

The Uniform Even Subgraph and the Ising Model

Ulrik Thinggaard Hansen
(Joint work with Boris Kjær and Frederik Ravn Klausen)
C.I.M.E. Summer School on Statistical Mechanics and
Stochastic PDEs
September 14th, 2023

Plan

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen

- Introduce/recall main characters.
- Segue into our main tool.
- Warm-up exercise.
- Main Theorem.

Plan

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen

- Introduce/recall main characters.
(Ising, FK percolation, Loop $O(1)$)
- Segue into our main tool.
- Warm-up exercise.
- Main Theorem.

Plan

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen

- Introduce/recall main characters.
(Ising, FK percolation, Loop $O(1)$)
- Segue into our main tool.
(The Uniform Even Subgraph and Haar measures.)
- Warm-up exercise.
- Main Theorem.

Plan

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thøringgaard
Hansen

- Introduce/recall main characters.
(Ising, FK percolation, Loop $O(1)$)
- Segue into our main tool.
(The Uniform Even Subgraph and Haar measures.)
- Warm-up exercise.
(And first theorem.)
- Main Theorem.

Plan

The Uniform
Even
Subgraph and
the Ising
Model

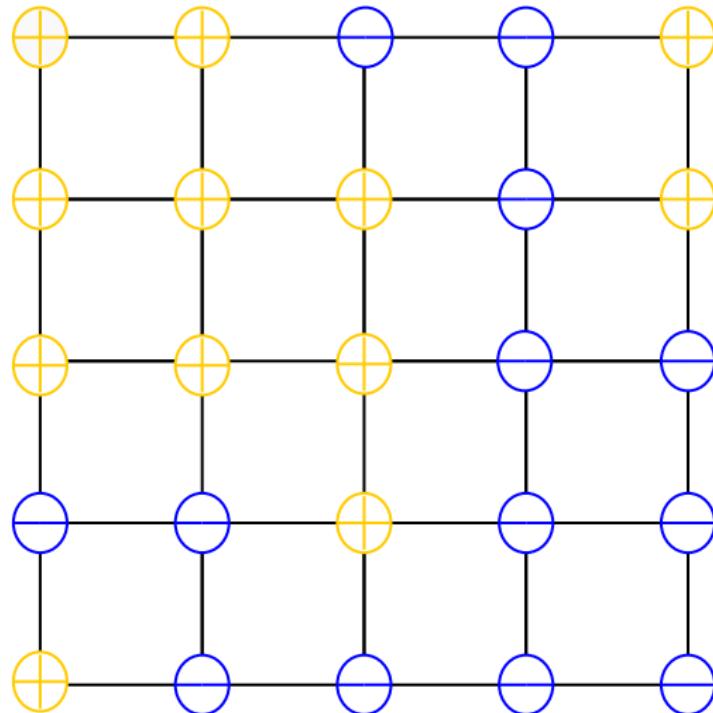
Ulrik
Thøringgaard
Hansen

- Introduce/recall main characters.
(Ising, FK percolation, Loop $O(1)$)
- Segue into our main tool.
(The Uniform Even Subgraph and Haar measures.)
- Warm-up exercise.
(And first theorem.)
- Main Theorem.
(And a sketch of proof).

Our main characters

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen



Our main characters

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen

Fix a finite graph $G = (V, E)$.

Our main characters

Fix a finite graph $G = (V, E)$.

