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Motivation BCR Model QFCLT QLLT Harnack Principle Summary

RWRE
Background

▶ (Zd, E⃗d) with random environments
ω ≡ {ωz(x) : z ∈ N , x ∈ Zd} (non-negative)

▶ Continuous time random walk (CTRW):
(Xω

t )t≥0

■ speed µ(x) =
∑

z∈N ωz(x)

■ transition probability pz(x) = ωz(x)
µ(x)

▶ generator and Dirichlet energy

■ quenched

Lωf(x) =
∑
z∈N

ωz(x)∇zf(x) Eω(f, g) = ⟨f,−Lωg⟩

■ annealed

(Lϕ)(ω) =
∑
z∈N

ωz(0)Dzϕ(ω) E(ϕ, φ) = E[ϕ(−Lφ)]
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RWRE
Model variations

symmetric balanced doubly stochastic

cyclic ballistic perturbed
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Motivation BCR Model QFCLT QLLT Harnack Principle Summary

RWRE
Previous Results on QFCLT and QLLT

▶ Symmetric case: random conductance model under (p-q)moment condition

■ Quenched invariance principle(Andres, Deuschel, Slowik ’15)
For (Ω,F ,P) ergodic wrt. (τx)x∈Zd , P− a.s.

(X
(n)
t =

1

n
Xtn2 ) =⇒ B(0,Σ)

■ Local limit theorem (Andres, Deuschel, Slowik ’15)

pnt (x, y) = ndptn2 (⌊nx⌋, ⌊yn⌋) −→ pΣt (x, y)

Need
(PHI) Parabolic Harnack inequality

Question: What about the non-symmetric case?

Answer: Bounded cycle!
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Motivation BCR Model QFCLT QLLT Harnack Principle Summary

BCR Model
RE in bounded cycle representation

▶ environment: collection of non-negative jump rates for nearest neighbor RWs on
lattice Zd(d ≥ 2)

ω ≡ {ω(x, y) : (x, y) ∈ E⃗d}

▶ bounded cycle representation (BCR): ω is almost surely generated by a
collection of nearest-neighbor prototype cycles C of bounded length N shifting
over the space with corresponding random cycle weights P-a.s.

ω(x, y) =
∑
C∈C

ωC(x, y) =
∑
C∈C

∑
z∈Zd

WC(τzω) · 1C+z(x, y).

2-cycles
(conductance model) 4-cycles
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Motivation BCR Model QFCLT QLLT Harnack Principle Summary

Conditions

(ERG) spatial shift invariance and ergodicity

on (Ω,F), the probability measure P is invariant and ergodic with respect to
spacial shifts {τx}x∈Zd , which are measurable transformations

(p-q) p-q moment condition: for all (x, y) ∈ E⃗d , and p, q ∈ (1,∞],

E[ω(x, y)p] + E[ωS(x, y)−q ] < ∞, 1/p + 1/q < 2/d,

▶ Remark: for QFCLT the moment condition can be relaxed to 1/p + 1/q < 2/(d − 1).
See (Bella and Schäffner ’19)
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Motivation BCR Model QFCLT QLLT Harnack Principle Summary

Properties of BCR
For jump rates contributed by a prototype cycle C ∈ C, we define the following

▶ generator LC

LCϕ(ω) =
∑
z∼0

ωC(0, z)
(
ϕ(τzω)− ϕ(ω)

)
▶ Dirichlet energy EC

EC(φ, ϕ) = E[φ · LCϕ]

▶ local drift VC

V i
C = ωC(0, ei)− ωC(0,−ei)

We obtain following nice properties:
▶ sector condition

EC(ϕ, φ)2 ≲nC EC(ϕ, ϕ)EC(φ,φ)

▶ local drift as bounded operator

E[V i
Cφ]2 ≲nC E[WC ]EC(φ,φ)

6/21
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Bounded Cycle Representation
Results

Theorem 1 (QFCLT)
(Deuschel, Slowik, W. 23+) Under (ERG) and (p-q), P− a.s., it holds that for d ≥ 2

(X
(n)
t =

1

n
Xn2t) =⇒ B(0,Σ)

with Σ non-degenerate.

