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Abstract. The critical 2d Stochastic Heat Flow (SHF) is a stochastic process of random
measures on R2, recently constructed in [CSZ23]. We show that this process falls outside
the class of Gaussian Multiplicative Chaos (GMC), in the sense that it cannot be realised
as the exponential of a (generalised) Gaussian field. We achieve this by deriving strict
lower bounds on the moments of the SHF that are of independent interest.

1. Introduction

The critical 2d Stochastic Heat Flow (SHF) is a stochastic process of random measures on
R2, constructed in [CSZ23] as a universal limit of random polymer models. It is the natural
candidate solution of the (ill-defined) critical 2d Stochastic Heat Equation:

Btupt, xq “
1

2
∆upt, xq ` β ξpt, xqupt, xq , t ą 0, x P R2, (1.1)

where ξpt, xq represents space-time white noise, that is a Gaussian field, delta-correlated
in space and time. The term critical refers both to the fact that dimension 2 is a critical
dimension, in the sense of singular stochastic PDEs [H14, GIP15] and renormalisation theory
[Kup14], and that a critical scaling in the noise strength β is needed, see (1.21) below.

The criticality of dimension d “ 2 for the Stochastic Heat Equation (1.1) can be seen
through a scaling argument, in the spirit of renormalisation. Indeed, in general dimension
d ě 1, one can note that the rescaled function ũpt, xq :“ upε2t, εxq solves

Btũ “
1

2
∆ũ` β ε1´

d
2 ξ̃ ũ , t̃ ą 0, x̃ P Rd,

where ξ̃pt, xq :“ ε1` d
2 ξpε2t, εxq is a new space-time white noise. One now sees that, as ε Ñ 0,

when d ă 2 the multiplicative factor ε1´d{2 attenuates the small scale effects of the noise,
while these effects are amplified when d ą 3. On the other hand, when d “ 2, the exponent
1 ´ d

2 vanishes and the extent to which the noise influences the solution is not apparent.
In this paper we obtain explicit lower bounds on the moments of the SHF. Besides their

own interest, these bounds imply that the SHF is not the “exponential of a Gaussian field”
in the sense of Gaussian Multiplicative Chaos (GMC). This result provides insight on the
critical 2d Kardar-Parisi-Zhang (KPZ) equation:

Bthpt, xq “
1

2
∆hpt, xq `

1

2
|∇hpt, xq|

2
` β ξpt, xq , t ą 0, x P R2 . (1.2)
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Indeed, when the solution upt, xq of the Stochastic Heat Equation (1.1) is function valued,
its logarithm hpt, xq :“ log upt, xq is a solution of the KPZ equation (1.2). Since the critical
2d SHF is the candidate solution of (1.1), the fact that it is not a GMC suggests that the
critical 2d KPZ solution (yet to be constructed) is likely not a Gaussian field.

In the rest of this introduction, we first recall the construction of the SHF from [CSZ23];
then we state our main results on the moments of the SHF and the comparison with GMC;
finally, we discuss related results from the literature and outline future directions of research.

1.1. Reminder: the critical 2d SHF. A key difficulty in making sense of equation
(1.1) is that its solution upt, xq is expected to be a genuine distribution on R2, not a function,
so the product ξpt, xqupt, xq is not well-defined. A natural strategy to make sense of it is to

(1) regularise the equation, so that a well-defined approximating solution exists;

(2) prove that the approximating solution has a non-trivial limit as the regularisation is
removed (and the noise strength β is suitably rescaled).

This approach was recently carried out in [CSZ23], where equation (1.1) is regularised via
discretisation of space and time, i.e. white noise ξ is replaced by a family of i.i.d. random
variables ω “ pωpn, xqq

nPN,xPZ2 with law P, called disorder, which satisfy

Erωs “ 0 , Erω2
s “ 1 , Dβ0 ą 0 : λpβq :“ logEreβωs ă 8 @β P r0, β0s . (1.3)

Replacing derivatives in the Stochastic Heat Equation (1.1) by suitable difference operators,
the solution is the partition function of directed polymers in random environment :

Zβ
M,N px, yq “ E

„

e
řN´1

n“M`1tβωpn,Snq´λpβqu
1tSN“yu

ˇ

ˇ

ˇ

ˇ

SM “ x

ȷ

, (1.4)

where E is the expectation with respect to S “ pSnq, the simple random walk on Z2. Note
that (1.4) is a discretised Feynman-Kac formula for (1.1) on the time interval rM,N s, up to
time-reversal and with a delta initial condition at time M . An alternative regularisation of
(1.1), via mollification, is discussed in Subsection 1.4 below.

The main result of [CSZ23] is that the random field of partition functions Zβ
M,N px, yq,

under diffusive rescaling of space and time and for a suitable critical scaling of β “ βN ,
converges in law as N Ñ 8 to a unique measure valued random field Z ϑ

s,tpdx,dyq. More
precisely, we define the diffusively rescaled random field of partition functions:†

Zβ
N “

ˆ

Zβ
N ; s,tpdx, dyq :“

N

4
Zβ, ω

rrNsss,rrNtssprr
?
Nxss, rr

?
Nyssq dx dy

˙

0ďsďtă8

(1.5)

where dxdy is the Lebesgue measure on R2
ˆ R2 and rrNsss is the even integer closest to

Ns, while rr
?
Nxss is the point closest to

?
Nx P R2 in the lattice Z2

even, where we set

Zd
even :“ tpz1, . . . , zdq P Zd : z1 ` . . .` zd is evenu . (1.6)

We next rescale β “ pβN qNPN in a critical window, defined by (A.1)-(A.2) in Appendix A,
which separates the weak and strong disorder phases of 2d directed polymers [CSZ17b].

†The factor 1
4

in (1.5) is due to the periodicity of the simple random walk, while the multiplication
by N is due to the local limit theorem: ErZ

βN
M,N pw, zqs “ PpSN “ z |SM “ wq “ Op 1

N´M
q “ Op 1

N
q for

M{N ď c ă 1.
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When the disorder ω has a symmetric distribution (for simplicity), this reads as follows:

β2N “
π

logN

ˆ

1 `
ϱ` op1q

logN

˙

for some ϱ P R . (1.7)

To have a universal parametrisation, our results will be formulated using a slightly different
parameter ϑ, see (A.1), which differs from ϱ in (1.7) by a constant, see [CSZ19b, eq. (1.17)].

We can now state the main result of [CSZ23].

Theorem 1.1 (The critical 2d SHF [CSZ23]). Fix βN in the critical window (A.1)-(A.2)
for a given ϑ P R. The process of random measures ZβN

N “ pZβN
N ; s,tpdx, dyqq0ďsďtă8 defined

in (1.5) converges in finite dimensional distributions pas N Ñ 8q to a unique limit

Z ϑ
“ pZ ϑ

s,tpdx, dyqq0ďsďtă8 ,

called the critical 2d Stochastic Heat Flow.

The convergence in distribution in Theorem 1.1 takes place in the space of locally finite
measures on R2

ˆ R2, equipped with the topology of vague convergence:

µN Ñ µ ðñ

ż

ϕpx, yqµN pdx,dyq Ñ

ż

ϕpx, yqµpdx,dyq @ϕ P CcpR
2

ˆ R2
q .

1.2. Main result I: SHF vs. GMC. We focus on the SHF’s one-time marginal:

Z ϑ
t pdxq :“

ż

yPR2
Z ϑ

0,tpdx,dyq . (1.8)

This is a stochastic process of log-correlated random measures on R2, see (1.10)-(1.11) below.
Higher moments of the SHF admit explicit series expansions, see (2.15)-(2.16) below, which
stem from the works [GQT21, Che21, CSZ19b, BC98]. However, as we will show below, the
SHF moments grow too fast to uniquely determine the field.

In the subcritical regime β2N „ β̂ π{ logN with β̂ ă 1 — that is, strictly below the critical
window (1.7) that we consider here — the logarithm of the directed polymer partition
function displays Gaussian fluctuations [CSZ17b, Gu20, CSZ20]. This suggests that, in the
subcritical regime, partition functions should be close to the exponential of a Gaussian field.

It is natural to wonder whether a similar picture still holds true at criticality : is the
critical 2d SHF the exponential of a Gaussian field in the sense of Gaussian Multiplicative
Chaos (GMC)? Our first main result shows that this is not the case.

Theorem 1.2. The critical 2d Stochastic Heat Flow is not a Gaussian Multiplicative Chaos.

We will recall the definition of GMC in Section 3. We point out that GMC has been
studied extensively and has applications in many contexts, including Liouville quantum
gravity, turbulence, zeroes of characteristic polynomials etc. A comprehensive review of
its connections to various fields in probability and mathematical physics, as well as a nice
introduction to its properties, is given in [RV14].

Theorem 1.2 suggests that, in the critical window (1.7), the logarithm of the partition
functions has a non-Gaussian limit. Such a limit would then be the natural candidate solution
of the critical 2d KPZ equation (1.2). Of course, putting this conjecture on firm ground will
require further work — we cannot just take the logarithm of the SHF, which is a random
measure — but our results provide an indication for the emergence of non-Gaussianity in
the 2d KPZ equation.
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It is also an interesting question whether the critical 2d Stochastic Heat Flow is absolutely
continuous w.r.t. some GMC. Our current techniques (based on comparison of moments)
seem insufficient to resolve this question.

1.3. Main results II: lower bounds for the SHF moments. Our next main
results are explicit lower bounds on the moments of the critical 2d SHF. These bounds are
the key to proving Theorem 1.2, because they show that the moments of the SHF are strictly
larger than those of a corresponding GMC, in a sense that we now make precise.

The one-time marginal Z ϑ
t pdxq of the SHF, see (1.8), is a random measure on R2. Let us

denote by M ϑ
t pdxq the GMC on R2 with the same first and second moments of the SHF:

E
“

M ϑ
t pdxq

‰

“ E
“

Z ϑ
t pdxq

‰

“ 1
2 dx , (1.9)

E
“

M ϑ
t pdxq M ϑ

t pdyq
‰

“ E
“

Z ϑ
t pdxq Z ϑ

t pdyq
‰

“ 1
4 K

p2q

t,ϑ px, yqdx dy , (1.10)

where K
p2q

t,ϑ px, yq is known, see (2.7), and it is log-divergent along the diagonal (see (5.27)):

K
p2q

t,ϑ px, yq „ Ct,ϑ log
1

|y ´ x|
as |y ´ x| Ñ 0 . (1.11)

As will be noted after (3.7), the Gaussian field underlying such a GMC is log-log-correlated,
i.e. its covariance kernel satisfies ktpx, yq „ log log 1

|y´x|
as |y ´ x| Ñ 0.†

We first compare the third moment of the SHF Z ϑ
t pφq :“

ş

R2 φpxq Z ϑ
t pdxq with that of

the GMC M ϑ
t pφq :“

ş

R2 φpxq M ϑ
t pdxq averaged over integrable functions φ : R2

Ñ R.

Theorem 1.3 (Third moment lower bound). For t ą 0 and ϑ P R, let M ϑ
t pdxq be the

GMC with the same first and second moments as the SHF Z ϑ
t pdxq, see (1.9)-(1.10). If φ is

the indicator function of a ball, or the heat kernel on R2, see (2.1), we have

E
“

Z ϑ
t pφq

3‰
ą E

“

M ϑ
t pφq

3‰ , (1.12)

hence Z ϑ
t pdxq ‰ M ϑ

t pdxq.

Remark 1.4. The bound (1.12) actually holds for all radially symmetric and decreasing
functions φ that satisfy a basic inequality, see (4.11) below. These include, in particular, the
indicator function of a ball and the heat kernel, that we single out in Theorem 1.3.

We next turn to moments of any orderm ě 3. Since M ϑ
t pdxq is a GMC with a log-divergent

second moment kernel, see (1.11), one can shown that (see Proposition 5.1 below)

E
“`

2M ϑ
t pgδq

˘m‰
„ E

“`

2M ϑ
t pgδq

˘2‰pm2 q as δ Ó 0 , (1.13)

where gδ is the heat kernel on R2 at time δ, the multiplicative factor 2 arises from (1.9),
and the notation ϕpδq „ ψpδq as δ Ó 0 means limδÓ0 ϕpδq{ψpδq “ 1. We show that for the
SHF Z ϑ

t this asymptotic factorisation does not hold.

Theorem 1.5 (Higher moments lower bound). Given any t ą 0 and ϑ P R, there exists
η “ ηt,ϑ ą 0 such that for any h P N with h ě 3 we have

E
“`

2Z ϑ
t pgδq

˘h‰
ě p1 ` ηqE

“`

2Z ϑ
t pgδq

˘2‰ph2q @δ P p0, 1q . (1.14)

†For a comparison, the much studied Gaussian Free Field on R2 is log-correlated, hence the corresponding
GMC is polynomially correlated.
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As a consequence, by (1.13), for any h P N with h ě 3 we have

lim inf
δÓ0

E
“

Z ϑ
t pgδq

h‰

E
“

M ϑ
t pgδq

h‰
ě 1 ` η ą 1 , (1.15)

hence Z ϑ
t pdxq ‰ M ϑ

t pdxq.

Remark 1.6. For the directed polymer partition functions in the whole subcritical regime, a
lower bound qualitatively similar to (1.14), but with η “ 0, is also valid and matches the
asymptotic behaviour of the upper bounds obtained in [LZ21, CZ21].

Theorem 1.3 will be proved in Section 4 by exploiting a series expansion for the moments
(2.15)-(2.16), which in the case of the third moment admits a renewal-type form [CSZ19b], see
(2.8)-(2.11). This is quite involved and can be represented as a series of complicated diagrams.
Through an explicit computation, we are able to integrate out the spatial variables in these
diagrams. What remains is a multiple integral of time variables that have monotonicity
properties, which we exploit in order to obtain the lower bound (1.12).

Theorem 1.5 will be proved in Section 5 via a very different approach, inspired by the
work of Feng [Fen16]. A key role here is played by the Gaussian Correlation Inequality
[R14, LM17], which saves us from analysing the complicated diagrammatic representation
of the moments. By means of probabilistic arguments, such as bounding the variance of
suitable random variables, we obtain the lower bound (1.14), which then yields (1.15).

1.4. Background. We recall here some results that led to the critical 2d SHF.
To regularise the 2d Stochastic Heat Equation (1.1), we used in Section 1.1 a discretisation

of space and time, which led to the directed polymer partition functions. Alternatively, one
can mollify the white noise ξ in space on scale ε ą 0 by defining ξεpt, xq :“ pξpt, ¨q ˚ jεqpxq,
where jεpxq :“ ε´2jpx{εq and jp¨q is a smooth probability kernel, say compactly supported.
This leads to the mollified Stochastic Heat Equation:

Btu
ε
pt, xq “

1

2
∆uεpt, xq ` β uεpt, xq ξεpt, xq . (1.16)

The solution admits a Feynman-Kac representation [BC95, BC98]:

uεpt, xq “ Ex

”

eβ
şt
0 ξ

ε
pt´s,Bsqds´ 1

2
β
2

}jε}
2
2t
ı

dist
“ Ex

”

eβ
şt
0 ξ

ε
ps,Bsq ds´ 1

2
β
2

}jε}
2
2t
ı

, (1.17)

where Ex denotes expectation for a standard Brownian motion B starting at x (for simplicity,
we consider a flat initial condition uεp0, xq ” 1). The goal is then to make sense of the limit
of uεp¨, ¨q as ε Ñ 0, for suitable rescaling of β “ βε.

