

Rough walks

Tal Orenshtain

University of Milano – Bicocca

C.I.M.E School “Statistical Mechanics and Stochastic PDEs”

Cetraro, September 11, 2023

Plan

Rough paths and homogenization

Regenerative processes

Kipnis-Varadhan

Application: random conductance model

Quenched result

Reminder: Rough paths, integrals, differential equations

Definition by Lyons '98: Let $p \in (2, 3)$. A p -variation **rough path** is a pair (Z, \mathbb{Z}) defined by $(Z_{s,t}, \mathbb{Z}_{s,t}) \in \mathbb{R}^d \times \mathbb{R}^{d \otimes d}$ for $0 \leq s < t \leq T$ so that

- (i) $\|Z\|_{p-\text{var}, [0, T]} + \|\mathbb{Z}\|_{p/2-\text{var}, [0, T]} < \infty$
- (ii) Algebraic relations $0 \leq s < u < t \leq T$

1st level: $Z_{s,t} = Z_{s,u} + Z_{u,t}$ increments of a path

$(Z_t := Z_{0,t} \text{ implies } Z_{s,t} = Z_t - Z_s)$

2st level: $\mathbb{Z}_{s,t} - \mathbb{Z}_{s,u} - \mathbb{Z}_{u,t} = Z_{s,u} \otimes Z_{u,t}$ "Chen's relation".

(Example: $\mathbb{Z}_{s,t} = \int_{(s,t]} \int_{(s,r_1]} dZ_{r_2} \otimes dZ_{r_1}$ for fixed notion of integration.)

Definition is more general, if $p \geq 3$ the rough path has $\lfloor p \rfloor$ levels.

Reminder: Rough paths, integrals, differential equations

[Lyons '98, Gubinelli '04]: $\mathcal{Z} := (Z, \mathbb{Z})$. Construction of **rough integral** s.t.
 $(Y, \mathcal{Z}) \mapsto \int_0^\cdot Y_s d\mathcal{Z}_s$ is continuous (if Y is “controlled by \mathcal{Z} ”);
Existence of solutions of rough differential equations in space of paths
“controlled by \mathcal{Z} ”;
Itô-Lyons map $\mathcal{Z} \mapsto Y_t = Y_0 + \int_0^t f(Y_s) d\mathcal{Z}_s$ is continuous.

In particular, if $(Z^n, \mathbb{Z}^n) =: \mathcal{Z}^n \rightarrow \mathcal{Z}$ in rough path topology then (under conditions)

$$Y_t^n = Y_0^n + \int_0^t f(Y_s^n) d\mathcal{Z}_s^n \rightarrow Y_t = Y_0 + \int_0^t f(Y_s) d\mathcal{Z}_s.$$

Random processes as rough paths

Cadlag/discrete-time process Z on \mathbb{R}^d is fixed.

Interested to [lift](#) (Z, \mathbb{Z}) to rough path space by setting

$$\mathbb{Z}_{s,t} := \int_{(s,t]} Z_{s,r} \otimes dZ_r,$$

where the notion of integration is fixed to be Stratonovich / Riemann–Stieltjes (interpolate linearly for discrete time).

Example. Stratonovich Brownian rough path (B, \mathbb{B}) is the Stratonovich lift of Brownian motion, i.e. $\mathbb{B}_{s,t} = \int_s^t \int_s^{r_1} dB_{r_2} \otimes \circ dB_{r_1}$, the iterated Stratonovich integral of the Brownian motion B (with a certain covariance matrix Σ).

Effect of second level limit on SDE approximations

(Σ, Γ) - Stratonovich Brownian rough path is a pair (B, \mathbb{B}) so that B is a Brownian motion with covariance Σ and $\mathbb{B} = \mathbb{B}^{\text{Str}} + \Gamma \cdot$, that is

$$\mathbb{B}_{s,t} = \int_s^t \int_s^{r_1} dB_{r_2} \otimes \circ dB_{r_1} + (t-s)\Gamma.$$

Kelly '16: Assume Stratonovich lift (Z^n, \mathbb{Z}^n) of semimartingales satisfies Functional CLT in the p -variation rough path topology, for some $p > 2$, where the limit (B, \mathbb{B}) is a (Σ, Γ) - Stratonovich Brownian.

