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Abstract. We consider the KPZ equation in space dimension 2 driven by space-time
white noise. We showed in previous work that if the noise is mollified in space on scale ε
and its strength is scaled as β̂{

a

| log ε|, then a transition occurs with explicit critical point
β̂c “

?
2π. Recently Chatterjee and Dunlap showed that the solution admits subsequential

scaling limits as ε Ó 0, for sufficiently small β̂. We prove here that the limit exists in
the entire subcritical regime β̂ P p0, β̂cq and we identify it as the solution of an additive
Stochastic Heat Equation, establishing so-called Edwards-Wilkinson fluctuations. The same
result holds for the directed polymer model in random environment in space dimension 2.

1. Introduction and main results

We present first our results for the two-dimensional KPZ equation, and then similar
results for its discrete analogue, the directed polymer model in random environment in
dimension 2` 1. We close the introduction with an outline of the rest of the paper.

1.1. KPZ in two dimensions. The KPZ equation is a stochastic PDE, formally
written as

Bthpt, xq “
1

2
∆hpt, xq `

1

2
|∇hpt, xq|2 ` β ξpt, xq, t ě 0, x P Rd, (1.1)

where ξpt, xq is the space-time white noise, and β ą 0 governs the strength of the noise.
It was introduced by Kardar, Parisi and Zhang [KPZ86] as a model for random interface
growth, and has since been an extremely active area of research for both physicists and
mathematicians. The equation is ill-posed due to the singular term |∇h|2 which is undefined,
because ∇h is expected to be a distribution (generalized function).

In spatial dimension d “ 1, these difficulties can be bypassed by considering the so-called
Cole-Hopf solution h :“ log u, where u is defined as the solution of the multiplicative
Stochastic Heat Equation Btu “ 1

2∆u` βξu, which is linear and well-posed in dimension
d “ 1, by classical Ito theory. On large space-time scales, the Cole-Hopf solution exhibits
the same fluctuations as many exactly solvable one-dimensional interface growth models, all
belonging to the so-called KPZ universality class. See the surveys [C12, QS15] for reviews
on the extensive literature. Few results are known in higher dimensions (see below).

Along a different line, intense research has been carried out in recent years to make sense
of the solutions of the KPZ equation and other singular stochastic PDEs. A robust theory
was lacking until the seminal work by Hairer [H13] and his subsequent theory of regularity
structures [H14]. Since then, a few alternative approaches have been developed, including
the theory of paracontrolled distributions by Gubinelli, Imkeller, and Perkowski [GIP15], the
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theory of energy solutions by Gonçalves and Jara [GJ14], and the renormalization approach
by Kupiainen [K16]. All these approaches are only applicable to KPZ in space dimension
d “ 1, where the equation is so-called subcritical, in the sense that the non-linearity vanishes
in the small scale limit with a scaling that preserves the linear and the noise terms in
the equation. In the language of renormalization groups, the KPZ equation in d “ 1 is
super-renormalizable (see e.g. [K16]), while regarded as a disordered system, it would be
called disorder relevant (see e.g. [H74], [G10], and [CSZ17a, CSZ17b]).

In this paper we focus on d “ 2, which for KPZ is the critical dimension (the renormalizable
or disorder marginal case). To define a solution to (1.1), we follow the standard approach
and consider a spatially mollified version ξε :“ jε ˚ ξ of the noise, where ε ą 0, j P CcpR2q is
a probability density on R2 with jpxq “ jp´xq, and jεpxq :“ ε´2jpx{εq. The key question
is whether it is possible to replace β ξ in (1.1) by βε ξε ´ Cε, for suitable constants βε, Cε,
such that the corresponding solution hε converges to a non-trivial limit as ε Ó 0.

It turns out that in space dimension d “ 2 the right way to tune the noise strength is

βε :“ β̂

c

2π

log ε´1
, for some β̂ P p0,8q , (1.2)

and to consider the following mollified KPZ equation (with }j}22 :“
ş

R2 jpxq
2dx):

Bth
ε “

1

2
∆hε `

1

2
|∇hε|2 ` βε ξε ´ Cε, where Cε :“ β2

ε ε
´2 }j}22 . (1.3)

For simplicity, we take hεp0, ¨q ” 0 as initial datum. If we define

uεpt, xq :“ eh
εpt,xq , (1.4)

then, by Ito’s formula, uε solves the mollified multiplicative Stochastic Heat Equation (SHE):

Btu
ε “

1

2
∆uε ` βε u

ε ξε , uεp0, ¨q ” 1 . (1.5)

In [CSZ17b] we investigated the finite-dimensional distributions of the mollified KPZ
solution hε as ε Ó 0. In particular, we discovered in [CSZ17b, Section 2.3] that there is a
transition in the one-point distribution as β̂ varies, with critical value β̂c :“ 1: For any t ą 0,

hεpt, xq
d
ÝÝÑ
εÓ0

#

σβ̂Z ´
1
2σ

2
β̂

if β̂ ă 1

´8 if β̂ ě 1
with σ2

β̂
:“ log 1

1´β̂2
, Z „ Np0, 1q . (1.6)

(Note that the limiting distribution does not depend on t ą 0.) This can be viewed as a weak
disorder to stronger disorder transition, where we borrow terminology from the directed
polymer model (see Section 1.2). It was also shown in [CSZ17b] that in the subcritical
regime β̂ ă β̂c :“ 1 the k-point distribution of hε asymptotically factorizes: for any finite
set of distinct points pxiq1ďiďk, the random variables phεpt, xiqq1ďiďk converge as ε Ó 0 to
independent Gaussians.

It is natural to investigate the fluctuations of hε, regarded as a random field, as ε Ó 0.
This is what Chatterjee and Dunlap recently addressed in [CD18]. They actually considered
a variant of the mollified KPZ equation (1.3), where βε is placed in front of the non-linearity
instead of the noise, namely,

Btrh
ε “

1

2
∆rhε `

1

2
βε|∇rhε|2 ` ξε . (1.7)
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However, there is a simple relation between rhε in (1.7) and hε in (1.3) (see Appendix A):

rhεpt, xq ´ Errhεpt, xqs “
1

βε

`

hεpt, xq ´ Erhεpt, xqs
˘

, (1.8)

therefore working with rhε or hε is equivalent.
The main result in [CD18] is that for any fixed t ą 0, when β̂ is sufficiently small,

the centered solution rhεpt, ¨q ´ Errhεpt, ¨qs, viewed as a random distributions on R2, admits
non-trivial weak subsequential limits as ε Ó 0 (in a negative Hölder space). As a matter
of fact, [CD18] considered the KPZ equation (1.7) on the two-dimensional torus T2, for
technical reasons, but it is reasonable to believe that their results should also hold on R2.

The perturbative approach followed by Chatterjee and Dunlap [CD18] is limited to β̂
sufficiently small, and it does not prove the existence of a unique limiting random field. Our
main result shows that such a limit indeed exists, in the entire subcritical regime β̂ P p0, 1q,
and identifies it as the solution of an additive SHE with a non-trivial noise strength (that
depends explicitly on β̂). This is commonly called Edwards-Wilkinson fluctuations [EW82].

Theorem 1.1 (Edwards-Wilkinson fluctuations for 2-dimensional KPZ). Let hε

be the solution of the mollified KPZ equation (1.3), with βε as in (1.2) and β̂ P p0, 1q. Denote

hεpt, xq :“
hεpt, xq ´ Erhεpt, xqs

βε
“

a

log ε´1

?
2π β̂

`

hεpt, xq ´ Erhεpt, xqs
˘

, (1.9)

where the centering satisfies Erhεpt, xqs “ ´1
2σ

2
β̂
` op1q as ε Ó 0, see (1.6).

For any t ą 0 and φ P CcpR2q, the following convergence in law holds:

xhεpt, ¨q, φp¨qy “

ż

R2

hεpt, xqφpxqdx
d
ÝÝÑ
εÓ0

xvpcβ̂qpt, ¨q, φp¨qy, (1.10)

where vpcqpt, xq is the solution of the two-dimensional additive Stochastic Heat Equation
$

&

%

Btv
pcqpt, xq “

1

2
∆vpcqpt, xq ` c ξpt, xq

vpcqp0, xq ” 0
, where c :“ cβ̂ :“

b

1
1´β̂2

. (1.11)

Remark 1.2. For the version (1.7) of KPZ, Chatterjee and Dunlap showed in [CD18] that
any subsequential limit of rhε ´ Errhεs as ε Ó 0 does not coincide with the solution of the
additive SHE obtained by simply dropping the non-linearity βε |∇rhε|2 in (1.7). Here we show
that the limit of rhε ´ Errhεs actually coincides with the solution of the additive SHE with a
strictly larger noise strength c “ cβ̂ ą 1. In other words, the non-linearity in (1.7) produces
an independent non-zero noise term in the limit, even though its strength βε Ñ 0.

Our proof of Theorem 1.1 is based on an analogous fluctuation result we proved in [CSZ17b]
for the solution of the SHE (1.5). The independent noise can be seen to arise from the second
and higher order chaos expansions of the solution, supported on microscopic scales.

Remark 1.3. We can view hεpt, ¨q as a random distribution on R2, i.e. a random element
of the space of distributions D1, the dual space of D “ C8c pR2q. Our results show that hεpt, ¨q
converges in law to vpcβ̂qpt, ¨q as random distributions. This is because convergence in law on
D1 is equivalent to the pointwise convergence of the characteristic functional [F67, Th. III.6.5]
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(see also [BDW17, Cor. 2.4] for an analogue for tempered distributions):

@φ P D “ C8c pR2q : E
“

eixh
εpt,¨q,φp¨qy

‰

ÝÝÑ
εÓ0

E
“

eixv
pc
β̂
q
pt,¨q,φp¨qy

‰

and this clearly follows by (1.10).

Remark 1.4. For simplicity, we only formulated the convergence of hεpt, ¨q to vpcβ̂qpt, ¨q as
a random distribution in space for each fixed t. However, our proof can be easily adapted to
prove the convergence of hεp¨, ¨q to vpcβ̂qp¨, ¨q as a random distribution in space and time.

Remark 1.5. The solution vpcqpt, ¨q of the additive SHE (1.11), also known as the Edwards-
Wilkinson equation [EW82], is the random distribution on R2 formally given by

vpcqpt, xq “ c

ż t

0

ż

R2

gt´spx´ zq ξps, zq dsdz , with gtpxq “
1

2π t
e´

|x|2

2t . (1.12)

For any φ P CcpR2q, we have that xvpcqpt, ¨q, φy :“
ş

R2 v
pcqpt, xqφpxq dx is a Gaussian random

variable with zero mean and variance

Var
“

xvpcqpt, ¨q, φy
‰

“ c2 σ2
φ , σ2

φ :“ xφ,Kt φy “

ż

pR2q2
φpxqKtpx, yqφpyq dx dy , (1.13)

where the covariance kernel is given by

Ktpx, yq :“

ż t

0

1

4πu
e´

|x´y|2

4u du “
1

4π

ż 8

|x´y|2

4t

e´z

z
dz . (1.14)

In [CSZ17b] we also proved Edwards-Wilkinson fluctuations for the solution uε of the
2-dimensional multiplicative SHE (1.5). More precisely, if similarly to (1.9) we set

uεpt, xq :“ 1
βε

`

uεpt, xq ´ Eruεpt, xqs
˘

“

?
log ε´1
?

2π β̂

`

uεpt, xq ´ 1
˘

, (1.15)

then as ε Ó 0 we have the convergence in law xuεpt, ¨q, φp¨qy Ñ xvpcβ̂qpt, ¨q, φp¨qy as in (1.10)
in the entire subcritical regime β̂ P p0, 1q, see [CSZ17b, Theorem 2.17] (which is formulated
for space-time fluctuations, but its proof is easily adapted to space fluctuations).

Since uεpt, xq “ expphεpt, xqq, it is tempting to relate (1.15) and (1.9) via Taylor expansion.
This is non obvious, because the one-point distributions of hεpt, xq do not vanish as ε Ó 0,
see (1.6), so we cannot approximate hεpt, xq « uεpt, xq ´ 1. We will show in Section 2 that
the approximation of hpt, xq is highly non trivial, and the main contribution actually comes
from specific parts of the expansion of upt, xq which are negligible relative to upt, xq.

For future work, the goal will be to understand the scaling limit of the KPZ solution
hεpt, xq at or above the critical point β̂c “ 1. To our best knowledge, this remains a mystery
also for physicists (even the weak to strong disorder transition (1.6) discovered in [CSZ17b]
seems not to have been noted previously in the physics literature). Also the scaling limit
of the SHE solution uεpt, xq at or above the critical point is not completely known, even
though we recently made some progress at the critical point [CSZ18], improving the study
initiated in [BC98] (where the regime (1.2), with β̂ close to 1, was first studied).

We conclude this subsection with an overview of related results. In space dimension d “ 1,
the Cole-Hopf solution hpt, xq :“ log upt, xq of the KPZ equation (1.1) is well-defined as
a random function, for any β P p0,8q, and there is no phase transition in the one-point
distribution as β varies. Edwards-Wilkinson fluctuations for hpt, xq and upt, xq are easily
established as β Ó 0, combining Wiener chaos and Taylor expansion (because upt, xq Ñ 1).
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In space dimensions d ě 3, the right way to scale the disorder strength is βε “ β̂ ε
d´2

2 . It
was shown in [MSZ16, CCM18] that the mollified SHE solution uεpt, xq of (1.5) undergoes a
weak to stronger disorder transition, similar to the directed polymer model [CSY04]: there is a
critical value β̂c P p0,8q such that uεpt, xq converges in law as ε Ó 0 to a strictly positive limit
when β̂ ă β̂c, while it converges to zero if β̂ ą β̂c. The KPZ solution hεpt, xq “ log uεpt, xq
is thus qualitatively similar to the 2-dimensional case (1.6): hεpt, xq converges in law to a
finite limit for β̂ ă β̂c, while it converges to ´8 for β̂ ą β̂c. The value of β̂c is unknown.

Edwards-Wilkinson fluctuations for the KPZ solution hεpt, xq in dimension d ě 3 have
been established recently by Magnen and Unterberger [MU18], assuming that the noise
strength β̂ is sufficiently small. The corresponding result for the SHE solution uεpt, xq was
proved in [GRZ18, CCM18]. The approaches in these papers do not allow to cover the entire
subcritical regime, as we do in dimension 2.

We should also mention that in space dimension d “ 2, Edwards-Wilkinson fluctuations
are believed to hold (and verified in some cases, see e.g. [T17]) also for models in the
anisotropic KPZ class, where anysotropy means that the term |∇h|2 in the KPZ equation
(1.1) is replaced by x∇h,A∇hy for some matrix A with detpAq ď 0.

Shortly after we posted our paper, Dunlap et al. [DGRZ18] gave an alternative proof (to
[MU18]) of Edwards-Wilkinson fluctuations for the KPZ equation in dimension d ě 3 when
β̂ is sufficiently small. Using the same techniques (Clark-Ocone formula and second order
Poincaré inequality), Gu [G18] proved the same Edwards-Wilkinson fluctuation as in our
Theorem 1.1 for the KPZ equation in dimension d “ 2, except his result is restricted to β̂
small instead of covering the entire subcritical regime.

1.2. The directed polymer model. In this subsection, we state our result for the
partition function of the directed polymer model in dimension 2`1. See [C17] for an overview
of the directed polymer model. In the language of disordered systems, space dimension 2 is
critical for this model, where disorder is marginally relevant. For further background on the
notion of disorder relevance/irrelevance (which corresponds to subcriticality/supercriticality
in the context of singular SPDEs), see e.g. [H74, G10, CSZ17a].

The directed polymer model is defined as a change of measure for a random walk,
depending on a random environment (disorder). Let S be the simple symmetric random
walk on Z2. If S starts at x P Z2, then we denote its law by Px with expectation Ex, and we
omit x when x “ 0. We set

qnpxq :“ PpSn “ xq . (1.16)

Denoting by rS an independent copy of S, we define the expected overlap by

RN :“
N
ÿ

n“1

PpSn “ rSnq “
N
ÿ

n“1

ÿ

xPZ2

qnpxq
2 “

N
ÿ

n“1

q2np0q “
logN

π
`Op1q . (1.17)

We fix β̂ P p0,8q and define pβN qNPN by

βN :“
β̂

?
RN

“

?
πβ̂

?
logN

ˆ

1`
Op1q

logN

˙

. (1.18)

Disorder is given by i.i.d. random variables pωpn, xqqnPN,xPZ2 with law P, such that

Erωs “ 0 , Erω2s “ 1 , λpβq :“ logEreβωs ă 8 @β ą 0 small enough . (1.19)

For technical reasons, we require that the law of ω satisfies a concentration inequality. Recall
that a function f : Rn Ñ R is called 1-Lipschitz if |fpxq ´ fpyq| ď |x´ y| for all x, y P Rn,
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with | ¨ | the Euclidean norm. We assume the following:

Dγ ą 1, C1, C2 P p0,8q : for all n P N and f : Rn Ñ R convex and 1-Lipschitz

P
´

ˇ

ˇfpω1, . . . , ωN q ´Mf

ˇ

ˇ ě t
¯

ď C1 exp

ˆ

´
tγ

C2

˙

,
(1.20)

where Mf denotes a median of fpω1, . . . , ωN q. (By changing C1, C2, one can equivalently
replace Mf by Erfpω1, . . . , ωN qs, see [Led01, Proposition 1.8].) Condition (1.20) is satisfied
if ω is bounded, or if it is Gaussian, or more generally if it has a density expp´V p¨q ` Up¨qq,
with V uniformly strictly convex and U bounded. See [Led01] for more details.

