THE TWO-DIMENSIONAL KPZ EQUATION
IN THE ENTIRE SUBCRITICAL REGIME

FRANCESCO CARAVENNA, RONGFENG SUN, AND NIKOS ZYGOURAS

ABSTRACT. We consider the KPZ equation in space dimension 2 driven by space-time
white noise. We showed in previous work that if the noise is mollified in space on scale
and its strength is scaled as 3/4/|loge|, then a transition occurs with explicit critical point

B. = /2. Recently Chatterjee and Dunlap showed that the solution admits subsequential
scaling limits as ¢ | 0, for sufficiently small B. We prove here that the limit exists in
the entire subcritical regime B e (0, ﬁc) and we identify it as the solution of an additive
Stochastic Heat Equation, establishing so-called Edwards-Wilkinson fluctuations. The same
result holds for the directed polymer model in random environment in space dimension 2.

1. INTRODUCTION AND MAIN RESULTS

We present first our results for the two-dimensional KPZ equation, and then similar
results for its discrete analogue, the directed polymer model in random environment in
dimension 2 + 1. We close the introduction with an outline of the rest of the paper.

1.1. KPZ 1IN TwWO DIMENSIONS. The KPZ equation is a stochastic PDE, formally
written as

Oh(t,2) = SAK( @)+ |V )P + BE(L D), 120aeR (L)

where £(t,x) is the space-time white noise, and 8 > 0 governs the strength of the noise.
It was introduced by Kardar, Parisi and Zhang [KPZ86] as a model for random interface
growth, and has since been an extremely active area of research for both physicists and
mathematicians. The equation is ill-posed due to the singular term |Vh|? which is undefined,
because Vh is expected to be a distribution (generalized function).

In spatial dimension d = 1, these difficulties can be bypassed by considering the so-called
Cole-Hopf solution h := logwu, where u is defined as the solution of the multiplicative
Stochastic Heat Equation dyu = %Au + B&u, which is linear and well-posed in dimension
d =1, by classical Ito theory. On large space-time scales, the Cole-Hopf solution exhibits
the same fluctuations as many exactly solvable one-dimensional interface growth models, all
belonging to the so-called KPZ universality class. See the surveys [C12] |[QS15] for reviews
on the extensive literature. Few results are known in higher dimensions (see below).

Along a different line, intense research has been carried out in recent years to make sense
of the solutions of the KPZ equation and other singular stochastic PDEs. A robust theory
was lacking until the seminal work by Hairer [H13| and his subsequent theory of regularity
structures [H14]. Since then, a few alternative approaches have been developed, including
the theory of paracontrolled distributions by Gubinelli, Imkeller, and Perkowski [GIP15], the
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theory of energy solutions by Gongalves and Jara [GJ14], and the renormalization approach
by Kupiainen [K16]. All these approaches are only applicable to KPZ in space dimension
d = 1, where the equation is so-called subcritical, in the sense that the non-linearity vanishes
in the small scale limit with a scaling that preserves the linear and the noise terms in
the equation. In the language of renormalization groups, the KPZ equation in d = 1 is
super-renormalizable (see e.g. [K16]), while regarded as a disordered system, it would be
called disorder relevant (see e.g. [H74], [G10], and |[CSZ17al [(CSZ17h]).

In this paper we focus on d = 2, which for KPZ is the critical dimension (the renormalizable
or disorder marginal case). To define a solution to , we follow the standard approach
and consider a spatially mollified version £° := j. * £ of the noise, where ¢ > 0, j € C,(R?) is
a probability density on R? with j(z) = j(—2), and j.(x) := € 72j(z/¢). The key question
is whether it is possible to replace 5 in by B £€° — C., for suitable constants (., C¢,
such that the corresponding solution h® converges to a non-trivial limit as € | 0.

It turns out that in space dimension d = 2 the right way to tune the noise strength is

2T

B.:=p for some 3 € (0, 0), (1.2)

loge—1’
and to consider the following mollified KPZ equation (with [j|3 := {4, j(z)?dz):
1 1
&MziAM+§WWF+&f—Q, where C.:= 8272 |j|3. (1.3)
For simplicity, we take h%(0,-) = 0 as initial datum. If we define
u(t, ) = e ()| (1.4)

then, by Ito’s formula, u® solves the mollified multiplicative Stochastic Heat Equation (SHE):

oru’ = %Aus + Beut &8, u®(0,-)=1. (1.5)

In [CSZ17b| we investigated the finite-dimensional distributions of the mollified KPZ
solution h® as ¢ | 0. In particular, we discovered in [CSZ17bl Section 2.3] that there is a
transition in the one-point distribution as [ varies, with critical value (. := 1: For any ¢ > 0,

1.2 0
. d 034 — 507 ifg<1 . 9 1
he(t,x) — . th o7 :=1 =, Z~N(0,1). (1.6
(ta) {_ 5oy v oflos ity oD, (19

(Note that the limiting distribution does not depend on ¢ > 0.) This can be viewed as a weak
disorder to stronger disorder transition, where we borrow terminology from the directed
polymer model (see Section [L.2). It was also shown in [CSZI7D| that in the subcritical
regime ,5’ < BC := 1 the k-point distribution of h* asymptotically factorizes: for any finite
set of distinct points (x;)1<i<k, the random variables (h®(t, z;))1<i<k converge as € | 0 to
independent Gaussians.

It is natural to investigate the fluctuations of h¢, regarded as a random field, as € | 0.
This is what Chatterjee and Dunlap recently addressed in [CDI8|. They actually considered
a variant of the mollified KPZ equation , where . is placed in front of the non-linearity
instead of the noise, namely,

~ 1 ~ 1 ~
@mziAm+§&NmP+f. (1.7)
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However, there is a simple relation between h¢ in (I.7) and A° in (T.3) (see Appendix |A):

B (t,x) — B[R ()] = —
Be
therefore working with e or hf is equivalent.
The main result in [CDIS§| is that for any fixed ¢ > 0, when B is sufficiently small,
the centered solution h¢(t,-) — E[hS(t, )], viewed as a random distributions on R2, admits
non-trivial weak subsequential limits as € | 0 (in a negative Holder space). As a matter
of fact, [CDI8| considered the KPZ equation on the two-dimensional torus T2, for
technical reasons, but it is reasonable to believe that their results should also hold on R2.

(k¥ (t,z) — B[h (¢, 2)]) , (1.8)

~

The perturbative approach followed by Chatterjee and Dunlap [CDI8§]| is limited to
sufficiently small, and it does not prove the existence of a unique limiting random field. Our
main result shows that such a limit indeed exists, in the entire subcritical regime /3’ € (0,1),
and identifies it as the solution of an additive SHE with a non-trivial noise strength (that
depends explicitly on B) This is commonly called Edwards-Wilkinson fluctuations [EWS82].

Theorem 1.1 (Edwards-Wilkinson fluctuations for 2-dimensional KPZ). Let h®
be the solution of the mollified KPZ equation (1.3)), with 8. as in (1.2)) and g € (0,1). Denote

be(t,a) o LD ZETG D] Vlose ey mpe ), (19)

55 V2T ,é
where the centering satisfies E[h®(t, z)] = —%O‘% +o(l) ase | 0, see (1.6).
For any t > 0 and ¢ € C.(R?), the following convergence in law holds:

G000 = [ Dt ootade < @D ()00, (1.10)

where v\ (t, ) is the solution of the two-dimensional additive Stochastic Heat Equation

2 (¢, x) = %AU(C)(t, )+ c&(tx)

where ¢ :=cy = L. (1.11)
’ B 1-p2
00, 2) =0 g

Remark 1.2. For the version of KPZ, Chatterjee and Dunlap showed in [CD18| that
any subsequential limit of he — E[h®] as € | 0 does not coincide with the solution of the
additive SHE obtained by simply dropping the non-linearity Be |V7L’3|2 mn . Here we show
that the limit of he — E[%E] actually coincides with the solution of the additive SHE with a
strictly larger noise strength c = 5> 1. In other words, the non-linearity in produces
an independent non-zero noise term in the limit, even though its strength B — 0.

Our proof of Theorem is based on an analogous fluctuation result we proved in [CSZ17D|
for the solution of the SHE . The independent noise can be seen to arise from the second
and higher order chaos expansions of the solution, supported on microscopic scales.

Remark 1.3. We can view h*(t,-) as a random distribution on R?, i.e. a random element
of the space of distributions D', the dual space of D = CX(R?). Our results show that h(t,-)
converges in law to U(CB)(t, -) as random distributions. This is because convergence in law on
D' is equivalent to the pointwise convergence of the characteristic functional [F67, Th. 111.6.5]
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(see also [BDWI17, Cor. 2.4] for an analogue for tempered distributions):

VoeD=CP®RY):  E[¢D o] s B[l P 0:)000]

el0
and this clearly follows by ((1.10)).

Remark 1.4. For simplicity, we only formulated the convergence of be(t,-) to v(cﬁ)(t, ) as
a random distribution in space for each fixed t. However, our proof can be easily adapted to

prove the convergence of be(-,-) to v(cﬁ)(-, -) as a random distribution in space and time.

Remark 1.5. The solution v (t,-) of the additive SHE (T.11)), also known as the Edwards-
Wilkinson equation [EW82|, is the random distribution on R* formally given by

t W2
0 (t,z) = ¢ J J gi—s(x — 2) &(s,z) dsdz, with — gi(x) = 1 e (1.12)
0 Jr? 2t

For any ¢ € C.(R?), we have that (v(9(t,-), ¢) := Sre v (t,z) ¢(x) dz is a Gaussian random
variable with zero mean and variance

Var [t ), )] = P ol 0f:= (0, K1) = f(w¢<x>Kt<x7y>¢<y>dxdy7 (1.13)

where the covariance kernel is given by

_lz—y? 1 (*® e7

t
1

K, = = du = —

@) jo47rue B Y LESTERNS

dz. (1.14)

In [CSZ17b| we also proved Edwards-Wilkinson fluctuations for the solution u® of the
2-dimensional multiplicative SHE (|1.5)). More precisely, if similarly to (1.9) we set

W (t,2) == & («(t,2) — E[u(t, 2)]) = V%EBI (uf(t, ) — 1), (1.15)
then as £ | 0 we have the convergence in law (u®(t, ), ¢(-)) — <U(cﬁ)(t, ), ¢()) as in
in the entire subcritical regime § € (0,1), see [CSZI7h, Theorem 2.17| (which is formulated
for space-time fluctuations, but its proof is easily adapted to space fluctuations).

Since uf(t, ) = exp(h®(t, x)), it is tempting to relate and via Taylor expansion.
This is non obvious, because the one-point distributions of h®(¢,z) do not vanish as € | 0,
see ([L.6]), so we cannot approximate h°(t,z) ~ u(t,z) — 1. We will show in Section [2] that
the approximation of h(t,x) is highly non trivial, and the main contribution actually comes
from specific parts of the expansion of u(t,z) which are negligible relative to u(t,x).

For future work, the goal will be to understand the scaling limit of the KPZ solution
he(t,x) at or above the critical point B. = 1. To our best knowledge, this remains a mystery
also for physicists (even the weak to strong disorder transition discovered in [CSZ17Db]
seems not to have been noted previously in the physics literature). Also the scaling limit
of the SHE solution u®(¢,z) at or above the critical point is not completely known, even
though we recently made some progress at the critical point [CSZ18]|, improving the study
initiated in [BC98] (where the regime (L.2), with B close to 1, was first studied).

We conclude this subsection with an overview of related results. In space dimension d = 1,
the Cole-Hopf solution h(t,z) := logu(t,z) of the KPZ equation is well-defined as
a random function, for any 8 € (0,00), and there is no phase transition in the one-point
distribution as  varies. Edwards-Wilkinson fluctuations for h(t,z) and u(t,z) are easily
established as 8 | 0, combining Wiener chaos and Taylor expansion (because u(t,z) — 1).
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In space dimensions d > 3, the right way to scale the disorder strength is 5. = B 50T
was shown in [MSZ16), [CCM18§| that the mollified SHE solution u® (¢, z) of undergoes a
weak to stronger disorder transition, similar to the directed polymer model [CSY04]: there is a
critical value 3, € (0, 00) such that u® (¢, z) converges in law as € | 0 to a strictly positive limit
when 3 < ., while it converges to zero if § > f3.. The KPZ solution he(t,z) = log u(, x)
is thus quahtatlvely similar to the 2-dimensional case (1.6]): h® (¢, x) converges in law to a
finite limit for B < BC, while it converges to —oo for B > .. The value of ﬁc is unknown.

Edwards-Wilkinson fluctuations for the KPZ solution h°(t,z) in dimension d > 3 have
been established recently by Magnen and Unterberger [MUIS|, assuming that the noise
strength /3 is sufficiently small. The corresponding result for the SHE solution us(t, x) was
proved in [GRZIS8| [CCM18|. The approaches in these papers do not allow to cover the entire
subcritical regime, as we do in dimension 2.

We should also mention that in space dimension d = 2, Edwards-Wilkinson fluctuations
are believed to hold (and verified in some cases, see e.g. [T17]) also for models in the
anisotropic KPZ class, where anysotropy means that the term |Vh|? in the KPZ equation
is replaced by (Vh, AVh) for some matrix A with det(A) < 0.

Shortly after we posted our paper, Dunlap et al. [DGRZ18| gave an alternative proof (to
IMU18|) of Edwards-Wilkinson fluctuations for the KPZ equation in dimension d > 3 when
B is sufficiently small. Using the same techniques (Clark-Ocone formula and second order
Poincaré inequality), Gu [G18| proved the same Edwards-Wilkinson fluctuation as in our
Theorem for the KPZ equation in dimension d = 2, except his result is restricted to B
small instead of covering the entire subcritical regime.

