THE CRITICAL 2D STOCHASTIC HEAT FLOW IS NOT
A GAUSSIAN MULTIPLICATIVE CHAOS

FRANCESCO CARAVENNA, RONGFENG SUN, AND NIKOS ZYGOURAS

ABSTRACT. The critical 2d Stochastic Heat Flow (SHF) is a stochastic process of random
measures on R”, recently constructed in [CSZ23]. We show that this process falls outside
the class of Gaussian Multiplicative Chaos (GMC), in the sense that it cannot be realised
as the exponential of a (generalised) Gaussian field. We achieve this by deriving strict
lower bounds on the moments of the SHF that are of independent interest.

1. INTRODUCTION

The critical 2d Stochastic Heat Flow (SHF) is a stochastic process of random measures on
R?, constructed in [CSZ23] as a universal limit of random polymer models. It is the natural
candidate solution of the (ill-defined) critical 2d Stochastic Heat Equation:

ouult,z) = %Au(t, 2+ BE(t ) ult,z), 10, zeRE (1.1)

where £(t, ) represents space-time white noise, that is a Gaussian field, delta-correlated
in space and time. The term critical refers both to the fact that dimension 2 is a critical
dimension, in the sense of singular stochastic PDEs [HI4, [GIP15] and renormalisation theory
[Kup14], and that a critical scaling in the noise strength [3 is needed, see ((1.21]) below.

The criticality of dimension d = 2 for the Stochastic Heat Equation (I.1) can be seen
through a scaling argument, in the spirit of renormalisation. Indeed, in general dimension
d > 1, one can note that the rescaled function a(t,z) := u(e’t, ex) solves

I 1-9 - - o
étu=§Au+6€ 2¢q, t>0, e R,

where &(t,z) := EH%g(Ezt, ex) is a new space-time white noise. One now sees that, as ¢ — 0,
when d < 2 the multiplicative factor 1742 attenuates the small scale effects of the noise,
while these effects are amplified when d > 3. On the other hand, when d = 2, the exponent
1-— % vanishes and the extent to which the noise influences the solution is not apparent.

In this paper we obtain explicit lower bounds on the moments of the SHF. Besides their
own interest, these bounds imply that the SHF is not the “exponential of a Gaussian field”
in the sense of Gaussian Multiplicative Chaos (GMC). This result provides insight on the
critical 2d Kardar-Parisi-Zhang (KPZ) equation:

,h(t,z) = %Ah(t,:ﬂ) + %|Vh(t,:n)|2 +BE(tz),  t>0, zeR. (1.2)
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Indeed, when the solution u(t,z) of the Stochastic Heat Equation (1.1)) is function valued,
its logarithm h(t,z) := logu(t, z) is a solution of the KPZ equation. Since the critical
2d SHF is the candidate solution of , the fact that it is not a GMC suggests that the
critical 2d KPZ solution (yet to be constructed) is likely not a Gaussian field.

In the rest of this introduction, we first recall the construction of the SHF from [CSZ23];
then we state our main results on the moments of the SHF and the comparison with GMC;
finally, we discuss related results from the literature and outline future directions of research.

1.1. REMINDER: THE CRITICAL 2d SHF. A key difficulty in making sense of equation
(1.1)) is that its solution wu(t, z) is expected to be a genuine distribution on R?, not a function,
so the product &(t, ) u(t, z) is not well-defined. A natural strategy to make sense of it is to

(1) regularise the equation, so that a well-defined approximating solution exists;

(2) prove that the approximating solution has a non-trivial limit as the regularisation is
removed (and the noise strength (3 is suitably rescaled).

This approach was recently carried out in [CSZ23], where equation ([1.1)) is regularised via
discretisation of space and time, i.e. white noise ¢ is replaced by a family of i.i.d. random

variables w = (w(n,z)), .2 With law P, called disorder, which satisfy

Elw]=0, E[w}=1, 38,>0: AB):=1logE[e™]<w VBe[0,8,]. (1.3)

Replacing derivatives in the Stochastic Heat Equation ((1.1)) by suitable difference operators,
the solution is the partition function of directed polymers in random environment:

N—
Z]?/[,N(xvy) _ E|:eZn—1¢I+1{ﬂw(nisn)_>‘(6)} ]l{SN:y}

Sy = x] : (1.4)

where E is the expectation with respect to S = (.5,,), the simple random walk on Z*. Note
that is a discretised Feynman-Kac formula for on the time interval [M, N], up to
time-reversal and with a delta initial condition at time M. An alternative regularisation of
, via mollification, is discussed in Subsection below.

The main result of [CSZ23| is that the random field of partition functions Z ]@ ~N(@,y),
under diffusive rescaling of space and time and for a suitable critical scaling of B = By,
converges in law as N — o0 to a unique measure valued random field .,@f:?t(dx,dy). More
precisely, we define the diffusively rescaled random field of partition functions

N 8w
Zﬁ, = (Zﬁ,;s’t(dx, dy) := T fovs]],[[Nt]]([[\/va]]v [[\/Ny]]) dz dy) e (1.5)
where dz dy is the Lebesgue measure on R? x R? and [IVs] is the even integer closest to
N's, while [v/Nz] is the point closest to v/Nz € R? in the lattice ngen, where we set

78, = {(z1,...,29) € Z% 2+ 4z is even} . (1.6)

We next rescale § = (By) ven it & critical window, defined by (A.1)-(A.2)) in Appendix
which separates the weak and strong disorder phases of 2d directed polymers [CSZ17h].

TThe factor i in (1.5 is due to the periodicity of the simple random walk, while the multiplication
by N is due to the local limit theorem: E[Zi},VN(w,z)] =P(Sy = 2| Sy = w) = O(x257) = O(+) for
M/N <c<1.
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When the disorder w has a symmetric distribution (for simplicity), this reads as follows:
s o+ ol
By = g N <1 + log](\f)> for some p e R. (1.7)

To have a universal parametrisation, our results will be formulated using a slightly different

parameter v, see (A.1), which differs from g in (1.7 by a constant, see [CSZ19bl eq. (1.17)].
We can now state the main result of [CSZ23).

Theorem 1.1 (The critical 2d SHF [CSZ23|). Fiz Sy in the critical window (A.1))-(A.2])

for a given ¥ € R. The process of random measures Z]%N = (Z]Lz/?’s (dz, dy))ocs<i<on defined
in (1.5) converges in finite dimensional distributions (as N — o0) to a unique limit

) 0
Z" = (%,t(dxa dy))OSsSt<oo s
called the critical 2d Stochastic Heat Flow.

The convergence in distribution in Theorem takes place in the space of locally finite
measures on R? x RQ, equipped with the topology of vague convergence:

iy =[G i(dndy) > [y ndedy) voe CER < RY).
1.2. MAIN RESULT I: SHF vs. GMC. We focus on the SHF’s one-time marginal:

2 (de) = | | 25, (de,dy). (1.8)
yER2 ’
This is a stochastic process of log-correlated random measures on ]R2, see ll below.
Higher moments of the SHF admit explicit series expansions, see |j below, which
stem from the works [GQT21], [Che21l, [CSZ19bl BCIY|. However, as we will show below, the
SHF moments grow too fast to uniquely determine the field.

In the subcritical regime 512\; ~ B 7/log N with B < 1 — that is, strictly below the critical
window that we consider here — the logarithm of the directed polymer partition
function displays Gaussian fluctuations |[CSZ17bl [Gu20), [CSZ20]. This suggests that, in the
subcritical regime, partition functions should be close to the exponential of a Gaussian field.

It is natural to wonder whether a similar picture still holds true at criticality: is the
critical 2d SHF the exponential of a Gaussian field in the sense of Gaussian Multiplicative
Chaos (GMC)? Our first main result shows that this is not the case.

Theorem 1.2. The critical 2d Stochastic Heat Flow is not a Gaussian Multiplicative Chaos.

We will recall the definition of GMC in Section [3] We point out that GMC has been
studied extensively and has applications in many contexts, including Liouville quantum
gravity, turbulence, zeroes of characteristic polynomials etc. A comprehensive review of
its connections to various fields in probability and mathematical physics, as well as a nice
introduction to its properties, is given in [RV14].

Theorem suggests that, in the critical window , the logarithm of the partition
functions has a non-Gaussian limit. Such a limit would then be the natural candidate solution
of the critical 2d KPZ equation . Of course, putting this conjecture on firm ground will
require further work — we cannot just take the logarithm of the SHF, which is a random

measure — but our results provide an indication for the emergence of non-Gaussianity in
the 2d KPZ equation.
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It is also an interesting question whether the critical 2d Stochastic Heat Flow is absolutely
continuous w.r.t. some GMC. Our current techniques (based on comparison of moments)
seem insufficient to resolve this question.

1.3. MAIN RESULTS II: LOWER BOUNDS FOR THE SHF MOMENTS. Our next main
results are explicit lower bounds on the moments of the critical 2d SHF. These bounds are
the key to proving Theorem because they show that the moments of the SHF are strictly
larger than those of a corresponding GMC, in a sense that we now make precise.

The one-time marginal %ﬂ(dx) of the SHF, see , is a random measure on R?. Let us

denote by //tﬂ(dx) the GMC on R? with the same first and second moments of the SHF:

E[.4 (dz)] = E[ 2 (dz)] = 1 dz, (1.9)

E[.4(do) 4 (dy)] = E[2 (d2) 2" (dy)] = § 4 @,9) dedy,  (1.10)

where %ft%) (z,y) is known, see , and it is log-divergent along the diagonal (see ):

J{t%)(w,y) ~ C 9 log \y—lac] as |ly—z| —0. (1.11)

As will be noted after , the Gaussian field underlying such a GMC is log-log-correlated,
i.e. its covariance kernel satisfies k;(z,y) ~ loglog ﬁ as ly — x| — Oﬂ

We first compare the third moment of the SHF Qﬁﬁ(gp) 1= (g2 w(2) %ﬁ(dx) with that of
the GMC .//[tﬂ(go) 1= (g2 p(2) .///tﬂ(d:r) averaged over integrable functions ¢ : R* — R.

Theorem 1.3 (Third moment lower bound). Fort > 0 and 9 € R, let .#; (dzx) be the
GMC with the same first and second moments as the SHF' Q’;ﬁ(drv), see ([L.9)-(1.10). If ¢ is
the indicator function of a ball, or the heat kernel on R2, see ([2.1), we have

E[2(9)"] > E[4 ()], (1.12)
hence 27 (dz) + ,//tﬁ(dw).

Remark 1.4. The bound (1.12)) actually holds for all radially symmetric and decreasing
functions ¢ that satisfy a basic inequality, see (4.11)) below. These include, in particular, the
indicator function of a ball and the heat kernel, that we single out in Theorem[I.3

We next turn to moments of any order m > 3. Since //ltﬁ(da:) is a GMC with a log-divergent
second moment kernel, see ((1.11)), one can shown that (see Proposition [5.1] below)

E[(2.4 (95)"] ~ E[ (24 (45))"]) s 5 L0, (1.13)

where g; is the heat kernel on R? at time 0, the multiplicative factor 2 arises from (|1.9)),
and the notation ¢(§) ~ 1(d) as § | 0 means lims)o ¢(5)/¥(d) = 1. We show that for the

SHF Q’;ﬂ this asymptotic factorisation does not hold.

Theorem 1.5 (Higher moments lower bound). Given anyt > 0 and 9 € R, there ezists
n =19 >0 such that for any h € N with h > 3 we have

E[(22(9)"] > 1+ M E[2 2 (6))*|®)  woe (0,1, (1.14)

tFor a comparison, the much studied Gaussian Free Field on R is log-correlated, hence the corresponding
GMC is polynomially correlated.
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As a consequence, by (1.13|), for any h € N with h = 3 we have

E Qpﬁ h
lim inf % >1+n>1, (1.15)
o0 B[4 (95)"]

hence 2 (dx) # A (dx).