Given ω, N P N, and βN as defined in (1.18), we define the Hamiltonian by

HN :“
N
ÿ

n“1

`

βN ωpn, Snq ´ λpβN q
˘

“

N
ÿ

n“1

ÿ

yPZ2

`

βN ωpn, yq ´ λpβN q
˘

1tSn“yu . (1.21)

We will be interested in the family of partition functions

ZN pxq “ ZN,βN pxq “ Ex
“

eHN
‰

, N P N, x P Z2 ,

ZN pxq :“ ZtNuptxuq, N P r0,8q, x P R2 .
(1.22)

We will write ZN :“ ZN p0q for simplicity. Note that the law of ZN pxq does not depend on
x P Z2, and we have ErZN pxqs “ ErZN s “ 1.

The partition function ZN pxq is a discrete analogue (modulo a time reversal) of the SHE
solution uεpt, xq in (1.5), as can be seen from its Feynman-Kac formula (5.1) below (see
also [AKQ14]). Then logZN pxq is a discrete analogue of the KPZ solution hεpt, xq in (1.3).
In fact, we proved in [CSZ17b, Theorem 2.8] that for βN as in (1.18), the random variable
logZN pxq converges in distribution to the same limit as in (1.6), with critical value β̂c “ 1.
It is not surprising that here we can also prove the following analogue of Theorem 1.1.

Theorem 1.6 (Edwards-Wilkinson fluctuations for directed polymer). Let ZN,βN pxq
be the family of partition functions defined as in (1.22), with βN as in (1.18) with β̂ P p0, 1q,
and the disorder ω satisfying assumptions (1.19) and (1.20). Denote

hN pt, xq :“
logZtN px

?
Nq ´ ErlogZtN s

βN
“

?
logN
?
π β̂

`

logZtN px
?
Nq ´ ErlogZtN s

˘

. (1.23)

For any t ą 0 and φ P C8c pR2q, the following convergence in law holds, with cβ̂ as in (1.11):

xhN pt, ¨q, φp¨qy “

ż

R2

hN pt, xqφpxqdx
d

ÝÝÝÝÑ
NÑ8

xvp
?

2cβ̂qpt{2, ¨q, φp¨qy , (1.24)

where vpcqps, xq is the solution of the two-dimensional additive SHE as in (1.11).

Remark 1.7. Here the limit vp
?

2cβ̂qpt{2, ¨q differs from vpcβ̂qpt, ¨q in Theorem 1.1 because
the increment of the simple symmetric random walk on Z2 has covariance matrix 1

2I.

We will in fact prove Theorem 1.6 first, since the structure is more transparent in the
discrete setting, and then outline the changes needed to prove Theorem 1.1 for KPZ.
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1.3. Outline. The rest of the paper is organized as follows.

‚ In Section 2, we present the proof steps and describe the main ideas.

‚ In Section 3, we give bounds on positive and negative moments for the directed polymer
partition function, based on concentration inequalities and hypercontractivity.

‚ In Section 4, we prove our main result Theorem 1.6 for directed polymer.

‚ In Section 5, we explain how the proof for directed polymer can be adapted to prove
our main result Theorem 1.1 for KPZ.

We will conclude with a few appendices which might be of independent interest, where we
prove some results needed in the proofs.

‚ Appendix A establishes scaling relations for KPZ with different parameters.

‚ Appendix B recalls and refines known hypercontractivity results for suitable functions
(polynomial chaos) of i.i.d. random variables.

‚ Appendix C formulates a concentration of measure result for the left tail of convex
functions that are not globally Lipschitz, defined on general Gaussian spaces.

‚ Lastly in Appendix D we discuss linearity and measurability properties of stochastic
integrals, which are needed in the proof in Section 5.

2. Outline of proof steps and main ideas

In this section, we outline the proof steps for Theorems 1.1 and 1.6 and describe the basic
setup. We focus on the directed polymer partition function (the case of KPZ follows the same
steps). The two main ideas are a decomposition of the partition function ZN which allows to
“linearize” logZN (see §2.1), and a representation of ZN as a polynomial chaos expansion in
the disorder (see §2.2). The “linearization” of logZN essentially reduces Theorem 1.6 to an
analogous result for ZN which we proved in [CSZ17b, Theorem 2.13].

2.1. Decomposition and linearization. Given a subset Λ Ď Nˆ Z2, we denote
by ZΛ,βpxq the partition function where disorder is only sampled from within Λ, i.e.

ZΛ,βpxq :“ Ex
“

eHΛ,β
‰

, where HΛ,β :“
ÿ

pn,xqPΛ

pβωn,x ´ λpβqq1tSn“xu . (2.1)

The original partition function ZN,βpxq in (1.21)-(1.22) corresponds to Λ “ t1, . . . , Nu ˆZ2.

In our previous study in [CSZ17b], a key observation was that for β̂ P p0, 1q the partition
function ZN,βN pxq essentially depends only on disorder in a space-time window around the
starting point p0, xq that is negligible on the diffusive scale pN,

?
Nq. This motivates us to

approximate ZN,βN pxq by a partition function ZAN,βN pxq with disorder present only in such
a space-time window AxN . More precisely, we define a scale parameter aN tending to zero as

aN :“
1

plogNq1´γ
with γ P p0, γ˚q , (2.2)

where γ˚ ą 0 depends only on β̂ in Theorem 1.6 and its choice will be clear from the
estimate in (4.4) later on. We now introduce the space-time window

AxN :“
!

pn, zq P Nˆ Z2 : n ď N1´aN , |z ´ x| ă N
1
2´

aN
4

)

, (2.3)
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and define ZAN,βpxq as the partition function which only samples disorder in AxN , i.e.

ZAN,βpxq :“ ZΛ,βpxq with Λ “ AxN . (2.4)

We then decompose the original partition function ZN,βpxq as follows:

ZN,βpxq “ ZAN,βpxq ` Ẑ
A
N,βpxq, (2.5)

where ẐAN,βpxq, defined by the previous relation, is a “remainder”. In a sense that we will
make precise later (see (3.4)) it holds that for any fixed x, ẐAN,βN pxq ! ZAN,βN pxq and thus

logZN,βN pxq “ logZAN,βN pxq ` log
´

1`
ẐAN,βN pxq

ZAN,βN pxq

¯

« logZAN,βN pxq `
ẐAN,βN pxq

ZAN,βN pxq
. (2.6)

More precisely, if we define the error ON pxq via

logZN,βN pxq “ logZAN,βN pxq `
ẐAN,βN pxq

ZAN,βN pxq
`ON pxq, (2.7)

then we will show the following:

Proposition 2.1. Let ON p¨q be defined as in (2.7), then for any φ P CcpR2q

a

logN
1

N

ÿ

xPZ2

`

ON pxq ´ ErON pxqs
˘

φp x?
N
q

L2pPq
ÝÝÝÝÑ
NÑ8

0 . (2.8)

Remarkably, even though logZAN,βN pxq gives the dominant contribution to logZN,βN pxq

for any fixed x, it does not contribute to the fluctuations of logZN,βN pxq when averaged over
x, that is:

Proposition 2.2. Let ZAN,βN p¨q be defined as in (2.4), then for any φ P CcpR2q

a

logN
1

N

ÿ

xPZ2

`

logZAN,βN pxq ´ ErlogZAN,βN pxqs
˘

φp x?
N
q

L2pPq
ÝÝÝÝÑ
NÑ8

0 . (2.9)

As a consequence, the fluctuations of logZN,βN p¨q are determined by the “normalized
remainder” ẐAN,βN p¨q{Z

A
N,βN

p¨q. To determine the fluctuations of this term, we define the set

BěN :“
`

pN1´9aN {40, N s X N
˘

ˆ Z2, (2.10)

and we let ZBěN,βN pxq be the partition function where disorder is sampled only from BěN , i.e.

ZB
ě

N,βN
pxq :“ ZΛ,βN pxq with Λ “ BěN . (2.11)

Note that ErZBěN,βN pxqs “ 1, so pZBěN,βN pxq ´ 1q is a centered random variable. The key point,
and the more involved step, will be to show that

ẐAN,βN pxq « ZAN,βN pxq
`

ZB
ě

N,βN
pxq ´ 1

˘

, (2.12)

in the following sense.

Proposition 2.3. Let ZAN,βN p¨q, Ẑ
A
N,βN

p¨q, ZBěN,βN p¨q be defined as in (2.4), (2.5), (2.11).
Then for any φ P CcpR2q

a

logN
1

N

ÿ

xPZ2

ˆ

ẐAN,βN pxq

ZAN,βN pxq
´

`

ZB
ě

N,βN
pxq ´ 1

˘

˙

φp x?
N
q

L1pPq
ÝÝÝÝÑ
NÑ8

0 . (2.13)
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It remains to identify the fluctuations of ZBěN,βN p¨q. This falls within the scope of The-
orem 2.13 in [CSZ17b], which we will recall in Section 4.4 and which will show that the
fluctuations of ZBěN,βN p¨q converges to the solution vp

?
2cβ̂qp1{2, ¨q of the two-dimensional

additive SHE, as in Theorem 1.6. The proof is based on polynomial chaos expansions of the
partition function, which we will recall in the next subsection.

Proposition 2.4. Let ZBěN,βN p¨q be defined as in (2.11). Then
?

logN
?
π β̂

1

N

ÿ

xPZ2

`

ZB
ě

N,βN
pxq ´ 1

˘

φp x?
N
q

d
ÝÝÝÝÑ
NÑ8

xvp
?

2cβ̂qp1{2, ¨q, φy , (2.14)

where vpcqps, xq is the solution of the two-dimensional additive SHE as in (1.11).

Theorem 1.6 is a direct corollary of the decomposition (2.7) and Propositions 2.1-2.4.
Regarding the centering, it suffices to note that ErlogZN,βN pxqs “ ErlogZAN,βN pxqs `

ErON pxqs, because the random variable ẐAN,βN pxq{Z
A
N,βN

pxq has zero mean, which follows
from the polynomial chaos expansions of partition functions that we now present.

2.2. Polynomial chaos expansions. Our analysis of the partition functions ZAN,βN p¨q,
ẐAN,βN p¨q, Z

B
N,βN

p¨q is based on multi-linear expansions, known as polynomial chaos expan-
sions, which have also been used extensively in [CSZ17a, CSZ17b].

Recall the definition (1.18) of βN and our assumptions (1.19) on the disorder, and note
that by (1.19) and Taylor expansion, λp2βq ´ 2λpβq „ β2 as β Ñ 0. We introduce the
sequence

σN :“
a

eλp2βN q´2λpβN q ´ 1 „
NÑ8

βN , (2.15)

where we agree that aN „ bN means limNÑ8 aN{bN “ 1, and we define the random variables

ξpNqn,x :“ σ´1
N

´

eβNωpn,xq´λpβN q ´ 1
¯

. (2.16)

We will suppress the dependence of ξpNqn,x onN , for notational simplicity. Note that pξn,xqnPN,xPZ2

are i.i.d. with Erξn,xs “ 0 and Erξ2
n,xs “ 1.

Recall the definition (1.21)-(1.22) of the partition function ZN,βN pxq of the polymer that
starts at time zero from location x. This can be written as

ZN,βN pxq “ Ex

«

ź

1ďnďN, yPZ2

`

1` σN ξn,y 1tSn“yu
˘

ff

“ 1`
N
ÿ

k“1

σkN
ÿ

0“n0ăn1ă...ănkďN
x0“x, x1,...,xkPZ2

k
ź

i“1

qni´ni´1pxi ´ xi´1q ξni,xi ,

(2.17)

where qnpxq :“ PpSn “ xq. Note that the terms in the sum are orthogonal to each other
in L2, and when β̂ P p0, 1q the dominant contribution to ZN,βN pxq comes from disorder ξ¨,¨
in a space-time window that is negligible on the diffusive scale. More precisely, a second
moment calculation (see (3.4) below) shows that ZN,βN pxq is close in L2 to the partition
function ZAN,βN pxq which only samples disorder from within AxN (recall (2.3)).

It will be convenient to introduce a concise representation for the expansion (2.17) as
follows: given a point pn0, x0q and a finite subset τ :“ tpn1, x1q, ..., pn|τ |, x|τ |qu of N0 ˆ Z2
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AxN

N1´aN

¨ ¨ ¨p0, xq

(a) Partition fuction ZAN,βN
pxq.

N1´aN

AxN

BěN

p0, xq ¨ ¨ ¨

(b) Partition function ZB
ě

N,βN
pxq.

Figure 1. The above figures depict the chaos expansions of ZAN,βN pxq and
ZB

ě

N,βN
pxq. The disorder sampled by ZAN,βN pxq is restricted to the set AxN ,

while that of ZBěN,βN pxq is restricted to BěN

with n0 ă n1 ă ¨ ¨ ¨ ă n|τ |, we introduce the notation

qpn0,x0qpτq :“

|τ |
ź

i“1

qni´ni´1pxi ´ xi´1q and ξpτq :“

|τ |
ź

i“1

ξni,xi .

For τ “ H we define qpn0,xqpτq “ ξpτq :“ 1. In this way we can write concisely the chaos
expansion of ZN,βN pxq as

ZN,βN pxq “
ÿ

τĂt1,...,NuˆZ2

σ
|τ |
N qp0,xqpτq ξpτq . (2.18)

Similarly, for the partition functions ZAN,βpxq, Z
Bě

N,βpxq in (2.4), (2.11) we can write

ZAN,βN pxq “
ÿ

τ ĂAxN

σ
|τ |
N qp0,xqpτq ξpτq , ZB

ě

N,βN
pxq “

ÿ

τ ĂBěN

σ
|τ |
N qp0,xqpτq ξpτq . (2.19)

A graphical illustration of ZAN,βpxq and Z
Bě

N,βpxq appears in Figure 1.
These polynomial chaos expansions are discrete analogues of Wiener-Itô chaos expansions.

They are especially suited for variance calculations and provide important insight. For
instance, the partition function ẐAN,βpxq :“ ZN,βpxq ´ ZAN,βpxq, see (2.5), is obtained by
restricting the sum in (2.18) to τ which include space-time points outside the set AxN , and
hence ẐAN,βN pxq{Z

A
N,βN

pxq has zero mean due to the independence between the disorder
inside and outside AxN . Similarly, the centered partition function pZBěN,βpxq ´ 1q, which
appears in (2.13)-(2.14), is the contribution to (2.19) given by configurations τ that contain
only points (and at least one point) in BěN .

3. Moment bounds

In this section we collect some moment bounds that will be used in the proof.
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3.1. Second moment. We bound the second moment of ZN,βN pxq, Z
A
N,βN

pxq, ẐAN,βN pxq.

We start from ZN,βN pxq. It follows by (2.17) and (1.17) that

ErZN,βN pxq
2s “

ÿ

τ Ăt1,...,NuˆZ2

pσ2
N q
|τ | qp0,xqpτq2

“ 1`
N
ÿ

k“1

pσ2
N q

k
ÿ

0“:n0ăn1ă...ănkďN
x0“:x, x1,...,xkPZ2

k
ź

i“1

qni´ni´1pxi ´ xi´1q
2

“ 1`
N
ÿ

k“1

pσ2
N q

k
ÿ

0“:n0ăn1ă...ănkďN

q2pni´ni´1q
p0q .

(3.1)

If we let each increment ni ´ ni´1 vary freely in t1, 2, . . . , Nu, by (1.17) we get the bound
ErZN,βN pxq2s ď

ř

kě0pσ
2
N RN q

k “ p1´ σ2
N RN q

´1. Recalling (1.18) and (2.15), we obtain

@β̂ P p0, 1q DCβ̂ ă 8 such that @N P N : ErZN,βN pxq
2s ď Cβ̂ , (3.2)

where Cβ̂ will denote a generic constant depending on β̂.

