
THE “STARSHIP ENTERPRISE” PROBLEM

FRANCESCO CARAVENNA

Abstract. We study the following problem taken from [1], Exercises E10.10. The starship
Enterprise is initially at distance R from the Sun. The navigation system of the starship is
broken: one can only fix a distance to be traveled, then the starship makes a jump of that
size in a uniformly chosen direction. The aim is to reach the Solar System, represented by
a ball of radius r < R centered at the Sun. We show that, whatever strategy is chosen, the
probability of ever reaching the Solar System is strictly smaller than (r/R). This bound is
shown to be optimal, in the sense that for each ε > 0 there is a strategy for which the
probability of reaching the Solar System exceeds (r/R)− ε.

1. Preliminaries

The electric potential generated by a charge uniformly distributed on the surface ∂B(~0, 1)

of the unit sphere centered in the origin ~0 ∈ R3, is given (up to multiplicative constants) by

ϕ(~x) :=

∫
∂B(~0,1)

1

|~x+ ~r|
dσ(~r) =


1 if |~x| ≤ 1

1

|~x|
if |~x| > 1

, (1)

where σ(·) denotes the normalized uniform measure on ∂B(~0, 1). This is a consequence of
the celebrated Gauss Theorem for the electric field.†

If ~Θ is a random variable uniformly distributed on the surface of the unit sphere in R3,
then relation (1) yields

E
[

1

~x+ c ~Θ

]
=

∫
∂B(0,1)

1

|~x+ c~r|
dσ1(~r) =

1

c
ϕ

(
~x

c

)
=


1

c
if |~x| ≤ c

1

|~x|
if |~x| > c

. (2)
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†One can prove relation (1) using the mean value property and the maximum principle of harmonic

functions. The function r 7→ q(~r) := 1/|~r| is harmonic on R3 \ {~0}, that is ∆q(~r) :=
∑3

i=1 ∂
2q/∂r2i (~r) = 0

for all ~r 6= ~0. If B(~x, 1) ⊆ R3 \ {~0}, that is if |~x| > 1, the mean value property of harmonic functions says
that the average of q(·) over ∂B(~x, 1) equals q(~x): this is precisely the second line of (1).

Next we observe that ϕ(·) is continuous on the whole R3, by passing in the limit inside the integral
in (1), which can be justified by uniform integrability (e.g. showing the boundedness of the integrand in
L1+ε for some ε > 0, i.e.

∫
∂B(~0,1)

q(~x+ ~r)1+ε dσ(~r) ≤ (const.)). From the second line of (1) we thus deduce
that ϕ(~x) = 1 for |~x| = 1. For any x in the interior of B(0, 1) we can differentiate inside the integral in (1)
thanks to dominated convergence (the incremental ratios are uniformly bounded). Since q(·) is harmonic in
R3 \ {0}, it follows that ϕ(·) is harmonic in the interior of B(0, 1), and continuous until the boundary. Being
constantly equal to 1 on ∂B(0, 1), it follows from the maximum principle that ϕ(~x) = 1 for |~x| ≤ 1.
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2. The solution

A probabilistic model for our problem can be built as follows. All the random variables
are defined on some probability space (Ω,F ,P).

• Let (~Θn)n≥1 be a sequence of i.i.d. random variables, uniformly distributed on the
surface of the unit sphere in R3, which give the directions of the space-hops. We
introduce the natural filtration Fn := σ(~Θ1, . . . , ~Θn) and we set F0 := {∅,Ω}.
• The sequence of distances for the space-hops, that we call the strategy, is modeled by
a nonnegative previsible process (Cn)n≥1, i.e. Cn is Fn−1–measurable for every n.

• The position of the starship is then described by the R3–valued process ( ~Xn)n≥0
defined by

~X0 := (R, 0, 0) ~Xn := ~Xn−1 + Cn~Θn . (3)

The goal is to reach the Solar System, that is B(~0, r), so we define the stopping time

τ := inf{n ∈ N : | ~Xn| ≤ r} ∈ N ∪ {+∞} . (4)

We want to investigate the probability of ever reaching the solar system, that is P[τ <∞].
It turns out to be very useful to introduce the process (Zn)n≥0 defined by

Zn :=
1

| ~Xn|
. (5)

Proposition 2.1. Whatever strategy (Cn) is adopted, the process (Zn) is a supermartingale.
If in addition Cn ≤ | ~Xn−1| ∀n, then (Zn) is a martingale.

