

Quenched local limit theorem for RWRE admitting bounded cycle representation

Weile Weng (TU Berlin)

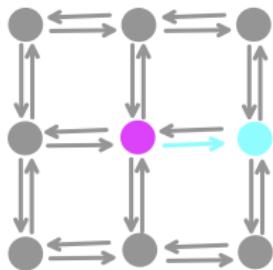
joint work with

Jean-Dominique Deuschel (TU Berlin)
Martin Slowik (U Mannheim)

CIME: Statistical Mechanics and Stochastic PDEs 11 - 15.09.2023

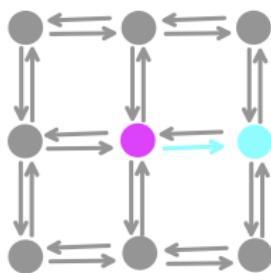
RWRE

Background



RWRE

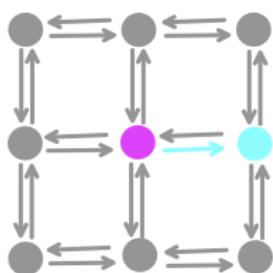
Background



- ▶ $(\mathbb{Z}^d, \vec{\mathbb{E}}^d)$ with random environments
 $\omega \equiv \{\omega_z(x) : z \in \mathcal{N}, x \in \mathbb{Z}^d\}$ (non-negative)

RWRE

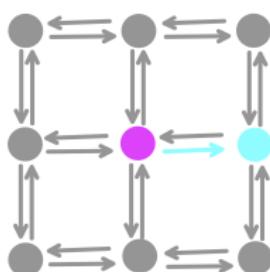
Background



- ▶ $(\mathbb{Z}^d, \vec{\mathbb{E}}^d)$ with random environments
 $\omega \equiv \{\omega_z(x) : z \in \mathcal{N}, x \in \mathbb{Z}^d\}$ (non-negative)
- ▶ Continuous time random walk (**CTRW**):
 $(X_t^\omega)_{t \geq 0}$
 - speed $\mu(x) = \sum_{z \in \mathcal{N}} \omega_z(x)$
 - transition probability $p_z(x) = \frac{\omega_z(x)}{\mu(x)}$

RWRE

Background



- ▶ $(\mathbb{Z}^d, \vec{\mathbb{E}}^d)$ with random environments
 $\omega \equiv \{\omega_z(x) : z \in \mathcal{N}, x \in \mathbb{Z}^d\}$ (non-negative)
- ▶ Continuous time random walk (**CTRW**):
 $(X_t^\omega)_{t \geq 0}$
 - speed $\mu(x) = \sum_{z \in \mathcal{N}} \omega_z(x)$
 - transition probability $p_z(x) = \frac{\omega_z(x)}{\mu(x)}$

- ▶ generator and Dirichlet energy

- **quenched**

$$L^\omega f(x) = \sum_{z \in \mathcal{N}} \omega_z(x) \nabla_z f(x) \quad \mathcal{E}^\omega(f, g) = \langle f, -L^\omega g \rangle$$

- **annealed**

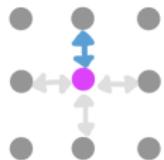
$$(\mathcal{L}\phi)(\omega) = \sum_{z \in \mathcal{N}} \omega_z(0) D_z \phi(\omega) \quad \mathcal{E}(\phi, \varphi) = \mathbb{E}[\phi(-\mathcal{L}\varphi)]$$

RWRE

Model variations

RWRE

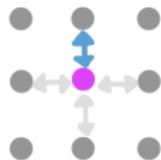
Model variations



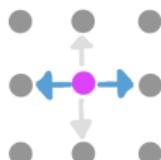
symmetric

RWRE

Model variations



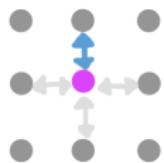
symmetric



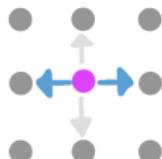
balanced

RWRE

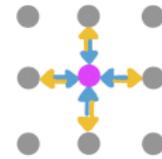
Model variations



symmetric



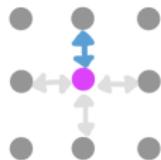
balanced



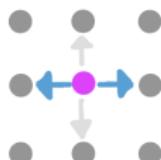
doubly stochastic

RWRE

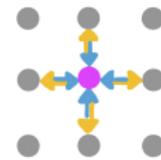
Model variations



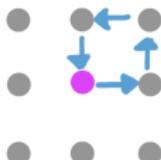
symmetric



balanced



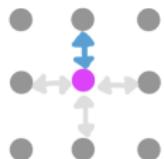
doubly stochastic



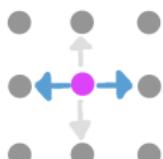
cyclic

RWRE

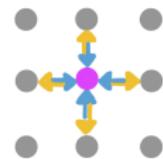
Model variations



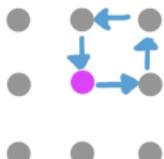
symmetric



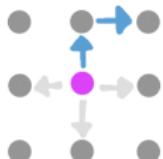
balanced



doubly stochastic



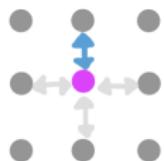
cyclic



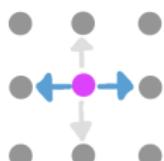
ballistic

RWRE

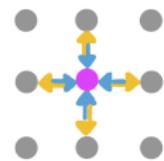
Model variations



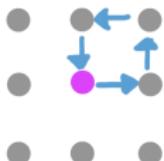
symmetric



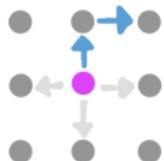
balanced



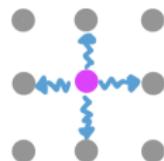
doubly stochastic



cyclic



ballistic



perturbed

RWRE

Previous Results on QFCLT and QLLT

- ▶ **Symmetric case:** random conductance model under **(p-q)moment condition**

- **Quenched invariance principle**(Andres, Deuschel, Slowik '15)
For $(\Omega, \mathcal{F}, \mathbb{P})$ ergodic wrt. $(\tau_x)_{x \in \mathbb{Z}^d}$, $\mathbb{P} - a.s.$

$$(X_t^{(n)} = \frac{1}{n} X_{tn^2}) \implies B(0, \Sigma)$$

RWRE

Previous Results on QFCLT and QLLT

- ▶ **Symmetric case:** random conductance model under **(p-q)moment condition**

- **Quenched invariance principle** (Andres, Deuschel, Slowik '15)
For $(\Omega, \mathcal{F}, \mathbb{P})$ ergodic wrt. $(\tau_x)_{x \in \mathbb{Z}^d}$, $\mathbb{P} - a.s.$

$$(X_t^{(n)} = \frac{1}{n} X_{tn^2}) \implies B(0, \Sigma)$$

- **Local limit theorem** (Andres, Deuschel, Slowik '15)

$$p_t^n(x, y) = n^d p_{tn^2}(\lfloor nx \rfloor, \lfloor yn \rfloor) \longrightarrow p_t^\Sigma(x, y)$$

RWRE

Previous Results on QFCLT and QLLT

- ▶ **Symmetric case:** random conductance model under (p-q)moment condition

- **Quenched invariance principle** (Andres, Deuschel, Slowik '15)
For $(\Omega, \mathcal{F}, \mathbb{P})$ ergodic wrt. $(\tau_x)_{x \in \mathbb{Z}^d}$, $\mathbb{P} - a.s.$

$$(X_t^{(n)} = \frac{1}{n} X_{tn^2}) \implies B(0, \Sigma)$$

- **Local limit theorem** (Andres, Deuschel, Slowik '15)

$$p_t^n(x, y) = n^d p_{tn^2}(\lfloor nx \rfloor, \lfloor yn \rfloor) \longrightarrow p_t^\Sigma(x, y)$$

Need

(PHI) Parabolic Harnack inequality

RWRE

Previous Results on QFCLT and QLLT

- ▶ **Symmetric case:** random conductance model under (p-q)moment condition

- **Quenched invariance principle** (Andres, Deuschel, Slowik '15)
For $(\Omega, \mathcal{F}, \mathbb{P})$ ergodic wrt. $(\tau_x)_{x \in \mathbb{Z}^d}$, $\mathbb{P} - a.s.$

$$(X_t^{(n)} = \frac{1}{n} X_{tn^2}) \implies B(0, \Sigma)$$

- **Local limit theorem** (Andres, Deuschel, Slowik '15)

$$p_t^n(x, y) = n^d p_{tn^2}(\lfloor nx \rfloor, \lfloor yn \rfloor) \longrightarrow p_t^\Sigma(x, y)$$

Need

(PHI) Parabolic Harnack inequality

Question: What about the non-symmetric case?

RWRE

Previous Results on QFCLT and QLLT

- ▶ **Symmetric case:** random conductance model under **(p-q)moment condition**

- **Quenched invariance principle** (Andres, Deuschel, Slowik '15)
For $(\Omega, \mathcal{F}, \mathbb{P})$ ergodic wrt. $(\tau_x)_{x \in \mathbb{Z}^d}$, $\mathbb{P} - a.s.$

$$(X_t^{(n)} = \frac{1}{n} X_{tn^2}) \implies B(0, \Sigma)$$

- **Local limit theorem** (Andres, Deuschel, Slowik '15)

$$p_t^n(x, y) = n^d p_{tn^2}(\lfloor nx \rfloor, \lfloor yn \rfloor) \longrightarrow p_t^\Sigma(x, y)$$

Need

(PHI) Parabolic Harnack inequality

Question: What about the non-symmetric case?