Remark 1.6. For the directed polymer partition functions in the whole subcritical regime, a
lower bound qualitatively similar to (1.14), but with n = 0, is also valid and matches the
asymptotic behaviour of the upper bounds obtained in |[LZ21l [CZ21].

Theorem [I.3] will be proved in Section [] by exploiting a series expansion for the moments

15 , which in the case of the third moment admits a renewal-type form [CSZ19b], see
SD. This is quite involved and can be represented as a series of complicated diagrams.
Through an explicit computation, we are able to integrate out the spatial variables in these
diagrams. What remains is a multiple integral of time variables that have monotonicity
properties, which we exploit in order to obtain the lower bound (| -

Theorem [I.5 will be proved in Section [f] via a very different approach, inspired by the
work of Feng [Fen16] A key role here is played by the Gaussian Correlation Inequality
[R14, [LM17], which saves us from analysing the complicated diagrammatic representation

of the moments. By means of probabilistic arguments, such as bounding the variance of
suitable random variables, we obtain the lower bound (|1.14)), which then yields (1.15]).

1.4. BACKGROUND. We recall here some results that led to the critical 2d SHF.

To regularise the 2d Stochastic Heat Equation , we used in Section a discretisation
of space and time, which led to the directed polymer partition functions. Alternatively, one
can mollify the white noise € in space on scale € > 0 by defining £°(t, z) := (£(t,) * j.) (),
where j.(z) := e ?j(z/¢) and j(-) is a smooth probability kernel, say compactly supported.
This leads to the mollified Stochastic Heat Equation:

Ol (t, ) = %Aug(t,x) B () € (1 x) (1.16)

The solution admits a Feynman-Kac representation [BC95|, [BC9S§|:

(b 7) = [ﬁSo (t—s.B,) ds — 157 HJeHzt] dist o [650 Jds— 18 HJ5H2t]’ (1.17)

where E,, denotes expectation for a standard Brownian motion B starting at = (for simplicity,
we consider a flat initial condition u®(0,z) = 1). The goal is then to make sense of the limit
of u°(+,-) as e — 0, for suitable rescaling of 3 = ..

Remark 1.7. Comparing with , we can see u°(t, ) as the partition function
of a Brownian directed polymer in the random environment £°. Thus the two schemes of
reqularisation, discretisation and mollification, are conceptually (if not technically) analogous,
with the correspondence &€ «~~ 1/v/N (see Appendixfor more details). Most existing
results apply to both schemes |[CSZ17h, [CSZ19bl, [CSZ20], so we will focus on the mollified
Stochastic Heat Equation in what follows.

Denote by u(ﬁ) (t,z) the solution (L.17) with 8 = §+/4w//log e 2 for B > 0. A phase
transition on this scale with critical point 8, = 1 was first identified in [CSZ17h|, where it
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was shown that for any fixed (¢, x), the following limit in distribution holds:

. cB)X-50(8)° 5
d e ifg<1,
WP (t, z) - ’ (1.18)
e 0 if3>1,

where X is a standard normal random variable and o(3)* := log(1/(1 — B).

For B < 1, known as the subcritical regime, the solution ugﬁ ) viewed as a random field,

suitably centred and normalised, was shown in [CSZ17b] to converge in distribution to a
Gaussian free field, given by the solution o
Edwards-Wilkinson equation):

of the additive stochastic heat equation (a.k.a.

~ 1 N ~
8tv(ﬁ)(t,x)=§Av('B)(t,x)+ e (tx)  with v(0,2) =0, (1.19)

where the noise coefficient diverges as B 1 1. More precisely, if we define

B — Moge " ¢ (B) _
u(t,x) = Jirh (u” (t,2) — 1), (1.20)

then for every test function ¢ € C.(R?) we have <u§ﬁ ), o) 4, <v(6 ), ¢y as e — 0.

A similar result has been established for the solution of the mollified 2d KPZ equation,
with ugﬂ) (t,z) — 1 in (1.20) replaced by log ug’g) (t,z) — E[log ugﬂ) (t,x)], see [CSZ20l [Gu20].
This may be viewed as an indication that, in the subcritical regime B < 1, the solution of
the mollified 2d Stochastic Heat Equation is close to the exponential of a Gaussian field (as
we already discussed before Theorem in the directed polymer setting). This breaks down
at criticality, as we show in Theorem

We next review the results when § = f, is scaled in a critical window around the critical
point 8. = 1, which for the mollified Stochastic Heat Equation reads as follows:

F— (1 + @+0(1)> - <1+ §+0(1)). (1.21)

; loge™ logef2 a logei1 logsf2

Note that this is similar to with N = &2 (the different factor 47 vs. 7 is because
the simple symmetric random walk on Z? has period 2 and covariance matrix %I . see
Subsection and Appendix |A| for a more detailed comparison).

The study of the mollified Stochastic Heat Equation with 5 = . chosen in the critical
window was initiated in [BC98], where they identified the limit of the second moment
of the solution u®(t,), see (1.17). Subsequently, [CSZI9b] computed the limit of the third
moment of u°(,-) and [GQT21] identified the limit of all higher moments (see also the more
recent work [Che21]). These results ensure that the mollified solutions (u°(t,)).~ are tight
as random measures on R2, hence they admit subsequential limits in distribution as ¢ | 0,
and any such limit has the same moments as identified in [BC98| [CSZ19bl, (GQT21], [Che21].
However, these moments grow too fast to uniquely determine the limiting random measure.

Existence of a unique limit, which was named the critical 2d Stochastic Heat Flow, was
finally established in [CSZ23| in the directed polymer setting, i.e. for the solution of the
Stochastic Heat Equation regularised via discretisation. It is expected that the same holds
for the regularisation via mollification, i.e. that u°(¢,-) in converges to the critical 2d
Stochastic Heat Flow as ¢ | 0, although the proof of [CSZ23| needs to be adapted.
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1.5. FUTURE PERSPECTIVES. We now discuss some related works and open questions.

We proved in Theorem |1.2] - 2| that the (one-time marginal of the) SHF, as a random measure
on R? , is not a GMC. There is, however, a very different sense in which a GMC structure
emerges naturally. In the Feynman-Kac formula - 7)) for the solution u° (¢, z) of the mollified
Stochastic Heat Equation, the exponent So (s, By)ds may be viewed as a Gaussian process
(w.r.t. the randomness of the white noise £°) indexed by (By)s[o € C[0,], the space of
continuous functions defined on [0,¢]. As a consequence, on the path space C|0,t], we can
consider the GMC measure M, (dB) defined by

ME(AB) 1= P € BBkt yy (4B (1.22)

where W, (-) denotes the Wiener measure on paths B € C[0,t] with By = x. Note that
u®(t,x) = M5(C[0,t]) in is the total mass of M(-).

This was the perspective taken in [Clal9al [Clal9b], where an analogue of the critical 2d
directed polymer on the diamond hierarchical lattice was studied (see also [BM20] for the
Euclidean setting). In [Clal9a) [Clal9b], partition functions were shown to have a non-trivial
limit and then used to construct a family of critical continuum polymer measures indexed
by the analogue of ¢ in . Interestingly, these continuum polymer measures are related
to each other through a conditional GMC structure, even though they cannot be defined as
a GMC w.r.t. the analogue of the Wiener measure on the continuum hierarchical lattice.

This raises the natural question whether similar results hold for the analogue of the
critical 2d SHF in path space, namely, whether the measures M;, on C[0,t] converge as
€ — 0, at least when integrated over x, and whether the limits corresponding to different o
in are related to each other through a conditional GMC structure. There is ongoing
work in this direction in [CM22], where the authors study the second moment measure of
subsequential limits of M;, dz and found properties that are consistent with the conditional
GMC structure.

Another interesting direction of research concerns the asymptotic behavior of the moments
of the critical 2d SHF. Theorems and [1.5] provide lower bounds and it is natural to ask
whether these can be improved. The works |[CSZ19bl, [GQT21], [Che21]| show that for each

integer i > 3, there is a well-defined h-point kernel ¢ (R?)" - R U {+o0} such that
for any ¢ € C,(R?),

B2 = g [ ( (@) 4 ) s

see Theorem below. In light of Theorem [1.5 E and ( m, it is natural to conjecture that

1
Ji/t(h)(l’h e xp) ~ G H log ——— as  max |z; — ;] — 0, (1.23)

1<i<j<h i — lisg

for some constant €, 5., > (Ct,,lg)(g), where C; y is the constant which determines the
asymptotic behavior of the second moment kernel, see —.
1.6. ORGANIZATION OF THE PAPER. The rest of the paper is structured as follows.

e In Section [2] we recall the moments formulas for the critical 2d SHF.

e In Section [§] we review the construction of GMC and recall its moments.

e In Sections [4] and [5] we prove our main results Theorems [I.3] and [I.5]

e In Appendix |A| we compare the critical windows . and -
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2. MOMENTS OF THE CRITICAL 2d SHF

In this section, we recall the moments formulas for the critical 2d Stochastic Heat Flow
from [BC98|, [(CSZ19al, I(CSZ19b, |GQT21]. We denote by g;(x) the heat kernel on R

(1) = g 2
9:(x) == 5 e . :
An important role is played by the following special function, defined for any 9 € R:
0 o(O=Nu, qu-l
Gy(t) = —d 2.2
o= | Sy (22)
where v = — Sgo logue “du ~ 0.577 is the Euler-Mascheroni constant.

Remark 2.1. The function Gy has a probabilistic interpretation. Denote by Y = (Y,,),>0 the
Dickman subordinator, defined as the pure jump process with Lévy measure ﬂ(o’l)(x) 2! dz,
see [CSZ19a)]. Then Gy is the exponentially weighted renewal density of Y-

Q0
Gy(t) = Jo et P(Ylétedt) du  forte[0,1].

2.1. FIRST AND SECOND MOMENTS. The first moment of the SHF is

E[2(dz,dy)] = 3 g1, (y — ) dady, (2.3)

1
2

while its covariance is given by

Cov[2),(dx, dy), 22(da’, dy')] = L K} ((z,2;y,y) dedyda’ dy (2.4)
where
K wdlsny)) = may (4 = =) [ e = 0)Golu—s) g ol ~ ) dsdu. ()
O<s<u<t

These formulas were derived from the asymptotic results in [CSZ19a] connected to the
Dickman subordinator, see [CSZ23| Proposition 3.5].

We will focus on the one-time marginal 2;(dz) of the SHF, see (L.8)), which we also call
the SHF with flat initial data. The first moment of the averaged field is then

1
BLZ(0)] = 5 [ w(2)dz. (26)
R2
while its centered second moment can be derived from (2.4)-(2.5) and equals
9 1
B[(2(0) - BLZ )] = ;| o) olen) K (1) dn s,
@) (2.7)
with Kt(Q)(zl,zQ) = 2m Jf 9s(z1 — 29) Gy(u — s)dsdu,
O<s<u<t

a formula that was first derived in [BC98| in the context of the mollified Stochastic Heat
Equation (see Subsection [5.1| below).
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2.2. THIRD MOMENT. The centered third moment of the SHF can be written as follows:

1

E[(2"(9) ~ELZ" ()] = § j P1) (20) 9lo) K (21, 20, 20) Az doy ey

(R7)

where the kernel Kt(g)(zl,zg,z3), first obtained in [CSZ19bl Theorem 1.4, admits the
following explicit but quite involved expression (see Figure |1| for a pictorial representation)ﬂ

0
Kt(3)<zlv Z9,%3) 1= Z 2™t (2m)™ {It(m)(zlv 29, 23) + It(m)(z% z3,21) + It(m)(z37 21, 22)} ;
m=2

(2.9)
where the kernel It(m)(zl, 29, 23) is defined by

T (21, 29, 2) = f ' J gz(z:’fg)l,...,am,bm(zb 22,723) { [ [Golo - ae)} dadb, (2.10)
=1

0<aq<b<...<a,,<b,, <t

and g, o b (21,22, 23) denotes the following convolution of heat kernels:

gi?il,...,am,bm(zh 29,23) 1= ff AT dy gey (21— 21) gy (21 — 29) "Gy (y1 — 1)
(R2)mX(R2)m

'9%2 (332 - 23) ga2;b1 (332 - yl) 'gb2za2 (yQ - 3:2) (2~11)

13

{gae—be—z (xé - y€—2) Gag—by_y (‘736 - yé—l) ’ gbzzaz (yﬁ - xﬁ)}
p) 2

(=3

(we agree that [[,24{...} :=1 for m = 2). We refer again to Figure .
We stress that formulas (2.8)-(2.11)) are the key to our proof of Theorem

Remark 2.2. The normalisation chosen in |[CSZ23| to construct the critical 2d SHF is

slightly different from the one in |[CSZ19b| due to the restriction to even parity sites, see

(1.5)-(1.6). As a consequence, the limiting field in |[CSZ19b| corresponds to c@iﬁ’mix(go) 4

Z (o) + 2 (@), where 2 (p) and Z"(p) denote two independent copies of the SHF. It
follows that

B[(2(¢) - B2 (2)])"] = 5 EI(Z"™(¢) ~ BIZ"™()])"],

that is, the third moment in (2.8]) is half of that computed in |[CSZ19b, Theorem 1.4].