1.2. THE DIRECTED POLYMER MODEL. In this subsection, we state our result for the
partition function of the directed polymer model in dimension 2+ 1. See [C17] for an overview
of the directed polymer model. In the language of disordered systems, space dimension 2 is
critical for this model, where disorder is marginally relevant. For further background on the
notion of disorder relevance/irrelevance (which corresponds to subcriticality /supercriticality
in the context of singular SPDEs), see e.g. [H74, [(G10, [CSZ17a].

The directed polymer model is defined as a change of measure for a random walk,
depending on a random environment (disorder). Let S be the simple symmetric random
walk on Z2. If S starts at = € Z2, then we denote its law by P, with expectation E,, and we
omit z when = = 0. We set

qn(z) = P(S, =x). (1.16)
Denoting by S an independent copy of S, we define the expected overlap by
N ~ log N
Ry = Y P(S, = Sp) Z e Z gon(0) = +0(1). (1.17)
n=1 n=1zez?

We fix 3 € (0,00) and define (8x)nen by

b__ B o)
= = 1 . 1.18
O = e = Do\ T o (1.18)
Disorder is given by i.i.d. random variables (w(n,)),en zez2 With law PP, such that
Elw] =0, Elw?] =1, A(B) :=logE[e®”] < o0 VB > 0 small enough.  (1.19)

For technical reasons, we require that the law of w satisfies a concentration inequality. Recall
that a function f : R™ — R is called 1-Lipschitz if |f(z) — f(y)| < |x — y| for all z,y € R™,
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with | - | the Euclidean norm. We assume the following:

3y >1,C1,05€ (0,00) : for all n € N and f: R" — R convex and 1-Lipschitz

£ (1.20)

P(‘f(wl,...,wN)—Mf‘>t)<C1exp —6 R
2
where M denotes a median of f(wi,...,wn). (By changing C1,C5, one can equivalently
replace My by E[f(w1,...,wn)], see [Led01l Proposition 1.8].) Condition ((1.20)) is satisfied
if w is bounded, or if it is Gaussian, or more generally if it has a density exp(=V () + U(+)),

with V' uniformly strictly convex and U bounded. See [Led01] for more details.
Given w, N € N, and Sy as defined in (1.18)), we define the Hamiltonian by

N N
Z Byw(n,Sn) —ABN)) = D) > (Byw(n,y) = MBw)) Lys,—yy - (1.21)

n=1yeZ?2
We will be interested in the family of partition functions

Zn(z) = Zn gy (2) = Eg[e"N], NeN, zeZ?,

) (1.22)

Zn(x) == Zn)(|z]), N € [0,0), =€ R”.
We will write Zy := Zn(0) for simplicity. Note that the law of Zy(x) does not depend on
z € Z?, and we have E[Zy(z)] = E[Zn] = 1.

The partition function Zy(z) is a discrete analogue (modulo a time reversal) of the SHE
solution u®(t,x) in , as can be seen from its Feynman-Kac formula below (see
also [AKQ14]). Then log Zy(z) is a discrete analogue of the KPZ solution h°(¢,z) in (1.3).
In fact, we proved in [CSZ17bl Theorem 2.8 that for Sy as in , the random variable
log Zn(x) converges in distribution to the same limit as in , with critical value BC =1.
It is not surprising that here we can also prove the following analogue of Theorem

Theorem 1.6 (Edwards-Wilkinson fluctuations for directed polymer). Let Zy g, (x)

be the family of partition functions defined as in (1.22), with Bn as in (1.18)) with Be (0,1),
and the disorder w satisfying assumptions (1.19) and (1.20)). Denote

_log Zin(avV/N) —E[log Zin] ~ +/log N
b (t,z) == - Ve

BN NS

log ZtN(fU\/N) — E[log ZtN]) - (1.23)

For any t > 0 and ¢ € CX(R?), the following convergence in law holds, with ¢y as in (1.11)):

N—o0

On(t).00) = | n(tswyar o P00, (129

where v\ (s, ) is the solution of the two-dimensional additive SHE as in (T.11)).

Remark 1.7. Here the limit v(ﬁcﬁ)(t/Q, -) differs from U(CB)(t, -) in Theorem because
the increment of the simple symmetric random walk on 72 has covariance matric 51

We will in fact prove Theorem first, since the structure is more transparent in the
discrete setting, and then outline the changes needed to prove Theorem for KPZ.



THE 2D KPZ EQUATION IN THE SUBCRITICAL REGIME 7

1.3. OUTLINE. The rest of the paper is organized as follows.
e In Section [2] we present the proof steps and describe the main ideas.

e In Section|3] we give bounds on positive and negative moments for the directed polymer
partition function, based on concentration inequalities and hypercontractivity.

e In Section [4] we prove our main result Theorem for directed polymer.

e In Section b, we explain how the proof for directed polymer can be adapted to prove
our main result Theorem [L.1] for KPZ.

We will conclude with a few appendices which might be of independent interest, where we
prove some results needed in the proofs.

e Appendix [A] establishes scaling relations for KPZ with different parameters.

e Appendix [B] recalls and refines known hypercontractivity results for suitable functions
(polynomial chaos) of i.i.d. random variables.

e Appendix [C] formulates a concentration of measure result for the left tail of convex
functions that are not globally Lipschitz, defined on general Gaussian spaces.

e Lastly in Appendix [D] we discuss linearity and measurability properties of stochastic
integrals, which are needed in the proof in Section

2. OUTLINE OF PROOF STEPS AND MAIN IDEAS

In this section, we outline the proof steps for Theorems and and describe the basic
setup. We focus on the directed polymer partition function (the case of KPZ follows the same
steps). The two main ideas are a decomposition of the partition function Zy which allows to
“linearize” log Zn (see , and a representation of Zy as a polynomial chaos expansion in
the disorder (see . The “linearization” of log Z essentially reduces Theorem to an
analogous result for Zy which we proved in [CSZ17bl Theorem 2.13|.

2.1. DECOMPOSITION AND LINEARIZATION. Given a subset A € N x Z?2, we denote
by Zj g(x) the partition function where disorder is only sampled from within A, i.e.

Zpp(x) = Eu[e8],  where  Hyg:i= > (Bwna—A(B)lis,—a} - (2.1)
(n,x)eA

The original partition function Zy g(z) in (1.21)-(1.22) corresponds to A = {1,..., N} x Z2.

In our previous study in [CSZI7h], a key observation was that for 3 € (0,1) the partition
function Zy g, (x) essentially depends only on disorder in a space-time window around the
starting point (0, ) that is negligible on the diffusive scale (N, +/N). This motivates us to
approximate Zy g, () by a partition function Z ]‘3,7 N () with disorder present only in such
a space-time window A%;. More precisely, we define a scale parameter ay tending to zero as

1

o : *
an = (log N)T— with v e (0,7%), (2.2)

where v* > 0 depends only on B in Theorem and its choice will be clear from the
estimate in (4.4]) later on. We now introduce the space-time window

1 _an
?V::{(n,z)eNxZ2: ngNl—aN,yz—xRNzw}, (2.3)
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and define Zj(lf B(x) as the partition function which only samples disorder in A%, i.e.

Zy 5(x) := Zp g(x) with A = Af . (2.4)
We then decompose the original partition function Zy g(z) as follows:
Znp(x) = Zi p(z) + Zﬁ,ﬁ(ﬁ)a (2.5)

where Z jé, B(a:), defined by the previous relation, is a “remainder”. In a sense that we will
make precise later (see (3.4)) it holds that for any fized z, ZK‘, gy (T) € Z 1‘(‘,’ 5y (%) and thus

23ty (%) 24 (@)
BN A N.Bn
log Zn gy () = log Za 5. (x) + log (1 + 7) ~ log Z () + =—"—. (2.6)
ﬁN N,ﬁN ZﬁﬁN (l‘) N,ﬁN Z]/\},’ﬂN (1:)
More precisely, if we define the error Oy (z) via
Z3% 5 (%)
l0g Zn gy () = log Zit 5. () + PN 4 Op(x), (2.7)
ZN 8n (x)
then we will show the following:
Proposition 2.1. Let On(-) be defined as in [2.7)), then for any ¢ € C.(R?)
1 - L%(P)
Viog N - > (On(2) - E[On(2)]) 7w v O (2.8)

IEZQ

Remarkably, even though log Zf\‘, B (x) gives the dominant contribution to log Zy s, ()
for any fized x, it does not contribute to the fluctuations of log Zy s, () when averaged over
x, that is:

Proposition 2.2. Let Z;(‘,/B (-) be defined as in (2.4), then for any ¢ € C.(R?)

L*(P)

\/1ogN >, (log Z3 5, (2) — Ellog Zy s, ()]) $( ) —— 0. (2.9)

N N=e
As a consequence, the fluctuations of log Zy g, () are determined by the “normalized
remainder” ZAf\‘, sy () Z j{‘,’ gy (1). To determine the fluctuations of this term, we define the set
B% = (N9 N1 AN) x 72, (2.10)
and we let Zﬁ;N (z) be the partition function where disorder is sampled only from By, i.e.
z8 ﬂN( z) 1= Zp gy (x) with A = B%. (2.11)

Note that E[Z]%ZN (x)] =1, so (Zﬁ/ﬁN (x) —1) is a centered random variable. The key point,
and the more involved step, will be to show that

Zjeﬁz\/ (z) ~ Zfé/,ﬁN( ) (ZN,BN( )—1), (2.12)
in the following sense.

Proposition 2.3. Let Zj{‘,ﬁN(-), ZAJ‘(‘,’BN(-), Zﬁiﬁv(') be defined as in (2.4), (2.5), (2.11)).
Then for any ¢ € C.(R?)

Vieg N — ! > ( N (@) (ZﬁfBN(a:)—Q) $( ) LBy, (2.13)

:EEZZ N BN (x) N=o
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It remains to identify the fluctuations of Z 11\37251\]() This falls within the scope of The-
orem 2.13 in [CSZI17b|, which we will recall in Section and which will show that the
fluctuations of Z57, N.gy () converges to the solution v(\fc (1/2,-) of the two-dimensional

additive SHE, as in Theorem [I.6] The proof is based on polynomial chaos expansions of the
partition function, which we will recall in the next subsection.

Proposition 2.4. Let ZE;N(-) be defined as in (2.11)). Then

\/W 1 = x \fc
N X A D) e oY, e

where v\ (s, ) is the solution of the two-dimensional additive SHE as in (T.11).

Theorem is a direct corollary of the decomposition (2.7) and Propositions
Regarding the centering, it suffices to note that E[log Zn g, ()] = E[log Zj(‘,’ﬁN ()] +

E[On(z)], because the random variable Z4 sy (@) Z i sy (%) has zero mean, which follows
from the polynomial chaos expansions of partition functions that we now present.

2.2. POLYNOMIAL CHAOS EXPANSIONS. Our analysis of the partition functions Z ](‘,’ sy ()5
Z]‘é, BN( ), Z ﬁy BN(-) is based on multi-linear expansions, known as polynomial chaos expan-
sions, which have also been used extensively in [CSZ17al (CSZ17h].

Recall the definition of By and our assumptions on the disorder, and note

that by (1.19) and Taylor expansion, A(28) — 2A(8) ~ B as B — 0. We introduce the
sequence

o == VeAB-DGY) — 1 ~ By, (2.15)
N—©0
where we agree that ay ~ by means limy_,o, an/by = 1, and we define the random variables

e = (5Nw(nw) A(BN) _1). (2.16)

We will suppress the dependence of 572{\9 on IV, for notational simplicity. Note that (§,,2)nen zez2
are i.i.d. with E[¢, ] = 0 and E[¢} | = 1.

Recall the definition — of the partition function Zy g, («) of the polymer that
starts at time zero from location x. This can be written as

ZN,BN( x) = Ea:[ H (1 +on&ny ]l{Sny})]

1<n<N, yeZ?

(2.17)

N
=1+ Z oN Z anl—nl 1 — Tj— l)gnz,mza

k=1 O=ng<ni<..<np<N i=1
o=z, x1,...,zkEZZ

where gy, (z) := P(S,, = z). Note that the terms in the sum are orthogonal to each other
in L?, and when 3 € (0,1) the dominant contribution to Zy g, () comes from disorder &..
in a space-time window that is negligible on the diffusive scale. More precisely, a second
moment calculation (see (3.4) below) shows that Zy g, () is close in L? to the partition
function Z ]‘37 sy (2) which only samples disorder from within A% (recall (2.3)).

It will be convenient to introduce a concise representation for the expansion (2.17) as
follows: given a point (ng, zo) and a finite subset 7 := {(n1,21), ..., (N}, x;))} of Ng x Z?
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|

Nl-an <Y—> :

|

T |

|

w ©.=) 1 :
0,2) ¢ . ‘
A% l

A3, !

|

|

|

|

!
!
|
|
:
(A) Partition fuction Z;‘,’ﬁN (x). (B) Partition function ZﬁfBN ().

FIGURE 1. The above figures depict the chaos expansions of Zj:‘, By (z) and
ZJ]\B,;N (). The d>isorder sampled by ZZI?/,BN (x) is restricted to the set A%,
while that of Z87, (x) is restricted to B3

N.Bn N

with ng <np <--- < 7|, We introduce the notation

|| ||

no,ro HQm —n;_ 1 — Li— 1) and E(T) = anz,xz
=1

For 7 = & we define q("0®) (1) = &(7) := 1. In this way we can write concisely the chaos
expansion of Zy g, () as

Zngy@) = D o@D (r)E(r). (2.18)

rc{l,...,N}xZ2

Similarly, for the partition functions Z4 5(2), Z ﬁz(w) in (2.4), (2.11)) we can write

Zae@) = D onlqd®D ey, ZBL @) = D) onld®D (e, (2.19)

TC A% -ch/

A graphical illustration of Zjé,ﬂ(x) and Zﬁ;(x) appears in Figure .

