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We study the 2d directed polymer in random environment in a novel
quasi-critical regime, which interpolates between the much studied sub-
critical and critical regimes. We prove Edwards-Wilkinson fluctuations
throughout the quasi-critical regime, showing that the diffusively rescaled
partition functions are asymptotically Gaussian. We deduce a corresponding
result for the critical 2d Stochastic Heat Flow. A key challenge is the lack of
hypercontractivity, which we overcome deriving new moment estimates.

1. Introduction. We study the 2d directed polymer in random environment, a key model
in statistical mechanics which has been the object of deep mathematical investigation (see
the recent monograph [C17]). More specifically, we focus on the partition functions and their
scaling limits, which have close links to singular stochastic PDEs, such as the Stochastic Heat
Equation and the KPZ equation, as we discuss in Subsection 1.4.

The partition functions of the 2d directed polymer in random environment are defined by

(1.1) Zω
N,βpzq :“ E

“

e
řN

n“1
tβωpn,Snq´λpβqu

ˇ

ˇS0 “ z
‰

,

where N P N is the system size, β ě 0 is the disorder strength, z P Z2 is the starting point,
and we have two independent sources of randomness:

• S “ pSnqně0 is the simple random walk on Z2 with law P and expectation E;
• ω “ pωpn, zqqnPN, zPZ2 are i.i.d. random variables with law P, independent of S, with

(1.2) Erωs “ 0 , Erω2s “ 1 , λpβq :“ logEreβωs ă 8 for β ą 0 .

The factor λpβq in (1.1) has the effect to normalise the expectation:

(1.3) E
“

Zω
N,βpzq

‰

“ 1 .

Note that pZω
N,βpzqqzPZ2 is a family of (correlated) positive random variables, depending on

the random variables ω which play the role of disorder (or random environment).

In this paper we investigate the diffusively rescaled partition functions Zω
N,βpt

?
Nxuq,

where t¨u denotes the integer part. For an integrable test function φ :R2 Ñ R we set

(1.4) Zω
N,βpφq :“

ż

R2

Zω
N,βpt

?
Nxuqφpxq dx“

1

N

ÿ

zPZ2

Zω
N,βpzqφN pzq ,

where for Rą 0 we define φR : Z2 Ñ R by

(1.5) φRpzq :“

ż

rz1,z1`1qˆrz2,z2`1q

φ
`

y
?
R

˘

dy for z “ pz1, z2q P Z2 .
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(note that φRpzq « φ
`

z?
R

˘

if φ is continuous). We look for the convergence in distribution
of Zω

N,βpφq as N Ñ 8, under an appropriate rescaling of the disorder strength β “ βN .

Notation. We denote by φ PCcpR2q the space of functions φ :R2 Ñ R that are continu-
ous and compactly supported. We write aN ! bN , aN „ bN , aN " bN to mean that the ratio
aN{bN converges respectively to 0,1,8 as N Ñ 8.

1.1. The phase transition. It is known since [CSZ17b] that the partition functions un-
dergo a phase transition on the scale β2 “ β2N “Op 1

logN q, that we now recall.
Let RN be the expected replica overlap of two independent simple random walks S,S1:

(1.6) RN :“ Eb2

„ N
ÿ

n“1

1tSn“S1
nu

ȷ

“

N
ÿ

n“1

PpS2n “ 0q “
logN

π
`Op1q ,

see the local limit theorem (3.8). Using the more convenient parameter

(1.7) σ2β :“ Varreβω´λpβqs “ eλp2βq´2λpβq ´ 1

(note that σβ „ β as β Ó 0, since λpβq „ 1
2β

2), we can rescale β “ βN as follows:

(1.8) σ2βN
“

β̂2

RN
„

β̂2 π

logN
, with β̂ P p0,8q .

Let us recall some key results on the scaling limit of Zω
N,βpφq from (1.4) for β “ βN .

• In the sub-critical regime β̂ ă 1, after centering and rescaling by
?
logN , the averaged

partition function Zω
N,βN

pφq is asymptotically Gaussian, see [CSZ17b]:1

(1.9) β̂ P p0,1q :
a

logN
␣

Zω
N,βN

pφq ´ ErZω
N,βN

pφqs
( d

ÝÝÝÝÑ
NÑ8

N
`

0 , vφ, β̂
˘

,

for an explicit limiting variance vφ, β̂ P p0,8q (which diverges as β̂ Ò 1).

• In the critical regime β̂ “ 1, actually in the critical window β̂2 “ 1 `
ϑ`op1q

logN with ϑ P R,
the averaged partition function Zω

N,βN
pφq is asymptotically non Gaussian, see [CSZ23]:

(1.10) β̂ “ 1 `
ϑ`op1q

logN : Zω
N,βN

pφq
d

ÝÝÝÝÑ
NÑ8

Z ϑpφq “

ż

R2

φpxqZ ϑpdxq ,

where Z ϑpdxq is a non-trivial random measure on R2 called the Stochastic Heat Flow.

Note that the sub-critical convergence (1.9) involves a rescaling factor
?
logN , while no

rescaling is needed for the critical convergence (1.10). In view of this discrepancy, it is nat-
ural to investigate the transition between these regimes.

1.2. Main result. To interpolate between the sub-critical regime β̂ ă 1 and the critical
regime β̂ “ 1, we consider a quasi-critical regime in which β̂ Ò 1 but slower than the critical
window β̂2 “ 1 `Op 1

logN q. Recalling (1.6) and (1.8), we fix β “ βN such that

(1.11) σ2βN
“

1

RN

ˆ

1 ´
ϑN

logN

˙

for some 1 ! ϑN ! logN .

1The result proved in [CSZ17b, Theorem 2.13] actually involves a space-time average, but the same result for
the space average as in (1.4) follows by similar arguments, see [CSZ20].
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(Note that ϑN “Op1q would correspond to the critical window, while ϑN “ p1 ´ β̂2q logN

with β̂ P p0,1q would correspond to the sub-critical regime.)
Our main result shows that the averaged partition function Zω

N,βN
pφq has Gaussian fluctu-

ations throughout the quasi-critical regime (1.11), after centering and rescaling by the factor?
ϑN , whose rate of divergence can be arbitrarily slow. This shows that non-Gaussian be-

havior does not appear before the critical regime. We call this result Edwards-Wilkinson
fluctuations in view of its link with stochastic PDEs, that we discuss in Subsection 1.4.

THEOREM 1.1 (Quasi-critical Edwards-Wilkinson fluctuations). Let Zω
N,βpφq denote the

diffusively rescaled and averaged partition function of the 2d directed polymer model, see
(1.1) and (1.4), for disorder variables ω which satisfy (1.2). Then, for pβN qNPN in the quasi-
critical regime, see (1.7) and (1.11), we have the convergence in distribution

(1.12) @φ PCcpR2q :
a

ϑN
␣

Zω
N,βN

pφq ´ ErZω
N,βN

pφqs
( d

ÝÝÝÝÑ
NÑ8

N
`

0 , vφ
˘

,

where the limiting variance is given by

(1.13) vφ :“

ż

R2ˆR2

φpxqKpx,x1qφpx1qdxdx1 with Kpx,x1q :“

ż 1

0

1

2u
e´

|x´x1|2

2u du .

The proof is given in Section 2. An interesting feature of the quasi-critical regime (1.7) is
that it can be used to approximate the Stochastic Heat Flow Z ϑpdxq as ϑÑ ´8, see (1.10).
As a consequence, we can transfer our main result (1.12) to the Stochastic Heat Flow, proving
the following version of Edwards-Wilkinson fluctuations as ϑÑ ´8.

THEOREM 1.2 (Edwards-Wilkinson fluctuations for the SHF). Denoting by Z ϑpdxq the
Stochastic Heat Flow in (1.10), as ϑÑ ´8 we have the convergence in distribution

(1.14) @φ PCcpR2q :
a

|ϑ|
␣

Z ϑpφq ´ ErZ ϑpφqs
( d

ÝÝÝÝÑ
ϑÑ´8

N
`

0 , vφ
˘

,

where the limiting variance vφ is the same as in (1.13).

In the rest of the introduction, we first describe the strategy of the proof of Theorem 1.1
and we compare it with the literature, notably with the proof of the corresponding result (1.9)
in the sub-critical regime, pointing out the novel challenges that we need to face. We then
discuss the connection of our main result (1.12) with stochastic PDEs, in the framework of
so-called Edwards-Wilkinson fluctuations, highlighting future perspectives.

1.3. Strategy of the proof and comparison with the literature. We prove Theorem 1.1 by a
Central Limit Theorem under a Lyapunov condition (see Section 2 for a detailed description),
which is close in spirit to the proof of (1.9) in [CC22] for the sub-critical regime. On the
other hand, the original proof of (1.9) in [CSZ17b] exploited the Fourth Moment Theorem,
by analysing each term in the polynomial chaos expansion of Zω

N,βN
pφq (see Subsection 3.1)

and checking that second and fourth moments match the ones of a Gaussian.
Both the approaches in [CC22, CSZ17b] require that the main contribution to the variance

comes from chaos of bounded order, i.e. the tail of the chaos expansion must be small in L2

(c.f. hypotesis (d) in [NouPec12, Theorem 6.3.1] for the Fourth Moment Theorem). This
holds in the sub-critical regime β̂ ă 1 but, crucially, it fails in the quasi-critical regime (1.11)
that we consider, where each fixed order chaos has variance converging to zero. The tail
of the chaos expansion thus gives the main contribution to the variance in the quasi-critical
regime, which is one of the main technical challenges we face in this paper.
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In our proof of Theorem 1.1, we will need to bound moments of the partition function
Zω
N,βN

pφq of order higher than two (to verify a Lyapunov condition). In the sub-critical
regime, such bounds can be obtained exploiting the hypercontractivity of polynomial chaos
expansions, as in [CC22]. However, this property fails in the quasi-critical regime (1.11) for
the same reason pointed out above, namely the tail of the chaos expansion is non negligible.

