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Reminder: Rough paths, integrals, differential equations

Definition by Lyons ’98: Let p ∈ (2, 3). A p-variation rough path is a pair
(Z ,Z) defined by (Zs,t ,Zs,t) ∈ Rd × Rd⊗d for 0 ≤ s < t ≤ T so that

(i) ∥Z∥p−var,[0,T ] + ∥Z∥p/2−var,[0,T ] < ∞
(ii) Algebraic relations 0 ≤ s < u < t ≤ t

1st level: Zs,t = Zs,u + Zu,t increments of a path
(Zt := Zo,t implies Zs,t = Zt − Zs)

2st level: Zs,t − Zs,u − Zu,t = Zs,u ⊗ Zu,t “Chen’s relation”.
(Example: Zs,t =

∫
(s,t]

∫
(s,r1]

dZr2 ⊗ dZr1 for fixed notion of

integration.)

Definition is more general, if p ≥ 3 the rough path has ⌊p⌋ levels.
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Reminder: Rough paths, integrals, differential equations

[Lyons ’98, Gubinelli ’04]: Z := (Z ,Z). Construction of rough integral s.t.
(Y ,Z) 7→

∫ ·
0
YsdZs is continuous (if Y is “controlled by Z”);

Existence of solutions of rough differential equations in space of paths
“controlled by Z”;
Itô-Lyons map Z 7→ Yt = Y0 +

∫ t

0
f (Ys)dZs is continuous.

In particular, if (Z n,Zn) =: Zn → Z in rough path topology then (under
conditions)

Y n
t = Y n

0 +

∫ t

0

f (Y n
s )dZn

s → Yt = Y0 +

∫ t

0

f (Ys)dZs .
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Random processes as rough paths

Cadlag/discrete-time process Z on Rd is fixed.
Interested to lift (Z ,Z) to rough path space by setting

Zs,t :=

∫
(s,t]

Zs,r ⊗ dZr ,

where the notion of integration is fixed to be Stratonovich /
Riemann–Stieltjes (interpolate linearly for discrete time).

Example. Stratonovich Brownian rough path (B,B) is the Stratonovich

lift of Brownian motion, i.e. Bs,t =
∫ t

s

∫ r1
s
dBr2 ⊗ ◦dBr1 , the iterated

Stratonovich integral of the Brownian motion B (with a certain
covariance matrix Σ).
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Effect of second level limit on SDE approximations

(Σ, Γ) - Stratonovich Brownian rough path is a pair (B,B) so that B is a
Brownian motion with covariance Σ and B = BStr + Γ·, that is

Bs,t =

∫ t

s

∫ r1

s

dBr2 ⊗ ◦dBr1 + (t − s)Γ.

Kelly ’16: Assume Stratonovich lift (Z n,Zn) of semimartingales satisfies
Functional CLT in the p-variation rough path topology, for some p > 2, where
the limit (B,B) is a (Σ, Γ) - Stratonovich Brownian.

Fix f ∈ C 1(R,Rd). Solutions to Y n
t = Y n

0 +
∫ t

0
f (Y n

s ) ◦ dZ n
s converge weakly to

the solution to

Yt = Y0 +

∫ t

0

f (Ys) ◦ dBs +

∫ t

0

Γf (Ys) · f ′(Ys)︸ ︷︷ ︸
=
∑d

i,j=1 Γi,j f ′i (Ys )fj (Ys )

ds.

Related: Chevyrev, Friz, Korepanov, Melbourne, Zhang, Hairer, Li,...

Djurdjevac-Kremp-Perkowski, Kifer,...
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Functional CLT in rough path topology

Some possible questions and challenges:
• Stronger convergence; may require stronger tools.
• Interesting examples for nontrivial (Σ, Γ) - FCLT.
• Interpretation of Γ.

Natural candidates: various RWRE which satisfy classical FCLT.
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Regenerative processes

Definition
A process X = (Xk)k≥0 on Rd is called regenerative if its increments
form a delayed renewal process: there are almost surely (random) times
0 =: τ0 < τ1 < τ2 < ... < ∞ so that(

{Xτk ,τk+m}0≤m≤τk+1−τk , τk+1 − τk

)
k≥1

are i.i.d

and are independent of ({Xm}0≤m≤τ1 , τ1).

Simple examples

• Random walk Xn =
∑n

k=1 ξk , by taking τk = k .

• Additive functionals Xn =
∑n

k=1 f (Yk), Y recurrent irred. Markov;
τk is k-th hitting time.
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Functional CLT in the rough path topology

• X - regenerative, E[Xτk ,τk+1
] = 0 (centered).

• Diffusive rescaling + Stratonovich lift (X n
s,t ,Xn

s,t)0≤s<t≤T .

( Xn
t :=

X⌊n2t⌋
n

+
n2t−⌊n2t⌋

n
X⌊n2t⌋,⌊n2t⌋+1

.)

Theorem (Lopusanschi - O ’21, O ’21)
Assume E

[
(τk+1 − τk) supτk<m≤τk+1

∥Xτk ,m∥2
]
< ∞, k ≥ 0.

Then, (X n,Xn) ⇒ (B,BStr + Γ·), a Stratonovich rough Brownian, in the
p-variation rough path topology, p ∈ (2, 3). Moreover

Γ =
E[Antisym(X1

τ1,τ2)]

E[τ2 − τ1]
, the area anomaly.
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Remarks
• Optimal moment condition (without delay).