These polynomial chaos expansions are discrete analogues of Wiener-Itd chaos expansions.
They are especially suited for variance calculations and provide important insight. For
instance, the partition function Z]’?,ﬂ( ) == Zng(z) — Zjé,ﬁ( ), see ([2.5)), is obtained by
restricting the sum in - to 7 which include space-time points outside the set A%;, and
hence Z gy (T) /74 gy (%) has zero mean due to the independence between the dlsorder

inside and outside A%;. Similarly, the centered partition function (Zﬁ;(az) — 1), which
appears in (2.13)-(2.14]), is the contribution to (2.19)) given by configurations 7 that contain

only points (and at least one point) in Bx,.

3. MOMENT BOUNDS

In this section we collect some moment bounds that will be used in the proof.
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3.1. SECOND MOMENT. We bound the second moment of Zy g, (), ZJI%,BN (x), ZX‘LBN (x).
We start from Zy g, (). It follows by (2.17)) and (1.17)) that

EZvoy@)l= >, (o0)4q"7(7)
T {l,...,N}xZ2

k
(0']2V)k Z HQni—nFl(l‘i - xi—1)2

k=1 0=mp<ni<..<np<N i=1
xo=:x, T1,...,LEL?

N
=1+ ) (o) > @2(ni=n;-1)(0) -

k=1 0=ng<ni<..<np<N

I

—

+
M=

(3.1)

If we let each increment n; — n;_1 vary freely in {1,2,..., N}, by (1.17) we get the bound
E[Zn gy (2)?] < Yisolok RN)F = (1 — 0% Ry) ™' Recalling (I.18) and (2.15), we obtain

¥3e(0,1)3C; < such that YNeN:  E[Zyg,(2)*] < C;

" (3.2)

where CB will denote a generic constant depending on B .

Next we look at Za sy (%) The polynomial chaos expansion for Z i sy () is a subset of
the one for Zy g, (x), hence the same bound (3.2)) applies:

¥3e(0,1)3C;_, suchthat YNeN:  E[Zy,, (2)*] <C;

5. (3.3)

We turn to ZK‘, B (). The bound (3.2)) can again be applied, but it is quite poor. In fact,
the following much better bound holds (recall that ay is defined in (2.2))):

¥3€(0,1)3C; <o suchthat YNeN:  E[Z{z, (2)*] < Czan. (3.4)

The proof, given below, is elementary but slightly technical (see Subsection .

We conclude with an alternative viewpoint on the bound (3.2)). If we denote by S and S
two independent copies of the random walk, by (1.21])-(1.22)) we can compute

E[Z3 5, ] = EE[eMvon (9)+1nax ()] Z B[eM@n)-2A0w) £x (58] (3.5)

where Ly (S, §) is the overlap of the two copies S, S up to time N, defined by
~ N ~
Ln(S,8) =Y T gy =150 S ({1l,.... N} x Z%)]. (3.6)
n=1
Since A(3) ~ %62 as 8]0, see (1.19), we get
E[Z%5,] = B[R EE9] - where  Jim ey = 0. (3.7)

Note that ﬁﬁN(S, §) converges in law to a mean 1 exponential random variable, see

e.g. [ET60]. This matches with limy_,q, E[ZJZV,BN] = (1= 32)"1 for By as in (L.13).
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3.2. POSITIVE MOMENTS VIA HYPERCONTRACTIVITY. We will bound higher positive
moments of our partition functions using the hypercontractivity of polynomial chaos [MOO10],
which we recall (with some strengthening) in Appendix

By (2.17)), each partition function Zy g, (z), Zi ax (), ZAf\‘,”BN () can be expressed as a
series

[ee}
S x (3.8)
k=0

(actually a finite sum) where X ,iN) is a multi-linear polynomial of degree k in the i.i.d.

random variables (55{\;))(”@)6Nxz2, which have zero mean and unit variance, see ([2.16]). These
random variables have uniformly bounded higher moments:

Vpe (2,0): %%Eﬂéwwl<w7 (3.9)
€

as one can check directly from (2.16) and (1.19)) (see [CSZ1T7a, eq. (6.7)]).
Under these conditions, hypercontractivity ensures that, for every p € (2,00), the p-th
moment of the series (3.8) can be bounded in terms of second moments:

E{ i X,QN)‘p] < (icg)m[(xg))?])p/Q, (3.10)

k=0 k=0
where ¢, € (1,0) is a constant, uniform in /N, which only depends on the laws of the 57(57\;).
This is proved in [MOOI0, § 3.2| (extending [J97]), where a non-optimal value of ¢, is given.
We will recall these results in Appendix |E|, where we will prove that the optimal ¢, satisfies

lime, =1. 3.11
im e, (3.11)
This result, which is of independent interest, is crucial in order to apply (3.10) to our
partition functions Zy g, (), Zjé,ﬁN (x), ZJI?/,BN (x), because for any subcritical f < 1 we can

fix p > 2 such that cpfi < 1 is still subcritical. More precisely, note that multiplying X IS;N)
by c’; amounts to replacing on by ¢, on, see (2.17)), and this corresponds asymptotically to

replacing 3 by cpﬁ, see (2.15)) and (1.18). Then, by (3.2))-(3.4]), we obtain:
VB e (0,1) Ip = ps € (2,00) EIC% < oo such that VN € N
E[Zngy(2)’] <Cy,  E[Z{p, (@] <CG E[|Z 5, (@] < O (an)??. (3.12)

3.3. NEGATIVE MOMENTS VIA CONCENTRATION. We give bounds on the negative
moments of partition functions Zy g, (z) and Z]éf,ﬁN (z) (see (L.22), and (2.3),([2.19)).
We work with the general partition function Zj g(x) defined in , which coincides with
ZN gy (), Tesp. Zj{‘,ﬁN(x), for A ={1,...,N} x Z?, resp. A = A%,.

For fixed (say bounded) A € NxZ2 it is not difficult to show that the log partition function
log Z s is a convex and Lipschitz function of the random variables (w(n,y) : (n,y) € A).
However, if 5 = Sy and the subset A grows with N, its Lipschitz constant can diverge as
N — o0, hence we cannot directly apply the concentration inequality . However, it
turns out that, for any A = Ay < {1,..., N} x Z2, the Lipschitz constant is tight as N — 0.
This yields the following estimate for the left tail of log Z g, , proved below.
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Proposition 3.1 (Left tail). For any (3 € (0,1), there exists ¢z € (0,00) with the following
property: for every N € N and for every choice of A € {1,...,N} x Z2, one has

Vt=0: P(log Za gy < —t) <cze "/ (3.13)

B
where v > 1 is the same exponent appearing in assumption (1.20]).

As a corollary, for every p € (0,00) we can estimate, uniformly in A < {1,..., N} x Z2,
0
B[(Za) 7] = Bl ] = [ B ey 0]
—Q0
o
<1 —i—pL e Cj €xp ( —t”/cé) dt =: Cp,ﬁ < 0.

Choosing A = {1,..., N} x Z% or A = A%, we finally obtain the bounds

V3 e (0,1) ¥pe (0,0) 3C, 5 <0 i}é%E[ZN’ﬁN(x)_p] <C,5<o, (3.14)
sup E[ZR 5. (z) ] <C 5 <. 3.15
sp B[ Z{ 5, (0)7] < C, 5 (315)
For later use, let us also state the following consequence:
V3 e (0,1) Vpe (0,00) 3C, 5 < sup E[| log Zy 5, (2)"] < C, 5 < 0.  (3.16)

NeN

The proof of this fact is simple: we can bound |logy| < C), (yl/p + y_l/p) for all y > 0 and
for suitable C), < oo (just distinguish y > 1 and y < 1). This leads to E[|log Z4 sy (@)IP] <

CP(E[ZX{/,BN (x)] + IE[Z;(‘,?BN(:L‘)_l]) =Cp(1+ E[Z]‘(‘,’BN (x)71]), so follows by (3.15)).

It remains to prove Proposition To this goal, we follow the strategy developed in
[CTT17] for the pinning model, which generalizes [Mor14]. We need the following result,
which is [CTT17, Proposition 3.4, inspired by |[Led01), Proposition 1.6|.

Proposition 3.2. Assume that disorder w has the concentration property (1.20)). There
exist constants c1,cg € (0,00) such that, for every n € N and for every differentiable convex
function f: R™ — R, the following bound holds for all a € R and t,c € (0,0),

P(fw)<a—t) P(f(w) = a,|Vf(w)] <c) <crexp ( - (t/cz)V ), (3.17)
where w = (w1, ...,wy) and |V f(w)| := /21 (0if(w))? is the norm of the gradient.

We can deduce the bound (3.13)) from (3.17)) applied to the function f = fy given by
fN(w) = log ZA,BN . (318)

We only need to bound from below the second probability in the left hand side of (3.17)).
This is provided by the next lemma, which completes the proof of Proposition [3.1]

Lemma 3.3. For any (€ (0,1), there exist cz € (0,00) and J5 € (0,1) such that

Inf Ag“}%“W P(fn(w) = —log2,|Vfy(w)| <cg) =05 >0. (3.19)

Proof. We set a = —log2. For any ¢ > 0, we have
P(fn(w) = a,|[Vinw)| <c) =P(fn(w) =a) —P(fn(w) =a,|Vivw)|>c) (3.20)
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The first probability can be estimated using the Paley-Zygmund inequality:
E[Zx]?
P(fn(w) =a) =P(Zagy = 3) =P(Zagy = 2E[Zapy]) = —r
( ) ( BN 2) ( BN Z 32 BN ) 4E[(ZA,BN)2]
Note that E[Z) g, ] = 1. For A < {1,..., N} x Z* we have E[(Z) 3, )?] < E[(Zngy)?] < Cs,
see (3.2), hence

(3.21)

P(fy(w) =a) = @ =:29;. (3.22)

We now proceed to estimate the second term in (3.20)). First, we compute for n € N, 2 € Z?

6fN(w) _ 1
&un,x ZAﬁN

E[ﬁNﬂ(n,x)eSmA eHasy (5)] and

0 2 1 - N
Vin@P = )] %{N ) = WE[ﬁ?\f SN S A eHA‘BN(SHHA’BN(S)] :
(n,x)eNxZ2 T wN

where S and S are two independent copies of the random walk, and with some abuse of
notation, we also denote by S the random subset {(n,Sy)}neny € N x Z2.

For A € {1,...,N} x Z* we have |S n S A Al < Ly(S, §), see (3.6), where Ln(S, §)
denotes the overlap up to time NN of the two trajectories S and S. On the event that
In(w) = a = —log2, that is Zp g, > 1/2, we can thus bound

V()2 < 4E| 8 Ly (8, 8) efinon S+ o $)]
and note that, arguing as in (3.5)-(3.7)), for every § > 0 we have, for all N large enough,

IEE[/BJQV Ln(S,S) eHA,BN(S)+HA,BN(§)] < E[B]z\/ Ln(S,S) 105y EN(Sﬁ)]
1 2 3
<= E[e(H%) 8% EN(S,S)]
5 )

where we used the bound x < %e‘gx . Thus, for all N large enough we have

1 41 5
P(fx(@) = 0, [VIn (@) > ©) < 5 E| VIV @) Liggza | < 5 5 E[el 2R ENES) |

Let us now define 3 := 1%'@, so that B < ' < 1, and define By = 3 /\/Ry, see (T.15).
Then we can fix 6 = 5 > 0 small enough so that (1 + 20)3% < A(2B) — 2X\(BY) (note that
A(28) — 2A(8) ~ B2 as B — 0), hence by (53) and (B2)

P(fn(w) = a,|Vin(w)| > c) < ;iz Cy .

1
%
Choosing ¢ = s large enough, we can make the right hand side smaller than 19[%, see (13.22)).

Looking back at (3.20)), we see that (3.19) is proved. O

3.4. PROOF OF EQUATION ([3.4). The quantity E[Zl‘% By (7)?] admits a representation

similar to the first line of (3.1]), without the constant term 1 and with the inner sum restricted

to space—timelpoints such that (n;, z;) ¢ AR, for some i = 1,...,k, i.e. either n; > N=an or
aN . . . .

|z; — x| = N2~ 2 . Since there are k space-time points, for some j = 1,..., k we must have

either n; —nj_1 > $ N7 or |z; —z;_q| > %N%’TN (we recall that ng = 0 and zp = ).



