

$\sqrt{\log t}$ - superdiffusivity for a Brownian particle in the curl of the 2d GFF

CIME Summer School Statistical Mechanics and Stochastic PDEs

Giuseppe Cannizzaro^a Levi Haunschmid-Sibitz^b and Fabio Toninelli^c

^aUniversity of Warwick, UK, ^{b,c} Technical University of Vienna, Austria

September 13, 2023

The Model

Consider the following stochastic differential equation.

$$dX(t) = \omega(X(t))dt + dB(t), \quad X(0) = 0,$$

where B_t is 2d-Brownian motion and

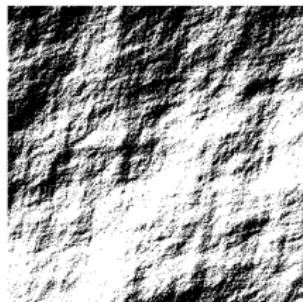
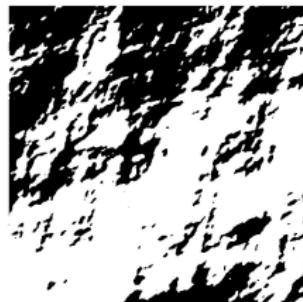
$$x \mapsto \omega(x) = (\omega_1(x), \omega_2(x))$$

is the curl of a smoothed Gaussian Free Field. That is

$$(\omega_1(x), \omega_2(x)) = (\partial_{x_2} U * \xi(x), -\partial_{x_1} U * \xi(x)),$$

where U is a radially symmetric smooth bump function and ξ is a 2d GFF.

Level lines



Superdiffusivity

Theorem ([CHST22])

As $t \rightarrow \infty$

$$E[X_t^2] \approx t\sqrt{\log t}$$

where \approx is in a Tauberian sense.

This was conjectured by Toth and Valko in [TV12].

Markov process

Lemma

The environment as seen from the particle

$$\eta_t(x) = \omega(X_t + x)$$

is a stationary Markov process. Its generator can be written as

$$\mathcal{L} = \mathcal{L}_0 + \mathcal{A}_+ + \mathcal{A}_-$$

Wiener Chaos Decomposition

Let

$$L^2(\omega) = \bigoplus_{k \geq 0} H_k$$

be the Wiener Chaos decomposition. We identify random variables in \mathcal{H}_k with their symmetric Fourier kernels in $L^2_{\text{sym}}((\mathbb{R}^2)^n)$.

The generator $\mathcal{L} = \mathcal{L}_0 + \mathcal{A}_+ + \mathcal{A}_-$ satisfies

$$\mathcal{L}_0 : H_n \rightarrow H_n,$$

$$\mathcal{A}_+ : H_n \rightarrow H_{n+1}, \text{ and}$$

$$\mathcal{A}_- : H_n \rightarrow H_{n-1}$$

and acts on a kernel $\psi_n \in \mathcal{H}_n$ as

$$\mathcal{L}_0 \psi_n(p_{1:n}) = - \left| \sum_{i=1}^n p_i \right|^2 \psi_n(p_{1:n})$$

$$\mathcal{A}_+ \psi_n(p_{1:n+1}) = i \frac{1}{n+1} \sum_{i=1}^{n+1} (p_i \times \sum_{j=1}^{n+1} p_j) \psi(p_{1:n+1 \setminus i})$$

Laplace transform

Let $\phi(\omega) = \omega_1(0) \in \mathcal{H}_1$. Considering the SDE in integral form

$$X_1(t) = B_1(t) + \int_0^t \phi(\eta_s) ds .$$

Lemma ([CES21])

The Laplace transform of $\mathbb{E}(\int_0^t \phi(\eta_s) ds)^2$ satisfies

$$\int_0^\infty e^{-\lambda t} \mathbb{E} \left[\int_0^t \phi(\eta_s) ds \right] dt = \frac{2}{\lambda^2} \langle \phi(\lambda - \mathcal{L})^{-1} \phi \rangle .$$

Cut Resolvent equation

Lemma (Lemma 2.1 in [LQSY04])

Let Π_n be the projection onto $\bigoplus_{k=0}^n H_k$ and $\mathcal{L}_n = \Pi_n \mathcal{L} \Pi_n$. Further let $\psi^n = (\lambda - \mathcal{L}_n)^{-1} \phi$. Then

$$\langle \phi, \psi^{(2n)} \rangle \leq \langle \phi, (\lambda - \mathcal{L})^{-1} \phi \rangle \leq \langle \phi, \psi^{(2n+1)} \rangle.$$

Furthermore $\langle \phi, \psi^{(2n)} \rangle$ and $\langle \phi, \psi^{(2n+1)} \rangle$ are increasing and decreasing respectively, and both converge to $\langle \phi, (\lambda - \mathcal{L})^{-1} \phi \rangle$.