Remark 1.7. Comparing (1.17) with (1.4), we can see uεpt, xq as the partition function
of a Brownian directed polymer in the random environment ξε. Thus the two schemes of
regularisation, discretisation and mollification, are conceptually (if not technically) analogous,
with the correspondence ε ú 1{

?
N (see Appendix A.3 for more details). Most existing

results apply to both schemes [CSZ17b, CSZ19b, CSZ20], so we will focus on the mollified
Stochastic Heat Equation in what follows.

Denote by upβ̂q
ε pt, xq the solution (1.17) with β “ β̂

?
4π{

b

log ε´2 for β̂ ą 0. A phase
transition on this scale with critical point β̂c “ 1 was first identified in [CSZ17b], where it
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was shown that for any fixed pt, xq, the following limit in distribution holds:

upβ̂q
ε pt, xq

d
ÝÝÝÑ
εÑ0

$

&

%

eσpβ̂qX´
1
2σpβ̂q

2

if β̂ ă 1 ,

0 if β̂ ě 1 ,
(1.18)

where X is a standard normal random variable and σpβ̂q
2 :“ logp1{p1 ´ β̂2qq.

For β̂ ă 1, known as the subcritical regime, the solution upβ̂q
ε viewed as a random field,

suitably centred and normalised, was shown in [CSZ17b] to converge in distribution to a
Gaussian free field, given by the solution vpβ̂q of the additive stochastic heat equation (a.k.a.
Edwards-Wilkinson equation):

Btv
pβ̂q

pt, xq “
1

2
∆vpβ̂q

pt, xq `

b

1

1´β̂
2 ξpt, xq with vpβ̂q

p0, xq “ 0, (1.19)

where the noise coefficient diverges as β̂ Ò 1. More precisely, if we define

upβ̂q
ε pt, xq :“

?
log ε

´2

?
4πβ̂

`

upβ̂q
ε pt, xq ´ 1

˘

, (1.20)

then for every test function ϕ P CcpR
2
q we have xupβ̂q

ε , ϕy
d
ÝÑ xvpβ̂q, ϕy as ε Ñ 0.

A similar result has been established for the solution of the mollified 2d KPZ equation,
with upβ̂q

ε pt, xq ´ 1 in (1.20) replaced by log upβ̂q
ε pt, xq ´ Erlog upβ̂q

ε pt, xqs, see [CSZ20, Gu20].
This may be viewed as an indication that, in the subcritical regime β̂ ă 1, the solution of
the mollified 2d Stochastic Heat Equation is close to the exponential of a Gaussian field (as
we already discussed before Theorem 1.2 in the directed polymer setting). This breaks down
at criticality, as we show in Theorem 1.2.

We next review the results when β “ βε is scaled in a critical window around the critical
point β̂c “ 1, which for the mollified Stochastic Heat Equation reads as follows:

β2ε “
4π

log ε´2

ˆ

1 `
ϱ̃` op1q

log ε´2

˙

“
2π

log ε´1

ˆ

1 `
ϱ̃` op1q

log ε´2

˙

. (1.21)

Note that this is similar to (1.7) with N “ ε´2 (the different factor 4π vs. π is because
the simple symmetric random walk on Z2 has period 2 and covariance matrix 1

2I: see
Subsection 5.1 and Appendix A for a more detailed comparison).

The study of the mollified Stochastic Heat Equation with β “ βε chosen in the critical
window (1.21) was initiated in [BC98], where they identified the limit of the second moment
of the solution uεpt, ¨q, see (1.17). Subsequently, [CSZ19b] computed the limit of the third
moment of uεpt, ¨q and [GQT21] identified the limit of all higher moments (see also the more
recent work [Che21]). These results ensure that the mollified solutions puεpt, ¨qqεą0 are tight
as random measures on R2, hence they admit subsequential limits in distribution as ε Ó 0,
and any such limit has the same moments as identified in [BC98, CSZ19b, GQT21, Che21].
However, these moments grow too fast to uniquely determine the limiting random measure.

Existence of a unique limit, which was named the critical 2d Stochastic Heat Flow, was
finally established in [CSZ23] in the directed polymer setting, i.e. for the solution of the
Stochastic Heat Equation regularised via discretisation. It is expected that the same holds
for the regularisation via mollification, i.e. that uεpt, ¨q in (1.17) converges to the critical 2d
Stochastic Heat Flow as ε Ó 0, although the proof of [CSZ23] needs to be adapted.
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1.5. Future perspectives. We now discuss some related works and open questions.
We proved in Theorem 1.2 that the (one-time marginal of the) SHF, as a random measure

on R2, is not a GMC. There is, however, a very different sense in which a GMC structure
emerges naturally. In the Feynman-Kac formula (1.17) for the solution uεpt, xq of the mollified
Stochastic Heat Equation, the exponent

şt
0 ξ

ε
ps,Bsqds may be viewed as a Gaussian process

(w.r.t. the randomness of the white noise ξε) indexed by pBsqsPr0,ts P Cr0, ts, the space of
continuous functions defined on r0, ts. As a consequence, on the path space Cr0, ts, we can
consider the GMC measure Mε

xpdBq defined by

Mε
xpdBq :“ eβ

şt
0 ξ

ε
ps,Bsqds´ 1

2
β
2

}jε}
2
2tWxpdBq , (1.22)

where Wxp¨q denotes the Wiener measure on paths B P Cr0, ts with B0 “ x. Note that
uεpt, xq “ Mε

xpCr0, tsq in (1.17) is the total mass of Mε
xp¨q.

This was the perspective taken in [Cla19a, Cla19b], where an analogue of the critical 2d
directed polymer on the diamond hierarchical lattice was studied (see also [BM20] for the
Euclidean setting). In [Cla19a, Cla19b], partition functions were shown to have a non-trivial
limit and then used to construct a family of critical continuum polymer measures indexed
by the analogue of ϱ̃ in (1.21). Interestingly, these continuum polymer measures are related
to each other through a conditional GMC structure, even though they cannot be defined as
a GMC w.r.t. the analogue of the Wiener measure on the continuum hierarchical lattice.

This raises the natural question whether similar results hold for the analogue of the
critical 2d SHF in path space, namely, whether the measures Mε

x on Cr0, ts converge as
ε Ñ 0, at least when integrated over x, and whether the limits corresponding to different ϱ̃
in (1.21) are related to each other through a conditional GMC structure. There is ongoing
work in this direction in [CM22], where the authors study the second moment measure of
subsequential limits of Mε

x dx and found properties that are consistent with the conditional
GMC structure.

Another interesting direction of research concerns the asymptotic behavior of the moments
of the critical 2d SHF. Theorems 1.3 and 1.5 provide lower bounds and it is natural to ask
whether these can be improved. The works [CSZ19b, GQT21, Che21] show that for each
integer h ě 3, there is a well-defined h-point kernel K phq : pR2

q
h

Ñ R Y t`8u such that
for any φ P CcpR

2
q,

ErZ ϑ
t pφq

h
s “

1

2h

ż

¨ ¨ ¨

ż

pR2
q
h

ˆ h
ź

i“1

φpxiq

˙

K
phq

t px1, ¨ ¨ ¨ , xhqdx⃗ ,

see Theorem 2.3 below. In light of Theorem 1.5 and (1.11), it is natural to conjecture that

K
phq

t px1, ¨ ¨ ¨ , xhq „ Ct,ϑ;h

ź

1ďiăjďh

log
1

|xi ´ xj |
as max

1ďiďj
|xi ´ xj | Ñ 0 , (1.23)

for some constant Ct,ϑ;h ą pCt,ϑq
ph2q, where Ct,ϑ is the constant which determines the

asymptotic behavior of the second moment kernel, see (1.10)-(1.11).

1.6. Organization of the paper. The rest of the paper is structured as follows.

‚ In Section 2, we recall the moments formulas for the critical 2d SHF.

‚ In Section 3 we review the construction of GMC and recall its moments.

‚ In Sections 4 and 5 we prove our main results Theorems 1.3 and 1.5.

‚ In Appendix A we compare the critical windows (1.7) and (1.21).
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2. Moments of the critical 2d SHF

In this section, we recall the moments formulas for the critical 2d Stochastic Heat Flow
from [BC98, CSZ19a, CSZ19b, GQT21]. We denote by gtpxq the heat kernel on R2:

gtpxq :“
1

2πt
e´

|x|
2

2t . (2.1)

An important role is played by the following special function, defined for any ϑ P R:

Gϑptq “

ż 8

0

epϑ´γqu u tu´1

Γpu` 1q
du , (2.2)

where γ “ ´
ş8

0 log u e´u du » 0.577 is the Euler-Mascheroni constant.

Remark 2.1. The function Gϑ has a probabilistic interpretation. Denote by Y “ pYuquě0 the
Dickman subordinator, defined as the pure jump process with Lévy measure 1p0,1qpxqx´1 dx,
see [CSZ19a]. Then Gϑ is the exponentially weighted renewal density of Y :

Gϑptq “

ż 8

0
eϑu

PpYu P dtq

dt
du for t P r0, 1s .

2.1. First and second moments. The first moment of the SHF is

ErZ ϑ
s,tpdx,dyqs “ 1

2 g 1
2

pt´sqpy ´ xq dx dy , (2.3)

while its covariance is given by

CovrZ ϑ
s,tpdx,dyq,Z ϑ

s,tpdx
1,dy1

qs “ 1
2 K

ϑ
t´spx, x1; y, y1

qdx dy dx1 dy1 , (2.4)

where

Kϑ
t px, x1; y, y1

q :“ π g t
4

`

y`y
1

2 ´ x`x
1

2

˘

ĳ

0ăsăuăt

gspx1
´ xqGϑpu´ sq gt´upy1

´ yqds du . (2.5)

These formulas were derived from the asymptotic results in [CSZ19a] connected to the
Dickman subordinator, see [CSZ23, Proposition 3.5].

We will focus on the one-time marginal Ztpdxq of the SHF, see (1.8), which we also call
the SHF with flat initial data. The first moment of the averaged field is then

ErZ ϑ
t pφqs “

1

2

ż

R2

φpzq dz , (2.6)

while its centered second moment can be derived from (2.4)-(2.5) and equals

E
“`

Z ϑ
t pφq ´ ErZ ϑ

t pφqs
˘2‰

“
1

4

ż

pR2
q
2

φpz1qφpz2qK
p2q

t pz1, z2q dz1 dz2 ,

with K
p2q

t pz1, z2q :“ 2π

ĳ

0ăsăuăt

gspz1 ´ z2qGϑpu´ sq dsdu ,

(2.7)

a formula that was first derived in [BC98] in the context of the mollified Stochastic Heat
Equation (see Subsection 5.1 below).
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2.2. Third moment. The centered third moment of the SHF can be written as follows:

E
“`

Z ϑ
t pφq ´ ErZ ϑ

t pφqs
˘3‰

“
1

8

ż

pR2
q
3

φpz1qφpz2qφpz3qK
p3q

t pz1, z2, z3qdz1 dz2 dz3 , (2.8)

where the kernel Kp3q

t pz1, z2, z3q, first obtained in [CSZ19b, Theorem 1.4], admits the
following explicit but quite involved expression (see Figure 1 for a pictorial representation):†

K
p3q

t pz1, z2, z3q :“
8
ÿ

m“2

2m´1
p2πq

m ␣

Ipmq

t pz1, z2, z3q ` Ipmq

t pz2, z3, z1q ` Ipmq

t pz3, z1, z2q
(

,

(2.9)
where the kernel Ipmq

t pz1, z2, z3q is defined by

Ipmq

t pz1, z2, z3q :“

ż

¨ ¨ ¨

ż

0ăa1ăb1ă...ăamăbmăt

gpmq

a1,b1,...,am,bm
pz1, z2, z3q

" m
ź

ℓ“1

Gϑpbℓ ´ aℓq

*

da⃗ d⃗b , (2.10)

and ga1,b1,...,am,bm
pz1, z2, z3q denotes the following convolution of heat kernels:

gpmq

a1,b1,...,am,bm
pz1, z2, z3q :“

ĳ

pR2
q
m

ˆpR2
q
m

dx⃗ dy⃗ ga1
2

px1 ´ z1q ga1
2

px1 ´ z2q ¨ g b1´a1
4

py1 ´ x1q

¨ ga2
2

px2 ´ z3q ga2´b1
2

px2 ´ y1q ¨ g b2´a2
4

py2 ´ x2q

¨

m
ź

ℓ“3

!

gaℓ´bℓ´2
2

pxℓ ´ yℓ´2q gaℓ´bℓ´1
2

pxℓ ´ yℓ´1q ¨ g bℓ´aℓ
4

pyℓ ´ xℓq
)

(2.11)

(we agree that
śm

ℓ“3t. . .u :“ 1 for m “ 2). We refer again to Figure 1.

We stress that formulas (2.8)-(2.11) are the key to our proof of Theorem 1.3.

Remark 2.2. The normalisation chosen in [CSZ23] to construct the critical 2d SHF is
slightly different from the one in [CSZ19b] due to the restriction to even parity sites, see
(1.5)-(1.6). As a consequence, the limiting field in [CSZ19b] corresponds to Z ϑ,mix

t pφq
d
“

Z ϑ
t pφq ` Z 1,ϑ

t pφq, where Z ϑ
t pφq and Z 1,ϑ

t pφq denote two independent copies of the SHF. It
follows that

ErpZ ϑ
t pφq ´ ErZ ϑ

t pφqsq
3
s “

1

2
ErpZ ϑ,mix

t pφq ´ ErZ ϑ,mix
t pφqsq

3
s ,

that is, the third moment in (2.8) is half of that computed in [CSZ19b, Theorem 1.4].

†We remark that in [CSZ19b, eq. (1.25)] we have π
m, whereas in (2.9) we have p2πq

m. The main source
of this discrepancy is a missing factor 2

m´2 in [CSZ19b, eq. (1.25)]: indeed, a factor 21
tpn,xqPZ3

u
due to

periodicity was omitted in [CSZ19b, eq. (5.40)], which plugged in [CSZ19b, eq. (5.30)] yields a factor 2 for
each i “ 3, . . . ,m, hence the claimed factor 2

m´2 in [CSZ19b, eq. (1.25)]. Since the third moment in (2.8) is
half the one in [CSZ19b, Theorem 1.4], see Remark 2.2, we have a global factor 1

2
¨ 2

m´2
“ 1

8
2
m: this turns

π
m from [CSZ19b, eq. (1.25)] into p2πq

m in (2.9) and accounts for the extra factor 1
8

in (2.8).
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pa2, x2q pb2, y2q

pa3, x3q
pb3, y3q

pb1, y1q

p0, z1q

p0, z2q

pa1, x1q

p0, z3q

pa4, x4q

pb4, y4q

Figure 1. Graphical representation of the kernel Kp3q

t pz1, z2, z3q for the
centered third moment, see (2.9)-(2.11). Solid-curved lines from pb, yq to
pa, xq are assigned weights ga´b

2
px´ yq while wiggle lines from pa, xq to pb, yq

are assigned weights Gϑpb´ aqg b´a
4

py ´ xq.