Counter-example: second moment condition for jumps of random
walks:

(τk+1 − τk) sup
τk<m≤τk+1

∥Xτk ,m∥2 = 1 · ∥ξk+1∥2

for all k ≥ 0.

• In fact, enough any moment for the delaying epoch (k = 0).

• Stationary regenerative: Green-Kubo type formula (in writing with
M. Engel and P. Friz). To be mentioned again later.

• Area anomaly: Γ is the expected signed stochastic area in a
regeneration interval, normalized by its expected length.

From the proof: How to see the area correction? Xτk =
∑k−1

j=1 Xτj−1,τj is
a centred random walk with second moments jumps. Also,

S0,τk (X·) = S0,k(Xτ·) +
k∑

i=1

Aτi−1,τi (X·),

where S is the middle-point iterated sum, Q the QV (sum of product of
increments) and A is the antisymmetric part of S .

10 / 18



Applications and a question

• RW in deterministic box-periodic environment (or on periodic
graphs): straight-forward construction of Markovian examples with
non-vanishing area anomaly Γ.

• Ballistic random walks in random environments (that is i.i.d,
uniformly elliptic, Sznitman T’), d ≥ 2, annealed.

Sznitman-Zerner ’99: delayed regenerative.
Sznitman ’00: all moments are finite. Showed LLN and classical CLT.

• RW in Dirichlet environments. Annealed, d ≥ 2, trap parameter
κ > 3 + extra condition.

Bouchet-Raḿırez-Sabot ’13 ensures κ− ϵ moments for regenerations.

Q. Is Γ ̸= 0 for (non-degenerate) ballistic RWRE?
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Kipnis-Varadhan in rough path topology

Theorem (Deuschel - O - Perkowski ’21)
X Markov, X0 ∼ µ stationary and ergodic for L,L∗.
L2(µ) ∋ F : E → Rd s.t.

∫
Fdµ = 0 and assume H−1 condition.{

λ
∫
|Φλ|2dµ → 0∫

(Φλ − Φλ′ ) ⊗ (−L)(Φλ − Φλ′ )dµ → 0
if (λ − L)Φλ = F . Set

Z n
t = n−1

∫ n2t

0
F (Xs)ds. Then for the Stratonovich lift

(Z n,Zn) →
(
B,BStr + ·Γ

)
in p-variation rough path topology, p ∈ (2, 3), where B is a Brownian
motion with covariance

Σ = 2 lim
λ→0

E[Φλ ⊗ (−LS)Φλ]

and Γ = lim
λ→0

E[Φλ ⊗ LAΦλ].

Remarks. (i) In particular, correction vanishes if L = L∗.

(ii) Can be applied to regenerative in stationary Markov setting.

(iii) [Engel-Friz-O ’23+]: Beyond Markov (stationary processes): the formulae expressed in

terms of time correlations (Green-Kubo type).
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Random conductances and additive functionals

• Environments {ω(x , y) = ω(y , x) : x , y ∈ Zd , x ∼ y}.
• For fixed ω consider Pω

o the law of continuous time random walk Xω

with jumps rates ω(x , y) from x to y stating at o.

• Idea: the environment seen from the walker (ωt := τXtω)t≥0 is
Markov.

• P initial law {ω(x , y)}x∼y shift-invariant ergodic implies the process
(ωt)t≥0 is ergodic reversible (e.g. [Kozlov ’85]).

• Can decompose

Xt = Xω
t = Mt + Zt , M martingale

and Zt =
∫ t

0
F (ωs)ds additive functional with

F (ω) =
∑
e∼0

e ω(0, e) the empirical drift.
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Application to RW in random conductances

Assume conductances on Zd independent but stationary (e.g., i.i.d) and
uniformly elliptic (bdd away from 0 and ∞, uniformly) under P.
Let Po be the annealed law (averaging Pω

o with respect to P)

Theorem (Deuschel - O - Perkowski ’21)
For the Stratonovich lift (X n,Xn) under the annealed law Po

(X n,Xn) → (B,BStr)

weakly in p-variation rough path topology, p ∈ (2, 3),

Note convergence to Stratonovich (without anomaly!).
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Quenched FCLT in rough path topology

With Johaness Bäumler, Noam Berger and Martin Slowik.

Settings. Zd , d ≥ 3, i.i.d nearest neighbor conductances in
{0} ∪ [a, b].

The assertion remains as in the annealed case except that the weak
convergence takes place with respect to Pω

0 for P-a.e.-ω.
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On the proof

In the proof we use two crucial pieces of information:

• Gloria-Neukamm-Otto ’14, Dario ’18 moments of the corrector
E|χ(ω, x)|p < Cp for all p > 0.

• Quenched Heat kernel bounds: Mathieu-Remy 04, Barlow 04.

Key Lemma. Corrector χ not only approximated by gradients, but is a
gradient: χ(ω, x) = Dφ(ω, x) = φ(τxω)− φ(ω) for some φ.
Moreover,

sup
t≥0

Eω
0 [∥φ(τXtω)∥q] < cq(ω) a.s., for all q > 0.

• Tightness. Corrector: “uniform” ellipticity guaranties jumps
proportional to time, then deducing by heat kernel. Martingale:
bounded jumps enables transferring estimates to Martingale.

• Identification of limit: Kurtz-Protter ’91 classical result on convergence
of stochastic integrals + ergodic theorem for deterministic limit
terms (plus Slutsky’s theorem).
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Thank you for your attention!
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