Theorem 2 (QLLT)
(Deuschel, Slowik, W. 23+) Under (ERG) and (p-q), P− a.s., it holds that for d ≥ 2,
T2 > T1 > 0, K > 0,

p
(n)
t (x, y) = ndpn2t(⌊xn⌋, ⌊yn⌋) −→ pΣt (x, y)

uniformly for (x, t), (y, t) ∈ B(K)× [T1, T2].
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Motivation BCR Model QFCLT QLLT Harnack Principle Summary

QFCLT
Strategy

▶ martingale decomposition for i = 1, . . . , d

Xi
t = Pω

0 − martingale︸ ︷︷ ︸
Φi(ω,Xt)

+ corrector︸ ︷︷ ︸
χi(ω,Xt)

- LωΦ(ω, x) = 0, Φ harmonic coordinate
- χi(ω, ·) ∈ L2

pot = {Dϕ : ϕ : Ω → R bounded and measurable}L2
cov

▶ sublinearity of the corrector for P-a.e. ω

sup
x∈B(n)

1

n

∣∣χi(ω, x)
∣∣ n→∞−−−−→ 0.

▶ Helland(1982)’s martingale FCLT Set M i,(n)
t := 1

n
Φi(·, Xn2t), t ≥ 0. For

P-a.e. ω,
M(n) = (M

(n)
t )t≥0 =⇒ B(0,Σ) in Pω

0 .

- use ⟨M i,(n),Mj,(n)⟩t → tΣi,j ergodicity of t → τXt (ω)

Good news: Construction of corrector uses sector condition
Most challenging: sublinearity of the corrector!
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∣∣ n→∞−−−−→ 0.

▶ Helland(1982)’s martingale FCLT Set M i,(n)
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t )t≥0 =⇒ B(0,Σ) in Pω
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- use ⟨M i,(n),Mj,(n)⟩t → tΣi,j ergodicity of t → τXt (ω)

Good news: Construction of corrector uses sector condition

Most challenging: sublinearity of the corrector!
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QFCLT
Key estimates for sublinearity

For f : non-negative and Lω -subharmonic, and η cut-off on B

Let µω(x) :=
∑

y∼x ω(x, y), νω
S
(x) :=

∑
y∼x

1
ωS(x,y)

▶ Quenched energy estimate (QEE)

Eω(ηf)

|B|
≲ N2∥∇η∥2

ℓ∞(E⃗d)
∥µω∥p,B

∥∥f2
∥∥
p∗,B

Non-trivial: due to lack of integration by parts!

Good news: Cycle decomposition comes into play.

▶ Quenched maximum inequality (QMI)

weighted Sobolev inequality (WSI) + energy estimate + Moser iteration

max
x∈Bz(n)

|f(x)| ≲
(
1 ∨N2∥µω∥p,Bz(2n)

∥∥∥νωS
∥∥∥
q,Bz(2n)

)κ

∥f∥2p∗,Bz(2n)
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QFCLT
Useful inequalities for sublinearity

Graph inequalities

(WSI) Weighted Sobolev inequality For q ∈ [1,∞), ρ ≡ ρ(d, q) := d
(d−2)+d/q

∥(ηf)∥22ρ,B ≤ CSIrad(B)2
∥∥∥νS∥∥∥

q,B

EωS
(ηf)

|B|
.

(LPI) Local Poincaré inequality

∥∥f − f̄B
∥∥2
2ρ,B

≤ CPIrad(B)2
∥∥∥νS∥∥∥

q,B

EωS

B (f)

|B|
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Motivation BCR Model QFCLT QLLT Harnack Principle Summary

QFCLT
Proof scheme for sublinearity

▶ (QEE) + (WSI) Moser−−−−→ (QMI)

▶ (LPI) + construction of the corrector telescope mean−−−−−−−−−→ (ℓ2p, B)
sublinear

▶ (QMI) + (ℓ2p, B) sublinear two-scale argument−−−−−−−−−−−→ (ℓ∞, B)
sublinear
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Motivation BCR Model QFCLT QLLT Harnack Principle Summary

QLLT
Strategy

▶ Decomposition of error (Barlow, Hambly ’09)

J = J1 + J2 + J3

- Total error: x ∈ Rd, δ > 0

J(t, n) = Pω
0

(
X

(n)
t ∈ Bx(δ)

)
−

∫
Bx(δ)

pΣt (y)dy

- Discrete error: neighbor to the center

J1(t, n) =
∑

z∈nBx(δ)