2.3. Higher moments. A formula for higher moments of the SHF was first identified
in [GQT21]. For completeness, we recall this formula in our framework.

Fix an integer h P N with h ě 2. For t ą 0 and a pair ti, ju Ă t1, . . . , hu of distinct
elements i ă j, we define two measure kernels mapping from pR2

q
h to measures supported

on the subspace

pR2
q
h
ti,ju :“

␣

x “ px1, . . . , xhq P pR2
q
h : xi “ xj

(

. (2.12)

‚ The first measure kernel (actually a probability kernel) is called constrained evolution:

Q
ti,ju

t py,dxq :“

˜

h
ź

ℓ“1

g t
2
pxℓ ´ yℓq

¸

¨

˜

ź

ℓPt1,...,huzti,ju

dxℓ

¸

¨ dxi ¨ δxi
pdxjq , (2.13)

where δxi
p¨q denotes the Dirac mass at xi P R2 and gtp¨q is the heat kernel, see (2.1).

‚ The second measure kernel is called replica evolution:

G
ti,ju

ϑ,t px,dyq :“

˜

ź

ℓPt1,...,huzti,ju

g t
2
pyℓ ´ xℓqdyℓ

¸

Gϑptq g t
4
pyi ´ xiq dyi ¨ δyipdyjq , (2.14)

where Gϑptq is the function in (2.2). We will only need G
ti,ju

ϑ,t px,dyq with xi “ xj .

We now give the higher moments formula.

Theorem 2.3. Fix h P N with h ě 2. The h-th moment of the SHF Z ϑ
t with flat initial

data, averaged over a test function φ P CcpR
2
q, admits the expression

E
“

Z ϑ
t pφq

h‰
“

1

2h

ż

pR2
q
h

φpz1q ¨ ¨ ¨φpzhq K
phq

t pz1, . . . , zhq dz1 ¨ ¨ ¨ dzh , (2.15)
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p0, z1q

pa2, x2q pb2, y2q

pa3, x3q
pb3, y3q

pb1, y1q

p0, z2q

p0, z3q

pa1, x1q

p0, z4q

pa4, x4q

pb4, y4q

¨ ¨ ¨ ¨ ¨ ¨

Figure 2. Graphical representation of the kernel K
p4q

t pz1, z2, z3, z4q for the
fourth moment, see (2.16). The solid-curved and wiggle lines are assigned
the same weights as in Figure 1. The hollow circles on the vertical dashed
lines are where we apply the Champman-Kolmogorov decomposition (see
also Remark 2.6).

with

K
phq

t pz1, . . . , zhq

:“ 1 `

8
ÿ

m“1

p2πq
m

ÿ

ti1‰j1u,...,tim‰jmuĂt1,...,hu

with tiℓ,jℓu‰tiℓ´1,jℓ´1u @ℓě2

ż

¨ ¨ ¨

ż

0ăa1ăb1ă...ăamăbmăt

da⃗ d⃗b

ż

¨ ¨ ¨

ż

px⃗, y⃗qPppR2
q
h

q
2m

Qti1,j1u
a1

pz, dx1qG
ti1,j1u

ϑ,b1´a1
px1,dy1q

m
ź

ℓ“2

Q
tiℓ,jℓu

aℓ´bℓ´1
pyℓ´1,dxℓqG

tiℓ,jℓu

ϑ,bℓ´aℓ
pxℓ,dyℓq .

(2.16)

This result can be proved by arguing as in [CSZ23, Section 6], exploiting the local limit
theory for the Dickman subordinator as developed in [CSZ19a]. Formula (2.16) coincides
with the one obtained in [GQT21] up to a simple scaling, see Proposition 5.3 below.

Remark 2.4. The integral over the space variables x⃗, y⃗ in (2.16) can be restricted to the
subspace

`

pR2
q
h
ti1,j1u

˘2
ˆ . . . ˆ

`

pR2
q
h
tim,jmu

˘2
Ď ppR2

q
h
q
2m, see (2.12). This is because the

kernels Q
ti,ju

t and G
ti,ju

ϑ,t in (2.13)-(2.14) are measures supported on pR2
q
h
ti,ju.

Remark 2.5. Centered moments E
“`

Z ϑ
t pφq ´ ErZ ϑ

t pφqs
˘h‰ admit formulas analogous to

(2.15)-(2.16), with a correlation kernel Kphq

t pz1, . . . , zhq which is obtained from (2.16) by
removing the constant term “1`” and imposing the constraint

Ťm
ℓ“1tiℓ, jℓu “ t1, . . . , hu in

the sum over ti1 ‰ j1u, . . . , tim ‰ jmu Ă t1, . . . , hu (incidentally, this requires m ě rh2 s).

Remark 2.6. In the special case h “ 3, formulas (2.15)-(2.16) are consistent with formulas
(2.8)-(2.11) for the centered third moment. To check this, it suffices to decompose the heat
kernels gaℓ´bℓ´2

2

pxℓ ´ yℓ´2q in (2.11) at times aℓ´1, bℓ´1 by Chapman-Kolmogorov:

gaℓ´bℓ´2
2

pxℓ ´ yℓ´2q “

ĳ

pR2
q
2

dx1 dy1 gaℓ´1´bℓ´2
2

px1
´ yℓ´2q g bℓ´1´aℓ´1

2

py1
´ x1

q gaℓ´bℓ´1
2

pxℓ ´ y1
q ,
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which gives rise to the operators Qtiℓ,jℓu

aℓ´bℓ´1
, Gtiℓ´1,jℓ´1u

ϑ,bℓ´1´aℓ´1
and Q

tiℓ´1,jℓ´1u

aℓ´bℓ´1
, see (2.13) and (2.14).

See also Figure 2 for the application of Chapman-Kolmogorov (in the case h “ 4) .

3. GMC and its moments

As already mentioned in the introduction, a nice review of the Gaussian Multiplicative
Chaos (GMC) and its various connections can be found in [RV14]. Here we present its
definition and the structure of its moments, which is relevant towards our goals.

3.1. Construction of GMC. Let k : R2
ˆ R2

Ñ R Y t`8u be a kernel which is
symmetric, locally integrable and positive definite, i.e.

ť

R2
ˆR2 φpxq kpx, yqφpyqdxdy ě 0

for all φ P CcpR
2
q. Let X “ pX pφqq

φPCcpR2
q

be the centered Gaussian field with covariance

kpφ,ψq :“

ĳ

R2
ˆR2

φpxq kpx, yqψpyqdx dy for φ,ψ P CcpR
2
q .

Let us fix a locally finite measure µ on R2. The Gaussian Multiplicative Chaos (GMC)
associated to X with respect to the measure µ, denoted by M pdxq, is formally given by

M pdxq “ : exppX pxqqµpdxq : .

For a precise definition, for ε ą 0 we take a continuous regularization kεpx, yq of kpx, yq, still
positive definite, such that limεÓ0 kεpx, yq “ kpx, yq locally uniformly in x, y. We can then
consider the centered Gaussian process Xε “ pXεpxqq

xPR2 with covariance kεpx, yq, which
is well-defined pointwise, and we define for ε ą 0

Mεpdxq :“ eXεpxq´ 1
2
ErXεpxq

2
s µpdxq “ eXεpxq´ 1

2
kεpx,xq µpdxq .

The GMC M pdxq is then defined as the following limit in distribution:

M pdxq :“ lim
εÓ0

Mεpdxq ,

assuming that it exists in the vague sense: for φ P CcpR
2
q,

Mεpφq :“

ż

R2

φpxq Mεpdxq ÝÝÑ
εÓ0

M pφq :“

ż

R2

φpxq M pdxq .

3.2. Moments of GMC. By construction, for ε ą 0 we have

ErMεpφqs “

ż

R2

φpzqµpdzq . (3.1)

Since EreXεpxq`Xεpyq
s “ Ere

1
2
VarrXεpxq`Xεpyqs

s “ e
1
2

tkεpx,xq`kεpy,yq`2kεpx,yqu, we obtain

E
“

Mεpφq
2‰

“

ĳ

R2
ˆR2

φpz1qφpz2q ekεpz1,z2q µpdz1qµpdz2q . (3.2)

Similarly, since EreXεpz1q`¨¨¨`Xεpzmq
s “ e

1
2

řm
i,j“1 kεpzi,zjq, we have

E
“

Mεpφq
m‰

“

ż

pR2
q
m
φpz1q ¨ ¨ ¨φpzmq e

ř

1ďiăjďm kεpzi,zjq µpdz1q ¨ ¨ ¨µpdzmq . (3.3)

When we let ε Ó 0, these formulas apply to M pφq once we replace kεpzi, zjq by kpzi, zjq.
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Let us now record the centered second and third moments of GMC.

‚ Centered second moment :

E
“`

M pφq ´ ErM pφqs
˘2‰

“

ż

pR2
q
2

φpz1qφpz2qK
p2q

GMCpz1, z2qµpdz1qµpdz2q

where K
p2q

GMCpz1, z2q :“ ekpz1,z2q
´ 1 .

(3.4)

‚ Centered third moment :

E
“`

M pφq ´ ErM pφqs
˘3‰

“

ż

pR2
q
3

φpz1qφpz2qφpz3qK
p3q

GMCpz1, z2, z3qµpdz1qµpdz2qµpdz3q

where K
p3q

GMCpz1, z2, z3q :“
ź

1ďiăjď3

ekpzi,zjq
´

ÿ

1ďiăjď3

ekpzi,zjq
` 2 .

(3.5)

Comparing (3.5) with (3.4), we see that the following structural relation holds:

K
p3q

GMCpz1, z2, z3q “ K
p2q

GMCpz1, z2qK
p2q

GMCpz2, z3qK
p2q

GMCpz1, z3q

` K
p2q

GMCpz1, z2qK
p2q

GMCpz2, z3q

` K
p2q

GMCpz1, z2qK
p2q

GMCpz1, z3q

` K
p2q

GMCpz1, z3qK
p2q

GMCpz2, z3q .

(3.6)

3.3. A GMC Matching the First Two Moments of SHF. Henceforth we
denote by M ϑ

t pdxq the GMC with the same first and second moments as the SHF Z ϑ
t pdxq.

Comparing (3.1) and (3.4) with (2.6) and (2.7), we see that this can be obtained once we fix

µpdxq :“
1

2
dx , ktpz1, z2q “ log

`

1 `K
p2q

t pz1, z2q
˘

, (3.7)

where Kp2q

t is defined in (2.7). This ensures that Kp2q

GMCpz1, z2q “ K
p2q

t pz1, z2q.† To show that
Z ϑ

t pdxq is not a GMC, it suffices to show that the higher moments of M ϑ
t pdxq and Z ϑ

t pdxq

do not match.

4. Proof of Theorem 1.3: lower bounds via Gaussian integrals

In this section we prove Theorem 1.3: the third moment of the critical 2d SHF Z ϑ
t pφq is

strictly larger than that of a GMC M ϑ
t pφq with matching first and second moments, when

averaged over suitable integrable functions φ : R2
Ñ r0,8q.

Remark 4.1. Most steps of our analysis cover any integrable function φ : R2
Ñ r0,8q which

is radially symmetric and non-increasing, that is φpxq “ ϱp|x|q for some non-increasing
function ϱ : r0,8q Ñ r0,8s, with | ¨ | the Euclidean norm. Only in the last step we need a
basic inequality, see Proposition 4.4, that we prove when φ is the heat kernel or the indicator
function of a ball, as in Theorem 1.3. We believe that Proposition 4.4 should hold in greater
generality —possibly, as soon as ϱ is log-concave— but this remains open.

†By (1.10)-(1.11) for the uncentered correlation function 1
4

K p2q

t,ϑ pz1, z2q “ e
ktpz1,z2q, the covariance kernel

of the Gaussian field underlying the GMC satisfies ktpz1, z2q „ log log 1
|z1´z2|

as |z1 ´ z2| Ñ 0.
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Let us fix an integrable function φ, t ą 0 and ϑ P R. Our goal is to prove that

E
“

Z ϑ
t pφq

3‰
ą E

“

M ϑ
t pφq

3‰ .

Since first and second moments match, it is equivalent to work with centered third moments:

E
“`

Z ϑ
t pφq ´ ErZ ϑ

t pφqs
˘3‰

ą E
“`

M ϑ
t pφq ´ ErM ϑ

t pφqs
˘3‰

. (4.1)

In view of (2.8) and (3.5), see also (3.7), we can rewrite (4.1) as

K
p3q

t pφq ą K
p3q

GMCpφq , (4.2)

where, given a kernel Hpz1, z2, z3q, we use the shorthand

Hpφq :“

¡

pR2
q
3

φpz1qφpz2qφpz3qHpz1, z2, z3qdz1 dz2 dz3 . (4.3)

It remains to prove (4.2). The kernel Kp3q

t is complicated, but we can perform an almost
exact computation of the function gpmq

a1,b1, ..., am,bm
pz1, z2, z3q in (2.11), see Proposition 4.6

below. From this we obtain a lower bound on Kp3q

t pφq (Proposition 4.2), that we complement
with an upper bound on Kp3q

GMCpφq (Proposition 4.3). At last, we will show that these bounds
are compatible (Proposition 4.4), which yields our goal (4.2).

Let us introduce two key quantities Ga1,a2
pφq and rGa1,a2

pφq that enter our bounds:

Ga1,a2
pφq :“ p2πq

2
¡

pR2
q
3

φpz1qφpz2qφpz3q ga1pz2 ´ z1q ga2pz3 ´
z1`z2

2 q dz⃗ , (4.4)

rGa1,a2
pφq :“ p2πq

2
¡

pR2
q
3

φpz1qφpz2qφpz3q ga1pz2 ´ z1q ga2pz3 ´ z2q dz⃗ , (4.5)

where gtpzq denotes the heat kernel, see (2.1). We can now state our lower bound on Kp3q

t pφq

which involves the quantity Ga1,a2
pφq.

Proposition 4.2 (Third moment lower bound for the SHF). Fix ϑ P R and t ą 0.
Let Kp3q

t be the centered third moment kernel of the critical 2d SHF Z ϑ
t , see (2.8)-(2.9). For

any integrable function φ : R2
Ñ r0,8q which is radially symmetric and non-increasing (see

Remark 4.1), we have the strict lower bound

K
p3q

t pφq ą I
p3q

t pφq , (4.6)

where we define

I
p3q

t pφq :“ 3
8
ÿ

m“2

2m´1
ż

¨ ¨ ¨

ż

0ăa1ăb1ă...ăamăbmăt

Ga1,a2
pφqGϑpb1 ´ a1qGϑpb2 ´ a2q

ˆ

m
ź

i“3

Gϑpbi ´ aiq

ai ´ bi´2
da⃗ d⃗b ,

(4.7)

with Ga1,a2
pφq as in (4.4) and Gϑ as in (2.2).



