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Plan

• Introduce/recall main characters.

(Ising, FK percolation, Loop O(1))

• Segue into our main tool.

(The Uniform Even Subgraph and Haar measures.)

• Warm-up exercise.

(And first theorem.)

• Main Theorem.

(And a sketch of proof).
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Our main characters

Fix a finite graph G = (V ,E ).

The Ising model at inverse temperature β ≥ 0 is the measure
on {−1,+1}V given by

Iβ,G [σ] =
1

Zβ,G
exp

β
∑

(v ,w)∈E

σvσw


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Our main characters

The Bernoulli percolation model with weight p ∈ [0, 1] is the
measure on {0, 1}E given by

Pp,G [ω] = (1− p)|E |
(

p

1− p

)o(ω)

where o(ω) is the number of open edges.
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Our main characters

The FK-Ising model with weight p ∈ [0, 1] is the measure on
{0, 1}E given by

ϕp,G [ω] =
1

Zp,G

(
p

1− p

)o(ω)

2κ(ω)

where o(ω) is the number of open edges and κ(ω) is the
number of connected components.

Pp̃,G ⪯ ϕp,G ⪯ Pp,G ,

where p̃ = p
2−p .
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Edwards-Sokal

For p = 1− e−2β,

⟨σvσw ⟩β,G = ϕp,G [v ↔ w ]

Decay of Ising correlations tied to cluster sizes in FK. This
transfers to infinite volume.

Theorem (Peierls ’36, Aizenman, Barsky, Fernandez ’87)

For d ≥ 2, there exists βc > 0 such that

⟨σv , σw ⟩β,Zd

{
≤ exp (−C∥v − w∥) β < βc

≥ C β > βc
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For p = 1− e−2β,

⟨σvσw ⟩β,G = ϕp,G [v ↔ w ]

Decay of Ising correlations tied to cluster sizes in FK. This
transfers to infinite volume.

Theorem (Peierls ’36, Aizenman, Barsky, Fernandez ’87)
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Aside

We also have a pc(P, d).

pc(P, d) < 1
2 for d ≥ 3.
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Our last main character

The loop O(1) model with weight x ≥ 0 is the measure on
{0, 1}E given by

ℓx ,G [η] =
1

Zx ,G
xo(η)1η even

A graph is even if the degree of every vertex is even.
No FKG!
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The two-dimensional case

Theorem (Garet, Marchand, Marcovici ’18)

On Z2, there is an xc , and it is equal to tanh(βc).
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Grimmett-Janson

UEGG is the uniform measure on the space of (spanning) even
subgraphs of G .

Theorem (Grimmett, Janson ’09)

For x = p
2−p , then ℓx [η] = ϕp,G [UEGω[η]]

Proof:

ϕp,G [UEGω[η]] ∝
∑
ω⊇η

2κ(ω)

|{Even subgraphs of ω}|

(
p

1− p

)o(ω)

= 2|V |
∑
ω⊇η

(
p

2(1− p)

)o(ω)

= 2|V |
∑

ω′∈{0,1}E\η

(
p

2(1− p)

)o(ω)( p

2(1− p)

)o(η)



The Uniform
Even

Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen

Grimmett-Janson

UEGG is the uniform measure on the space of (spanning) even
subgraphs of G .

Theorem (Grimmett, Janson ’09)

For x = p
2−p , then ℓx [η] = ϕp,G [UEGω[η]]

Proof:

ϕp,G [UEGω[η]] ∝
∑
ω⊇η

2κ(ω)

|{Even subgraphs of ω}|

(
p

1− p

)o(ω)

= 2|V |
∑
ω⊇η

(
p

2(1− p)

)o(ω)

= 2|V |
∑

ω′∈{0,1}E\η

(
p

2(1− p)

)o(ω)( p

2(1− p)

)o(η)



The Uniform
Even

Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen

Grimmett-Janson

UEGG is the uniform measure on the space of (spanning) even
subgraphs of G .