Answer: **Bounded cycle!**

BCR Model

RE in bounded cycle representation

BCR Model

RE in bounded cycle representation

- ▶ **environment:** collection of *non-negative* jump rates for nearest neighbor RWs on lattice

BCR Model

RE in bounded cycle representation

- ▶ **environment:** collection of *non-negative* jump rates for nearest neighbor RWs on lattice $\mathbb{Z}^d (d \geq 2)$

$$\omega \equiv \{\omega(x, y) : (x, y) \in \vec{E}_d\}$$

- ▶ **bounded cycle representation (BCR):** ω is almost surely generated by a collection of nearest-neighbor prototype cycles \mathcal{C} of bounded length N shifting over the space with corresponding random cycle weights \mathbb{P} -a.s.

$$\omega(x, y) = \sum_{C \in \mathcal{C}} \omega_C(x, y) = \sum_{C \in \mathcal{C}} \sum_{z \in \mathbb{Z}^d} W_C(\tau_z \omega) \cdot \mathbb{1}_{C+z}(x, y).$$

BCR Model

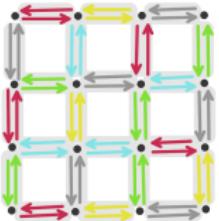
RE in bounded cycle representation

- ▶ **environment:** collection of *non-negative* jump rates for nearest neighbor RWs on lattice $\mathbb{Z}^d (d \geq 2)$

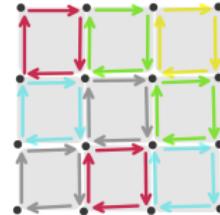
$$\omega \equiv \{\omega(x, y) : (x, y) \in \vec{E}_d\}$$

- ▶ **bounded cycle representation (BCR):** ω is almost surely generated by a collection of nearest-neighbor prototype cycles \mathcal{C} of bounded length N shifting over the space with corresponding random cycle weights \mathbb{P} -a.s.

$$\omega(x, y) = \sum_{C \in \mathcal{C}} \omega_C(x, y) = \sum_{C \in \mathcal{C}} \sum_{z \in \mathbb{Z}^d} W_C(\tau_z \omega) \cdot \mathbb{1}_{C+z}(x, y).$$



2-cycles
(conductance model)



4-cycles

Conditions

(ERG) spatial shift invariance and ergodicity

on (Ω, \mathcal{F}) , the probability measure \mathbb{P} is invariant and ergodic with respect to spacial shifts $\{\tau_x\}_{x \in \mathbb{Z}^d}$, which are measurable transformations

Conditions

(ERG) spatial shift invariance and ergodicity

on (Ω, \mathcal{F}) , the probability measure \mathbb{P} is invariant and ergodic with respect to spacial shifts $\{\tau_x\}_{x \in \mathbb{Z}^d}$, which are measurable transformations

(p-q) **p-q moment condition:** for all $(x, y) \in \vec{E}_d$, and $p, q \in (1, \infty]$,

$$\mathbb{E}[\omega(x, y)^p] + \mathbb{E}[\omega^S(x, y)^{-q}] < \infty, \quad 1/p + 1/q < 2/d,$$

Conditions

(ERG) spatial shift invariance and ergodicity

on (Ω, \mathcal{F}) , the probability measure \mathbb{P} is invariant and ergodic with respect to spacial shifts $\{\tau_x\}_{x \in \mathbb{Z}^d}$, which are measurable transformations

(p-q) **p-q moment condition:** for all $(x, y) \in \vec{E}_d$, and $p, q \in (1, \infty]$,

$$\mathbb{E}[\omega(x, y)^p] + \mathbb{E}[\omega^S(x, y)^{-q}] < \infty, \quad 1/p + 1/q < 2/d,$$

- ▶ Remark: for QFCLT the moment condition can be relaxed to $1/p + 1/q < 2/(d - 1)$.
See (Bella and Schäffner '19)

Properties of BCR

For jump rates contributed by a prototype cycle $C \in \mathcal{C}$, we define the following

Properties of BCR

For jump rates contributed by a prototype cycle $C \in \mathcal{C}$, we define the following

- ▶ **generator** \mathcal{L}_C

$$\mathcal{L}_C \phi(\omega) = \sum_{z \sim 0} \omega_C(0, z) (\phi(\tau_z \omega) - \phi(\omega))$$

- ▶ **Dirichlet energy** \mathcal{E}_C

$$\mathcal{E}_C(\varphi, \phi) = \mathbb{E}[\varphi \cdot \mathcal{L}_C \phi]$$

- ▶ **local drift** V_C

$$V_C^i = \omega_C(0, e_i) - \omega_C(0, -e_i)$$

Properties of BCR

For jump rates contributed by a prototype cycle $C \in \mathcal{C}$, we define the following

- ▶ **generator** \mathcal{L}_C

$$\mathcal{L}_C \phi(\omega) = \sum_{z \sim 0} \omega_C(0, z) (\phi(\tau_z \omega) - \phi(\omega))$$

- ▶ **Dirichlet energy** \mathcal{E}_C

$$\mathcal{E}_C(\varphi, \phi) = \mathbb{E}[\varphi \cdot \mathcal{L}_C \phi]$$

- ▶ **local drift** V_C

$$V_C^i = \omega_C(0, e_i) - \omega_C(0, -e_i)$$

We obtain following nice properties:

- ▶ **sector condition**

$$\mathcal{E}_C(\phi, \varphi)^2 \lesssim_{n_C} \mathcal{E}_C(\phi, \phi) \mathcal{E}_C(\varphi, \varphi)$$

- ▶ **local drift as bounded operator**

$$\mathbb{E}[V_C^i \varphi]^2 \lesssim_{n_C} \mathbb{E}[W_C] \mathcal{E}_C(\varphi, \varphi)$$

Bounded Cycle Representation

Results

Bounded Cycle Representation

Results

Theorem 1 (QFCLT)

(Deuschel, Slowik, W. 23+) Under (ERG) and (p-q), $\mathbb{P} - a.s.$, it holds that for $d \geq 2$

$$(X_t^{(n)} = \frac{1}{n} X_{n^2 t}) \implies B(0, \Sigma)$$

with Σ non-degenerate.

Bounded Cycle Representation

Results

Theorem 1 (QFCLT)

(Deuschel, Slowik, W. 23+) Under (ERG) and (p-q), $\mathbb{P} - a.s.$, it holds that for $d \geq 2$

$$(X_t^{(n)} = \frac{1}{n} X_{n^2 t}) \implies B(0, \Sigma)$$

with Σ non-degenerate.

Theorem 2 (QLLT)

(Deuschel, Slowik, W. 23+) Under (ERG) and (p-q), $\mathbb{P} - a.s.$, it holds that for $d \geq 2$, $T_2 > T_1 > 0$, $K > 0$,

$$p_t^{(n)}(x, y) = n^d p_{n^2 t}(\lfloor xn \rfloor, \lfloor yn \rfloor) \longrightarrow p_t^\Sigma(x, y)$$

uniformly for $(x, t), (y, t) \in B(K) \times [T_1, T_2]$.

QFCLT

Strategy

QFCLT

Strategy

- ▶ **martingale decomposition** for $i = 1, \dots, d$

$$X_t^i = \underbrace{P_0^\omega - \text{martingale}}_{\Phi^i(\omega, X_t)} + \underbrace{\text{corrector}}_{x^i(\omega, X_t)}$$

QFCLT

Strategy

- ▶ **martingale decomposition** for $i = 1, \dots, d$

$$X_t^i = \underbrace{P_0^\omega - \text{martingale}}_{\Phi^i(\omega, X_t)} + \underbrace{\text{corrector}}_{\chi^i(\omega, X_t)}$$

- $L^\omega \Phi(\omega, x) = 0$, Φ harmonic coordinate
- $\chi^i(\omega, \cdot) \in L^2_{\text{pot}} = \overline{\{D\phi : \phi : \Omega \rightarrow \mathbb{R} \text{ bounded and measurable}\}}^{L^2_{\text{cov}}}$

QFCLT

Strategy

- ▶ **martingale decomposition** for $i = 1, \dots, d$

$$X_t^i = \underbrace{P_0^\omega - \text{martingale}}_{\Phi^i(\omega, X_t)} + \underbrace{\text{corrector}}_{\chi^i(\omega, X_t)}$$

- $L^\omega \Phi(\omega, x) = 0$, Φ harmonic coordinate
- $\chi^i(\omega, \cdot) \in L^2_{\text{pot}} = \overline{\{D\phi : \phi : \Omega \rightarrow \mathbb{R} \text{ bounded and measurable}\}}^{L^2_{\text{cov}}}$

- ▶ **sublinearity of the corrector** for \mathbb{P} -a.e. ω

$$\sup_{x \in B(n)} \frac{1}{n} |\chi^i(\omega, x)| \xrightarrow{n \rightarrow \infty} 0.$$