For this reason, we derive novel quantitative estimates on high moments of the partition
function, see Sections 4 and 5, extending the strategy developed in [GQT21, CSZ23, LZ21+].
We believe that these estimates will find several applications in future research.

REMARK 1.3. An alternative approach to bounding moments of the partition function
was developed in [CZ23] based on estimating the collision local time of multiple independent
random walks. This approach yields estimates on very high moments, whose order diverges as
N Ñ 8, but they are restricted to (a strict subset of) the sub-critical regime β̂ ă 1, hence they
do not cover the quasi-critical regime that we consider. We also point out the recent paper
[LZ24+], where bounds on very high moments are obtained in the critical regime (1.10).

Let us finally comment on the scaling factor
?
ϑN in our main result (1.12). This can be

determined by a variance computation: we show in Proposition 2.1, see (2.4), that as N Ñ 8

(1.15) Var
“

Zω
N,βN

pφq
‰

„
v2φ
ϑN

,

with vφ as in (1.13). We can explain heuristically the scaling in (1.15) as follows. Due to the
averaging on the diffusive scale

?
N determined by φN p¨q in (1.4), the variance of Zω

N,βN
pφq

is essentially determined by CovrZω
N,βN

pxq,Zω
N,βN

pyqs for |x´y| «
?
N . Such a covariance

is approximately given by the product of three factors (see (3.15) below):

• the expected number of times two independent random walks meet before time N starting
from x and y (see the term in brackets in (3.15)), which is of order 1;

• the factor σ2βN
„ 1{ logN arising from the variance of eβω´λpβq, see (1.7);

• the second moment of the partition function Zω
N,βN

pzq from a single point p1´σ2βN
RN q´1

(see the last fraction in (3.15)), which is of order logN {ϑN , see (1.11).

Combining these factors, we obtain VarrZω
N,βN

pφqs « 1{ϑN in agreement with (1.15).

1.4. Relevant context and future perspectives. The Gaussian fluctuations for Zω
N,βpφq in

Theorem 1.1 are closely connected to a stochastic PDE, the Edwards-Wilkinson equation,
also known as Stochastic Heat Equation with additive noise:

(1.16) Btv
ps,cqpt, xq “

s

2
∆xv

ps,cqpt, xq ` c 9W pt, xq ,

where s, c ą 0 are fixed parameters and 9W pt, xq is space-time white noise. This equation is
well-posed in any spatial dimension dě 1: its solution is the Gaussian process

vps,cqpt, xq “ vps,cqp0, xq ` c

ż t

0

ż

Rd

gspt´uqpx´ zq 9W pu, zq dudz ,

where gtpxq :“ p2πtq´d{2 e´
|x|2

2t is the heat kernel on Rd. It is known that x ÞÑ vps,cqpt, xq is
a (random) function only for d“ 1, while for dě 2 it is a genuine distribution.

Henceforth we focus on d“ 2. The solution vps,cqpt, ¨q with initial condition vps,cqp0, ¨q ”

0, averaged on test functions φ PCcpR2q, is the centered Gaussian process with covariance

E
“

vps,cqpt,φqvps,cqpt,ψq
‰

“

ż

R2ˆR2

φpxqK
ps,cq

t px, yqψpyq dxdy ,
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where we set

(1.17) K
ps,cq

t px, yq :“ c2
ż t

0
g2supx´ yq du“

c2

2s

ż 2st

0

1

2πu
e´

|x´y|2

2u du .

Comparing with (1.13), we can rephrase our main result (1.12): for any φ PCcpR2q

(1.18)
a

ϑN
␣

Zω
N,βN

pφq ´ ErZω
N,βN

pφqs
( d

ÝÝÝÝÑ
NÑ8

vps,cqp1,φq with

#

s “ 1
2 ,

c “
?
π .

In other term, the diffusively rescaled partition functions in the quasi-critical regime con-
verge, after centering and rescaling, to the solution of the Edwards-Wilkinson equation.

REMARK 1.4. Also relation (1.9), in the sub-critical regime β̂ P p0,1q, can be rephrased

as a convergence to the Edwards-Wilkinson solution vps,ĉqp1,φq with ĉ “
?
π β̂{

b

1 ´ β̂2.

The reason why stochastic PDEs emerge naturally in the study of directed polymers is
that, by the Markov property of simple random walk, the diffusively rescaled partition func-
tion uN pt, xq :“ Zω

tNtu,βpt
?
Nxuq solves (up to a time reversal) a discretized version of the

Stochastic Heat Equation with multiplicative noise:

(1.19) Btupt, xq “
1

2
∆xupt, xq ` β 9W pt, xqupt, xq ,

with initial condition up0, xq “ 1. This gives a hint how the Edwards-Wilkinson equation
(1.16) may arise in the scaling limit of directed polymer partition functions: intuitively, the
singular product 9W pt, xqupt, xq in (1.19) for upt, xq “ uN pt, xq converges to an independent
white noise as N Ñ 8 (see [CC22, Theorem 3.4] in the sub-critical regime).

Edwards-Wilkinson fluctuations were recently proved also for a non-linear Stochastic
Heat Equation, see [DG22, T22+], always in the sub-critical regime. It would be interest-
ing to extend these results in the quasi-critical regime, generalizing our Theorem 1.1.

REMARK 1.5. The multiplicative Stochastic Heat Equation (1.19) in the continuum is
well-posed in one space dimension d “ 1, e.g. by classical Ito-Walsh stochastic integration,
but it is ill-defined in higher dimensions d ě 2. For this reason, directed polymer partition
functions can provide precious insight on the equation (1.19). In particular, for d “ 2, their
scaling limit in the critical regime was obtained in [CSZ23] and called the critical 2d Stochas-
tic Heat Flow, see (1.10), as a natural candidate for the ill-defined solution of (1.19).

In the same spirit, the log-partition function hN pt, xq :“ logZω
tNtu,βpt

?
Nxuq provides a

discretized approximation for the Kardar-Parisi-Zhang (KPZ) equation [KPZ86]:

Bthpt, xq “
1

2
∆xhpt, xq `

1

2
|∇hpt, xq|2 ` β 9W pt, xq ,

with initial condition hp0, xq “ 0. This equation too, in the continuum, is only fully under-
stood in one space-dimension d“ 1, via recent breakthrough techniques of regularity struc-
tures [H14] or paracontrolled distributions [GIP15, GP17]; see also [GJ14, K16]. Similar to
(1.9), Edwards-Wilkinson fluctuations have been proved for hN pt, xq in the entire sub-critical
regime (1.8) with β̂ P p0,1q [CSZ20, G20, CD20]: for φ PCcpR2q

(1.20)
a

logN
␣

logZω
N,βN

pφq ´ ErlogZω
N,βN

pφqs
( d

ÝÝÝÝÑ
NÑ8

vps,ĉqp1,φq ,

with s, ĉ as in Remark 1.4. This was recently extended in [NN23], which focuses on a mol-
lification (rather than discretization) of the Stochastic Heat Equation (1.19): phrased in our
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setting, the results of [NN23] prove Gaussian fluctuations in the sub-critical regime for gen-
eral transformations F pZω

N,βN
q, besides F pzq “ log z, with general initial conditions.

It would be very interesting to extend (1.20) to the quasi-critical regime (1.11), namely to
prove an analogue of our Theorem 1.20 for logZω

N,βN
pφq, which we expect to hold. A natural

strategy would be to generalize the linearization procedure established in [CSZ20] to handle
the logarithm. This requires estimating negative moments of the partition function, which is
a challenge in the quasi-critical regime (since Zω

N,βN
pzq Ñ 0 for fixed z P Z2).

Local averages on sub-diffusive scales have also been investigated for the mollified KPZ
solution in the sub-critical regime, see [C23, T23+]. Similar results can be expected for the
mollified solution of the Stochastic Heat Equation (1.19), or for the directed polymer partition
function, which should be obtainable in the sub-critical regime as in [CSZ17b]. It would be
natural to study such local averages also in the quasi-critical regime.

We finally mention that Edwards-Wilkinson fluctuations like (1.9) and (1.20) have also
been obtained in higher dimensions d ě 3, in the so-called L2-weak disorder phase where
the partition function has bounded second moment [CN21, LZ22, CNN22, CCM21+], see
also the previous works [MU18, GRZ18, CCM20, DGRZ20]. Unlike the two-dimensional
setting, for d ě 3 the partition function admits a non-zero limit also beyond the L2-weak
disorder phase: see [J22, J22+] for recent results in this challenging regime. It would be
natural to investigate whether our approach can also be applied in higher dimensions dě 3,
in order to prove Gaussian fluctuations slightly beyond the L2-weak disorder phase.

1.5. Organization of the paper. The paper is structured as follows.

• In Section 2 we present the structure of the proof of Theorem 1.1 based on two key steps,
formulated as Propositions 2.1 and 2.3, and we prove Theorem 1.2.

• In Section 3 we prove Proposition 2.1.
• In Section 4 we derive upper bounds on the moments of the partition functions.
• In Section 5 we prove Proposition 2.3.
• Finally, some technical points are deferred to Appendix A.