Next we look at ZAN,βN pxq. The polynomial chaos expansion for ZAN,βN pxq is a subset of
the one for ZN,βN pxq, hence the same bound (3.2) applies:

@β̂ P p0, 1q DCβ̂ă8 such that @N P N : ErZAN,βN pxq
2s ď Cβ̂ . (3.3)

We turn to ẐAN,βN pxq. The bound (3.2) can again be applied, but it is quite poor. In fact,
the following much better bound holds (recall that aN is defined in (2.2)):

@β̂ P p0, 1q DCβ̂ ă 8 such that @N P N : ErẐAN,βN pxq
2s ď Cβ̂ aN . (3.4)

The proof, given below, is elementary but slightly technical (see Subsection 3.4).

We conclude with an alternative viewpoint on the bound (3.2). If we denote by S and rS
two independent copies of the random walk, by (1.21)-(1.22) we can compute

ErZ2
N,βN

s “ EEreHN,βN pSq`HN,βN p
rSq
s “ Erepλp2βN q´2λpβN qqLN pS,rSqs , (3.5)

where LN pS, rSq is the overlap of the two copies S, rS up to time N , defined by

LN pS, rSq :“
N
ÿ

n“1

1
tSn“rSnu

“
ˇ

ˇS X rS X pt1, . . . , Nu ˆ Z2q
ˇ

ˇ . (3.6)

Since λpβq „ 1
2β

2 as β Ó 0, see (1.19), we get

ErZ2
N,βN

s “ Erep1`εN qβ
2
N LN pS,rSqs , where lim

NÑ8
εN “ 0 . (3.7)

Note that π
logNLN pS, rSq converges in law to a mean 1 exponential random variable, see

e.g. [ET60]. This matches with limNÑ8 ErZ2
N,βN

s “ p1´ β̂2q´1 for βN as in (1.18).
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3.2. Positive moments via hypercontractivity. We will bound higher positive
moments of our partition functions using the hypercontractivity of polynomial chaos [MOO10],
which we recall (with some strengthening) in Appendix B.

By (2.17), each partition function ZN,βN pxq, Z
A
N,βN

pxq, ẐAN,βN pxq can be expressed as a
series

8
ÿ

k“0

X
pNq
k (3.8)

(actually a finite sum) where XpNqk is a multi-linear polynomial of degree k in the i.i.d.
random variables pξpNqn,x qpn,xqPNˆZ2 , which have zero mean and unit variance, see (2.16). These
random variables have uniformly bounded higher moments:

@p P p2,8q : sup
NPN

Er|ξpNqn,x |
ps ă 8 , (3.9)

as one can check directly from (2.16) and (1.19) (see [CSZ17a, eq. (6.7)]).
Under these conditions, hypercontractivity ensures that, for every p P p2,8q, the p-th

moment of the series (3.8) can be bounded in terms of second moments:

E
„ˇ

ˇ

ˇ

ˇ

8
ÿ

k“0

X
pNq
k

ˇ

ˇ

ˇ

ˇ

p

ď

ˆ 8
ÿ

k“0

pckpq
2 E

“`

X
pNq
k

˘2‰
˙p{2

, (3.10)

where cp P p1,8q is a constant, uniform in N , which only depends on the laws of the ξpNqn,x .
This is proved in [MOO10, § 3.2] (extending [J97]), where a non-optimal value of cp is given.
We will recall these results in Appendix B, where we will prove that the optimal cp satisfies

lim
pÓ2

cp “ 1 . (3.11)

This result, which is of independent interest, is crucial in order to apply (3.10) to our
partition functions ZN,βN pxq, Z

A
N,βN

pxq, ẐAN,βN pxq, because for any subcritical β̂ ă 1 we can

fix p ą 2 such that cpβ̂ ă 1 is still subcritical. More precisely, note that multiplying XpNqk

by ckp amounts to replacing σN by cp σN , see (2.17), and this corresponds asymptotically to
replacing β̂ by cpβ̂, see (2.15) and (1.18). Then, by (3.2)-(3.4), we obtain:

@β̂ P p0, 1q Dp “ pβ̂ P p2,8q DC
1

β̂
ă 8 such that @N P N

E
“

ZN,βN pxq
p
‰

ď C 1
β̂
, E

“

ZAN,βN pxq
p
‰

ď C 1
β̂
, E

“

|ẐAN,βN pxq|
p
‰

ď C 1
β̂
paN q

p{2 . (3.12)

3.3. Negative moments via concentration. We give bounds on the negative
moments of partition functions ZN,βN pxq and Z

A
N,βN

pxq (see (1.22), (2.17) and (2.3),(2.19)).
We work with the general partition function ZΛ,βpxq defined in (2.1), which coincides with
ZN,βN pxq, resp. Z

A
N,βN

pxq, for Λ “ t1, . . . , Nu ˆ Z2, resp. Λ “ AxN .
For fixed (say bounded) Λ Ď NˆZ2, it is not difficult to show that the log partition function

logZΛ,β is a convex and Lipschitz function of the random variables pωpn, yq : pn, yq P Λq.
However, if β “ βN and the subset Λ grows with N , its Lipschitz constant can diverge as
N Ñ 8, hence we cannot directly apply the concentration inequality (1.20). However, it
turns out that, for any Λ “ ΛN Ď t1, . . . , NuˆZ2, the Lipschitz constant is tight as N Ñ8.
This yields the following estimate for the left tail of logZΛN ,βN , proved below.
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Proposition 3.1 (Left tail). For any β̂ P p0, 1q, there exists cβ̂ P p0,8q with the following
property: for every N P N and for every choice of Λ Ď t1, . . . , Nu ˆ Z2, one has

@t ě 0 : PplogZΛ,βN ď ´tq ď cβ̂ e
´tγ{cβ̂ , (3.13)

where γ ą 1 is the same exponent appearing in assumption (1.20).

As a corollary, for every p P p0,8q we can estimate, uniformly in Λ Ď t1, . . . , Nu ˆ Z2,

E
“

pZΛ,βN q
´p
‰

“ E
“

e´p logZΛ,βN

‰

“ p

ż 8

´8

ept E
“

1ttă´ logZΛ,βN
u

‰

dt

ď 1` p

ż 8

0
ept cβ̂ exp

`

´ tγ{cβ̂
˘

dt “: Cp,β̂ ă 8 .

Choosing Λ “ t1, . . . , Nu ˆ Z2 or Λ “ AxN , we finally obtain the bounds

@β̂ P p0, 1q @p P p0,8q DCp,β̂ ă 8 : sup
NPN

E
“

ZN,βN pxq
´p
‰

ď Cp,β̂ ă 8 , (3.14)

sup
NPN

E
“

ZAN,βN pxq
´p
‰

ď Cp,β̂ ă 8 . (3.15)

For later use, let us also state the following consequence:

@β̂ P p0, 1q @p P p0,8q DCp,β̂ ă 8 : sup
NPN

Er| logZAN,βN pxq|
ps ď Cp,β̂ ă 8 . (3.16)

The proof of this fact is simple: we can bound | log y| ď Cp py
1{p ` y´1{pq for all y ą 0 and

for suitable Cp ă 8 (just distinguish y ě 1 and y ă 1). This leads to Er| logZAN,βN pxq|
ps ď

CppErZAN,βN pxqs ` ErZAN,βN pxq
´1sq “ Cpp1` ErZAN,βN pxq

´1sq, so (3.16) follows by (3.15).

It remains to prove Proposition 3.1. To this goal, we follow the strategy developed in
[CTT17] for the pinning model, which generalizes [Mor14]. We need the following result,
which is [CTT17, Proposition 3.4], inspired by [Led01, Proposition 1.6].

Proposition 3.2. Assume that disorder ω has the concentration property (1.20). There
exist constants c1, c2 P p0,8q such that, for every n P N and for every differentiable convex
function f : Rn Ñ R, the following bound holds for all a P R and t, c P p0,8q,

P
`

fpωq ď a´ t
˘

P
`

fpωq ě a, |∇fpωq| ď c
˘

ď c1 exp
´

´
pt{cqγ

c2

¯

, (3.17)

where ω “ pω1, . . . , ωnq and |∇fpωq| :“
a

řn
i“1pBifpωqq

2 is the norm of the gradient.

We can deduce the bound (3.13) from (3.17) applied to the function f “ fN given by

fN pωq “ logZΛ,βN . (3.18)

We only need to bound from below the second probability in the left hand side of (3.17).
This is provided by the next lemma, which completes the proof of Proposition 3.1.

Lemma 3.3. For any β̂ P p0, 1q, there exist cβ̂ P p0,8q and ϑβ̂ P p0, 1q such that

inf
NPN

inf
ΛĎt1,...,NuˆZ2

P
`

fN pωq ě ´ log 2 , |∇fN pωq| ď cβ̂
˘

ě ϑβ̂ ą 0 . (3.19)

Proof. We set a “ ´ log 2. For any c ą 0, we have

P
`

fN pωq ě a , |∇fN pωq| ď c
˘

“ P
`

fN pωq ě a
˘

´ P
`

fN pωq ě a , |∇fN pωq| ą c
˘

(3.20)
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The first probability can be estimated using the Paley-Zygmund inequality:

P
`

fN pωq ě a
˘

“ P
`

ZΛ,βN ě
1
2

˘

“ P
`

ZΛ,βN ě
1
2ErZΛ,βN s

˘

ě
ErZΛ,βN s

2

4ErpZΛ,βN q
2s
. (3.21)

Note that ErZΛ,βN s “ 1. For Λ Ď t1, . . . , NuˆZ2 we have ErpZΛ,βN q
2s ď ErpZN,βN q2s ď Cβ̂ ,

see (3.2), hence
P
`

fN pωq ě a
˘

ě 1
4Cβ̂

“: 2ϑβ̂ . (3.22)

We now proceed to estimate the second term in (3.20). First, we compute for n P N, x P Z2

BfN pωq

Bωn,x
“

1

ZΛ,βN

E
”

βN1pn,xqPSXΛ e
HΛ,βN

pSq
ı

and

|∇fN pωq|2 “
ÿ

pn,xqPNˆZ2

´

BfN
Bωn,x

¯2
“

1

pZΛ,βN q
2
E
”

β2
N |S X

rS X Λ| eHΛ,βN
pSq`HΛ,βN

prSq
ı

,

where S and rS are two independent copies of the random walk, and with some abuse of
notation, we also denote by S the random subset tpn, SnqunPN Ď Nˆ Z2.

For Λ Ď t1, . . . , Nu ˆ Z2 we have |S X rS X Λ| ď LN pS, rSq, see (3.6), where LN pS, rSq
denotes the overlap up to time N of the two trajectories S and rS. On the event that
fN pωq ě a “ ´ log 2, that is ZΛ,βN ě 1{2, we can thus bound

|∇fN pωq|2 ď 4 E
”

β2
N LN pS, rSq eHΛ,βN

pSq`HΛ,βN
prSq

ı

,

and note that, arguing as in (3.5)-(3.7), for every δ ą 0 we have, for all N large enough,

EE
”

β2
N LN pS, rSq eHΛ,βN

pSq`HΛ,βN
prSq

ı

ď E
”

β2
N LN pS, rSq ep1`δqβ

2
N LN pS,rSq

ı

ď
1

δ
E
”

ep1`2δqβ2
N LN pS,rSq

ı

,

where we used the bound x ď 1
δ e
δx. Thus, for all N large enough we have

P
`

fN pωq ě a , |∇fN pωq| ą c
˘

ď
1

c2
E
”

|∇fN pωq|2 1tfN pωqěau
ı

ď
4

c2

1

δ
E
”

ep1`2δqβ2
N LN pS,rSq

ı

.

Let us now define β̂1 :“ 1`β̂
2 , so that β̂ ă β̂1 ă 1, and define β1N :“ β̂1{

?
RN , see (1.18).

Then we can fix δ “ δβ̂ ą 0 small enough so that p1` 2δqβ2
N ă λp2β1N q ´ 2λpβ1N q (note that

λp2βq ´ 2λpβq „ β2 as β Ñ 0), hence by (3.5) and (3.2)

P
`

fN pωq ě a , |∇fN pωq| ą c
˘

ď
4

c2

1

δβ̂
Cβ̂1 .

Choosing c “ cβ̂ large enough, we can make the right hand side smaller than ϑβ̂ , see (3.22).
Looking back at (3.20), we see that (3.19) is proved. �

3.4. Proof of equation (3.4). The quantity ErẐAN,βN pxq
2s admits a representation

similar to the first line of (3.1), without the constant term 1 and with the inner sum restricted
to space-time points such that pni, xiq R AxN for some i “ 1, . . . , k, i.e. either ni ą N1´aN or
|xi ´ x| ě N

1
2
´
aN
4 . Since there are k space-time points, for some j “ 1, . . . , k we must have

either nj ´ nj´1 ą
1
kN

1´aN or |xj ´ xj´1| ě
1
kN

1
2
´
aN
4 (we recall that n0 “ 0 and x0 “ x).
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Defining the new variables `i :“ ni ´ ni´1 and zi :“ xi ´ xi´1, and enlarging the range
0 ă n1 ă . . . ă nk ď N to `1, . . . , `k P t1, . . . , Nu, we can then bound

ErẐAN,βN pxq
2s ď

N
ÿ

k“1

pσ2
N q

k
ÿ

`1,...,`kPt1,...,Nu
z1,...,zkPZ2

k
ÿ

j“1

´

1t`ją 1
k
N1´aN u

` 1
t`jď

1
k
N1´aN , |zj |ě

1
k
N

1
2´

aN
4 u

¯

k
ź

i“1

q`ipziq
2 .

(3.23)

We now switch the sum over j with the double sum over `i, zi’s. We can sum over all
variables zj ’s with i ‰ j, replacing each kernel q`ipziq

2 by q2`ip0q (see (1.17)), and then sum
q2`ip0q for all `i’s with i ‰ j, which gives pRN qk´1 (see again (1.17)). This yields

ErẐAN,βN pxq
2s ď

N
ÿ

k“1

pσ2
N q

k Rk´1
N k

ÿ

`Pt1,...,Nu
zPZ2

´

1t`ą 1
k
N1´aN u ` 1

t`ď 1
k
N1´aN , |z|ě 1

k
N

1
2´

aN
4 u

¯

q`pzq
2 .

We now consider separately the contributions of the two indicator functions.

‚ Recalling (1.17), (1.18), (2.15), the contribution of t` ą 1
kN

1´aN u is controlled by
N
ÿ

k“1

pσ2
N q

k Rk´1
N k

ÿ

1
k
N1´aNă`ďN

q2`p0q ď C
N
ÿ

k“1

k pβ̂2qk
1

logN

ÿ

1
kN

1´aNă`ďN

1

`

ď C 1
N
ÿ

k“1

k pβ̂2qk
aN logN ` log k

logN
ď C 1

ˆ

rCβ̂ aN ` Ĉβ̂
1

logN

˙

,

where rCβ̂ :“
ř8
k“1 k pβ̂

2qk and Ĉβ̂ :“
ř8
k“1 k plog kq pβ̂2qk are finite, β̂-dependent

constants. This contribution is consistent with (3.4) (recall (2.2)).

‚ The contribution of t` ď 1
kN

1´aN , |z| ě 1
kN

1
2
´
aN
4 u is given by

N
ÿ

k“1

pσ2
N q

k Rk´1
N k

ÿ

1ď`ď 1
k
N1´aN

ÿ

|z|ą 1
k
N

1
2´

aN
4

q`pzq
2 . (3.24)

Note that we can enlarge the range of the last sum to |z| ą ϑ
?
`, with ϑ “ N

aN
4 {
?
k.

Note that supzPZ2 q`pzq ď c{`, by Gnedenko’s local limit theorem. Then, by Gaussian
estimates for the simple random walk on Z2, there is η ą 0 such that

ÿ

|z|ąϑ
?
`

q`pzq
2 ď

c

`
Pp|S`| ą ϑ

?
`q ď

c

`
e´η ϑ

2
, @` P N , @ϑ ą 0 .

Then we can bound (3.24) by a constant multiple of
N
ÿ

k“1

pβ̂2qk k
1

RN

ÿ

1ď`ďN

c

`
e´η ϑ

2
ď C

N
ÿ

k“1

pβ̂2qk k e´η
N
aN
2
k . (3.25)

We split the sum according to k ď pN
aN
2 q1{2 and k ą pN

aN
2 q1{2, getting the bound

" 8
ÿ

k“1

pβ̂2qk k

*

e´ηpN
aN
2 q1{2 `

" 8
ÿ

k“1

β̂k k

*

β̂pN
aN
2 q1{2 .
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Both brackets are finite, β̂-dependent constants, while the other factors are both
opaN q as N Ñ8, by (2.2), because β̂ ă 1 and N

aN
2 “ expp1

2plogNqγq " logN .

This completes the proof of (3.4). �

4. Edwards-Wilkinson fluctuations for directed polymer

In this section, we prove Theorem 1.6, which consists of proving Propositions 2.1, 2.2, 2.3,
and 2.4 as described in Section 2. The proofs are given in the following subsections.