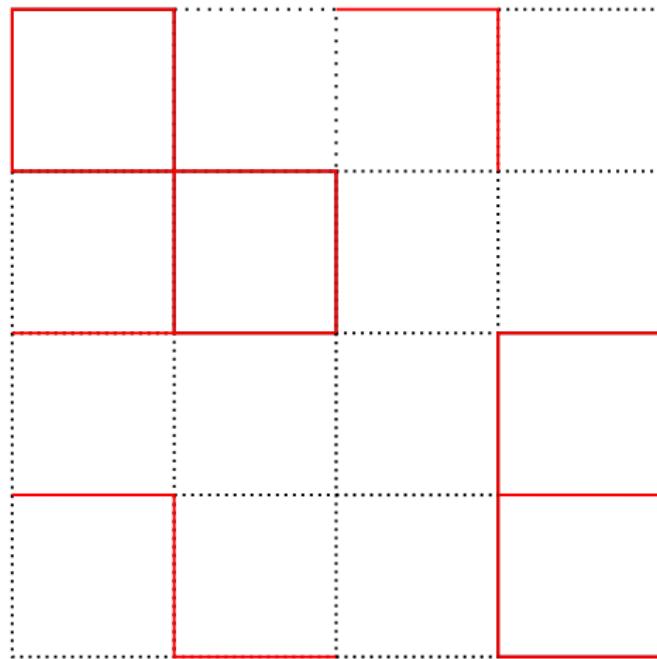
The Ising model at inverse temperature $\beta \geq 0$ is the measure on $\{-1, +1\}^V$ given by

$$\mathbb{I}_{\beta, G}[\sigma] = \frac{1}{Z_{\beta, G}} \exp \left(\beta \sum_{(v, w) \in E} \sigma_v \sigma_w \right)$$

Our main characters

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen



Our main characters

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen

The Bernoulli percolation model with weight $p \in [0, 1]$ is the measure on $\{0, 1\}^E$ given by

Our main characters

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen

The Bernoulli percolation model with weight $p \in [0, 1]$ is the measure on $\{0, 1\}^E$ given by

$$\mathbb{P}_{p,G}[\omega] = (1 - p)^{|E|} \left(\frac{p}{1 - p} \right)^{o(\omega)}$$

Our main characters

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen

The Bernoulli percolation model with weight $p \in [0, 1]$ is the measure on $\{0, 1\}^E$ given by

$$\mathbb{P}_{p,G}[\omega] = (1 - p)^{|E|} \left(\frac{p}{1 - p} \right)^{o(\omega)}$$

where $o(\omega)$ is the number of **open** edges.

Our main characters

The Uniform
Even
Subgraph and
the Ising
Model
Ulrik
Thinggaard
Hansen

The FK-Ising model with weight $p \in [0, 1]$ is the measure on $\{0, 1\}^E$ given by

Our main characters

The FK-Ising model with weight $p \in [0, 1]$ is the measure on $\{0, 1\}^E$ given by

$$\phi_{p,G}[\omega] = \frac{1}{Z_{p,G}} \left(\frac{p}{1-p} \right)^{o(\omega)} 2^{\kappa(\omega)}$$

Our main characters

The FK-Ising model with weight $p \in [0, 1]$ is the measure on $\{0, 1\}^E$ given by

$$\phi_{p,G}[\omega] = \frac{1}{Z_{p,G}} \left(\frac{p}{1-p} \right)^{o(\omega)} 2^{\kappa(\omega)}$$

where $o(\omega)$ is the number of **open** edges

Our main characters

The FK-Ising model with weight $p \in [0, 1]$ is the measure on $\{0, 1\}^E$ given by

$$\phi_{p,G}[\omega] = \frac{1}{Z_{p,G}} \left(\frac{p}{1-p} \right)^{o(\omega)} 2^{\kappa(\omega)}$$

where $o(\omega)$ is the number of open edges and $\kappa(\omega)$ is the number of connected components.

Our main characters

The FK-Ising model with weight $p \in [0, 1]$ is the measure on $\{0, 1\}^E$ given by

$$\phi_{p,G}[\omega] = \frac{1}{Z_{p,G}} \left(\frac{p}{1-p} \right)^{o(\omega)} 2^{\kappa(\omega)}$$

where $o(\omega)$ is the number of open edges and $\kappa(\omega)$ is the number of connected components.

$$\mathbb{P}_{\tilde{p},G} \preceq \phi_{p,G} \preceq \mathbb{P}_{p,G},$$

where $\tilde{p} = \frac{p}{2-p}$.