Theorem (Grimmett, Janson ’09)

For x = p
2−p , then ℓx [η] = ϕp,G [UEGω[η]]

Proof:

ϕp,G [UEGω[η]] ∝
∑
ω⊇η

2κ(ω)

|{Even subgraphs of ω}|

(
p

1− p

)o(ω)

= 2|V |
∑
ω⊇η

(
p

2(1− p)

)o(ω)

= 2|V |
∑

ω′∈{0,1}E\η

(
p

2(1− p)

)o(ω)( p

2(1− p)

)o(η)



The Uniform
Even

Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen

Grimmett-Janson

UEGG is the uniform measure on the space of (spanning) even
subgraphs of G .

Theorem (Grimmett, Janson ’09)

For x = p
2−p , then ℓx [η] = ϕp,G [UEGω[η]]

Proof:

ϕp,G [UEGω[η]] ∝
∑
ω⊇η

2κ(ω)

|{Even subgraphs of ω}|

(
p

1− p

)o(ω)

= 2|V |
∑
ω⊇η

(
p

2(1− p)

)o(ω)

= 2|V |
∑

ω′∈{0,1}E\η

(
p

2(1− p)

)o(ω)( p

2(1− p)

)o(η)



The Uniform
Even

Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen

Grimmett-Janson

UEGG is the uniform measure on the space of (spanning) even
subgraphs of G .

Theorem (Grimmett, Janson ’09)

For x = p
2−p , then ℓx [η] = ϕp,G [UEGω[η]]

Proof:

ϕp,G [UEGω[η]] ∝
∑
ω⊇η

2κ(ω)

|{Even subgraphs of ω}|

(
p

1− p

)o(ω)

= 2|V |
∑
ω⊇η

(
p

2(1− p)

)o(ω)

= 2|V |
∑

ω′∈{0,1}E\η

(
p

2(1− p)

)o(ω)( p

2(1− p)

)o(η)



The Uniform
Even

Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen

Now for our set-up

The identity |{Even subgraphs of ω}| = 2κ(ω)+o(ω)−|V | can be
proven by induction.

It involves the map η 7→ η∆η0.
This gives a group structure on

Ω∅(ω) := {Even subgraphs of ω}.

UEGω is the Haar measure on Ω∅(ω).
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Edge separation

For a graph G = (V ,E ), and E ′ ⊂ E , say that Ω∅(G )
separates E ′ if for e ∈ E ′, there exists η ∈ Ω∅(G ) with
η ∩ E ′ = {e}.

Lemma

If Ω∅(G ) separates E ′, then the marginal of UEGG on the edges
in E ′ is P1/2,E ′ .

Proof: The restriction map Ω∅(G ) → {0, 1}E ′
is a

homomorphism.
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Percolation

Theorem (H., Kjær, Klausen, ’23)

For d ≥ 3, UEGZd percolates.
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Percolation

Theorem (H., Kjær, Klausen, ’23)

For d ≥ 3, there exists x0 ∈ (0, 1) such that ℓx ,Zd percolates for
x ∈ (x0, 1].

For the proof, use that an FK-edge is open with probability at
least p

2−p .
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Main result

Theorem (H., Kjær, Klausen, ’23)

For d ≥ 3 and x ∈ ( pc
2−pc

, 1], there exists c > 0 such that

ℓx ,Zd [0 ↔ ∂Λn] ≥
c

n
.

In particular, expected cluster sizes are infinite.
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Input from the torus

Let Td
n := Zd/2nZd .

Lemma

For any graph G = (V ,E ) ⊆ Td
n , if there exists a wrap-around

γ ⊆ E, then

UEGG [η contains a wrap− around] ≥ 1

2

Works for G = ω ∼ ϕp,Td
n
when p > pc .
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Input from the torus

H H

To finish proof: If η ∼ UEGG , then η
d
= η∆γ.



The Uniform
Even

Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen

Input from the torus

H H

To finish proof: If η ∼ UEGG , then η
d
= η∆γ.



The Uniform
Even

Subgraph and
the Ising
Model

Ulrik
Thinggaard
Hansen

A miracle lemma

Lemma

If G = G1 ∪ G2 ∪ G3 and G2 contains a connected separating
surface between G1 and G3, the marginals of UEGG on G1 and
G3 are independent.

Again, applies to the supercritical random-cluster model!
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A miracle lemma

Λ Λ
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• Uniqueness of infinite volume measures for the loop O(1)
model in the supercritical regime.

• Exponential mixing of the infinite volume loop O(1) model
in the supercritical regime.

• All results carry over to the random current.
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Thank you for the attention.