2dSHF AIN’T GMC 15

We refer to Figure 3 for a graphical representation of Ip3q

t pφq when φ “ gr is the heat
kernel, in which case Ga1,a2

pφq can be computed explicitly (see Remark 4.5).
We next state an upper bound on K

p3q

GMCpφq which involves the quantity rGa1,a2
pφq.

Interestingly, this bound applies to any positive integrable function φ.

Proposition 4.3 (Third moment upper bound for GMC). Fix ϑ P R and t ą 0. Let
K

p3q

GMC be the centered third moment kernel of the GMC M ϑ
t , see (3.5) and (3.7). For any

integrable function φ : R2
Ñ r0,8q we have the strict upper bound

K
p3q

GMCpφq ă rI
p3q

t pφq , (4.8)

where we define

rI
p3q

t pφq :“ 3
8
ÿ

m“2

2m´1
ż

¨ ¨ ¨

ż

0ăa1ăb1ă...ăamăbmăt

rGa1,a2
pφqGϑpb1 ´ a1qGϑpb2 ´ a2q

ˆ

m
ź

i“3

Gϑpbi ´ aiq

ai ´ bi´2
da⃗ d⃗b ,

(4.9)

with rGa1,a2
pφq as in (4.5) and Gϑ as in (2.2).

Note that rI
p3q

t pφq in (4.9) is like Ip3q

t pφq in (4.7), just with rGa1,a2
pφq in place of Ga1,a2

pφq.
If Ga1,a2

pφq ą G̃a1,a2
pφq, then we can combine the bounds (4.6) and (4.8) to yield our goal

(4.2). We finally show that this indeed holds when φ is the indicator function of a ball, or
the heat kernel, which completes the proof of Theorem 1.3.

Proposition 4.4 (Comparison of bounds). Recall Ga1,a2
pφq and rGa1,a2

pφq from (4.4)-
(4.5). Let φ be the indicator function of a ball or the heat kernel, see (2.1):

φ “ 1
txPR2

: |x|ďru
or φ “ gr , r ą 0 . (4.10)

Then we have
Ga1,a2

pφq ą G̃a1,a2
pφq @a1, a2 ą 0 . (4.11)

Recalling (4.7) and (4.9), it follows that for any ϑ P R and t ą 0

I
p3q

t pφq ą rI
p3q

t pφq , (4.12)

therefore, in view of (4.6) and (4.8), one has Kp3q

t pφq ą K
p3q

GMCpφq.

Remark 4.5. When φ “ gr is the heat kernel, Ga1,a2
pφq and rGa1,a2

pφq in (4.4)-(4.5) can
be computed by an explicit Gaussian integration (see Subsection 4.3):

Ga1,a2
pgrq “

1

a1 ` 2r

1

a2 ` 3
2r
, rGa1,a2

pgrq “
1

a1a2 ` 2rpa1 ` a2q ` 3r2
, (4.13)

and in this case one sees easily that Ga1,a2
pgrq ą rGa1,a2

pgrq, in agreement with (4.12).
A graphical representation of Ip3q

t pφq for φ “ gr is given in Figure 3.

It only remains to prove Propositions 4.2, 4.3 and 4.4, to which Subsections 4.1, 4.2
and 4.3 are devoted.
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a3 b3a2 b2a1 b1 a4 b4´2r ´3
2r

Figure 3. Graphical representation of Ip3q

t pφq, see (4.7), when φ “ gr is
the heat kernel, see (4.13). More specifically, we represent the term m “ 4
in the series in (4.7). Double solid lines from bi´2 to ai are assigned weights
pai´bi´2q

´1, while wiggle lines from ai to bi are assigned weights Gϑpbi´aiq.

4.1. Proof of Proposition 4.2. The heart of the proof is the following “computation”
of the function gpmq

a1,b1,...,am,bm
pz1, z2, z3q in (2.11), which we will prove below.

Proposition 4.6. For m ě 2, 0 ă a1 ă b1 ă . . . ă am ă bm, z1, z2, z3 P R2 and
g

pmq

a1,b1,...,am,bm
pz1, z2, z3q as in (2.11), we have

g
pmq

a1,b1,...,am,bm
pz1, z2, z3q “ ga1pz1 ´ z2q ¨ g

a2
pmq

`

z3 ´
z1`z2

2

˘

¨

m
ź

i“3

g
ai´bi´2

pmqp0q , (4.14)

for suitable variables a2
pmq and ai ´ bi´2

pmq (depending on a1, b1, . . . , am, bm) which satisfy

a2
pmq

ď a2 ´
b1
4 ă a2 ,

ai ´ bi´2
pmq

ď ai ´ bi´2 ´
bi´1´ai´1

4 ă ai ´ bi´2 .
(4.15)

We will also need a basic monotonicity property for the function Ga1,a2
pφq in (4.4).

Lemma 4.7. If φ : R2
Ñ r0,8q is integrable, radially symmetric and non-increasing (see

Remark 4.1), then the function Ga1,a2
pφq in (4.4) is strictly decreasing in a2 ą 0.

Proof. By the change of variables x :“ z1, y :“ z3 ´
z1`z2

2 , z :“ z3, we can write

Ga1,a2
pφq :“ p2πq

2
ż

R2
fpyq ga2pyq dy , (4.16)

where we define

fpyq :“

ż

R2
hpz ´ yqφpzqdz , hpwq :“

ż

R2
φpxqφp2w ´ xq ga1p2w ´ 2xqdx . (4.17)

By (4.16) we can write Ga1,a2
pφq “ p2πq

2 Erfpa2 Zqs, where Z is a standard Gaussian random
variable on R2 (with density g1). Then, to prove that a2 ÞÑ Ga1,a2

pφq is strictly decreasing,
it is enough to prove that f is radially non-increasing and integrable (see Remark 4.1). The
integrability of f is easily seen from (4.17), which ensures that the volumes of the level sets
of fpa2yq are finite and strictly decrease as a2 increases. We then show that both f and h
are radially symmetric and non-increasing, which completes the proof.

We recall the layer cake decomposition of a radially symmetric and non-increasing function:

for a.e. x P R2 : φpxq “

ż 8

0
1t|x|ăru µ

φ
pdrq , (4.18)
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where µφ is a positive measure on p0,8q, defined by µφppr,8qq :“ φppr, 0qq. Using a similar
decomposition for ga1 , we replace the three factors φ, φ and ga1 in the definition of h by
1t|¨|ăr1u, 1t|¨|ăr2u, and 1t|¨|ăsu and show that for any r1, r2, s ą 0 the resulting function ĥ is
radially symmetric and non-increasing:

ĥpwq :“

ż

R2
1t|x|ăr1u 1t|x´2w|ăr2u 1t|x´w|ă s

2
u dx

“ LebpBp0, r1q XBpw, s2q XBp2w, r2qq

“ LebpBp´w, r1q XBp0, s2q XBpw, r2qq ,

(4.19)

where Bpz, rq :“ tx P R2 : |x| ă ru is the ball of radius r centered at z. It is clear that ĥ is
radially symmetric and non-increasing, and so is h since it is a mixture of ĥ with different
values of r1, r2 and s.

Note that we can write f “ φ ˚ h as the convolution of two radially symmetric and
non-increasing functions. If we replace h and φ by 1t|¨|ătu and 1t|¨|ăru, by the layer cake
decomposition, we get the function

f̂pyq “

ż

R2
1t|z´y|ătu 1t|z|ăru dz “ LebpBp0, rq XBpy, tqq ,

which is clearly radially symmetric and non-increasing, hence the same holds for f . □

It is now easy to prove Proposition 4.2. When we average g
pmq

a1,b1,...,am,bm
pz1, z2, z3q with

respect to the function φ as in (4.3), we can apply (4.14) to write, recalling (4.4),

gpmq

a1,b1,...,am,bm
pφq “

1

p2πq
2 G

a1,a2
pmqpφq

m
ź

i“3

g
ai´bi´2

pmqp0q .

Since t ÞÑ gtp0q and a2 ÞÑ Ga1,a2
pφq are strictly decreasing functions, we obtain the bound

gpmq

a1,b1,...,am,bm
pφq ą

1

p2πq
2 Ga1,a2

pφq

m
ź

i“3

gai´bi´2
p0q “

1

p2πq
m Ga1,a2

pφq

m
ź

i“3

1

ai ´ bi´2
.

In fact for m ě 3, this strict inequality already follows from the fact that t Ñ gtp0q is strictly
decreasing and a2 ÞÑ Ga1,a2

pφq is non-decreasing. Plugging this into (2.9)-(2.10), we obtain
K

p3q

t pφq ą I
p3q

t pφq with Ip3q

t pφq defined in (4.7). This completes the proof of Proposition 4.2.

We are left with proving Proposition 4.6. A key tool is the following elementary lemma.

Lemma 4.8 (Triple Gaussian integral). Let gtpxq be the two-dimensional heat kernel,
see (2.1). For all s, t ą 0 and x, a, b P R2 we have

gspx´ aq gtpx´ bq “ gs`tpa´ bq ghps,tqpx´mt,spa, bqq , (4.20)

where we set

hps, tq :“
`

1
s ` 1

t

˘´1
“

st

s` t
, mt,spx, yq :“

t

s` t
x`

s

s` t
y . (4.21)

It follows that for all s, t, u ą 0 and a, b, c P R2 we have
ż

R2
gspx´ aq gtpx´ bq gupx´ cqdx “ gs`tpa´ bq ghps,tq`upc´mt,spa, bqq . (4.22)

Proof. (4.20) follows directly from the definition (2.1) of the heat kernel and an easy
algebraic manipulation. Then (4.22) follows by (4.20) and a simple Gaussian convolution. □



18 F. CARAVENNA, R. SUN, AND N. ZYGOURAS

Proof of Proposition 4.6. We first prove (4.14)-(4.15) for m “ 2. Recall that, by (2.11),

gp2q

a1,b1,a2,b2
pz1, z2, z3q “

żżżż

pR2
q
4

ga1
2

px1 ´ z1q ga1
2

px1 ´ z2q ¨ g b1´a1
4

py1 ´ x1q

¨ ga2
2

px2 ´ z3q ga2´b1
2

px2 ´ y1q ¨ g b2´a2
4

py2 ´ x2q dx1 dy1 dx2 dy2 .

(4.23)

Since
ş

R2 gspx´ aq gtpx´ bqdx “ gs`tpa´ bq, we can integrate y2, then x2, then y1 to get
ĳ

pR2
q
2

ga1
2

px1 ´ z1q ga1
2

px1 ´ z2q ¨ g b1´a1
4

py1 ´ x1q ¨ ga2
2

`
a2´b1

2

py1 ´ z3qdx1 dy1

“

ż

R2

ga1
2

px1 ´ z1q ga1
2

px1 ´ z2q ¨ g b1´a1
4

`
a2
2

`
a2´b1

2

px1 ´ z3qdx1 .

Applying (4.22) to compute the last integral over x1, we finally obtain

gp2q

a1,b1,a2,b2
pz1, z2, z3q “ ga1pz1 ´ z2q g

a2
p2q

`

z3 ´
z1`z2

2

˘

, (4.24)

where we set
a2

p2q :“ a2
2 `

a2´b1
2 `

b1
4 “ a2 ´

b1
4 . (4.25)

This completes the proof of (4.14)-(4.15) for m “ 2.
We next move to m ě 3. In formula (2.11), the terms depending on xm and ym are

gam´bm´2
2

pxm ´ ym´2q gam´bm´1
2

pxm ´ ym´1q ¨ g bm´am
4

pym ´ xmq , (4.26)

which after integration over ym and xm give

gam´bm´2
2

`
am´bm´1

2

pym´1 ´ ym´2q “ g
am´

bm´1`bm´2
2

pym´1 ´ ym´2q . (4.27)

This shows that we can rewrite (2.11) for m ě 3 as follows:

gpmq

a1,b1,...,am
pz1, z2, z3q :“

ĳ

pR2
q
m´1

ˆpR2
q
m´1

dx⃗ dy⃗ ga1
2

px1 ´ z1q ga1
2

px1 ´ z2q ¨ g b1´a1
4

py1 ´ x1q

¨ ga2
2

px2 ´ z3q ga2´b1
2

px2 ´ y1q ¨ g b2´a2
4

py2 ´ x2q

¨

m´1
ź

i“3

!

gai´bi´2
2

pxi ´ yi´2q gai´bi´1
2

pxi ´ yi´1q ¨ g bi´ai
4

pyi ´ xiq
)

¨ g
am´

bm´1`bm´2
2

pym´1 ´ ym´2q ,

(4.28)

where we agree that
śm´1

i“3 t. . .u :“ 1 for m “ 3. We note that bm does not appear in the
r.h.s. of (4.28), hence we dropped it from the notation gpmq

a1,b1,...,am
pz1, z2, z3q.

We are ready to prove (4.14)-(4.15) for m ě 3 by induction. For m “ 3, (4.28) becomes

gp3q

a1,b1,a2,b2,a3
pz1, z2, z3q “

żżżż

pR2
q
4

ga1
2

px1 ´ z1q ga1
2

px1 ´ z2q ¨ g b1´a1
4

py1 ´ x1q

¨ ga2
2

px2 ´ z3q ga2´b1
2

px2 ´ y1q ¨ g b2´a2
4

py2 ´ x2q

¨ g
a3´

b1`b2
2

py2 ´ y1q dx1 dy1 dx2 dy2 ,
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and integrating over y2 we obtain
¡

pR2
q
3

ga1
2

px1 ´ z1q ga1
2

px1 ´ z2q ¨ g b1´a1
4

py1 ´ x1q

¨ ga2
2

px2 ´ z3q ga2´b1
2

px2 ´ y1q ¨ g
a3´

b1
2

´
a2`b2

4

px2 ´ y1qdx1 dy1 dx2 .

(4.29)

When we integrate the last line over x2, by (4.22) we get

g
a3´

b1
2

´
a2`b2

4
`

a2´b1
2

p0q ga2
2

`hp
a2´b1

2
, a3´

b1
2

´
a2`b2

4
q
py1 ´ z3q “ g

a3´b1
p3qp0q ¨ g

a2
p3q

´
b1
4

py1 ´ z3q

where we define

a3 ´ b1
p3q

:“ pa3 ´ b1q ´
b2´a2

4 ,

a2
p3q :“ a2

2 `
b1
4 ` h

`a2´b1
2 , a3 ´

b1
2 ´

a2`b2
4

˘

.
(4.30)

We can then perform the integral over y1 in (4.29) to get

g
a3´b1

p3qp0q

ż

R2

ga1
2

px1 ´ z1q ga1
2

px1 ´ z2q ¨ g
a2

p3q
´

a1
4

px1 ´ z3qdx1 ,

and a further application of (4.22) finally yields

gp3q

a1,b1,a2,b2,a3
pz1, z2, z3q “ ga1pz1 ´ z2q g

a
p3q

2

`

z3 ´
z1`z2

2

˘

g
a3´b1

p3qp0q . (4.31)

This proves (4.14) for m “ 3. To prove (4.15), we note that hps, tq ă s, see (4.21), hence

a2
p3q

ă
a2
2 `

b1
4 `

a2´b1
2 “ a2 ´

b1
4 .