Edwards-Sokal

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen

For $p = 1 - e^{-2\beta}$,

$$\langle \sigma_v \sigma_w \rangle_{\beta, G} = \phi_{p, G}[v \leftrightarrow w]$$

Edwards-Sokal

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen

For $p = 1 - e^{-2\beta}$,

$$\langle \sigma_v \sigma_w \rangle_{\beta, G} = \phi_{p, G}[v \leftrightarrow w]$$

Decay of Ising correlations tied to cluster sizes in FK.

Edwards-Sokal

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen

For $p = 1 - e^{-2\beta}$,

$$\langle \sigma_v \sigma_w \rangle_{\beta, G} = \phi_{p, G}[v \leftrightarrow w]$$

Decay of Ising correlations tied to cluster sizes in FK. This transfers to infinite volume.

Edwards-Sokal

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thøringgaard
Hansen

For $p = 1 - e^{-2\beta}$,

$$\langle \sigma_v \sigma_w \rangle_{\beta, G} = \phi_{p, G}[v \leftrightarrow w]$$

Decay of Ising correlations tied to cluster sizes in FK. This transfers to infinite volume.

Theorem (Peierls '36, Aizenman, Barsky, Fernandez '87)

For $d \geq 2$, there exists $\beta_c > 0$ such that

$$\langle \sigma_v, \sigma_w \rangle_{\beta, \mathbb{Z}^d} \begin{cases} \leq \exp(-C\|v - w\|) & \beta < \beta_c \\ \geq C & \beta > \beta_c \end{cases}$$

Edwards-Sokal

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thøringgaard
Hansen

For $p = 1 - e^{-2\beta}$,

$$\langle \sigma_v \sigma_w \rangle_{\beta, G} = \phi_{p, G}[v \leftrightarrow w]$$

Decay of Ising correlations tied to cluster sizes in FK. This transfers to infinite volume.

Theorem (Peierls '36, Aizenman, Barsky, Fernandez '87)

For $d \geq 2$, there exists $p_c = p_c(\phi, d) \in (0, 1)$ such that

$$\phi_{p, \mathbb{Z}^d}[v \leftrightarrow w] \begin{cases} \leq \exp(-C\|v - w\|) & p < p_c \\ \geq C & p > p_c \end{cases}$$

Aside

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen

We also have a $p_c(\mathbb{P}, d)$.

Aside

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen

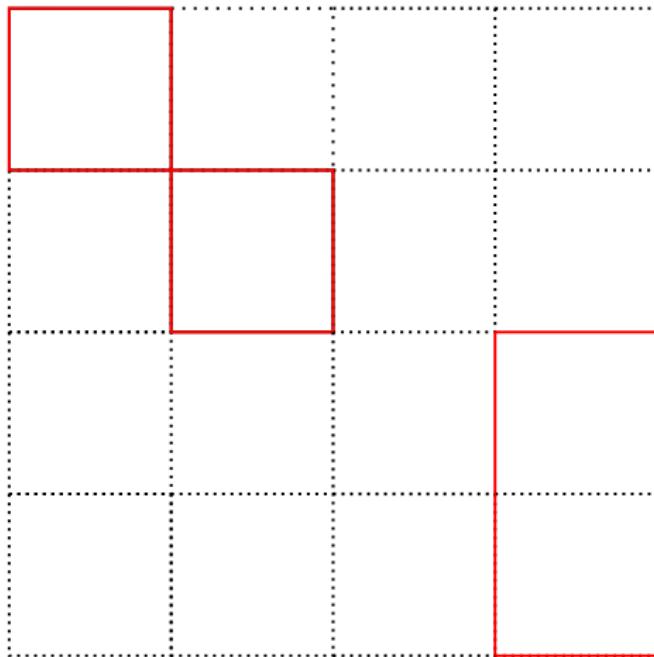
We also have a $p_c(\mathbb{P}, d)$.

$p_c(\mathbb{P}, d) < \frac{1}{2}$ for $d \geq 3$.