4.1. Proof of Proposition 2.1. Recalling (2.8), we need to show that

logN

N2

ÿ

x,yPZ2

Cov
“

ON pxq, ON pyq
‰

φp x?
N
qφp y

?
N
q ÝÝÝÝÑ

NÑ8
0 .

By translation invariance and Cauchy-Schwarz, it suffices to show that for any x P Z2,

plogNqErON pxq2s ÝÝÝÝÑ
NÑ8

0 . (4.1)

We recall that ON pxq is defined in (2.7), and in view of (2.5) we can write

ON pxq “ log

ˆ

1`
ẐAN,βN pxq

ZAN,βN pxq

˙

´
ẐAN,βN pxq

ZAN,βN pxq

We can bound, for a suitable constant C ă 8,

| logp1` yq ´ y| ď C ¨

$

’

’

&

’

’

%

b

|y|
1`y if ´ 1 ă y ă 0

y2 if ´ 1
2 ď y ď 1

2

|y| if 0 ă y ă 8

. (4.2)

The three domains are chosen to overlap on purpose: in fact, we will apply these inequalities
in the domains p´1,´a

2{7
N q, r´a2{7

N , a
2{7
N s and pa2{7

N ,8q (recall aN from (2.2)). We define

D˘N :“

"

˘
ẐAN,βN pxq

ZAN,βN pxq
ą a

2{7
N

*

, DN :“ D`N YD
´
N “

"ˇ

ˇ

ˇ

ˇ

ẐAN,βN pxq

ZAN,βN pxq

ˇ

ˇ

ˇ

ˇ

ą a
2{7
N

*

,

and we bound

PpDN q ď P
`

ZAN,βN pxq ă a
1{7
N

˘

` P
`

|ẐAN,βN pxq| ą a
3{7
N

˘

ď a
1{7
N E

“

ZAN,βN pxq
´1
‰

` a
´6{7
N E

“

ẐAN,βN pxq
2
‰

ď
`

C2,β̂ ` Cβ̂
˘

a
1{7
N ,

(4.3)

thanks to (3.15) and (3.4). Then by (4.2)

1

C
ErON pxq2s ď E

„ˆ

ẐAN,βN pxq

ZAN,βN pxq

˙4

1DcN



`E
„ˆ

ẐAN,βN pxq

ZAN,βN pxq

˙2

1D`N



`E
„

ˇ

ˇẐAN,βN pxq{Z
A
N,βN

pxq
ˇ

ˇ

1` ẐAN,βN pxq{Z
A
N,βN

pxq
1D´N



,

and given that

1`
ẐAN,βN pxq

ZAN,βN pxq
“
ZN,βN pxq

ZAN,βN pxq
,
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we can choose p “ pβ̂ ą 2 close to 2 as in (3.12) such that

1

C
ErON pxq2s ď E

„ˆ

ẐAN,βN pxq

ZAN,βN pxq

˙4

1DcN



` E
„ˆ

ẐAN,βN pxq

ZAN,βN pxq

˙2

1D`N



` E
„ˇ

ˇ

ˇ

ˇ

ẐAN,βN pxq

ZN,βN pxq

ˇ

ˇ

ˇ

ˇ

1D´N



ď a
8
7
N ` E

“

ẐAN,βN pxq
p
‰

2
p

ˆ

E
“

ZAN,βN pxq
´

2p
p´2 1D`N

‰1´ 2
p ` E

“

ZN,βN pxq
´2 1D´N

‰
1
2

˙

ď a
8
7
N ` C 1

β̂
aN

ˆ

ErZAN,βN pxq
´

4p
p´2 s

1
2
´ 1
pPpDN q

1
2
´ 1
p ` ErZN,βN pxq

´4s
1
4PpDN q

1
4

˙

ď a
8
7
N ` C 1

β̂
aN PpDN q

1
4
^p 1

2
´ 1
p
q
ď C 1

β̂
a

1` 1
7
p 1

2
´ 1
p
q

N ,

where the second last inequality holds by (3.12), (3.14) and (3.15), in the last inequality we
applied (4.3), and C 1

β̂
ă 8 is a generic constant depending only on β̂. Recall from (2.2) that

aN “ plogNqγ´1. We can then choose γ P p0, γ˚q with γ˚ ą 0 small enough such that

ErON pxq2s ď C 1
β̂
a

1` 1
7
p 1

2
´ 1
p
q

N “ C 1
β̂
plogNq

´p1´γqp1` 1
7
p 1

2
´ 1
p
qq
“ o

`

plogNq´1
˘

. (4.4)

Therefore (4.1) holds. �

4.2. Proof of Proposition 2.2. We need to show that
logN

N2

ÿ

x,yPZ2

Cov
“

logZAN,βN pxq, logZAN,βN pyq
‰

φp x?
N
qφp y

?
N
q ÝÝÝÝÑ

NÑ8
0 . (4.5)

We recall that ZAN,βN pxq depends only on the disorder within set AxN , defined in (2.3), hence

ZAN,βN pxq and Z
A
N,βN

pyq are independent for |x ´ y| ą 2N
1
2
´
aN
4 . By Cauchy-Schwarz and

(3.16), we can bound the left hand side of (4.5) as follows:

C2,β̂

logN

N2

ÿ

x,yPZ2: |y´x|ď2N
1
2´

aN
4

φp x?
N
qφp y

?
N
q ď cC2,β̂

logN

N2
N1´

aN
2 |φ|8

ÿ

xPZ2

|φp x?
N
q|

ď c1C2,β̂ plogNqN´
aN
2 |φ|8 |φ|L1pR2q “ c1C2,β̂ e

logplogNq´ 1
2
plogNqγ |φ|8 |φ|L1pR2q ÝÝÝÝÑ

NÑ8
0 ,

where c, c1 are generic constants, and the last equality holds by definition of aN in (2.2). �

4.3. Proof of Proposition 2.3. We need to show that
?

logN

N

ÿ

xPZ2

ẐAN,βN pxq

ZAN,βN pxq
φp x?

N
q ´

?
logN

N

ÿ

xPZ2

pZB
ě

N,βN
pxq ´ 1qφp x?

N
q

L1pPq
ÝÝÝÝÝÑ
NÑ8

0 . (4.6)

We recall that BěN :“
`

pN1´9aN {40, N s X N
˘

ˆ Z2, see (2.10). We define new subsets

BN :“
`

pN1´aN , N s X N
˘

ˆ Z2 , (4.7)

C x
N :“

 

pn, zq P Nˆ Z2 : n ď N1´aN , |z ´ x| ě N
1
2´

aN
4
(

, (4.8)

and we introduce new “partition functions”:

Z A,C
N,βN

pxq :“
ÿ

τĂt1,...,NuˆZ2: τXCxN‰H

σ
|τ |
N qp0,xqpτq ξpτq , (4.9)

Z A,B
N,βN

pxq :“
ÿ

τĂAxNYBN : τXBN‰H

σ
|τ |
N qp0,xqpτq ξpτq , (4.10)
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BN

AxN

CxN BěN

p0, xq ¨ ¨ ¨

(a) Partition function ZA,CN,βN
pxq.

BN

BěN

AxN

CxN

p0, xq ¨ ¨ ¨

(b) Partition function ZA,BN,βN
.

Figure 2. The figures depict the chaos expansions of ZA,CN,βN
pxq, ZA,BN,βN

pxq.
Each term in the expansion for ZA,CN,βN

pxq must include disorder from CxN ;
while each term in the expansion for ZA,BN,βN

pxq contain only disorder from
AxN YBN , with at least some disorder from BN .

similar to the polynomial chaos expansions for ZN,βN , Z
A
N,βN

and ZBěN,βN in (2.18)–(2.19).
See Figure 2 for a graphical representation of the chaos expansions.

Recall that AxN was defined in (2.3), and note that pt1, . . . , Nu ˆ Z2q zAxN “ CxN YBN .
We can then decompose ẐAN,βN pxq, defined in (2.5), as follows:

ẐAN,βN pxq “ ZA,BN,βN
pxq ` ZA,CN,βN

pxq. (4.11)

We split the sequel in three steps. The first step is:

(1) We will show that the contribution of the term ZA,CN,βN
is negligible for (4.6).

To treat the term ZA,BN,βN
pxq, we decompose its chaos expansion (4.10) according to the last

point pt, wq of τ that lies in AxN and the first point pr, zq of τ that lies in BN :

ZA,BN,βN
pxq “

ÿ

pt,wq P tp0,xquYAxN
pr,zq PBN

ZA0,t,βN px,wq ¨ qr´tpz ´ wq ¨ σN ξr,z ¨ Zr,N,βN pzq, (4.12)

where ZA0,t,βN px,wq is the “point-to-point” partition function from p0, xq to pt, wq, defined
by ZA0,t,βN px,wq :“ 1 if pt, wq “ p0, xq and by

ZA0,t,βN px,wq :“
ÿ

τĂAxNXpr0,tsˆZ2q: τQpt,wq

σ
|τ |
N qp0,xqpτq ξpτq if t ą 0 , (4.13)

while Zr,N,βN pzq is the “point-to-plane” partition function starting at pr, zq and running
until time N :

Zr,N,βN pzq :“
ÿ

τĂtr`1,...,NuˆZ2

σ
|τ |
N qpr,zqpτq ξpτq . (4.14)

The next steps are:

(2) We will show that in (4.12) the contribution from r ă N1´9aN {40 is negligible for (4.6).
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(3) We will show that in (4.12) we can replace the kernel qr´tpz´wq by qrpz´ xq, i.e. the
transition kernel from p0, xq to pr, zq, because their difference is negligible for (4.6).

Finally, note that when we restrict the sum in (4.12) to r ě N1´9aN {40, i.e. to pr, zq P BěN
(recall (2.10)), and we replace qr´tpz´wq by qrpz´xq, the right hand side of (4.12) becomes
exactly ZAN,βN pxq pZ

Bě

N,βN
pxq ´ 1q (recall (2.19)). This completes the proof of (4.6).

It remains to prove the three steps stated above.

Step (1). We show that the contribution of ZA,CN,βN
in (4.11) to (4.6) is negligible, that is,

?
logN

N

ÿ

xPZ2

Z A,C
N,βN

pxq

ZAN,βN pxq
φp x?

N
q

L2pPq
ÝÝÝÝÑ
NÑ8

0. (4.15)

Since the chaos expansion of Z A,C
N,βN

pxq in (4.9) contains disorder ξ outside AxN , not
contained in the expansion of ZAN,βN pxq, we have that E

“

Z A,C
N,βN

pxq{ZAN,βN pxq
‰

“ 0 thus
L2pPq and variance computations are equivalent. We then have

Var
´

?
logN

N

ÿ

x PZ2

Z A,C
N,βN

pxq

ZAN,βN pxq
φp x?

N
q

¯

“
logN

N2

ÿ

x,y PZ2

E

«

Z A,C
N,βN

pxq

ZAN,βN pxq
¨
Z A,C
N,βN

pyq

ZAN,βN pyq

ff

φp x?
N
qφp y

?
N
q.

By Cauchy-Schwarz, we can further bound this as follows, for some constant c:

logN

N2
E
”´Z A,C

N,βN
p0q

ZAN,βN p0q

¯2ı ÿ

x,yPZ2

|φp x?
N
q||φp y

?
N
q| ď c logN ¨ |φ|2L1pR2q E

”´Z A,C
N,βN

p0q

ZAN,βN p0q

¯2ı

ď c logN ¨ |φ|2L1pR2q E
”

Z A,C
N,βN

p0q2p
ı1{p

E
” 1

ZAN,βN p0q
2q

ı1{q
, (4.16)

where in the last step we used Hölder inequality with parameters pp, qq with p´1`q´1 “ 1, and
p will be chosen sufficiently close to 1, to be determined below. The term E

“

ZAN,βN p0q
´2q

‰1{q

can be uniformly bounded by the negative moment estimate (3.15).
We can use hypercontractivity, see (3.10), to bound

E
”

Z A,C
N,βN

p0q2p
ı1{p

ď
ÿ

τĂt1,...,NuˆZ2: τXC0
N‰H

pc2p σN q
2|τ | qp0qpτq2 .

The right hand side is the second moment of the partition function, see (3.1), except that σN
is replaced by c2pσN (which corresponds asymptotically to replacing β̂ by β̂1 :“ c2p β̂, see
(2.15) and (1.18)) and the random walk S must satisfy max

 

|Sn| : n ă N1´aN
(

ą N1{2´aN {4.
In particular, recalling (3.7) and (3.6), this can be bounded by

E
”

ep1`op1qq pc2pβN q
2 L

N1´aN pS
p1q, Sp2qq ; max

nďN1´aN

|Spiqn | ą N
1
2´

aN
4 , for i “ 1, 2

ı

, (4.17)

where Sp1q, Sp2q are two independent random walk copies. This is bounded via Hölder by

E
”

ep1`op1qq p pc2pβN q
2 L

N1´aN pS
p1q, Sp2qq

ı1{p
P
´

max
nďN1´aN

|Sn| ą N
1
2´

aN
4

¯2{q
.

We can now choose p ą 1 sufficiently close to 1 so that ?p c2p β̂ ă 1, i.e. still subcritical,
which is possible because limpÑ1 c2p “ 1, see (3.11). Hence the expectation above is uniformly



20 F. CARAVENNA, R. SUN, AND N. ZYGOURAS

bounded in N as shown in Section 3.1. On the other hand, standard moderate deviation
estimates for the simple symmetric random walk show that

P
´

max
nďN1´aN

|Sn| ą N
1
2´

aN
4

¯

ď exp
`

´ cNaN {2
˘

“ exp
`

´ c eplogNqγ{2
˘

,

where we recall that aN “ plogNqγ´1, see (2.2). Inserting these estimates in (4.16), we get

Var
´

?
logN

N

ÿ

xPZ2

Z A,C
N,βN

pxq

ZAN,βN pxq
φp x?

N
q

¯

ď c logN ¨ |φ|2L1pR2q exp
´

´ceplogNqγ{2
¯

ÝÝÝÝÑ
NÑ8

0 .

Step (2). We show that in the chaos expansion (4.12) for ZA,BN,βN
pxq, the contribution from

pr, zq with r ă N1´9aN {40 is negligible for (4.6). The contribution we are after is

ZA,B
ă

N,βN
pxq :“

ÿ

pt,wqPAxN
pr,zqPBN : răN1´9aN {40

ZA0,t,βN px,wq ¨ qr´tpz ´ wq ¨ σN ξr,z ¨ Zr,N,βN pzq , (4.18)

and we want to show that

E

«

ˆ?
logN

N

ÿ

xPZ2

φp x?
N
q
ZA,B

ă

N,βN
pxq

ZAN,βN pxq

˙2
ff

ÝÝÝÝÑ
NÑ8

0 . (4.19)

The left hand side of (4.19) equals

logN

N2

ÿ

x,yPZ2

φp x?
N
qφp y

?
N
qE

«

ZA,B
ă

N,βN
pxq

ZAN,βN pxq
¨
ZA,B

ă

N,βN
pyq

ZAN,βN pyq

ff

. (4.20)

We can restrict the summation over x, y to |x´ y| ą N
1
2´

aN
10 . Indeed, in the complementary

regime, we first bound the expectation in (4.20) by Cauchy-Schwarz and obtain the bound

logN

N2
E

«˜

ZA,B
ă

N,βN
p0q

ZAN,βN p0q

¸2ff
ÿ

|x´y|ďN
1
2´

aN
10

|φp x?
N
q| |φp y

?
N
q|

ď N1´
aN
5

logN

N
E

«˜

ZA,B
ă

N,βN
p0q

ZAN,βN p0q

¸2ff

|φ|8 |φ|L1pR2q

“ plogNq e´
1
5 plogNqγE

«˜

ZA,B
ă

N,βN
p0q

ZAN,βN p0q

¸2ff

|φ|8 |φ|L1pR2q,

which goes to zero as N Ñ8, since expectation can be bounded via Hölder with an exponent
p for ZA,B

ă

N,βN
p0q2 chosen sufficiently close to one, so that the hypecontractivity bound (3.12)

can be applied, while the negative moment E
“

ZAN,βN p0q
´2q

‰

can be bounded by (3.15). The
argument is the same as that for (4.16) and we omit the details.
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To deal with (4.20) when px, yq P Ią :“ tx, y P Z2 : |x´ y| ą N
1
2´

aN
10 u, we use the chaos

expansion for ZA,B
ă

N,βN
, (4.18), and write (4.20) in this case as follows (recall that Erξ2s “ 1):

σ2
N logN

N2

ÿ

x,yPIą

φp x?
N
qφp y

?
N
q

ÿ

pt,wqPAxN
ps,vqPAyN

E

«

ZA0,t,βN px,wq

ZAN,βN pxq

ff

E

«

ZA0,s,βN py, vq

ZAN,βN pyq

ff

ˆ
ÿ

pr,zqPBN : răN1´9aN {40

qr´tpz ´ wqqr´spz ´ vqE
“

Zr,N,βN pzq
2
‰

(4.21)

where the first point pr, zq P BN in the expansion for ZAN,βN pxq and Z
A
N,βN

pyq must match
because an unmatched pr, zq gives Erξr,zs “ 0, and we used the independence between

ZA0,t,βN px,wq

ZAN,βN pxq
,

ZA0,s,βN py, vq

ZAN,βN pyq
, and Zr,N,βN pzq,

because they depend on disorder in the disjoint regions AxN , A
y
N and BN .