We finally fix m ě 3, we assume that formulas (4.14)-(4.15) hold for gpmq and we prove
that they hold for gpm`1q. To this purpose, it is enough to show that

gpm`1q

a1,b1,...,am,bm,am`1
pz1, z2, z3q “ g

am`1´bm´1
pm`1qp0q ¨ gpmq

a1,b1,...,am´1,bm´1,Ąam
pz1, z2, z3q

for suitable am`1 ´ bm´1
pm`1q

ď am`1 ´ bm´1 ´
bm´am

4 and Ăam ă am .
(4.32)

Indeed, by the induction step we can apply (4.14)-(4.15) to gpmq in the r.h.s., and since
Ăam ă am we obtain (4.14)-(4.15) for gpm`1q.

It only remains to prove (4.32). If we write formula (4.28) for gpm`1q

a1,b1,...,am,bm,am`1
pz1, z2, z3q,

we see that the terms which depend on xm and ym are

gam´bm´2
2

pxm ´ ym´2q gam´bm´1
2

pxm ´ ym´1q ¨ g bm´am
4

pym ´ xmq

¨ g
am`1´

bm`bm´1
2

pym ´ ym´1q ,

which after integration over ym yield

gam´bm´2
2

pxm ´ ym´2q gam´bm´1
2

pxm ´ ym´1q ¨ g
am`1´

bm´1
2

´
am`bm

4

pxm ´ ym´1q .

A further integration over xm gives, by (4.22),

g
am`1´

bm´1
2

´
am`bm

4
`

am´bm´1
2

p0q ¨ g
hp

am´bm´1
2

, am`1´
bm´1

2
´

am`bm
4

q`
am´bm´2

2

pym´1 ´ ym´2q

“ g
am`1´bm´1

pm`1qp0q ¨ g
Ąam´

bm´1`bm´2
2

pym´1 ´ ym´2q ,
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a3 b3a1 b1 a5 b5

z1

z2

a4 b4a2 b2 a6 b6
z3

Figure 4. Graphical representation of the term m “ 6 in the series (4.34)
which represents Kp2q

t pz1, z2qK
p2q

t pz2, z3q. The total weight of the dashed
lines from z1 and z2 to a1 is assigned weight ga1pz2 ´ z1q and the total weight
of the dashed lines from z2 and z3 to a2 is assigned weight ga2pz3 ´ z2q ; a
double solid line from bi´2 to an ai is assigned weight pai ´ bi´2q

´1; a wiggle
line from an ai to bi is assigned weight Gϑpbi ´ aiq.

where we define

am`1 ´ bm´1
pm`1q

:“ pam`1 ´ bm´1q ´
bm´am

4 ,

Ăam :“
am`bm´1

2 ` h
`am´bm´1

2 , am`1 ´
bm´1

2 ´
am`bm

4

˘

.

Recalling (4.28), we see that (4.32) holds (note that Ăam ă am because hps, tq ă s). □

4.2. Proof of Proposition 4.3. We recall relation (3.6) satisfied by any GMC. Our
choice (3.7) ensures that Kp2q

GMCpz1, z2q “ K
p2q

t pz1, z2q, see (2.7), hence (3.6) becomes

K
p3q

GMCpz1, z2, z3q “ K
p2q

t pz1, z2qK
p2q

t pz2, z3qK
p2q

t pz1, z3q `K
p2q

t pz1, z2qK
p2q

t pz2, z3q

`K
p2q

t pz1, z2qK
p2q

t pz1, z3q

`K
p2q

t pz1, z3qK
p2q

t pz2, z3q .

(4.33)

We first give an alternative expression, that we prove below, for the product of two
covariance kernels which appear in the r.h.s. of (4.33).

Lemma 4.9 (Double correlation product). The following equality holds:

K
p2q

t pz1, z2qK
p2q

t pz2, z3q “ p2πq
2

8
ÿ

m“2

ż

¨ ¨ ¨

ż

0ăa1ăb1ă...ăamăbmăt

da⃗ d⃗b

!

ga1pz2 ´ z1q ga2pz3 ´ z2q ` ga1pz3 ´ z2q ga2pz2 ´ z1q

)

¨Gϑpb1 ´ a1qGϑpb2 ´ a2q

m
ź

i“3

Gϑpbi ´ aiq

ai ´ bi´2
,

(4.34)

see Figure 4 for a graphical representation.
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When we average Kp2q

t pz1, z2qK
p2q

t pz2, z3q with respect to a function φ as in (4.3), recalling
the quantity rGa1,a2

pφq from (4.5), we obtain the equality
ż

pR2
q
3

φpz1qφpz2qφpz3q K
p2q

t pz1, z2qK
p2q

t pz2, z3q dz⃗

“ 2
8
ÿ

m“2

ż

¨ ¨ ¨

ż

0ăa1ăb1ă...ăamăbmăt

da⃗ d⃗b rGa1,a2
pφq Gϑpb1 ´ a1qGϑpb2 ´ a2q

m
ź

i“3

Gϑpbi ´ aiq

ai ´ bi´2
.

(4.35)

Note that this expression resembles rI
p3q

t pφq in (4.9), except that 3 ¨ 2m´1 is replaced by 2.

We next consider the product of three covariance kernels as in (4.33). The following result
is also proved below.

Lemma 4.10 (Triple correlation product). The following equality holds:

K
p2q

t pz1, z2qK
p2q

t pz2, z3qK
p2q

t pz1, z3q “
ÿ

α,β,γPt12, 23, 13u

α‰β, β‰γ, α‰γ

Ipα, β, γq , (4.36)

where we set

Ip12, 23, 13q :“ p2πq
3

8
ÿ

m“3

m
ÿ

ℓ“3

ż

¨ ¨ ¨

ż

0ăa1ăb1ă...ăamăbmăt

da⃗ d⃗b

ga1pz1 ´ z2q ga2pz2 ´ z3qGϑpb1 ´ a1qGϑpb2 ´ a2q

ℓ´1
ź

i“3

Gϑpbi ´ aiq

ai ´ bi´2

¨ gaℓpz1 ´ z3qGϑpbℓ ´ aℓq
ÿ

σℓ`1,...,σmPt12, 23, 13u

σℓ`1‰13, σi‰σi´1 @i

m
ź

i“ℓ`1

Gϑpbi ´ aiq

ai ´ bprevpiq
,

(4.37)

see Figure 5 for a graphical representation, where we define

prevpiq :“ maxtj P t1, . . . , i´ 2u : σj “ σiu , (4.38)

and we set σj “ 12 for odd j ď ℓ´ 1, σj “ 23 for even j ď ℓ´ 1, and σℓ :“ 13.

The definition of Ip12, 23, 13q in (4.37) is complicated, but a much simpler bound will
be enough for us: if we shorten the gaps ai ´ bprevpiq ě ai ´ bi´2, see (4.38), and we bound

gaℓpz1 ´ z3q ď gaℓp0q “
1

2π aℓ
ă

1

2π paℓ ´ bℓ´2q
,

then we can estimate

Ip12, 23, 13q ă p2πq
2

8
ÿ

m“3

m
ÿ

ℓ“3

2m´ℓ
ż

¨ ¨ ¨

ż

0ăa1ăb1ă...ăamăbmă1

da⃗ d⃗b

ga1pz1 ´ z2q ga2pz2 ´ z3qGϑpb1 ´ a1qGϑpb2 ´ a2q

m
ź

i“3

Gϑpbi ´ aiq

ai ´ bi´2
,
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a3 b3a1 b1 a6 b6

z1

z2

a4 b4a2 b2 a7 b7
z3

a5 b5

Figure 5. Graphical representation of the term m “ 7 in the series
(4.37), which describes Kp2q

t pz1, z2qK
p2q

t pz2, z3qK
p2q

t pz1, z3q, see (4.36). Pairs
of dashed lines from zi, zj to an a are assigned total weight gapzi ´zjq; double
solid lines from bi´2 to ai are assigned weight pai ´ bi´2q

´1; wiggle lines from
ai to bi are assigned weight Gϑpbi ´ aiq. Referring to (4.37), we have ℓ “ 5
and prevp6q “ 3, prevp7q “ 4.

where 2m´ℓ is the number of choices of σℓ`1, . . . , σm in (4.37). Recalling (4.5), we obtain
ż

pR2
q
3

φpz1qφpz2qφpz3q K
p2q

t pz1, z2qK
p2q

t pz2, z3qK
p2q

t pz1, z3q dz⃗

ă 6
8
ÿ

m“3

m
ÿ

ℓ“3

2m´ℓ
ż

¨ ¨ ¨

ż

0ăa1ăb1ă...ăamăbmă1

da⃗ d⃗b rGa1,a2
pφq Gϑpb1 ´ a1qGϑpb2 ´ a2q

m
ź

i“3

Gϑpbi ´ aiq

ai ´ bi´2

“ 6
8
ÿ

m“2

p2m´2
´ 1q

ż

¨ ¨ ¨

ż

0ăa1ăb1ă...ăamăbmă1

da⃗ d⃗b rGa1,a2
pφq Gϑpb1 ´ a1qGϑpb2 ´ a2q

m
ź

i“3

Gϑpbi ´ aiq

ai ´ bi´2
,

(4.39)

where in the last line we added the term m “ 2 because the factor p2m´2
´ 1q vanishes.

We finally plug (4.39) and (three times) (4.35) into (4.33). Since 6p2m´2
´1q`3¨2 “ 3¨2m´1,

we obtain Kp3q

GMCpφq ă rIp3q
pφq, see (4.9). This completes the proof of Proposition 4.3.

Proof of Lemma 4.9. Our basic strategy is to approximate Kp2q by its lattice analogue.
Figure 4 provides a useful reference to the underlying structure that we will explain. In
[CSZ19a], Theorem 1.4, we arrived at the Dickman renewal density Gϑ as the limit

UN pnq “
logN

N
Gϑp n

N qp1 ` op1qq, as N Ñ 8, (4.40)

where for n P N,

UN pnq :“ 1tn“0u `
ÿ

kě1

pσ2N q
k

ÿ

0“n0ăn1ă¨¨¨ănk“n

k
ź

i“1

q2pni´ni´1qp0q (4.41)

with σ2N :“ 1
RN

p1 `
ϑ`op1q

logN q as in (A.1) and qnp0q denoting the n-step transition probability
from 0 to 0 for a simple symmetric random walk on Z2. Moreover, the following uniform
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bound was established in [CSZ19a, Theorem 1.4]:

UN pnq ď C
logN

N
Gϑp n

N q @ 0 ă n ď N, (4.42)

for C P p0,8q. It will also be useful to recall the following asymptotic estimates for Gϑ from
[CSZ19a, Proposition 1.6]:

Gϑptq “
1

tplog 1
t q

2

#

1 `
2ϑ` op1q

log 1
t

+

, as t Ñ 0 and

Gϑptq ď
C

tplog 1
t q

2 , for t P r0, 1s.

(4.43)

Using the local limit theorem for random walks, the asymptotic (4.40), and the bound
(4.42) which allows us to apply dominated convergence, we have that (recall rr¨ss from (1.5))

Kp2q
pz1, z2q

“ lim
NÑ8

σ2N
ÿ

1ďm1ăm2ďN

q2m1
prrpz1 ´ z2q

?
N ssqUN pm2 ´m1q

“ lim
NÑ8

ÿ

kě1

ÿ

1ďm1ăm2ďN

pσ2N q
k`1

ÿ

m1“n0ăn1ă¨¨¨ănk“m2

q2m1
prrpz1 ´ z2q

?
N ssq

k
ź

i“1

q2pni´ni´1qp0q

“ lim
NÑ8

ÿ

kě1

pσ2N q
k`1

ÿ

0ăn0ăn1ă¨¨¨ănkďN

q2n0
prrpz1 ´ z2q

?
N ssq

k
ź

i“1

q2pni´ni´1qp0q.

To lighten the notation below, we will drop the brackets rr¨ss, i.e., when we write z
?
N we

refer to rrz
?
N ss. Using this expression for the product Kp2q

pz1, z2qKp2q
pz2, z3q we obtain

that

Kp2q
pz1, z2qKp2q

pz2, z3q

“ lim
NÑ8

ÿ

k,k
1
ě1

pσ2N q
k`k

1
`2

ÿ

0ăn0ăn1ă¨¨¨ănkďN

0ăn
1
0ăn

1
1ă¨¨¨ăn

1

k
1 ďN

q2n0

`

pz1 ´ z2q
?
N
˘

q2n1
0

`

pz2 ´ z3q
?
N
˘

¨

¨

k
ź

i“1

q2pni´ni´1qp0q

k
1

ź

i“1

q2pn
1
i´n

1
i´1q

p0q (4.44)

Let us start by assuming that the sequences t0 ă n0 ă n1 ă ¨ ¨ ¨ ă nk ď Nu and
t0 ă n1

0 ă n1
1 ă ¨ ¨ ¨ ă n1

k
1 ď Nu do not share common points and let us look at all possible

ways they interlace, i.e.

0 ă n0 ă ¨ ¨ ¨ ă nτ1 ă n1
0 ă ¨ ¨ ¨ ă n1

τ
1
1

ă nτ1`1 ă ¨ ¨ ¨ ă nτ2 ă n1

τ
1
1`1

ă ¨ ¨ ¨ ă n1

τ
1
2

¨ ¨ ¨ (4.45)

for integers τ1, τ2, . . . P t1, . . . , ku and τ 1
1, τ

1
2, . . . P t1, . . . , k1

u. The case n1
0 ă n0 is similar.

We can now group together the blocks of primed or un-primed integers and sum over the
possible cardinalities of the blocks as well as the values of their elements after fixing first the
vector pa1, b1, a2, b2, . . .q “ pn0, nτ1 , n

1
0, n

1

τ
1
1
, . . .q, which marks the boundaries of the blocks.

Afterwards, we sum over all possible values of pa1, b1, a2, b2, . . .q. Using this decomposition
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in expression (4.44) we can then see that

Kp2q
pz1, z2qKp2q

pz2, z3q “ lim
NÑ8

8
ÿ

m“2

ÿ

0ăa1ăb1ă...ăamăbmăN
!

q2a1
`

pz1 ´ z2q
?
N
˘

q2a2
`

pz2 ´ z3q
?
N
˘

` q2a1
`

pz2 ´ z3q
?
N
˘

q2a2
`

pz1 ´ z2q
?
N
˘

)

(4.46)

¨ σ2N UN pb1 ´ a1q ¨ σ2NUN pb2 ´ a2q ¨

m
ź

i“3

σ2N UN pbi ´ aiq q2pai´bi´2qp0q .

After passing to the limit using the local limit theorem for random walks and the asymptotic
(4.41), we arrive at expression (4.34).