'We remark that in [CSZIOB, eq. (1.25)] we have 7™, whereas in we have (27)™. The main source
of this discrepancy is a missing factor 2™ 2 in [CSZ19Db) eq. (1.25)]: indeed, a factor 21{(71@)623) due to
periodicity was omitted in [CSZI9b] eq. (5.40)], which plugged in [CSZ19b| eq. (5.30)] yields a factor 2 for
each i = 3,...,m, hence the claimed factor 2% in [CSZI9B, eq. (1.25)]. Since the third moment in is
half the one in [CSZI9b, Theorem 1.4], see Remark we have a global factor 3 - 22 = 12™: this turns
7" from [CSZI9D, eq. (1.25)] into (2m)™ in and accounts for the extra factor % in (2.8).
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(b37 yS)

(07 ZS)

FIGURE 1. Graphical representation of the kernel K, 3 )(zl, 29, z3) for the

centered third moment, see (2.9)-(2.11)). Solid- curved lines from (b,y) to

(a, ) are assigned Welghts Ja—b (l‘ y) while wiggle lines from (a, ) to (b,y)
2

are assigned weights Gy(b — a)gs—a (y — ).
4

2.3. HIGHER MOMENTS. A formula for higher moments of the SHF was first identified
in [GQT21]. For completeness, we recall this formula in our framework.
Fix an integer h € N with A > 2. For t > 0 and a pair {i,j} < {1,...,h} of distinct

elements ¢ < j, we define two measure kernels mapping from (]Rz)h to measures supported
on the subspace

Ry = {& = (@1, 2n) € R @y = 2y} (2.12)

e The first measure kernel (actually a probability kernel) is called constrained evolution:

h
Q7 (y, dw) = (H e )( 11 d:@) ~dw; - 6, (dy) (2.13)

e{1,....,h}\{%,5}

where d, () denotes the Dirac mass at z; € R? and ¢,(-) is the heat kernel, see (2.1).

e The second measure kernel is called replica evolution:

Gy (x,dy) = ( AT wz)dye> Gy(t) gt (y; — ;) dy; - 0y, (dy;),  (2.14)
Le{1,...,h\{i,5}
where Gy(t) is the function in . We will only need G{ ’]}(m, dy) with z; = ;.

We now give the higher moments formula.

Theorem 2.3. Fiz h € N with h = 2. The h-th moment of the SHF ff}ﬁ with flat initial
data, averaged over a test function @ € C’C(R2), admits the expression

1

E[%ﬂ(@)h] = 2h

f o(z1) - p(z) M (2, 2) 2y - day, (2.15)

®*"
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FIGURE 2. Graphical representation of the kernel %(4)(21, 29, 23, 24) for the
fourth moment, see . The solid-curved and wiggle lines are assigned
the same weights as in Figure [l The hollow circles on the vertical dashed
lines are where we apply the Champman-Kolmogorov decomposition (see

also Remark .

with
A (2, z)

=1+i(27r)m > JJ dadb JJ

m=1 lin#d ) lim Zim AL b 0 <q) <)< <a,, <b,, <t (@, §)e((R?)™)*™ (2.16)
with {ig,jo}#{ig 1,001} V£=2 ’

QI (zdwy) G4, (@, dyy) [ [ QU (w1 dae) GJ42Y, (@evdyy).
(=2

This result can be proved by arguing as in [CSZ23| Section 6], exploiting the local limit
theory for the Dickman subordinator as developed in [CSZ19al]. Formula (2.16)) coincides
with the one obtained in [GQT21] up to a simple scaling, see Proposition below.

Remark 2.4. The integral over the space variables &,y in (2.16|) can be restricted to the

subspace ((R2)?117]1})2 X ...% ((R2)?Zm jm})Q < (RH™M?™, see 2.12). This is because the

kernels Qtw and G n - - are measures supported on (RQ)?M}.

Remark 2.5. Centered moments E[(Qﬁﬁ(cp) - E[Q’;ﬂ(ap)])h] admit formulas analogous to

(2.15)-(2.16]), with a correlation kernel Kt(h) (21, .., 2p) which is obtained from (2.16) by
removing the constant term “14+” and imposing the constraint | J;~{is, jo} = {1,...,h} in

the sum over {iy # j1}s -y {im # Jm} © {1,..., h} (incidentally, this requires m = [%])

Remark 2.6. In the special case h = 3, formulas (2.15)-(2.16|) are consistent with formulas
(2.8)-(2.11)) for the centered third moment. To check this, it suffices to decompose the heat
kernels ga[_b[ L (g —yp_o) in at times ay_1,by_1 by Chapman-Kolmogorov:

Gag—by_o be 2 — Y- 2 dex dy Gag_1-bp_o 1*1’[ 2( — Yo 2)9% 1~ ae 1(ylfx/)gae*be—1 (xéfy/)a
2
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; ; : {ig:de} {ie—1:de—1} {ie—1:de—1}
which gives rise to the operators Q G and Q T see and | -

ag—by_1’ TVbp_1—a,_1 ag—by,

See also Figure @ for the application of Chapman-Kolmogorov (in the case h = 4) .

3. GMC AND ITS MOMENTS

As already mentioned in the introduction, a nice review of the Gaussian Multiplicative
Chaos (GMC) and its various connections can be found in [RV14]. Here we present its
definition and the structure of its moments, which is relevant towards our goals.

3.1. CONSTRUCTION OF GMC. Let k : R* x R*> — R U {+®©} be a kernel which is
symmetric, locally integrable and positive definite, i.e. {§p2 g2 () k(z,y) p(y) dzdy = 0

for all p € C.(R?). Let 2 = (2 (<,0))<pE C.(R?) be the centered Gaussian field with covariance

Jf Y(y)dx dy for ¢, € CL(R?).
R% xR

Let us fix a locally finite measure p on R?. The Gaussian Multiplicative Chaos (GMC)
associated to 2~ with respect to the measure p, denoted by .#(dz), is formally given by

A (dx) =: exp(Z (x)) p(dx) : .

For a precise definition, for ¢ > 0 we take a continuous regularization k. (z,y) of k(x,y), still
positive definite, such that lim, o k.(z,y) = k(z,y) locally uniformly in z,y. We can then
consider the centered Gaussian process 2, = (Z.(z)) _.2 with covariance k.(z,y), which
is well-defined pointwise, and we define for € > 0

M(dz) = o2+ (@)= FE[2:(2)°] (de) = e% @3k @) 1y qq)
The GMC . (dz) is then defined as the following limit in distribution:
A (dzx) := lim 4. (dx) ,
el0

zeR

assuming that it exists in the vague sense: for ¢ € CC(RZ),

MA0) = [ o) de) — () = [ pla). (o).

2 2

R R

3.2. MoMENTS OF GMC. By construction, for € > 0 we have

E[4.(p)] = j (=) p(d2) (3.1)
RQ
Since E[e” @+ %:0)] _ E[ LUl 2,2 22001 _ o (@0 +h 00) 2K} e obtain
E[.4 ﬂ (1) 9(29) =17 u(dzy) pu(dz) (3.2)

R? xR?

Similarly, since E[e”s(1) -+ #=(m)] = o2 Zis=1 Fe(2%) e have

E[#.(p)"] = J(RQ)"L 0(21) - - play) emrsisismBGomi) a0y p(dz,) . (3.3)

When we let € | 0, these formulas apply to .# () once we replace k.(z;,2;) by k(z;, 2;).
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Let us now record the centered second and third moments of GMC.

e (Centered second moment:
B[(4(0) - ELA@)] = [ (1) 0e) KQuolor,22) ) )
(R?)? (3.4)
where Kglzm(zl, 29) 1= fErz2)

o Centered third moment:

E[ (4 (p) — E[#(¢)])°] = f (1) (22)0(28) Kime (21, 72, 23) p(dzy )a(d ) po(dzg)
@) (3.5)
where Kg)lz/lc(zla Z9,23) 1= H ek(zi,z]‘) _ Z ek(Z’th) +2.

1<i<j<3 1<i<j<3
Comparing (3.5)) with (3.4)), we see that the following structural relation holds:
3 2 2 2
Kég/lc(zl,z%z;g) = Kélg/[c(zleZ)Kélz/IC(Z%ZS)KéK/IC(ZLZS)
2 2
+ Kélz/lc(thZ) Kénz/{c(%zz%)
2 2
+ K((}lz/lc<z1722) K((}lz/[(j('zhz?))

2 2
+ Kéﬁm(zh 23) Kél%/[c(zm 23) .

(3.6)

3.3. A GMC MATCHING THE FIRST TWOo MOMENTS OF SHF. Henceforth we
denote by ///;9 (dz) the GMC with the same first and second moments as the SHF %ﬂ(dm).
Comparing (3.1)) and (3.4) with (2.6)) and , we see that this can be obtained once we fix
1 2
plda) = Sde, k(= z) = log (1+ K7 (21,2)) (37)
2) . : : 2 _ 2 i

where K, is defined in (2.7). This ensures that K¢ (21, 22) = K, (21, 22){| To show that
7 (dz) is not a GMC, it suffices to show that the higher moments of ///tﬁ(dx) and %ﬂ(dx)

do not match.

4. PROOF OF THEOREM [I.3: LOWER BOUNDS VIA GAUSSIAN INTEGRALS

In this section we prove Theorem the third moment of the critical 2d SHF Q’;ﬁ(gp) is
strictly larger than that of a GMC ///t () with matching first and second moments, when
averaged over suitable integrable functions ¢ : R? - [0, 00).

Remark 4.1. Most steps of our analysis cover any integrable function o : R? - [0, 00) which
is radially symmetric and non-increasing, that is ¢(z) = o(|z|) for some non-increasing
function g : [0,00) — [0,00], with |- | the Euclidean norm. Only in the last step we need a
basic inequality, see Proposition[].4), that we prove when ¢ is the heat kernel or the indicator
function of a ball, as in Theorem [I.5 We believe that Proposition [[.4) should hold in greater
generality —possibly, as soon as g is log-concave— but this remains open.

By (1.10)-(1.11)) for the uncentered correlation function 1 %fs)(zl, 29) = e"1(*1:%2) the covariance kernel
of the Gaussian field underlying the GMC satisfies k;(z1, z2) ~ log log ﬁ as |z, — 2| — 0.
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Let us fix an integrable function ¢, ¢t > 0 and ¥ € R. Our goal is to prove that
E[Z(¢)’] > E[4 ()]

Since first and second moments match, it is equivalent to work with centered third moments:

E[(2(¢) - ELZ"(9)))"] > E[ (4 (¢) - EL4" (9)])"]. (4.1)
In view of and , see also , we can rewrite (4.1]) as
KP(p) > KSe(p)., (4.2)

where, given a kernel H(zy, 25, 23), we use the shorthand

fjf ©(21) p(29) p(23) H(z1, 29, 23) dzy dzy dzg . (4.3)

It remains to prove . The kernel Kt(s) is complicated, but we can perform an almost

exact computation of the function g((l1 3)1 a b (21,29, 23) in (2.11)), see Proposition
below. From this we obtain a lower bound on Kt( )(cp) (Proposition , that we complement

with an upper bound on K gﬁdc(gp) (Proposition . At last, we will show that these bounds
are compatible (Proposition , which yields our goal (4.2} .