THE 2D KPZ EQUATION IN THE SUBCRITICAL REGIME 15

Defining the new variables ¢; := n; — n;,_1 and z; := x; — x;_1, and enlarging the range

0<ng <...<mny <Nto£1,... le{l,...,N}, we can then bound
k
E[Z5 sy (@ Z 2 2 (%%Nl—m
k=1 4 a"'7£ke{17“'7N} J=1
21402 €72 (323)

2
+1 a ) | | (2
{G<AINI=ON |z > N34} 1 e ()

We now switch the sum over j with the double sum over ¢;, z;’s. We can sum over all
variables z;’s with i # j, replacing each kernel gy, (2;)? by gar, (0) (see (L.17))), and then sum
q2¢,(0) for all £;’s with i # j, which gives (Ryx)*"! (see again (T.17))). This yields

k—1 2
E[Z By (@ Z )" Ry R Z (1{5>%N17‘ZN} + ]]'{gglNl_aN7|z|>lN%_aTN}) ge(2)”-
k=1 ¢e{1,....N} k k
2€72

We now consider separately the contributions of the two indicator functions.

e Recalling (T.17), (T.18), (2.15), the contribution of {¢ > N7~} is controlled by

N
D (o) Rk > g20(0) < C Z logN > %

k=1 LN1=aN </<N %Nl_aN <0<N

N
- log N + logk 1
<C' N k(BN <C'(Csan +C
kZ:l (5% log N INFC g N
where CN’B = Zozlk(BQ)k and C’B = Zozlk(logk) (B)k are finite, S-dependent
constants. This contribution is consistent with (3.4)) (recall (2.2))).

e The contribution of {¢ < N7 |z| > 1N i } is given by

N
DR TR D D alz)’. (3.24)

= 1al—a 1_aN
ISESp NN lz[>f N2~ 4

Note that we can enlarge the range of the last sum to |z| > 9/, with 9 = NGTN/\/E.
Note that sup,cz2 qv(2) < ¢/¢, by Gnedenko’s local limit theorem. Then, by Gaussian
estimates for the simple random walk on Z2, there is 7 > 0 such that
3w’ < %P(\Sg\ NGRS %e"“ﬁ . VLeN, V9> 0.
|z|>0Ve
Then we can bound m 3.24)) by a constant multiple of

anN

Z Ee —nd? o Z ke (3.25)

k=1 RN 1<l<N —

We split the sum according to k < (NT)l/2 and k > (N 2 )1/2 getting the bound

(St {Sadar

k=1
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Both brackets are finite, ﬁ—dependent constants, while the other factors are both
o(an) as N — o0, by ([2.2), because 3 <1 and N 3 = exp(5(log N)7) » log N.

This completes the proof of (3.4]). O

4. EDWARDS-WILKINSON FLUCTUATIONS FOR DIRECTED POLYMER
In this section, we prove Theorem [I.6] which consists of proving Propositions 2.1} 2.2] 2-3]
and [2:4) as described in Section [2] The proofs are given in the following subsections.
4.1. PROOF OF PROPOSITION [2.1] Recalling (2.8), we need to show that

log N
N2

> Cov [On (@), On ()] 6(F)o( ) —— 0.

,yeZ2 N=eo
By translation invariance and Cauchy-Schwarz, it suffices to show that for any = € Z2,
(log N)E[On(2)?] —— 0. (4.1)
N—o0
We recall that Oy (z) is defined in (2.7]), and in view of (2.5) we can write
Zje,ﬁz\f ("T)) _ Zﬁ’ﬁN ()

We can bound, for a suitable constant C' < o0,

On(z) = log (1 +

% if —1<y<0

[log(1+y) —y[ < C-{y2 if —l<y<i- (4.2)

ly if0<y<w

The three domains are chosen to overlap on purpose: in fact, we will apply these inequalities

in the domains (—1, —a?f), [—a%ia?f] and (a?f, ) (recall ay from (2.2))). We define

Z4 5 (2) Zi 5 ()
DE = { + D a2/7}, Dy := Df; U Dy, = {‘WN a2/7},
o Zigy(@) — MUz @)
and we bound
A 1/7 5 A 3/7
P(Dn) < P(Zy g, () < ay') +P(|Zx 5, (2)] > ay')
U (4.3)

< ay E[Z{ gy ()] + ay’TE[Z3 5, ()] < (Cop+Cp)ay’,

thanks to (3.15) and (3.4]). Then by (4.2)

LE[On (@) < EKZJ/\"’BN <x;>4 1D%]+E[<§§@V(m>2 11D]+V} +IE[ 285 (/28,2

c ]Iéf,ﬁN (z N.,Bn (v)

and given that

7 A
Ly v (®) Zngy (@)
Zjéfﬁzv () Zjé/,ﬁzv ()
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we can choose p = pB > 2 close to 2 as in lj such that

<aj + E[Zﬁ,ﬁN(l‘)p]% (E[Zﬁﬁw (f”)_% L] 77 + B[ 2wy (0) 1D§]é>

% / TN ;1
<CLN+CACLNIP’(DN)4 2 p <CBGN ,

where the second last inequality holds by - and (| -, in the last 1nequahty we
applied ., and C’ < o0 is a generic constant dependmg only on B Recall from ([2.2)) that

ay = (log N)7~1 We can then choose v € (0,7*) with 4* > 0 small enough such that

1 1,1 1

E[Oy ) 1< a0 1og Ny OIIHED) _o(log ) Y). (a)
Therefore (4.1) holds. O
4.2. PROOF OF PROPOSITION [2.2] We need to show that

log N .
2., Cov[log Zy 5 (2),log Z s, ()] o(F)0( ) ——— 0. (45)
,yeZ?

We recall that Z]f‘,’ BN( x) depends only on the disorder within set A%y, defined in , hence
Zi 5, (2) and Z]‘é,ﬁN( ) are independent for |$ —y| > 2Nz~ 4 . By Cauchy- Schvvarz and
(3.16)), we can bound the left hand side of (4.5)) as follows:

log N logN  _ax .

Cobnz > )5 < ¢Co s N2 N2 gle Y, Gy

2
oyeZ2: [y—z|<2eN3— A 2L

¢ Cy g (Iog N)N™3 [0]uo |0l 11 (a2) = ¢ € y €805 =2 08 N0 g 6] 1 2y —— 0,
where ¢, ¢’ are generic constants, and the last equality holds by definition of ay in . Il

4.3. PROOF OF PROPOSITION [2.3l. We need to show that

\/log Ng (z) - \/log - L(P)
Z N(m) () — Z (Z% an (@) = 1) o(75) BT 0. (4.6)
xE€Z? NﬁN TEZ2
We recall that B](, = ((legaN/‘lO,N] ) N) x 72, see (2.10]). We define new subsets
By = ((N'"""V,N]nN) x Z?, (4.7)
1l any
Cﬁ:z{(n,z)ENxZQ:néNl_‘“\’,|zfx|>N2_4}, (4.8)
and we introduce new “partition functions”
A,C T x
Zi (@) = > o a7 (7)&(r), (4.9)
7c{1,....N}xZ2: 71nC%#J
A,B T
Zy 50 (@) = > o a7 () €(r), (4.10)

TC A{UBN: TABN#T
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J T
I I By I I By
‘ I
// | 1
‘ I
0 1 ‘ o) /\/\/ |
A%, /Y | A% |
o o
L o
\ “— I >
C]ﬂf[ I I B.%/ CK I I Bi’
(A) Partition function Zﬁ:gN (z). (B) Partition function ZJ?T:[?N :

FI1GURE 2. The figures depict the chaos expansions of Zﬁ’gN (z), Z]’s,’BBN (z).

Each term in the expansion for Zf,’gN () must include disorder from C%;

while each term in the expansion for ZII?/’,?N () contain only disorder from
N U By, with at least some disorder from By.

similar to the polynomial chaos expansions for Zy g, , Z& gy and Z f,?ﬁN in (2.18)—(2.19).
See Figure [2] for a graphical representation of the chaos expansions.

Recall that A% was defined in (2.3), and note that ({1,..., N} x Z*)\ A% = C% U By.
We can then decompose Z ]‘é,, By (x), defined in ([2.5)), as follows:

5 AB AC
Doy () = Zyg (2) + 235, (@), (4.11)

We split the sequel in three steps. The first step is:
1) We will show that the contribution of the term Z4¢ is negligible for (4.6)).
N.Bn

To treat the term Z]é:ﬁBN (x), we decompose its chaos expansion (4.10) according to the last
point (¢,w) of 7 that lies in A%, and the first point (r, z) of 7 that lies in By:

A,B
ZN:BN (IE) - Z Zét,ﬂN (x,w) : QT’—t(Z - w) "ON ér,z ’ ZT,N,BN (Z>7 (412)
(t,w) € {(0,x)}UA%,
(r,z)e By
where Zét,ﬁN (z,w) is the “point-to-point” partition function from (0, z) to (¢,w), defined
by ZétﬁN(x,w) :=1if (t,w) = (0,z) and by

Z g (T 0) 1= 3 ol g™ () g(r) it >0, (4.13)
TC A% A ([0,t]xZ2): T3(t,w)

while Z, n g, (%) is the “point-to-plane” partition function starting at (r,z) and running
until time NV:

Zy N (2) = SN oW d™ () E). (4.14)

Tc{r+1,..,N}xZ?

The next steps are:

(2) We will show that in (4.12)) the contribution from 7 < N1=9¢~/40 ig negligible for (4.6)).
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(3) We will show that in (4.12)) we can replace the kernel ¢,_¢(z —w) by ¢,(z — x), i.e. the
transition kernel from (0, z) to (r, z), because their difference is negligible for

Finally, note that when we restrict the sum in ([(£.12)) to r > > N1=9an/40 e to (7, z) € By
(recall (2.10)), and we replace ¢,—(z — w) by ¢,(z — ), the right hand szde of (.12) becomes

exactly Z4 ay (T) (Zﬁ sy (@) — 1) (recall (2.19)). This completes the proof of ({4.6).
It remains to prove the three steps stated above.

Step . We show that the contribution of Z4 N’ gy I - ) to ( is negligible, that is,

\/log Nch(f’?) x L2(P)
Z v o

0. (4.15)
z€Z? NBN (:U)

Since the chaos expansion of Z N’BN () in contains disorder £ outside A%;, not
contained in the expansion of Z# sy (%), we have that E[ NBN( x) /74 sy (@ z)] = 0 thus

L?(P) and variance computations are equivalent. We then have

Var(\/log]\f Z Zlégv(x) ¢(L)> _logN Z E[Z]égv(ﬂ?) ' Z]éfN(y)]¢( £ )p(—L)
N reZ? Zﬁ»ﬁN () VN N? x,y €22 leéfﬁN () Z]é/ BN (v) VN
By Cauchy-Schwarz, we can further bound this as follows, for some constant c:

log N/ Z5, (02 , 25 (0)y2
= E[(%Nm)) ]x’yZEZQ o Z)lI6( )] < clog V- |¢r%1(Rz)E[(w) ]

A,C 1/p 1 1/q
< c logN . |¢|%1(R2) ]E[ZN,,BN (0)2p:| E[ZA(O)QQ] s (416)
N’BN

where in the last step we used Holder inequality with parameters (p, ¢) with p~'+¢~! = 1, and

p will be chosen sufficiently close to 1, to be determined below. The term E[Z]‘é, B (0)~29] 1
can be uniformly bounded by the negative moment estimate ((3.15]).
We can use hypercontractivity, see ([3.10]), to bound

1/p
E[Zﬁ’gN(o)%] < Z (capon)?™ g (1)2.
rc{1,...,N}xZ2: 1nCQ#J

The right hand side is the second moment of the partition function, see , except that oy
is replaced by copon (which corresponds asymptotically to replacing B by B' = cyp B , see
and (1.18)) and the random walk S must satisfy max {|S,|: n < N'7oV} > N1/2-an/4,
In particular, recalling and , this can be bounded by

E[e(l-i-o(l)) (eon)? Lyiay (SVLSP) o 60 = N%—“TN’ for i — 1’2]7 (4.17)

TLSNlia’N

where S, S2) are two independent random walk copies. This is bounded via Hélder by

E[€(1+0(1))p(62”f8N)2LNl—aN (5(1)73@))]1/])})( max |S,| > N2 7>2/q

nSleaN

We can now choose p > 1 sufficiently close to 1 so that ,/pcap B < 1, i.e. still subcritical,
which is possible because lim,_,1 ¢, = 1, see (3.11)). Hence the expectation above is uniformly
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bounded in N as shown in Section [3.I] On the other hand, standard moderate deviation
estimates for the simple symmetric random walk show that

1 a
P( max |S,| > Ni_TN) <exp ( _ CNaN/Q) = exp ( _ Ce(logN)’Y/2),

nSleaN

where we recall that ay = (log N)?~!, see (2.2)). Inserting these estimates in (£.16]), we get

VIogN « Zis, (@)
o 5 2

Var <
zez2 T N,BNn (l‘)

)) <clogN - |¢|%1(R2) exp (_Ce(logN)’Y/2) N

N—oo

=

Step (2). We show that in the chaos expansion (1.12) for Z]f‘,:gN (x), the contribution from
(r, z) with 7 < N1794n/40 ig negligible for (4.6)). The contribution we are after is

A7B< Lpp—
Zyg, (x) = > Z8 gy (W) - Groi(z —w) coN &z Zrngy(2),  (4.18)
(t,w)eAZ,
(r,2)eEBn: r<N1-9ay/40

and we want to show that

A,B<
E < vies ¥ y o) i (m)>2 0. (4.19)
N T2 VN ZjéfﬂN () N0
The left hand side of (4.19) equals
A,B AB
W8N oy | i (2) D W) (1.20)
N? x,yeZ? NN Zjéf”@N () Zjéfﬁzv (v)

1 _ay
We can restrict the summation over x,y to |z —y| > N2~ 10 . Indeed, in the complementary

regime, we first bound the expectation in (4.20)) by Cauchy-Schwarz and obtain the bound
A,B< 2
log N ZN:ﬁ (0) z
2 E[(ZA 0 S Rk

N7BN
A,B< 2
_an log N ZN 5y (0)
< N7 E[( £y |Ploo |B 21 (r2)