QFCLT

Strategy

- ▶ **martingale decomposition** for $i = 1, \dots, d$

$$X_t^i = \underbrace{P_0^\omega - \text{martingale}}_{\Phi^i(\omega, X_t)} + \underbrace{\text{corrector}}_{\chi^i(\omega, X_t)}$$

- $L^\omega \Phi(\omega, x) = 0$, Φ harmonic coordinate
- $\chi^i(\omega, \cdot) \in L_{\text{pot}}^2 = \overline{\{D\phi : \phi : \Omega \rightarrow \mathbb{R} \text{ bounded and measurable}\}}^{L_{\text{cov}}^2}$

- ▶ **sublinearity of the corrector** for \mathbb{P} -a.e. ω

$$\sup_{x \in B(n)} \frac{1}{n} |\chi^i(\omega, x)| \xrightarrow{n \rightarrow \infty} 0.$$

- ▶ **Helland(1982)'s martingale FCLT** Set $M_t^{i,(n)} := \frac{1}{n} \Phi^i(\cdot, X_{n^2 t})$, $t \geq 0$. For \mathbb{P} -a.e. ω ,

$$M^{(n)} = (M_t^{(n)})_{t \geq 0} \implies B(0, \Sigma) \quad \text{in } P_0^\omega.$$

QFCLT

Strategy

- ▶ **martingale decomposition** for $i = 1, \dots, d$

$$X_t^i = \underbrace{P_0^\omega - \text{martingale}}_{\Phi^i(\omega, X_t)} + \underbrace{\text{corrector}}_{\chi^i(\omega, X_t)}$$

- $L^\omega \Phi(\omega, x) = 0$, Φ harmonic coordinate
- $\chi^i(\omega, \cdot) \in L_{\text{pot}}^2 = \overline{\{D\phi : \phi : \Omega \rightarrow \mathbb{R} \text{ bounded and measurable}\}}^{L_{\text{cov}}^2}$

- ▶ **sublinearity of the corrector** for \mathbb{P} -a.e. ω

$$\sup_{x \in B(n)} \frac{1}{n} |\chi^i(\omega, x)| \xrightarrow{n \rightarrow \infty} 0.$$

- ▶ **Helland(1982)'s martingale FCLT** Set $M_t^{i,(n)} := \frac{1}{n} \Phi^i(\cdot, X_{n^2 t})$, $t \geq 0$. For \mathbb{P} -a.e. ω ,

$$M^{(n)} = (M_t^{(n)})_{t \geq 0} \implies B(0, \Sigma) \quad \text{in } P_0^\omega.$$

- use $\langle M^{i,(n)}, M^{j,(n)} \rangle_t \rightarrow t \Sigma_{i,j}$ ergodicity of $t \rightarrow \tau_{X_t}(\omega)$

QFCLT

Strategy

- ▶ **martingale decomposition** for $i = 1, \dots, d$

$$X_t^i = \underbrace{P_0^\omega - \text{martingale}}_{\Phi^i(\omega, X_t)} + \underbrace{\text{corrector}}_{\chi^i(\omega, X_t)}$$

- $L^\omega \Phi(\omega, x) = 0$, Φ harmonic coordinate
- $\chi^i(\omega, \cdot) \in L^2_{\text{pot}} = \overline{\{D\phi : \phi : \Omega \rightarrow \mathbb{R} \text{ bounded and measurable}\}}^{L^2_{\text{cov}}}$

- ▶ **sublinearity of the corrector** for \mathbb{P} -a.e. ω

$$\sup_{x \in B(n)} \frac{1}{n} |\chi^i(\omega, x)| \xrightarrow{n \rightarrow \infty} 0.$$

- ▶ **Helland(1982)'s martingale FCLT** Set $M_t^{i,(n)} := \frac{1}{n} \Phi^i(\cdot, X_{n^2 t})$, $t \geq 0$. For \mathbb{P} -a.e. ω ,

$$M^{(n)} = (M_t^{(n)})_{t \geq 0} \implies B(0, \Sigma) \quad \text{in } P_0^\omega.$$

- use $\langle M^{i,(n)}, M^{j,(n)} \rangle_t \rightarrow t \Sigma_{i,j}$ ergodicity of $t \rightarrow \tau_{X_t}(\omega)$

Good news: Construction of corrector uses **sector condition**

QFCLT

Strategy

- ▶ **martingale decomposition** for $i = 1, \dots, d$

$$X_t^i = \underbrace{P_0^\omega - \text{martingale}}_{\Phi^i(\omega, X_t)} + \underbrace{\text{corrector}}_{\chi^i(\omega, X_t)}$$

- $L^\omega \Phi(\omega, x) = 0$, Φ harmonic coordinate
- $\chi^i(\omega, \cdot) \in L^2_{\text{pot}} = \overline{\{D\phi : \phi : \Omega \rightarrow \mathbb{R} \text{ bounded and measurable}\}}^{L^2_{\text{cov}}}$

- ▶ **sublinearity of the corrector** for \mathbb{P} -a.e. ω

$$\sup_{x \in B(n)} \frac{1}{n} |\chi^i(\omega, x)| \xrightarrow{n \rightarrow \infty} 0.$$

- ▶ **Helland(1982)'s martingale FCLT** Set $M_t^{i,(n)} := \frac{1}{n} \Phi^i(\cdot, X_{n^2 t})$, $t \geq 0$. For \mathbb{P} -a.e. ω ,

$$M^{(n)} = (M_t^{(n)})_{t \geq 0} \implies B(0, \Sigma) \quad \text{in } P_0^\omega.$$

- use $\langle M^{i,(n)}, M^{j,(n)} \rangle_t \rightarrow t \Sigma_{i,j}$ ergodicity of $t \rightarrow \tau_{X_t}(\omega)$

Good news: Construction of corrector uses **sector condition**

Most challenging: sublinearity of the corrector!

QFCLT

Key estimates for sublinearity

For f : non-negative and L^ω -subharmonic, and η cut-off on B

QFCLT

Key estimates for sublinearity

For f : non-negative and L^ω -subharmonic, and η cut-off on B

Let $\mu^\omega(x) := \sum_{y \sim x} \omega(x, y)$, $\nu^{\omega^S}(x) := \sum_{y \sim x} \frac{1}{\omega^S(x, y)}$

QFCLT

Key estimates for sublinearity

For f : non-negative and L^ω -subharmonic, and η cut-off on B

Let $\mu^\omega(x) := \sum_{y \sim x} \omega(x, y)$, $\nu^{\omega^S}(x) := \sum_{y \sim x} \frac{1}{\omega^S(x, y)}$

► **Quenched energy estimate (QEE)**

$$\frac{\mathcal{E}^\omega(\eta f)}{|B|} \lesssim N^2 \|\nabla \eta\|_{\ell^\infty(\vec{E}_d)}^2 \|\mu^\omega\|_{p, B} \|f^2\|_{p_*, B}$$

QFCLT

Key estimates for sublinearity

For f : non-negative and L^ω -subharmonic, and η cut-off on B

Let $\mu^\omega(x) := \sum_{y \sim x} \omega(x, y)$, $\nu^{\omega^S}(x) := \sum_{y \sim x} \frac{1}{\omega^S(x, y)}$

► **Quenched energy estimate (QEE)**

$$\frac{\mathcal{E}^\omega(\eta f)}{|B|} \lesssim N^2 \|\nabla \eta\|_{\ell^\infty(\vec{E}_d)}^2 \|\mu^\omega\|_{p, B} \|f^2\|_{p_*, B}$$

Non-trivial: due to lack of integration by parts!

QFCLT

Key estimates for sublinearity

For f : non-negative and L^ω -subharmonic, and η cut-off on B

Let $\mu^\omega(x) := \sum_{y \sim x} \omega(x, y)$, $\nu^{\omega^S}(x) := \sum_{y \sim x} \frac{1}{\omega^S(x, y)}$

► **Quenched energy estimate (QEE)**

$$\frac{\mathcal{E}^\omega(\eta f)}{|B|} \lesssim N^2 \|\nabla \eta\|_{\ell^\infty(\vec{E}_d)}^2 \|\mu^\omega\|_{p, B} \|f^2\|_{p_*, B}$$

Non-trivial: due to lack of integration by parts!

Good news: Cycle decomposition comes into play.

QFCLT

Key estimates for sublinearity

For f : non-negative and L^ω -subharmonic, and η cut-off on B

Let $\mu^\omega(x) := \sum_{y \sim x} \omega(x, y)$, $\nu^{\omega^S}(x) := \sum_{y \sim x} \frac{1}{\omega^S(x, y)}$

► **Quenched energy estimate (QEE)**

$$\frac{\mathcal{E}^\omega(\eta f)}{|B|} \lesssim N^2 \|\nabla \eta\|_{\ell^\infty(\vec{E}_d)}^2 \|\mu^\omega\|_{p, B} \|f^2\|_{p_*, B}$$

Non-trivial: due to lack of integration by parts!

Good news: Cycle decomposition comes into play.