(
pω
n2t

(0, z)− pω
n2t

(0, ⌊nx⌋)
)

- Discrete-Continuous error: centerdis to centercont (↭ QLLT)

J2(t, n) = |nBx(δ)| · pωn2t
(0, ⌊nx⌋)− vol(Bx(δ)) · pΣt (x)dy

- Continuous error: center to neighbor

J3(t, n) =

∫
Bx(δ)

(
pΣt (x)− pΣt (y)

)
dy

12/21
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Motivation BCR Model QFCLT QLLT Harnack Principle Summary

QLLT
Strategy

▶ Control on J, J1, J3: uniformly bounded by o(δd), as δ → 0

- J3: easy, by the property of Gaussian kernel

- J : still easy, QFCLT

- J1: hard, need

(HC) Hölder continuity
(NDBu) Near-diagonal heat kernel upper bounds

In particular,

(PHI) =⇒ (HC) + (NDBu)
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Harnack Principle

Theorem 3 (EHI)
(D, Slowik, Weng 23+) For any x0 ∈ Zd and n ∈ N. Let u > 0 be Lω harmonic on
B′(x0, 2n) ≡ B(x0, 2n+ N/2 − 1). Then, under (ERG) and (p-q), P− a.s., for d ≥ 2,
there exists constant CEH , such that

max
x∈B(x0,n/2)

u(x) ≤ CEH min
x∈B(x0,n/2)

u(x).

Theorem 4 (PHI)
(D, Slowik, Weng 23+) For any x ∈ Zd , t0 ≥ 0, n ∈ N. Let u > 0 be Lω caloric on
Q′(2n) ≡ [t0, t+ n2]×B′(2n), i.e. ∂tu− Lωu = 0. Then, under (ERG) and (p-q),
P− a.s., for d ≥ 2, there exists constant CPH , such that

max
(t,x)∈Q−

u(x) ≤ CPH min
(t,x)∈Q+

u(x),

for Q− = [t0 + 1
4
n2, t0 + 1

2
n2]×B(x0, n/2), and Q+ = Q− ◦ τ time

n2/2
.
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The "Main Road": Bombieri and Giusti

Lemma (BG)
Let {Uσ : σ ∈ (0, 1]} be a collection of subsets of a fixed measure space endowed with
a measure m, and Uσ′ ⊂ Uσ if σ′ < σ. Fix 0 < σ < 1, 0 < α∗ ≤ ∞ and let f be a
positive function on U := U1. Suppose that there exists constants CBG1

, CBG2

(C1) there exists κ > 0 such that for all δ ≤ σ′ < σ < 1 and 0 < α ≤ min{1,α∗/2},

∥f∥Lα∗
(Uσ′ ,m) ≤

(
CBG1

(σ − σ′)−κm[U ]−1
) 1

α
− 1

α∗
∥f∥Lα(Uσ,m)

(C2) for all λ > 0,
m[ln f > λ | U ] ≤ CBG2

λ−1.

Then, there exists A = A(δ, κ, α∗) such that

∥f∥Lα∗
(Uδ,m) ≤ A m[U ]

1
α∗ .

Remark: (BG) replaces John-Nierenberg lemma due to lack of a suitable control on
BMO norm.

Good news: apply result to get (EHI) and (PHI) is easy.

Bad news: to show (C1) and (C2) are atisfied is complicated!
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Motivation BCR Model QFCLT QLLT Harnack Principle Summary

The Bridge to (BG-C1)

Lemma (QMI)
Fix ω ∈ Ω. let f : Zd → R be non-negative and Lω -subharmonic on B ≡ B(n). Then for
any p, q ∈ (1,∞] with 1/p + 1/q < 2

d
, there exists κ = κ(d, p, q) and C = C(d, p, q,N)

such that for all 1/2 ≤ σ′ < σ ≤ 1, we have

∥f∥∞,Bσ′ ≤ C

(1 ∨ ∥µ∥p,B
∥∥νS∥∥

q,B

(σ − σ′)2

)κ

∥f∥2p∗,Bσ
, (1)

where p∗ = p/(p− 1) is the Hölder conjugate of p.