N Z;é,ﬁN(O)
1 ZA,B<(0) 2
= (log N) e 508N E| [ 2DV 2 161 (] 1 gy,
Z3 5.(0)

which goes to zero as N — o0, since expectation can be bounded via Holder with an exponent
p for Z]’\q,’ﬂBN (0)2 chosen sufficiently close to one, so that the hypecontractivity bound (3.12)

can be applied, while the negative moment E[Z jé,’ 6N(0)*2q] can be bounded by (3.15). The
argument is the same as that for (4.16)) and we omit the details.
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1 a
To deal with ([4.20) when (x,y) € I~ := {z,y € Z%: |z — y| > NQ_T]d}, we use the chaos
expansion for Zf,’gN , (4.18), and write (4.20)) in this case as follows (recall that E[¢2] = 1):

oy log N ZAt N(m,w) ZAS N( ,0)
RS T e 3 E[Qf @ ]E[% ?)]

x,yel> (t,w)eAZ, N,Bn N,BN Yy
(s,w)eAY
X Z Gr—t(z —w)gr—s(z — U)E[ZﬁNﬁN(Z)Q] (4.21)

(r,2)eBy: r<N1-9an/40

where the first point (r, 2) € By in the expansion for Z4 gy (%) and zZi 5y (¥) must match
because an unmatched (r, z) gives E[; ] = 0, and we used the independence between

A

Zi 4,5y (T, W) Ziys o (4:0) and  Z (2)

74 : 74 ’ PN
N BN( ) N.,Bn (y)

because they depend on disorder in the disjoint regions A%, A% and By.
We can simplify (4.21]) by noticing that E[Zn N,Bx (2)2] is independent of z and that
D, Gr—t(z — w)gr—s(2 — v) = g2r—t—s(w — v). Thus we can write it as

o5 log N zg N(x,w) ZAS N( 0
e 5 e 3 o )

xyel> (t,w)eAZ, N.Bn N.an\Y
(s,w)eAY
x > Gor—t—s(w — V) E[ Z. N gy (0)?] (4.22)

Nl-an <,,,<N1—9aN/40

Note that E[Z, ygy (0)?] < E[Zn g, (0)?] < C's uniformly in N by (3.2). Moreover,

o[ e | <ot 2

(x

1/2
7214 (33)2] < 0273 E[Zoyt’ﬁN(x,w) ] ,

where the constant C, 5 comes from the negative moment bound ( . The same bound
holds with (x,t,w) replaced by (y, s,v). Therefore can be bounded by

log N
GCM% e Y E[Z8 s, (ew)? ] BZE 5, (0, 0)2]

z,yel> (t,w)eAs,
(s,w)eAY,

X Z QQr—t—s(w - U)-

Nl-an <T‘<N1_9aN/40

By our definitions of o and By in (2.15) and (L.18)), we have o3, log N = O(1). Applying
Cauchy-Schwarz for the sum over (¢,w) and (s, v), we obtain the bound

X e (Y B ww?] Y Bz w0?])

x,yel> (t,w)e A%, (s,w)eAY

<Y (Y eeewp)

N1=aN <p<N1-9aN/40  (tw)eA, , (s,v)eAY

1/2
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We next observe that Z(tw)eA% E[Z{ftﬁN (a:,w)2] = E[Z]‘é,,BN (3:)2] < CB’ see (4.13]), (2.18])
and (3.3)), and similarly for the sum over (s, v). This leads to the bound
cC; 1/2
= 2 @l Y (Y eesw—v?)

x,yel> NI=aN <p<N1-9an/40  (tw)eA% , (s,v)eA%

(4.23)

an

anN 1 1 _an .
1, we have |w —v| > 3N2710. Given

1 a
Since |z —y| > NZ~10 and |z —w|, |y —v| < N2~—
r < N179an/40 e then have

2
Q2r—t—s(’w—?})2 < CeXp<—(2wtv|)) < Cexp<_CNaN/40> _ eXp(_ce(logN)7/40)‘
r—t—s

The sums over (¢, w), (s,v) and r give only a polynomial factor in N, and hence (4.23) can
be bounded by

O N P R I RS p—

zyel> N=w
This proves (4.19) and completes the step.
Step (3). Let ZX‘,’BB; (z) be defined as in ([.18) but with the constraint r > N1—9an/40
instead of r < N1794n/40 i e with the sum over (r,z) € B, instead of By (recall (2:10)):

A,B> .
Zyg, (@) = > Z¢ gy (W) - Groi(z —w) coN & Zrnpy(z).  (4.24)

(t,w)eAZ,, (r,2)eBZ

In view of (4.6)), we focus on the averaged quantity

VOEN 57 2 ) o (1.5
N 272 Z]éf,,b’N(m) VN .

We will show that replacing in (4.24) the kernel ¢,_;(z — w) by ¢.(z — ) has a negligible
effect on (4.25)), in the sense that the difference tends to zero in L'(P).

We introduce the notation (recall (2.10]))
= > l,ay
B3 (%) :={(r,2) e By: [z — x| <r2" 80 }.

Recall that g;(-) denotes the heat kernel on R?, see (1.12)). By a refined local limit theorem
for the simple random walk, see Theorem 2.3.11 in [LLI0], we have that for (r,z) € By (z),

4 (2 — ) = 2g,2(2 — ) exp (0(% + '2%'4)> = 2g,/2(2 — ) exp (O(r”*%)),
and similarly for (t,w) € A% (see (2.3)),

Gr—t(z2 —w) = 2g(r_p)/2(2 — w) exp (O(i + |(ZT:1;})|§)> = 29(r—1)/2(2 — w) exp (O (r_1+715)>,

1,98 1_an
because |z —w| < |z — x|+ |w—2| <r2T30 + N2~ 1 and hence, for large N, we can bound

1 a
|z—w|<2r§+% and |r—t| > 3r, for t< NN | g > NI79an/40 (4 96)
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By a straightforward but tedious computation, there exists a positive constant ¢ such that

z—x da 1 ¢
sup ‘gr/Q()—l : T>N1’Tév,t<N1_aNa’w—$’<N§7TN7 (4.27)
Gir—t)2(z —w)

1. an
|z — x| <r2t80 } = O(e‘c(logNW)

as N tends to infinity, and by the local limit theorem, this bound can be transferred to the
ratio QT(Z - 'T)/QT—t(Z - w)'

We are ready to estimate the error of replacing ¢,—¢(z — w) by ¢.(z — z) in . We
first restrict the sum on (r, z) € By (). Then the contribution to is

Viog N Zgh gy (@, W)
15 2 ¢(\/$7N) Z % <Q7"7t(z - w) - QT(Z - ZL‘)) *ON gr,z : ZT’,N,,BN(Z) s
x€l? (t,w)eA%, N.Bn (1’)

(r,z)eBﬁ (z)
(4.28)

whose L'(P) norm is bounded by

v/log N 1
o FNE | =
N we% VN Z3 g (@)
A ¢ (2 — )
X ’ Z ZO,t,,BN (CC, ’U)) {1 — q,«t(z—w)} C]r—t(Z — u)) *ON ér,z . Zr,N,BN(Z)‘ ]
(t,w)eA%,
(T‘,Z)EB]%,({E)

Jog N i 1 e

< 2 oK) E[ZAW] (4.29)
€72 N,Bn

291/2
x E'( D 2y gy (@ w) {1 - W_x)} Gr—t(z —w) - ON &z - Zr,N,ﬁN(Z)) ]
(

t,’LU)EA?:V QTft(z - w)
(r2)eBR ()

We recall that E[Z]f‘, B (x)_Q] is uniformly bounded by the negative moment estimate

(3.15)), while by orthogonality of terms in the chaos expansion and applying (4.27)), the last
expectation can be bounded as

b 2 @z —2) \? 2 9 2
(tvng?v E[Zo,t,ﬁzv(l‘,w) ] {1 - m} Qr—t(Z—w) oy E[ZT,N,,BN(Z> ]

(r,z)er](x)
= O<e‘c(1°gN)7) Z E[Z{;}tﬁN (2, w)?] gr—t(z —w)? oX E[Z, n gy (2)*].

(t,w)eAR,
(r,2) EB]%] (z)

By (4.24)), this last sum is bounded by E[Zﬁ:g; (02 ] <E[Zngy(0)*] < Cs uniformly in

N, see (3.2). These estimates show that (4.29) is O(y/log N exp (— ¢ (log N)?)) and hence
converges to zero, thus the L'(P) norm of (4.28)) converges to zero too.
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To complete the step, it remains to check that in the chaos expansion (4.24)) for Zf,’gi (z),

the contribution of the complementary regime (r,z) € By \ Bx(z), i.e. [z — z| = r1/2+on/80,
vanishes in L!(P) as N — o, and the same is true if we replace the kernel ¢,_;(z — w) by
gr(z — ). Note that in this regime, by moderate deviation estimates,

|z —a?

qr(z — 1) <exp{—c } <exp{—cr”N/40} <exp{—cec(1°gN)7}, (4.30)
and the same bound holds for g,_;(z — w), because |w — x| < N2— 4 = o(r'/?) as N — o
(since r = N17945/40) and hence |w — x| = o(|z — x|) in this regime. These bounds can then
be used to show that

vlog N Z(I)L,lt, (2, w) L'(P)
N >, (k) > ,fNi(x)qr—t(z—W)'ffN &z ZrNpn(2) =0,
zeZ? (tw)eAZ, , (r,2)eBZ VAN
|z—x|>7‘1/2+aN/80

and the same holds when ¢,_¢(z — w) is replaced by ¢,.(z — ). Indeed, we can argue as in
(4.29) and then use the fact that the number of terms in the sums over z, (t,w), (r, z) is
only polynomial in N, while (4.30]) decays faster. O

4.4. PROOF OF PROPOSITION . Recalling (2.14)), we want to prove that

Vieg N 1 > . Ve,
N N$§2<Zﬁ,ﬂN<m>—w<ﬁ> o WVER2, ).y, (43D

where v(%) (s, z) is the solution of the two-dimensional additive SHE as in (1.11)).

The proof of follows the same line as the proof of Theorem 2.13 in [CSZ17b|, which
proved the convergence of the fluctuations of the polymer partition function Zy g, (x) as a
space-time random field to the solution of the additive SHE. To see heuristically why the limit
in (4.31]) should be Gaussian, we can write the LHS of as a polynomial chaos expansion,
see, where the dominant contribution (in L?) comes from terms of finite order in the
expansion because B € (0,1). Each such term is of the form a}“v ]—[le Gni—ni 1 (Ti—Ti—1) Eny oy s
which due to the random walk transition kernels ¢.(-), depends only on disorder &.. in a
neighborhood of (ng, zg) := (0,x) that is negligible on the diffusive scale. Given such local
dependence on the disorder, it is then not surprising that when averaged over (0,z) on
the diffusive scale with weight ¢(z/v/N), we should get a Gaussian limit. The proof in
[CSZ17h| also shows that terms of order two and higher in the chaos expansion leads to an
independent white noise in the limit, which leads to a noise coefficient cp > 1in .

We now recall the key element in the proof of Theorem 2.13 in [CSZ17h| and show
how it can be adapted to our setting. The key technical tool is the following variant of
Proposition 8.1 in [CSZI7h], specialized to the simple random walk on Z? (where we average
in space, rather than in space-time). It will show that, in the polynomial chaos expansion
of the left hand side of , there are “building blocks” that converge in distribution to
independent Gaussian random variables.

i—1 i
Proposition 4.1. For integer M and i € {1, ..., M}, define intervals I; := (NW,NV]. A
k-tuple (i1, ...,ix) € {1, ..., M}* is said to belong to {1, ,M}g if lij —ij| =2 forall j # 5.

For NeN, let £ = (57(11,\:2))(n,z)eN><Z2 be i.i.d. with zero mean and unit variance.
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Given N, M € N, a k-tuple (i1, ...,ix) € {1, ..., M};f and a point x € 72, we define a random
variable @i\lfMZk (x), a multilinear polynomial of degree k in the variables £’s, as follows:
k-1

N;M M\ 2 i i
@zj:...,ik (x) = (RN> Z anj—n]'—l(xj - xj—l) Egniﬂ?iJ

n1€[i1,ng—nleliQ,...,nk—nk_lelik j:1

no:=0, xo:=x, x1,...,c,EL?

where qn(x) is the transition kemel of the simple symmetric random walk on Z?, and Ry is
the expected overlap, defined in . For ¢ € C, (]RQ), we define the space-averaged version

N M; ¢ : Z @
I€Z2
Let Dy denote the subset of (i1, ...,ix) € {1,...,M}1’jC that satisfy i1 > max{is, ..., i},

called dominated sequences. Then, for any fivted M € N and ¢ € C.(R?), the family of

random variables (@N;M;¢
(31, 0K)

(C¢ 'k))(ilr--yik)eDIVI of independent Gaussian random variables with

(91,08
E[gg;hm’ik)] =0, Var [g(“, ol = 202 Ly » (4.32)

i.e. the variance is non-zero only if i1 = M, and is given by

r) 6 )

)(iv,..ig)eDyy; COMVETGES in distribution as N — o0 to a family

1 —y\2
47ru

1

035 = J o(x) Ki(z,y) o(y) de dy with Ki(z,y) = JQ du. (4.33)
(R2)? ’ ’ 0

The proof of Proposition in [CSZI7b] is based on a variant of the fourth-moment

theorem for polynomial chaos expansions, as formulated in [CSZ17b, Theorem 4.2|, which
was obtained in [NPRIO] building on [NPO05, [dJ87, [dJ90]. To check the variance, note that

Var [95\[ sz N2 Z Z QZ)(ﬁ)gb(\/yiN)%n(xl _m)%u(ml _y)

x,yeZ? ni€l;; , T1€7Z2

8 (sz\/z[\/)k_l 2, H‘Jnj—m (2 = i),

TLQ—TL1€LL'2,. M =N — 16]

T2,.. ,$k€Z2

(4.34)

where the second line tends to 1 as N — oo by the definition of Ry and I;. We can write
D gni (@1 — ), (21 = Y) = G2n, (2 — ) s (gm (@ —y) +0(35)) 2V jyyerz,. )
11622

by the local limit theorem, where Z2 ., := {(a,b) € R* : a + b is even}, g;(z) is as in (1.12)),
the factor 2 is due to random walk periodicity and we have gy, () instead of ga,, (-) because
the random walk S;, has covariance matrix 5/. Then, by a Riemann sum approximation, as
N — o0 the first line in is close to the integral

N e
0 ifiu <M
/ / ) _ d d /d .
fow qb(x)qb(y)(JN’% e/ =) du)dley N {20(% if iy = M’

with 03) defined in (4.33)). Also note that for iy = M, the dominant contribution comes from

ni € [eN, N| for £ small, and hence restricting to ny € [1, N|, or nj € Iy = (leﬁ,N], or
ny = N'7928/40 makes no difference as N — oo (for any fixed M € N).