We can simplify (4.21) by noticing that E
“

Zr,N,βN pzq
2
‰

is independent of z and that
ř

z qr´tpz ´ wqqr´spz ´ vq “ q2r´t´spw ´ vq. Thus we can write it as

σ2
N logN

N2

ÿ

x,yPIą

φp x?
N
qφp y

?
N
q

ÿ

pt,wqPAxN
ps,vqPAyN

E

«

ZA0,t,βN px,wq

ZAN,βN pxq

ff

E

«

ZA0,s,βN py, vq

ZAN,βN pyq

ff

ˆ
ÿ

N1´aNărăN1´9aN {40

q2r´t´spw ´ vqE
“

Zr,N,βN p0q
2
‰

(4.22)

Note that E
“

Zr,N,βN p0q
2
‰

ď E
“

ZN,βN p0q
2
‰

ď Cβ̂ uniformly in N by (3.2). Moreover,

ˇ

ˇ

ˇ
E

«

ZA0,t,βN px,wq

ZAN,βN pxq

ff

ˇ

ˇ

ˇ
ď E

”

ZA0,t,βN px,wq
2
ı1{2

E

«

1

ZAN,βN pxq
2

ff1{2

ď C2,β̂ E
”

ZA0,t,βN px,wq
2
ı1{2

,

where the constant C2,β̂ comes from the negative moment bound (3.15). The same bound
holds with px, t, wq replaced by py, s, vq. Therefore (4.22) can be bounded by

Cβ̂C2,β̂

σ2
N logN

N2

ÿ

x,yPIą

|φp x?
N
q||φp y

?
N
q|

ÿ

pt,wqPAxN
ps,vqPAyN

E
“

ZA0,t,βN px,wq
2
‰1{2 E

“

ZA0,s,βN py, vq
2
‰1{2

ˆ
ÿ

N1´aNărăN1´9aN {40

q2r´t´spw ´ vq.

By our definitions of σN and βN in (2.15) and (1.18), we have σ2
N logN “ Op1q. Applying

Cauchy-Schwarz for the sum over pt, wq and ps, vq, we obtain the bound

C

N2

ÿ

x,yPIą

|φp x?
N
q||φp y

?
N
q|

´

ÿ

pt,wqPAxN

E
“

ZA0,t,βN px,wq
2
‰

ÿ

ps,vqPAyN

E
“

ZA0,s,βN py, vq
2
‰

¯1{2

ˆ
ÿ

N1´aNărăN1´9aN {40

´

ÿ

pt,wqPAxN , ps,vqPAyN

q2r´t´spw ´ vq
2
¯1{2

.
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We next observe that
ř

pt,wqPAxN
E
“

ZA0,t,βN px,wq
2
‰

“ E
“

ZAN,βN pxq
2
‰

ď Cβ̂ , see (4.13), (2.18)
and (3.3), and similarly for the sum over ps, vq. This leads to the bound

C Cβ̂
N2

ÿ

x,yPIą

|φp x?
N
q||φp y

?
N
q|

ÿ

N1´aNărăN1´9aN {40

´

ÿ

pt,wqPAxN , ps,vqPAyN

q2r´t´spw ´ vq
2
¯1{2

.

(4.23)

Since |x´ y| ą N
1
2´

aN
10 and |x´ w|, |y ´ v| ď N

1
2
´
aN
4 , we have |w ´ v| ą 1

2N
1
2´

aN
10 . Given

r ă N1´9aN {40, we then have

q2r´t´spw´vq
2 ď c exp

´

´
|w ´ v|2

p2r ´ t´ sq

¯

ď c exp
´

´cNaN {40
¯

“ exp
`

´ce plogNqγ{40
˘

.

The sums over pt, wq, ps, vq and r give only a polynomial factor in N , and hence (4.23) can
be bounded by

c

N2

ÿ

x,yPIą

φp x?
N
qφp y

?
N
q ¨ N3 exp

`

´ ce plogNqγ{40
˘

ÝÝÝÝÑ
NÑ8

0 .

This proves (4.19) and completes the step.

Step (3). Let ZA,B
ě

N,βN
pxq be defined as in (4.18) but with the constraint r ě N1´9aN {40

instead of r ă N1´9aN {40, i.e. with the sum over pr, zq P BěN instead of BN (recall (2.10)):

ZA,B
ě

N,βN
pxq :“

ÿ

pt,wqPAxN , pr,zqPB
ě
N

ZA0,t,βN px,wq ¨ qr´tpz ´ wq ¨ σN ξr,z ¨ Zr,N,βN pzq . (4.24)

In view of (4.6), we focus on the averaged quantity
?

logN

N

ÿ

xPZ2

ZA,BěN,βN
pxq

ZAN,βN pxq
φp x?

N
q . (4.25)

We will show that replacing in (4.24) the kernel qr´tpz ´ wq by qrpz ´ xq has a negligible
effect on (4.25), in the sense that the difference tends to zero in L1pPq.

We introduce the notation (recall (2.10))

BěN pxq :“
 

pr, zq P BěN : |z ´ x| ă r
1
2`

aN
80

(

.

Recall that gtp¨q denotes the heat kernel on R2, see (1.12). By a refined local limit theorem
for the simple random walk, see Theorem 2.3.11 in [LL10], we have that for pr, zq P BěN pxq,

qrpz ´ xq “ 2gr{2pz ´ xq exp
´

O
`

1
r `

|z´x|4

r3

˘

¯

“ 2gr{2pz ´ xq exp
´

O
`

r´1`
aN
20

˘

¯

,

and similarly for pt, wq P AxN (see (2.3)),

qr´tpz ´ wq “ 2 gpr´tq{2pz ´ wq exp
´

O
`

1
r´t `

|z´w|4

pr´tq3

˘

¯

“ 2 gpr´tq{2pz ´ wq exp
´

O
`

r´1`
aN
20

˘

¯

,

because |z´w| ď |z´x|` |w´x| ď r
1
2
`
aN
80 `N

1
2
´
aN
4 and hence, for large N , we can bound

|z ´ w| ď 2 r
1
2`

aN
80 and |r ´ t| ě 1

2r , for t ď N1´aN , r ě N1´9aN {40 . (4.26)
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By a straightforward but tedious computation, there exists a positive constant c such that

sup

#

ˇ

ˇ

ˇ

gr{2pz ´ xq

gpr´tq{2pz ´ wq
´ 1

ˇ

ˇ

ˇ
: r ą N1´

9aN
40 , t ă N1´aN , |w ´ x| ă N

1
2´

aN
4 , (4.27)

|z ´ x| ă r
1
2`

aN
80

+

“ O
´

e´cplogNqγ
¯

as N tends to infinity, and by the local limit theorem, this bound can be transferred to the
ratio qrpz ´ xq{qr´tpz ´ wq.

We are ready to estimate the error of replacing qr´tpz ´ wq by qrpz ´ xq in (4.24). We
first restrict the sum on pr, zq P BěN pxq. Then the contribution to (4.25) is
?

logN

N

ÿ

xPZ2

φp x?
N
q

ÿ

pt,wqPAxN
pr,zqPBěN pxq

ZA0,t,βN px,wq

ZAN,βN pxq

´

qr´tpz ´ wq ´ qrpz ´ xq
¯

¨ σN ξr,z ¨ Zr,N,βN pzq ,

(4.28)

whose L1pPq norm is bounded by
?

logN

N

ÿ

xPZ2

|φp x?
N
q|E

«

1

ZAN,βN pxq

ˆ

ˇ

ˇ

ˇ

ÿ

pt,wqPAxN
pr,zqPBěN pxq

ZA0,t,βN px,wq

#

1´
qrpz ´ xq

qr´tpz ´ wq

+

qr´tpz ´ wq ¨ σN ξr,z ¨ Zr,N,βN pzq
ˇ

ˇ

ˇ

ff

ď

?
logN

N

ÿ

xPZ2

|φp x?
N
q|E

” 1

ZAN,βN pxq
2

ı1{2
(4.29)

ˆ E

«˜

ÿ

pt,wqPAxN
pr,zqPBěN pxq

ZA0,t,βN px,wq

#

1´
qrpz ´ xq

qr´tpz ´ wq

+

qr´tpz ´ wq ¨ σN ξr,z ¨ Zr,N,βN pzq

¸2 ff1{2

We recall that E
“

ZAN,βN pxq
´2

‰

is uniformly bounded by the negative moment estimate
(3.15), while by orthogonality of terms in the chaos expansion and applying (4.27), the last
expectation can be bounded as

ÿ

pt,wqPAxN
pr,zqPBěN pxq

E
“

ZA0,t,βN px,wq
2
‰

!

1´
qrpz ´ xq

qr´tpz ´ wq

)2
qr´tpz ´ wq

2 σ2
N E

“

Zr,N,βN pzq
2
‰

“ O
´

e´cplogNqγ
¯

ÿ

pt,wqPAxN
pr,zq PBěN pxq

E
“

ZA0,t,βN px,wq
2
‰

qr´tpz ´ wq
2 σ2

N E
“

Zr,N,βN pzq
2
‰

.

By (4.24), this last sum is bounded by E
“

ZA,B
ě

N,βN
p0q2

‰

ď E
“

ZN,βN p0q
2
‰

ď Cβ̂ uniformly in
N , see (3.2). These estimates show that (4.29) is O

`?
logN exp

`

´ c plogNqγ
˘˘

and hence
converges to zero, thus the L1pPq norm of (4.28) converges to zero too.
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To complete the step, it remains to check that in the chaos expansion (4.24) for ZA,BěN,βN
pxq,

the contribution of the complementary regime pr, zq P BěN zB
ě
N pxq, i.e. |z ´ x| ě r1{2`aN {80,

vanishes in L1pPq as N Ñ8, and the same is true if we replace the kernel qr´tpz ´ wq by
qrpz ´ xq. Note that in this regime, by moderate deviation estimates,

qrpz ´ xq ď exp
!

´ c
|z ´ x|2

r

)

ď exp
!

´ c raN {40
)

ď exp
!

´ c ec plogNqγ
)

, (4.30)

and the same bound holds for qr´tpz ´ wq, because |w ´ x| ď N
1
2
´
aN
4 “ opr1{2q as N Ñ8

(since r ě N1´9aN {40) and hence |w´ x| “ op|z ´ x|q in this regime. These bounds can then
be used to show that
?

logN

N

ÿ

xPZ2

φp x?
N
q

ÿ

pt,wqPAxN , pr,zqPBěN
|z´x|ąr1{2`aN {80

ZA0,t,βN px,wq

ZAN,βN pxq
qr´tpz ´ wq ¨ σN ξr,z ¨ Zr,N,βN pzq

L1pPq
ÝÝÝÝÑ
NÑ8

0 ,

and the same holds when qr´tpz ´ wq is replaced by qrpz ´ xq. Indeed, we can argue as in
(4.29) and then use the fact that the number of terms in the sums over x, pt, wq, pr, zq is
only polynomial in N , while (4.30) decays faster. �

4.4. Proof of Proposition 2.4. Recalling (2.14), we want to prove that
?

logN
?
π β̂

1

N

ÿ

xPZ2

pZB
ě

N,βN
pxq ´ 1qφp x?

N
q

d
ÝÝÝÝÑ
NÑ8

xvp
?

2cβ̂qp1{2, ¨q, φy , (4.31)

where vpcqps, xq is the solution of the two-dimensional additive SHE as in (1.11).
The proof of (4.31) follows the same line as the proof of Theorem 2.13 in [CSZ17b], which

proved the convergence of the fluctuations of the polymer partition function ZN,βN pxq as a
space-time random field to the solution of the additive SHE. To see heuristically why the limit
in (4.31) should be Gaussian, we can write the LHS of (4.31) as a polynomial chaos expansion,
see (4.35), where the dominant contribution (in L2) comes from terms of finite order in the
expansion because β̂ P p0, 1q. Each such term is of the form σkN

śk
i“1 qni´ni´1pxi´xi´1q ξni,xi ,

which due to the random walk transition kernels q¨p¨q, depends only on disorder ξ¨,¨ in a
neighborhood of pn0, x0q :“ p0, xq that is negligible on the diffusive scale. Given such local
dependence on the disorder, it is then not surprising that when averaged over p0, xq on
the diffusive scale with weight φpx{

?
Nq, we should get a Gaussian limit. The proof in

[CSZ17b] also shows that terms of order two and higher in the chaos expansion leads to an
independent white noise in the limit, which leads to a noise coefficient cβ̂ ą 1 in (1.11).

We now recall the key element in the proof of Theorem 2.13 in [CSZ17b] and show
how it can be adapted to our setting. The key technical tool is the following variant of
Proposition 8.1 in [CSZ17b], specialized to the simple random walk on Z2 (where we average
in space, rather than in space-time). It will show that, in the polynomial chaos expansion
of the left hand side of (4.31), there are “building blocks” that converge in distribution to
independent Gaussian random variables.

Proposition 4.1. For integer M and i P t1, ...,Mu, define intervals Ii :“
`

N
i´1
M , N

i
M
‰

. A
k-tuple pi1, ..., ikq P t1, ...,Muk is said to belong to t1, ...,Muk7 if |ij ´ ij1 | ě 2 for all j ‰ j1.

For N P N, let ξ “ pξpNqn,x qpn,xqPNˆZ2 be i.i.d. with zero mean and unit variance.



THE 2D KPZ EQUATION IN THE SUBCRITICAL REGIME 25

Given N,M P N, a k-tuple pi1, ..., ikq P t1, ...,Muk7 and a point x P Z2, we define a random
variable ΘN ;M

i1,...,ik
pxq, a multilinear polynomial of degree k in the variables ξ’s, as follows:

ΘN ;M
i1,...,ik

pxq :“

ˆ

M

RN

˙

k´1
2 ÿ

n1PIi1 , n2´n1PIi2 ,..., nk´nk´1PIik
n0:“0, x0:“x, x1,...,xkPZd

k
ź

j“1

qnj´nj´1pxj ´ xj´1q

k
ź

i“1

ξni,xi ,

where qnpxq is the transition kernel of the simple symmetric random walk on Z2, and RN is
the expected overlap, defined in (1.17). For φ P CcpR2q, we define the space-averaged version

ΘN ;M ;φ
i1,...,ik

:“
1

N

ÿ

xPZ2

ΘN ;M
i1,...,ik

pxqφp x?
N
q

Let DM denote the subset of pi1, . . . , ikq P t1, ...,Muk7 that satisfy i1 ą maxti2, ..., iku,
called dominated sequences. Then, for any fixed M P N and φ P CcpR2q, the family of
random variables pΘN ;M ;φ

pi1,...,ikq
qpi1,...,ikqPDM converges in distribution as N Ñ 8 to a family

pζφ
pi1,...,ikq

qpi1,...,ikqPDM of independent Gaussian random variables with

E
“

ζφ
pi1,...,ikq

‰

“ 0 , Var
“

ζφ
pi1,...,ikq

‰

“ 2σ2
φ 1ti1“Mu , (4.32)

i.e. the variance is non-zero only if i1 “M , and is given by

σ2
φ “

ż

pR2q2
φpxqK 1

2
px, yqφpyqdx dy with K 1

2
px, yq “

ż 1
2

0

1

4πu
e´

|x´y|2

4u du . (4.33)

The proof of Proposition 4.1 in [CSZ17b] is based on a variant of the fourth-moment
theorem for polynomial chaos expansions, as formulated in [CSZ17b, Theorem 4.2], which
was obtained in [NPR10] building on [NP05, dJ87, dJ90]. To check the variance, note that

Var
“

ΘN ;M ;φ
i1,...,ik

‰

“
1

N2

ÿ

x,yPZ2

ÿ

n1PIi1 , x1PZ2

φp x?
N
qφp y

?
N
qqn1px1 ´ xqqn1px1 ´ yq

ˆ

´ M

RN

¯k´1 ÿ

n2´n1PIi2 ,..., nk´nk´1PIik
x2,...,xkPZ2

k
ź

j“2

qnj´nj´1pxj ´ xj´1q
2,

(4.34)

where the second line tends to 1 as N Ñ8 by the definition of RN and Ii. We can write
ÿ

x1PZ2

qn1px1 ´ xqqn1px1 ´ yq “ q2n1px´ yq “
n1Ñ8

`

gn1px´ yq ` o
`

1
n1

˘˘

21tx´yPZ2
evenu

by the local limit theorem, where Z2
even :“ tpa, bq P R2 : a` b is evenu, gtpxq is as in (1.12),

the factor 2 is due to random walk periodicity and we have gn1p¨q instead of g2n1p¨q because
the random walk Sn has covariance matrix n

2 I. Then, by a Riemann sum approximation, as
N Ñ8 the first line in (4.34) is close to the integral

ż

pR2q2
φpx1qφpy1q

´

ż N
i1
M
´1

N
i1´1
M

´1
gupx

1 ´ y1q du
¯

dx1dy1 ÝÝÝÝÑ
NÑ8

#

0 if i1 ăM

2σ2
φ if i1 “M

,

with σ2
φ defined in (4.33). Also note that for i1 “M , the dominant contribution comes from

n1 P rεN,N s for ε small, and hence restricting to n1 P r1, N s, or n1 P IM “ pN1´ 1
M , N s, or

n1 ě N1´9aN {40 makes no difference as N Ñ8 (for any fixed M P N).