► **Quenched maximum inequality (QMI)**

weighted Sobolev inequality (WSI) + energy estimate + **Moser iteration**

$$\max_{x \in B_z(n)} |f(x)| \lesssim \left(1 \vee N^2 \|\mu^\omega\|_{p, B_z(2n)} \left\| \nu^{\omega^S} \right\|_{q, B_z(2n)} \right)^\kappa \|f\|_{2p_*, B_z(2n)}$$

QFCLT

Useful inequalities for sublinearity

Graph inequalities

QFCLT

Useful inequalities for sublinearity

Graph inequalities

(WSI) Weighted Sobolev inequality For $q \in [1, \infty)$, $\rho \equiv \rho(d, q) := \frac{d}{(d-2)+d/q}$

$$\|(\eta f)\|_{2\rho, B}^2 \leq \mathbf{C}_{\text{SI}} \text{rad}(B)^2 \left\| \nu^S \right\|_{q, B} \frac{\mathcal{E}^{\omega^S}(\eta f)}{|B|}.$$

QFCLT

Useful inequalities for sublinearity

Graph inequalities

(WSI) Weighted Sobolev inequality For $q \in [1, \infty)$, $\rho \equiv \rho(d, q) := \frac{d}{(d-2)+d/q}$

$$\|(\eta f)\|_{2\rho, B}^2 \leq \mathbf{C}_{\text{SI}} \text{rad}(B)^2 \left\| \nu^S \right\|_{q, B} \frac{\mathcal{E}^{\omega^S}(\eta f)}{|B|}.$$

(LPI) Local Poincaré inequality

$$\|f - \bar{f}_B\|_{2\rho, B}^2 \leq \mathbf{C}_{\text{PI}} \text{rad}(B)^2 \left\| \nu^S \right\|_{q, B} \frac{\mathcal{E}_B^{\omega^S}(f)}{|B|}$$

QFCLT

Proof scheme for sublinearity

► (QEE) + (WSI) $\xrightarrow{\text{Moser}}$ (QMI)

QFCLT

Proof scheme for sublinearity

- ▶ (QEE) + (WSI) $\xrightarrow{\text{Moser}}$ (QMI)
- ▶ (LPI) + construction of the corrector $\xrightarrow[\text{sublinear}]{\text{telescope mean}} (\ell^{2p}, B)$

QFCLT

Proof scheme for sublinearity

- ▶ (QEE) + (WSI) $\xrightarrow{\text{Moser}}$ (QMI)
- ▶ (LPI) + construction of the corrector $\xrightarrow[\text{sublinear}]{\text{telescope mean}} (\ell^{2p}, B)$
- ▶ (QMI) + (ℓ^{2p}, B) sublinear $\xrightarrow[\text{sublinear}]{\text{two-scale argument}} (\ell^\infty, B)$

QFCLT

Proof scheme for sublinearity

- ▶ (QEE) + (WSI) $\xrightarrow{\text{Moser}}$ (QMI)
- ▶ (LPI) + construction of the corrector $\xrightarrow[\text{sublinear}]{\text{telescope mean}} (\ell^{2p}, B)$
- ▶ (QMI) + (ℓ^{2p}, B) sublinear $\xrightarrow[\text{sublinear}]{\text{two-scale argument}} (\ell^\infty, B)$

QLLT

Strategy

- ▶ **Decomposition of error** (Barlow, Hambley '09)

$$J = J_1 + J_2 + J_3$$

- Total error: $x \in \mathbb{R}^d, \delta > 0$

$$J(t, n) = P_0^\omega \left(X_t^{(n)} \in B_x(\delta) \right) - \int_{B_x(\delta)} p_t^\Sigma(y) dy$$

QLLT

Strategy

- ▶ **Decomposition of error** (Barlow, Hambley '09)

$$J = J_1 + J_2 + J_3$$

- Total error: $x \in \mathbb{R}^d, \delta > 0$

$$J(t, n) = P_0^\omega \left(X_t^{(n)} \in B_x(\delta) \right) - \int_{B_x(\delta)} p_t^\Sigma(y) dy$$

- Discrete error: neighbor to the center

$$J_1(t, n) = \sum_{z \in nB_x(\delta)} \left(p_{n^2 t}^\omega(0, z) - p_{n^2 t}^\omega(0, \lfloor nx \rfloor) \right)$$

QLLT

Strategy

- **Decomposition of error** (Barlow, Hambley '09)

$$J = J_1 + J_2 + J_3$$

- Total error: $x \in \mathbb{R}^d, \delta > 0$

$$J(t, n) = P_0^\omega \left(X_t^{(n)} \in B_x(\delta) \right) - \int_{B_x(\delta)} p_t^\Sigma(y) dy$$

- Discrete error: neighbor to the center

$$J_1(t, n) = \sum_{z \in nB_x(\delta)} \left(p_{n^2 t}^\omega(0, z) - p_{n^2 t}^\omega(0, \lfloor nx \rfloor) \right)$$

- Discrete-Continuous error: center_{dis} to center_{cont} (↔ QLLT)

$$J_2(t, n) = |nB_x(\delta)| \cdot p_{n^2 t}^\omega(0, \lfloor nx \rfloor) - \text{vol}(B_x(\delta)) \cdot p_t^\Sigma(x) dy$$

QLLT

Strategy

- ▶ **Decomposition of error** (Barlow, Hambley '09)

$$J = J_1 + J_2 + J_3$$

- Total error: $x \in \mathbb{R}^d, \delta > 0$

$$J(t, n) = P_0^\omega \left(X_t^{(n)} \in B_x(\delta) \right) - \int_{B_x(\delta)} p_t^\Sigma(y) dy$$

- Discrete error: neighbor to the center

$$J_1(t, n) = \sum_{z \in nB_x(\delta)} \left(p_{n^2 t}^\omega(0, z) - p_{n^2 t}^\omega(0, \lfloor nx \rfloor) \right)$$

- Discrete-Continuous error: center_{dis} to center_{cont} (↔ QLLT)

$$J_2(t, n) = |nB_x(\delta)| \cdot p_{n^2 t}^\omega(0, \lfloor nx \rfloor) - \text{vol}(B_x(\delta)) \cdot p_t^\Sigma(x) dy$$

- Continuous error: center to neighbor

$$J_3(t, n) = \int_{B_x(\delta)} \left(p_t^\Sigma(x) - p_t^\Sigma(y) \right) dy$$

QLLT

Strategy

- ▶ **Control on J, J_1, J_3 : uniformly bounded by $o(\delta^d)$, as $\delta \rightarrow 0$**

QLLT

Strategy

- ▶ **Control on J , J_1 , J_3 : uniformly bounded by $o(\delta^d)$, as $\delta \rightarrow 0$**
 - J_3 : easy, by the property of Gaussian kernel
 - J : still easy, QFCLT

QLLT

Strategy

- ▶ **Control on J , J_1 , J_3 : uniformly bounded by $o(\delta^d)$, as $\delta \rightarrow 0$**

- J_3 : easy, by the property of Gaussian kernel
- J : still easy, QFCLT
- J_1 : hard, need

(HC) Hölder continuity

(NDB_u) Near-diagonal heat kernel upper bounds

QLLT

Strategy

- ▶ **Control on J , J_1 , J_3 : uniformly bounded by $o(\delta^d)$, as $\delta \rightarrow 0$**

- J_3 : easy, by the property of Gaussian kernel
- J : still easy, QFCLT
- J_1 : hard, need

(HC) Hölder continuity

(NDB_u) Near-diagonal heat kernel upper bounds

In particular,

$$(\text{PHI}) \implies (\text{HC}) + (\text{NDB}_u)$$

Harnack Principle

Harnack Principle

Theorem 3 (EHI)

(D, Slowik, Weng 23+) For any $x_0 \in \mathbb{Z}^d$ and $n \in \mathbb{N}$. Let $u > 0$ be L^ω harmonic on $B'(x_0, 2n) \equiv B(x_0, 2n + N/2 - 1)$. Then, under (ERG) and (p-q), $\mathbb{P} - a.s.$, for $d \geq 2$, there exists constant C_{EH} , such that

$$\max_{x \in B(x_0, n/2)} u(x) \leq C_{EH} \min_{x \in B(x_0, n/2)} u(x).$$

Harnack Principle

Theorem 3 (EHI)

(D, Slowik, Weng 23+) For any $x_0 \in \mathbb{Z}^d$ and $n \in \mathbb{N}$. Let $u > 0$ be L^ω harmonic on $B'(x_0, 2n) \equiv B(x_0, 2n + N/2 - 1)$. Then, under (ERG) and (p-q), \mathbb{P} – a.s., for $d \geq 2$, there exists constant C_{EH} , such that

$$\max_{x \in B(x_0, n/2)} u(x) \leq C_{EH} \min_{x \in B(x_0, n/2)} u(x).$$

Theorem 4 (PHI)

(D, Slowik, Weng 23+) For any $x \in \mathbb{Z}^d$, $t_0 \geq 0$, $n \in \mathbb{N}$. Let $u > 0$ be L^ω caloric on $Q'(2n) \equiv [t_0, t_0 + n^2] \times B'(2n)$, i.e. $\partial_t u - L^\omega u = 0$. Then, under (ERG) and (p-q), \mathbb{P} – a.s., for $d \geq 2$, there exists constant C_{PH} , such that

$$\max_{(t, x) \in Q_-} u(x) \leq C_{PH} \min_{(t, x) \in Q_+} u(x),$$

for $Q_- = [t_0 + \frac{1}{4}n^2, t_0 + \frac{1}{2}n^2] \times B(x_0, n/2)$, and $Q_+ = Q_- \circ \tau_{n^2/2}^{time}$.