Let us introduce two key quantities &, , (¢) and g,

w0, () that enter our bounds:

G, (o) = (2m)° f f f (1) 0l22) @(78) G, (22 — 21) gy (75 — 252) A7, (4.4)
Dy 0, () = (21) f f f (1) 9(22) 9(25) o, (22 — 21) Gy (25 — 22) A7, (4.5)

where g,(z) denotes the heat kernel, see . We can now state our lower bound on K, (3)( )
which involves the quantity &, ,, (go)

Proposition 4.2 (Third moment lower bound for the SHF). Fiz 9 € R and t > 0.
Let Kt(?’) be the centered third moment kernel of the critical 2d SHF Q’}ﬁ, see (2.8)-(2.9). For

any integrable function @ : R? — [0,00) which is radially symmetric and non-increasing (see
Remark , we have the strict lower bound

K (9) > 117(p), (4.6)
where we define

322’“ [ ] @) Golbr — ) Gott — a2)

0<ai<b;<...<a,,<b, <t (4 7)

ﬁ ) aa db,

—2

with 9, 4,(¢) as in (4.4) and Gy as in (2.2)).
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We refer to Figure (3 I for a graphical representation of I, 3 )( ) when ¢ = g, is the heat
kernel, in which case ¢, ,,(¢) can be computed explicitly (see Remark .

We next state an upper bound on K(GK/IC( ) which involves the quantity %al ay (0)-
Interestingly, this bound applies to any positive integrable function ¢.

Proposition 4.3 (Third moment upper bound for GMC) Fix 19 eR and t>0. Let
él\)/lc be the centered third moment kernel of the GMC'//Zt , see ) and ( . For any
integrable function ¢ : R? - [0,00) we have the strict upper bound

Kuole) < TP(g), (4.8)

where we define

ft(g)(%@) =3 Z 2! Jf gwal,az(@) Gy(by — ay) Gy(by — ay)

0<ay<by <...<a,,<b, <t (4.9)

i Gﬁ(bi—ai) e
—————dadb
XU a; —b;_s “

with gal ay (0) as in (L.5) and Gy as in (2.2).

Note that f(s)( ) in is like I( ) ) in ([4.7), just with &, a1 a2( ) in place of &, ,,(¢).
Y, o (p) > gal a, (¥ ), then we can comblne the bounds and to yield our goal
. We finally show that this indeed holds when ¢ is the indicator function of a ball, or

the heat kernel, which completes the proof of Theorem [I.3]

Proposition 4.4 (Comparison of bounds). Recall 9, ,,(¢) and g, a, () from (4.4)-
(4.5). Let ¢ be the indicator function of a ball or the heat kernel, see (2.1)):

p=1 2 by 07 $=0, T>0. (4.10)

Then we have

G (0) > G () Vaj,ay > 0. (4.11)

ay,az aq,a2

Recalling (4.7) and (4.9)), it follows that for any 9 € R and t > 0
3 3
() > I(9). (4.12)
therefore, in view of (4.6) and (4.8), one has Kt(g)(go) > Kg?,lc(go).

Remark 4.5. When ¢ = g, is the heat kernel, 9, . () and %a a2 ©) in (4.4)-(4.5) can
be computed by an explicit Gaussian integration (see Subsection

1 1 ~ 1

3 £ 9r) = 5 4.13
a; +2r ag + 3r .0 (97) ayay + 2r(ay + ag) + 31 (4.13)

gal,ag (gr) =

and in this case one sees easily that 9, . (9,) > 9y o (g,), in agreement with [{.12).

ay,a2 ay,a2

A graphical representation of It( (@) for p = g, is given in Figure@

It only remains to prove Propositions [£.2] and [£.4] to which Subsections [4.1]
and .3 are devoted.
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—2p —3r a bY as by ag ) ay by

FIGURE 3. Graphical representation of It(g)(go), see (4.7), when ¢ = g, is
the heat kernel, see . More specifically, we represent the term m = 4
in the series in (|4.7)). Double solid lines from b;_, to a; are assigned weights
(a;—b;_)~ ", while wiggle lines from a; to b; are assigned weights Gy(b; — a;).

4.1. PROOF OF PROPOSITION [4.2] The heart of the proof is the following “computation”

of the function gt(l 2)1 b (21, 29, 23) in (2.11)), which we will prove below.

Proposition 4.6. Form > 2, 0 < a; < by < ... < a,, < by, 21,%9,%23 € R? and

gé?ilwvam,bm(zl,z2,z3) as in (2.11)), we have

(m)

m
Bar by b (710220 23) = Ga, (21 = 22) - G (23 — a5=2) H m ( (4.14)

i_bz 2

(m)

for suitable variables a3’ and a; — bi,Q(m) (depending on ay,bq, ..., a,,,b,,) which satisfy

——(m) by
a <y — 4 <ag,
? 2o (4.15)

a; — bifz(m) <a;—bio— bi_l?% <a;—bo.
We will also need a basic monotonicity property for the function 4, . (¢) in (4.4).

Lemma 4.7. If ¢ : R? - [0, 00) is integrable, radially symmetric and non-increasing (see
Remark.} then the function 9, ., (¢) in (4.4) is strictly decreasing in ay > 0.

, 2 1= z3, we can write

Proof. By the change of variables x := 2z, y := 25 — %

Goran(9) = (20" | 1) 30,(0) 0, (4.16)
where we define
f0) = [ b= pee s, hw) = [ o) pe o) g, (o - 20)de. (417)
R R

By (4.16) we can write &, , () = (27)* E[f(ay Z)], where Z is a standard Gaussian random

variable on R? (with density g;). Then, to prove that ay — G, a, () is strictly decreasing,
it is enough to prove that f is radially non-increasing and integrable (see Remark . The
integrability of f is easily seen from , which ensures that the volumes of the level sets
of f(ayy) are finite and strictly decrease as ay increases. We then show that both f and h
are radially symmetric and non-increasing, which completes the proof.

We recall the layer cake decomposition of a radially symmetric and non-increasing function:

0
for a.c. z € R? : o(x) = Jo Tfjp<ry 17 (dr), (4.18)
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where 7 is a positive measure on (0, ), defined by u?((r,0)) := ¢((r,0)). Using a similar
decomposition for g, , we replace the three factors ¢, ¢ and g, in the definition of h by

Ly j<ry L j<ry)» and Ly <4y and show that for any 71,75, s > 0 the resulting function h is
radially symmetric and non-increasing;:

h(w) := JRQ o<} Ljo—2w)<ry} L{jz—w|<g) dz
— Leb(B(0,r,) n B(w, $) A B(2w, 7))
= Leb(B(~w,r) n B(0,5) n B(w,ry)),

(4.19)

where B(z,7) := {z € R*: |z| < r} is the ball of radius r centered at z. It is clear that h is
radially symmetric and non-increasing, and so is h since it is a mixture of h with different
values of 7,7y and s.

Note that we can write f = ¢ * h as the convolution of two radially symmetric and
non-increasing functions. If we replace h and ¢ by 1y« and 1y <., by the layer cake
decomposition, we get the function

fly) = fRZ Lg1.—y|<ty Lyjz)<ry Az = Leb(B(0,7) n B(y, 1)),
which is clearly radially symmetric and non-increasing, hence the same holds for f. (Il

It is now easy to prove Proposmon . When we average g((l1 ?71 b (zl, z2, z3) with

respect to the function ¢ as in , we can apply (4.14 - to write, recalhng ,

(m) _ 1
gal»blrnzam:bm (SO) o (27T) al»a2 Hg a; —
Since t — ¢,(0) and ay — ¥, , () are strictly decreasmg functlons, we obtain the bound
m
(m) 1 B 1 1
gal,bl,,..7am,bm ((10) > (2 ) al,az Hga b;_ 2 - (27r)m gal,aQ (90) E a; — bi—2 :

In fact for m > 3, this strict inequality already follows from the fact that ¢ — gt(O) is strictly
decreasing and ay — ¥, ,,(¢) is non-decreasing. Plugging this into —, we obtain

Kt(?’)(go) > It(g)(cp) with It(3)(g0) defined in (4.7). This completes the proof of Proposition
We are left with proving Proposition A key tool is the following elementary lemma.

Lemma 4.8 (Triple Gaussian integral). Let g,(x) be the two-dimensional heat kernel,
see (2.1). For all s,t >0 and x,a,be R? we have

gs(x - CL) gt(x - b) = gs+t(a - b) Gh(s,t) (ZL‘ — My (aa b)) > (420)
where we set
1, 1L st _t S
h(s,t):=(++7) = P my (2, y) = 7s+tx+7s+ty‘ (4.21)
1t follows that for all s,t,u >0 and a,b,c € R? we have
J;RQ gs(x - a) gt(x - b) gu(x - C) dz = gs-‘,—t(a - b) gh(s,t)-‘ru(c - mt,s(a) b)) . (422)

Proof. (4.20) follows directly from the definition (2.1) of the heat kernel and an easy
algebraic manipulation. Then (4.22]) follows by (4.20)) and a simple Gaussian convolution. [
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Proof of Proposition [4.6 We first prove - ) for m = 2. Recall that, by -,

2
ggl)bl as 52("51722723) = ffjfg%(xl —21) 9o (T1 — 22) - gby—ay (Y1 — T1)
b 9 9 2 2 4
(R%)* (4.23)
: 9“72(952 - 23) 9a2;b1 (952 - 3/1) ’ gbz;% (y2 - z2) dz; dy; dzg dysy .

Since SRz gs(z —a) gy(x — b)dz = g,,4(a —b), we can integrate yo, then x,, then y; to get

gor (21 — 21) 9oy (¥1 — 22) - goy—ay (Y1 — 71) "Yay  ay—by (y1 — 23) day dy;
2 2 4 2 2
(R*)?
= fg‘;l(flh - 21)9%1(551 — ) '9b1;a1+%2+a2gb1 (21 — 23) day .
RQ
Applying (4.22)) to compute the last integral over z;, we finally obtain

2
gfll),bl,%bz(zl, 29, 723) = Ya, (21 — 29) Iz (23 - %) ) (4.24)

where we set
7(2) S ‘LQ + a2—bl + lLl =ay — % . (425)
This completes the proof of - 4.15)) for m = 2

We next move to m > 3. In formula (2.11)), the terms depending on z,, and y,, are

gamian72 ( ym 2) ga 7n 1 ( m - ymfl) gb A (ym - m) 9 (426)
2 2
which after integration over y,,, and z,, give
gamibmf2 +amibm71 (ym—l - ym—2) = g 7bm71+b'm,72 (ym—l - ym—Z) : (427)
2 2

2 Am

This shows that we can rewrite (2.11]) for m > 3 as follows:

gg?}al,...,am(zlaZ%ZS) = ff dz dy g (21 — 2’1)9“71@1 —2)- 961;@1 (y1 — 1)

2 1

(R*)™ T x (R*)™
“gaa (To — 23) Gay—by (To — Y1) - Goy—ay (Yo — T3)
2 2 4 (4.28)

m—1

{ga —b; 2 - 3/1'72) Ga;—b;_y (xz - ?Jzel) “gbi—ay (yz - fl?z)}
1=3 2 2 4

"9 byitbyo (Y1 — Ym—2) »
2

am
where we agree that Hm_l .} :=1 for m = 3. We note that b,, does not appear in the
r.h.s. of - hence we dropped it from the notation g( m) (21, 29, 23)-

ablv?m

We are ready to prove - - ) for m > 3 by induction. For m = 3, - ) becomes

3
gt(:l,l),bl,az,bQ,ag(zhz27z3) = fffj 9%1(951 - 21)9%1(331 — 23) e (y1 — @1)
2.4

