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> (74 ) with random environments
w={w.(z):z € N,z € Z?} (non-negative)
» Continuous time random walk (CTRW):
(X)e>0
B speed p(x) = > o w(2)

m transition probability p. (z) = */'f((;,f;)

» generator and Dirichlet energy

m quenched
Lf(z) = Y w:(2)Vaf(x)  EY(f,9) = (f,—L¥g)
zeN
m annealed
(Lo)(w) = D w:(0)D:p(w)  E(¢, ) = E[p(—Lep)]
zeN
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> Symmetric case: random conductance model under (p-q)moment condition
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For (2, F,P) ergodic wrt. (7). .4, P — a.s.

n 1
(Xf( ) = 7th2) 7 B(O,Z)
n
m Local limit theorem (Andres, Deuschel, Slowik "15)

pi (@, y) = npppz (Inal, lyn]) — P (2,y)

Need
(PHI) Parabolic Harnack inequality

Question: What about the non-symmetric case?

Answer: Bounded cycle!
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> environment: collection of non-negative jump rates for nearest neighbor RWs on
lattice Z%(d > 2)
w={w(z,y): (z,y) € Eq}

> bounded cycle representation (BCR): w is almost surely generated by a
collection of nearest-neighbor prototype cycles C of bounded length NV shifting
over the space with corresponding random cycle weights P-a.s.

w(z,y) = Z wel(z,y) = Z Z We(rzw) - 1ot (z,y).

cec CeC zezd
e . . 3o . .
[ A
[ J o
L —1 . . . .T«—. .
2-cycles
(conductance model) 4-cycles
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(p-q) p-g moment condition: for all (z,v) € £y, and p, g € (1, 00),
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Conditions

(ERG) spatial shift invariance and ergodicity

on (2, F), the probability measure P is invariant and ergodic with respect to
spacial shifts {7, } which are measurable transformations

zeZdr
(p-q) p-g moment condition: for all (z,v) € £y, and p, g € (1, 00),
Elw(z,y)P] + Elw” (z,y) 9] < oo, Up+1/g < 2/d,

» Remark: for QFCLT the moment condition can be relaxed to 1/p + 1/¢ < 2/(d — 1).
See (Bella and Schaffner "19)

5/21



BCR Model
|

Properties of BCR

For jump rates contributed by a prototype cycle C' € C, we define the following

6/21



BCR Model
|

Properties of BCR

For jump rates contributed by a prototype cycle C' € C, we define the following
» generator L
Lop(w) = Z we (0, 2) (p(T2w) — P(w))
z~0
> Dirichlet energy £

Ec(p,¢) =E[p- Lcg]

> local drift V»
Vi =we(0,e5) — we (0, —e;)

6/21



BCR Model
|

Properties of BCR

For jump rates contributed by a prototype cycle C' € C, we define the following
» generator L

Lop(w) = Z we (0, 2) (p(T2w) — P(w))

z~0
> Dirichlet energy £

Ec(p,¢) =E[p- Lcg]

> local drift V»
Vi =we(0,e5) — we (0, —e;)

We obtain following nice properties:

> sector condition
Ec (o, 50)2 gnc Ec (o, 9)Ec(p,»)

> local drift as bounded operator
E[VEe)? Sne EWclEc(p, @)

6/21



BCR Model
n

Bounded Cycle Representation

Results

7/21



BCR Model
n

Bounded Cycle Representation

Results

Theorem 1 (QFCLT)
(Deuschel, Slowik, W. 23+) Under (ERG) and (p-q), P — a.s., it holds that for d > 2

n 1
(X" = =X,2,) = B(0,%)
n

with 33 non-degenerate.

7/21



BCR Model
n

Bounded Cycle Representation

Results

Theorem 1 (QFCLT)
(Deuschel, Slowik, W. 23+) Under (ERG) and (p-q), P — a.s., it holds that for d > 2

n 1
(X" = =X,2,) = B(0,%)
n

with 33 non-degenerate.