The "Main Road": Bombieri and Giusti

The "Main Road": Bombieri and Giusti Lemma (BG)

Let $\{U_\sigma : \sigma \in (0, 1]\}$ be a collection of subsets of a fixed measure space endowed with a measure m , and $U_{\sigma'} \subset U_\sigma$ if $\sigma' < \sigma$. Fix $0 < \sigma < 1$, $0 < \alpha^* \leq \infty$ and let f be a positive function on $U := U_1$. Suppose that there exists constants C_{BG_1}, C_{BG_2}

The "Main Road": Bombieri and Giusti Lemma (BG)

Let $\{U_\sigma : \sigma \in (0, 1]\}$ be a collection of subsets of a fixed measure space endowed with a measure m , and $U_{\sigma'} \subset U_\sigma$ if $\sigma' < \sigma$. Fix $0 < \sigma < 1$, $0 < \alpha^* \leq \infty$ and let f be a positive function on $U := U_1$. Suppose that there exists constants C_{BG_1}, C_{BG_2}

(C1) there exists $\kappa > 0$ such that for all $\delta \leq \sigma' < \sigma < 1$ and $0 < \alpha \leq \min\{1, \alpha^*/2\}$,

$$\|f\|_{L^{\alpha^*}(U_{\sigma'}, m)} \leq \left(C_{BG_1} (\sigma - \sigma')^{-\kappa} m[U]^{-1} \right)^{\frac{1}{\alpha} - \frac{1}{\alpha^*}} \|f\|_{L^\alpha(U_\sigma, m)}$$

The "Main Road": Bombieri and Giusti Lemma (BG)

Let $\{U_\sigma : \sigma \in (0, 1]\}$ be a collection of subsets of a fixed measure space endowed with a measure m , and $U_{\sigma'} \subset U_\sigma$ if $\sigma' < \sigma$. Fix $0 < \sigma < 1$, $0 < \alpha^* \leq \infty$ and let f be a positive function on $U := U_1$. Suppose that there exists constants C_{BG_1}, C_{BG_2}

(C1) there exists $\kappa > 0$ such that for all $\delta \leq \sigma' < \sigma < 1$ and $0 < \alpha \leq \min\{1, \alpha^*/2\}$,

$$\|f\|_{L^{\alpha^*}(U_{\sigma'}, m)} \leq \left(C_{BG_1} (\sigma - \sigma')^{-\kappa} m[U]^{-1} \right)^{\frac{1}{\alpha} - \frac{1}{\alpha^*}} \|f\|_{L^\alpha(U_\sigma, m)}$$

(C2) for all $\lambda > 0$,

$$m[\ln f > \lambda \mid U] \leq C_{BG_2} \lambda^{-1}.$$

The "Main Road": Bombieri and Giusti Lemma (BG)

Let $\{U_\sigma : \sigma \in (0, 1]\}$ be a collection of subsets of a fixed measure space endowed with a measure m , and $U_{\sigma'} \subset U_\sigma$ if $\sigma' < \sigma$. Fix $0 < \sigma < 1$, $0 < \alpha^* \leq \infty$ and let f be a positive function on $U := U_1$. Suppose that there exists constants C_{BG_1}, C_{BG_2}

(C1) there exists $\kappa > 0$ such that for all $\delta \leq \sigma' < \sigma < 1$ and $0 < \alpha \leq \min\{1, \alpha^*/2\}$,

$$\|f\|_{L^{\alpha^*}(U_{\sigma'}, m)} \leq \left(C_{BG_1} (\sigma - \sigma')^{-\kappa} m[U]^{-1} \right)^{\frac{1}{\alpha} - \frac{1}{\alpha^*}} \|f\|_{L^\alpha(U_\sigma, m)}$$

(C2) for all $\lambda > 0$,

$$m[\ln f > \lambda \mid U] \leq C_{BG_2} \lambda^{-1}.$$

Then, there exists $A = A(\delta, \kappa, \alpha^*)$ such that

$$\|f\|_{L^{\alpha^*}(U_\delta, m)} \leq A m[U]^{\frac{1}{\alpha^*}}.$$

The "Main Road": Bombieri and Giusti Lemma (BG)

Let $\{U_\sigma : \sigma \in (0, 1]\}$ be a collection of subsets of a fixed measure space endowed with a measure m , and $U_{\sigma'} \subset U_\sigma$ if $\sigma' < \sigma$. Fix $0 < \sigma < 1$, $0 < \alpha^* \leq \infty$ and let f be a positive function on $U := U_1$. Suppose that there exists constants C_{BG_1}, C_{BG_2}

(C1) there exists $\kappa > 0$ such that for all $\delta \leq \sigma' < \sigma < 1$ and $0 < \alpha \leq \min\{1, \alpha^*/2\}$,

$$\|f\|_{L^{\alpha^*}(U_{\sigma'}, m)} \leq \left(C_{BG_1} (\sigma - \sigma')^{-\kappa} m[U]^{-1} \right)^{\frac{1}{\alpha} - \frac{1}{\alpha^*}} \|f\|_{L^\alpha(U_\sigma, m)}$$

(C2) for all $\lambda > 0$,

$$m[\ln f > \lambda \mid U] \leq C_{BG_2} \lambda^{-1}.$$

Then, there exists $A = A(\delta, \kappa, \alpha^*)$ such that

$$\|f\|_{L^{\alpha^*}(U_\delta, m)} \leq A m[U]^{\frac{1}{\alpha^*}}.$$

Remark: (BG) replaces **John-Nierenberg lemma** due to lack of a suitable control on BMO norm.

The "Main Road": Bombieri and Giusti Lemma (BG)

Let $\{U_\sigma : \sigma \in (0, 1]\}$ be a collection of subsets of a fixed measure space endowed with a measure m , and $U_{\sigma'} \subset U_\sigma$ if $\sigma' < \sigma$. Fix $0 < \sigma < 1$, $0 < \alpha^* \leq \infty$ and let f be a positive function on $U := U_1$. Suppose that there exists constants C_{BG_1}, C_{BG_2}

(C1) there exists $\kappa > 0$ such that for all $\delta \leq \sigma' < \sigma < 1$ and $0 < \alpha \leq \min\{1, \alpha^*/2\}$,

$$\|f\|_{L^{\alpha^*}(U_{\sigma'}, m)} \leq \left(C_{BG_1} (\sigma - \sigma')^{-\kappa} m[U]^{-1} \right)^{\frac{1}{\alpha} - \frac{1}{\alpha^*}} \|f\|_{L^\alpha(U_\sigma, m)}$$

(C2) for all $\lambda > 0$,

$$m[\ln f > \lambda \mid U] \leq C_{BG_2} \lambda^{-1}.$$

Then, there exists $A = A(\delta, \kappa, \alpha^*)$ such that

$$\|f\|_{L^{\alpha^*}(U_\delta, m)} \leq A m[U]^{\frac{1}{\alpha^*}}.$$

Remark: (BG) replaces **John-Nierenberg lemma** due to lack of a suitable control on BMO norm.

Good news: apply result to get (EHI) and (PHI) is **easy**.

The "Main Road": Bombieri and Giusti Lemma (BG)

Let $\{U_\sigma : \sigma \in (0, 1]\}$ be a collection of subsets of a fixed measure space endowed with a measure m , and $U_{\sigma'} \subset U_\sigma$ if $\sigma' < \sigma$. Fix $0 < \sigma < 1$, $0 < \alpha^* \leq \infty$ and let f be a positive function on $U := U_1$. Suppose that there exists constants C_{BG_1}, C_{BG_2}

(C1) there exists $\kappa > 0$ such that for all $\delta \leq \sigma' < \sigma < 1$ and $0 < \alpha \leq \min\{1, \alpha^*/2\}$,

$$\|f\|_{L^{\alpha^*}(U_{\sigma'}, m)} \leq \left(C_{BG_1} (\sigma - \sigma')^{-\kappa} m[U]^{-1} \right)^{\frac{1}{\alpha} - \frac{1}{\alpha^*}} \|f\|_{L^\alpha(U_\sigma, m)}$$

(C2) for all $\lambda > 0$,

$$m[\ln f > \lambda \mid U] \leq C_{BG_2} \lambda^{-1}.$$

Then, there exists $A = A(\delta, \kappa, \alpha^*)$ such that

$$\|f\|_{L^{\alpha^*}(U_\delta, m)} \leq A m[U]^{\frac{1}{\alpha^*}}.$$

Remark: (BG) replaces **John-Nierenberg lemma** due to lack of a suitable control on BMO norm.

Good news: apply result to get (EHI) and (PHI) is **easy**.

Bad news: to show (C1) and (C2) are satisfied is **complicated**!

The Bridge to (BG-C1)

The Bridge to (BG-C1) Lemma (QMI)

Fix $\omega \in \Omega$. let $f : \mathbb{Z}^d \rightarrow \mathbb{R}$ be non-negative and L^ω -subharmonic on $B \equiv B(n)$. Then for any $p, q \in (1, \infty]$ with $1/p + 1/q < \frac{2}{d}$, there exists $\kappa = \kappa(d, p, q)$ and $C = C(d, p, q, N)$ such that for all $1/2 \leq \sigma' < \sigma \leq 1$, we have

$$\|f\|_{\infty, B_{\sigma'}} \leq C \left(\frac{1 \vee \|\mu\|_{p, B} \|\nu^S\|_{q, B}}{(\sigma - \sigma')^2} \right)^\kappa \|f\|_{2p_*, B_\sigma}, \quad (1)$$

where $p_* = p/(p - 1)$ is the Hölder conjugate of p .