'Q%z(flfg o 23)9%(1’2 - yl) 'gbgTTag(yg — .1’2)
G, turty (U2 = ) oy dyy day dys,
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and integrating over y, we obtain

Uf 9o (1= 21) 9 (01 = 2) - Goaes (91 = 71)
v (4.29)

: 9%2 (x2 - 23) gazglﬁ (g — yl) "9, _t azzbz (xZ —y1)dz; dyy dzy .

g b aq+b ag—b Oga ay—b
a37%,%+ 22 1( ) 72+h( 22 17

3) (O) ‘9@(3>7%(91 - 23)

where we define

®3) by—
ag — by =(a3—b1)—2Ta2, (4.30)
R R s
We can then perform the integral over y; in - ) to get
sy 0) [ 95 (o= 20) g (21— 22) g0 (01— 20) da
3—by 2 2 2 i
RZ
and a further application of (4.22) finally yields
3) _ +
8o by g sbasas (210 225 23) = Ga, (21 — 22) 97 (23 — 2572) 9o ® (0). (4.31)
This proves (4.14]) for m = 3. To prove , we note that h(s,t) <'s, see (4.21)), hence
CTQ(?)) a2_|_ _|_a2 b1:a2_%1'

We finally fix m > 3, we assume that formulas - ) hold for g( ™) and we prove
that they hold for g(mJr ). To this purpose, it is enough to show that

(m+1) (m)
g‘llabl ey Oy s 1 (217 22, 23) = gﬁ(m-ﬂ) (0) ’ ga1 by,.. Lobm_1,a (Z17 225 Z3)
) m9m s&m m+1 m—1 301 5-5@ym—1,0m—15 (432)
. —————(m+1 _ —~
for suitable @, ; — bm_l( ) < Upsg — g — 2 7= and G, <a,

Indeed, by the induction step we can apply (4.14)-(4.15) to g(m) in the r.h.s., and since

Qpy < @y, we obtain ([@.14)-(4.15) for gy,
It only remains to prove | - If we write formula (4.28) for ga by ) bosm 1 (21, 29, 23),
we see that the terms which depend on z,, and y,, are

Gay—bpym_o (xm - ym72) Gap—bm_1 (xm - ymfl) ! gbm;am (ym - xm)
2 2

M(ym - ym—l) )

U101

Am 41— 2
which after integration over y,,, yield
Gam—bm—2 (xm - yme) Gam=bm—1 (xm - ymfl) : ga b1 agtby, (mm - ymfl) .
2 2 m+1 2 4
A further integration over z,, gives, by (4.22)),
a a,,, — 0 ° a,, — a a,, — —1 — —
am+1_bm2—1_ ml’bm_,’_ m ;m—l( ) gh( m Zm—l7am+1_bm2—l_ ml’bm)_,’_ m Zm—Q (ym 1 ym 2)
=g (m+1)(0) - 9 tmo1tbimos (Ym—1 = Ym—2) »
m 2
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G-~
\\
N
\m
22 -7 by ag b3 as bs,
G=-T------_ _
_-7 Qg b2 Qy b4 ag b()
23 (,/’/
o

FIGURE 4. Graphical representation of the term m = 6 in the series (4.34))

which represents Kt(2)(zl,22) Kt(2)(z2,z3). The total weight of the dashed
lines from z; and 2, to a; is assigned weight g, (2o —2;) and the total weight
of the dashed lines from z, and 23 to a, is assigned weight g,, (23 — 25) ; a
double solid line from b, 5 to an a; is assigned weight (a; — b;_5) '; a wiggle
line from an a; to b; is assigned weight Gy (b; — a;).

where we define

———(m+1) A
U1 — b1 1= (A1 = bpo1) — 2
o~ mJ’»bmf mibmf b’m* m bm
ay, 1= Tmm=l | p(fmml g = 2mel GmPom )
Recalling (4.28)), we see that (4.32) holds (note that a,, < a,, because h(s,t) < s). O

4.2. PROOF OF PROPOSITION . We recall relation (3.6|) satisfied by any GMC. Our
choice (3.7)) ensures that Kgl\)/lc(zlﬁ Z9) = Kt@)(zl, Z9), see (2.7, hence (3.6 becomes
3 2 2 2 2 2
Kél\)/[C(ZhZZuZ?)) = Kt( )(ZleZ)Kt( )(22723)Kt( )(21723) +Kt( )(Zl’ZQ)Kt( )(22523)
+Kt(2)(Z1’ZQ)Kt(2)(21723) (4.33)
2 2
+Kt( )(Zl,Zs)Kt( (29, 23).

We first give an alternative expression, that we prove below, for the product of two
covariance kernels which appear in the r.h.s. of (4.33]).

Lemma 4.9 (Double correlation product). The following equality holds:

o0
Kt(Q)(zlaZZ)Kt(Q)(Z%Z?)) =(27T)2 Z ff da db

m=2 O<ai<b <...<a,,<b,,<t
{gal(ZQ — 21) 9o, (23 — 22) + Gq, (23 — 22) Gq, (22 — zl)} (4.34)
n G bz — a;
~Gy(by — ay) Gy(by — ay) H ﬂ(b) )
iz @i — D2

see Figure[§) for a graphical representation.
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When we average Kt(z) (21, 29) Kt@) (29, z3) with respect to a function ¢ as in (4.3)), recalling
the quantity 4, ,,(¢) from (4.5)), we obtain the equality

f (1) p(20) 9(23) K (21, 20) KO (29, 23) d7

2.3
) o . (4.35)
= 7 @ Gy(b; — a;)
—2 ) f f 0 45 Gy 0y () Colby — ar) Gplby — ag) [ [ T2
=3

m=2 0<ay <by <...<a,,<b,, <t

i bi—2

Note that this expression resembles ft(‘g)(np) in (4.9), except that 3 - 2™ s replaced by 2.

We next consider the product of three covariance kernels as in (4.33)). The following result
is also proved below.

Lemma 4.10 (Triple correlation product). The following equality holds:

KP (21, 29) K (29, 23) K (21, 23) = Y Z(a.8), (4.36)
«,B,7€{12, 23,13}
a#B, B#y, aty

where we set

7(12, 23, 13) := (2n)° i i Jf da db

m=3 {=3 0<ay <by <...<a,,<b,,<t

= Gy(b; — ai)

9a, (21 = 22) Ga, (22 — 23) Gy (b1 — a1) Gy(bz — az) H b (4.37)
iz i — 0i—2
T Gy(b; — a;)
9(b; — a;
“ay (21 — 23) Gy(by — ay) Z H # )
Opi1r0m€{12,23,13} i=+1 prev(i)
Op1#13, 0;#0,_1 Vi
see Figure[9 for a graphical representation, where we define
prev(i) := max{j € {1,...,i—2}: 0; = 0;}, (4.38)

and we set o; =12 for odd j < € —1, 0; =23 for even j < {—1, and oy := 13.

The definition of Z(12, 23, 13) in (4.37) is complicated, but a much simpler bound will
be enough for us: if we shorten the gaps a; — byev(s) = a; — bj_, see (4.38), and we bound

1 1
N 27 Ay 21 (Gf — be_g) ’

Ya, (Zl - 23) < Ya, (0)
then we can estimate

a0 m
I(12,23,13) <(2m)® > > 2" JJ da db

m=3 {=3 0<ay<b; <...<a,,<b,,<1

m

G bZ — a;
Ya, (Zl - 22) Ya, (Z2 - 23) Gﬂ(bl - al) Gﬁ(b? B a2) H 619(_()2) ’
i=3 C
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&~ \\\
\\ \\
2 ’/// ay by ag by \\\ ag be
e=----- - N
T~ \
/// 5] bz Qy b4 \ ar b7
- \
23 - \
G-~ !
T~ _ Anne
Tt-L ’,,"/ as bs
FIGURE 5. Graphical representation of the term m = 7 in the series

(4.37)), which describes Kt(g)(zl, Z9) Kt@) (29, 23) Kt(2) (21, 23), see (4.36]). Pairs

of dashed lines from z;, z; to an a are assigned total weight g,(z; —z;); double

solid lines from b;_, to a; are assigned weight (a; — bi_g)_l; wiggle lines from
a; to b; are assigned weight Gy(b; — a;). Referring to (4.37), we have ¢ =5
and prev(6) = 3, prev(7) = 4.

where 2% is the number of choices of Ops1y-- -0 in ([4.37). Recalling (4.5)), we obtain

f o(21) () 9(z) K2 (21, 29) K2 (29, 25) K2 (21, 25) d7

<o) B2 [ [ 430 G000 ot ) Gattr — ) []

P i Yi—2
O<ay<b; <...<a,,<b,, <1 =3

& m— n G b’L —ai
Sy @) f Jdadb Gy o )Gﬂ(bl—al)Gﬁ(bg_aQ)HM7
=3 %7 Yim

(4.39)

where in the last line we added the term m = 2 because the factor (2m_2 — 1) vanishes.

We finally plug ([#.39) and (three times) (&.35)) into (4.33)). Since 6(2™ 2—1)+3-2 = 3.2 1,

we obtain Kg)lz/[(}(@) < T(3)(@), see (4.9). This completes the proof of Proposition .

Proof of Lemma [4.9] Our basic strategy is to approximate K @) by its lattice analogue.
Figure [4] provides a useful reference to the underlying structure that we will explain. In
[CSZ19a)], Theorem 1.4, we arrived at the Dickman renewal density Gy as the limit

log N
Un(n) = N

Go(Z)(1+0(1)), as N — oo, (4.40)

where for n e N,

K
Un(n) == 1—oy + Z (o) Z HQQ(ni—ni_l)(()) (4.41)

k=1 O=ng<ni<--<np=n i=1

with oy := %(1 + ﬂlzog\,)) as in (A.1) and ¢,(0) denoting the n-step transition probability

from 0 to 0 for a simple symmetric random walk on 72, Moreover, the following uniform
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bound was established in [CSZ19al Theorem 1.4]:

log N
Uy(n) < C%Gﬁ(%) Y0 <n<N, (4.42)
for C € (0,00). It will also be useful to recall the following asymptotic estimates for G from

[CSZ19al Proposition 1.6]:

1 2 1
Gy(t) = 1 12{1+ 191—1_01()}, ast — 0 and
g * 2 %8 (4.43)
Gy(t) < ——, for t € [0,1].
t(log%)2

Using the local limit theorem for random walks, the asymptotic (4.40)), and the bound
(4.42)) which allows us to apply dominated convergence, we have that (recall [-] from (1.5))

K(Q) (21,22)

= lim o Y, G ([(z1 = 2)VN]) Uy(my —my)
TP l<m, <ma<N
k
. 2 \k+1
= ]\}Eﬂw Z Z (UN) + Z q2m1([[(21 - ZQ)W]]) HqZ(ni—nifl)(O)
k=11<m;<my<N my=ng<n;<--<ngp=mgy i=1
k
. 2 \k+1
= ]\Pinoo (on) Z Gony ([(21 — 2)VN]) H @2(n;—n; 1)(0)-
k=1 O<ng<ng <---<nip<N i=1

To lighten the notation below, we will drop the brackets [-]], i.e., when we write 2/ N we
refer to [zv/N]. Using this expression for the product K @ (21,29)K (2)(22, 23) we obtain
that

E®) (21, 20) KP) (2, 23)
— lim Z (G?V)k+k’+2 Z G2, ((zl — zg)m) ot ((22 — zg)\/ﬁ).

N—oow =
kK >1 O<ng<ny<--<ny<N

/ / /
0<n0<n1<~~~<nk/<N

/

k k
Tt O [ Ttz ) (4.44)
i=1 i=1
Let us start by assuming that the sequences {0 < ny < n; < --- < n, < N} and

!/

y SN } do not share common points and let us look at all possible

!/ /
{0<ng<ny<---<n
ways they interlace, i.e.