Proof. The process (Zn) is clearly adapted. Being nonnegative, the conditional expectation
of Zn is well defined. Since ~Xn−1 and Cn are Fn−1 measurable while ~Θn is independent of
Fn−1, it follows from (5), (3) and (2) that

E
[
Zn
∣∣Fn−1] = E

[
1

| ~Xn−1 + Cn~Θn|

∣∣∣∣Fn−1]

= E
[

1

|~x+ c ~Θn|

]∣∣∣∣
~x= ~Xn−1,c=Cn

=


1

| ~Xn−1|
if Cn ≤ | ~Xn−1|

1

Cn
if Cn > | ~Xn−1|

.

It follows that E
[
Zn
∣∣Fn−1] ≤ 1/| ~Xn−1| =: Zn−1, and the equality holds if (and only if)

Cn ≤ | ~Xn−1|. It only remains to show that Zn ∈ L1 for every n ∈ N. Trivially Z0 =
1/R ∈ L1; assuming that E(Zn−1) <∞, the monotonicity of conditional expectation yields
E(Zn) = E(E(Zn|Fn−1)) ≤ E(Zn−1) <∞, hence the proof is completed by induction. �

Now we can prove our main result.

Theorem 2.2. Whatever strategy (Cn) is adopted, the probability of ever reaching the solar
system is strictly smaller than r/R:

P
[
τ <∞

]
<

r

R
. (6)
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Proof. We start showing that (6) holds with the weak inequality. Since the process (Zn) is a
nonnegative supermartingale, from the Martingale Convergence Theorem it follows that

P–a.s. ∃ lim
n→∞

Zn ∈ [0,+∞) .

Also the stopped process (Zτn := Zτ∧n) is a supermartingale, hence

E
[
Zτn
]
≤ E

[
Zτ0
]

= E
[
Z0

]
=

1

R
. (7)

Now notice that P–a.s.

lim
n→∞

Zτn = Zτ 1{τ<∞} +
(

lim
n→∞

Zn

)
1{τ=∞} ≥ Zτ 1{τ<∞} ≥

1

r
1{τ<∞} , (8)

where in the last inequality we have used the fact that, on the event {τ <∞}, by definition
| ~Xτ | ≤ r and therefore Zτ ≥ 1/r. Taking the expected value on both sides we finally get

1

r
P
[
τ <∞

]
≤ E

[
lim
n→∞

Zτn

]
≤ lim inf

n→∞
E
[
Zτn
]
≤ 1

R
, (9)

where we have applied Fatou’s Lemma and we have used (7).
To prove that the bound (6) is actually strict, we claim that

| ~Xτ | < r on the event {τ <∞} , P–a.s. . (10)

In fact the following stronger statement holds true: for any strategy (Cn)

| ~Xk| 6= r ∀k ∈ N , P–a.s. ,
see Appendix A.1 for a proof. Now assume that the event {τ <∞} has positive probability
(otherwise there is nothing to prove). Then from equation (10) it follows that the last
inequality in (8) is strict with positive probability. By taking expectation it follows that the
first inequality in (9) is strict, hence P[τ <∞] < r/R for any strategy (Ck). �

Finally we show that the bound in (6) is optimal.

Theorem 2.3. For every ε ∈ (0, r) there exists a strategy (Cεn) such that

P
[
τ <∞

]
≥ r − ε

R
.

Proof. We define (Cεn) in the following way:

Cεn :=

{
| ~Xn−1| − (r − ε) if | ~Xn−1| > r

0 if | ~Xn−1| ≤ r
. (11)

It is easy to check that with this definition Zτn = Zn for all n. We are going to show that
the fundamental inequalities in the proof of Theorem 2.2 now become equalities.

Since |Cεn| ≤ | ~Xn−1| for all n, from Proposition 2.1 it follows that this time the process (Zn)
is a nonnegative martingale, hence

E
[
Zn
]

= E
[
Z0

]
=

1

R
. (12)

Again the Martingale Convergence Theorem yields that

P–a.s. ∃ lim
n→∞

Zn =: Z∞ ∈ [0,+∞) . (13)

By the definition (11) of (Cεn), it is easy to check that for all n we have

Zn ≤
1

r − ε
, (14)
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therefore (Zn) is a bounded process and we can apply the Dominated Convergence Theorem:

E
[
Z∞
]

= lim
n→∞

E
[
Zn
]

=
1

R
, (15)

where in the second equality we have used (12).
It remains to identify the limit Z∞. Arguing as in (8) we have that P–a.s.