2. Proof of Theorems 1.1 and 1.2. Let us call XN the LHS of (1.12): recalling (1.4)
and (1.3), we can write

XN :“
a

ϑN
␣

Zω
N,βN

pφq ´ ErZω
N,βN

pφqs
(

“

?
ϑN
N

ÿ

zPZ2

␣

Zω
N,βN

pzq ´ 1
(

φN pzq ,
(2.1)

with φN as in (1.5). In this section, we prove Theorem 1.1 via the following two main steps:

1. we first approximate XN in L2 by a sum
řM

i“1X
piq
N,M of independent random variables,

for M “MN Ñ 8 slowly enough;
2. we then show that the random variables pX

piq
N,M q1ďiďM for M “MN satisfy the assump-

tions of the classical Central Limit Theorem for triangular arrays.

2.1. First step. In order to define the random variablesXpiq
N,M , forM P N and 1 ď iďM ,

we introduce a variation of (1.1), for ´8 ăAăB ă 8:

(2.2) Zω
pA,Bs,βpzq :“ E

“

e
ř

nPpA,BsXNtβωpn,Snq´λpβqu
ˇ

ˇS0 “ z
‰

.



QUASI-CRITICAL FLUCTUATIONS FOR 2D DIRECTED POLYMERS 7

We then define Xpiq
N,M replacing Zω

N,β by Zω
p i´1

M
N, i

M
Ns,β

in the definition (2.1) of XN :

X
piq
N,M “

?
ϑN
N

ÿ

zPZ2

␣

Zω
p i´1

M
N, i

M
Ns,βN

pzq ´ 1
(

φN pzq .(2.3)

Note that Zω
pA,Bs,βpzq only depends on ωpn,xq forAă nďB, moreover ErZω

pA,Bs,βpzqs “ 1.

As a consequence, Xpiq
N,M for 1 ď iďM are independent and centered random variables.

The core of this first step is the following approximation result, proved in Section 3.

PROPOSITION 2.1 (L2 approximation). For pβN qNPN in the quasi-critical regime, see
(1.7) and (1.11), the following relations hold for any φ PCcpR2q, with vφ as in (1.13):

lim
NÑ8

E
“

X2
N

‰

“ vφ ,(2.4)

@M P N : lim
NÑ8

›

›

›

›

XN ´

M
ÿ

i“1

X
piq
N,M

›

›

›

›

L2

“ 0 .(2.5)

By general arguments, see [CC22, Remark 4.2], relation (2.5) still holds if M Ñ 8 slowly
enough as N Ñ 8. More precisely, there exists a sequence MN Ñ 8 such that

(2.6) lim
NÑ8

›

›

›

›

XN ´

MN
ÿ

i“1

X
piq
N,MN

›

›

›

›

L2

“ 0 for any MN ďMN .

PROOF OF (2.6). If we set αM̄,N :“ maxMďM̄ }XN ´
řM
i“1X

piq
N,M }L2 , it follows by (2.5) that for any

M̄ P N we have limNÑ8 αM̄,N “ 0, hence we can find pNM̄ P N such that αM̄,N ď 1{M̄ (say) for N ě pNM̄ ,

and we can take M̄ ÞÑ pNM̄ increasing. Given N P N, we call MN the largest M̄ P N for which N ě pNM̄ ,
that is MN :“ maxtM̄ P N : pNM̄ ď Nu. This ensures that α

MN ,N
ď 1{MN , hence α

MN ,N
Ñ 0 as N Ñ 8

because MN Ñ 8. The definition of αM̄,N then directly implies (2.6).

Relation (2.6) shows that we can approximate XN in L2 by a sum of independent and
centered random variables. We then obtain, by (2.4),

(2.7) lim
NÑ8

E

«˜

MN
ÿ

i“1

X
piq
N,MN

¸2ff

“ lim
NÑ8

MN
ÿ

i“1

E
”

`

X
piq
N,MN

˘2
ı

“ vφ .

REMARK 2.2. A decomposition of the partition function is employed in the recent paper
[CD24+] to give an alternative proof of the asymptotic log-normality of the partition function
in the sub-critical regime. In our decomposition (2.5), each individual piece Xpiq

N,M for i “

1, . . . ,M contributes on the order of 1
M to the total limiting variance vφ (see Lemma 3.2).

The same holds for the decomposition in [CD24+].
There are, however, key differences: the decomposition in [CD24+] is multiplicative

whereas ours is additive, as seen in (2.5); additionally, the decomposition in [CD24+] is
based on the exponential time scale N

i

M , while ours is defined on the linear time scale i
MN ,

reflecting the different limits that are obtained (log-normal vs. normal).
We also point out that analogous decompositions —both in linear and exponential time

scales— had already been used in [CC22].
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2.2. Second step. Recalling (2.1), we can rephrase our goal (1.12) as XN
d

Ñ N p0, vφq.
In view of (2.6), this follows if we prove the convergence in distribution

(2.8)
MN
ÿ

i“1

X
piq
N,MN

d
ÝÝÝÝÑ
NÑ8

N
`

0 , vφ
˘

.

Since pX
piq
N,MN

q1ďiďMN
are independent and centered, we apply the classical Central Limit

Theorem for triangular arrays, see e.g. [Bil95, Theorem 27.3]: since we have convergence of
the variance by (2.7), it is enough to check the Lyapunov condition

(2.9) for some pą 2 : lim
NÑ8

MN
ÿ

i“1

E
”

ˇ

ˇX
piq
N,MN

ˇ

ˇ

p
ı

“ 0 .

This follows from the next result, proved in Section 4, where we focus on the case p“ 4.

PROPOSITION 2.3 (Fourth moment bound). For pβN qNPN in the quasi-critical regime,
see (1.7) and (1.11), and for any φ PCcpR2q, there is a constant C ă 8 such that

(2.10) @M P N , @1 ď iďM : limsup
NÑ8

E
”

`

X
piq
N,M

˘4
ı

ď
C

M2
.

Since the constant C in (2.10) does not depend on M , we can let MN Ñ 8 slowly enough
and the estimate will still hold if the RHS is doubled, say. More precisely, there exists a
sequence M 1

N Ñ 8 such that

(2.11) max
1ďiďMN

E
”

`

X
piq
N,MN

˘4
ı

ď
2C

M2
N

for any MN ďM 1
N .

PROOF OF (2.11). If we call αM,N :“ max1ďiďM ErpX
piq
N,M q

4
s, then by (2.10), for any M P N, there is

pNM P N such that αM,N ď 2C
M2 for all N ě pNM . We can take M ÞÑ pNM increasing, and setting M 1

N :“

maxtM P N : pNM ď Nu we see that M ď M 1
N is the same as N ě pNM , and limNÑ8 M 1

N “ 8.

If we finally take MN “ mintMN ,M 1
Nu, both estimates (2.6) and (2.11) hold. This shows

that (2.9) holds with p“ 4 (the sum therein is ď 2C{MN Ñ 0 as N Ñ 8).

The proof of Theorem 1.1 is then completed once we prove Propositions 2.1 and 2.3. The
next sections are devoted to these tasks.

2.3. Proof of Theorem 1.2. Recalling (1.8), we define for ϑ P R and N P N the value
βcritN pϑq such that

σ2βcrit
N pϑq :“

1

RN

`

1 `
ϑ

logN

˘

.

Then we can rephrase (1.10) as follows:

(2.12) @φ PCcpR2q , @ϑ P R : Zω
N,βcrit

N pϑqpφq
d

ÝÝÝÝÑ
NÑ8

Z ϑpφq .

Let us fix φ P CcpR2q and an artbitrary negative sequence ϑk ă 0 such that ϑk Ñ ´8. It
is enough to prove (1.14) along ϑk, that is, for any fixed continuous and bounded f :R Ñ R,

(2.13) E
”

f
´

a

|ϑk|
␣

Z ϑkpφq ´
ş

φ
(

¯ı

ÝÝÝÑ
kÑ8

E
“

f
`

N
`

0 , vφ
˘˘‰

,
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where we have replaced ErZ ϑpφqs “
ş

φ by properties of the Stochastic Heat Flow, and we
also note that ErZω

N,βpφqs “
ř

zPZ2 φN pzq “
ş

φ by construction, see (1.5).
The idea is, for any fixed k P N, to take Nk P N large enough so that, by (2.12), we can

approximate Z ϑkpφq with Zω
Nk,βcrit

Nk
pϑq

pφq in the LHS of (1.14), more precisely

(2.14)
ˇ

ˇ

ˇ
E
”

f
´

a

|ϑk|
␣

Z ϑkpφq ´
ş

φ
(

¯ı

´ E
”

f
´

a

|ϑk|
␣

Zω
Nk,βcrit

Nk
pϑkqpφq ´

ş

φ
(

¯ıˇ

ˇ

ˇ
ď

1

k
.

By possibly enlarging Nk, we assume that Nk ě ek|ϑk| which ensures |ϑk| ď 1
k logNk !

logNk as k Ñ 8. Writing ϑk “ ´|ϑk| since ϑk ă 0, we have

βcritNk
pϑkq “ 1

RNk

`

1 ´
|ϑk|

logNk

˘

with 1 ! |ϑk| ! logNk .

This means that βcritNk
pϑkq is in the quasi-critical regime (1.11), hence we can apply our main

result (1.12) and deduce that

E
”

f
´

a

|ϑk|
␣

Zω
Nk,βcrit

Nk
pϑkqpφq ´

ş

φ
(

¯ı

ÝÝÝÑ
kÑ8

E
“

f
`

N
`

0 , vφ
˘˘‰

.

Recalling (2.14), we obtain our goal (2.13).