Yoo<-o<nl oo (4.45)

/ /
0<”O<"'<”ﬁ<”0<”'<”7{<”71+1<”‘<”72<nﬁ+1 -

for integers 7y, 7y,... € {1,...,k} and 7, 75,... € {1,...,k'}. The case ny < ng is similar.
We can now group together the blocks of primed or un-primed integers and sum over the
possible cardinalities of the blocks as well as the values of their elements after fixing first the
vector (ay,by,ag,by,...) = (ng, 17, ng, n/T{, ...), which marks the boundaries of the blocks.

Afterwards, we sum over all possible values of (ay, by, as, by, ...). Using this decomposition
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in expression (4.44) we can then see that

0¢]

K(2)(21a22)K(2)(227Z3) = J&im 2 2
—00

m=2 0<a;<b;<...<a,,<b,, <N

{QQal ((21 - ZQ)W) 424, ((22 - 2’3)\/N) t q2q, ((ZQ - 23)\/N) 42a, ((21 - 22)\/ﬁ)}
(4.46)

o Un(by — a1) - 0% Un(by — ay) - HUJQV Un(bi — a;) @a(a;—b,_,)(0) -
i=3

After passing to the limit using the local limit theorem for random walks and the asymptotic

(4.41)), we arrive at expression (4.34]).
It only remains to check that the interlacing blocks (4.45)) are well defined, i.e. contribution

to ([#.44) from sequences {0 <ng <nq < --- <np < Nyand {0 <nj <nj <--- <n;€/ < N}
that share common points is negligible due to the loss of some degrees of freedom. So let us
look at (4.44) when the sum on the right hand side is over configurations such that

{0<n0<n1<---<nk<N}ﬂ{0<n6<n,1<---<n;€/<]\7}75®.

By summing over 1 < n < N where a coincidence between some n, and nlzx can occur, the
right hand side of (4.44]) can be bounded by

> @) Y 2, Loctnyomibotnd oty

/
kk =1 1<n<N 0<n/0<nll<---<nlk<N
0<ng<n; <---<nk,<N

k
" Qon, ((21 - Zz)ﬁ) Qon, ((Z2 - 23)\/N) H 42(n;—n;_1)(0) qu(n;,ngfl)(o),
i=1 i

Rearranging terms, this can be rewritten as

0?\/ Z Z Q2n0((21 - ZQ)W) ang((Z& - 23)\/N)

Isn<N 1<ny,np<n

Uy (n —no)Uy (n = ng) 2 Un(n —mUy(n" =),

!
n<n,n <N

(4.47)

where recall from ([4.41)) that Uy (0) = 1. First restrict to the case ng, ng,n,n’ # n. Using
(4.42), this can be bounded by

CU?\/ Z Q2n0((21 - Zz)ﬁ) ang((f@ - ZS)W)'
léno,ngéN
log N n—n, log N n—ng log N n—n, log N n —n
2 NGﬁ(NO)'NG”(NO) 2 v G )Ty G5

/ /
ngvng<nsN n<n,n <N
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We now show that this sum goes to 0 as N — oo. Using the local limit theorem, we can
approximate the above sum by

Col
]\g\f Z 92@(2’1*22) g%(%*'zz«z)‘

léno,ngéN N N
log N n—n log N n—ng log N n—n, log N n —n
Z N Gﬁ( NO)' N Gﬂ( NO) 2, N Gﬂ( N ) N Gﬂ( N )
ngvng<ns<N n<n,n <N

Note that we have five independent summation variables ny), n6, n,n,n’, compared to six
factors of N ™', Using a Riemann sum approximation and that oy = O((log N) ™ ?), we can

further bound the above sum by
C(log N 2t !
(]V) f dtOJ dt6 thO (Zl - 22) g2t6 (Z2 - 23)‘
0 0

1 1 1
f dt Gﬁ(t—to)Gﬁ(t—t())J dtf dt’ Gyt — )Gyt —1).
t t t

/
oVito

The asymptotics of Gy from (4.43) show that all integrals involving G are finite, and so are

the integrals involving the heat kernels for z; # z5 # 23. Thus, the whole quantity vanishes

2
at the speed of O(%) as N tends to infinity.

Finally, we consider the sum in (4.47)) when n coincides with at least one element in
{ng,ng,n,n'}, in which case a corresponding sum of Uy in (#.47) is replaced by 1, which
yields a better bound. We illustrate this in the case ny = ny = n; the other cases are similar
and will be omitted. The quantity in (4.47) now becomes

‘7?\7 Z QQn((Zl - 22)\/N) 92n((22 - 23)\/N) Z Un(n —n)Uy(n —n)

lsnsN n<n,n’ <N
Coa log N n —n, log N n —n
< Név > 9%(21—272)9%(22—23) > G )G ()

1<n<N w<rm <N
C 1 1 1 , /
< NL ds 925(21 —ZQ)QQS(ZQ—ZS)J dtf dt Gﬂ(t—S)Glg(t —8),

which is O(N _1) as all integrals above are finite by (4.43]) and by the small time asymptotics
of the heat kernels for z; # 29 # 23. |

Proof of Lemma [4.10l The proof is similar to that of Lemma [£.9] so we will just give a
sketch.

For the product K (21, 29) K(Q)(zz, 23) K(Z)(zl, z3) we can write a formula analogous
to and , where we now sum over three type of blocks: un-primed, primed and
double-primed, to each one of which we assign a label o; € {12,23,13}. Due to the interlacing
of the blocks, the assignment of labels will have the constraint that o, # ¢,_; for all i.

Thus, the only difference with the analogous formula for K (2)(21, 29) K @ (29, 23) would be
that go(q,—p, ,)(0) would be replaced by ga(4, )(0) where prev(i) corresponds to the

prev (i)
previous block with the same label o. O
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4.3. PROOF OF PROPOSITION . If ¢ = g, is the heat kernel, see (2.1), we can

compute ¥, ,, (¢) and %al a, (), as in Remark We start from the latter, see (4.5)):
integrating z3 by Gaussian convolution, then zy by Lemma and finally z;, we get

gal,az gr : 27T ff gr Zl gr 22 gal( Zl)gr+a2 (Z2) le dz2
= 20 92r10,0) [ 90(1) g0 00 (1)
1
r(T+a2) (O) =

2 )
rtat 5 ta, 3r° +2(ay + ag)r + ajay

which proves the second relation in . We can compute ¥, . (g,) from with similar
arguments, but it is easier to exploit the following basic fact: when zy, 24, 23 are independent
Gaussian random variables on R? with density g,, then z := 2; — 29 and y := 23 — % are
independent with densities go, and UEPS therefore

= (27)% 92r4a,(0) 9

gal,ag (gr) = (27’[‘)2 Jf Ya, (IE) 9or ('CC) Yay (y) g%r(y) dz dy
1 1
aq + 2r Ay + §T‘ ’

2
= (271') ga1+27“(0) gaz—i-%r(o) =

which proves the first relation in (4.13)). The fact that &, , (g,) > %Ll a, (gr) then follows.

It remains to prove (4.11)) when ¢(z) = 1|,y is the indicator function of a ball. If we
define

£(2) 1= (p # ga,)(2) = f o) gay (2 — ) A2,

then we can write, recalling (4.4) and performing a change of variables,

Gy 0r(0) = (27)? f f (1) 9(25) ga, (2 — 21) E(E2) dzy dz

2.2

(R%)
— (2n)? H oz — )z + 1) g, (v) €(2) dy .

(R*)?

Similarly, by (4.5| ,

G o) = (27) f f (2 = 1) 9(2) g0, () £(2) dy .

Note that £ is a radially symmetrlc and strictly increasing function since the convolution
of two radially symmetric and non-increasing functions (see the proof of Lemma [4.7). We
can apply a layer cake decomposition for ¢ as in (4.18]), thus replacing £(z) by Lyz<ty

with ¢ integrated w.r.t. the measure ,ug(dt), which has full support on [0, 00). Plugging also
¢(7) = Lyj3<p}, We can write the contribution at each fixed ¢ > 0 by

G (0) = G0, () = (27r)2f {Leb(B(%,r) 0 B(=%,1) 0 B(0,1)

RZ

— Leb(B(y,r) n B(0,7) N B(O,t)}ga1 (y)dy,
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where B(z,7) := {x € R?: |z| < r} is the ball of radius 7 centered at z. Note that
Ar(y) = B(%,’F) N B(—%,T) 5
is a symmetric convex set (possibly empty), which translated by § gives
A (y) + 5 = Bly,r) n B0, 7).
Then it follows from Anderson’s inequality [And55, Theorem 1| that we have the bound
Leb(A,(y) n B(0,t)) > Leb((A,(y) + %) n B(0,t)),

which can also be checked directly, and given r, the inequality is strict for a non-empty open

set of t and y. Integrating ¢ w.r.t. ,ug and y w.r.t. g, (y)dy then gives 4, , (v) > 9, o,(¢)
when ¢ is the indicator function of a ball. ]

5. PROOF OF THEOREM [1.5} LOWER BOUNDS VIA COLLISION LOCAL TIMES
AND THE GAUSSIAN CORRELATION INEQUALITY

In this section we prove Theorem . The key point is the lower bound (1.14) on the
moments of the SHF Q’;ﬁ: for a suitable n = 1, y > 0 we have, for any m € N with m > 3,
9 G 29(7%
E[(22(9:)"] > 1+ nE[2 27 (0)")®) v (0.1), (5.1)
where g; is the heat kernel on R?, see (2.1). Then, in order to obtain (|1.15) and complete
the proof, it suffices to show that (1.13]) holds, which follows from the next result.

Proposition 5.1 (Higher moments of GMC). Let .4, (dz) be the GMC with the same
first and second moments as the SHF' %ﬁ(dx), see Section . Then, as 6 | 0, we have

E[(2.4 (95)"] ~ (Crp log )12) (5.2)
where Cy g = %SS Gy (v)dv is the same constant which appears in (L.11)).

The rest of this section is divided in three parts.

e First we show that the moments of the SHF 2" (dz), averaged over a test function ¢,
can be obtained as the limit (as € | 0) of the moments of the solution u°(¢, ) of the
mollified Stochastic Heat Equation (1.16]), based on [GQT?21].

e Then we prove the bound (j5.1) by exploiting the Gaussian Correlation Inequality
[R14l LM17], adapting the approach in Feng’s Ph.D. thesis [Fenl6].

e Finally, we prove Proposition [5.1] which completes the proof of Theorem [1.5

5.1. SHF AND THE MOLLIFIED STOCHASTIC HEAT EQUATION. We consider the
mollified Stochastic Heat Equation (1.16]) with spatially mollified space-time white noise

ga(t’ x) = (f(tv ) *.75)(1') = J]R2 ja(z) f(t,(]} —z)dz,

where j.(z) := ¢ %j(z/e) and j(-) is a probability density on R? (usually taken compactly
supported). Assuming initial condition u°(0,-) = 1, by the Feynman-Kac formula [BC95,
Section 3 and eq. (3.22)], the Ito solution u®(t, ) = uj(t, ) of (1.16), where we highlight
the dependence on 3, has the representation

(tx) = B, [eﬁ §o € (t—u,B,) du — 385 ||§t] dist g [eﬁ §0 & (u.B,) du— 587 njsuét]’ (5.3)
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where E, denotes expectation for a standard Brownian motion B starting at x. We will
omit x from E, if v = 0.