Z∞ = Zτ 1{τ<∞} +
(

lim
n→∞

Zn

)
1{τ=∞} ,

and this time the observation that the second term in the r.h.s. is nonnegative does not
suffice anymore. However one can show that this term is indeed zero, that is

P–a.s.
{
τ =∞

}
⊆
{

lim
n→∞

Zn = 0
}
, (16)

see Appendix A.2. Therefore Z∞ = Zτ 1{τ<∞}, P–a.s., and by (15) we get

1

R
= E

[
Zτ 1{τ<∞}

]
≤ 1

r − ε
P
[
τ <∞

]
,

because Zτ ≤ 1/(r − ε), as it follows from (14). This completes the proof. �

Appendix A. Some technical points

A.1. We are going to show that equation (10) holds true. More precisely, we prove that for
any strategy (Cn)

| ~Xk| 6= r, | ~Xk| 6= 0 ∀k ∈ N , P–a.s. . (17)

We proceed by induction on k. The k = 0 case holds trivially since | ~X0| = R > r > 0.
Now assume that (17) holds for k ≤ n− 1: by equation (3), the variable ~Xn conditionally
on Fn−1 is uniformly distributed on the surface of the sphere ∂B( ~Xn−1, Cn). Given that by
the inductive hypothesis ~Xn−1 6= 0, ~Xn−1 6= r, it follows that P–a.s. P

[
| ~Xn| = x

∣∣Fn−1] = 0
for both x = r and x = 0, and by the Tower Property of the conditional expectation one
has that P

[
| ~Xn| = x

]
= 0 for x = r and x = 0, that is the inductive step.

A.2. We give a proof of equation (16), or equivalently

P–a.s.
{
τ =∞

}
⊆
{

lim
n→∞

| ~Xn| = ∞
}
. (18)

To prove this fact, let us consider the sequence of events

An := {| ~Xn| ≥ | ~Xn−1|+ ε/2} ,
where ε is the parameter appearing in the definition of the strategy (Cεn). It follows by (13)
that limn→∞ | ~Xn| exists in (0,+∞], P–a.s.. Using this fact, it is easy to see that

P–a.s.
{
An i.o.

}
⊆
{

lim
n→∞

| ~Xn| = ∞
}
,

where
{
An i.o.

}
:=
{

lim supn→∞An
}
. Therefore, we are left with showing that

P–a.s.
{
τ =∞

}
⊆
{
An i.o.

}
. (19)

The idea behind the proof of (19) is quite simple. Let us define the sequence of events

Bn := {cos(~Θn, ~Xn−1) ≥ 1/2},
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where by cos(~a,~b) we mean the cosine of the angle between the two vectors ~a and ~b. Thus
if Bn happens it means that the direction ~Θn of the n–th movement of the Enterprise is
close (in a quantitative way) to the direction of ~Xn−1, hence we are getting more distant
from the Sun. In fact, by (3) we have

Bn ⊆
{
| ~Xn| > | ~Xn−1|+ Cεn/2

}
. (20)

From (11) it is clear that, on the event {τ =∞}, one has Cεn ≥ ε for all n, therefore

{τ =∞} ∩ Bn ⊆
{
| ~Xn| > | ~Xn−1|+ ε/2

}
= An , ∀n ∈ N ,

from which it follows that

{τ =∞} ∩ {Bn i.o.} ⊆ {An i.o.} . (21)

If we prove that P(Bn i.o.) = 1, relation (19) follows. For this, by the Borel-Cantelli lemma,
is enough to show that (Bn)n∈N are independent events with the same probability p > 0.

Let us prove the independence of (Bn)n∈N, which is not obvious.† Since the distribution
of ~Θn is rotation invariant, P(cos(~Θn, ~v) ≥ 1

2) = P(cos(~Θn, ~w) ≥ 1
2) for all ~v, ~w ∈ R3 \ {0}.

Choosing ~w = (0, 0, 1), we obtain

P
[

cos(~Θn, ~v) ≥ 1
2

]
= P

[
~Θ1 ∈ {(x, y, z) ∈ R3 : z ≥ 1/2}

]
=

1

4
.

Since ~Xn−1 is Fn−1-measurable, while ~Θn is independent of Fn−1, we have

P
[
Bn
∣∣Fn−1] = P

[
cos(~Θn, ~v) ≥ 1

2

]∣∣
~v= ~Xn−1

=
1

4
.

For k ∈ N and n1 < n2 < . . . < nk, since Bi ∈ Fj for i ≤ j,

P
[
Bn1 ∩ . . . ∩ Bnk

]
= E

[
1Bn1∩...∩Bnk−1

P
[
Bnk

∣∣Fnk−1
]]

=
1

4
P
[
Bn1 ∩ . . . ∩ Bnk−1

]
,

hence, by induction, P
[
Bn1 ∩ . . . ∩ Bnk

]
= (14)k. This shows that that the events (Bn)n∈N

are independent with P[Bn] = 1
4 , completing the proof.
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