Fix $f \in C^1(\mathbb{R}, \mathbb{R}^d)$. Solutions to $Y_t^n = Y_0^n + \int_0^t f(Y_s^n) \circ dZ_s^n$ converge weakly to the solution to

$$\begin{aligned} Y_t &= Y_0 + \int_0^t f(Y_s) \circ dB_s + \int_0^t \underbrace{\Gamma f(Y_s) \cdot f'(Y_s)}_{= \sum_{i,j=1}^d \Gamma^{i,j} f'_i(Y_s) f_j(Y_s)} ds. \end{aligned}$$

Related: Chevyrev, Friz, Korepanov, Melbourne, Zhang, Hairer, Li,...
Djurdjevac-Kremp-Perkowski, Kifer,...

Functional CLT in rough path topology

Some possible questions and challenges:

- Stronger convergence; may require stronger tools.
- Interesting examples for nontrivial (Σ, Γ) - FCLT.
- Interpretation of Γ .

Natural candidates: various RWRE which satisfy classical FCLT.

Regenerative processes

Definition

A process $X = (X_k)_{k \geq 0}$ on \mathbb{R}^d is called *regenerative* if its increments form a delayed renewal process: there are almost surely (random) times $0 =: \tau_0 < \tau_1 < \tau_2 < \dots < \infty$ so that

$$\left(\{X_{\tau_k, \tau_k+m}\}_{0 \leq m \leq \tau_{k+1}-\tau_k}, \tau_{k+1} - \tau_k \right)_{k \geq 1} \text{ are i.i.d}$$

and are independent of $(\{X_m\}_{0 \leq m \leq \tau_1}, \tau_1)$.

Simple examples

- Random walk $X_n = \sum_{k=1}^n \xi_k$, by taking $\tau_k = k$.
- Additive functionals $X_n = \sum_{k=1}^n f(Y_k)$, Y recurrent irreducible Markov; τ_k is k -th hitting time.

Functional CLT in the rough path topology

- X - regenerative, $\mathbb{E}[X_{\tau_k, \tau_{k+1}}] = 0$ (centered).
- Diffusive rescaling + **Stratonovich lift** $(X_{s,t}^n, \mathbb{X}_{s,t}^n)_{0 \leq s < t \leq T}$.
$$(X_t^n := \frac{X_{\lfloor n^2 t \rfloor}}{n} + \frac{n^2 t - \lfloor n^2 t \rfloor}{n} X_{\lfloor n^2 t \rfloor, \lfloor n^2 t \rfloor + 1})$$

Theorem (Lopusanschi - O '21, O '21)

Assume $\mathbb{E} \left[(\tau_{k+1} - \tau_k) \sup_{\tau_k < m \leq \tau_{k+1}} \|X_{\tau_k, m}\|^2 \right] < \infty$, $k \geq 0$.

Then, $(X^n, \mathbb{X}^n) \Rightarrow (B, \mathbb{B}^{Str} + \Gamma \cdot)$, a Stratonovich rough Brownian, in the p -variation rough path topology, $p \in (2, 3)$. Moreover

$$\Gamma = \frac{\mathbb{E}[\text{Antisym}(\mathbb{X}_{\tau_1, \tau_2}^1)]}{\mathbb{E}[\tau_2 - \tau_1]}, \text{ the area anomaly.}$$

Remarks

- Optimal moment condition (without delay).

Counter-example: second moment condition for jumps of random walks:

$$(\tau_{k+1} - \tau_k) \sup_{\tau_k < m \leq \tau_{k+1}} \|X_{\tau_k, m}\|^2 = 1 \cdot \|\xi_{k+1}\|^2$$

for all $k \geq 0$.