Theorem 2 (QLLT)

(Deuschel, Slowik, W. 23+) Under (ERG) and (p-q), P — a.s., it holds that for d > 2,
T >T1 >0, K >0,

2" (@, y) = n¥p,2,(lzn), lyn]) — p¥(z,y)

uniformly for (z,t), (y,t) € B(K) x [T1, T»).
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X! = P¥ — martingale + corrector

P (w,X¢) X4 (w,Xt)

- L¥®(w,x) = 0, ® harmonic coordinate )
- X'(w,") € Ly = {Dé: ¢ : 2 — R bounded and measurable } Leov

> sublinearity of the corrector for P-a.e. w

1, .
sup —|x'(w,z)| 2220 0.
z€B(n) N
> Helland(1982)'s martingale FCLT ~ Set 17" := L&(., X »,).¢ > 0. For

P-a.e. w,
M™ = (M™);50 = B(0,%)  inPY.
- use (MH) A3y, 43, s ergodicity of ¢ — T, (w)

Good news: Construction of corrector uses sector condition
Most challenging: sublinearity of the corrector! 8/21
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Key estimates for sublinearity
For f: non-negative and L“-subharmonic, and 7 cut-off on B

Let p(z) :== >, ., w(=,v), v’ CIRED DI L

oS (z)

» Quenched energy estimate (QEE)

EMf) _ e 2 2
TR R MRS g P

p«,B
Non-trivial: due to lack of integration by parts!

Good news: Cycle decomposition comes into play.

» Quenched maximum inequality (QMI)
weighted Sobolev inequality (WSI) + energy estimate + Moser iteration

s r
< 1V N @ :
Iégﬁfnﬂf@ﬂN( VN2, 5 om [ Hq732<2n>) 1fll2p.. 5, c2m)
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Graph inequalities

(WSI) Weighted Sobolev inequality For ¢ € [1, 00), p = p(d, q) := m

£ (nf)
a.B |B]

10013, < Csrad(B)2 ]|

(LPI) Local Poincaré inequality

&% (f)
4B |B|

Ilf - JZBHEP’B < CP|fad(B)2HVSH
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Ji(t,n) = Z <PZ2,5(07 z) — P2, (0, [nx] ))
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J=J+J2+J3

- Total error: z € R%, 5 > 0

J(t,n) = P (Xt(") € Bz(ﬁ)) - /B . Py (y)dy

- Discrete error: neighbor to the center

Ji(t,n) = Z <PZ2,5(07 z) = py2,(0, [nz] ))

zenBg (8)
- Discrete-Continuous error: centerg;s to centercont (+~+ QLLT)

Ja(t,n) = [nBz(8)] - P2, (0, [nz]) — vol(Bx(6)) - pr (z)dy

n

- Continuous error: center to neighbor

J3(t,n) =/B " (p?(x)—p?(y)>dy 12/21
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> Control on J, Jy, J3: uniformly bounded by 0(5%), as § — 0
- Js: easy, by the property of Gaussian kernel

- J: still easy, QFCLT
- Ji: hard, need

(HC) Holder continuity
(NDB.,) Near-diagonal heat kernel upper bounds

In particular,

(PHI) = (HC) + (NDB.,)

13/21
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Harnack Principle

Theorem 3 (EHI)

(D, Slowik, Weng 23+) For any xo € Z% and n € N. Let v > 0 be L* harmonic on
B'(zo,2n) = B(xo0,2n + N/2 — 1). Then, under (ERG) and (p-q), P — a.s., ford > 2,
there exists constant C'i gy, such that

max u(z) < Cpg min
z€B(z0,n/2) z€B(zg,n/2)

u(z).
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Theorem 3 (EHI)

(D, Slowik, Weng 23+) For any z:o € Z® andn € N. Let u > 0 be L* harmonic on
B'(zo,2n) = B(xo0,2n + N/2 — 1). Then, under (ERG) and (p-q), P — a.s., ford > 2,
there exists constant C'i gy, such that

max u(z) < Cpg min u
z€B(zg,n/2) z€B(zg,n/2)

Theorem 4 (PHI)

(D, Slowik, Weng 23+) For any « € Z¢, to > 0,n € N. Let u > 0 be L* caloric on
Q' (2n) = [to,t +n?] x B'(2n),i.e. dyu — L¥u = 0. Then, under (ERG) and (p-q),
P — a.s., for d > 2, there exists constant Cp g, such that

max u(z) < Cpyg min u(z),
(t,z)eQ— (t,z)€EQ 4

forQ_ = [to + inQ,to + %nZ} x B(zo,n/2),and Q+ = Q— o TZ?}?
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Lemma (BG)

Let{Us : o € (0, 1]} be a collection of subsets of a fixed measure space endowed with
ameasurem,and U, C Uy ifo’ < o. Fix0 <o <1,0< a* <ococandlet f bea
positive function on U := Uy. Suppose that there exists constants Cpg,, Cpg,

(C1) there exists k > O such thatforall§ < ¢’ < o < 1and 0 < o < min{1, a"/2},

_ 1
aF

1
||fHLa*(Ud,,m) < (CBGI (0 - U’)inm[U]ﬂ) “ 1Al Lo vy my

(C2) forall X >0,
m[lnf > A U] < CBGQ)\_I.