3. Second moment bounds: proof of Proposition 2.1. In this section we prove Propo-
sition 2.1 exploiting a polynomial chaos expansion of the partition function. We fix pβN qNPN
in the quasi-critical regime, see (1.7) and (1.11), and φ P CcpR2q. We denote by C,C 1, . . .
generic constants that may vary from place to place.

3.1. Polynomial chaos expansion. The partition function admits a key polynomial chaos
expansion [CSZ17a]. Let us define, for β ą 0,

(3.1) ξβpn,xq :“ eβωpn,xq´λpβq ´ 1 , for n P N , x P Z2 .

Recalling (1.7), we note that pξβpn,xqqnPN,xPZ2 are independent random variables with

(3.2) Erξβs “ 0 , Erξ2βs “ σ2β , Er|ξβ|ks ďCk σ
k
β @k ě 2 ,

for some Ck ă 8 (for the bound on Er|ξβ|ks see, e.g., [CSZ17a, eq. (6.7)]).
We denote by qnpxq the random walk transition kernel:

(3.3) qnpxq :“ PpSn “ x |S0 “ 0q .

Then, writing e
ř

ntβωpn,xq´λpβqu “
ś

np1 ` ξβpn,xqq and expanding the product, we can
write Zω

pA,Bs,βpzq in (2.2) as the following polynomial chaos expansion:

Zω
pA,Bs,βpzq “ 1 `

8
ÿ

k“1

ÿ

Aăn1ă...ănkďB
x1,...,xkPZ2

qn1
px1 ´ zq ξβpn1, x1qˆ

ˆ

k
ź

j“2

qnj´nj´1
pxj ´ xj´1q ξβpnj , xjq ,

(3.4)

where we agree that the time variables n1 ă . . . ă nk are summed in the set pA,Bs X Z (in
particular, the seemingly infinite sum over k can be stopped at B ´A).

Plugging (3.4) into (2.1), we obtain a corresponding polynomial chaos expansion for XN ,
recall (2.1) and (1.5): if we define the averaged random walk transition kernel

(3.5) qφnpxq :“
ÿ

zPZ2

qnpx´ zqφpzq , for φ : Z2 Ñ R ,
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we obtain
(3.6)

XN “

?
ϑN
N

8
ÿ

k“1

ÿ

0ăn1ă...ănkďN
x1,...,xkPZ2

qφN
n1

px1q ξβN
pn1, x1q

k
ź

j“2

qnj´nj´1
pxj ´ xj´1q ξβN

pnj , xjq .

The analogous polynomial chaos expansion for the random variables Xpiq
N,M , see (2.3), is

obtained from (3.6) restricting the sum to i´1
M N ă n1 ă . . .ă nk ď i

MN :

(3.7)

X
piq
N,M “

?
ϑN
N

8
ÿ

k“1

ÿ

i´1

M
Năn1ă...ănkď i

M
N

x1,...,xkPZ2

qφN
n1

px1q ξβN
pn1, x1q ˆ

ˆ

k
ź

j“2

qnj´nj´1
pxj ´ xj´1q ξβN

pnj , xjq .

REMARK 3.1. Since the random variables pξβpn,xqqnPN,xPZ2 are independent and cen-
tered, see (3.1), the terms in the polynomial chaos (3.4), (3.6), (3.7) are orthogonal in L2.

We finally recall the local limit theorem for the simple random walk on Z2, see [LL10,
Theorem 2.1.3]: as nÑ 8, uniformly for x P Z2 we have2

(3.8) qnpxq “
1

n{2

´

g
´

x?
n{2

¯

` op1q

¯

21pn,xqPZ3
even

, where gpyq :“
e´ 1

2
|y|2

2π
,

and we set Z3
even :“

␣

y “
`

y1, y2, y3
˘

P Z3 : y1 ` y2 ` y3 P 2Z
(

.

3.2. Proof of Proposition 2.1. Note that
řM

i“1X
piq
N,M is a polynomial chaos where all

time variables n1 ă . . . ă nk belong to one of the intervals p i´1
M N , i

MN s, see (3.7). It fol-
lows that XN is a larger polynomial chaos than

řM
i“1X

piq
N,M , i.e. it contains more terms,

hence the difference XN ´
řM

i“1X
piq
N,M is orthogonal in L2 to

řM
i“1X

piq
N,M (see Remark 3.1):

›

›

›

›

XN ´

M
ÿ

i“1

X
piq
N,M

›

›

›

›

2

L2

“
›

›XN

›

›

2

L2 ´

›

›

›

›

M
ÿ

i“1

X
piq
N,M

›

›

›

›

2

L2

“
›

›XN

›

›

2

L2 ´

M
ÿ

i“1

›

›X
piq
N,M

›

›

2

L2 .

As a consequence, to prove our goals (2.4) and (2.5) it is enough to show that

(3.9) lim
NÑ8

E
“

X2
N

‰

“ vφ , @M P N : lim
NÑ8

M
ÿ

i“1

E
”

`

X
piq
N,M

˘2
ı

“ vφ ,

where we recall that vφ is defined in (1.13). The first relation in (3.9) follows from the second
one, because XN “X

p1q

N,1. Then the proof is completed by the next result.

LEMMA 3.2 (Quasi-critical variance). Fix pβN qNPN in the quasi-critical regime, see
(1.7) and (1.11), and φ PCcpR2q. For any M P N, the following holds for all i“ 1, . . . ,M :
(3.10)

lim
NÑ8

E
“`

X
piq
N,M

˘2‰
“ vφ, p i´1

M
, i

M
s :“

ż

R2ˆR2

φpxqφpx1q

ˆ
ż i

M

i´1

M

1

2u
e´

|x´x1|2

2u du

˙

dxdx1 .

2The scaling factor in (3.8) is n{2 because the covariance matrix of the simple random walk on Z2 is 1
2I ,

while the factor 21pm,zqPZ3
even

is due to periodicity.
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PROOF. Let us fix M P N and 1 ď iďM . We split the proof of (3.10) in the two bounds

(3.11) limsup
NÑ8

E
”

`

X
piq
N,M

˘2
ı

ď vφ, p i´1

M
, i

M
s

and

(3.12) lim inf
NÑ8

E
”

`

X
piq
N,M

˘2
ı

ě vφ, p i´1

M
, i

M
s .

We first obtain an exact expression for the second moment of Xpiq
N,M by (3.7): since the

random variables ξβpn,xq are independent with zero mean and variance σ2β , we have

E
”

`

X
piq
N,M

˘2
ı

“
ϑN
N2

8
ÿ

k“1

pσ2βN
qk

ÿ

i´1

M
Năn1ă...ănkď i

M
N

x1,...,xkPZ2

qφN
n1

px1q2
k
ź

j“2

qnj´nj´1
pxj ´ xj´1q2 .

We can sum the space variables xk, xk´1, . . . , x2 because
ř

xPZ2 qnpxq2 “ q2np0q, see (3.3),
while to handle the sum over x1 we note that, recalling (3.5),

(3.13)
ÿ

xPZ2

qφnpxq2 “ qφ,φ2n where we set qφ,φm :“
ÿ

z,z1PZ2

qmpz ´ z1qφpzqφpz1q .

We then obtain

(3.14) E
”

`

X
piq
N,M

˘2
ı

“ ϑN

8
ÿ

k“1

pσ2βN
qk

ÿ

i´1

M
Năn1ă...ănkď i

M
N

qφN ,φN

2n1

N2

k
ź

j“2

q2pnj´nj´1qp0q .

We then prove the upper bound (3.11). We rename n1 “ n and enlarge the sum over the
other time variables n2, . . . , nk, by letting each increment mj :“ nj ´ nj´1 for j “ 2, . . . , k

vary in the whole interval p0,N s: since
řN

m“1 q2mp0q “RN , see (1.6), we obtain

E
”

`

X
piq
N,M

˘2
ı

ď ϑN
ÿ

i´1

M
Nănď i

M
N

qφN ,φN

2n

N2

8
ÿ

k“1

pσ2βN
qkpRN qk´1

“ ϑN

#

ÿ

i´1

M
Nănď i

M
N

qφN ,φN

2n

N2

+

¨ σ2βN
¨

1

1 ´ σ2βN
RN

,(3.15)

where we summed the geometric series since σ2βN
RN “ 1´ ϑN

logN ă 1 for large N , by (1.11).
We will prove the following Riemann sum approximation, for any given 0 ď aă bď 1:

(3.16) lim
NÑ8

ÿ

aNănďbN

qφN ,φN

2n

N2
“

ż

R2ˆR2

φpxqφpx1q

ˆ
ż b

a

1

u
g

ˆ

x´ x1

?
u

˙

du

˙

dxdx1 ,

where gpyq “ 1
2π e´ 1

2
|y|2 is the standard Gaussian density on R2, see (3.8). Plugging this into

(3.15), since 1 ´ σ2βN
RN “ ϑN

logN and σ2βN
„ 1

RN
„ π

logN as N Ñ 8 by (1.11) and (1.6), we

obtain precisely the upper bound (3.11) (note that π 1
u gpx´x1

?
u

q “ 1
2u expp´

|x´x1|2

2u q).

Let us now prove (3.16). This is based on the local limit theorem (3.8) as n Ñ 8, hence
the case a “ 0 could be delicate, as the sum in (3.16) starts from n “ 1 and, therefore, n
needs not be large. For this reason, we first show that small values of n are negligible for
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(3.16). Since φ is compactly supported, when we plug f “ φN into qf,f2n , see (3.13), we can
restrict the sums to |z1| ďC

?
N , which yields the following uniform bound:

(3.17) @m P N : |qφN ,φN
m | ď }φ}28

ÿ

|z1|ďC
?
N

ÿ

zPZ2

qmpz ´ z1q ďC 1 }φ}28N .