- In fact, enough any moment for the delaying epoch ($k = 0$).
- Stationary regenerative: Green-Kubo type formula (in writing with M. Engel and P. Friz). To be mentioned again later.
- Area anomaly: Γ is the expected signed stochastic area in a regeneration interval, normalized by its expected length.

From the proof: How to see the area correction? $X_{\tau_k} = \sum_{j=1}^{k-1} X_{\tau_{j-1}, \tau_j}$ is a centred random walk with second moments jumps. Also,

$$S_{0, \tau_k}(X_{\cdot}) = S_{0, k}(X_{\tau_{\cdot}}) + \sum_{i=1}^k A_{\tau_{i-1}, \tau_i}(X_{\cdot}),$$

where S is the **middle-point** iterated sum, Q the QV (sum of product of increments) and A is the antisymmetric part of S .

Applications and a question

- RW in deterministic **box-periodic environment** (or on periodic graphs): straight-forward construction of Markovian examples with non-vanishing area anomaly Γ .
- **Ballistic random walks in random environments** (that is i.i.d, uniformly elliptic, Sznitman T'), $d \geq 2$, annealed.
 - Sznitman-Zerner '99: delayed regenerative.
 - Sznitman '00: all moments are finite. Showed LLN and classical CLT.
- RW in **Dirichlet environments**. Annealed, $d \geq 2$, trap parameter $\kappa > 3 +$ extra condition.
 - Bouchet-Ramírez-Sabot '13 ensures $\kappa - \epsilon$ moments for regenerations.

Applications and a question

- RW in deterministic **box-periodic environment** (or on periodic graphs): straight-forward construction of Markovian examples with non-vanishing area anomaly Γ .
- **Ballistic random walks in random environments** (that is i.i.d, uniformly elliptic, Sznitman T'), $d \geq 2$, annealed.
 - Sznitman-Zerner '99: delayed regenerative.
 - Sznitman '00: all moments are finite. Showed LLN and classical CLT.
- RW in **Dirichlet environments**. Annealed, $d \geq 2$, trap parameter $\kappa > 3 +$ extra condition.
 - Bouchet-Ramírez-Sabot '13 ensures $\kappa - \epsilon$ moments for regenerations.

Q. Is $\Gamma \neq 0$ for (non-degenerate) ballistic RWRE?

Kipnis-Varadhan in rough path topology

Theorem (Deuschel - O - Perkowski '21)

X Markov, $X_0 \sim \mu$ stationary and ergodic for $\mathcal{L}, \mathcal{L}^*$.

$L^2(\mu) \ni F : E \rightarrow \mathbb{R}^d$ s.t. $\int F d\mu = 0$ and assume \mathcal{H}^{-1} condition.

$\begin{cases} \lambda \int |\Phi_\lambda|^2 d\mu \rightarrow 0 \\ \int (\Phi_\lambda - \Phi_{\lambda'}) \otimes (-\mathcal{L})(\Phi_\lambda - \Phi_{\lambda'}) d\mu \rightarrow 0 \end{cases}$ if $(\lambda - \mathcal{L})\Phi_\lambda = F$. Set

$Z_t^n = n^{-1} \int_0^{n^2 t} F(X_s) ds$. Then for the Stratonovich lift

$$(Z^n, \mathbb{Z}^n) \rightarrow (B, \mathbb{B}^{Str} + \cdot \Gamma)$$

in p -variation rough path topology, $p \in (2, 3)$, where B is a Brownian motion with covariance

$$\Sigma = 2 \lim_{\lambda \rightarrow 0} \mathbb{E}[\Phi_\lambda \otimes (-\mathcal{L}_S)\Phi_\lambda]$$

Kipnis-Varadhan in rough path topology

Theorem (Deuschel - O - Perkowski '21)

X Markov, $X_0 \sim \mu$ stationary and ergodic for $\mathcal{L}, \mathcal{L}^*$.