Then, there exists A = A(4, k, a™) such that

1
11l o gy < A mlUE"

Remark: (BG) replaces John-Nierenberg lemma due to lack of a suitable control on
BMO norm.
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The Bridge to (BG-C1)
Lemma (QMI)

Fixw € Q. let f : Z¢ — R be non-negative and L*-subharmonic on B = B(n). Then for
any p,q € (1,00] with 1/p + 1/q < 2, there exists k. = r(d, p, q) and C = C(d, p,q, N)
such that forall 1/2 < o’/ < o < 1, we have

LV il 17,5 \
1 loc,5,, sc(([,_;(,”)QHB) 1£l2p... 5, 1)

where p. = p/(p — 1) is the Holder conjugate of p.
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Fixw € Q. let f : Z¢ — R be non-negative and L*-subharmonic on B = B(n). Then for
any p,q € (1,00] with 1/p + 1/q < 2, there exists k. = r(d, p, q) and C = C(d, p,q, N)
such that forall 1/2 < o’/ < o < 1, we have

LV lull, sl
Il 5, < O — 222

2 ) Wy, m

(o

where p. = p/(p — 1) is the Holder conjugate of p.

Lemma (QMly, ;)

Fixw € Q. let f : Z¢ — R be non-negative and L*-subcaloric on

Q = Q(n) = [to,to +n?] x B(n). Then forany p,q € (1,00] with 1/p + 1/¢ < %,

ve € (0, %), s', s are chosen such that s’ — tg > en?,tg + n? — s” > en?, there exists
x = k(d,p,q) and C = C(d,p, q, N) such that forall 1/2 < ¢’ < o < 1, we have

AVl ) AV (125l )\
||f||m,Qg,sc( “j(ffa,)! “‘J’B) 1/112,q,- @

where Qo = I, X By, and I, = [oto + (1 — a)s’, (1 — o) + a(to + n?)).
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The Bridge to (BG-C2)

"Front wheel": Cut-off control
Proposition 1 (Cut-off control)
(Deuschel, Slowik, W. 23+) Let n,, (z) := (1 - %d(a:, B’(n)) V 0, be a cut-off with linear
decay, and define n- ., be the geometric mean of n,, along the cycle. Then

lim sup n*~4 Z Wc+mn(23'+z,nM(2?+z,n < C(N7 d)]E[WC] (3)
noee z€B" (2n)\B(n)

2
1, ()
In %=
n5y,n

where My ,, := maxgc~
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(Deuschel, Slowik, W. '23+) Let 1, (z) = ( — Ld(a, B’(n)) V 0, be a cut-off with linear
decay, and define n- ., be the geometric mean of n,, along the cycle. Then

limsuanid Z WC+1‘77(23'+I,77,M(2?+I,77, < C(N,d)E[W¢] (3)
noee z€B" (2n)\B(n)

2
Ny ()
In -2
n5,n

where My ,, := maxgc~

Proof Sketch:

—d

. 2 2 2
limsupn WC+w"7C’+:,nA/IC+z,n

n—reo z€B(2n—5K)\B(n)

< (limsup77.7d Z WC+w) (limsup n2ni(z)]wé+myn)
n— oo B(2n—5K)\B(n) n—oo

< (2C,) % 4e (N — 2)*E[W¢] - C©
=: C(N, d)E[W(]
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the bridge to (BG-C2)

"Back wheel": Energy inequality for the logarithm
Proposition 2 (Deuschel, Kumagai '13)
[Prop.3.7 (ii) n = 1] For each | € Nand M > 0, there exists c1,ce > 0 such that
! !
Z(eai — l)eﬁ’i +co —c1 Z aJQ- >0,

j=1 j=1

forall (ay,--- ), (@1, ,@;) € Rhwith 3, o = 32, w5 = 0.
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"Back wheel": Energy inequality for the logarithm
Proposition 2 (Deuschel, Kumagai '13)
[Prop.3.7 (ii) n = 1] For each | € Nand M > 0, there exists c1,ce > 0 such that

l l

Z(eai —1)e® 4o —c1 Z aJQ- >0,

j=1 j=1
forall (a1, -+ ,ap), (w1, ;) € R with Y =20 =0.