Our last main character

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen



Our last main character

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen

The loop $O(1)$ model with weight $x \geq 0$ is the measure on $\{0, 1\}^E$ given by

Our last main character

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thøringgaard
Hansen

The loop $O(1)$ model with weight $x \geq 0$ is the measure on $\{0, 1\}^E$ given by

$$\ell_{x,G}[\eta] = \frac{1}{Z_{x,G}} x^{\sigma(\eta)} \mathbf{1}_{\eta \text{ even}}$$

Our last main character

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thøringgaard
Hansen

The loop $O(1)$ model with weight $x \geq 0$ is the measure on $\{0, 1\}^E$ given by

$$\ell_{x,G}[\eta] = \frac{1}{Z_{x,G}} x^{\sigma(\eta)} \mathbf{1}_{\eta \text{ even}}$$

A graph is **even** if the degree of every vertex is even.

Our last main character

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thøringgaard
Hansen

The loop $O(1)$ model with weight $x \geq 0$ is the measure on $\{0, 1\}^E$ given by

$$\ell_{x,G}[\eta] = \frac{1}{Z_{x,G}} x^{\sigma(\eta)} \mathbf{1}_{\eta \text{ even}}$$

A graph is **even** if the degree of every vertex is even.
No FKG!

The two-dimensional case

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen

Theorem (Garet, Marchand, Marcovici '18)

On \mathbb{Z}^2 , there is an x_c , and it is equal to $\tanh(\beta_c)$.

Grimmett-Janson

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen

UEG_G is the uniform measure on the space of (spanning) even subgraphs of G .

Grimmett-Janson

UEG_G is the uniform measure on the space of (spanning) even subgraphs of G .

Theorem (Grimmett, Janson '09)

For $x = \frac{p}{2-p}$, then $\ell_x[\eta] = \phi_{p,G}[\text{UEG}_\omega[\eta]]$

Grimmett-Janson

UEG_G is the uniform measure on the space of (spanning) even subgraphs of G .

Theorem (Grimmett, Janson '09)

For $x = \frac{p}{2-p}$, then $\ell_x[\eta] = \phi_{p,G}[\text{UEG}_\omega[\eta]]$

Proof:

$$\phi_{p,G}[\text{UEG}_\omega[\eta]] \propto \sum_{\omega \supseteq \eta} \frac{2^{\kappa(\omega)}}{|\{\text{Even subgraphs of } \omega\}|} \left(\frac{p}{1-p}\right)^{\phi(\omega)}$$

Grimmett-Janson

UEG_G is the uniform measure on the space of (spanning) even subgraphs of G .

Theorem (Grimmett, Janson '09)

For $x = \frac{p}{2-p}$, then $\ell_x[\eta] = \phi_{p,G}[\text{UEG}_\omega[\eta]]$

Proof:

$$\begin{aligned}\phi_{p,G}[\text{UEG}_\omega[\eta]] &\propto \sum_{\omega \supseteq \eta} \frac{2^{\kappa(\omega)}}{|\{\text{Even subgraphs of } \omega\}|} \left(\frac{p}{1-p}\right)^{o(\omega)} \\ &= 2^{|V|} \sum_{\omega \supseteq \eta} \left(\frac{p}{2(1-p)}\right)^{o(\omega)}\end{aligned}$$

Grimmett-Janson

UEG_G is the uniform measure on the space of (spanning) even subgraphs of G .

Theorem (Grimmett, Janson '09)

For $x = \frac{p}{2-p}$, then $\ell_x[\eta] = \phi_{p,G}[\text{UEG}_\omega[\eta]]$

Proof:

$$\begin{aligned}\phi_{p,G}[\text{UEG}_\omega[\eta]] &\propto \sum_{\omega \supseteq \eta} \frac{2^{\kappa(\omega)}}{|\{\text{Even subgraphs of } \omega\}|} \left(\frac{p}{1-p}\right)^{o(\omega)} \\ &= 2^{|V|} \sum_{\omega \supseteq \eta} \left(\frac{p}{2(1-p)}\right)^{o(\omega)} \\ &= 2^{|V|} \sum_{\omega' \in \{0,1\}^{E \setminus \eta}} \left(\frac{p}{2(1-p)}\right)^{o(\omega)} \left(\frac{p}{2(1-p)}\right)^{o(\eta)}\end{aligned}$$

Now for our set-up

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen

The identity $|\{\text{Even subgraphs of } \omega\}| = 2^{\kappa(\omega) + o(\omega) - |V|}$ can be proven by induction.