System of Equations

We want to solve $\psi^n = (\lambda - \mathcal{L}_n)^{-1}\phi$, this leads to a system of equations:

$$(\lambda - \mathcal{L}_0)\psi_n^n - \mathcal{A}_+\psi_{n-1}^n = 0$$

$$(\lambda - \mathcal{L}_0)\psi_k^n - \mathcal{A}_+\psi_{k-1}^n - \mathcal{A}_-\psi_{k+1}^n = 0$$

$$(\lambda - \mathcal{L}_0)\psi_1^n - \mathcal{A}_-\psi_2^n = \phi$$

Solving this leads to $\psi_1^n = \mathcal{H}_n\phi$ where \mathcal{H}_n is defined by

$$\mathcal{H}_1 = 0$$

$$\mathcal{H}_{k+1} = \mathcal{A}_+^*(\lambda - \mathcal{L}_0 + H_k)^{-1}\mathcal{A}_+.$$

Iterative estimates

Lemma

All \mathcal{H}_k are positive self adjoint operators which map H_n into H_n . If S is another positive self adjoint operator then:

$$\mathcal{H}_k \leq S \Rightarrow \mathcal{H}_{k+1} \geq \mathcal{A}_+^* (\lambda - \mathcal{L}_0 + S)^{-1} \mathcal{A}_+$$

The goal is to estimate each operator \mathcal{H}_k from above or below by a simpler operator \mathcal{S}_k .

Diagonal Operators and Integrals

A diagonal operator \mathcal{S} with Fourier multiplier $(\sigma_k)_{k \geq 0}$ is an operator that acts on $\psi_n \in H_k$ as:

$$\mathcal{S}\psi_n(p_{1:n}) = \sigma_k(p_{1:n})\psi_n(p_{1:n}).$$

Lemma

Let \mathcal{S} and $\tilde{\mathcal{S}}$ be diagonal operators with Fourier multipliers σ and $\tilde{\sigma}$ respectively. If for every $p_{1:n}$ s.t. $\sum_{i=1}^n p_i \neq 0$ it holds that:

$$\int_{\mathbb{R}^2} \hat{V}(q) \sin(\theta)^2 \sigma_{n+1}(p_{1:n}, q) dq \leq \tilde{\sigma}_n(p_{1:n})$$

then

$$\langle \psi, \mathcal{A}_+^* \mathcal{S} \mathcal{A}_+ \psi \rangle_{diag} \leq \langle \psi, (-\mathcal{L}_0) \tilde{\mathcal{S}} \psi \rangle$$

for every ψ .

Some functions

Define the following functions

$$L(x, z) = z + \log(1 + x^{-1})$$

$$LB_k(x, z) = \sum_{0 \leq j \leq k} \frac{(\frac{1}{2} \log L(x, z))^j}{j!} \quad \text{and} \quad UB_k(x, z) = \frac{L(x, z)}{LB(x, z)}$$

and further

$$\sigma_k(x, z) = \begin{cases} UB_{\frac{k-2}{2}}(x, z), & \text{if } k \text{ is even,} \\ LB_{\frac{k-1}{2}}(x, z), & \text{if } k \text{ is odd.} \end{cases}$$

and finally

$$z_k(n) = K_1(n + k)^{2+2\varepsilon} \quad \text{and} \quad f_k(n) = K_2 \sqrt{(z_k(n))}.$$

Diagonal operators

Let \mathcal{S}_k be defined as:

$$\mathcal{S}_k = \begin{cases} f_k(n)\sigma_k(\lambda - \mathcal{L}_0, z_k(\mathcal{N})) & \text{if } k \text{ is even and} \\ \frac{1}{f_k(n)}(\sigma_k(\lambda - \mathcal{L}_0, z_k(\mathcal{N})) - f_k(n)) & \text{if } k \text{ is odd,} \end{cases}$$

where \mathcal{N} is the number operator.

Theorem

For any $\varepsilon > 0$, for suitable K_1, K_2 , for any $0 < \lambda \leq 1$ and $k \geq 1$ we have

$$\begin{aligned}\mathcal{H}_{2k-1} &\geq c_{2k-1}(-\mathcal{L}_0)\mathcal{S}_{2k-1} \\ \mathcal{H}_{2k} &\leq c_{2k}(-\mathcal{L}_0)\mathcal{S}_{2k},\end{aligned}$$

where c_{2k} and c_{2k+1} are both converging to finite positive values.

Outlook

Development

- Evolving field: [FW22]
- Stochastic homogenization: [CMOW23]
- Brownian Polymer: See Harry's talk

Open Problems

- Weak coupling CLT
- Diffusivity to 0
- Quenched behaviour

Giuseppe Cannizzaro, Dirk Erhard, and Philipp Schönbauer.

2D anisotropic KPZ at stationarity: scaling, tightness and nontriviality.

Ann. Probab., 49(1):122–156, 2021.

Giuseppe Cannizzaro, Levi Haunschmid-Sibitz, and Fabio Toninelli.

$\sqrt{\log t}$ -Superdiffusivity for a Brownian particle in the curl of the 2D GFF.

The Annals of Probability, 50(6):2475 – 2498, 2022.

Georgiana Chatzigeorgiou, Peter Morfe, Felix Otto, and Lihan Wang.

The gaussian free-field as a stream function: asymptotics of effective diffusivity in infra-red cut-off.

Preprint, arXiv:2212.14244, 2023.

Guilherme L. Feltes and Hendrik Weber.

Brownian particle in the curl of 2-d stochastic heat equations.

Preprint, arXiv:2211.02194, 2022.

C. Landim, J. Quastel, M. Salmhofer, and H.-T. Yau.

Superdiffusivity of asymmetric exclusion process in dimensions one and two.

Comm. Math. Phys., 244(3):455–481, 2004.

Bálint Tóth and Benedek Valkó.

Superdiffusive bounds on self-repellent Brownian polymers and diffusion in the curl of the Gaussian free field in $d = 2$.

J. Stat. Phys., 147(1):113–131, 2012.