26 F. CARAVENNA, R. SUN, AND N. ZYGOURAS

Let us show how Proposition 4.1 can be applied to prove (4.31). Recall from (2.19) that

ZB
ě

N,βN
pxq ´ 1 “

N
ÿ

k“1

σkN
ÿ

N1´9aN {40ăn1ă...ănkďN
n0:“0, x0:“x, x1,...,xkPZ2

k
ź

i“1

qni´ni´1pxi ´ xi´1q ξni,xi . (4.35)

For fixed M P N, grouping each ni ´ ni´1 according to which interval Ij :“
`

N
j´1
M , N

j
M
‰

it
belongs to, and recalling (2.15) and (1.18), we have the following approximation:
?

logN
?
π β̂

1

N

ÿ

xPZ2

pZB
ě

N,βN
pxq ´ 1qφp x?

N
q «

M
ÿ

k“1

β̂k´1

M pk´1q{2

ÿ

pi1,...,ikqPt1,...,Mu
k
7

i1“M

ΘN ;M ;φ
i1,...,ik

, (4.36)

where « means that the difference of the two sides vanishes in L2pPq as N Ñ8 followed by
M Ñ 8. The restriction i1 “M in (4.36) is due to n1 ą N1´9aN {40, which gives rise to a

dominated sequence. The error from relaxing n1 ą N1´9aN {40 to n1 P IM “
`

N
M´1
M , N

‰

is
negligible in L2, as noted above, while the error from restricting to pi1, . . . , ikq P t1, . . . ,Muk7
(rather than the whole t1, . . . ,Muk) is also negligible in L2pPq, when we first send N Ñ8

and then M Ñ8, as shown in [CSZ17b, Lemma 6.2].
We can then apply Proposition 4.1 to conclude that, as we let N Ñ8 for fixed M P N,

the right hand side of (4.36) converges in distribution to the same expression with ΘN ;M ;φ
i1,...,ik

replaced by ζφi1,...,ik , i.e. to a Gaussian random variable with zero mean and with variance

M
ÿ

k“1

pβ̂2qk´1

Mk´1
2σ2

φ ¨
ˇ

ˇ

 

pi1, ..., ikq P t1, ...,Mu
k
7 : i1 “M

(ˇ

ˇ . (4.37)

If we let M Ñ8, since
ˇ

ˇ

 

pi1, ..., ikq P t1, ...,Mu
k
7 : i1 “M

(
ˇ

ˇ “Mk´1p1` op1qq, the sum in
(4.37) converges to the following explicit expression, with cβ̂ as in (1.11):

2σ2
φ

ÿ

kě1

β̂2pk´1q “ 2σ2
φ

1

1´ β̂2
“ p
?

2 cβ̂q
2σ2
φ ,

This agrees with the variance of xvp
?

2cβ̂qp1{2, ¨q, φy, see (1.13), which proves (4.31). �

5. Edwards-Wilkinson Fluctuations for KPZ

In this section we prove Theorem 1.1, which gives Edwards-Wilkinson fluctuations for
the Hopf-Cole solution hεpt, zq “ log uεpt, zq of the mollified KPZ (where uεpt, zq solves the
mollified SHE, see (1.5)).

The proof follows the same lines as in the directed polymer case. This is possible because
uεpt, zq admits a Feynman-Kac representation, which casts it in a form close to the directed
polymer partition function of size N “ ε´2t. Indeed, by [BC95, Section 3] (see also [CSZ17b,
eq. (2.27)]), for fixed pt, zq we have the following equality in law:

uεpt, zq
d
“ Eε´1z

„

exp

"
ĳ

p0,ε´2tqˆR2

´

βε jpBs ´ xqξps, xqdsdx´
1
2β

2
ε jpBs ´ xq

2 ds dx
¯

*

“ Eε´1z

„

exp

"
ż ε´2t

0

ż

R2

βε jpBs ´ xq ξps, xqdsdx´
1
2β

2
ε pε

´2tq }j}2L2pR2q

*

,

(5.1)
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where B “ pBsqsPr0,8q under Px is a standard Brownian motion on R2 started at x.
We first perform a decomposition of uεpt, zq similar to that described described in Section 2,

which reduces Theorem 1.1 to the four Propositions 5.1-5.4 (see §5.1). These are proved later
(see §5.3) in analogy with the corresponding results for directed polymer (see Section 4),
exploiting moment bounds analogous to those in Section 3 (see §5.2).

Henceforth we set t “ 1 and we focus on uεpzq :“ uεp1, zq.

5.1. Decomposition, linearization and Wiener chaos. By (5.1) and (1.21)-
(1.22), uεpzq is comparable to ZN pxq, provided we identify N “ ε´2, x “ ε´1z.

As in (2.2)-(2.3), we define (for a γ˚ small enough, depending only on β̂ as in (2.2))

aε :“
1

plog ε´2q1´γ
for fixed γ P p0, γ˚q , (5.2)

Azε :“
 

ps, xq : 0 ă s ď pε´2q1´aε , |x´ ε´1z| ă pε´2q
1
2
´
aε
4

(

, (5.3)

and we introduce a modified partition function uεApzq, obtained by restricting the double
integral in the first line of (5.1) to the set ps, xq P Azε. This yields the decomposition

uεpzq “ uεApzq ` û
ε
Apzq , (5.4)

where ûεApzq, defined by this relation, is a “remainder” which, for fixed z, can be shown to
be much smaller than uεApzq. More precisely, as in (2.6)-(2.7), we define Oεpzq by

log uεpzq “ log uεApzq `
ûεApzq

uεApzq
`Oεpzq , (5.5)

and we have the following analogues of Propositions 2.1-2.2.

Proposition 5.1. Let Oεp¨q be defined as above, then for any φ P CcpR2q

a

log ε´1

ż

R2

`

Oεpzq ´ ErOεpzqs
˘

φpzqdz
L2pPq
ÝÝÝÑ
εÓ0

0 .

Proposition 5.2. Let uεAp¨q be defined as above, then for any φ P CcpR2q

a

log ε´1

ż

R2

`

log uεApzq ´ Erlog uεApzqs
˘

φpzq dz
L2pPq
ÝÝÝÑ
εÓ0

0 .

Next, in analogy with (2.10)-(2.11), we introduce the subset

Běε :“
`

pε´2q1´9aε{40, ε´2
˘

ˆ R2 , (5.6)

and we introduce uεBěpzq, obtained by restricting the double integral in the first line of (5.1)
to the set ps, xq P Běε . We have the following analogues of Propositions 2.3-2.4.

Proposition 5.3. Let uεAp¨q, û
ε
Ap¨q, u

ε
Běp¨q be defined as above, then for any φ P CcpR2q

a

log ε´1

ż

R2

ˆ

ûεApzq

uεApzq
´
`

uεBěpzq ´ 1
˘

˙

φpzqdz
L1pPq
ÝÝÝÑ
εÓ0

0 . (5.7)

Proposition 5.4. Let uεBěp¨q be defined as above, then for any φ P CcpR2q

a

log ε´1

?
2π β̂

ż

R2

`

uεBěpzq ´ 1
˘

φpzq
d
ÝÝÑ
εÓ0

xvpcβ̂qp1, ¨q, φy . (5.8)
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Theorem 1.1 is a direct consequence of Propositions 5.1-5.4. Regarding the centering, by
(5.5) we have Erlog uεpzqs “ Erlog uεApzqs ` ErOεpzqs, because ûεApzq{uεApzq has zero mean,
as we show in a moment.

By (5.1) and the definition of Wick exponential [J97, §3.2], we have the following Wiener
chaos representation for uεpzq, where we set t0 :“ 0 and y0 :“ ε´1z:

uεpzq
d
“ 1`

ÿ

kě1

βkε

ż

¨ ¨ ¨

ż

0ăt1ă¨¨¨ătkăε
´2

~xPpR2qk

˜

ż

pR2qk

k
ź

i“1

gti´ti´1pyi ´ yi´1q jpyi ´ xiqd~y

¸

k
ź

i“1

ξpti, xiqdtidxi ,

(5.9)
where gtp¨q is the transition kernel of the Brownian motion.

The modified partition function uεApzq admits a similar Wiener chaos expansions, with the
outer integrals restricted to the set tpt1, x1q, . . . , ptk, xkqu Ď Azε. It follows that the Wiener
chaos expansion of ûεApzq :“ uεpzq ´ uεApzq contains at least one factor ξpti, xiq with pti, xiq
outside Aεz, which is not present in uεApzq, hence ErûεApzq{uεApzqs “ 0.

Similarly, the Wiener chaos expansions of uεBěpzq is obtained by restricting the outer
integrals in (5.9) to the set tpt1, x1q, . . . , ptk, xkqu Ď Běε , i.e. imposing t1 ą pε´2q1´9aε{40.

5.2. Moment bounds. We estimate positive and negative moments of uεpzq.

We start with the second moment. We prove below the following bounds for uεpzq, uεApzq
and ûεApzq, which are close analogues of (3.2), (3.3), (3.4):

@β̂ P p0, 1q DCβ̂ ă 8 such that @ε ą 0 :

Eruεpzq2s ď Cβ̂ , EruεApzq2s ď Cβ̂ , ErûεApzq2s ď Cβ̂ aε . (5.10)

We can now easily deduce bounds for higher positive moments. By hypercontractivity
[J97, Theorem 5.1], the Lp norm of a Wiener chaos expansion like (5.9) is bounded by the L2

norm of a modified expansion, with the k-th order term multiplied by pcpqk (i.e., β̂ replaced
by cpβ̂), with cp :“

?
p´ 1. For β̂ P p0, 1q we can choose p ą 2 such that β̂cp ă 1, so as to

apply the bounds in (5.10). This yields an analogue of (3.12):

@β̂ P p0, 1q Dp “ pβ̂ P p2,8q DC
1

β̂
ă 8 such that @ε ą 0 :

Eruεpzqps ď C 1
β̂
, EruεApzqps ď C 1

β̂
, Er|ûεApzq|ps ď C 1

β̂
paεq

p{2 . (5.11)

Proof of (5.10). We compute Eruεpzq2s by using (5.9), applying the identity gtpyqgtpy1q “
4g2tpy´ y

1qg2tpy` y
1q, and switching to new variables zi :“ yi´ y

1
i, wi :“ yi` y

1
i. This leads

to the following expression (see [CSZ18, §8.2] for details):

Eruεpzq2s “ 1`
ÿ

kě1

pβ2
ε q
k

ż

¨ ¨ ¨

ż

0ăt1ă¨¨¨ătkăε
´2

~zPpR2qk, ~wPpR2qk

˜

k
ź

i“1

g2pti´ti´1q
pzi ´ zi´1q Jpziq¨

¨ g2pti´ti´1q
pwi ´ wi´1q

¸

k
ź

i“1

dti dzi dwi ,

(5.12)
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where J :“ j ˚ j and we set z0 :“ 0, w0 :“ 2ε´1z. Integrating out wk, wk´1, . . . , w1, we get

Eruεpzq2s “ 1`
ÿ

kě1

pβ2
ε q
k

ż

¨ ¨ ¨

ż

0ăt1ă¨¨¨ătkăε
´2

~zPpR2qk

˜

k
ź

i“1

g2pti´ti´1q
pzi ´ zi´1q Jpziq

¸

k
ź

i“1

dti dzi .

We recall that j, hence J , has compact support. If we define

r̄ptq :“ sup
z1PsupppJq

ż

R2

g2tpz ´ z
1q Jpzqdz ,

we can bound

Eruεpzq2s ď 1`
ÿ

kě1

pβ2
ε q
k

ż

¨ ¨ ¨

ż

0ăt1ă¨¨¨ătkăε´2

k
ź

i“1

r̄pti ´ ti´1qdti ď 1`
ÿ

kě1

"

β2
ε

ż ε´2

0
r̄ptqdt

*k

.

Note that r̄p¨q is bounded for t ě 0 and it satisfies r̄ptq “ 1
4πt `Op1q as tÑ 8, by (1.12).

Recalling (1.2), we see that the bracket converges to β̂2 as ε Ñ 0, hence the series is
uniformly bounded for β̂ ă 1. This proves the first bound in (5.10).

The second bound in (5.10) follows because EruεApzq2s ď Eruεpzq2s, since the Wiener
chaos expansion for uεApzq is a subset of the expansion for uεpzq.

Finally, the third bound in (5.10) can be proved similarly to (3.4) (see Subsection 3.4),
because ErûεApzq2s can be bounded by an expression analogous to (5.12).† �

We next estimate negative moments, establishing the following analogues of (3.14)-(3.16):

@β̂ P p0, 1q @p P p0,8q DCp,β̂ ă 8 such that @ε ą 0 :

E
“

uεpzq´p
‰

ď Cp,β̂ ă 8 , (5.13)

E
“

uεApzq
´p
‰

ď Cp,β̂ ă 8 , (5.14)

Er| log uεApzq|
ps ď Cp,β̂ ă 8 . (5.15)

Since (5.15) follows easily from (5.14), it suffices to prove (5.13)-(5.14). These are direct
corollaries of the following result, analogous to Proposition 3.1.

Proposition 5.5 (Left tail for KPZ). For Λ Ď p0, ε´2q ˆ R2, denote by uεΛpzq what we
obtain by restricting the double integral in the first line of (5.1) to ps, xq P Λ, i.e.

uεΛpzq :“ Eε´1z

„

exp

"
ĳ

ps,xqPΛ

´

βε jpBs ´ xq ξps, xqdsdx´
1
2β

2
ε jpBs ´ xq

2 ds dx
¯

*

. (5.16)

For any β̂ P p0, 1q there is cβ̂ P p0,8q with the following property: for any ε ą 0 and for any
choice of subset Λ Ď p0, ε´2q ˆ R2, one has

@t ě 0 : Pplog uεΛpzq ď ´tq ď cβ̂ e
´t2{cβ̂ . (5.17)

†Note that ûεApzq contains at least one point pti, xiq outside Azε in the Wiener chaos representation (5.9).
Since jp¨q has compact support, say included in the ball Br :“ tx P R2 : |x| ď ru, the corresponding point
pti, yiq in (5.9) must be close to (i.e. at distance at most r from) the point pti, xiq. Then ErûεApzq2s can be
bounded by an expression analogous to (5.12), with the integrals restricted to the set where at least one
point pti, 1

2
wiq “ pti,

1
2
pyi ` y

1
iqq is close to pAzεqc. This allows to follow the proof in Subsection 3.4.
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It remains to prove Proposition 5.5. We first need to recall concentration inequalities for
white noise (see Appendix C for more details).

The white noise ξ “ pξps, yqqps,yqPr0,8qˆR2 can be viewed as a random element of a separable
Banach space E of distributions on r0,8qˆR2 (e.g. a negative Hölder space, see [CD18]). Its
law µ is the Gaussian measure on E with Cameron-Martin space H “ L2pr0,8qˆR2q, and
the triple pH,E, µq is a so-called abstract Wiener space. In this setting, sharp concentration
inequalities are known to hold for (not necessarily convex) functions f : E Ñ R that are
Lipschitz in the directions of H, see [Led96, eq. (4.7) and (4.8)].

We need to work with convex functions f : E Ñ R Y t´8,`8u that are not globally
Lipschitz. Remarkably, such functions still enjoy concentration inequalities for the left tail
(but not, in general, for the right tail). For x P E with |fpxq| ă 8, denote by |∇fpxq| P r0,8s
the maximal gradient of f in the directions of H, defined by

|∇fpxq| :“ sup
hPH: }h}Hď1

lim
δÓ0

|fpx` δhq ´ fpxq|

δ
, (5.18)

where the limit exists by convexity. Then the following inequality holds (see Theorem C.1):

µpf ď a´ tqµ˚pf ě a, |∇f | ď cq ď e´
1
4
pt{cq2 @a P R , @t, c P p0,8q , (5.19)

where µ˚ is the outer measure (to avoid the issue of measurability of |∇f |).
Note that, if we fix a, c such that µ˚pf ě a, |∇f | ď cq ą 0, relation (5.19) gives a bound

on the left tail µpf ď a´ tq for all t ą 0.