$L^2(\mu) \ni F : E \rightarrow \mathbb{R}^d$ s.t. $\int F d\mu = 0$ and assume \mathcal{H}^{-1} condition.

$$\begin{cases} \lambda \int |\Phi_\lambda|^2 d\mu \rightarrow 0 \\ \int (\Phi_\lambda - \Phi_{\lambda'}) \otimes (-\mathcal{L})(\Phi_\lambda - \Phi_{\lambda'}) d\mu \rightarrow 0 \end{cases} \text{ if } (\lambda - \mathcal{L})\Phi_\lambda = F. \text{ Set}$$

$Z_t^n = n^{-1} \int_0^{n^2 t} F(X_s) ds$. Then for the Stratonovich lift

$$(Z^n, \mathbb{Z}^n) \rightarrow (B, \mathbb{B}^{Str} + \cdot \Gamma)$$

in p -variation rough path topology, $p \in (2, 3)$, where B is a Brownian motion with covariance

$$\Sigma = 2 \lim_{\lambda \rightarrow 0} \mathbb{E}[\Phi_\lambda \otimes (-\mathcal{L}_S)\Phi_\lambda] \text{ and}$$

Kipnis-Varadhan in rough path topology

Theorem (Deuschel - O - Perkowski '21)

X Markov, $X_0 \sim \mu$ stationary and ergodic for $\mathcal{L}, \mathcal{L}^*$.

$L^2(\mu) \ni F : E \rightarrow \mathbb{R}^d$ s.t. $\int F d\mu = 0$ and assume \mathcal{H}^{-1} condition.

$\begin{cases} \lambda \int |\Phi_\lambda|^2 d\mu \rightarrow 0 \\ \int (\Phi_\lambda - \Phi_{\lambda'}) \otimes (-\mathcal{L})(\Phi_\lambda - \Phi_{\lambda'}) d\mu \rightarrow 0 \end{cases}$ if $(\lambda - \mathcal{L})\Phi_\lambda = F$. Set

$Z_t^n = n^{-1} \int_0^{n^2 t} F(X_s) ds$. Then for the Stratonovich lift

$$(Z^n, \mathbb{Z}^n) \rightarrow (B, \mathbb{B}^{Str} + \cdot \Gamma)$$

in p -variation rough path topology, $p \in (2, 3)$, where B is a Brownian motion with covariance

$$\Sigma = 2 \lim_{\lambda \rightarrow 0} \mathbb{E}[\Phi_\lambda \otimes (-\mathcal{L}_S)\Phi_\lambda] \text{ and } \Gamma = \lim_{\lambda \rightarrow 0} \mathbb{E}[\Phi_\lambda \otimes \mathcal{L}_A \Phi_\lambda].$$

Kipnis-Varadhan in rough path topology

Theorem (Deuschel - O - Perkowski '21)

X Markov, $X_0 \sim \mu$ stationary and ergodic for $\mathcal{L}, \mathcal{L}^*$.

$L^2(\mu) \ni F : E \rightarrow \mathbb{R}^d$ s.t. $\int F d\mu = 0$ and assume \mathcal{H}^{-1} condition.

$\begin{cases} \lambda \int |\Phi_\lambda|^2 d\mu \rightarrow 0 \\ \int (\Phi_\lambda - \Phi_{\lambda'}) \otimes (-\mathcal{L})(\Phi_\lambda - \Phi_{\lambda'}) d\mu \rightarrow 0 \end{cases}$ if $(\lambda - \mathcal{L})\Phi_\lambda = F$. Set

$Z_t^n = n^{-1} \int_0^{n^2 t} F(X_s) ds$. Then for the Stratonovich lift

$$(Z^n, \mathbb{Z}^n) \rightarrow (B, \mathbb{B}^{Str} + \cdot \Gamma)$$

in p -variation rough path topology, $p \in (2, 3)$, where B is a Brownian motion with covariance

$$\Sigma = 2 \lim_{\lambda \rightarrow 0} \mathbb{E}[\Phi_\lambda \otimes (-\mathcal{L}_S)\Phi_\lambda] \text{ and } \Gamma = \lim_{\lambda \rightarrow 0} \mathbb{E}[\Phi_\lambda \otimes \mathcal{L}_A \Phi_\lambda].$$

Remarks. (i) In particular, correction vanishes if $\mathcal{L} = \mathcal{L}^*$.