26 F. CARAVENNA, R. SUN, AND N. ZYGOURAS

Let us show how Proposition can be applied to prove . Recall from ([2.19} - ) that

Z5 5 (x) =1 = Z ok > anz s (@ — 1) €y - (4.35)

NI=9aN/40 ) < <np<N =1
no:=0, xo:=x, T1,...,LLEL?

J
For fixed M € N, grouping each n; — n;_1 according to which interval I; (N M ,NM ]
belongs to, and recalling (2.15)) and (1.18)), we have the following approxnnatlon.

Vieg N 1 Z B> g g1 N;M;é
e Y () DI~ Y s Y e Me (436)
VT NxEZ2 k=1 M =1 (i1, )E{L,., MYE v
i1=M

where ~ means that the difference of the two sides vanishes in L?(P) as N — oo followed by
M — 0. The restriction i, = M in ([£.36) is due to n; > N'948/40 which gives rise to a

dominated sequence. The error from relaxing n; > N9~ /40 ¢4 ny €Iy = (N %, N ] is
negligible in L2, as noted above, while the error from restricting to (i1, ..., i) € {1,... ,]\4}{1g
(rather than the whole {1,..., M}*¥) is also negligible in L?(P), when we first send N — o0
and then M — oo, as shown in [CSZI17b, Lemma 6.2].

We can then apply Proposition [41] to conclude that, as we let N — oo for fixed M € N,

the right hand side of (4.36) converges in distribution to the same expression with @N sz
replaced by Cil,...,ik7 i.e. to a Gaussian random variable with zero mean and with variance
B ¢
W 20'¢ : |{(’L]_, ceny Zk) € {]., ceny M}ﬁ Ll = M}| . (437)
k=1

If we let M — o0, since |{(i1, ..., i) € {1, ,M}{f t iy = M}| = M*71(1+ o(1)), the sum in
(4.37) converges to the following explicit expression, with cj as in (1.11):
Aol 1
203 3, BT =205 —— = (V2¢y)%a,

k=1 - p?
This agrees with the variance of <’u(\/§63)(1 /2,+), ¢y, see , which proves U

5. EDWARDS-WILKINSON FLUCTUATIONS FOR KPZ

In this section we prove Theorem which gives Edwards-Wilkinson fluctuations for
the Hopf-Cole solution h.(t, z) = logu.(t, z) of the mollified KPZ (where u.(t, z) solves the

mollified SHE, see (1.5])).

The proof follows the same lines as in the directed polymer case. This is possible because
u®(t, z) admits a Feynman-Kac representation, which casts it in a form close to the directed
polymer partition function of size N = ¢2t. Indeed, by [BC95, Section 3] (see also [CSZ17b)
eq. (2.27)]), for fixed (¢, z) we have the following equality in law:

(b 2) L Es—lz[eXP { ) 6L)XR255J — 2){(s, x)dsdx — 382 j(Bs — x)* ds dl‘) }] -

2t
= Es1z[exp { Jo fRz B §(Bs — x) £(s, z)dsdx — 182 (7%t) | 4] 32 Rz)}]
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where B = (Bjs)ge[0,0) under P is a standard Brownian motion on R? started at x.

We first perform a decomposition of u®(t, z) similar to that described described in Section
which reduces Theorem to the four Propositions (see §5.1)). These are proved later
(see in analogy with the corresponding results for directed polymer (see Section ,
exploiting moment bounds analogous to those in Section 3| (see .

Henceforth we set t =1 and we focus on u®(z) := u(1, z).

5.1. DECOMPOSITION, LINEARIZATION AND WIENER CHAOS. By (5.1)) and (L.21)-
(T.22)), u®(z) is comparable to Zy(x), provided we identify N = ¢72, x = &~

As in (2.2)-(2.3]), we define (for a v* small enough, depending only on S as in (12.2))
o
(loge—2)1—7
A= {(s,2): 0<s< (D)%, [g—e 2| < (6722 F}, (5.3)

ae = for fixed v € (0,~7%), (5.2)

and we introduce a modified partition function u(z), obtained by restricting the double
integral in the first line of (5.1)) to the set (s,z) € AZ. This yields the decomposition

ut(z) = uj(2) + a4(2), (5.4)

where 4% (2), defined by this relation, is a “remainder” which, for fized z, can be shown to
be much smaller than u%(z). More precisely, as in (2.6)-(2.7), we define O°(z) by

log u#(2) = log ufy (=) + “A&) | 02y, (5.5)
UA(Z)

and we have the following analogues of Propositions

Proposition 5.1. Let O%(-) be defined as above, then for any ¢ € C.(R?)

\/logs—lf E[O°(2)]) ¢(2) dz 2Oy,

el0

Proposition 5.2. Let u5(+) be defined as above, then for any ¢ € C.(R?)

Vioge™! fRQ (log () — Ellog usy ()]) é() dz = 0.

el0
Next, in analogy with (2.10)-(2.11]), we introduce the subset
BZ = ((e72)17%/10 c=2) x R?, (5.6)

and we introduce u%= (2), obtained by restricting the double integral in the first line of (5.1))
to the set (s,z) € BZ. We have the following analogues of Propositions [2.342.4

Proposition 5.3. Let u5(-), 05(-), ug= () be defined as above, then for any ¢ € C. (R?)

Vit [ ( ()= 1) ) o) as 22 o, 67)

Proposition 5.4. Let uj= () be defined as above, then for any ¢ € C.(R?)

y/loge~t

e L e -Dee L 0.0, 53)
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Theorem [I.1] is a direct consequence of Propositions [5.1}[5.4 Regarding the centering, by
(5.5) we have E[logu®(z)] = E[log u%(2)] + E[O®(2)], because @5 (2)/u%(z) has zero mean,

as we show in a moment.

By (5.1) and the definition of Wick exponential [J97, §3.2|, we have the following Wiener
chaos representation for u(z), where we set tg := 0 and yo := ¢ 2

= 1+Z Bk f J < f Hgt i (Wi — Yie 1)J(yi—ﬂfi)d?7> ﬁf(%xi)dtid%a

k>1 1 =1
O<ti<- <tk<e (R2)k = ’
Ze( R2

(5.9)
where g;(+) is the transition kernel of the Brownian motion.

The modified partition function u% (%) admits a similar Wiener chaos expansions, with the
outer integrals restricted to the set {(t1,x1),..., (tk, zx)} < AZ. It follows that the Wiener
chaos expansion of 45 (z) := u®(z) — u5 (z) contains at least one factor {(t;, x;) with (¢;, x;)
outside AS, which is not present in u%(2), hence E[d5(2)/u%(2)] = 0.

Similarly, the Wiener chaos expansions of u%=(2) is obtained by restricting the outer
integrals in to the set {(t1,z1), ..., (tp,zx)} S BZ, i.e. imposing t; > (e2)19%/40,

5.2. MOMENT BOUNDS. We estimate positive and negative moments of u®(z).

We start with the second moment. We prove below the following bounds for u®(z), u5(z)

and 45 (z), which are close analogues of (3.2)), (3.3), (3.4):

V3 e (0,1) HCB < 00 such that Ve > 0:

E[u(=)] <C;,  Eui(2)’] <G

5, Elaa(2)’] < Cjac. (5.10)

We can now easily deduce bounds for higher positive moments. By hypercontractivity
[JO7, Theorem 5.1], the LP norm of a Wiener chaos expansion like is bounded by the L2
norm of a modified expansion, with the k-th order term multiplied by (c,)* (i.e., A replaced
by cpﬁ), with ¢, := 4/p — 1. For Be (0,1) we can choose p > 2 such that Bcp < 1, so as to
apply the bounds in . This yields an analogue of :

Ve (0,1) Ip= ps€ (2,0) HCé < o such that Ve > 0:
B(a0] <Cy.  Ba()P] <C.  EBlaS()P) <Cyar?.  (511)
Proof of (5.10). We compute E[u(z)?] by using (5.9)), applying the identity g;(y)g:(y') =

4g92:(y — ') gat(y + ¢/'), and switching to new variables z; := y; — y., w; := y; + y,. This leads
to the following expression (see [CSZ18| §8.2| for details):

k
E[uf(2)%] =1+ Y (8" f f <H92<ti_ti1)<zi—zi1>J<zz->-
=1

k=1
= 0<ti<-- <tk<a

Ze(R2)k, we(R2)k (5.12)

k
: 92(ti—ti,1)(wz‘ - wi—l)) H dt; dz; dw; ,

i=1
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where J := j * j and we set zg := 0, wg := 2e~'2. Integrating out wy, wy_1, ..., w;, we get
k
E[u®(2)?] =1+ 2(52 ) f f <H92(t ;)2 — 2ie1) (%)) Hdtz‘ dz;.
k=1 i=1

o<ti<-- <tk<e
Ze(R?)k

We recall that j, hence J, has compact support. If we define
)= sw | gule - #) Iz,
2'esupp(J) JR2
we can bound

(e < 1+ B2 [] [Tr 1+2{/32 [

5 1=1 k=1

—2

k
)dt} |
O<ti<--<tp<e™

Note that 7(-) is bounded for ¢ > 0 and it satisfies 7(t) = &; + O(1) as t — o0, by (L.12).
Recalling (1.2]), we see that the bracket converges to BQ as € — 0, hence the series is
uniformly bounded for 8 < 1. This proves the first bound in ([5.10)).

The second bound in (5.10)) follows because E[uf(2)?] < E[u®(2)?], since the Wiener
chaos expansion for u5 (z) is a subset of the expansion for u®(z).

Finally, the third bound in ([5.10)) can be proved similarly to (3.4)) (see Subsection ,
because E[@5(2)?] can be bounded by an expression analogous to ([5.12)) |f| O

We next estimate negative moments, establishing the following analogues of (3.14))-([3.16]):
V3 e (0,1) Vpe (0,00) AC, 5 < oo such that Ve >0:

E[u®(2)?] < C, 5 <o, (5.13)
E[u4(2)"] < C, 5 <0, (5.14)
E[[logu(2)P] < C, 5 < 0. (5.15)

Since (b.15)) follows easily from (5.14]), it suffices to prove (5.13)-(5.14). These are direct

corollaries of the following result, analogous to Proposition [3.1]

Proposition 5.5 (Left tail for KPZ). For A < (0,e72) x R?, denote by u§(z) what we
obtain by restricting the double integral in the first line of (5.1) to (s,x) € A, i.e.

Ui (2) = Be- 1Z[exp{ f B. j(B, — x) &(s, x)dsdz — 182 j( By x)2dsdx>}]. (5.16)

(s,x)EA

For any Be (0,1) there is ¢ € (0, 00) with the following property: for any € > 0 and for any
choice of subset A < (0,e~ ) x R2, one has

Vt=>0: Ploguj(z) < —t) < ¢4 e /e . (5.17)

TNote that % (2) contains at least one point (t;,x;) outside AZ in the Wiener chaos representation (5.9).

Since j(-) has compact support, say included in the ball B, := {z € R? : |z| < 7}, the corresponding point

(ti,yi) in must be close to (i.e. at distance at most ¢ from) the point (t;, 2;). Then E[a%(2)?] can be

bounded by an expression analogous to , with the integrals restricted to the set where at least one
point (ti, sw;) = (ti, & (yi + yi)) is close to (AZ)°. This allows to follow the proof in Subsection
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It remains to prove Proposition [5.5] We first need to recall concentration inequalities for
white noise (see Appendix |C| for more details).

The white noise & = (§(,¥)) (s,)e[0,00)xR2 can be viewed as a random element of a separable
Banach space E of distributions on [0, ) x R? (e.g. a negative Hélder space, see [CD18]). Its
law y is the Gaussian measure on E with Cameron-Martin space H = L?([0,0) x R?), and
the triple (H, E, ) is a so-called abstract Wiener space. In this setting, sharp concentration
inequalities are known to hold for (not necessarily convex) functions f : E — R that are
Lipschitz in the directions of H, see [Led96l eq. (4.7) and (4.8)].

We need to work with convezr functions f : E — R u {—00, 400} that are not globally
Lipschitz. Remarkably, such functions still enjoy concentration inequalities for the left tail
(but not, in general, for the right tail). For x € E with | f(x)| < o0, denote by |V f(z)| € [0, 0]
the maximal gradient of f in the directions of H, defined by

- | f(@ +6h) = f(2)]
|Vf(x>| o heH:SElIiH<1 151{8 d ’

(5.18)

where the limit exists by convexity. Then the following inequality holds (see Theorem |C.1):
Wf <a—t)p*(f=a,|Vfl<c)<e 1)’ WaeR, W ce (0,0), (5.19)

where p* is the outer measure (to avoid the issue of measurability of |V f|).
Note that, if we fiz a,c such that p*(f = a,|Vf] < ¢) > 0, relation (5.19) gives a bound
on the left tail u(f < a—t) for all ¢t > 0.