The Bridge to (BG-C1) Lemma (QMI)

Fix $\omega \in \Omega$. let $f : \mathbb{Z}^d \rightarrow \mathbb{R}$ be non-negative and L^ω -subharmonic on $B \equiv B(n)$. Then for any $p, q \in (1, \infty]$ with $1/p + 1/q < \frac{2}{d}$, there exists $\kappa = \kappa(d, p, q)$ and $C = C(d, p, q, N)$ such that for all $1/2 \leq \sigma' < \sigma \leq 1$, we have

$$\|f\|_{\infty, B_{\sigma'}} \leq C \left(\frac{1 \vee \|\mu\|_{p, B} \|\nu^S\|_{q, B}}{(\sigma - \sigma')^2} \right)^\kappa \|f\|_{2p_*, B_\sigma}, \quad (1)$$

where $p_* = p/(p - 1)$ is the Hölder conjugate of p .

Lemma (QMI_{sp.t})

Fix $\omega \in \Omega$. let $f : \mathbb{Z}^d \rightarrow \mathbb{R}$ be non-negative and L^ω -subcaloric on $Q \equiv Q(n) = [t_0, t_0 + n^2] \times B(n)$. Then for any $p, q \in (1, \infty]$ with $1/p + 1/q < \frac{2}{d}$, $\forall \varepsilon \in (0, \frac{1}{4})$, s', s'' are chosen such that $s' - t_0 > \varepsilon n^2$, $t_0 + n^2 - s'' \geq \varepsilon n^2$, there exists $\kappa = \kappa(d, p, q)$ and $C = C(d, p, q, N)$ such that for all $1/2 \leq \sigma' < \sigma \leq 1$, we have

$$\|f\|_{\infty, Q_{\sigma'}} \leq C \left(\frac{(1 \vee \|\mu\|_{p, B})(1 \vee \|\nu^S\|_{q, B})}{\varepsilon(\sigma - \sigma')^2} \right)^\kappa \|f\|_{2, Q_\sigma}, \quad (2)$$

where $Q_\sigma = I_\sigma \times B_\sigma$, and $I_\sigma = [\sigma t_0 + (1 - \sigma)s', (1 - \sigma)s'' + \sigma(t_0 + n^2)]$.

The Bridge to (BG-C2)

"Front wheel": Cut-off control

The Bridge to (BG-C2)

"Front wheel": Cut-off control

Proposition 1 (Cut-off control)

(Deuschel, Slowik, W. '23+) Let $\eta_n(x) := \left(1 - \frac{1}{n}d(x, B'(n))\right) \vee 0$, be a cut-off with linear decay, and define $\eta_{\gamma, n}$ be the geometric mean of η_n along the cycle. Then

$$\limsup_{n \rightarrow \infty} n^{2-d} \sum_{x \in B''(2n) \setminus B(n)} W_{C+x} \eta_{C+x, n}^2 M_{C+x, n}^2 \leq C(N, d) \mathbb{E}[W_C] \quad (3)$$

where $M_{\gamma, n} := \max_{x \in \gamma} \left| \ln \frac{\eta_n^2(x)}{\eta_{\gamma, n}^2} \right|$.

The Bridge to (BG-C2)

"Front wheel": Cut-off control

Proposition 1 (Cut-off control)

(Deuschel, Slowik, W. '23+) Let $\eta_n(x) := \left(1 - \frac{1}{n}d(x, B'(n))\right) \vee 0$, be a cut-off with linear decay, and define $\eta_{\gamma, n}$ be the geometric mean of η_n along the cycle. Then

$$\limsup_{n \rightarrow \infty} n^{2-d} \sum_{x \in B''(2n) \setminus B(n)} W_{C+x} \eta_{C+x, n}^2 M_{C+x, n}^2 \leq C(N, d) \mathbb{E}[W_C] \quad (3)$$

where $M_{\gamma, n} := \max_{x \in \gamma} \left| \ln \frac{\eta_n^2(x)}{\eta_{\gamma, n}^2} \right|$.

Proof Sketch:

$$\begin{aligned} & \limsup_{n \rightarrow \infty} n^{2-d} \sum_{x \in B(2n-5K) \setminus B(n)} W_{C+x} \eta_{C+x, n}^2 M_{C+x, n}^2 \\ & \leq \left(\limsup_{n \rightarrow \infty} n^{-d} \sum_{B(2n-5K) \setminus B(n)} W_{C+x} \right) \left(\limsup_{n \rightarrow \infty} n^2 \eta_n^2(x) M_{C+x, n}^2 \right) \\ & \leq (2\mathbf{C}_{\text{vol}})^d 4e (N-2)^2 \mathbb{E}[W_C] \cdot C \\ & =: C(N, d) \mathbb{E}[W_C] \end{aligned}$$

the bridge to (BG-C2)

"Back wheel": Energy inequality for the logarithm

Proposition 2 (Deuschel, Kumagai '13)

[Prop.3.7 (ii) $n = 1$] For each $l \in \mathbb{N}$ and $M > 0$, there exists $c_1, c_2 > 0$ such that

$$\sum_{j=1}^l (e^{\alpha_j} - 1)e^{\bar{w}_j} + c_2 - c_1 \sum_{j=1}^l \alpha_j^2 \geq 0,$$

for all $(\alpha_1, \dots, \alpha_l), (\bar{w}_1, \dots, \bar{w}_l) \in \mathbb{R}^l$ with $\sum_j \alpha_j = \sum_j \bar{w}_j = 0$.

the bridge to (BG-C2)

"Back wheel": Energy inequality for the logarithm

Proposition 2 (Deuschel, Kumagai '13)

[Prop.3.7 (ii) $n = 1$] For each $l \in \mathbb{N}$ and $M > 0$, there exists $c_1, c_2 > 0$ such that

$$\sum_{j=1}^l (e^{\alpha_j} - 1)e^{\bar{w}_j} + c_2 - c_1 \sum_{j=1}^l \alpha_j^2 \geq 0,$$

for all $(\alpha_1, \dots, \alpha_l), (\bar{w}_1, \dots, \bar{w}_l) \in \mathbb{R}^l$ with $\sum_j \alpha_j = \sum_j \bar{w}_j = 0$.

Lemma (Energy inequality for the logarithm)

Fix $\gamma = (x_1, \dots, x_{n_\gamma})$. Then for $\eta, u > 0$, there exists $c_{1,\gamma}, c_{2,\gamma,\eta} > 0$, such that

$$\mathcal{E}_\gamma(\eta^2 u^{-1}, u) \leq c_{2,\gamma,\eta} \eta_\gamma^2 - c_{1,\gamma} \eta_\gamma^2 \mathcal{E}_\gamma(\ln u), \quad (4)$$

where $\eta_\gamma := \prod_{x \in \gamma} \eta(x)^{\frac{1}{n_\gamma}}$.

Proof: Apply above proposition with above choices and $\alpha_j = \ln u(x_{j+1}) - \ln u(x_j)$, and $\bar{w}_j = 2(\ln \eta_n(x_j) - \ln \eta_{\gamma,n})$.

Ride "two wheels" to EHI

For non-negative L^ω – harmonic function u on $B'(2n) \supset B(n)$:

First combine two ingredients, get (QEE_{ln}): $\limsup_{n \rightarrow \infty} \frac{n^2 \cdot \mathcal{E}_{B(n)}^{\omega^S}(\ln u)}{|B(n)|} \leq C(N, d) \mathbb{E}[\mu]$.

Ride "two wheels" to EHI

For non-negative L^ω – harmonic function u on $B'(2n) \supset B(n)$:

First combine two ingredients, get (QEE_{\ln}) : $\limsup_{n \rightarrow \infty} \frac{n^2 \cdot \mathcal{E}_{B(n)}^{\omega^S}(\ln u)}{|B(n)|} \leq C(N, d) \mathbb{E}[\mu]$.

Then, $(\text{QEE}_{\ln}) + (\text{LPI}) + (\text{QMI}) \implies \text{conditions for (BG) satisfied} \implies (\text{EHI})$

Ride "two wheels" to EHI

For non-negative L^ω – harmonic function u on $B'(2n) \supset B(n)$:

First combine two ingredients, get (QEE_{\ln}) : $\limsup_{n \rightarrow \infty} \frac{n^2 \cdot \mathcal{E}_{B(n)}^{\omega^S}(\ln u)}{|B(n)|} \leq C(N, d) \mathbb{E}[\mu]$.

Then, $(\text{QEE}_{\ln}) + (\text{LPI}) + (\text{QMI}) \implies \text{conditions for (BG) satisfied} \implies (\text{EHI})$

- ▶ $(\text{QEE}_{\ln}) + (\text{LPI})$: implies $(\text{BG-C2}) m[\ln(\cdot) > \lambda \mid B] < \lambda^{-1}$ is satisfied both for $f := ue^{-(\ln u)_B} = e^{\ln u - (\ln u)_B}$, and f^{-1} .