In particular, the contribution of nď εN to the LHS of (3.16) is Opεq. As a consequence, it
is enough to prove (3.16) when aą 0, which we assume henceforth.

Recalling (3.13) and applying (3.8), we can write the LHS of (3.16) as follows:
ÿ

aNănďbN

qφN ,φN

2n

N2
“

1

N2

ÿ

aNănďbN

ÿ

z,z1PZ2:
pn,z´z1qPZ3

even

2

n

´

g
´

z´z1
?
n

¯

` op1q

¯

φ
`

z?
N

˘

φ
`

z1
?
N

˘

,

where op1q Ñ 0 as N Ñ 8 (because n ą aN Ñ 8 and we assume a ą 0). The additive
term op1q gives a vanishing contribution as N Ñ 8, because we can bound 2

n ď 2
aN and

|φp¨q| ď }φ}8, and the sums contain OpN3q terms (since |z|, |z1| ď C
?
N ). Introducing the

rescaled variables u :“ n
N and x :“ z?

N
, x1 :“ z1

?
N

, we can then rewrite the RHS as

1

N3

ÿ

uPpa,bsX N
N

ÿ

x,x1P Z2
?

N
:

pNu,
?
Npx´x1qqPZ3

even

2

u

´

g
´

x´x1
?
u

¯¯

φpxqφpx1q ` op1q ,

which is a Riemann sum for the integral in the RHS of (3.16). Note that the restriction
pNu,

?
Npx ´ x1qq P Z3

even effectively halves the range of the sum: indeed, for any given
u and x, the sum over x1 “ z1

?
N

P Z2
?
N

is restricted to points z1 P Z2 with a fixed parity (even
or odd, depending on u,x). This restriction is compensated by the multiplicative factor 2,
which disappears as we let N Ñ 8. This completes the proof of (3.16).

We finally prove the lower bound (3.12). We fix ε ą 0 small enough and we bound the
RHS of (3.14) from below as follows:

• we rename n“ n1 and we restrict its sum to the interval
`

i´1
M N , p1 ´ εq i

MN
‰

;
• for k ě 2, we introduce the “displacements” mj :“ nj ´n1 from n1, for j “ 2, . . . , k, and

we restrict the sum over n2, . . . , nk to the set 0 ăm2 ă . . .ămk ď ε i
MN .

We thus obtain by (3.14)

E
”

`

X
piq
N,M

˘2
ı

ě ϑN
ÿ

i´1

M
Nănďp1´εq i

M
N

qφN ,φN

2n

N2
ˆ

ˆ

˜

σ2βN
`

8
ÿ

k“2

pσ2βN
qk

ÿ

0ăm2ă...ămkďε i

M
N

q2m2
p0q

k
ź

j“3

q2pmj´mj´1qp0q

¸

.

(3.18)

We now give a probabilistic interpretation to the sum over m2, . . . ,mk: following
[CSZ19a] and recalling (1.6), given N P N we define i.i.d. random variables pT

pNq

i qiPN with
distribution

(3.19) P
`

T
pNq

i “ n
˘

“
q2np0q

RN
1t1,...,Nupnq ,
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so that the second line of (3.18) can be written, renaming ℓ“ k ´ 1, as

σ2βN

˜

1 `

8
ÿ

ℓ“1

pσ2βN
RN qℓP

´

T
pNq

1 ` . . .` T
pNq

ℓ ď ε i
MN

¯

¸

“ σ2βN

˜

1

1 ´ σ2βN
RN

´

8
ÿ

ℓ“1

pσ2βN
RN qℓP

´

T
pNq

1 ` . . .` T
pNq

ℓ ą ε i
MN

¯

¸

.

(3.20)

Plugging this into (3.18) and recalling (3.17), we obtain

E
”

`

X
piq
N,M

˘2
ı

ěϑN

#

ÿ

i´1

M
Nănďp1´εq i

M
N

qφN ,φN

2n

N2

+

σ2βN

1 ´ σ2βN
RN

´
`

C 1 }φ}28

˘

ϑN σ
2
βN

8
ÿ

ℓ“1

pσ2βN
RN qℓP

´

T
pNq

1 ` . . .` T
pNq

ℓ ą ε
MN

¯

.

(3.21)

The first term in the RHS is similar to (3.15), just with p1 ´ εq i
M instead of i

M , therefore we
already proved that it converges to vφ, p i´1

M
,p1´εq i

M
s as N Ñ 8, see (3.16) and the following

lines (recall also (3.10)). Letting ε Ó 0 after N Ñ 8 we recover vφ, p i´1

M
, i

M
s, hence to prove

(3.12) we just need to show that the second term in the RHS of (3.21) is negligible:

(3.22) lim
NÑ8

ϑN σ
2
βN

8
ÿ

ℓ“1

pσ2βN
RN qℓP

´

T
pNq

1 ` . . .` T
pNq

ℓ ą ε
MN

¯

“ 0 .

Recall that the random variables pT
pNq

i qiPN are i.i.d. with distribution (3.19). Since
q2np0q ď C

n by the local limit theorem (3.8), we have ErT
pNq

i s “ 1
RN

řN
n“1 nq2np0q ď C N

RN

and, by Markov’s inequality, we can bound

P
´

T
pNq

1 ` . . .` T
pNq

ℓ ą ε
MN

¯

ď
E
“

T
pNq

1 ` . . .` T
pNq

ℓ

‰

ε
MN

ď
C ℓ
ε
M RN

.

Since
ř8

ℓ“1 ℓx
ℓ “ x

p1´xq2
, we obtain

ϑN σ
2
βN

8
ÿ

ℓ“1

pσ2βN
RN qℓP

´

T
pNq

1 ` . . .` T
pNq

ℓ ą ε
MN

¯

ď ϑN σ
2
βN

C
ε
M RN

σ2βN
RN

p1 ´ σ2βN
RN q2

“
CM

ε

ϑN pσ2βN
q2

p1 ´ σ2βN
RN q2

.

Note that 1 ´ σ2βN
RN “ ϑN

logN and σ2βN
„ 1

RN
„ π

logN by (1.11) and (1.6), hence the last

term is asymptotically equivalent to CM
ε

π2

ϑN
Ñ 0 as N Ñ 8, since ϑN Ñ 8, see (1.11). This

shows that (3.22) holds and completes the proof of Proposition 2.1.

4. General moment bounds. In this section we estimate the moments of the partition
function Zω

L,β through a refinement of the operator approach from [CSZ23, Theorem 6.1] and
[LZ21+, Theorem 1.3] (inspired by [GQT21]). We point out that these papers deal with the
critical and sub-critical regimes, while we are interested the quasi-critical regime (1.11).

For transparency, and in view of future applications, we develop in this section a non
asymptotic approach which is independent of the regime of β: we obtain bounds with explicit
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constants which hold for any given system size L and disorder strength β. Some novelties
with respect to [CSZ23, LZ21+] are described in Remarks 4.4, 4.7, 4.9. These bounds will
be crucially applied in Section 5 to prove Proposition 2.3.

The section is organised as follows:

• in Subsection 4.1 we give an exact expansion for the moments, see Theorem 4.5, in terms
of suitable operators linked to the random walk and the disorder;

• Subsection 4.2 we deduce upper bounds for the moments, see Theorems 4.8 and 4.11,
which depend on two pairs of quantities, that we call boundary terms and bulk terms;

• in Subsection 4.3 we state some basic random walk bounds needed in our analysis (we
consider general symmetric random walks with sub-Gaussian tails);

• in Subsections 4.4 and 4.5 we obtain explicit estimates on the boundary terms and bulk
terms, which plugged in Theorem 4.11 yield explicit bounds on the moments.

4.1. Moment expansion. The partition function Zω
pA,Bs,βpzq in (2.2) is called “point-to-

plane”, since random walk paths start at S0 “ z but have no constrained endpoint. We intro-
duce a “point-to-point” version, for simplicity when pA,Bs “ p0,Ls for L P N, restricting to
random walk paths with a fixed endpoint SL “w:

(4.1) Zω
L,βpz,wq :“ E

”

e
řL´1

n“1
tβωpn,Snq´λpβqu 1tSL“wu

ˇ

ˇ

ˇ
S0 “ z

ı

(we stop the sum at n“ L´ 1 for later convenience).
Given two “boundary conditions” f, g : Z2 Ñ R, we define the averaged version

(4.2) Zω
L,βpf, gq :“

ÿ

z,wPZ2

fpzqZω
L,βpz,wqgpwq ,

where we use a different font to avoid confusions with the diffusively rescaled average (1.4).
We focus on the centred moments of Zω

L,βpf, gq, that we denote by

(4.3) Mh
L,βpf, gq :“ E

”

`

Zω
L,βpf, gq ´ ErZω

L,βpf, gqs
˘h
ı

for h P N .

REMARK 4.1. Recalling the definition (2.3) of Xpiq
N,M , we have the equality in law

(4.4) X
piq
N,M

d
“

?
ϑN
N

Zω
L,βN

pf, gq for suitable L,f, g .

More precisely, in view of the translated partition function Zω
p i´1

M
N, i

M
Ns,βN

appearing in (2.3),
relation (4.4) holds if we choose:

• L“ i
MN ´ i´1

M N “ N
M by translation invariance;

• f “ qφN
i´1

M
N

, that is f is the function φN from (2.3) “evolved from time 0 to time i´1
M N

under the random walk”, i.e. convolved with the random walk kernel q i´1

M
N as in (3.5);

• g ” 1.