It only remains to check that the interlacing blocks (4.45) are well defined, i.e. contribution
to (4.44) from sequences t0 ă n0 ă n1 ă ¨ ¨ ¨ ă nk ď Nu and t0 ă n1

0 ă n1
1 ă ¨ ¨ ¨ ă n1

k
1 ď Nu

that share common points is negligible due to the loss of some degrees of freedom. So let us
look at (4.44) when the sum on the right hand side is over configurations such that

t0 ă n0 ă n1 ă ¨ ¨ ¨ ă nk ď Nu
č

t0 ă n1
0 ă n1

1 ă ¨ ¨ ¨ ă n1

k
1 ď Nu ‰ H.

By summing over 1 ď n ď N where a coincidence between some nℓ and n1

ℓ
1 can occur, the

right hand side of (4.44) can be bounded by

ÿ

k,k
1
ě1

pσ2N q
k`k

1
`2

ÿ

1ďnďN

ÿ

0ăn0ăn1ă¨¨¨ănkďN

0ăn
1
0ăn

1
1ă¨¨¨ăn

1

k
1 ďN

1nPtn1,...,nkuXtn
1
1,...,n

1

k
1 u

¨ q2n0

`

pz1 ´ z2q
?
N
˘

q2n1
0

`

pz2 ´ z3q
?
N
˘

k
ź

i“1

q2pni´ni´1qp0q

k
1

ź

i“1

q2pn
1
i´n

1
i´1q

p0q,

Rearranging terms, this can be rewritten as

σ4N
ÿ

1ďnďN

ÿ

1ďn0,n
1
0ďn

q2n0

`

pz1 ´ z2q
?
N
˘

q2n1
0

`

pz2 ´ z3q
?
N
˘

¨ UN pn ´ n0qUN pn ´ n1
0q

ÿ

nďn,n
1
ďN

UN pn´ nqUN pn1
´ nq,

(4.47)

where recall from (4.41) that UN p0q “ 1. First restrict to the case n0, n
1
0, n, n

1
‰ n. Using

(4.42), this can be bounded by

Cσ4N
ÿ

1ďn0,n
1
0ďN

q2n0

`

pz1 ´ z2q
?
N
˘

q2n1
0

`

pz2 ´ z3q
?
N
˘

¨

¨
ÿ

n0_n
1
0ănďN

logN

N
Gϑ

`n ´ n0
N

˘

¨
logN

N
Gϑ

`n ´ n1
0

N

˘

ÿ

năn,n
1
ďN

logN

N
Gϑ

`n´ n

N

˘ logN

N
Gϑ

`n1
´ n

N

˘

.
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We now show that this sum goes to 0 as N Ñ 8. Using the local limit theorem, we can
approximate the above sum by

Cσ4N

N2

ÿ

1ďn0,n
1
0ďN

g2n0
N

`

z1 ´ z2
˘

g2n1
0

N

`

z2 ´ z3
˘

¨

¨
ÿ

n0_n
1
0ănďN

logN

N
Gϑ

`n ´ n0
N

˘

¨
logN

N
Gϑ

`n ´ n1
0

N

˘

ÿ

năn,n
1
ďN

logN

N
Gϑ

`n´ n

N

˘ logN

N
Gϑ

`n1
´ n

N

˘

.

Note that we have five independent summation variables n0, n
1
0, n, n, n

1, compared to six
factors of N´1. Using a Riemann sum approximation and that σ4N “ OpplogNq

´2
q, we can

further bound the above sum by

CplogNq
2

N

ż 1

0
dt0

ż 1

0
dt10 g2t0pz1 ´ z2q g2t1

0
pz2 ´ z3q¨

¨

ż 1

t0_t
1
0

dt Gϑpt ´ t0qGϑpt ´ t10q

ż 1

t
dt

ż 1

t
dt1 Gϑpt´ tqGϑpt1 ´ tq.

The asymptotics of Gϑ from (4.43) show that all integrals involving Gϑ are finite, and so are
the integrals involving the heat kernels for z1 ‰ z2 ‰ z3. Thus, the whole quantity vanishes
at the speed of Op

plogNq
2

N q as N tends to infinity.
Finally, we consider the sum in (4.47) when n coincides with at least one element in

tn0, n
1
0, n, n

1
u, in which case a corresponding sum of UN in (4.47) is replaced by 1, which

yields a better bound. We illustrate this in the case n0 “ n1
0 “ n; the other cases are similar

and will be omitted. The quantity in (4.47) now becomes

σ4N
ÿ

1ďnďN

q2n
`

pz1 ´ z2q
?
N
˘

g2n
`

pz2 ´ z3q
?
N
˘

ÿ

năn,n
1
ďN

UN pn´ nqUN pn1
´ nq

ď
Cσ2N

N2

ÿ

1ďnďN

g2n
N

`

z1 ´ z2
˘

g 2n
N

`

z2 ´ z3
˘

ÿ

năn,n
1
ďN

logN

N
Gϑ

`n´ n

N

˘ logN

N
Gϑ

`n1
´ n

N

˘

ď
C

N

ż 1

0
ds g2spz1 ´ z2q g2spz2 ´ z3q

ż 1

s
dt

ż 1

s
dt1 Gϑpt´ sqGϑpt1 ´ sq,

which is OpN´1
q as all integrals above are finite by (4.43) and by the small time asymptotics

of the heat kernels for z1 ‰ z2 ‰ z3. □

Proof of Lemma 4.10. The proof is similar to that of Lemma 4.9, so we will just give a
sketch.

For the product Kp2q
pz1, z2qKp2q

pz2, z3qKp2q
pz1, z3q we can write a formula analogous

to (4.44) and (4.46), where we now sum over three type of blocks: un-primed, primed and
double-primed, to each one of which we assign a label σi P t12, 23, 13u. Due to the interlacing
of the blocks, the assignment of labels will have the constraint that σi ‰ σi´1 for all i.
Thus, the only difference with the analogous formula for Kp2q

pz1, z2qKp2q
pz2, z3q would be

that q2pai´bi´2qp0q would be replaced by q2pai´bprevpiqqp0q where prevpiq corresponds to the
previous block with the same label σ. □
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4.3. Proof of Proposition 4.4. If φ “ gr is the heat kernel, see (2.1), we can
compute Ga1,a2

pφq and rGa1,a2
pφq, as in Remark 4.5. We start from the latter, see (4.5):

integrating z3 by Gaussian convolution, then z2 by Lemma 4.8, and finally z1, we get

rGa1,a2
pgrq :“ p2πq

2
ĳ

grpz1q grpz2q ga1pz2 ´ z1q gr`a2
pz2q dz1 dz2

“ p2πq
2 g2r`a2

p0q

ż

grpz1q ga1`hpr,r`a2qpz1q dz1

“ p2πq
2 g2r`a2

p0q g
r`a1`

rpr`a2q

2r`a2

p0q “
1

3r2 ` 2pa1 ` a2qr ` a1a2
,

which proves the second relation in (4.13). We can compute Ga1,a2
pgrq from (4.4) with similar

arguments, but it is easier to exploit the following basic fact: when z1, z2, z3 are independent
Gaussian random variables on R2 with density gr, then x :“ z1 ´ z2 and y :“ z3 ´

z1`z2
2 are

independent with densities g2r and g 3
2
r, therefore

Ga1,a2
pgrq “ p2πq

2
ĳ

ga1pxq g2rpxq ga2pyq g 3
2
rpyq dx dy

“ p2πq
2 ga1`2rp0q ga2` 3

2
rp0q “

1

a1 ` 2r

1

a2 ` 3
2r
,

which proves the first relation in (4.13). The fact that Ga1,a2
pgrq ą rGa1,a2

pgrq then follows.
It remains to prove (4.11) when φpzq “ 1t|z|ăru is the indicator function of a ball. If we

define
ξpzq :“ pφ ˚ ga2qpzq “

ż

φpz1
q ga2pz ´ z1

qdz1 ,

then we can write, recalling (4.4) and performing a change of variables,

Ga1,a2
pφq :“ p2πq

2
ĳ

pR2
q
2

φpz1qφpz2q ga1pz2 ´ z1q ξp
z1`z2

2 q dz1 dz2 ,

“ p2πq
2
ĳ

pR2
q
2

φpz ´
y
2 qφpz `

y
2 q ga1pyq ξpzqdy dz .

Similarly, by (4.5),

rGa1,a2
pφq :“ p2πq

2
ĳ

pR2
q
2

φpz ´ yqφpzq ga1pyq ξpzq dy dz .

Note that ξ is a radially symmetric and strictly increasing function since the convolution
of two radially symmetric and non-increasing functions (see the proof of Lemma 4.7). We
can apply a layer cake decomposition for ξ as in (4.18), thus replacing ξpzq by 1t|z|ătu

with t integrated w.r.t. the measure µξpdtq, which has full support on r0,8q. Plugging also
φpxq “ 1t|x|ăru, we can write the contribution at each fixed t ą 0 by

G ptq
a1,a2

pφq ´ rG ptq
a1,a2

pφq :“ p2πq
2
ż

R2

!

Leb
`

Bp
y
2 , rq XBp´

y
2 , rq XBp0, t

˘

´ Leb
`

Bpy, rq XBp0, rq XBp0, t
˘

)

ga1pyq dy ,
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where Bpz, rq :“ tx P R2 : |x| ă ru is the ball of radius r centered at z. Note that

Arpyq :“ Bp
y
2 , rq XBp´

y
2 , rq ,

is a symmetric convex set (possibly empty), which translated by y
2 gives

Arpyq `
y
2 “ Bpy, rq XBp0, rq .

Then it follows from Anderson’s inequality [And55, Theorem 1] that we have the bound

Leb
`

Arpyq XBp0, tq
˘

ě Leb
`

pArpyq `
y
2 q XBp0, tq

˘

,

which can also be checked directly, and given r, the inequality is strict for a non-empty open
set of t and y. Integrating t w.r.t. µξ and y w.r.t. ga1pyqdy then gives Ga1,a2

pφq ą rGa1,a2
pφq

when φ is the indicator function of a ball. □

5. Proof of Theorem 1.5: lower bounds via collision local times
and the Gaussian correlation inequality

In this section we prove Theorem 1.5. The key point is the lower bound (1.14) on the
moments of the SHF Z ϑ

t : for a suitable η “ ηt,ϑ ą 0 we have, for any m P N with m ě 3,

E
“`

2Z ϑ
t pgδq

˘m‰
ě p1 ` ηqE

“`

2Z ϑ
t pgδq

˘2‰pm2 q
@δ P p0, 1q , (5.1)

where gδ is the heat kernel on R2, see (2.1). Then, in order to obtain (1.15) and complete
the proof, it suffices to show that (1.13) holds, which follows from the next result.

Proposition 5.1 (Higher moments of GMC). Let M ϑ
t pdxq be the GMC with the same

first and second moments as the SHF Z ϑ
t pdxq, see Section 3.3. Then, as δ Ó 0, we have

E
“`

2M ϑ
t pgδq

˘m‰
„
`

Ct,ϑ log 1?
δ

˘pm2 q , (5.2)

where Ct,ϑ “ 1
π

şt
0Gϑpvqdv is the same constant which appears in (1.11).

The rest of this section is divided in three parts.

‚ First we show that the moments of the SHF Z ϑ
t pdxq, averaged over a test function φ,

can be obtained as the limit (as ε Ó 0) of the moments of the solution uεpt, xq of the
mollified Stochastic Heat Equation (1.16), based on [GQT21].

‚ Then we prove the bound (5.1) by exploiting the Gaussian Correlation Inequality
[R14, LM17], adapting the approach in Feng’s Ph.D. thesis [Fen16].

‚ Finally, we prove Proposition 5.1, which completes the proof of Theorem 1.5.

5.1. SHF and the mollified Stochastic Heat Equation. We consider the
mollified Stochastic Heat Equation (1.16) with spatially mollified space-time white noise

ξεpt, xq :“ pξpt, ¨q ˚ jεqpxq “

ż

R2
jεpzq ξpt, x´ zqdz ,

where jεpxq :“ ε´2jpx{εq and jp¨q is a probability density on R2 (usually taken compactly
supported). Assuming initial condition uεp0, ¨q “ 1, by the Feynman-Kac formula [BC95,
Section 3 and eq. (3.22)], the Itô solution uεpt, xq “ uεβpt, xq of (1.16), where we highlight
the dependence on β, has the representation

uεβpt, xq “ Ex

”

eβ
şt
0 ξ

ε
pt´u,Buq du´ 1

2
β
2

}jε}
2
2t
ı

dist
“ Ex

”

eβ
şt
0 ξ

ε
pu,Buq du´ 1

2
β
2

}jε}
2
2t
ı

, (5.3)
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where Ex denotes expectation for a standard Brownian motion B starting at x. We will
omit x from Ex if x “ 0.

We can directly compute the moments of uεβpt, xq, which do not depend on x by translation
invariance, thanks to the initial condition up0, ¨q ” 1. Given m P N, let pBpiq

q1ďiďm denote
m independent Brownian motions, and define Jε :“ ε´2Jpx{εq with J :“ j ˚ j. Note that

Var
„ m
ÿ

i“1

ż t

0
ξεpu,Bpiq

u qdu

ȷ

“
ÿ

1ďi,jďm

Li,j
ε,t , where Li,j

ε,t :“

ż t

0
JεpBpiq

u ´Bpjq
u q du , (5.4)

which can be viewed as a collision local time at scale ε between Bpiq and Bpjq. Note that
Li,i
ε,t “ Jεp0q t “ }jε}

2
2 t, where } ¨ }2 denotes the L2 norm. Given x1, . . . , xm P R2, if we

denote by Px⃗ the law under which Bpiq starts at Bpiq
0 “ xi, a Gaussian computation yields

E

«

m
ź

i“1

uεβpt, xiq

ff

“ EEx⃗

”

eβ
řm

i“1

şt
0 ξ

ε
pu,B

piq
u q du´ m

2
β
2

}jε}
2
2t
ı

“ Ex⃗

«

ź

1ďiăjďm

eβ
2 şt

0 L
i,j
ε,t

ff

. (5.5)

Remark 5.2. In the critical window (1.21) we have β2ε „ 2π{ log ε´1, hence β2εL
i,j
ε,t for

i ‰ j converges in law as ε Ó 0 to an exponential random variable Y of mean 1, by a classical
result [KR53]. This explains why βε is critical, since EreλY s diverges precisely at λ “ 1.

We now describe the link between the solution uεβpt, xq of the mollified Stochastic Heat
Equation and the SHF Z ϑ

t pdxq. We recall that the latter was obtained in [CSZ23] from
the directed polymer random measure Zβ

N ;tpdxq “ Zβ
N ; 0,tpdx,R

2
q, see (1.5), based on the

simple random walk pSnq on Z2, which has covariance matrix sI with s “ 1
2 and is periodic

(note that S2n takes values in Z2
even, see (1.6)). On the other hand, the solution uεβpt, xq of

the mollified Stochastic Heat Equation, see (5.3), is based on a standard Brownian motion
on R2 with covariance matrix I and, of course, with no periodicity issues.