Ride "two wheels" to EHI

For non-negative L^ω – harmonic function u on $B'(2n) \supset B(n)$:

First combine two ingredients, get (QEE_{\ln}) : $\limsup_{n \rightarrow \infty} \frac{n^2 \cdot \mathcal{E}_{B(n)}^{\omega^S}(\ln u)}{|B(n)|} \leq C(N, d) \mathbb{E}[\mu]$.

Then, $(\text{QEE}_{\ln}) + (\text{LPI}) + (\text{QMI}) \implies \text{conditions for (BG) satisfied} \implies (\text{EHI})$

- ▶ $(\text{QEE}_{\ln}) + (\text{LPI})$: implies $(\text{BG-C2}) m[\ln(\cdot) > \lambda \mid B] < \lambda^{-1}$ is satisfied both for $f := ue^{-(\ln u)_B} = e^{\ln u - (\ln u)_B}$, and f^{-1} .
- ▶ (QMI) : implies (BG-C1) : $\|\cdot\|_{\alpha^*, B_{\sigma'}} \lesssim \|\cdot\|_{\alpha, B_\sigma}$ is satisfied for f, f^{-1} . Thus (BG-C1) satisfied.

Ride "two wheels" to EHI

For non-negative L^ω – harmonic function u on $B'(2n) \supset B(n)$:

First combine two ingredients, get (QEE_{\ln}) : $\limsup_{n \rightarrow \infty} \frac{n^2 \cdot \mathcal{E}_{B(n)}^{\omega^S}(\ln u)}{|B(n)|} \leq C(N, d) \mathbb{E}[\mu]$.

Then, $(\text{QEE}_{\ln}) + (\text{LPI}) + (\text{QMI}) \implies \text{conditions for (BG) satisfied} \implies (\text{EHI})$

- ▶ $(\text{QEE}_{\ln}) + (\text{LPI})$: implies $(\text{BG-C2}) m[\ln(\cdot) > \lambda \mid B] < \lambda^{-1}$ is satisfied both for $f := ue^{-(\ln u)_B} = e^{\ln u - (\ln u)_B}$, and f^{-1} .
- ▶ (QMI) : implies (BG-C1) : $\|\cdot\|_{\alpha^*, B_{\sigma'}} \lesssim \|\cdot\|_{\alpha, B_\sigma}$ is satisfied for f, f^{-1} . Thus (BG-C1) satisfied.
- ▶ (BG) : lemma of **Bombieri and Giusti**, if some fluctuation f is "nice", then

$$\|f\|_{\alpha^*, B_\delta} \leq A, \quad \frac{1}{2} \leq \delta \leq 1.$$

Ride "two wheels" to EHI

For non-negative L^ω – harmonic function u on $B'(2n) \supset B(n)$:

First combine two ingredients, get (QEE_{\ln}) : $\limsup_{n \rightarrow \infty} \frac{n^2 \cdot \mathcal{E}_{B(n)}^{\omega^S}(\ln u)}{|B(n)|} \leq C(N, d) \mathbb{E}[\mu]$.

Then, $(\text{QEE}_{\ln}) + (\text{LPI}) + (\text{QMI}) \implies \text{conditions for (BG) satisfied} \implies (\text{EHI})$

- ▶ $(\text{QEE}_{\ln}) + (\text{LPI})$: implies $(\text{BG-C2}) m[\ln(\cdot) > \lambda \mid B] < \lambda^{-1}$ is satisfied both for $f := ue^{-(\ln u)_B} = e^{\ln u - (\ln u)_B}$, and f^{-1} .
- ▶ (QMI) : implies (BG-C1) : $\|\cdot\|_{\alpha^*, B_{\sigma'}} \lesssim \|\cdot\|_{\alpha, B_\sigma}$ is satisfied for f, f^{-1} . Thus (BG-C1) satisfied.
- ▶ (BG) : lemma of **Bombieri and Giusti**, if some fluctuation f is "nice", then

$$\|f\|_{\alpha^*, B_\delta} \leq A, \quad \frac{1}{2} \leq \delta \leq 1.$$

- ▶ In our case, it implies

$$\|f^{-1}\|_{\infty, B_{\sigma'}} \leq A_1^\omega \iff e^{(\ln u)_B} \leq A_1^\omega \min_{B_{\sigma'}} u(x) \quad \text{and} \quad \|f\|_{2p^*, B_\sigma} \leq A_2^\omega$$

Ride "two wheels" to EHI

For non-negative L^ω – harmonic function u on $B'(2n) \supset B(n)$:

First combine two ingredients, get (QEE_{\ln}) : $\limsup_{n \rightarrow \infty} \frac{n^2 \cdot \mathcal{E}_{B(n)}^{\omega^S}(\ln u)}{|B(n)|} \leq C(N, d) \mathbb{E}[\mu]$.

Then, $(\text{QEE}_{\ln}) + (\text{LPI}) + (\text{QMI}) \implies \text{conditions for (BG) satisfied} \implies (\text{EHI})$

- ▶ $(\text{QEE}_{\ln}) + (\text{LPI})$: implies $(\text{BG-C2}) m[\ln(\cdot) > \lambda \mid B] < \lambda^{-1}$ is satisfied both for $f := ue^{-(\ln u)_B} = e^{\ln u - (\ln u)_B}$, and f^{-1} .
- ▶ (QMI) : implies (BG-C1) : $\|\cdot\|_{\alpha^*, B_{\sigma'}} \lesssim \|\cdot\|_{\alpha, B_\sigma}$ is satisfied for f, f^{-1} . Thus (BG-C1) satisfied.
- ▶ (BG) : lemma of **Bombieri and Giusti**, if some fluctuation f is "nice", then

$$\|f\|_{\alpha^*, B_\delta} \leq A, \quad \frac{1}{2} \leq \delta \leq 1.$$

- ▶ In our case, it implies

$$\|f^{-1}\|_{\infty, B_{\sigma'}} \leq A_1^\omega \iff e^{(\ln u)_B} \leq A_1^\omega \min_{B_{\sigma'}} u(x) \quad \text{and} \quad \|f\|_{2p^*, B_\sigma} \leq A_2^\omega$$

- ▶ Put things together, obtain (EHI) : for $\sigma' < \sigma$

$$\max_{B_{\sigma'}} u(x) \lesssim_{N, d, (p-q)} \|u\|_{2p^*, B_\sigma} = \|f\|_{2p^*, B_\sigma} \cdot e^{(\ln u)_B} \lesssim_{A_1, A_2} \min_{B_{\sigma'}} u(x)$$

Ride "two wheels" to PHI

For a non-negative caloric function u on space-time box $Q'(2n) \supset Q(2n)$, on which $\partial_t u - L^\omega u = 0$: we first get (QEE_{ln}^t)

Ride "two wheels" to PHI

For a non-negative caloric function u on space-time box $Q'(2n) \supset Q(2n)$, on which $\partial_t u - L^\omega u = 0$: we first get (QEE_{ln}^t)

$$\begin{aligned}\partial_t \langle \eta_n^2, -\ln u_t \rangle_{B'(2n)} &= \langle \eta_n^2 u_t^{-1}, -\partial_t u_t \rangle_{B'(2n)} \\ &= \langle \eta_n^2 u_t^{-1}, -L^\omega u_t \rangle_{B'(2n)}\end{aligned}$$

$$\begin{aligned}\text{Energy ineq. for ln (4)} &\leq \sum_{\substack{\gamma \subset B''(2n) \\ \gamma \not\subset B'(n)}} W_\gamma(\omega) \eta_{n,\gamma}^2 M_{\gamma,n}^2 - C_1 \sum_{\gamma \subset B''(2n)} \eta_{n,\gamma}^2 \mathcal{E}_\gamma^\omega(\ln u_t) + O(n^{d-2}) \\ \text{Cut-off control (3)} &\leq O(n^{d-2}) - C_1 \mathcal{E}_{B(n)}^\omega(\ln u_t)\end{aligned}\tag{5}$$

Ride "two wheels" to PHI

For a non-negative caloric function u on space-time box $Q'(2n) \supset Q(2n)$, on which $\partial_t u - L^\omega u = 0$: we first get (QEE_{\ln}^t)

$$\begin{aligned}\partial_t \langle \eta_n^2, -\ln u_t \rangle_{B'(2n)} &= \langle \eta_n^2 u_t^{-1}, -\partial_t u_t \rangle_{B'(2n)} \\ &= \langle \eta_n^2 u_t^{-1}, -L^\omega u_t \rangle_{B'(2n)}\end{aligned}$$

$$\begin{aligned}\text{Energy ineq. for } \ln (4) &\leq \sum_{\substack{\gamma \subset B''(2n) \\ \gamma \not\subset B'(n)}} W_\gamma(\omega) \eta_{n,\gamma}^2 M_{\gamma,n}^2 - C_1 \sum_{\gamma \subset B''(2n)} \eta_{n,\gamma}^2 \mathcal{E}_\gamma^\omega(\ln u_t) + O(n^{d-2}) \\ \text{Cut-off control (3)} &\leq O(n^{d-2}) - C_1 \mathcal{E}_{B(n)}^\omega(\ln u_t)\end{aligned}\tag{5}$$