Lemma (Energy inequality for the logarithm)
Fixy = (x1,- -+ ,Zn, ). Then forn,u > 0, there exists c1 ~, ca,~,n > 0, such that

Ey(mPuu) < 02,7,777]?, - 01,777357(1%), 4

1
where n, = Hze'y n(z)".

Proof: Apply above proposition with above choices and o;; = Inu(zj41) — Inu(z;),
and w; = 2(Innp(z;) — Inny.n).

18/21
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Ride "two wheels" to EHI

For non-negative L* — harmonic function w on B’(2n) D B(n):
n2~5;§f"> (Inu)

First combine two ingredients, get (QEE},,): lim sup,, _, o BT

< O(N, d)E[u].
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For non-negative L* — harmonic function w on B’(2n) D B(n):

S
n? -Ej‘é(”) (Inw)

Then, (QEEy,) + (LPI) + (QMI) = conditions for (BG) satisfied = (EHI)

First combine two ingredients, get (QEE},,): lim sup,, _, o

> (QEEy,) + (LPI): implies (BG-C2) m[In(-) > X\ | B] < A~ is satisfied both
for f := ue=(Inwp = glnu—(nu)p gnd f-1,

> (QMI):implies (BG-C): |-l o« 5, S IIllo. 5, is satisfied for f, f~'. Thus
(BG-C1) satisfied.

»> (BG): lemma of Bombieri and Giusti, if some fluctuation f is "nice", then

1§5§1.

Ifllae .z, S A 5

> In our case, it implies

Hf71||ooB <AV = enws < AY rErglinu(:r) and || fllopx p, < AT
o o!

> Put things together, obtain (EHI): for o’ < o

1 .
maxu(@) Sx,a o) @l 5, = 1Fl2pes, €7 Saya; minu()

y 7 19/21
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Cut-off control (3) < O(nd_Q) —C f,‘g(n) (Inuy) 5)

(QEE! ) + (LPI) + (QMI)sp.: => conditions for (BG) satisfied = (PHI)

In

> (QEE! ) + (LPI): follow (S-C) Saloff-Coste’s argument: divide by n¢, use (LPI) and
then absorb O(n~2), get something like

B (1) + On~2|[we — W (D)3 5 <0

where w; := —n~%In ut — O(’I’L—Q),W(t) = —n_d(ln ug)B(n) — O(TL_Q).
Further analytic arguments implies f; := e #¢t—(nut)p and f[l satisfies
(BG-C1) w.rt. @ and suitable measure m.
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For a non-negative caloric function » on space-time box Q’(2n) > Q(2n), on which
Oyu — L*u = 0: we first get (QEE! )

Os (i, —Inue) pr(any = Moty ', —Okts) Br(2m)

Mmauy ', —L¥ut) pr(2n)
Energy ineq. forin (4) < Z W (w)niy,y]\lgyn —Ch Z 77,21_’,\/5,‘;] (ln ut) + O(nd72)
'yCB”(Qn) yC B’ (2n)
YZB'(n)
Cut-off control (3) < O(nd_Q) — C1g§(n) (Inuy) 5)

(QEE! ) + (LPI) + (QMI)sp.: => conditions for (BG) satisfied = (PHI)

In
> (QEE! ) + (LPI): follow (S-C) Saloff-Coste’s argument: divide by n<, use (LPI) and
then absorb O(n~2), get something like

B (1) + On~2|[we — W (D)3 5 <0

where w; := —n~%In ut — O(’I’L—Q),W(t) = —n_d(ln ut)B(n) — O(TL_Q).

Further analytic arguments implies f; := e #¢t—(nut)p and f[l satisfies

(BG-C1) w.rt. @ and suitable measure m.
> (QMI),p.+: need (QEE) in space time, a consequence of (QEE) in space, by using

the Moser iteration, implies (BG-C2). 20/21
> therestis similar as in (EHI).
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Summary

» RWRE in bounded cycles is extends RCM to the non-symmetric regime, while
preserving the sector condition

» The bounded cycle representation (BCR) plays an essential role in obtaining
(QEE) and (QEE! ), while the former leads to QFCLT, and the latter helps with
(PHI) (so does (QEE;,,) for EHI). Together leads to QLLT.

> In short, we adapt the analytic scheme of (Andres, D, Slowik '15) to BCR model,
while dealing with two energy estimates that are non-trivial for non-symmetric
case.

Extension
» random environment that is divergence free with stream cycle representation
> bounded cycles that allow negative weights

Open Problem

> cycles of unbounded length but weighted.

21/21
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