We can thus write

(4.5) E
”

pX
piq
N,M q4

ı

“
ϑ2N
N4

M4
N

M
,βN

pfi, gq , where

#

fpzq :“ qφN
i´1

M
N

pzq ,

gpwq :“ 1 .

To prove Proposition 2.3, in Section 5 we will focus on M4
L,βpf, gq.
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Henceforth we fix h P N with h ě 2 (the interesting case is h ě 3). We are going to give
an exact expression for Mh

L,βpf, gq, see Theorem 4.5. We first need some notation.

We denote by I $ t1, . . . , hu a partition of t1, . . . , hu, i.e. a family I “ tI1, . . . , Imu of
non empty disjoint subsets Ij Ď t1, . . . , hu with I1 Y . . .Y Im “ t1, . . . , hu. We single out:

• the unique partition I “ ˚ :“ tt1u, t2u, . . . , thuu composed by all singletons;
• the

`

h
2

˘

partitions of the form I “ tta, bu, tcu : c‰ a, c‰ bu, that we call pairs.

EXAMPLE 4.2 (Cases h“ 2,3,4). All partitions I $ t1,2u are I “ ˚ and I “ tt1,2uu.
All partitions I $ t1,2,3u are I “ ˚, three pairs I “ tta, bu, tcuu and I “ tt1,2,3uu.
All partitions I $ t1,2,3,4u are I “ ˚, six pairs I “ tta, bu, tcu, tduu, three double pairs

I “ tta, bu, tc, duu, four triples I “ tta, b, cu, tduu and the quadruple I “ tt1,2,3,4uu.

Given a partition I “ tI1, . . . , Imu $ t1, . . . , hu, we define for x “ px1, . . . , xhq P pZ2qh

x „ I if and only if

#

xa “ xb if a, b P Ii for some i ,

xa ‰ xb if a P Ii, b P Ij for some i‰ j with |Ii|, |Ij | ě 2 .
(4.6)

For instance x „ tt1,2u, t3u, t4uu means x1 “ x2, while x „ tt1,2u, t3,4uu means x1 “ x2

and x3 “ x4 with x1 ‰ x3. Note that x „ ˚ imposes no constraint. We also define

(4.7) pZ2qhI :“
␣

x P pZ2qh : x “ px1, . . . , xhq „ I
(

,

which is essentially a copy of pZ2qm embedded in pZ2qh, because x „ I “ tI1, . . . , Imu

means that we only have m “free” variables, one for each component Ii.
A family I1, . . . , Ir of partitions Ii “ tI1i , . . . , I

mi

i u $ t1, . . . , hu is said to have full support
if any a P t1, . . . , hu belongs to some partition Ii not as a singleton, i.e. a P Iji with |Iji | ě 2.

EXAMPLE 4.3 (Full support for h“ 4). A single partition I1 $ t1,2,3,4u with full sup-
port is either the quadruple I1 “ tt1,2,3,4uu or a double pair I1 “ tta, bu, tc, duu. There are
many families of two partitions I1, I2 $ t1,2,3,4u with full support, for instance two non
overlapping pairs such as I1 “ tt1,3u, t2u, t4uu, I2 “ tt2,4u, t1u, t3uu.

We now introduce h-fold analogues of the random walk transition kernel (3.3) and of its
averaged version (3.5): given partitions I, J $ t1, . . . , hu, we define for x,z P pZ2qh

(4.8) QI,J
n pz,xq :“ 1tz„I,x„Ju

h
ź

i“1

qnpxi ´ ziq , qf,Jn pxq :“ 1tx„Ju

h
ź

i“1

qfnpxiq .

Given m P N0 and J $ t1, . . . , hu with J ‰ ˚, we define for x,z P pZ2qh the weighted
Green’s kernel

(4.9) UJ
m,βpz,xq :“

$

’

’

’

’

&

’

’

’

’

%

8
ÿ

k“1

`

ErξJβ s
˘k

ÿ

0“:n0ăn1ă¨¨¨ănk:“m
y1,...,yk´1PpZ2qh

y0:“z , yk:“x

k
ź

i“1

QJ,J
ni´ni´1

pyi´1,yiq if mě 1 ,

1tz“x„Ju if m“ 0 ,

where the outer sum is actually finite (k ďm by the constraints on the ni’s) and we define

(4.10) ErξJβ s :“
ź

i: |Ji|ě2

Erξ
|Ji|

β s for J “ tJ1, . . . , J ℓu with J ‰ ˚ .

When J is a pair, this reduces to ErξJβ s “ Erξ2βs “ σ2β , see (3.2).
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REMARK 4.4 (On the definition of UJ ). We point out that UJ was only defined in
[CSZ23, LZ21+] when J is a pair. Defining UJ for any partition J makes formulas sim-
pler, as it avoids to distinguish between pairs and non-pairs in the sums (4.13) and (4.19).

For a pair J “ tta, bu, tcu : c ‰ a, bu, since x „ J for x “ px1, . . . , xhq P pZ2qh simply
means xa “ xb, by Chapman-Kolmogorov we can express

(4.11) UJ
m,βpz,xq “ Um,βpxa ´ zaq1txb“xa, zb“zau

ź

c‰a,b

qmpxc ´ zcq ,

where we define Um,βpxq for x P Z2 by

(4.12) Um,βpxq :“
8
ÿ

k“1

pσ2βqk
ÿ

0“:n0ăn1ă¨¨¨ănk:“m
x0:“0, x1,...,xk´1PZ2, xk:“x

k
ź

i“1

qni´ni´1
pxi ´ xi´1q2 .

(We denote a generic sequence of points xi P Z2 using subscripts, while we use superscripts
to denote the h components xa P Z2 of a vector x “ px1, . . . , xhq P pZ2qh.)

Given the countable set T “ pZ2qh, for the one-variable functions qf ,qg : T Ñ R and the
two-variable functions Ui,Qi : T ˆ T Ñ R we use the matrix-vector notation
B

qf , U1

" r
ź

i“2

QiUi

*

qg
F

:“
ÿ

z1,...,zrPT
z1

1,...,z
1
rPT

qf pz1qU1pz1,z
1
1q

" r
ź

i“2

Qipz
1
i´1,ziqUipzi,z

1
iq

*

qgpz1
rq .

We can now give the announced expansion for Mh
L,βpf, gq, that we prove in Appendix A.

THEOREM 4.5 (Moment expansion). Let Zω
L,βpf, gq be the averaged partition function

in (4.2) with centred moments Mh
L,βpf, gq, see (4.3). For any h P N with hě 2 we have

(4.13)

Mh
L,βpf, gq “

8
ÿ

r“1

ÿ

0ăn1ďm1ă¨¨¨ănrďmrăL

ÿ

I1,...,Ir$t1,...,hu
with full support

and Ii‰Ii´1, Ii‰˚ @i

" r
ź

i“1

ErξIiβ s

*

ˆ

ˆ

B

qf,I1n1
, UI1

m1´n1,β

" r
ź

i“2

Q
Ii´1,Ii
ni´mi´1

UIi
mi´ni,β

*

qg,IrL´mr

F

.

REMARK 4.6 (Sanity check). In case h“ 2, the conditions Ii ‰ Ii´1 and Ii ‰ ˚ in (4.13)
force r “ 1 and I1 “ tt1,2uu. Then, recalling (4.11)-(4.12), formula (4.13) reduces to

M2
L,βpf, gq “ VarrZω

L,βpf, gqs “ σ2β
ÿ

0ănďmăL
z,xPZ2

qfnpzqUm´n,βpx´ zq qgL´mpxq ,

which is a classical expansion for the variance, see e.g. [CSZ23, eq. (3.51)].

REMARK 4.7 (Boundary conditions). In [CSZ23, LZ21+], the quantity qf,I1n1 in (4.13) is
expanded as QI1,˚

n1 fbh (recall (4.8) and (3.5)); similarly for qg,IrL´mr
. We keep these quantities

unexpanded in order to derive tailored estimates, see Subsection 4.4, which could not be
derived by simply applying operator norm bounds on QI1,˚

n1 as in [CSZ23, LZ21+].
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4.2. Moment upper bounds. We next obtain upper bounds from (4.13). For L P N we
define the summed kernels

(4.14) pQI,J
L pz,xq :“

L
ÿ

n“1

QI,J
n pz,xq , pqf,IL pxq :“

L
ÿ

n“1

qf,In pxq .

Recalling (4.9) and (4.10) we set, with some abuse of notation,

(4.15) |U|Jm,βpz,xq :“ UJ
m,βpz,xq from (4.9) with ErξJβ s replaced by |ErξJβ s| .

Then, for L P N and λě 0, we define the Laplace sum

(4.16) |pU|JL,λ,βpz,xq :“ 1tz“x„Ju `

L
ÿ

m“1

e´λm |U|Jm,βpz,xq .

Finally, we introduce a uniform bound on the right boundary function qg,IrL´mr
in (4.13):

(4.17) sqg,JL pzq :“ max
1ďnďL

qg,Jn pzq .

We can now state our first moment upper bound.

THEOREM 4.8 (Moment upper bound, I). Let Zω
L,βpf, gq denote the averaged partition

function in (4.2) with centred moment Mh
L,βpf, gq, see (4.3), for h P N with h ě 2. For any

λě 0 we have the upper bound

(4.18)
ˇ

ˇMh
L,βpf, gq

ˇ

ˇ ď eλL
8
ÿ

r“1

Ξprq

with
(4.19)

Ξprq :“
ÿ

I1,...,Ir$t1,...,hu
with full support

and Ii‰Ii´1, Ii‰˚ @i

" r
ź

i“1

ˇ

ˇErξIiβ s
ˇ

ˇ

*B

pq
|f |,I1
L , |pU|

I1
L,λ,β

" r
ź

i“2

pQ
Ii´1,Ii
L |pU|

Ii
L,λ,β

*

sq
|g|,Ir
L

F

.