$(\text{QEE}_{\ln}^t) + (\text{LPI}) + (\text{QMI})_{sp.t} \implies \text{conditions for (BG) satisfied} \implies (\text{PHI})$

Ride "two wheels" to PHI

For a non-negative caloric function u on space-time box $Q'(2n) \supset Q(2n)$, on which $\partial_t u - L^\omega u = 0$: we first get (QEE_{\ln}^t)

$$\begin{aligned}\partial_t \langle \eta_n^2, -\ln u_t \rangle_{B'(2n)} &= \langle \eta_n^2 u_t^{-1}, -\partial_t u_t \rangle_{B'(2n)} \\ &= \langle \eta_n^2 u_t^{-1}, -L^\omega u_t \rangle_{B'(2n)}\end{aligned}$$

$$\begin{aligned}\text{Energy ineq. for } \ln (4) &\leq \sum_{\substack{\gamma \subset B''(2n) \\ \gamma \not\subset B'(n)}} W_\gamma(\omega) \eta_{n,\gamma}^2 M_{\gamma,n}^2 - C_1 \sum_{\gamma \subset B''(2n)} \eta_{n,\gamma}^2 \mathcal{E}_\gamma^\omega(\ln u_t) + O(n^{d-2}) \\ \text{Cut-off control (3)} &\leq O(n^{d-2}) - C_1 \mathcal{E}_{B(n)}^\omega(\ln u_t)\end{aligned}\tag{5}$$

$(\text{QEE}_{\ln}^t) + (\text{LPI}) + (\text{QMI})_{sp.t} \implies \text{conditions for (BG) satisfied} \implies (\text{PHI})$

- $(\text{QEE}_{\ln}^t) + (\text{LPI})$: follow (S-C) Saloff-Coste's argument: divide by n^d , use (LPI) and then absorb $O(n^{-2})$, get something like

$$\partial_t \overline{W}(t) + Cn^{-2} \|\overline{w}_t - \overline{W}(t)\|_{2,B}^2 \leq 0$$

where $\overline{w}_t := -n^{-d} \ln u_t - O(n^{-2})$, $\overline{W}(t) := -n^{-d} (\ln u_t)_{B(n)} - O(n^{-2})$.

Further analytic arguments implies $f_t := e^{\ln u_t - (\ln u_t)_B}$, and f_t^{-1} satisfies (BG-C1) w.r.t. Q and suitable measure m .

Ride "two wheels" to PHI

For a non-negative caloric function u on space-time box $Q'(2n) \supset Q(2n)$, on which $\partial_t u - L^\omega u = 0$: we first get (QEE_{ln}^t)

$$\begin{aligned}
 \partial_t \langle \eta_n^2, -\ln u_t \rangle_{B'(2n)} &= \langle \eta_n^2 u_t^{-1}, -\partial_t u_t \rangle_{B'(2n)} \\
 &= \langle \eta_n^2 u_t^{-1}, -L^\omega u_t \rangle_{B'(2n)} \\
 \text{Energy ineq. for ln (4)} \quad &\leq \sum_{\substack{\gamma \subset B''(2n) \\ \gamma \not\subset B'(n)}} W_\gamma(\omega) \eta_{n,\gamma}^2 M_{\gamma,n}^2 - C_1 \sum_{\gamma \subset B''(2n)} \eta_{n,\gamma}^2 \mathcal{E}_\gamma^\omega(\ln u_t) + O(n^{d-2}) \\
 \text{Cut-off control (3)} \quad &\leq O(n^{d-2}) - C_1 \mathcal{E}_{B(n)}^\omega(\ln u_t) \tag{5}
 \end{aligned}$$

(QEE_{ln}^t) + (LPI) + (QMI)_{sp.t} \implies conditions for (BG) satisfied \implies (PHI)

- (QEE_{ln}^t) + (LPI): follow (S-C) Saloff-Coste's argument: divide by n^d , use (LPI) and then absorb $O(n^{-2})$, get something like

$$\partial_t \overline{W}(t) + Cn^{-2} \|\overline{w}_t - \overline{W}(t)\|_{2,B}^2 \leq 0$$

where $\overline{w}_t := -n^{-d} \ln u_t - O(n^{-2})$, $\overline{W}(t) := -n^{-d} (\ln u_t)_{B(n)} - O(n^{-2})$.

Further analytic arguments implies $f_t := e^{\ln u_t - (\ln u_t)_B}$, and f_t^{-1} satisfies (BG-C1) w.r.t. Q and suitable measure m .

- (QMI)_{sp.t}: need (QEE) in space time, a consequence of (QEE) in space, by using the Moser iteration, implies (BG-C2).
- the rest is similar as in (EHI).

Summary

Summary

- ▶ **RWRE in bounded cycles** is extends RCM to the **non-symmetric** regime, while preserving the **sector condition**

Summary

- ▶ **RWRE in bounded cycles** is extends RCM to the **non-symmetric** regime, while preserving the **sector condition**
- ▶ The bounded cycle representation (**BCR**) plays an essential role in obtaining (**QEE**) and (**QEE^t_{ln}**), while the former leads to **QFCLT**, and the latter helps with (**PHI**) (so does (**QEE_{ln}**) for EHI). Together leads to **QLLT**.

Summary

- ▶ **RWRE in bounded cycles** is extends RCM to the **non-symmetric** regime, while preserving the **sector condition**
- ▶ The bounded cycle representation (**BCR**) plays an essential role in obtaining (**QEE**) and (**QEE^t_{ln}**), while the former leads to **QFCLT**, and the latter helps with (**PHI**) (so does (**QEE_{ln}**) for EHI). Together leads to **QLLT**.
- ▶ In short, we **adapt** the analytic scheme of ([Andres, D, Slowik '15](#)) to BCR model, while dealing with two energy estimates that are non-trivial for non-symmetric case.

Extension

Summary

- ▶ **RWRE in bounded cycles** is extends RCM to the **non-symmetric** regime, while preserving the **sector condition**
- ▶ The bounded cycle representation (**BCR**) plays an essential role in obtaining (**QEE**) and (**QEE^t_{ln}**), while the former leads to **QFCLT**, and the latter helps with (**PHI**) (so does (**QEE_{ln}**) for EHI). Together leads to **QLLT**.
- ▶ In short, we **adapt** the analytic scheme of ([Andres, D, Slowik '15](#)) to BCR model, while dealing with two energy estimates that are non-trivial for non-symmetric case.

Extension

- ▶ random environment that is **divergence free** with **stream cycle** representation

Summary

- ▶ **RWRE in bounded cycles** is extends RCM to the **non-symmetric** regime, while preserving the **sector condition**
- ▶ The bounded cycle representation (**BCR**) plays an essential role in obtaining (**QEE**) and (**QEE_{ln}^t**), while the former leads to **QFCLT**, and the latter helps with (**PHI**) (so does (**QEE_{ln}**) for EHI). Together leads to **QLLT**.
- ▶ In short, we **adapt** the analytic scheme of ([Andres, D, Slowik '15](#)) to BCR model, while dealing with two energy estimates that are non-trivial for non-symmetric case.

Extension

- ▶ random environment that is **divergence free** with **stream cycle** representation
- ▶ bounded cycles that allow **negative weights**

Summary

- ▶ **RWRE in bounded cycles** is extends RCM to the **non-symmetric** regime, while preserving the **sector condition**
- ▶ The bounded cycle representation (**BCR**) plays an essential role in obtaining (**QEE**) and (**QEE_{ln}^t**), while the former leads to **QFCLT**, and the latter helps with (**PHI**) (so does (**QEE_{ln}**) for EHI). Together leads to **QLLT**.
- ▶ In short, we **adapt** the analytic scheme of ([Andres, D, Slowik '15](#)) to BCR model, while dealing with two energy estimates that are non-trivial for non-symmetric case.

Extension

- ▶ random environment that is **divergence free** with **stream cycle** representation
- ▶ bounded cycles that allow **negative weights**

Open Problem

- ▶ cycles of **unbounded length** but weighted.

Selected references I

- Sebastian Andres, Jean-Dominique Deuschel, and Martin Slowik.
Harnack inequalities on weighted graphs and some applications to the random conductance model.
Probability Theory and Related Fields, 164(3-4):931–977, Mar 2015.
- Sebastian Andres, Jean-Dominique Deuschel, and Martin Slowik.
Invariance principle for the random conductance model in a degenerate ergodic environment.
The Annals of Probability, 43(4), Jul 2015.
- Martin Barlow and Ben Hambly.
Parabolic harnack inequality and local limit theorem for percolation clusters, 2008.
- Peter Bella and Mathias Schäffner.
Quenched invariance principle for random walks among random degenerate conductances, 2019.
- Jean-Dominique Deuschel and Holger Kösters.
The quenched invariance principle for random walks in random environments admitting a bounded cycle representation.
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 44(3):574–591, Jun 2008.
- Jean-Dominique Deuschel and Takashi Kumagai.
Markov chain approximations to nonsymmetric diffusions with bounded coefficients.
Communications on Pure and Applied Mathematics, 66(6):821–866, 2013.
- Laurent Saloff-Coste.
Aspects of Sobolev-Type Inequalities.
London Mathematical Society Lecture Note Series. Cambridge University Press, 2001.