Now for our set-up

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen

The identity $|\{\text{Even subgraphs of } \omega\}| = 2^{\kappa(\omega) + o(\omega) - |V|}$ can be proven by induction.

It involves the map $\eta \mapsto \eta \Delta \eta_0$.

Now for our set-up

The identity $|\{\text{Even subgraphs of } \omega\}| = 2^{\kappa(\omega) + o(\omega) - |V|}$ can be proven by induction.

It involves the map $\eta \mapsto \eta \Delta \eta_0$.
This gives a group structure on

$$\Omega_\emptyset(\omega) := \{\text{Even subgraphs of } \omega\}.$$

Now for our set-up

The identity $|\{\text{Even subgraphs of } \omega\}| = 2^{\kappa(\omega) + o(\omega) - |V|}$ can be proven by induction.

It involves the map $\eta \mapsto \eta \Delta \eta_0$.
This gives a group structure on

$$\Omega_\emptyset(\omega) := \{\text{Even subgraphs of } \omega\}.$$

UEG_ω is the Haar measure on $\Omega_\emptyset(\omega)$.

Edge separation

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen

For a graph $G = (V, E)$, and $E' \subset E$, say that $\Omega_\emptyset(G)$ **separates** E' if for $e \in E'$, there exists $\eta \in \Omega_\emptyset(G)$ with $\eta \cap E' = \{e\}$.

Edge separation

For a graph $G = (V, E)$, and $E' \subset E$, say that $\Omega_\emptyset(G)$ **separates** E' if for $e \in E'$, there exists $\eta \in \Omega_\emptyset(G)$ with $\eta \cap E' = \{e\}$.

Lemma

If $\Omega_\emptyset(G)$ separates E' , then the marginal of UEG_G on the edges in E' is $\mathbb{P}_{1/2, E'}$.

Edge separation

For a graph $G = (V, E)$, and $E' \subset E$, say that $\Omega_\emptyset(G)$ **separates** E' if for $e \in E'$, there exists $\eta \in \Omega_\emptyset(G)$ with $\eta \cap E' = \{e\}$.

Lemma

If $\Omega_\emptyset(G)$ separates E' , then the marginal of UEG_G on the edges in E' is $\mathbb{P}_{1/2, E'}$.

Proof: The restriction map $\Omega_\emptyset(G) \rightarrow \{0, 1\}^{E'}$ is a homomorphism.

Percolation

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen

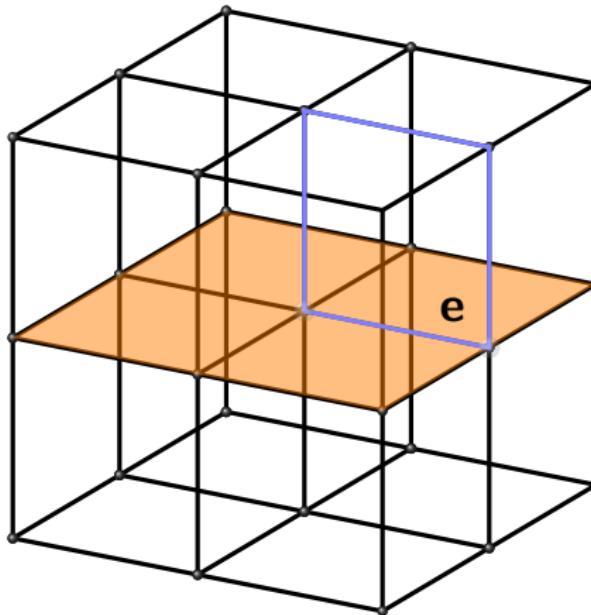
Theorem (H., Kjær, Klausen, '23)

For $d \geq 3$, $\text{UEG}_{\mathbb{Z}^d}$ percolates.