PROOF. Replacing ErξIiβ s, f , g, U in (4.13) respectively by |ErξIiβ s|, |f |, |g|, |U|, every

term becomes non-negative. We next replace q
|g|,I
L´mr

by the uniform bound sq
|g|,I
L and then

enlarge the sum in (4.13), allowing increments ni ´ mi´1 and mi ´ ni to vary freely in
t1, . . . ,Lu. Plugging 1 ď eλL e´λmr ď eλL e´λ

řr
i“1

pmi´niq, we obtain (4.18).

REMARK 4.9 (On the right boundary condition). The function qg,IrL´mr
in (4.13) is con-

trolled in [CSZ23, LZ21+] by introducing an average over L, which forces the function g to
be estimated in ℓ8. Our approach avoids such averaging, via the quantity sqg,JL from (4.17):
this lets us estimate the function g in ℓq also for q ă 8 (see Proposition 4.21).

We next bound Ξprq in (4.19), starting from the scalar product. Let us recall some func-
tional analysis: given a countable set T and a function f : T Ñ R, we define

(4.20) }f}ℓppTq “ }f}ℓp :“

ˆ

ÿ

zPT
|fpzq|p

˙
1

p

for p P r1,8q .
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For a linear operator A : ℓqpTq Ñ ℓqpT1q, with p, q P p1,8q such that 1
p ` 1

q “ 1, we have

(4.21) }A}ℓqÑℓq :“ sup
gı0

}Ag}ℓqpT1q

}g}ℓqpTq

“ sup
}f}ℓppT1qď1, }g}ℓqpTqď1

xf,Agy .

By Hölder’s inequality |xg,hy| ď }g}ℓp }h}ℓq , so the scalar product in (4.19) is bounded by

(4.22)
›

›

pq
|f |,I1
L

›

›

ℓp

›

›|pU|
I1
L,λ,β

›

›

ℓqÑℓq

" r
ź

i“2

›

›pQ
Ii´1,Ii
L

›

›

ℓqÑℓq

›

›|pU|
Ii
L,λ,β

›

›

ℓqÑℓq

*

›

›

sq
|g|,Ir
L

›

›

ℓq
.

REMARK 4.10 (Restricted ℓq spaces). Due to the constraint 1tz„I,x„Ju in (4.8), we may
regard pQI,J

L as a linear operator from ℓqppZ2qhJq to ℓqppZ2qhI q, see (4.7). Similarly, we may
view |pU|JL,λ,β as a linear operator from ℓqppZ2qhJq to itself.

To make the bound (4.22) more useful, we introduce a weight W : pZ2qh Ñ p0,8q, that
we also identify with the diagonal operator Wpxq1tx“yu, so that in particular

`

W A 1
W
˘

px,yq :“ WpxqApx,yq
1

Wpyq
.

Inserting pW 1
W q between each pair of adjacent operators in (4.18), we improve (4.22) to

›

›

pq
|f |,I1
L

1
W
›

›

ℓp

›

›W |pU|
I1
L,λ,β

1
W
›

›

ℓqÑℓq
ˆ

ˆ

" r
ź

i“2

›

›W pQ
Ii´1,Ii
L

1
W
›

›

ℓqÑℓq

›

›W |pU|
Ii
L,λ,β

1
W
›

›

ℓqÑℓq

*

›

›W sq
|g|,Ir
L

›

›

ℓq
.

(4.23)

In view of (4.18)-(4.19), this leads directly to our second moment upper bound.

THEOREM 4.11 (Moment upper bound, II). Let Zω
L,βpf, gq be the averaged partition

function in (4.2), whose centred moment are known to satisfy Mh
L,βpf, gq ď eλL

ř8
r“1 Ξprq

for h ě 2 and λ ě 0, see (4.3) and (4.18). For any weight W : pZ2qh Ñ p0,8q and for
p, q P p1,8q with 1

p ` 1
q “ 1, we have the following upper bound on Ξprq from (4.19):

Ξprq ď

´

max
I‰˚

›

›

pq
|f |,I
L

1
W
›

›

ℓp

¯´

max
J‰˚

›

›W sq
|g|,J
L

›

›

ℓq

¯

Ξbulkprq(4.24)

with

(4.25) Ξbulkprq :“
ÿ

I1,...,Ir$t1,...,hu
with full support

and Ii‰Ii´1, Ii‰˚ @i

" r
ź

i“1

ˇ

ˇErξIiβ s
ˇ

ˇ

*

`›

›pQL

›

›

W
ℓqÑℓq

˘r´1 `›
›|pU|L,λ,β

›

›

W
ℓqÑℓq

˘r

where we set for short
›

›pQL

›

›

W
ℓqÑℓq

:“ max
I,J‰˚
I‰J

›

›W pQI,J
L

1
W
›

›

ℓqÑℓq
,(4.26)

›

›|pU|L,λ,β
›

›

W
ℓqÑℓq

:“ max
I‰˚

›

›W |pU|IL,λ,β
1
W
›

›

ℓqÑℓq
.(4.27)

Note that the bound (4.24)-(4.25) depends on two pairs of quantities, that we call

(4.28) boundary terms

$

&

%

›

›

pq
|f |,I
L

1
W
›

›

ℓp
›

›W q
|g|,J
L

›

›

ℓq

and bulk terms

$

&

%

›

›pQL

›

›

W
ℓqÑℓq

›

›|pU|L,λ,β
›

›

W
ℓqÑℓq

.



QUASI-CRITICAL FLUCTUATIONS FOR 2D DIRECTED POLYMERS 19

We will estimate these terms in Subsections 4.4 and 4.5 respectively, exploiting some basic
random walk bounds that we collect in Subsection 4.3.

REMARK 4.12 (Choice of the parameters). For our goals, we will later fix p“ q “ 2 (in
other contexts, such as [LZ21+], one needs to take p“ pL Ñ 1, q “ qL Ñ 8). We will then
choose an exponential weight W “ Wt of rate tě 0: for x “ px1, . . . , xhq P pZ2qh

(4.29) Wtpxq :“
h
ź

i“1

wtpx
iq where wtpxq :“ e´t|x| for x P Z2 .

The exponential decay ensures that }gwt}ℓq ă 8 for the “flat” boundary condition g ” 1, see
(4.5), and we will fix t“ 1{

?
N so that }f w´1

t }ℓp ă 8 for f “ φN « φp¨{
?
Nq.

Note that by the triangle inequality we can bound, for all x,z P pZ2qh,

(4.30)
Wtpzq

Wtpxq
ď

h
ź

i“1

et|z
i´xi| .

We will later need to consider an additional weight VI
s , see (4.45) below.

We finally bound the product
śr

i“1

ˇ

ˇErξIiβ s
ˇ

ˇ in (4.25). We assume that β ą 0 is small
enough so that (say) σ2β ď 1 (recall σβ from (1.7) and (3.2) and note that limβÓ0 σβ “ 0).

PROPOSITION 4.13 (Moments of disorder). Assume that σ2β ď 1. For any h P N there is
Cphq ă 8 (which depends on the disorder distribution) such that

(4.31) for any I ‰ ˚ :
ˇ

ˇErξIβs
ˇ

ˇ ď

#

σ2β if I “ tta, bu, tcu : c‰ a, bu is a pair ,

Cphqσ3β if I ‰ ˚ is not a pair .

Moreover

(4.32) if I1, . . . , Ir $ t1, . . . , hu have full support:
r
ź

i“1

ˇ

ˇErξIiβ s
ˇ

ˇ ďCphqr σ
maxt2r,hu

β .

PROOF. We have |ErξIβs| “ σ2β if I is a pair, see (3.2) and (4.10). Consider now any par-
tition I “ tI1, . . . , Imu $ t1, . . . , hu with I ‰ ˚: denoting by }I} :“

řm
i“1 |Ii|1t|Ii|ě2u the

number of a P t1, . . . , hu which are not singletons in I , by (3.2) and (4.10) we can bound

(4.33)
ˇ

ˇErξIβs
ˇ

ˇ ďCphqσ
}I}

β with Cphq :“ max
˚‰I$t1,...,hu

ź

i : ki:“|Ii|ě2

Cki
.

Since }I} ě 3 if I ‰ ˚ is not a pair, we obtain (4.31) since σβ ď 1.
Consider now I1, . . . , Ir with full support. Each a P t1, . . . , hu is a non-trivial element (not

a singleton) of some partition Ii, hence }I1} ` . . .` }Ir} ě h which yields
śr

i“1

ˇ

ˇErξIiβ s
ˇ

ˇ ď

Cphqrσhβ by (4.33) and σβ ď 1. Since
śr

i“1

ˇ

ˇErξIiβ s
ˇ

ˇ ď pσ2βqr by (4.31), we obtain (4.32).
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4.3. Random walk bounds. In this subsection we collect some useful random walk
bounds, stated in Lemmas 4.16, 4.17 and 4.18. The proofs are deferred to Appendix B.

Instead of sticking to the simple random walk on Z2, we can allow for any symmetric
random walk with sub-Gaussian tails, in the following sense.