Proof of Proposition [5.5l We can set z = 0, since the law of u}(z) in - ) does not
depend on z, and we write uj := uf (0 ) We denote by ’Hg( B) the argument of the exponential
in (5.16)), so that uj = [exp(’Hf( . We also introduce the shorthand

B),&) = ” (s,z)dsdz. (5.20)

(s,x)EA

We start with a second moment computation:
E[(u5)?] = E[E[¢™ B+HEB)]] = E[eﬁf EA(B,E)] , (5.21)

where B, B are independent Brownian motions, and £, (B, B) is their overlap on A:

” §(Bs — z)dsdx . (5.22)

(s,x)EA

Note that u§ is a function of the white noise £, so we can define

he(§) :=loguj . (5.23)

The function he(-) is convex by Holder’s inequality, because £ — {j(B), ) is linear (more
precisely, we can ensure that h.(-) is convex by choosing a suitable version of the stochastic

integral (j(B),&); see Appendix [D]). Then (5.17) follows by (5.19) if we show that p*(he >
a,|Vhe| < ¢) is uniformly bounded from below, for a = —log2 and for suitable ¢ = c;.

We need to evaluate the maximal gradient |Vh.(€)|, see (5.18)). We define a Gibbs change
of measure P¢ on the Brownian path B = (Bs)s=0 by

dp¢ 5 HE(B)
dpP ' uy
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Let us fix f e H = L?([0,0) x R?). Recalling (5.20) and (5.23)), we have

im he (€ + 5? —he(®) _ ~lim 5 L1og BE[- GO = 5 BE[((B), )]

= Be H E¢[j(Bs — )] f(s,z) ds dx.

(s,x)eA

Taking f with || f||;2 < 1 and recalling (5.22)), it follows by Cauchy-Schwarz that

E[ﬁ§ La(B, B) eHE(B)wé(é)]

(u})?

IVhe(€ H E[j(Bs — y)]* dsdy =

(s,2)EA

Then, on the event h.(§) > a = —log?2, i.e. uj > %, recalling (5.21)), we can bound

E[| VA (O)* L. (6)2a)] < 4EE[552 La(B, B) 6H5(3)+HE(B)]

- ~ 4 N
< 4E[552 LA(B, B) B2 EA(B»B)] < SE[€(1+5)/352 EA(B,B)] ,

(5.24)

for any § > 0 (by = < %€°?). For any subcritical Be(0,1), we can fix § = d5 > 0 small, so

that B’ : B\/l +0< 1 is still subcritical. By (/5.21] - the last expected value in is the

second moment of uj with ﬁ instead of B, hence it is uniformly bounded by some constant
C’ < o0, by -, uniformly over all subsets A < (0,e7?) x R2. Summarizing:

sup E[|VA:(6)]* Lin )>a)] < Cf < 0. (5.25)

e>0

We can continue as in the directed polymer case (see Proposition [3.1)), noting that

p(he = a,|Vhe| < c¢) = plhe = a) — plhe = a, |Vhe| > c)

1 9 (5.26)
> p(he = a) — 2 E[|Vh:(§)] ]l{hs(f)>a}] .

Since a := —log 2, we have ,u(hE ) = p(uy = 3) = (4C; )~1 as in (3.21)). Plugging this
bound together with (5.25|) into , we are done by Choosmg c=cy large enough. [

5.3. PROOF OF PROPOSITIONS 5.4]. Propositions [5.1] and [5.2] are proved repeating
almost verbatim the proofs of Propositions 2.1 and 2:2] which are the corresponding results
for directed polymers. We omit the details and refer to Subsections [4.1] and [4.2]

Proof of Proposition We follow closely the proof of Proposition [2.3]in Subsection 4.3}
Recall the decomposition u®(z) = u%(z) + u5(z), see (5.4]). Then we further decompose

w4 (2) = uzc(2) +ui p(2), (5.27)
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where u% ~(2), u% (%) are defined in analogy with Z Nﬁ B (2), Z]é’gv(a:) from (4.9), (4.10):

k

o) = Bt ff J(RQ th_tl i = i) i~ 0) A7) | [ 60t ) tida,

k=1 =1
O<ty<---<tp<e2, e (R2)F

{(t1,zl),...,(tk,rk)}mc’z;ég

= Z 5? f f JRQ)k H!Jt b (Wi = yie1) 3y — x4) dy)

k=1

:w

&(ty, zy)dt;da;
=1

O<ty<--<tp<e 2, Ze(R?)F ¢
{(t1,21),(tks Ik)}CAZUBZ
{(t1,Zl),...,(tk,ﬂfk)}ﬁB§7é®

where we set tg := 0, yo := £ 12z, we recall that A? was defined in (5.3), while B.,CZ are
defined similarly to By, C% from ([4.7), [£.8) with N =72 and 2 = £~ '2: more precisely,
recalling a. from (5.2)), we set

Boi= ((e2)'%,e?], Cii={(ta)eR2: 0<t< (e, lo—elz > (=)},

The proof of Proposition [5.3} similarly to Proposition [2.3] proceeds in three steps.
The first step is to show that u$ o(z) in (5.27) gives a negligible contribution, that is

Vloge—1 JRQ )¢>(z)dz %@;l 0. (5.28)

The proof is identical to the case for directed polymer, see (4.15)) and the following lines.
The only difference is that (4.17) will be replaced by its continuum analogue, which is

e—2(1—ag)

E[exp {(CQPBE)QJ‘ J(BY — B?) ds} . sup  |BY(s)| > 5_(1_%5), fori=1,2],
0

5<572(17a5)

where cg), := 4/2p — 1 is the hypercontractivity constant for white noise, BW B® are two
independent Brownian motions and we recall that J(-) = (j % j)(-). The rest of the estimates
follow the same lines as in the polymer case.

In view of and , to complete the proof it remains to show that

loge—1 UZ’B(Z> - . - ﬂ)
o {fw () ¢(z)dz fRZ(up(z) 1)¢(z)dz} — 0. (5.29)

For u$y g (z) we can give an expression analogous to (4.12)), integrating over the last point
(t,w) € AZ and the first point (r,v) € B.:

ufy g(2 J f 15 (0, 2;dt, dw, dw') - gr—¢(v) — W) j(v" — v) B E(r, v) dr dv do'
(t,w)eAZ ,w'eR? (530)

(r,v)€Be ,v'eR?

' us(r’ U,;5_27 ) )

where u5 (0, z; dt, dw, dw’) is the “point-to-point” partition function from (0, z) to (¢, w,w’),
similar to (4.13) (the extra space variable w’ is due to the convolution with j(-)), which is
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defined as follows, where we set ¢y := 0 and yg := ¢~ '2:

k—1
w5 (0, 2, dus, ) :=ZB§{ | PO § CTE e
2

k=1 =1
= O<ti<--<tp_1<e~ !

(z1,p—1)E(RZ)F~1
{(t1,21),0,(fr—1,0k—1) }CAZ

k-1
Gty (W' — Y1) dﬁ> [ T&Ct ) dt; dxi}

i=1
G —w) E(t,w) dt dw dw’,

while u®(r,v';e72, ) is the “point-to-plane” partition from (r,v’) until time €2, defined by

(5.9) where we set tg :=r, yo := v’ and we replace 0 < t; <--- by r <ty <---.

In order to prove , as in the polymer case, we need two more steps: the second
step is to prove that the contribution from r < (£72)1792</40 o the decomposition ([5.30)) is
negligible; the third step is to show that we can replace g,_(z’ — w’) by g,(z' —e7'2) in
, because their difference is negligible for . These steps are proved using exactly
the same analysis as in the polymer case, see Subsection [4.3]

Finally, when we restrict the integral in (5.30) to r = (¢72)17%%/40 je. to (r,2) € BZ

(recall (5.6)), and we replace g,_(z' — w') by g-(2' — &7 12), the right hand side of (5.30)
becomes exactly u%(2) (u%s (2) — 1), which proves ([5.29). O

Proof of Proposition In principle, also this last result could be proved as in the
polymer case, see Subsection [£.4] using a continuum analogue of Proposition [£.1} However,
it is simpler to deduce it from Proposition approximating u%= (2) in L?(P) by a directed
oy . B> . -2 —1 . 1.
polymer partition function Zy By (x) with N =&7% x = &~ "z built on the same probability
space. The details are described in Section 9 in [CSZ17h| (where the space-time fluctuations
of u®(+,-) are shown to converge to the solution of the additive SHE). O

APPENDIX A. SCALING RELATIONS FOR KPZ

We prove a scaling relation between the solutions of the mollified KPZ equations with
different parameters. See also [CD18|, Section 2|. In particular, we will verify the identity
which relates the solution of the mollified KPZ equation with the small parameter S,
either in front of the noise or in front of the non-linearity.

Given v, A\, D > 0, let 9 := "M denote the solution of the mollified KPZ equation

Onp® = gmf + %|v¢€|2 +VDe,  xzeR2t>=0, and ¢°(0,:) =0, (A1)

where £°(¢,z) is the mollification of the space-time white noise £ in space with j.(x) =
e72j(x/e), and j € C.(R?) is a probability density on R? with j(z) = j(—x).

Proposition A.1. Let 5P be defined as above. Then for any a > 0, we have

. dist [V . 2
(050 s (53744 00)

t>0,xeR27

where B2 := )‘j—g,D, known as the effective coupling constant, see [CCDWI0].



34 F. CARAVENNA, R. SUN, AND N. ZYGOURAS

Remark A.2. In (A.2), settinga=1,v=1, \:=f. = B loge r and D =1 gives (L.g),
since the constant term C. in (1.3) only shifts the solution deterministically.

We need the following scaling relation for the mollified white noise &°.

Lemma A.3. Let & be the space-time white noise on R x R? and let €5 := £ % j., where
je(z) = e72j(x/e). Then for any a >0 and v > 0, we have

E(vaa) B gh () (43)
in the sense that for all p € CP(R x R?),
f¢(t,x)§€(va2t,ax)dtdx = Q\FJ(é (t,2)€a (¢, z)dtd. (A.4)

Proof. Since both sides of (A.4)) are centered normal random variables, it suffices to check
that their variances equal. Note that

j o(t, )&% (a’vt, ax)dtdz = f o(t,x)e™ ](aac — y)g(a2ut,y)dtdxdy
€
RxR2 RxR2xR2
1 E TN T\ ) o
 atue? f (fd)(cﬂy’a)]( € )dx) §(t g)dtdy.
RxR2 R2
Therefore

v =g | (] < %W;%dffdfdﬂ
f qu (t, )] ))dx) dtdy.

RxR2 R2

On the other hand,
2

Y::aQiﬁ f qﬁ(t,x){i(t,x)dtdxzcﬂiﬁ f ¢(t,x);j<‘w>g(t,y)dtdxdy.

RxR2 RxR2xR2
Therefore
Var(Y) = —; f fqb ))daz> dtdy.
ve
RxR2 R2
Note that the two variances agree, so we are done. (I

Proof of Proposition For a,b,,3 > 0 to be chosen later, define
g(t,x) := by S LA (a’vt,azx).
By (A.1)), we have

= 1. = 1 = >
atw&l,lwéﬂ — 5Aw€,171752 + §‘V¢E71,1762‘2 + 658
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Therefore
g,1,1,82
(Z‘j(t,x) = a’vb awat(azyt,aw)
a*vb 1147, 2 a*vh £1,1,62/,2 2 2 g2
= TA¢E’ 1A% (aPut, ax) + T|V1/}‘€’ L85 (aut, ax) | + a?vbBEt (a’vt, ax)
dist V v £
= S0yt 2) + o [ Vg(t o) + bBVVEs (L),
(A.5)
where we used (|A.3)).
To find a, b, £ and 8 such that g solves (A.1)) with parameters v, A, D, they should satisfy
g v
=-, A=-—, D=0bp. A.
e=_. , Bv (A.6)
There fore we must have )
72 59 DX
b= X, g = ag, B = 7, (A?)
while we are free to choose a > 0. This proves ({A.2)). O

APPENDIX B. HYPERCONTRACTIVITY OF POLYNOMIAL CHAOS

We recall and refine the hypercontractivity property of polynomial chaos established in
IMOO10]. Let (&)qer be i.i.d. random variables, labeled by a countable set T, with

E[&G]=0, E[§]=1.

For every k € N, let X} be a multi-linear homogeneous polynomial of degree k in the &;’s, i.e.

Xpe= > r(D]]&, (B.1)
ICT: |I|=k 1€l
where fi(I) are real coefficients. For k = 0, let Xy = fy € R be a constant. Then for k > 1
E[X;] =0, E[XFl= ), fulD)? (B.2)
ICT: |I|=k

If we assume that

YooY R <o, (B.3)

keN ICT: |I|=k

then the series X := ZZO:O X, is easily seen to define an L? random variable. The next key

result allows to control higher moments of X in terms of second moments.

It is useful to allow the law of the &; = 5-(N) to depend on a parameter N € N.