For these reasons, to obtain the SHF Z ϑ
t pdxq from the solution uεβpt, xq of the mollified

Stochastic Heat Equation, we need an appropriate rescaling : given ϑ P R, if we scale
βε “ βεpϑq in the critical window (A.4)-(A.5) (see also (A.7)-(A.9)), we expect that

1

2
uεβε

`

t, x
?
2
˘

dx
d

ÝÝÝÑ Z ϑ
t pdxq , (5.6)

see Appendix A.3 for a heuristic derivation. We refrain from proving such a convergence,
which we expect to follow from the same techniques as in the paper [CSZ23]. As a matter of
fact, for our goals, it is enough to show that the two sides of (5.6) have asymptotically the
same moments, and this follows by [GQT21] and [CSZ23], as we now describe.

Proposition 5.3 (Moments of SHF and Stochastic Heat Equation). Fix ϑ P R and
set β “ βε as in (A.9). Fix a mollification density jp¨q which is radially symmetric and
non-increasing. For any integrable φ : R2

Ñ R, and for any h P N, we have

E
“

Z ϑ
t pφq

h‰
“

1

2h
lim
εÓ0

E
„ˆ

ż

R2
uεβε

`

t, x
?
2
˘

φpxqdx

˙hȷ

. (5.7)

Proof. It is enough to compare formulas (2.15)-(2.16) with Theorem 1.1 and eq. (2.5) in
[GQT21]. □
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Remark 5.4. Recalling (2.7), we see that relation (5.7) for h “ 2 reduces to

ĳ

pR2
q
2

φpxqφpx1
qK

p2q

t px, x1
qdx dx1

“ lim
εÓ0

Var
„
ż

R2
uεβε

pt, x
?
2qφpxqdx

ȷ

. (5.8)

The validity of such a relation was proved in [CSZ19b, Theorem 1.7] (note that the choice of
ϑ in (A.8)-(A.9), which enters Kp2q

t “ K
p2q

t,ϑ in (2.7), matches [CSZ19b, eq. (1.38)]).

5.2. Proof of the lower bound (5.1). Henceforth we fix β “ βε as in (A.4)-(A.5)
and omit it from notation, i.e. we set uεpt, xq :“ uεβε

pt, xq. It follows by (5.4)-(5.5) that

E
„ˆ

ż

uεpt, x
?
2qφpxqdx

˙mȷ

“

ż

pR2
q
m

m
ź

i“1

φpxiqEx⃗
?
2

„

ź

1ďiăjďm

eβ
2
ε

şt
0 JεpB

piq
s ´B

pjq
s qds

ȷ

dx⃗ ,

(5.9)
where we recall that Ey⃗ denotes expectation w.r.t. m independent Brownian motions with
B

piq
0 “ yi. We now take φ “ gδ to be the heat kernel, see (2.1), and note that by diffusive

scaling we can write gδpxq “ 2 g2δpx
?
2q. Then, in view of (5.7) and by a change of variables,

to prove (5.1) it suffices to find η “ ηt,ϑ ą 0 such that, uniformly in m ě 3 and δ P p0, 1q,

lim
εÓ0

ż

pR2
q
m

m
ź

i“1

g2δpxiqEx⃗

„

ź

1ďiăjďm

eβ
2
ε

şt
0 JεpB

piq
s ´B

pjq
s q ds

ȷ

dx⃗

ě p1 ` ηq lim
εÓ0

˜

ż

pR2
q
2

g2δpx1q g2δpx2qEx⃗

„

eβ
2
ε

şt
0 JεpB

p1q
s ´B

p2q
s q ds

ȷ

dx1 dx2

¸pm2 q

.

(5.10)

We will adapt the approach in Feng’s thesis [Fen16], which used the Gaussian correlation
inequality [R14, LM17] to prove an analogue of (5.10) for m “ 3 with gδp¨q replaced by δ0p¨q.
Unfortunately, not much could be concluded in that case, because all moments Eruεpt, 0q

m
s

of order m ą 1 diverge as ε Ó 0: this is due to the fact that uεpt, 0q Ñ 0 in distribution
for β “ βε in the critical window (1.21), see [CSZ17b, Theorem 2.15], while Eruεpt, 0qs ” 1
stays constant. We will show that the Gaussian correlation inequality can still be applied
when we average uεpt, xq w.r.t. gδ, which will lead to the interesting bound (5.1).

Let Zp1q

2δ , . . . , Z
pmq

2δ be i.i.d. normal random variables on R2 with probability density g2δ,
independent of the Brownian motions Bp1q, . . . , Bpmq all starting from 0. Denoting by E
expectation w.r.t. their joint law, we can rewrite (5.10) as

lim
εÓ0

E

„

ź

1ďiăjďm

eβ
2
ε

şt
0 JεpZ

piq

2δ `B
piq
s ´Z

pjq

2δ ´B
pjq
s q ds

ȷ

ě p1 ` ηq lim
εÓ0

E
”

eβ
2
ε

şt
0 JεpZ

p1q

2δ `B
p1q
s ´Z

p2q

2δ ´B
p2q
s qds

ıpm2 q
.

(5.11)
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Next we Taylor expand the exponential in the l.h.s.: for each i ă j, we write

eβ
2
ε

şt
0 JεpZ

piq

2δ `B
piq
s ´Z

pjq

2δ ´B
pjq
s qds

“ 1 `

8
ÿ

n“1

β2nε

ż

¨ ¨ ¨

ż

0ăs1ă¨¨¨ăsnăt

n
ź

l“1

JεpZ
piq
2δ `Bpiq

sl
´ Z

pjq

2δ ´Bpjq
sl

qds⃗

“ 1 `

8
ÿ

n“1

β2nε

ż

¨ ¨ ¨

ż

0ăs1ă¨¨¨ăsnăt
y1,...,yną0

n
ź

l“1

1Aεpylq
pZ

piq
2δ `Bpiq

sl
´ Z

pjq

2δ ´Bpjq
sl

q ds⃗dy⃗ ,

where we used the decomposition Jεpxq “
ş8

0 1Aεpyqpxqdy, with

Aεpyq :“ tx P R2 : Jεpxq ě yu . (5.12)

Note that J :“ j˚j is a radially symmetric and non-increasing function, as the convolution of
two radially symmetric and non-increasing functions, as we showed in the proof of Lemma 4.7.
It follows that the set Aεpyq is a ball centered at the origin, for any y ą 0.

We can substitute this Taylor expansion into the l.h.s. of (5.11) to obtain

E

«

ź

1ďiăjďm

ˆ

1 `

8
ÿ

n“1

β2nε

ż

¨ ¨ ¨

ż

0ăs1ă¨¨¨ăsnăt
y1,...,yną0

n
ź

l“1

1Aεpylq
pZ

piq
2δ `Bpiq

sl
´ Z

pjq

2δ ´Bpjq
sl

q ds⃗dy⃗

˙

ff

, (5.13)

which, upon expansion, leads to a positive mixture of terms of the form

E

«

ź

pi,jqPI

n
pi,jq

ź

l“1

1
Aεpy

pi,jq

l q
pZ

piq
2δ `B

piq

s
pi,jq

l

´ Z
pjq

2δ ´B
pjq

s
pi,jq

l

q

ff

, (5.14)

where I Ă tpi, jq : 1 ď i ă j ď mu and, for each pi, jq P I, we have npi,jq
P N as well as

0 ă s
pi,jq

1 ă ¨ ¨ ¨ ă s
pi,jq

n
pi,jq ă t and ypi,jq

1 , . . . , y
pi,jq

n
pi,jq ą 0. Note that

WI,s⃗,n⃗ :“
´

pZ
piq
2δ q1ďiďm ,

`

B
piq

s
pi,jq

l

, B
pjq

s
pi,jq

l

˘

pi,jqPI, 1ďlďn
pi,jq

¯

is a centered multi-dimensional Gaussian random vector. Since Aεpyq is a convex set
symmetric about the origin (in fact, a ball), we can apply the celebrated Gaussian correlation
inequality [R14, LM17] to lower bound (5.14) by

E

«

ź

pi,jqPIXtp1,2q,p1,3qu

n
pi,jq

ź

l“1

1
Aεpy

pi,jq

l q
pZ

piq
2δ `B

piq

s
pi,jq

l

´ Z
pjq

2δ ´B
pjq

s
pi,jq

l

q

ff

ˆ
ź

pi,jqPI
pi,jq‰p1,2q,p1,3q

E

«

n
pi,jq

ź

l“1

1
Aεpy

pi,jq

l q
pZ

piq
2δ `B

piq

s
pi,jq

l

´ Z
pjq

2δ ´B
pjq

s
pi,jq

l

q

ff

,

(5.15)

where we have kept the factors from pi, jq “ p1, 2q and p1, 3q inside the same expectation,
while separating all other factors involving different pi, jq P I.
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Substituting the bound (5.15) back into the expansion of (5.13) gives a lower bound on
the l.h.s. of (5.11), namely

E

„

ź

1ďiăjďm

eβ
2
ε

şt
0 JεpZ

piq

2δ `B
piq
s ´Z

pjq

2δ ´B
pjq
s q ds

ȷ

ě E

„

ź

j“2,3

eβ
2
ε

şt
0 JεpZ

p1q

2δ `B
p1q
s ´Z

pjq

2δ ´B
pjq
s q ds

ȷ

E

„

eβ
2
ε

şt
0 JεpZ

p1q

2δ `B
p1q
s ´Z

p2q

2δ ´B
p2q
s q ds

ȷpm2 q´2

.

(5.16)

Then the proof of (5.10), and hence (5.1), is complete once we prove the following Lemma.

Lemma 5.5. There exits η “ ηt,ϑ ą 0 such that, uniformly in δ P p0, 1q, we have

lim inf
εÓ0

E
”

ś

j“2,3 e
β
2
ε

şt
0 JεpZ

p1q

2δ `B
p1q
s ´Z

pjq

2δ ´B
pjq
s qds

ı

E
”

eβ
2
ε

şt
0 JεpZ

p1q

2δ `B
p1q
s ´Z

p2q

2δ ´B
p2q
s q ds

ı2 ě 1 ` η . (5.17)

Proof. Let us define W piq
s “ Z

piq
2δ `Bpiq

s and W piq
“ pW piq

s q0ďsďt. We introduce the shortcuts

Φε,δpW p1q
q :“ E

”

eβ
2
ε

şt
0 JεpW

p1q
s ´W

p2q
s q ds

ˇ

ˇ

ˇ
W p1q

ı

,

sΦε,δpW
p1q

0 ,W
p1q

t q :“ E
“

Φε,δpW p1q
q
ˇ

ˇW
p1q

0 ,W
p1q

t

‰

,

so that the ratio in the l.h.s. of (5.17) can be written as

ErΦε,δpW p1q
q
2
s

ErΦε,δpW p1q
qs

2
“

ErErΦε,δpW p1q
q
2
|W

p1q

0 ,W
p1q

t ss

ErErΦε,δpW p1q
q|W

p1q

0 ,W
p1q

t ss
2

ě
ErsΦε,δpW

p1q

0 ,W
p1q

t q
2
s

ErsΦε,δpW
p1q

0 ,W
p1q

t qs
2
,

by Jensen’s inequality. Therefore it suffices to show that, uniformly for δ P p0, 1q,

lim inf
εÓ0

E

«˜

sΦε,δpW
p1q

0 ,W
p1q

t q

ErsΦε,δpW
p1q

0 ,W
p1q

t qs

¸2ff

ě 1 ` η . (5.18)

Let us show that the fraction in the l.h.s. has a limit as ε Ó 0. We treat separately
numerator and denominator, starting from the latter: by (5.9) with m “ 2 and φ “ gδ,

ErsΦε,δpW
p1q

0 ,W
p1q

t qs “ E
„ˆ

ż

uεpt, x
?
2q gδpxqdx

˙2ȷ

hence by (5.7) with h “ 2, recalling (2.7), we get

sΦδ :“ lim
εÓ0

ErsΦε,δpW
p1q

0 ,W
p1q

t qs “ 4E
“

Z ϑ
t pgδq

2‰

“ 1 `

ĳ

pR2
q
2

gδpx1q gδpx2qK
p2q

t px1, x2qdx1 dx2

“ 1 ` 2π

ĳ

0ăsăuăt

g2δ`sp0qGϑpu´ sq ds du „
δÓ0

ˆ
ż t

0
Gϑpuq du

˙

log
1

δ
.

(5.19)
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Next we focus on the numerator: in analogy with (5.5), we can write

sΦε,δpx1, yq :“ E
”

eβ
2
ε

şt
0 JεpW

p1q
s ´W

p2q
s q ds

ˇ

ˇ

ˇ
W

p1q

0 “ x1,W
p1q

t “ y
ı

“

ż

R2
g2δpx2qEruεpt, x1|yquεpt, x2qsdx2,

(5.20)

where we define uεpt, x1|yq as a modification of the Feynman-Kac formula (5.3):

uεpt, x1|yq :“ Ex1

”

eβ
şt
0 ξ

ε
pu,Buq du´ 1

2
β
2

}jε}
2
2t
ˇ

ˇ

ˇ
Bt “ y

ı

(5.21)

(we recall that Ex1
is the expectation for a brownian motion B started at B0 “ x1, so that

conditioning on Bt “ y yields a Brownian bridge). In [CSZ19b, Theorem 1.7 & Section 8], a
formula for limεÓ0 Erp

ş

ϕpxquεpt, xqq
2
s was derived using chaos expansion and renewal type

arguments. The same arguments can be adapted to show that

lim
εÓ0

Eruεpt, x1|yquεpt, x2qs

“ 1 ` 4π

ż

¨ ¨ ¨

ż

z,wPR2

0ăsăuăt

gspz ´ x1q gspz ´ x2qGϑpu´ sq gu´s
2

pw ´ zq
gt´upy ´ wq

gtpy ´ x1q
dz dw ds du ,

where the integral is equal to (modulo some different constants as explained in Appendix A.3)
the covariance kernel Kp2q

px1, x2q defined in (2.7) and illustrated in Figure 4, if the factor
gt´upy´wq{gtpy´x1q was not present.† This factor is the conditional transition kernel from
pu,wq to pt, yq, originating from the conditioning on Bt “ y in the definition of uεpt, x1|yq,
while pu,wq is the last time-space point of matching disorder between the chaos expansions
of uεpt, x1|yq and uεpt, x2q. This factor disappears if we average over the law of y “ Bt.
Therefore
sΦδpx1, yq :“ lim

εÓ0

sΦε,δpx1, yq (5.22)

“ 1 ` 4π

ż

¨ ¨ ¨

ż

x2,zPR2

0ăsăuăt

g2δpx2q gspz ´ x1q gspz ´ x2q gt´u`s
2

py ´ zq

gtpy ´ x1q
Gϑpu´ sqdz dx2 dsdu .

We can now combine (5.19) and (5.22), where sΦδpx1, yq and sΦδ are defined: if we define

Ψδpx1, yq :“
sΦδpx1, yq

sΦδ

, (5.23)

then by Fatou’s lemma we can bound

lim inf
εÓ0

E

«˜

sΦε,δpW
p1q

0 ,W
p1q

t q

ErsΦε,δpW
p1q

0 ,W
p1q

t qs

¸2ff

ě E
“

ΨδpW
p1q

0 ,W
p1q

t q
2‰ .