Proof of Proposition 5.5. We can set z “ 0, since the law of uεΛpzq in (5.16) does not
depend on z, and we write uεΛ :“ uεΛp0q. We denote byHξ

εpBq the argument of the exponential
in (5.16), so that uεΛ “ ErexppHξ

εpBqqs. We also introduce the shorthand

xjpBq, ξy :“

ĳ

ps,xqPΛ

jpBs ´ xq ξps, xq dsdx . (5.20)

We start with a second moment computation:

ErpuεΛq2s “ ErEreH
ξ
εpBq`Hξ

εp rBqss “ E
”

eβ
2
ε LΛpB, rBq

ı

, (5.21)

where B, rB are independent Brownian motions, and LΛpB, rBq is their overlap on Λ:

LΛpB, rBq :“

ĳ

ps,xqPΛ

jpBs ´ xq jp rBs ´ xqds dx . (5.22)

Note that uεΛ is a function of the white noise ξ, so we can define

hεpξq :“ log uεΛ . (5.23)

The function hεp¨q is convex by Hölder’s inequality, because ξ ÞÑ xjpBq, ξy is linear (more
precisely, we can ensure that hεp¨q is convex by choosing a suitable version of the stochastic
integral xjpBq, ξy; see Appendix D). Then (5.17) follows by (5.19) if we show that µ˚phε ě
a, |∇hε| ď cq is uniformly bounded from below, for a “ ´ log 2 and for suitable c “ cβ̂ .

We need to evaluate the maximal gradient |∇hεpξq|, see (5.18). We define a Gibbs change
of measure Pξ on the Brownian path B “ pBsqsě0 by

dPξ

dP
pBq :“

eH
ξ
εpBq

uεΛ
.
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Let us fix f P H “ L2pr0,8q ˆ R2q. Recalling (5.20) and (5.23), we have

lim
δÓ0

hεpξ ` δfq ´ hεpξq

δ
“ lim

δÓ0

1

δ
logEξreβεxjpBq,δfys “ βεE

ξrxjpBq, fys

“ βε

ĳ

ps,xqPΛ

EξrjpBs ´ xqs fps, xq ds dx .

Taking f with }f}L2 ď 1 and recalling (5.22), it follows by Cauchy-Schwarz that

|∇hεpξq|2 ď β2
ε

ĳ

ps,xqPΛ

EξrjpBs ´ yqs
2 ds dy “

E
”

β2
ε LΛpB, rBq e

Hξ
εpBq`Hξ

εp rBq
ı

puεΛq
2

.

Then, on the event hεpξq ą a “ ´ log 2, i.e. uεΛ ą
1
2 , recalling (5.21), we can bound

Er|∇hεpξq|2 1thεpξqąaus ď 4EE
”

β2
ε LΛpB, rBq e

HεpBq`Hεp rBq
ı

ď 4 E
”

β2
ε LΛpB, rBq e

β2
ε LΛpB, rBq

ı

ď
4

δ
E
”

ep1`δqβ
2
ε LΛpB, rBq

ı

,
(5.24)

for any δ ą 0 (by x ď 1
δ e
δx). For any subcritical β̂ P p0, 1q, we can fix δ “ δβ̂ ą 0 small, so

that β̂1 :“ β̂
?

1` δ ă 1 is still subcritical. By (5.21), the last expected value in (5.24) is the
second moment of uεΛ with β̂1 instead of β̂, hence it is uniformly bounded by some constant
Cβ̂ ă 8, by (5.10), uniformly over all subsets Λ Ď p0, ε´2q ˆ R2. Summarizing:

sup
εą0

Er|∇hεpξq|2 1thεpξqąaus ď C 1
β̂
ă 8 . (5.25)

We can continue as in the directed polymer case (see Proposition 3.1), noting that

µphε ě a, |∇hε| ď cq “ µphε ě aq ´ µphε ě a, |∇hε| ą cq

ě µphε ě aq ´
1

c2
Er|∇hεpξq|2 1thεpξqąaus .

(5.26)

Since a :“ ´ log 2, we have µphε ě aq “ µpuεΛ ě
1
2q ě p4Cβ̂q

´1 as in (3.21). Plugging this
bound together with (5.25) into (5.26), we are done by choosing c “ cβ̂ large enough. �

5.3. Proof of Propositions 5.1-5.4. Propositions 5.1 and 5.2 are proved repeating
almost verbatim the proofs of Propositions 2.1 and 2.2, which are the corresponding results
for directed polymers. We omit the details and refer to Subsections 4.1 and 4.2.

Proof of Proposition 5.3. We follow closely the proof of Proposition 2.3 in Subsection 4.3.
Recall the decomposition uεpzq “ uεApzq ` û

ε
Apzq, see (5.4). Then we further decompose

ûεApzq “ uεA,Cpzq ` u
ε
A,Bpzq , (5.27)
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where uεA,Cpzq, u
ε
A,Bpzq are defined in analogy with Z A,B

N,βN
pxq, Z A,C

N,βN
pxq from (4.9), (4.10):

uεA,Cpzq :“
ÿ

kě1

βkε

ż

¨ ¨ ¨

ż

0ăt1ă¨¨¨ătkăε
´2, ~xP pR2qk

tpt1,x1q,...,ptk,xkquXC
z
ε‰H

´

ż

pR2qk

k
ź

i“1

gti´ti´1pyi ´ yi´1q jpyi ´ xiq d~y
¯

k
ź

i“1

ξpti, xiqdtidxi ,

uεA,Bpzq :“
ÿ

kě1

βkε

ż

¨ ¨ ¨

ż

0ăt1ă¨¨¨ătkăε
´2, ~xPpR2qk

tpt1,x1q,...,ptk,xkquĂA
z
εYB

z
ε

tpt1,x1q,...,ptk,xkquXB
z
ε‰H

´

ż

pR2qk

k
ź

i“1

gti´ti´1pyi ´ yi´1q jpyi ´ xiq d~y
¯

k
ź

i“1

ξpti, xiqdtidxi ,

where we set t0 :“ 0, y0 :“ ε´1z, we recall that Azε was defined in (5.3), while Bε, Czε are
defined similarly to BN , CxN from (4.7), (4.8) with N “ ε´2 and x “ ε´1z: more precisely,
recalling aε from (5.2), we set

Bε :“
`

pε´2q1´aε , ε´2
‰

, Czε :“
 

pt, xq P R2 : 0 ă t ď pε´2q1´aε , |x´ε´1z| ě pε´2q1´
aε
4

(

.

The proof of Proposition 5.3, similarly to Proposition 2.3, proceeds in three steps.
The first step is to show that uεA,Cpxq in (5.27) gives a negligible contribution, that is

a

log ε´1

ż

R2

uεA,Cpzq

uεApzq
φpzq dz

L2pPq
ÝÝÝÑ
εÑ0

0 . (5.28)

The proof is identical to the case for directed polymer, see (4.15) and the following lines.
The only difference is that (4.17) will be replaced by its continuum analogue, which is

E

«

exp
!

pc2pβεq
2

ż ε´2p1´aεq

0
JpBp1qs ´Bp2qs q ds

)

; sup
sďε´2p1´aεq

|Bpiqpsq| ą ε´
`

1´
aε
2

˘

, for i “ 1, 2

ff

,

where c2p :“
?

2p´ 1 is the hypercontractivity constant for white noise, Bp1q, Bp2q are two
independent Brownian motions and we recall that Jp¨q “ pj ˚ jqp¨q. The rest of the estimates
follow the same lines as in the polymer case.

In view of (5.27) and (5.28), to complete the proof it remains to show that
c

log ε´1

2π

#

ż

R2

uεA,Bpzq

uεApzq
φpzqdz ´

ż

R2

puεBěpzq ´ 1qφpzqdz

+

L1pPq
ÝÝÝÑ
εÑ0

0. (5.29)

For uεA,Bpzq we can give an expression analogous to (4.12), integrating over the last point
pt, wq P Azε and the first point pr, vq P Bε:

uεA,Bpzq “

ż

¨ ¨ ¨

ż

pt,wqPAzε , w
1PR2

pr,vqPBε , v1PR2

uεAp0, z; dt,dw,dw1q ¨ gr´tpv
1 ´ w1q jpv1 ´ vqβε ξpr, vq dr dv dv1

¨ uεpr, v1; ε´2, ¨q ,

(5.30)

where uεAp0, z; dt, dw, dw1q is the “point-to-point” partition function from p0, zq to pt, w,w1q,
similar to (4.13) (the extra space variable w1 is due to the convolution with jp¨q), which is
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defined as follows, where we set t0 :“ 0 and y0 :“ ε´1z:

uεAp0, z; dt,dw,dw1q :“
ÿ

kě1

βkε

#

ż

¨ ¨ ¨

ż

0ăt1ă¨¨¨ătk´1ăε
´2

px1,...,xk´1qPpR2qk´1

tpt1,x1q,...,ptk´1,xk´1quĂA
z
ε

ˆ
ż

pR2qk´1

k´1
ź

i“1

gti´ti´1pyi ´ yi´1q jpyi ´ xiq

¨ gt´tk´1
pw1 ´ yk´1qd~y

˙ k´1
ź

i“1

ξpti, xiq dti dxi

+

¨ jpw1 ´ wq ξpt, wqdtdw dw1 ,

while uεpr, v1; ε´2, ¨q is the “point-to-plane” partition from pr, v1q until time ε´2, defined by
(5.9) where we set t0 :“ r, y0 :“ v1 and we replace 0 ă t1 ă ¨ ¨ ¨ by r ă t1 ă ¨ ¨ ¨ .

In order to prove (5.29), as in the polymer case, we need two more steps: the second
step is to prove that the contribution from r ă pε´2q1´9aε{40 to the decomposition (5.30) is
negligible; the third step is to show that we can replace gr´tpz1 ´ w1q by grpz1 ´ ε´1zq in
(5.30), because their difference is negligible for (5.29). These steps are proved using exactly
the same analysis as in the polymer case, see Subsection 4.3.

Finally, when we restrict the integral in (5.30) to r ě pε´2q1´9aε{40, i.e. to pr, zq P Běε
(recall (5.6)), and we replace gr´tpz1 ´ w1q by grpz1 ´ ε´1zq, the right hand side of (5.30)
becomes exactly uεApzq pu

ε
Běpzq ´ 1q, which proves (5.29). �

Proof of Proposition 5.4. In principle, also this last result could be proved as in the
polymer case, see Subsection 4.4, using a continuum analogue of Proposition 4.1. However,
it is simpler to deduce it from Proposition 2.4, approximating uεBěpzq in L

2pPq by a directed
polymer partition function ZBěN,βN pxq with N “ ε´2, x “ ε´1z built on the same probability
space. The details are described in Section 9 in [CSZ17b] (where the space-time fluctuations
of uεp¨, ¨q are shown to converge to the solution of the additive SHE). �

Appendix A. Scaling relations for KPZ

We prove a scaling relation between the solutions of the mollified KPZ equations with
different parameters. See also [CD18, Section 2]. In particular, we will verify the identity
(1.8) which relates the solution of the mollified KPZ equation with the small parameter βε
either in front of the noise or in front of the non-linearity.

Given ν, λ,D ą 0, let ψε :“ ψε;ν,λ,D denote the solution of the mollified KPZ equation

Btψ
ε “

ν

2
∆ψε `

λ

2
|∇ψε|2 `

?
Dξε, x P R2, t ě 0, and ψεp0, ¨q ” 0, (A.1)

where ξεpt, xq is the mollification of the space-time white noise ξ in space with jεpxq “
ε´2jpx{εq, and j P CcpR2q is a probability density on R2 with jpxq “ jp´xq.

Proposition A.1. Let ψε;ν,λ,D be defined as above. Then for any a ą 0, we have
`

ψε;ν,λ,Dpt, xq
˘

tě0,xPR2

dist
“

´ν

λ
ψaε;1,1,β

2
pa2νt, axq

¯

tě0,xPR2
, (A.2)

where β2 :“ λ2D
ν3 , known as the effective coupling constant, see [CCDW10].
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Remark A.2. In (A.2), setting a “ 1, ν “ 1, λ :“ βε “ β̂
b

2π
log ε´1 and D “ 1 gives (1.8),

since the constant term Cε in (1.3) only shifts the solution deterministically.

We need the following scaling relation for the mollified white noise ξε.

Lemma A.3. Let ξ be the space-time white noise on R ˆ R2 and let ξε :“ ξ ˚ jε, where
jεpxq “ ε´2jpx{εq. Then for any a ą 0 and ν ą 0, we have

ξεpνa2¨, a¨q
dist
“

1

a2
?
ν
ξ
ε
a p¨, ¨q (A.3)

in the sense that for all φ P C8c pRˆ R2q,
ż

φpt, xqξεpνa2t, axqdtdx
dist
“

1

a2
?
ν

ż

φpt, xqξ
ε
a pt, xqdtdx. (A.4)

Proof. Since both sides of (A.4) are centered normal random variables, it suffices to check
that their variances equal. Note that

X :“

ż

RˆR2

φpt, xqξεpa2νt, axqdtdx “

ż

RˆR2ˆR2

φpt, xqε´2j
´ax´ y

ε

¯

ξpa2νt, yqdtdxdy

“
1

a4νε2

ż

RˆR2

´

ż

R2

φ
´

rt

a2ν
,
rx

a

¯

j
´

rx´ ry

ε

¯

drx
¯

ξprt, ryqdrtdry.

Therefore

VarpXq “
1

a8ν2ε4

ż

RˆR2

´

ż

R2

φ
´

rt

a2ν
,
rx

a

¯

j
´

rx´ ry

ε

¯

drx
¯2

drtdry

“
1

νε4

ż

RˆR2

´

ż

R2

φpt, xqj
´apx´ yq

ε

¯

dx
¯2

dtdy.

On the other hand,

Y :“
1

a2
?
ν

ż

RˆR2

φpt, xqξ
ε
a pt, xqdtdx “

1

a2
?
ν

ż

RˆR2ˆR2

φpt, xq
a2

ε2
j
´apx´ yq

ε

¯

ξpt, yqdtdxdy.

Therefore

VarpY q “
1

νε4

ż

RˆR2

´

ż

R2

φpt, xqj
´apx´ yq

ε

¯

dx
¯2

dtdy.

Note that the two variances agree, so we are done. �

Proof of Proposition A.1. For a, b, rε, β ą 0 to be chosen later, define

gpt, xq :“ bψrε;1,1,β2
pa2νt, axq.

By (A.1), we have

Btψ
rε;1,1,β2

“
1

2
∆ψrε;1,1,β2

`
1

2
|∇ψrε;1,1,β2

|2 ` βξrε.
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Therefore

Bg

Bt
pt, xq “ a2νb

Bψrε,1,1,β2

Bt
pa2νt, axq

“
a2νb

2
∆ψrε,1,1,β2

pa2νt, axq `
a2νb

2
|∇ψrε,1,1,β2

pa2νt, axq|2 ` a2νbβξrεpa2νt, axq

dist
“

ν

2
∆gpt, xq `

ν

2b
|∇gpt, xq|2 ` bβ

?
νξ

rε
a pt, xq,

(A.5)
where we used (A.3).

To find a, b, rε and β such that g solves (A.1) with parameters ν, λ,D, they should satisfy

ε “
rε

a
, λ “

ν

b
, D “ b2β2ν. (A.6)

There fore we must have

b “
ν

λ
, rε “ aε, β2 “

Dλ2

ν3
, (A.7)

while we are free to choose a ą 0. This proves (A.2). �

Appendix B. Hypercontractivity of polynomial chaos

We recall and refine the hypercontractivity property of polynomial chaos established in
[MOO10]. Let pξiqiPT be i.i.d. random variables, labeled by a countable set T, with

Erξis “ 0 , Erξ2
i s “ 1 .

For every k P N, let Xk be a multi-linear homogeneous polynomial of degree k in the ξi’s, i.e.

Xk “
ÿ

IĎT: |I|“k

fkpIq
ź

iPI

ξi , (B.1)

where fkpIq are real coefficients. For k “ 0, let X0 “ f0 P R be a constant. Then for k ě 1

ErXks “ 0 , ErX2
k s “

ÿ

IĎT: |I|“k

fkpIq
2 . (B.2)

If we assume that
ÿ

kPN

ÿ

IĎT: |I|“k

fkpIq
2 ă 8 , (B.3)

then the series X :“
ř8
k“0Xk is easily seen to define an L2 random variable. The next key

result allows to control higher moments of X in terms of second moments.
It is useful to allow the law of the ξi “ ξ

pNq
i to depend on a parameter N P N.