We can directly compute the moments of u% (t,z), which do not depend on z by translation
invariance, thanks to the initial condition u(0,-) = 1. Given m € N, let (B(i))lgism denote
m, independent Brownian motions, and define J. := ¢ 2.J(z/e) with J := j % j. Note that

moort ) o . t ) .
Var {Z f ¢ (u, BY) du] = > LY, where LY:= f J.(BY) — BY)) du, (5.4)
i=170 0

1<i,j<m

which can be viewed as a collision local time at scale € between B(i) and B (G ). Note that
LYy = J.(0)t = |j.|5¢, where || - |5 denotes the L* norm. Given z1,...,,, € R*, if we

denote by Pz the law under which B @ starts at B(()i) = x;, a Gaussian computation yields

E[ﬁu@(@x» [T &% ] (55)
i=1

1<i<j<m
Remark 5.2. In the critical window (1.21)) we have 552 ~ 27/log e !, hence BSLQQ for
i # j converges in law as € | 0 to an exponential random variable Y of mean 1, by a classical
result [KR53]. This explains why B. is critical, since E[e™ ] diverges precisely at A = 1.

= B[’ Xk € (u,B() du— 2 8%, ) _ g,

We now describe the link between the solution ug(t,2) of the mollified Stochastic Heat
Equation and the SHF %”(dz). We recall that the latter was obtained in [CSZ23] from

the directed polymer random measure Zﬁ,,t(dx) = Zﬁ,,o ((dz, R?), see (L5), based on the

simple random walk (S,,) on Z*, which has covariance matrix sI with s = 3 and is periodic

(note that Sy, takes values in Z2,,, see (1.6)). On the other hand, the solution ug(t,z) of
the mollified Stochastic Heat Equation, see , is based on a standard Brownian motion
on R? with covariance matrix I and, of course, with no periodicity issues.

For these reasons, to obtain the SHF 2" (dz) from the solution uj(t, ) of the mollified
Stochastic Heat Equation, we need an appropriate rescaling: given 9 € R, if we scale

B. = B.(V) in the critical window ({A.4)-(A.5) (see also (A.7)-(A.9)), we expect that

1

5 ug_(t, zv/2) dx 4, 27 (dx), (5.6)
see Appendix for a heuristic derivation. We refrain from proving such a convergence,
which we expect to follow from the same techniques as in the paper [CSZ23|. As a matter of
fact, for our goals, it is enough to show that the two sides of (5.6 have asymptotically the
same moments, and this follows by |[GQT21| and [CSZ23|, as we now describe.

Proposition 5.3 (Moments of SHF and Stochastic Heat Equation). Fiz ¢ € R and
set B = B, as in (A.9). Fiz a mollification density j(-) which is radially symmetric and

non-increasing. For any integrable ¢ : R? - R, and for any h € N, we have
1 h
E[2(¢)"] = < lim EKJ uf (t,2v2) p(z) d:z) } . (5.7)
2 siO R2 €

Proof. It is enough to compare formulas (2.15)-(2.16)) with Theorem 1.1 and eq. (2.5) in
[GQT21]. O
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Remark 5.4. Recalling (2.7), we see that relation (5.7)) for h = 2 reduces to

JJ o(x) p(z) Kt@) (z,2')deda’ = 161?61 Var {J}RQ uj, (t, 2V?2) () dx} . (5.8)

The validity of such a relation was proved in [CSZ19b, Theorem 1.7] (note that the choice of
¥ in (A8)-(A.9), which enters K( ) Kt(19) in (2.7), matches [CSZI19N), eq. (1.38)]).

5.2. PROOF OF THE LOWER BOUND (5.1). Henceforth we fix 8 = . as in (A.4))-(A.5)
and omit it from notation, i.e. we set u”(t,x) := up_(t, ). It follows by (5.4)-(5.5) that

E{(Jug(t,mﬂ)go(a:) dx>m} _ J ﬁ@(xi)Ef\/ﬁ[ I eﬁ?SéJa(Bgi)_ng))ds]df’

1<i<j<m
(5.9)
where we recall that Ej; denotes expectation w.r.t. m independent Brownian motions with

B(()i) = y;. We now take ¢ = g5 to be the heat kernel, see (2.1), and note that by diffusive
scaling we can write gs(x) = 2 gos(2+/2). Then, in view of (5.7) and by a change of variables,
to prove ({5.1) it suffices to find n = 7, y > 0 such that, uniformly in m > 3 and é € (0, 1),

m () _ ()
li VE-= /35 So (Bs'—Bs"’)ds
im J [ [ 925w Bz [ ] dz

1<i<j<m
> (1+ )hg}l( J

®?)?

m (5.10)

2

925(331)925(532)]3{6 =50 s] dz; dxy

We will adapt the approach in Feng’s thesis [Fenl6], which used the Gaussian correlation
inequality [R14) [LMI7] to prove an analogue of for m = 3 with gs(-) replaced by d¢(-).
Unfortunately, not much could be concluded in that case, because all moments E[u®(t,0)™]
of order m > 1 diverge as € | 0: this is due to the fact that u°(¢,0) — 0 in distribution
for 8 = f. in the critical window (L.21)), see [CSZI7h, Theorem 2.15|, while E[u"(¢,0)] = 1
stays constant. We will show that the Gaussian correlation inequality can still be applied
when we average u°(t,z) w.r.t. gs, which will lead to the interesting bound .

Let Zé(ls), cen Zé?) be i.i.d. normal random variables on R? with probability density gq5,

independent of the Brownian motions B(l)7 ey B™ all starting from 0. Denoting by E
expectation w.r.t. their joint law, we can rewrite (5.10)) as

=10 1<i<j<m
N (5.11)

> (1+7) lim E[eﬂg 5 Ja<Z§?+B§”—Z§?—B£2))ds] (3)
el0
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Next we Taylor expand the exponential in the L.h.s.: for each i < j, we write

(), m()_ () pG) n ; ;
B2 N0 Te (25 + B 2,0 ~BY) —1+25 f JHJE V4 BY 70 _ BU)yds

0<sy < <8, <t =1

ey [ fmgyl) (24 + B~ 25 BY)asag,
=1

O<51< <sy, <t

where we used the decomposition J,( SO 14,y (7) dy, with
A(y) = {zeR®: J.(z)=y}. (5.12)

Note that J := j=j is a radially symmetric and non-increasing function, as the convolution of
two radially symmetric and non-increasing functions, as we showed in the proof of Lemma [£.7]
It follows that the set A.(y) is a ball centered at the origin, for any y > 0.

We can substitute this Taylor expansion into the l.h.s. of to obtain

I <1+ f fﬂnA (28 + BY - §§>—B§{>)d§dgj>],(5.13)

1<i<j<m

E

0<sy<-<s, <t "
Yiseos yn>0

which, upon expansion, leads to a positive mixture of terms of the form

(B9

1) (2) @) (4)
H 1_[]1 (za) 25+B<”>—ngs B?m)
(4,5)eZ I=1

(5.14)

where Z < {(4,j) : 1 <i < j < m} and, for each (i,j) € Z, we have n™) e N as well as

0 < sgi’j) <. < s(gﬁ) <t and y% ),...,y((’fg) > 0. Note that
n

() (@) () -
Wr i = ((225 )1<i<m (le(m') ; le(i«j))(i,j)el,1$l<n(z’])
is a centered multi-dimensional Gaussian random vector. Since A.(y) is a convex set

symmetric about the origin (in fact, a ball), we can apply the celebrated Gaussian correlation
inequality [R14, [LM17] to lower bound (5.14) by

(9
(4) 1) ‘ ‘
E H H ]lAs(yl“vj))(Z% + Bi(m’) - Zéfs) - BSBJ))]
(1,))eTn{(1,2),(1,3)} I=1 ! !
1 029) (5.15)
% H E[ Ly i) 26) + B(<za> Zéfs) B(fz)”)
(i,5)eT =1

(4,9)#(1,2),(1,3)

where we have kept the factors from (4,7) = (1,2) and (1,3

) inside the same expectation,
while separating all other factors involving different (i, j) € Z.
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Substituting the bound (5.15]) back into the expansion of ([5.13)) gives a lower bound on
the Lh.s. of (5.11)), namely

E[ H eﬁ?%Js(zé?JrBé“—Zg?—Bg”)ds]
I<i<j<m

()2 (5:16)

> E[ I o525 JE(Z§§)+B§1)—Z§{Q—B§”)ds] E[eﬂf 5 JE(Z§§)+B§1)—Z§§>—B§2))ds] 2
=23
Then the proof of (5.10)), and hence (5.1]), is complete once we prove the following Lemma.

Lemma 5.5. There exits n = 1,9 > 0 such that, uniformly in 6 € (0,1), we have

E|[1j—2a o2 50 12245+ B 25 - BY) o]

J=4
lim inf
2 ¢t 1 1 2 3 3

> 1+71. (5.17)

Proof. Let us define Ws(i) = Zé? +B§i) and W@ = (W(i))ogsgt. We introduce the shortcuts

W(l)] ’

(f)e,é(W(gl)v Wt(1)> = E[(I)s,cS(W(l))}W(gl)a Wt(l)] 5

(1)575(W(1)) = E[eﬁ82 55 1. (W —w ) ds

so that the ratio in the Lh.s. of (5.17)) can be written as

E[0.,(W ")’ E[E[e (v W] B[S (7, W)Y
B[P, B[, (W)W WiV Bl s (g Wi

) )

(U}
=2
—
%/-\
—
—
~—
[
[\

by Jensen’s inequality. Therefore it suffices to show that, uniformly for ¢ € (0, 1),

5 1) @ 2
D, s(W,
( f’5( 0(1; t(l; ) ]>1+77. (5.18)
E[®.s(Wy 7, W)

liminf E
el0

Let us show that the fraction in the L.h.s. has a limit as ¢ | 0. We treat separately
numerator and denominator, starting from the latter: by (5.9) with m = 2 and ¢ = g;,

Bl 50 W) = | [u#(t.0v2) e ]
hence by with h = 2, recalling , we get
@5 = lim BB (W5 WV)] = 4B[2 (95)’]
14 [ e ) K 01,m5) iy
(R*)?

¢
1427 ff G254+5(0) Gy(u — s)dsdu  ~ <J Gy(u) du> logl.
510 0 )

O<s<u<t

(5.19)
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Next we focus on the numerator: in analogy with (5.5)), we can write

_ 2 ¢t (1) (2)
®, 5(71,y) == E[eﬁa o ST s Wél) =y, W = 3/]
(5.20)
= JR2 9as(x2) E[u® (t, 21 |y) u” (t, 25)] das,
where we define u° (¢, z1|y) as a modification of the Feynman-Kac formula (5.3)):
t € 2.2
Wt 2 |y) = E,, [eﬁsof (u,B,) du— 1 87[j. |5t B, = y] (5.21)

(we recall that E,, is the expectation for a brownian motion B started at By = x, so that
conditioning on B, = y yields a Brownian bridge). In [CSZ19bl Theorem 1.7 & Section 8], a
formula for lim, o E[(§ ¢(2)u(t, 2))?] was derived using chaos expansion and renewal type
arguments. The same arguments can be adapted to show that

lim E[u® (¢, x1|y) u®(t, 29)]
el0

gt—u(y_w)
:1+47Tf"'J952—37 gs(2 —x9) Gy(u — 8) gu—s (w — z2) =—————~ dzdwdsdu,
(2 = 22) (2 = 22) Gl = ) gucs 10— 2) Pt U
z,weR2
O<s<u<t

where the integral is equal to (modulo some different constants as explained in Appendix |A.3))

the covariance kernel K ?) (21, x9) defined in and illustrated in Figure , if the factor
9i—u(y—w)/g;(y — x;) was not presentm This factor is the conditional transition kernel from
(u,w) to (t,y), originating from the conditioning on B, = y in the definition of u° (¢, x;|y),
while (u,w) is the last time-space point of matching disorder between the chaos expansions
of u®(t,1]y) and u°(t,x5). This factor disappears if we average over the law of y = B,.
Therefore

®s(x1,y) = lm D (w1, ) (5.22)

l
925(%2) 95(2 — 1) g5(2 — T9) gy _wss (y — 2)
=1+47rf~-J : Gy(u —s)dzdzrydsdu.
9y — 1)
xz,z€R2
O<s<u<t
We can now combine (5.19) and (5.22)), where ®5(z;,y) and ®; are defined: if we define
)
Us(21,y) == 5%1,;/) ; (5.23)
1)

then by Fatou’s lemma we can bound

_ 1 1 2
( (I)s,(S(Wé )7 t( )) )
- 1 1
B[ 5(Wy", W)

