

Let X = (Xy,...,Xg) be a centred, cont. Gaussian process with independent components
of finite p-variation, p > 2p. Define

d
E=@Pc(0,TI;R), #=@#", ul)=PXec)
i=1 i=1

={1,....d}, WO={ij:1<ij<d}, WS ={ijk:1<ijk<d}

m
E, =Y\ ([0, TI%R), @ = > ei Ve -
1=0

. Karhunen—Loéve approx.

(Using the shuffle relations) define for every 1 <i,j,k <d, 0<s,t<T

[2SRP (m)] (£)= hi() (85 (W] (st)= [ (B (s;r))dRd (1)
[£SFR2 (1)] (s,t)= [2 hi(s,r)dhd (r) (SRR (R)] (s,)=" [ ()] (5,2)-[£4 (A))(5,£)—2[Lss5 ()] (s.t)
[£SRP (B)] (s,t)= 5 (hi(s.t))? [ESRP (R)](s,)= (63 (A))(5:£)-[L; (A))(5,:£) = [£45s (A))(5:6)— [Lii5 (B)](s:2)
(€SB (W] (s,t)= [ [ hi(s;w)dhd (s,u)dh*(r) [S3RP(R)](s,t)= & (hi(s,t))? 21



Application of Top-Down: Rough Volatility with S-fractional Brownian motion

Let 3 € (0,1) and KP(t) := /2P tﬁ—%1{t>o} be the Volterra kernel and W = K «¢. Define
E=C""3([0,T;R), =L*]0,T])), p=P(Ee")
wh = (=}, WO ={({=27(8)"1,7(8)"}, i=2,..., Mg

B, = {7 0,7 > R smooth} ™", |f|p, := sup A"
Ap,S

(fs,02)

22



Application of Top-Down: Rough Volatility with S-fractional Brownian motion

Let 3 € (0,1) and KP(t) := /2P tﬁ—%1{t>o} be the Volterra kernel and W = K «¢. Define
E=C""3([0,T;R), =L*]0,T])), p=P(Ee")
wh = (=}, WO ={({=27(8)"1,7(8)"}, i=2,..., Mg

B, = {7 0,7 > R smooth} ™", |f|p, := sup A"
Ap,S

(fs,02)

The proxy restriction is given by

2w () =h

S

(2B ()] () = (K 5 h)o, )™

s

[Egg(z)m(h)h () = (K? x h)s.)™h.

22



Thank you!
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