Percolation

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen



Percolation

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen

Theorem (H., Kjær, Klausen, '23)

For $d \geq 3$, there exists $x_0 \in (0, 1)$ such that ℓ_{x, \mathbb{Z}^d} percolates for $x \in (x_0, 1]$.

Percolation

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen

Theorem (H., Kjær, Klausen, '23)

For $d \geq 3$, there exists $x_0 \in (0, 1)$ such that ℓ_{x, \mathbb{Z}^d} percolates for $x \in (x_0, 1]$.

For the proof, use that an FK-edge is open with probability at least $\frac{p}{2-p}$.

Main result

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen

Theorem (H., Kjær, Klausen, '23)

For $d \geq 3$ and $x \in (\frac{p_c}{2-p_c}, 1]$, there exists $c > 0$ such that

$$\ell_{x, \mathbb{Z}^d} [0 \leftrightarrow \partial \Lambda_n] \geq \frac{c}{n}.$$

Main result

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen

Theorem (H., Kjær, Klausen, '23)

For $d \geq 3$ and $x \in (\frac{p_c}{2-p_c}, 1]$, there exists $c > 0$ such that

$$\ell_{x, \mathbb{Z}^d}[0 \leftrightarrow \partial \Lambda_n] \geq \frac{c}{n}.$$

In particular, expected cluster sizes are infinite.

Input from the torus

The Uniform
Even
Subgraph and
the Ising
Model
Ulrik
Thinggaard
Hansen

Let $\mathbb{T}_n^d := \mathbb{Z}^d / 2n\mathbb{Z}^d$.

Input from the torus

Let $\mathbb{T}_n^d := \mathbb{Z}^d / 2n\mathbb{Z}^d$.

Lemma

For any graph $G = (V, E) \subseteq \mathbb{T}_n^d$, if there exists a **wrap-around** $\gamma \subseteq E$, then

$$\text{UEG}_G[\eta \text{ contains a wrap-around}] \geq \frac{1}{2}$$

Input from the torus

Let $\mathbb{T}_n^d := \mathbb{Z}^d / 2n\mathbb{Z}^d$.

Lemma

For any graph $G = (V, E) \subseteq \mathbb{T}_n^d$, if there exists a **wrap-around** $\gamma \subseteq E$, then

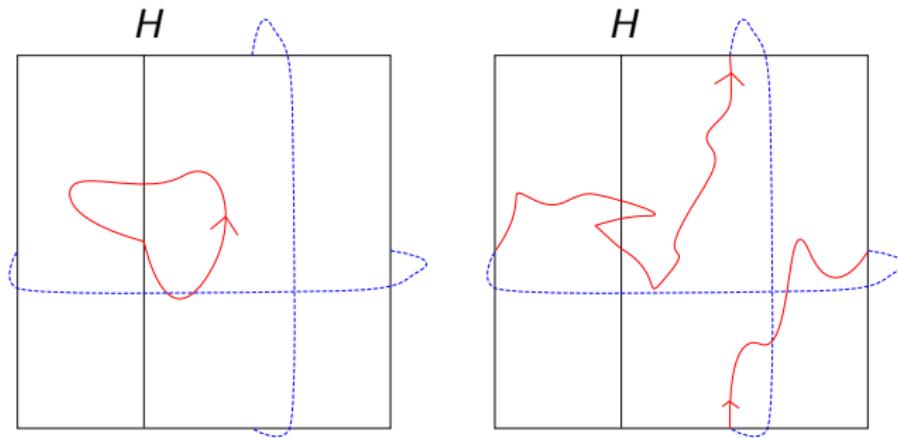
$$\text{UEG}_G[\eta \text{ contains a wrap-around}] \geq \frac{1}{2}$$

Works for $G = \omega \sim \phi_{p, \mathbb{T}_n^d}$ when $p > p_c$.