Theorem B.1 (Hypercontractivity). For N € N, let (& = §§N))ieqr be i.i.d. such that
BgMl=0,  E(EVP1=1. Ime@e): Bl <o (B4)
€

Then, for every p € (2,po), there exists a constant ¢, € (1,00) with the following property:

for any choice of coefficients { fx(I)}ren, 1T, 1=k satisfying (B.3)), if we define Xy by (B.1),

then the p-th moment of the random variable X = ZZO:O X can be bounded as

E[ ;:Xk p] < <i(c’;)2E[X,f]>p/2, (B.5)

k=0
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with E[X?] given in (B.2)). The constant c, only depends on the laws of (ng)) and satisfies

lime, =1. B.6
lim. c, (B.6)

Except for relation , which we prove below, this theorem was proved in [MOOI0]
as an extension of the corresponding result in the Gaussian framework, see [J97]. In fact,
IMOO10l, Proposition 3.16] gave the following explicit bound on ¢:

=2V T =2/p— 1 sup EfjeM e,
S

and note that lim,jo ¢, = 2. This extra factor 2 is the byproduct of a non-optimal sym-
metrization argument in the proof in [MOO10]. We now prove .

Proof of equation (B.6). By [MOOI0, Section 3.2|, relation (B.F]) holds with constant ¢,
if the law of the random vairable £ = &; in (B.1)) is (2, p, 1/¢,)-hypercontractive, that is

|€ |p]1/p

VaeR: la + 4 §Hp la+&|2,

where | - [, := E[| - [P]"/? denotes the LP norm. Since we allow the law of £ = ¢(V) to depend
on N e N, it follows that we can characterize ¢, as follows:

cp=inf{c>1: Ja+ ™|, <Ja+eWM|, YaeR, VN eN}. (B.7)
For simplicity, we split the proof in two steps.

Step 1. We first consider the case of a fixed law for the random variable £ (independent of
N e N) satisfying (B.4]). In view of , we can rephrase our goal lim,, |2 ¢, = 1 as follows:

Ve>13p>2: Ja+tép,<fa+&f2 VaeR. (B.8)

We will first show that given ¢ > 1, we can find p = p.p, > 2 and K = K, p, > 0, such that
for all p € (2,p] and |a| > K, the inequality in (B.8]) holds. We will then find p € (2, p] such
that the inequality in (B.8) also holds for all |a| < K.

We first need an elementary estimate: for any pg € (2, 00) there exists C' = Cp, < o0 such
that, for all p € [2,po] and x € R,

1+ =14pr+ 282022 L R(z),  with  [R(z)| < C(jz A l2z[).  (B.9)

This follows by Taylor’s formula for |z| < 1 (say) and by the triangle inequality for |z| > 3.
We may assume that po € (2,3] in (B.4)) (just replace po by po A 3). Then for every 6 € R
with |§] <1 we can bound

[R(3€)| < C(IEF° A gl [a < C(1 + [g[™) o]
Since E[¢] = 0, it follows by (B.4) and that for every § € R with |0] < 1
E[|1 + 8¢6[P] = 1+ 22U 62 R[€2] 4+ r(5)  with  |r(8)] < C'6™, (B.10)
where C'=C), = C(1+E[g]).

Then, as |0] — 0,
|1+ 0€], = 1+ B2 62 E[€2] + O([6]7),
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uniformly for p € [2,pp]. This implies that as |a|] —

(p—DE[?] 1
la+1¢l, 1+ L&, 1t eEp + Olem)

- 1 o E[¢2
la+€le — 1+ Lef 1+ 5 + 0(s) (B.11)
S B[€Y
-1+ {1} g + Olhe).

Given ¢ > 1, we can take p = pcp, 1= min{l + ¢, po} > 2 so that uniformly in p € (2, p], the
term in bracket is bounded by ¢! — 1 < 0. Then the RHS of is < 1 for large |al, say
for |a| > K, where K = K, . < 00 only depends on ¢ and pg. This proves the inequality in
for all p e (2,p] and |a| > K.

To complete the proof, we now show that there exists p € (2, p] such that the inequality
in holds for |a| < K. If this is false, then for any sequence p,, € (2, pg] with p, | 2, we
can find a, € [- K, K] such that

|an + %f”pn > |lan +&J2 YneN. (B.12)

Extracting subsequences, we may assume that a, — a € [-K, K]. Since f(p,a) := |a+ 1¢|,
is a continuous function of (p,a) € [2,po] x [ K, K] (by dominated convergence), we may
take the limit of (B.12)) as n — oo and get

o+ Lels > a+ €l (B13)
which is a contradiction, since |a + 1¢||; = 1/a? + SE[¢?] < [la + ]2 (vecall that ¢ > 1).

Step 2. Next we allow the law of &£ = £€V) to depend on N € N. In view of (B.7), our goal
lim,|2 ¢, = 1 can be rephrased as follows:

Ve>13p>2: Ja+ieW|,<]la+&™M)y VYaeR, YNeN. (B.14)

We follow the same proof as in Step 1. We just need to check the uniformity in N € N.

Relation still holds with & replaced by ﬁ(N), where we stress that C' = Czl)o <
because we assume that sup ey E[|¢V)|P0] < o0, see (B-4). Then (B.11) holds as |a| — oo,
uniformly for p € [2,pp] and also for N € N. This proves that olds if we restrict
la| < K, for a suitable K = K, . depending only on ¢ > 1 and py.

It remains to fix ¢ > 1, K < oo and prove that holds, for some p > 2 and for every
la| < K. Arguing again by contradiction, assume now that there are sequences p,, € (2, po],
an € [-K, K], N,, € N, with p, | 2, such that

Jan + L0, > o + €M), VneN. (B.15)

Extracting subsequences, we may assume that a, — a € [—K, K], and also that £(Nn)
converges in law to a random variable £ (the sequence is tight, by ) Since |aN+%§(N") [P
are uniformly integrable, again by , we can take the limit of relation and we get
precisely , which we already showed to be a contradiction. O

APPENDIX C. GAUSSIAN CONCENTRATION IN THE CONTINUUM

We prove a Gaussian concentration result, based on [Led96, [Led01], which can be viewed
as a “one-sided version” of [FO10, Theorem 2] (cf. below with eq. (4) in [FO10]).

Given a probability measure p on a measurable space (E, E), we denote by s and p* the
inner and outer measures: p,(A) :=sup{u(A’): A’ < B, A’ € &} and p*(A4) =1 — . (A°).
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Theorem C.1. Let u be a Gaussian measure on a separable Banach space E, with Cameron-
Martin space Hﬂ Let f: E - R u {—w,+0} be convexr. For x € E with |f(x)| < o, define
the mazimal gradient |V f(z)| € [0,00] in the directions of H by (5.18]). Then

,u(f<a—t),u*(f>a,|Vf|<c)<e‘i(t/c)2 VaeR, Vt,ce (0,0). (C.1)

(The outer measure p* appears in ) to avoid the issue of measurability of |V f|.)

Let us denote by K := {h e H : HhHH 1} the unit ball in the Cameron-Martin space H.
Given a subset A € E, we define its enlargement A + 7K :={x +rh: z€ A, he K}. We
recall the classical concentration property established by Borell [Led96, Theorem 4.3]:

VA C E with 0 < u(A) < 1, setting a := &~ (u(A)),

C.2
px(A+7K) = ®(a+r1) Vr =0 (€2)

where ®(z) = {* \/1—” /2 4t is the standard Gaussian distribution function.

The proof of Theorem [C.1]is based on the following Lemma of independent interest, which
follows from (C.2). It is close to [Led01, Corollary 1.4] (see also [CTT17, Appendix B.1]).

Lemma C.2. For any measurable subset A € E, the following inequality holds:
wA) (1= pe(A+7K)) <e 1™ ¥r>0. (C.3)
Proof. We may assume 0 < p(A) < 1 (otherwise (C.3)) holds trivially) and we apply (C.2):
1= ps(A+7K) < 1—®(r+a) <e 20y >0, (C.4)

where zt := max{x,0} and we used the basic bound 1 — ®(z) < e~"/2 for z > 0.
Consider first the case p(A) > 3: then a = ®~(u(A)) > 0 and (r + a)™ > r, so (C3)

follows by (C-4) (just bound ju(A) < 1). Henceforth we take y(A) < 1, so a < 0. Note that

M(A) = ®(a) = 1~ ®(laf) < e 2" (C5)
Fix 7 > 0. If [a| > r, then (C.3)) follows by (C.5)) ( Just bound 1—px(A+7K) <1). If |a| <,
then (r +a)* = (r — |a|)4r = r — |a| and relations (C.4)-(C.F) yield
1(A) (1= ps(A+7K)) <e —gllal+r—laD?) ¢ < sup em2le?H =)} _ o=ir? O
zeR

Proof of Theorem Fix z, 2" € F such that h := 2’ —x € H. The function g : [0,1] —
R defined by g(s) := f((1 — )z + sz’) = f(z + sh) is convex (since f is convex), hence

F(a) ~ @) = 9(1) ~ 9(0) < /(1) o= tigg U= _ g TS 20)

Recalling (5.18)), we have shown that
f(@) = (@) < |V 2" — 2|u- (C.6)

Let us now set
:{f<a_t}v B:{f>a¢|vf|<c}

TThis means that H is a separable Hilbert space, continuously embedded as a dense subset of the
separable Banach space E, and p is a probability on F that can be described as follows: given any complete
orthonormal set (An)nen in H and given i.i.d. N(0,1) random variables (Z,)nen, the sequence of random
elements Xy := 22]:1 Zyn hy, converges a.s. in the space E, and p is the law on F of the limit X := )] Zin b,
The triple (H, E, p) is called an abstract Wiener space. We refer to [Led96] for more details.

neN
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In view of Lemma to prove ((C.1)) it suffices to show that for any r < é we have
Bc (A+71K)% ie. A+ 7K < B Sowe fix x € A, he H with |h]g < £ and we show that
x' :=x + h € B¢ Either f(2) < a, and then 2’ ¢ B, or f(2') > a, and then (by z € A)

@) =S _a—(a—t) ¢
L P e ST

hence again 2’ ¢ B. This completes the proof. O

APPENDIX D. STOCHASTIC INTEGRAL AS A LINEAR FUNCTION

We formulate a linearity result for the stochastic integral with respect to the white noise
€ = (£(2)) ,ere on R?, which is needed in the proof of Proposition Recall that the white
noise can be realized as a random element of a separable Banach space E of distributions on
R? (e.g. a negative Holder space), equipped with its Borel o-algebra. Denoting by u the law
of the white noise on E, we will use the probability space (F, i) as a canonical construction
of £. We also set H = L?(RY).

For any h € H, the stochastic integral (h, &) := {4 h(2) £(z) dz ~ N(0, |h|%) is a random
variable in L?(E, ), so it is not canonically defined for any given ¢ € E. The following
results guarantees the existence of a convenient version of (h,&).

Theorem D.1. [t is possible to define (h,&) as a jointly measurable of (h,§) € H x E, with
the following properties.

o (h, &) is a version of the stochastic integral (. h(2)&(2) dz, for every h e H.

e For any probability measure v on H, there is a measurable vector space V,, € E with
wVi) =1, Vo+H=1,,
such that the following property holds:
Ve eV, (hal+d '€y = alh,E)+a'(h, &y <o  forv-a.e. he H,Ya,a' e R. (D.1)

Remark D.2. Given any probability v on H, we can define f : E— R u {+00} by

f(&) = logj M9 y(dh) . (D.2)

H

This function is convex when restricted to the vector space V,, of Theorem by and
Hilder’s inequality. If we redefine f(§) := +oo for £ ¢V, we obtain a version of f (recall
that pu(V,,) = 1) which is convex on the whole space E.

This applies, in particular, to the function he(§) := loguy in the proof of Proposition
see (5.23)), with u§ = ujy ¢(0) defined in (5:16)). In this case R? = R and v is the law of
the process (B: j(Bs — ©))(s a)ef0.c-2)xr2 € L*(R'?).

Proof of Theorem [D.1l Fix a probability density o € C(R?) and set 0.(2) := e p(c™12).
Also fix a smooth cutoff function y : RY — [0, 1] with x(z) =1 for |z| < 1 and x(z) = 0 for
lz| > 2, and set x(z) := x(¢z). For any h e H = L?>(R%), we define h. € C*(R%) by

he(2) := xe(2) (e * h)(2) .

Since limg g [he — h|g = 0, we can find (¢, = €"),en such that |he, — h|g < 27" (We can

n
ensure that €/ is measurable in h, e.g. e := max{e € {} : ke N} : |he — h|lm <27"}.)
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For every n € N we have h., € C*(R?), hence the map

(h, &) = Chy n = (he, &) (D.3)
is canonically defined for any distribution £ € E, and is jointly measurable in (h,§) € H x E.
By the Ito isometry of the stochastic integral and Borel-Cantelli, for any fixed h € H we
have lim, o (h, E)n = (h,§) for p-a.e. £ € E. We can finally define the measurable map

lim,, ,o(h, &)y if the limit exists in R
400 otherwise ’

<h7€> =

For every n € N the maps & — (h, ), are linear, hence the limit map £ — (h, &) is linear
too whenever it is finite. More precisely, for every h € H and &, € E:

(h,§) <0, (h,() <o = <(hal+B¢) =alh,§) + Bh,() <o Va,feR. (D.4)
By construction, for every h € H we have (h, &) € L*(E, 1), so (h, &) < oo for p-a.e. £ € E.
If we now fix a probability v on H, and we define the measurable subset V,, € E by

V,:={¢eE: (h§& <o for v-ae. he H},

it follows by Fubini’s theorem that p(V,) = 1. Note that V,, + H = V,,, because {h, g) < oo for
all h,g € H. Finally, relation (D.4)) implies (D.1)), which shows that V,, is a vector space. [
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