It is easy to check that ErΨδpW
p1q

0 ,W
p1q

t qs “ 1 (see (5.26) below). Since ΨδpW
p1q

0 ,W
p1q

t q is
clearly not a constant, it follows by Jensen’s inequality that for any δ P p0, 1q

E
“

ΨδpW
p1q

0 ,W
p1q

t q
2‰

ą 1 .

†For consistency: if we remove that factor, the r.h.s. becomes 1` 4π
ş

0ăsăuăt
g2spx1 ´x2qGϑpu´ sq ds du,

which is consistent with formula (5.7) once we plug in x1

?
2 and x2

?
2; see also (5.8).
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Since δ ÞÑ ErΨδpW
p1q

0 ,W
p1q

t q
2
s is continuous, to prove (5.18) it only remains to show that

lim
δÓ0

E
“

ΨδpW
p1q

0 ,W
p1q

t q
2‰

ą 1 . (5.24)

Denote sΨδpW
p1q

t q :“ ErΨδpW
p1q

0 ,W
p1q

t q|W
p1q

t s. By W p1q
s “ Z

p1q

2δ `Bp1q
s , we have

sΨδpyq “
1
sΦδ

ż

sΦδpx1, yq
g2δpx1qgtpy ´ x1q

gt`2δpyq
dx1

“
1
sΦδ

ˆ

1 `
4π

gt`2δpyq

ż

¨ ¨ ¨

ż

x1,x2,zPR2

0ăsăuăt

g2δpx1q g2δpx2q gspz ´ x1q gspz ´ x2q

ˆ gt´u`s
2

py ´ zqGϑpu´ sq dz dx1 dx2 ds du

˙

“
1
sΦδ

ˆ

1 `
4π

gt`2δpyq

¡

zPR2

0ăsăuăt

g2δ`spzq
2 gt´u`s

2
py ´ zqGϑpu´ sq dz ds du

˙

,

and since g2δ`spzq
2

“ g2p2δ`sqp0q gδ` s
2
pzq by (4.20), we obtain

sΨδpyq “
1
sΦδ

ˆ

1 `
4π

gt`2δpyq

ĳ

0ăsăuăt

g2p2δ`sqp0q gt`δ´u
2

pyqGϑpu´ sqds du

˙

“
1
sΦδ

ˆ

1 `

ĳ

0ăsăuăt

1

2δ ` s

gt`δ´u
2

pyq

gt`2δpyq
Gϑpu´ sqdsdu

˙

. (5.25)

Incidentally, this relation together with (5.19) shows that

ErΨδpW
p1q

0 ,W
p1q

t qs “ ErsΨδpW
p1q

t qs “

ż

R2

sΨδpyq gt`2δpyqdy “ 1 . (5.26)

Note that as δ Ó 0, the dominant contribution to the integral in (5.19) for sΦδ comes
from s ! 1, since we can restrict the integral to s ă plog 1

δ q
´1 (say) without changing the

asymptotic behavior. The same is true for the integral in (5.25), hence we obtain

lim
δÓ0

sΨδpyq “ sΨ0pyq :“

şt
0 gt´u

2
pyqGϑpuq du

gtpyq
şt
0Gϑpuq du

,

which implies that sΨδpW
p1q

t q “ sΨδpZ
p1q

2δ ` B
p1q

t q converges in law to sΨ0pB
p1q

t q as δ Ó 0.
Therefore, by Jensen’s inequality and Fatou’s lemma,

lim
δÓ0

E
“

ΨδpW
p1q

0 ,W
p1q

t q
2‰

ě lim
δÓ0

E
“

sΨδpW
p1q

t q
2‰

ě E
“

sΨ0pB
p1q

t q
2‰

ą 1 ,

where the last inequality holds because ErsΨpB
p1q

t qs “ 1 and sΨpB
p1q

t q is not a.s. equal to 1.
This concludes the proof of (5.24), hence of Lemma 5.5. □
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5.3. Proof of Proposition 5.1. The log-divergence of the second moment kernel
K

p2q

t px, yq of the SHF, see (1.11), plays a crucial role. Recall from (3.7) and (2.7) that

K
p2q

t px, yq “ ektpx,yq
“ 1 `K

p2q

t px, yq “ 1 ` 2π

ĳ

0ăsăuăt

gspx´ yqGϑpu´ sq ds du ,

which is a monotonically decreasing function of |x´ y|. By a change of variable,

2π

ĳ

0ăsăuăt

gspx´ yqGϑpu´ sqds du “

ż t|x´y|
´2

0

e´ 1
2s̃

s̃

ˆ
ż t´|x´y|

2
s̃

0
Gϑpvq dv

˙

ds̃ ,

and note that, as |x ´ y| Ó 0, the dominant contribution to the integral comes from the
range of values 1 ! s̃ ! |x´ y|

´2. Therefore, as |x´ y| Ó 0,

K
p2q

t px, yq “ ektpx,yq
„

ˆ
ż t

0
Gϑpvqdv

˙

log
t

|x´ y|
2 „ Ct,ϑ log

1

|x´ y|
, (5.27)

where we set Ct,ϑ :“ 2
şt
0Gϑpvqdv.

Applying the moment formula (3.3) and (5.27) to the l.h.s. of (5.2), we find that as δ Ó 0,

E
“`

2M ϑ
t pgδq

˘m‰
“

ż

pR2
q
m

m
ź

i“1

gδpxiq e
ř

1ďiăjďm ktpxi,xjq dx⃗

“ p1 ` op1qq pCt,ϑq
pm2 q

ż

pR2
q
m

m
ź

i“1

gδpxiq
ź

1ďiăjďm

log
1

|xi ´ xj |
dx⃗.

Via the change of variable yi “ xi{
?
δ, the integral in the r.h.s. can be written as

ż

pR2
q
m

m
ź

i“1

g1pyiq
ź

1ďiăjďm

ˆ

log
1

?
δ

` log
1

|yi ´ yj |

˙

dy⃗ „

´

log
1

?
δ

¯pm2 q
,

where the asymptotic equivalence as δ Ó 0 follows by expanding the product and noting the
finiteness of the integrals. This shows that, as δ Ó 0,

E
“

p2M ϑ
t pgδqq

m‰
„

ˆ

Ct,ϑ log
1

?
δ

˙pm2 q

,

which proves (5.2) and completes the proof of Proposition 5.1. □

Appendix A. On the critical windows

In this secion, we compare the critical windows for directed polymers and for the mollified
Stochastic Heat Equation.

A.1. Directed polymer setting. The critical scaling of β “ βN for the directed
polymer partition functions (1.4) is defined by the following asymptotic relation:

σ2N :“ eλp2βN q´2λpβN q
´ 1 “

1

RN

ˆ

1 `
ϑ` op1q

logN

˙

, for some fixed ϑ P R , (A.1)
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where λp¨q is the log-moment generating function of the disorder, see (1.3), while RN is the
expected replica overlap of two independent simple symmetric random walks S, S1 on Z2:

RN :“ E

„ N
ÿ

n“1

1
tSn“S

1
nu

ȷ

“

N
ÿ

n“1

ÿ

zPZ2

PpSn “ zq
2

“

N
ÿ

n“1

PpS2n “ 0q

“

N
ÿ

n“1

"

1

22n

ˆ

2n

n

˙*2

“
logN

π
`
α

π
` op1q as N Ñ 8 ,

(A.2)

with α “ γ ` log 16 ´ π and γ “ ´
ş8

0 log u e´u du « 0.577 the Euler-Mascheroni constant.
Since λpβq „ 1

2β
2 as β Ñ 0, it follows from (A.1) that β2N „ π{ logN as N Ñ 8. The

parameter ϑ P R tunes the higher order asymptotic behavior of βN , which also depends on
the third and fourth cumulants κ3, κ4 of the disorder: see [CSZ19b, eq. (1.17)] for the exact
formula, which simplifies when κ3 “ 0 (e.g. for symmetric disorder distribution) and yields

β2N “
π

logN

ˆ

1 `
ϑ´ c` op1q

logN

˙

where c :“ α ` 1
2π ` 7

12πκ4

“ γ ` log 16 ´ 1
2π ` 7

12πκ4 ,

(A.3)

that is (1.7) holds with ϱ “ ϑ´ c.

A.2. Stochastic Heat Equation setting. We next consider the Stochastic Heat
Equation (1.16) with mollified noise ξεpt, xq “ pξpt, ¨q ˚ jεqpxq, where jεpxq :“ ε´2jpε´1xq.
The critical scaling β “ βε is (see [CSZ19b, eq. (8.28)]):

β2ε “
1

Rε

ˆ

1 `
ϑ` op1q

log ε´2

˙

(A.4)

where Rε is defined as follows (see [CSZ19b, Section 8.2]):

Rε “

ż ε
´2

0

ˆ
ż

pR2
q
2
Jpxq Jpyq g2tpx´ yq dx dy

˙

dt . (A.5)

Note that we can view Rε as the expected replica overlap of two independent Brownian
motions B,B1 on R2 enlarged via J :“ j ˚ j into Wiener sausages, described by the functions
JBt

pzq :“ Jpz ´Btq and JB1
t
pzq :“ Jpz ´B1

tq:

Rε “

ż ε
´2

0

ż

pR2
q
3
Jpxq Jpyq gtpz ´ xq gtpz ´ yqdx dy dz dt

“

ż ε
´2

0

ż

R2
ErJpz ´Btq Jpz ´B1

tqsdz dt “ E
„
ż ε

´2

0
xJBt

, JB1
t
y
L
2

pR2
q
dt

ȷ

.

(A.6)

It was shown in [CSZ19b, end of Section 8.2] that

Rε “
log ε´2

4π
`
C

4π
` op1q as ε Ó 0 , (A.7)

where

C “ 2

ż

pR2
q
2
Jpxq log

1

|x´ y|
Jpyq dx dy ` log 4 ´ γ . (A.8)
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Plugging this into (A.4) yields

β2ε “
4π

log ε´2

ˆ

1 `
ϑ´ C ` op1q

log ε´2

˙

. (A.9)

that is (1.21) holds with ϱ “ ϑ´ C.

A.3. Matching directed polymers with the Stochastic Heat Equation.
In this appendix we explain heuristically relation (5.6).

The Stochastic Heat Flow Z ϑ
t pdxq is the limit of the directed polymer random measure

ZβN
N ; 0,tpdx,R

2
q “

1

2

ÿ

zPZ2
even

Zβ, ω
0,rrNtssprr

?
Nxss, zq , (A.10)

see (1.5) and Theorem 1.1. We can then rewrite (5.6) as

ZβN
N ; 0,tpdx,R

2
q

d
«

N“ε
´2

1

2
uεβε

`

t, x
?
2
˘

dx as ε Ó 0 , (A.11)

where the disorder strengths in the two sides are tuned in the respective critical windows,
see (A.1) or (A.3) for βN and (A.9) for βε, for the same value of ϑ P R.

Relation (A.11) is expected to hold by comparing both sides to the same coarse-grained
model in [CSZ23]. However, we can simply explain the scaling factors in (A.11) by comparing
the mean and covariance of both sides:

‚ the multiplicative factor 1
2 is due to the periodicity of the simple random walk: we

have indeed ErZβN
N ; 0,tpdx,R

2
qs “ 1

2 dx, see (A.10), while Eruεβε
p¨, ¨qs ” 1;

‚ the factor
?
2 is because each random walk component has variance 1

2 : we have
CovrZβN

N ; 0,tpdx,R
2
q,ZβN

N ; 0,tpdy,R
2
qs „ 1

4 K
p2q

t px ´ yqdxdy, see [CSZ23, Rem. 3.7],

while Covruεβε
pt, xq, uεβε

pt, yqs „ K
p2q

t p
x´y
?
2

q, see [BC98, eq. (3.14)], [CSZ19b, Thm. 1.9].

We now give a heuristic derivation of relation (A.11). Let pSnq be a T-periodic random
walk on Z2 (i.e. Sn takes values in a sub-lattice Tn Ă Z2 whose cells have area T) with
covariance matrix sI. For the simple random walk we have s “ 1

2 and T “ 2 with

Tn :“

#

Z2
even for n even ,

Z2
odd :“ Z2

zZ2
even for n odd ,

(A.12)

see (1.6). The parameters s and T enter in the local limit theorem: recalling that gtpxq

denotes the heat kernel, see (2.1), we have as n Ñ 8

PpSn “ zq “
`

gsnpzq ` opn´1
q
˘

T1Tn
pzq . (A.13)

We insist on the use of general parameters s and T, instead of the particular values 1
2 and 2,

because the following arguments become more transparent.
The solution uεβpt, xq of the mollified Stochastic Heat Equation (1.16) can be viewed as

the partition function for a Brownian directed polymer B in a mollified white-noise random
environment ξε, comparing (1.4) with the Feynman-Kac representation formula (5.3). To
account for the random walk variance s and periodicity T, we can modify (5.3) as follows:

‚ we replace pB, xq by p
?
sB, x{

?
sq to get a Brownian motion with variance s started

at x and, accordingly, we replace the mollified white noise ξε by ξ
?
s ε;
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‚ we replace β by
?
Tβ; this ensures that computing the variance uεβpt, xq as a power

series in β2, arising from the polynomial chaos expansion (see e.g. [CSZ19b, eq. (8.12)]),
each heat kernel is multiplied by T, matching the local limit theorem (A.13).

Overall, since
?
Tβ ξ

?
s ε

pt´u,
?
sBuq has the same distribution as

a

T {sβ ξεpt´u,Buq, we
can simply modify the Feynman-Kac formula (5.3) replacing x by x{

?
s and β by

a

T {sβ.

Summarizing, for the directed polymer random measure ZβN
N ; 0,tpdx,R

2
q defined in analogy

with (A.10), with 1
2 replaced by 1

T and Z2
even replaced by T0, we expect that

ZβN
N ; 0,tpdx,R

2
q

d
«

N“ε
´2

ũpt, xqdx with ũpt, xq :“
1

T
uεb

T
s
βN

`

t, x?
s

˘

. (A.14)

For s “ 1
2 and T “ 2, this equation is “close” to (A.11) since

a

T{sβN “ 2βN „ βε, cf. (A.3)
and (A.9). For an accurate comparison, we should replace

a

T{sβN by βε in the definition
of ũpt, xq in (A.14), which leads to (A.11).

Finally, we note that ũpt, xq from (A.14) solves a mollified Stochastic Heat Equation with
adjusted coefficients, to account for the random walk variance s and periodicity T:

$

’

’

&

’

’

%

Btũpt, xq “
s

2
∆ũpt, xq `

?
s
b

T
s βN ũpt, xq ξε

?
s
pt, xq

ũp0, ¨q ”
1

T

, (A.15)

where ξ̃apt, xq :“ 1?
s
ξa{

?
s
pt, x?

s
q has the same distribution as ξapt, xq. Again, for an accurate

comparison with directed polymers, we should replace
a

T{sβN in (A.15) by βε from (A.9).
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