It is easy to check that E[\Il(;(Wél), t(l))] =1 (see ((5.26]) below). Since \I’g(Wél), Wt(l)) is

clearly not a constant, it follows by Jensen’s inequality that for any ¢ € (0, 1)

E[v, (W, w2 > 1,

lim inf E > B[, WV, wiV)?].

el0

tFor consistency: if we remove that factor, the r.h.s. becomes 1+ 47 SO<s<u<t gos(T1 —25) Gy(u—s)dsdu,
which is consistent with formula (5.7) once we plug in x;4/2 and z4+/2; see also (5.8).
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Since § — E[\I/(;(Wél), Wt(l))2] is continuous, to prove (5.18)) it only remains to show that

lim E[v;(W Y, Wi > 1. (5.24)

Denote \IJ(;(Wt(l)) = E[\IJ(;(WSI),Wt(l)ﬂWt( ]. By W( ) = 55) B(l) we have

B (gd <1 i Gr125(Y) J B f 925(x1) 925(22) 95(2 — 1) g5(2 — 2)

2
T1,%0,2€R
O<s<u<t

X Gy uts (y — 2) Gy(u — s) dzdx; dzy ds du>

1
=(1+ fff G2515(2)° 9y u+s( —z)GMu—s)dzdsdu)
D5 Gi+26(y

2eR?
O<s<u<t

. 2
and since gos;5(2)” = ga(26+5)(0) gs15(2) by ([#.20), we obtain

B = 5 (14 f [ s sy ) Gotu— 9 asau)

@5 9t+25
0<s<u<t
Jt+5— “(y)
= 1+ JJ Gy(u—s dsdu). 5.25
o ( 25 +5 Giros(y) o ) (5.25)
O<s<u<t

Incidentally, this relation together with ([5.19)) shows that

(v, W) = B[, - j 5(1) Gesas(y) dy = 1. (5.26)

R2

Note that as § | 0, the dominant contribution to the integral in (5.19) for ®; comes
from s « 1, since we can restrict the integral to s < (log 5) (Say) without changing the
asymptotic behavior. The same is true for the integral in , hence we obtain

- S(t)gt,, (y) Gy(u) du
15%1 Us(y) = Yo(y) := 9) 1. Gou) du

which implies that \Tf(;(Wt(l)) = \T/(;(ZSS) + Bt(l)) converges in law to \TIO(BEI)) as 0 | 0.
Therefore, by Jensen’s inequality and Fatou’s lemma,

i (00 W) > il B(Y)) > B[] > 1

where the last inequality holds because E[\Il(Bt(l))] =1 and \I'(Bgl)) is not a.s. equal to 1.
This concludes the proof of (5.24]), hence of Lemma O
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5.3. PROOF OF PROPOSITION [5.1] The log-divergence of the second moment kernel
%(2) (x,y) of the SHF, see (1.11]), plays a crucial role. Recall from (3.7) and (2.7 that

2,2 (,y) = MOV =14 KB (2,y) = 1+ 27 ﬂ g:(x —y) Gy(u — ) dsdu,
O<s<u<t

which is a monotonically decreasing function of |z — y|. By a change of variable,

o H 9ol — ) Gy(u— s)ds du = f el e_% <f_|z_y2§ Gy(v) dv) ds,

0 S 0

O<s<u<t

and note that, as |z — y| | 0, the dominant contribution to the integral comes from the
range of values 1 « § « |z — y| 2. Therefore, as |z —y| | 0,

- t t 1
e%/t(z)(gj’y> — ekt( 7y) ~ (J G,ﬁ(U)d’U) logm ~ Ct’l9 logv (527)

0 ’ yl’
where we set C 9 := 2 Sé Gy(v) dv.
Applying the moment formula (3.3)) and ([5.27)) to the Lh.s. of (5.2)), we find that as ¢ | 0,

E[(2-4 (95)"] = f [T g5(w) eXrsisimm ko) qz
=1
(®*)™

o) @)D [ [Taste) [] tog;— - az

|z; —xj|

)" i=1 1<i<j<m

Via the change of variable y; = xl/\/g, the integral in the r.h.s. can be written as

fﬁgl(yi) [ <log\}g+logm>dg~<log\}g>@)7

1<i<j<m
®*™

where the asymptotic equivalence as § | 0 follows by expanding the product and noting the
finiteness of the integrals. This shows that, as ¢ | 0,

)
E[(2.4 (g5))"] ~ (cw log jg) ,

which proves ([5.2)) and completes the proof of Proposition [l

APPENDIX A. ON THE CRITICAL WINDOWS

In this secion, we compare the critical windows for directed polymers and for the mollified
Stochastic Heat Equation.

A.1. DIRECTED POLYMER SETTING. The critical scaling of 8 = Sy for the directed
polymer partition functions (|1.4]) is defined by the following asymptotic relation:

_ 1 Y 1
0_]2\[ = AN 72ABN) _q = M(l—l—w) , for some fixed ¥ € R, (A.1)
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where A(+) is the log-moment generating function of the disorder, see (1.3)), while Ry is the
expected replica overlap of two independent simple symmetric random walks S, S" on 72

:E[ﬁlﬂ{sn:s;}] Z Z z:: (S3n = 0)

1.e7? (AZ)

N 2
1 (2n logN «
= E {22”<n>} = . +;+0(1) asN—>oo,

n=1

with a = v+ log16 — 7 and v = — Xgo logue “du ~ 0.577 the Euler-Mascheroni constant.

Since A\(B) ~ %62 as  — 0, it follows from that 8% ~ 7/log N as N — . The
parameter ¥ € R tunes the higher order asymptotic behavior of 55, which also depends on
the third and fourth cumulants k3, 4 of the disorder: see [CSZI9b, eq. (1.17)] for the exact
formula, which simplifies when k3 = 0 (e.g. for symmetric disorder distribution) and yields

T <1+ﬁ—c+dn

Bx =
log N log N

> where c¢:= o+ %77 + 1—727m4 (A3)

=~ +logl6 — %W—k 1—7277,%4,
that is ((1.7]) holds with o = 9 —¢.
A.2. STOCHASTIC HEAT EQUATION SETTING. We next consider the Stochastic Heat

Equation (T.16) with mollified noise £ (¢, z) = (£(t,-) * j.)(z), where j.(z) := e %j(e " 'z).
The critical scaling 8 = f3, is (see [CSZ19bl eq. (8.28)]):

s 1 ( U+ 0(1)>
/BE RE ]og 6_2 ( )
where R, is defined as follows (see [CSZ19bl, Section 8.2]):
-2
3
R - | (LRQ)Q J(2) J(9) gor e — ) da dy) dt. (A5)

Note that we can view R, as the expected replica overlap of two independent Brownian

motions B, B’ on R? enlarged via J := j * j into Wiener sausages, described by the functions
Jp,(2) := J(2 — B;) and JB;(Z) = J(z — B}):

R~ | J23J<m>J<y>gt<z—x)w(z—y)dxdydzdt
(R?)

(A.6)
J f J(:— B,) J(>— B)]dzdt — E U <JBt Ty dt
It was shown in [CSZI9b| end of Section 8.2| that
log e? ¢
R. = Tt To o(1) ase |0, (A.7)
where
C = 2f J(z) log J(y)dxdy + log4 — . (A.8)
(R?)? lz —yl
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Plugging this into (A.4) yields
47 ¥ —C + ol
Bf = <1 + g( )> . (A.9)

log g2 loge™
that is ((1.21]) holds with o =9 — C.

A.3. MATCHING DIRECTED POLYMERS WITH THE STOCHASTIC HEAT EQUATION.
In this appendix we explain heuristically relation ([5.6)).
The Stochastic Heat Flow Q’;ﬁ (dx) is the limit of the directed polymer random measure

23 (o Z Zyien(IVNa], 2) (A.10)
ZEZeven
see ([1.5)) and Theorem We can then rewrite (| as
a 1
Zﬁ%ﬁt(dx,]}%z) Nm .3 u%g (t,:ﬂ\/E) dx ase |0, (A.11)
=€

where the disorder strengths in the two sides are tuned in the respective critical windows,

see (A.1) or (A.3) for By and (A.9) for 5., for the same value of ¥ € R.
A 11}

Relation (A.11]) is expected to hold by comparing both sides to the same coarse-grained
model in [CSZ23|. However, we can simply explain the scaling factors in (A.11)) by comparing
the mean and covariance of both sides:

e the multiplicative factor % is due to the periodicity of the simple random walk: we
have indeed E[ZNNOt(dx,RZ)] = 1 dz, see (A.I0), while Elug_(-, )] = 1;

e the factor 4/2 is because each random walk component has variance %: we have
COV[Z]B\}YOt(dx,R ) ZﬁNDt(dy,RQ)] ~ %K,S(Q)(x — y)dxdy, see [CSZ23, Rem. 3.7],

while Cov[ug_(t, ), up_(t,y)] ~ Kt(2)(%), see [BCIY| eq. (3.14)], [CSZ19D, Thm. 1.9].

We now give a heuristic derivation of relation (A.11]). Let (.S,,) be a T-periodic random
walk on Z* (i.e. S, takes values in a sub-lattice T, c Z* whose cells have area T) with
covariance matrix s/. For the simple random walk we have s = % and T = 2 with

T. = szen for n even, (A 12)
" ngd = ZQ\ngen for n odd, :

see (1.6)). The parameters s and T enter in the local limit theorem: recalling that g;(x)
denotes the heat kernel, see (2.1)), we have as n — o

P(S, = 2) = (gsn(2) + o(n 1)) Ty (2). (A.13)

We insist on the use of general parameters s and T, instead of the particular values % and 2,
because the following arguments become more transparent.

The solution uz (t,z) of the mollified Stochastic Heat Equation (1.16]) can be viewed as
the partition function for a Brownian directed polymer B in a mollified white-noise random
environment £, comparing with the Feynman-Kac representation formula . To
account for the random walk variance s and periodicity T, we can modify as follows:

e we replace (B, z) by (1/s B, x/4/s) to get a Brownian motion with variance s started
\/se. E

at = and, accordingly, we replace the mollified white noise £ by &
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o we replace 8 by +/Tf3; this ensures that computing the variance uj(t,z) as a power

series in 3%, arising from the polynomial chaos expansion (see e.g. [CSZI9D), eq. (8.12)]),
each heat kernel is multiplied by T, matching the local limit theorem (A.13)).

Overall, since v/T3 f‘ﬁa(t —u,+/s B,) has the same distribution as /7T /s 8£°(t —u, B,,), we
can simply modify the Feynman-Kac formula (5.3) replacing x by x/+/s and § by /T /s S.

Summarizing, for the directed polymer random measure Zﬁ},vo ((dz, R2) defined in analogy
with (A.10), with % replaced by % and szen replaced by T, we expect that

B 2 d ~ : N . 1 x
2o, (dz,RY) Nfs‘Q w(t,z)dr  with  a(t,x) = Tui/?BN (t, ﬁ) : (A.14)

For s = 4 and T = 2, this equation is “close” to (A1) since /T/s By = 2By ~ B, cf. (A3)
and (A.9)). For an accurate comparison, we should replace 4/T/s By by S, in the definition
of 4(t,z) in (A.14)), which leads to (A.11)).

Finally, we note that (¢, z) from (A.14]) solves a mollified Stochastic Heat Equation with
adjusted coefficients, to account for the random walk variance s and periodicity T:

di(t, ) = 5 Ault, ) + Vo) T By alt 2) €31, 2)

. , (A.15)
2(0.) = —
u( Y ) T
where £%(t, ) := ﬁ fa/‘/g(t, ) has the same distribution as £*(t, x). Again, for an accurate

comparison with directed polymers, we should replace /T /s By in (A.15)) by B, from (A.9).
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