Theorem B.1 (Hypercontractivity). For N P N, let pξi “ ξ
pNq
i qiPT be i.i.d. such that

ErξpNqi s “ 0 , ErpξpNqi q2s “ 1 , Dp0 P p2,8q : sup
NPN

Er|ξpNqi |p0s ă 8 . (B.4)

Then, for every p P p2, p0q, there exists a constant cp P p1,8q with the following property:
for any choice of coefficients tfkpIqukPN, IĎT, |I|“k satisfying (B.3), if we define Xk by (B.1),
then the p-th moment of the random variable X “

ř8
k“0Xk can be bounded as

E
„ˇ

ˇ

ˇ

ˇ

8
ÿ

k“0

Xk

ˇ

ˇ

ˇ

ˇ

p

ď

ˆ 8
ÿ

k“0

pckpq
2 ErX2

k s

˙p{2

, (B.5)
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with ErX2
k s given in (B.2). The constant cp only depends on the laws of pξpNqi q and satisfies

lim
pÓ2

cp “ 1 . (B.6)

Except for relation (B.6), which we prove below, this theorem was proved in [MOO10]
as an extension of the corresponding result in the Gaussian framework, see [J97]. In fact,
[MOO10, Proposition 3.16] gave the following explicit bound on cp:

cp ď rcp “ 2
a

p´ 1 sup
NPN

Er|ξpNqi |ps1{p

Er|ξpNqi |2s1{2
“ 2

a

p´ 1 sup
NPN

Er|ξpNqi |ps1{p ,

and note that limpÓ2 rcp “ 2. This extra factor 2 is the byproduct of a non-optimal sym-
metrization argument in the proof in [MOO10]. We now prove (B.6).

Proof of equation (B.6). By [MOO10, Section 3.2], relation (B.5) holds with constant cp
if the law of the random vairable ξ “ ξi in (B.1) is p2, p, 1{cpq-hypercontractive, that is

@a P R : }a` 1
cp
ξ}p ď }a` ξ}2 ,

where } ¨ }p :“ Er| ¨ |ps1{p denotes the Lp norm. Since we allow the law of ξ “ ξpNq to depend
on N P N, it follows that we can characterize cp as follows:

cp “ inf
 

c ą 1 : }a` 1
c ξ
pNq}p ď }a` ξ

pNq}2 @a P R , @N P N
(

. (B.7)

For simplicity, we split the proof in two steps.

Step 1. We first consider the case of a fixed law for the random variable ξ (independent of
N P N) satisfying (B.4). In view of (B.7), we can rephrase our goal limpÓ2 cp “ 1 as follows:

@c ą 1 Dp ą 2 : }a` 1
c ξ}p ď }a` ξ}2 @a P R . (B.8)

We will first show that given c ą 1, we can find p̄ “ p̄c,p0 ą 2 and K “ Kc,p0 ą 0, such that
for all p P p2, p̄s and |a| ą K, the inequality in (B.8) holds. We will then find p P p2, p̄s such
that the inequality in (B.8) also holds for all |a| ď K.

We first need an elementary estimate: for any p0 P p2,8q there exists C “ Cp0 ă 8 such
that, for all p P r2, p0s and x P R,

|1` x|p “ 1` px` ppp´1q
2 x2 `Rpxq , with |Rpxq| ď C

`

|x|3 ^ |x|p0
˘

. (B.9)

This follows by Taylor’s formula for |x| ď 1
2 (say) and by the triangle inequality for |x| ą 1

2 .
We may assume that p0 P p2, 3s in (B.4) (just replace p0 by p0 ^ 3). Then for every δ P R

with |δ| ď 1 we can bound

|Rpδξq| ď C
`

|ξ|3 ^ |ξ|p0
˘

|δ|p0 ď C
`

1` |ξ|p0
˘

|δ|p0 .

Since Erξs “ 0, it follows by (B.4) and (B.9) that for every δ P R with |δ| ď 1

Er|1` δξ|ps “ 1` ppp´1q
2 δ2 Erξ2s ` rpδq with |rpδq| ď C 1δp0 ,

where C 1 “ C 1p0
:“ C

`

1` Er|ξ|p0s
˘

.
(B.10)

Then, as |δ| Ñ 0,

}1` δξ}p “ 1` p´1
2 δ2 Erξ2s `Op|δ|p0q ,



THE 2D KPZ EQUATION IN THE SUBCRITICAL REGIME 37

uniformly for p P r2, p0s. This implies that as |a| Ñ 8

}a` 1
c ξ}p

}a` ξ}2
“
}1` 1

ca ξ}p

}1` 1
aξ}2

“
1` pp´1qErξ2s

2c2|a|2
`Op 1

|a|p0 q

1` Erξ2s

2|a|2
`Op 1

|a|p0 q

“ 1`
 

p´1
c2
´ 1

( Erξ2s

2|a|2
`Op 1

|a|p0 q .

(B.11)

Given c ą 1, we can take p̄ “ p̄c,p0 :“ mint1` c, p0u ą 2 so that uniformly in p P p2, p̄s, the
term in bracket is bounded by c´1 ´ 1 ă 0. Then the RHS of (B.11) is ă 1 for large |a|, say
for |a| ą K, where K “ Kp0,c ă 8 only depends on c and p0. This proves the inequality in
(B.8) for all p P p2, p̄s and |a| ą K.

To complete the proof, we now show that there exists p P p2, p̄s such that the inequality
in (B.8) holds for |a| ď K. If this is false, then for any sequence pn P p2, p0s with pn Ó 2, we
can find an P r´K,Ks such that

}an `
1
c ξ}pn ą }an ` ξ}2 @n P N . (B.12)

Extracting subsequences, we may assume that an Ñ a P r´K,Ks. Since fpp, aq :“ }a` 1
c ξ}p

is a continuous function of pp, aq P r2, p0s ˆ r´K,Ks (by dominated convergence), we may
take the limit of (B.12) as nÑ8 and get

}a` 1
c ξ}2 ě }a` ξ}2 , (B.13)

which is a contradiction, since }a` 1
c ξ}2 “

b

a2 ` 1
c2
Erξ2s ă }a` ξ}2 (recall that c ą 1).

Step 2. Next we allow the law of ξ “ ξpNq to depend on N P N. In view of (B.7), our goal
limpÓ2 cp “ 1 can be rephrased as follows:

@c ą 1 Dp ą 2 : }a` 1
c ξ
pNq}p ď }a` ξ

pNq}2 @a P R , @N P N . (B.14)

We follow the same proof as in Step 1. We just need to check the uniformity in N P N.
Relation (B.10) still holds with ξ replaced by ξpNq, where we stress that C 1 “ C 1p0

ă 8

because we assume that supNPN Er|ξpNq|p0s ă 8, see (B.4). Then (B.11) holds as |a| Ñ 8,
uniformly for p P r2, p0s and also for N P N. This proves that (B.14) holds if we restrict
|a| ď K, for a suitable K “ Kp0,c depending only on c ą 1 and p0.

It remains to fix c ą 1, K ă 8 and prove that (B.14) holds, for some p ą 2 and for every
|a| ď K. Arguing again by contradiction, assume now that there are sequences pn P p2, p0s,
an P r´K,Ks, Nn P N, with pn Ó 2, such that

}an `
1
c ξ
pNnq}pn ą }an ` ξ

pNnq}2 @n P N . (B.15)

Extracting subsequences, we may assume that an Ñ a P r´K,Ks, and also that ξpNnq

converges in law to a random variable ξ (the sequence is tight, by (B.4)). Since |aN` 1
c ξ
pNnq|pn

are uniformly integrable, again by (B.4), we can take the limit of relation (B.15) and we get
precisely (B.13), which we already showed to be a contradiction. �

Appendix C. Gaussian concentration in the continuum

We prove a Gaussian concentration result, based on [Led96, Led01], which can be viewed
as a “one-sided version” of [FO10, Theorem 2] (cf. (C.6) below with eq. (4) in [FO10]).

Given a probability measure µ on a measurable space pE, Eq, we denote by µ˚ and µ˚ the
inner and outer measures: µ˚pAq :“ suptµpA1q : A1 Ď B, A1 P Eu and µ˚pAq “ 1´ µ˚pA

cq.
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Theorem C.1. Let µ be a Gaussian measure on a separable Banach space E, with Cameron-
Martin space H.† Let f : E Ñ RY t´8,`8u be convex. For x P E with |fpxq| ă 8, define
the maximal gradient |∇fpxq| P r0,8s in the directions of H by (5.18). Then

µpf ď a´ tqµ˚pf ě a, |∇f | ď cq ď e´
1
4
pt{cq2 @a P R , @t, c P p0,8q . (C.1)

(The outer measure µ˚ appears in (C.1) to avoid the issue of measurability of |∇f |.)
Let us denote by K :“ th P H : }h}H ď 1u the unit ball in the Cameron-Martin space H.

Given a subset A Ď E, we define its enlargement A` rK :“ tx` rh : x P A, h P Ku. We
recall the classical concentration property established by Borell [Led96, Theorem 4.3]:

@A Ď E with 0 ă µpAq ă 1, setting a :“ Φ´1pµpAqq ,

µ˚pA` rKq ě Φpa` rq @r ě 0 ,
(C.2)

where Φpxq “
şx
´8

1?
2π
e´t

2{2 dt is the standard Gaussian distribution function.

The proof of Theorem C.1 is based on the following Lemma of independent interest, which
follows from (C.2). It is close to [Led01, Corollary 1.4] (see also [CTT17, Appendix B.1]).

Lemma C.2. For any measurable subset A Ď E, the following inequality holds:

µpAq
`

1´ µ˚pA` rKq
˘

ď e´
1
4
r2

@r ě 0 . (C.3)

Proof. We may assume 0 ă µpAq ă 1 (otherwise (C.3) holds trivially) and we apply (C.2):

1´ µ˚pA` rKq ď 1´ Φpr ` aq ď e´
1
2
ppr`aq`q2 @r ě 0 , (C.4)

where x` :“ maxtx, 0u and we used the basic bound 1´ Φpxq ď e´x
2{2 for x ě 0.

Consider first the case µpAq ě 1
2 : then a “ Φ´1pµpAqq ě 0 and pr ` aq` ě r, so (C.3)

follows by (C.4) (just bound µpAq ď 1). Henceforth we take µpAq ă 1
2 , so a ă 0. Note that

µpAq “ Φpaq “ 1´ Φp|a|q ď e´
1
2
|a|2 . (C.5)

Fix r ě 0. If |a| ě r, then (C.3) follows by (C.5) (just bound 1´µ˚pA` rKq ď 1). If |a| ă r,
then pr ` aq` “ pr ´ |a|q` “ r ´ |a| and relations (C.4)-(C.5) yield

µpAq
`

1´ µ˚pA` rKq
˘

ď e´
1
2
t|a|2`pr´|a|q2u ď sup

xPR
e´

1
2
tx2`pr´xq2u “ e´

1
4
r2
. �

Proof of Theorem C.1. Fix x, x1 P E such that h :“ x1´x P H. The function g : r0, 1s Ñ
R defined by gpsq :“ fpp1´ sqx` sx1q “ fpx` shq is convex (since f is convex), hence

fpx1q ´ fpxq “ gp1q ´ gp0q ď g1p1´q :“ lim
εÓ0

gp1q ´ gp1´ εq

ε
“ lim

εÓ0

fpx1q ´ fpx1 ´ εhq

ε
.

Recalling (5.18), we have shown that

fpx1q ´ fpxq ď |∇fpx1q| }x1 ´ x}H . (C.6)

Let us now set

A :“ tf ď a´ tu , B :“ tf ě a, |∇f | ď cu .

†This means that H is a separable Hilbert space, continuously embedded as a dense subset of the
separable Banach space E, and µ is a probability on E that can be described as follows: given any complete
orthonormal set phnqnPN in H and given i.i.d. Np0, 1q random variables pZnqnPN, the sequence of random
elementsXN :“

řN
n“1 Zn hn converges a.s. in the space E, and µ is the law on E of the limitX :“

ř

nPN Zn hn.
The triple pH,E, µq is called an abstract Wiener space. We refer to [Led96] for more details.
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In view of Lemma C.2, to prove (C.1) it suffices to show that for any r ă t
c we have

B Ď pA` rKqc, i.e. A` rK Ď Bc. So we fix x P A, h P H with }h}H ă t
c and we show that

x1 :“ x` h P Bc. Either fpx1q ă a, and then x1 R B, or fpx1q ě a, and then (by x P A)

|∇fpx1q| ě fpx1q ´ fpxq

}x1 ´ x}H
ě
a´ pa´ tq

}h}H
ą

t

t{c
“ c ,

hence again x1 R B. This completes the proof. �

Appendix D. Stochastic integral as a linear function

We formulate a linearity result for the stochastic integral with respect to the white noise
ξ “ pξpzqqzPRd on Rd, which is needed in the proof of Proposition 5.5. Recall that the white
noise can be realized as a random element of a separable Banach space E of distributions on
Rd (e.g. a negative Hölder space), equipped with its Borel σ-algebra. Denoting by µ the law
of the white noise on E, we will use the probability space pE,µq as a canonical construction
of ξ. We also set H “ L2pRdq.

For any h P H, the stochastic integral xh, ξy :“
ş

Rd hpzq ξpzq dz „ Np0, }h}2Hq is a random
variable in L2pE,µq, so it is not canonically defined for any given ξ P E. The following
results guarantees the existence of a convenient version of xh, ξy.

Theorem D.1. It is possible to define xh, ξy as a jointly measurable of ph, ξq P H ˆE, with
the following properties.

‚ xh, ξy is a version of the stochastic integral
ş

Rd hpzq ξpzq dz, for every h P H.

‚ For any probability measure ν on H, there is a measurable vector space Vν Ď E with

µpVνq “ 1 , Vν `H “ Vν ,

such that the following property holds:

@ξ, ξ1 P Vν : xh, αξ`α1ξ1y “ αxh, ξy`α1xh, ξ1y ă 8 for ν-a.e. h P H, @α, α1 P R . (D.1)

Remark D.2. Given any probability ν on H, we can define f : E Ñ RY t`8u by

fpξq :“ log

ż

H
exh,ξy νpdhq . (D.2)

This function is convex when restricted to the vector space Vν of Theorem D.1, by (D.1) and
Hölder’s inequality. If we redefine fpξq :“ `8 for ξ R Vν , we obtain a version of f (recall
that µpVνq “ 1) which is convex on the whole space E.

This applies, in particular, to the function hεpξq :“ log uεΛ in the proof of Proposition 5.5,
see (5.23), with uεΛ “ uεΛ,ξp0q defined in (5.16). In this case Rd “ R1`2 and ν is the law of
the process pβε jpBs ´ xqqps,xqPr0,ε´2sˆR2 P L2pR1`2q.

Proof of Theorem D.1. Fix a probability density % P C8c pRdq and set %εpzq :“ ε´d%pε´1zq.
Also fix a smooth cutoff function χ : Rd Ñ r0, 1s with χpxq ” 1 for |x| ď 1 and χpxq ” 0 for
|x| ě 2, and set χεpzq :“ χpεzq. For any h P H “ L2pRdq, we define hε P C8c pRdq by

hεpzq :“ χεpzq p%ε ˚ hqpzq .

Since limεÓ0 }hε ´ h}H “ 0, we can find pεn “ εhnqnPN such that }hεn ´ h}H ď 2´n. (We can
ensure that εhn is measurable in h, e.g. εhn :“ maxtε P t 1

k : k P Nu : }hε ´ h}H ď 2´nu.)
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For every n P N we have hεn P C8c pRdq, hence the map

ph, ξq ÞÑ xh, ξyn :“ xhεn , ξy (D.3)

is canonically defined for any distribution ξ P E, and is jointly measurable in ph, ξq P H ˆE.
By the Ito isometry of the stochastic integral and Borel-Cantelli, for any fixed h P H we
have limnÑ8xh, ξyn “ xh, ξy for µ-a.e. ξ P E. We can finally define the measurable map

xh, ξy :“

#

limnÑ8xh, ξyn if the limit exists in R
`8 otherwise

.

For every n P N the maps ξ ÞÑ xh, ξyn are linear, hence the limit map ξ ÞÑ xh, ξy is linear
too whenever it is finite. More precisely, for every h P H and ξ, ζ P E:

xh, ξy ă 8 , xh, ζy ă 8 ùñ xh, αξ ` βζy “ αxh, ξy ` βxh, ζy ă 8 @α, β P R . (D.4)

By construction, for every h P H we have xh, ξy P L2pE,µq, so xh, ξy ă 8 for µ-a.e. ξ P E.
If we now fix a probability ν on H, and we define the measurable subset Vν Ď E by

Vν :“ tξ P E : xh, ξy ă 8 for ν-a.e. h P Hu ,

it follows by Fubini’s theorem that µpVνq “ 1. Note that Vν`H “ Vν , because xh, gy ă 8 for
all h, g P H. Finally, relation (D.4) implies (D.1), which shows that Vν is a vector space. �
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