Lemma (QMIsp.t)
Fix ω ∈ Ω. let f : Zd → R be non-negative and Lω -subcaloric on
Q ≡ Q(n) = [t0, t0 + n2]×B(n). Then for any p, q ∈ (1,∞] with 1/p + 1/q < 2

d
,

∀ε ∈ (0, 1
4
), s′, s′′ are chosen such that s′ − t0 > εn2, t0 + n2 − s′′ ≥ εn2 , there exists

κ = κ(d, p, q) and C = C(d, p, q,N) such that for all 1/2 ≤ σ′ < σ ≤ 1, we have

∥f∥∞,Qσ′ ≤ C

( (1 ∨ ∥µ∥p,B)(1 ∨
∥∥νS∥∥

q,B
)

ε(σ − σ′)2

)κ

∥f∥2,Qσ
, (2)

where Qσ = Iσ ×Bσ , and Iσ = [σt0 + (1− σ)s′, (1− σ)s′′ + σ(t0 + n2)].
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Motivation BCR Model QFCLT QLLT Harnack Principle Summary

The Bridge to (BG-C2)
"Front wheel": Cut-off control

Proposition 1 (Cut-off control)
(Deuschel, Slowik, W. ’23+) Let ηn(x) :=

(
1− 1

n
d(x,B′(n)

)
∨ 0, be a cut-off with linear

decay, and define ηγ,n be the geometric mean of ηn along the cycle. Then

lim sup
n→∞

n2−d
∑

x∈B′′(2n)\B(n)

WC+xη
2
C+x,nM

2
C+x,n ≤ C(N, d)E[WC ] (3)

where Mγ,n := maxx∈γ

∣∣∣∣ln η2
n(x)

η2
γ,n

∣∣∣∣.
Proof Sketch:

lim sup
n→∞

n
2−d

∑
x∈B(2n−5K)\B(n)

WC+xη
2
C+x,nM

2
C+x,n

≤
(
lim sup
n→∞

n
−d

∑
B(2n−5K)\B(n)

WC+x

) (
lim sup
n→∞

n
2
η
2
n(x)M

2
C+x,n

)
≤ (2Cvol)

d
4e (N − 2)

2 E[WC ] · C
=: C(N, d)E[WC ]
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Motivation BCR Model QFCLT QLLT Harnack Principle Summary

the bridge to (BG-C2)
"Back wheel": Energy inequality for the logarithm

Proposition 2 (Deuschel, Kumagai ’13)
[Prop.3.7 (ii) n = 1] For each l ∈ N and M > 0, there exists c1, c2 > 0 such that

l∑
j=1

(eαj − 1)ew̄j + c2 − c1

l∑
j=1

α2
j ≥ 0,

for all (α1, · · · , αl), (w̄1, · · · , w̄l) ∈ Rl with
∑

j αj =
∑

j w̄j = 0.

Lemma (Energy inequality for the logarithm)
Fix γ = (x1, · · · , xnγ ). Then for η, u > 0, there exists c1,γ , c2,γ,η > 0, such that

Eγ(η2u−1, u) ≤ c2,γ,ηη
2
γ − c1,γη

2
γEγ(lnu), (4)

where ηγ :=
∏

x∈γ η(x)
1

nγ .

Proof: Apply above proposition with above choices and αj = lnu(xj+1)− lnu(xj),
and w̄j = 2(ln ηn(xj)− ln ηγ,n).
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Motivation BCR Model QFCLT QLLT Harnack Principle Summary

Ride "two wheels" to EHI
For non-negative Lω− harmonic function u on B′(2n) ⊃ B(n):

First combine two ingredients, get (QEEln): lim supn→∞
n2·EωS

B(n)(lnu)

|B(n)| ≤ C(N, d)E[µ].

Then, (QEEln) + (LPI) + (QMI) =⇒ conditions for (BG) satisfied =⇒ (EHI)

▶ (QEEln) + (LPI): implies (BG-C2) m[ln(·) > λ | B] < λ−1 is satisfied both
for f := ue−(lnu)B = elnu−(lnu)B , and f−1.

▶ (QMI): implies (BG-C1): ∥·∥α∗,Bσ′ ≲ ∥·∥α,Bσ
is satisfied for f, f−1. Thus

(BG-C1) satisfied.
▶ (BG): lemma of Bombieri and Giusti, if some fluctuation f is "nice", then

∥f∥α∗,Bδ
≤ A,

1

2
≤ δ ≤ 1.