Input from the torus

The Uniform
Even
Subgraph and
the Ising
Model

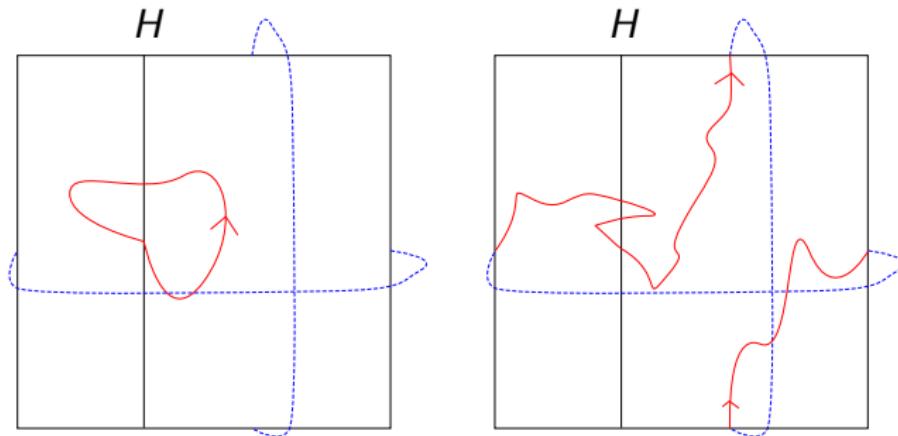
Ulrik
Thinggaard
Hansen



Input from the torus

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen



To finish proof: If $\eta \sim \text{UEG}_G$, then $\eta \stackrel{d}{=} \eta \Delta \gamma$.

A miracle lemma

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen

Lemma

If $G = G_1 \cup G_2 \cup G_3$ and G_2 contains a connected separating surface between G_1 and G_3 , the marginals of UEG_G on G_1 and G_3 are independent.

A miracle lemma

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thøringgaard
Hansen

Lemma

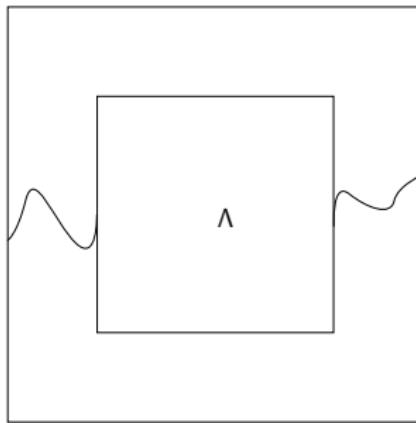
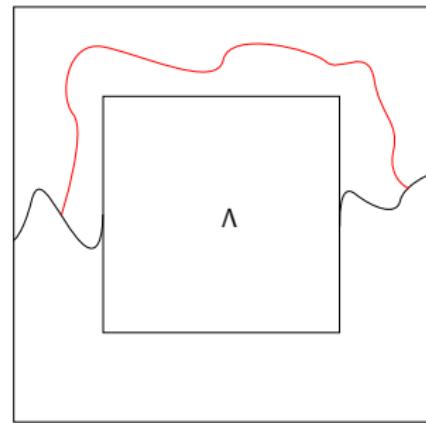
If $G = G_1 \cup G_2 \cup G_3$ and G_2 contains a connected separating surface between G_1 and G_3 , the marginals of UEG_G on G_1 and G_3 are independent.

Again, applies to the supercritical random-cluster model!

A miracle lemma

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen



Other results in the paper:

- Uniqueness of infinite volume measures for the loop $O(1)$ model in the supercritical regime.
- Exponential mixing of the infinite volume loop $O(1)$ model in the supercritical regime.
- All results carry over to the random current.

The Uniform
Even
Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen

Thank you for the attention.