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Defining SRBP. General dimensions d ≥ 2

Consider (Xt)t≥0 a continuous stochastic process on Rd , mollifier
V : Rd → R, and mollified occupation field x 7→

∫ t
0 V (x − Xs)ds.

Let (Bt)t≥0 a Brownian motion in Rd . Define Self-repelling Brownian
Polymer (SRBP) as solution (Xt)t≥0 to, X0 = 0

dXt = dBt −
( ∫ t

0
∇V (Xt − Xs)ds

)
dt
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Scaling limit

Let ε > 0. Consider diffusively rescaled (X ε
t)t≥0, where X ε

t = εXt/ε2 .

dX ε
t = dBε

t − εd−2( ∫ t

0
∇V ε(X ε − X ε

s)ds
)
dt

The mollifier V ε(x) := ε−dV (εx) is sharper. And Bε
t := εBt/ε2 .

Conjecture. What happens as ε → 0

E[|X ε
t=1|2] ∼ 1 d ≥ 3

E[|X ε
t=1|2] ∼

√
| log ε| d = 2

E[|X ε
t=1|2] ∼ (1/ε)2/3 d = 1
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Introduce potential ω, and α-weak coupling

Consider a smooth potential

ω : Rd → R

chosen independently at random from a
nice space of potentials, Ω ⊂ C∞(Rd ,R).

From now on, critical dimension d = 2
For α > 0, redefine the SRBP (Xt)t≥0 as solution X0 = 0

dXt = dBt −
( α√

|log ε|

)(
∇ω(Xt)

)
dt +

( α√
|log ε|

)2( ∫ t

0
∇V (Xt − Xs)ds

)
dt

What happens to the diffusively scaled (X ε
t)t≥0 under weak-coupling?

For which α/
√

|log ε| → 0 as ε → 0
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Main theorem

Definition. Smoothed out Gaussian Free Field (
√

V ∗ GFF)

Let (Ω,F , π) be the canonical probability space such that
(ω(x) : x ∈ R2) is a Gaussian process∫

ω(x)ω(y)π(dω) = V ∗ g(x − y), g(x) := − log |x |

Theorem (WIP).
Under the annealed law, π ⊗ P, and under α-weak coupling, we have as
ε → 0

(X ε
t)t≥0

d→ BM(σ2(α))

with the explicit formula

σ2(α) =
√

4πα2 + 1
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Comparisons.

Strong coupling

Strong coupling refers to absence of factors α/
√
|log ε|

(Tóth, Valkó 2011) Under which SRBP is superdiffusive:

log | log ε| ≲ E[|X ε
t=1|2] ≲ | log ε|

Constructing a limit for (Xt) under a superdiffusive scaling?
For us, strong coupling corresponds to choice α =

√
| log ε|. This

gives σ2(α) ∼
√

| log ε|, non-rigoursly suggesting the conjectured
super-diffusivity.

High dimensions d ≥ 3

(Horváth, Tóth, Vető, Bálint 2012) Under strong coupling, Gaussian limit
obtained using “Kipnis-Varadhan” technique. Fails in d = 2
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Standard techniques. Environment seen by the particle

Let (ηt)t≥0 be Ω-valued process, for x ∈ R2

ηt(x) = ω(x + Xt) +
α

| log ε|

(∫ t

0
V (x + Xt − Xs)ds

)

Representation Xt = Bt − α
| log ε|

∫ t
0 ∇ηs(0)ds

The process (ηt)t≥0 is a stationary Markov process: for all t ≥ 0,
Law(ηt) =

√
V ∗ GFF

Drift term is additive functional of a stationary Markov process
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Standard Techniques. Dynkin martingales

Choose f (ω) = α
| log ε|∇ω(0)

Xt = Bt − α
| log ε|

∫ t

0
∇ηs(0)ds

= Bt −
∫ t

0
f (ηs)ds

Idea for studying
∫ t

0 f (ηs)ds
1 Solve generator equation −Lu = f
2 For any u, Dynkin martingale Mt = u(ηt)− u(η0)−

∫ t
0 Lu(ηs)ds

3 Obtain CLT for εMt/ε2 ≈ ε
∫ t/ε2

0 f (ηs)ds

We call this the Kipnis-Varadhan program for obtaining CLT.
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Critical d = 2 techniques. Replacement Lemma.

Want to solve −Lu = f , with u ∈ L2(π)

Extra structure: chaos decomposition L2(π) = ⊕∞
n=0Hn

Generator respects the structure

L = L0 +A− +A+, L0 : Hn → Hn, A± : Hn → Hn±1

(Cannizzaro, Gubinelli, Toninelli 2023) We can find L̃ ≈ L

L̃ = L0 + L̃0 +A+, L̃0 : Hn → Hn A± : Hn → Hn±1

in the sense: solving −L̃u = f implies −Lu ≈ f
Solving “replacement equation” much easier. For us f ∈ H1

u1 = −(L0 + L̃0)
−1f , un = −(L0 + L̃0)

−1A+un−1, un ∈ Hn
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Critical d = 2 techniques. Finding L̃0.

Benefits of choosing u solving L̃u = f (replacement equation)
Using explicit form of the solution, we can close the estimates
needed for Kipnis-Varadhan to succeed.
The limiting diffusivity can be found explicitly!

Additional difficulty. We split L into two regions, L = Lgood + Lbad

Lgood = L0 +Agood
− +Agood

+ , Lbad = Abad
− +Abad

+

We have Lgood ≈ L0 + L̃0 +Agood
+ satisfies a replacement lemma

L̃0 = L0
(√

4πα2 | log(ε2 + L0)|
| log ε|

+ 1 − 1
)

σ2(α) =
√

4πα2 + 1

For Lbad, entirely different argument
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Summary

The SRBP (Xt)t≥0 is a non-Markovian process avoiding regions of
space it previously occupied
For d = 2 it is super-diffusive. To see something in the diffusive
limit, we tune down the self-interaction as we zoom out (α-weak
coupling).
We obtain a central limit theorem using Kipnis-Varadhan
Big changes needed to work in critical dimension

Splitting L = Lgood + Lbad

Replacement approximation Lgood ≈ L0 + L̃0 +Agood
+
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