▶ In our case, it implies∥∥f−1
∥∥
∞,Bσ′

≤ Aω
1 ⇐⇒ e(lnu)B ≤ Aω

1 min
Bσ′

u(x) and ∥f∥2p∗,Bσ
≤ Aω

2

▶ Put things together, obtain (EHI): for σ′ < σ

max
Bσ′

u(x) ≲N,d,(p−q) ∥u∥2p∗,Bσ
= ∥f∥2p∗,Bσ

· e(lnu)B ≲A1,A2
min
Bσ′

u(x)
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Then, (QEEln) + (LPI) + (QMI) =⇒ conditions for (BG) satisfied =⇒ (EHI)

▶ (QEEln) + (LPI): implies (BG-C2) m[ln(·) > λ | B] < λ−1 is satisfied both
for f := ue−(lnu)B = elnu−(lnu)B , and f−1.

▶ (QMI): implies (BG-C1): ∥·∥α∗,Bσ′ ≲ ∥·∥α,Bσ
is satisfied for f, f−1. Thus

(BG-C1) satisfied.
▶ (BG): lemma of Bombieri and Giusti, if some fluctuation f is "nice", then

∥f∥α∗,Bδ
≤ A,

1

2
≤ δ ≤ 1.

▶ In our case, it implies∥∥f−1
∥∥
∞,Bσ′

≤ Aω
1 ⇐⇒ e(lnu)B ≤ Aω

1 min
Bσ′

u(x) and ∥f∥2p∗,Bσ
≤ Aω

2

▶ Put things together, obtain (EHI): for σ′ < σ

max
Bσ′

u(x) ≲N,d,(p−q) ∥u∥2p∗,Bσ
= ∥f∥2p∗,Bσ

· e(lnu)B ≲A1,A2
min
Bσ′

u(x)
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Motivation BCR Model QFCLT QLLT Harnack Principle Summary

Ride "two wheels" to PHI
For a non-negative caloric function u on space-time box Q′(2n) ⊃ Q(2n), on which
∂tu− Lωu = 0: we first get (QEEtln)

∂t⟨η2n,− lnut⟩B′(2n) = ⟨η2nu
−1
t ,−∂tut⟩B′(2n)

= ⟨η2nu
−1
t ,−Lωut⟩B′(2n)

Energy ineq. for ln (4) ≤
∑

γ⊂B′′(2n)

γ ̸⊂B′(n)

Wγ(ω)η
2
n,γM

2
γ,n − C1

∑
γ⊂B′′(2n)

η2n,γEω
γ (lnut) +O(nd−2)

Cut-off control (3) ≤ O(nd−2)− C1Eω
B(n)(lnut) (5)

(QEEtln) + (LPI) + (QMI)sp.t =⇒ conditions for (BG) satisfied =⇒ (PHI)

▶ (QEEtln) + (LPI): follow (S-C) Saloff-Coste’s argument: divide by nd , use (LPI) and
then absorb O(n−2), get something like

∂tW (t) + Cn−2
∥∥wt −W (t)

∥∥2
2,B

≤ 0

where wt := −n−d lnut −O(n−2), W (t) := −n−d(lnut)B(n) −O(n−2).
Further analytic arguments implies ft := elnut−(lnut)B , and f−1

t satisfies
(BG-C1) w.r.t. Q and suitable measure m.

▶ (QMI)sp.t: need (QEE) in space time, a consequence of (QEE) in space, by using
the Moser iteration, implies (BG-C2).

▶ the rest is similar as in (EHI).
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Motivation BCR Model QFCLT QLLT Harnack Principle Summary

Summary

▶ RWRE in bounded cycles is extends RCM to the non-symmetric regime, while
preserving the sector condition

▶ The bounded cycle representation (BCR) plays an essential role in obtaining
(QEE) and (QEEtln), while the former leads to QFCLT, and the latter helps with
(PHI) (so does (QEEln) for EHI). Together leads to QLLT.

▶ In short, we adapt the analytic scheme of (Andres, D, Slowik ’15) to BCR model,
while dealing with two energy estimates that are non-trivial for non-symmetric
case.

Extension
▶ random environment that is divergence free with stream cycle representation
▶ bounded cycles that allow negative weights

Open Problem
▶ cycles of unbounded length but weighted.
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