(ii) Can be applied to regenerative in stationary Markov setting.

(iii) [Engel-Friz-O '23+]: Beyond Markov (stationary processes): the formulae expressed in terms of time correlations (Green-Kubo type).

Random conductances and additive functionals

- Environments $\{\omega(x, y) = \omega(y, x) : x, y \in \mathbb{Z}^d, x \sim y\}$.
- For fixed ω consider P_o^ω the law of continuous time random walk X^ω with jumps rates $\omega(x, y)$ from x to y starting at o .
- Idea: the environment seen from the walker $(\omega_t := \tau_{X_t} \omega)_{t \geq 0}$ is Markov.
- \mathbb{P} initial law $\{\omega(x, y)\}_{x \sim y}$ shift-invariant ergodic implies the process $(\omega_t)_{t \geq 0}$ is ergodic reversible (e.g. [Kozlov '85]).
- Can decompose

$$X_t = X_t^\omega = M_t + Z_t, \quad M \text{ martingale}$$

and $Z_t = \int_0^t F(\omega_s) ds$ additive functional with

$$F(\omega) = \sum_{e \sim 0} e \omega(0, e) \text{ the empirical drift.}$$

Application to RW in random conductances

Assume conductances on \mathbb{Z}^d independent but stationary (e.g., i.i.d) and uniformly elliptic (bdd away from 0 and ∞ , uniformly) under P .
Let \mathbb{P}_o be the annealed law (averaging P_o^ω with respect to P)

Theorem (Deuschel - O - Perkowski '21)

For the Stratonovich lift (X^n, \mathbb{X}^n) under the annealed law \mathbb{P}_o

$$(X^n, \mathbb{X}^n) \rightarrow (B, \mathbb{B}^{Str})$$

weakly in p -variation rough path topology, $p \in (2, 3)$,

Note convergence to Stratonovich (without anomaly!).

Quenched FCLT in rough path topology

With [Johannes Bäumler](#), [Noam Berger](#) and [Martin Slowik](#).

Settings. \mathbb{Z}^d , $d \geq 3$, i.i.d nearest neighbor conductances in $\{0\} \cup [a, b]$.

The assertion remains as in the annealed case except that the weak convergence takes place with respect to \mathbb{P}_0^ω for P -a.e.- ω .

On the proof

In the proof we use two crucial pieces of information:

- Gloria-Neukamm-Otto '14, Dario '18 [moments of the corrector](#)
 $\mathbb{E}|\chi(\omega, x)|^p < C_p$ for all $p > 0$.
- Quenched [Heat kernel](#) bounds: Mathieu-Remy 04, Barlow 04.

[Key Lemma.](#) Corrector χ not only approximated by gradients, but [is](#) a gradient: $\chi(\omega, x) = D\varphi(\omega, x) = \varphi(\tau_x \omega) - \varphi(\omega)$ for some φ .

Moreover,

$$\sup_{t \geq 0} E_0^\omega [\|\varphi(\tau_{X_t} \omega)\|^q] < c_q(\omega) \text{ a.s., for all } q > 0.$$

- Tightness. Corrector: “uniform” ellipticity guarantees jumps proportional to time, then deducing by heat kernel. Martingale: bounded jumps enables transferring estimates to Martingale.
- Identification of limit: Kurtz-Protter '91 classical result on convergence of stochastic integrals + ergodic theorem for deterministic limit terms (plus Slutsky's theorem).

Thank you for your attention!