ASSUMPTION 4.14 (Random walk). We consider a random walk S “ pSnqně0 on Z2

with a symmetric distribution, i.e. q1pxq “ PpS1 “ xq “ q1p´xq for any x P Z2, and with
sub-Gaussian tails, i.e. for some cą 0 we have, writing x“ px1, x2q,

(4.34) @t P R, @a“ 1,2 : E
“

etS
a
1

‰

“
ÿ

xPZ2

etx
a

q1pxq ď ec
t2

2 .

REMARK 4.15. The simple random walk on Z2 satisfies (4.34) with c “ 1: indeed, we
can compute

ř

xPZ2 etx
a

q1pxq “ 1
2p1` coshptqq ď exppt2{2q (because coshptq ď exppt2{2q).

We derive useful bounds for the random walk transition kernel qnpxq “ PpSn “ xq.

LEMMA 4.16 (Random walk bounds). Let Assumption 4.14 hold. There is c P r1,8q

such that for all tě 0 and n P N

@a“ 1,2 :
ÿ

xPZ2

etx
a

qnpxq ď ec
t2

2
n ,

ÿ

xPZ2

etx
a qnpxq2

q2np0q
ď ec

t2

2
n .(4.35)

Moreover, recalling wtpxq “ e´t|x| from (4.29), we can bound

(4.36)
›

›

›

›

qn
wt

›

›

›

›

ℓ1
“

ÿ

xPZ2

et|x| qnpxq ď c e2ct
2n ,

›

›

›

›

qn
wt

›

›

›

›

ℓ8

“ sup
xPZ2

!

et|x| qnpxq

)

ď
c e2ct

2n

n
.

We next extend the bounds in (4.36) to the averaged random walk transition kernel qfnpxq,
see (3.5), for any f : Z2 Ñ R. Let us agree that a

1

8 :“ 1 for any aą 0.

LEMMA 4.17 (Averaged random walk bounds). Let Assumption 4.14 hold and let c be
the constant from Lemma 4.16. For any tě 0 and n P N we have, with wtpxq “ e´t|x|,

@p P r1,8s :

›

›

›

›

qfn
wt

›

›

›

›

ℓp
ď c e2c t

2n

›

›

›

›

f

wt

›

›

›

›

ℓp
,

›

›

›

›

qfn
wt

›

›

›

›

ℓ8

ď
c e2c t

2n

n
1

p

›

›

›

›

f

wt

›

›

›

›

ℓp
.(4.37)

We finally prove a variant of the Hardy-Littlewood maximal inequality (see Appendix B).
Let us introduce a multi-dimensional generalisation of (3.5), for m P N and F : pZ2qm Ñ R:

(4.38) qbm,F
n px1, . . . , xmq :“

ÿ

z1,...,zmPZ2

ˆ m
ź

i“1

qnpxi ´ ziq

˙

F pz1, . . . , zmq .

We also use the standard notation wbm
t px1, . . . , xmq :“

śm
i“1wtpxiq.

LEMMA 4.18 (Maximal random walk bounds). Let Assumption 4.14 hold and let c be
the constant from Lemma 4.16. For anym P N, tě 0 and L P N we have, with wtpxq “ e´t|x|,

@p P p1,8s :
›

›

›
max

1ďnďL

ˇ

ˇqbm,F
n wbm

t

ˇ

ˇ

›

›

›

ℓp
ď

p
p´1 C

m ›

›F wbm
t

›

›

ℓp

with C :“ 5000π c2 e4c t
2L

(4.39)

(we agree that 8
8´1 :“ 1).
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4.4. Boundary terms. In this section we estimate the boundary terms appearing in (4.24),
see (4.28). The proofs are deferred to Appendix C.

We recall that the weight Wt : pZ2qh Ñ p0,8q is defined in (4.29) for tě 0. Our estimates
contain the following constants (with c from Lemma 4.16):

(4.40) C :“ c e2c t
2L , C :“ 5000π c2 e4c t

2L ,

where L is the “time horizon” of the partition function Zω
L,βpf, gq, see (4.2). We anticipate

that we will take

(4.41) t“ 1?
N

with N ě L.

hence the constants C and C are uniformly bounded in this regime.

We start estimating the left boundary term which involves pq|f |,I
L (see (4.14) and (4.8)). It

was proved3 in [LZ21+, Proposition 3.4], extending [CSZ23, Proposition 6.6], that for any
hě 2 there is C “Cphq ă 8 such that, for any p P p1,8q,

(4.42) max
I‰˚

›

›

›
pq

|f |,I
L

1
Wt

›

›

›

ℓp
ď

p
p´1 C L

1´ 1

p

›

›

›

›

f

wt

›

›

›

›

h

ℓp
.

For our goals it will be fundamental to have a linear dependence in L, which would amount
to take p “ 8 in (4.42), but this is not allowed by our approach. To solve this problem, we
improve the estimate (4.42), showing that for p P p0,8q we can still have a linear dependence
in L in the RHS, provided we replace one factor }

f
wt

}ℓp by }
f
wt

}ℓ8 .

PROPOSITION 4.19 (Left boundary term, I). Recall the weights Wt and wt from (4.29).
For any hě 2, tě 0, L P N we have, for any p P p1,8q and C as in (4.40),

max
I‰˚

›

›

›
pq

|f |,I
L

1
Wt

›

›

›

ℓp
ď 4C hL

›

›

›

›

f

wt

›

›

›

›

ℓ8

›

›

›

›

f

wt

›

›

›

›

h´1

ℓp
.(4.43)

More generally, for any r P r1,8s we have (with 1
0 :“ 8, 8

8´1 :“ 1)

max
I‰˚

›

›

›
pq

|f |,I
L

1
Wt

›

›

›

ℓp
ď 4C h mint r

r´1 ,
p

p´1uL1´ 1

r

›

›

›

›

f

wt

›

›

›

›

ℓr

›

›

›

›

f

wt

›

›

›

›

h´1

ℓp
.(4.44)

We further improve the bound (4.43) through a restricted weight VI
s : pZ2qh Ñ p0,8q,

defined for a pair I $ t1, . . . , hu and sě 0 by

(4.45) VI
s pxq :“wspxa ´ xbq “ e´s|xa´xb| for I “ tta, bu, tcu : c‰ a, bu .

Note that
ˇ

ˇ|za ´ zb| ´ |xa ´ xb|
ˇ

ˇ ď |za ´ xa| ` |xb ´ zb|, therefore we can estimate

(4.46)
VI
s pzq

VI
s pxq

ď es|za´xa|`s|zb´xb| .

In analogy with (4.41), we anticipate that we will take

(4.47) s“ 1?
L
.

3The factor q “
p

p´1 in the RHS of (4.42), first identified in [LZ21+], is essential to allow for p which can
vary with the system size L.
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PROPOSITION 4.20 (Left boundary term, II). For any hě 3, tě 0, s P p0,1s, L P N we
have, for any p P p1,8q and C as in (4.40),

(4.48) max
J pair

I‰˚, IĞJ

›

›

›
pq

|f |,I
L

VJ
s

Wt

›

›

›

ℓp
ď 36

1

p C h L

s
2

p

›

›

›

›

f

wt

›

›

›

›

2

ℓ8

›

›

›

›

f

wt

›

›

›

›

h´2

ℓp
,

where I Ğ J , for I “ tI1, . . . , Imu and J “ tta, bu, tcu : c‰ a, bu, means Ij Ğ ta, bu @j.

We next estimate the right boundary term which involves sq|g|,J
L , see (4.17) and (4.8), ob-

taining estimates analogous to (4.44) and (4.48).

PROPOSITION 4.21 (Right boundary term). For any h ě 2, t ě 0, L P N we have, for
any q P p1,8q and C as in (4.40),

max
J‰˚

›

›q
|g|,J
L Wt

›

›

ℓq
ď

q
q´1 C

h
}gwt}

2
ℓ2q }gwt}

h´2
ℓq

ď
q

q´1 C
h

}gwt}ℓ8 }gwt}
h´1
ℓq .

(4.49)

Moreover, for any hě 3, s P p0,1s we have, for C as in (4.40),

max
I pair

J‰˚, JĞI

›

›q
|g|,J
L Wt VI

s

›

›

ℓq
ď

q
q´1 C

h 1

s
2

q

}gwt}
2
ℓ8 }gwt}

h´2
ℓq .(4.50)

where J Ğ I , for J “ tJ1, . . . , Jmu and I “ tta, bu, tcu : c‰ a, bu, means J i Ğ ta, bu @i.

REMARK 4.22. We can bound }gwt}ℓ8 ď }g}ℓ8 }wt}ℓ8 and }gwt}ℓq ď }g}ℓ8 }wt}ℓq . By
a direct computation, see (C.16), we have

(4.51) }wt}ℓ8 “ 1 , }wt}ℓq “

ˆ

ÿ

zPZ2

e´qt|z|

˙
1

q

ď
36

1

q

t
2

q

,

therefore we obtain from (4.49)

max
J‰˚

›

›

sq
|g|,J
L Wt

›

›

ℓq
ď

q
q´1

`

36
1

q C
˘h }g}hℓ8

t
2

q
ph´1q

.(4.52)

Similarly, from (4.50) we deduce that

(4.53) max
I pair

J‰˚, JĞI

›

›q
|g|,J
L Wt VI

s

›

›

ℓq
ď

q
q´1

`

36
1

q C
˘h }g}hℓ8

s
2

q t
2

q
ph´2q

.

4.5. Bulk terms. In this section we estimate the the bulk terms appearing in (4.25), i.e.
›

›pQL

›

›

W
ℓqÑℓq

and
›

›|pU|L,λ,β
›

›

W
ℓqÑℓq

from (4.26)-(4.27). The proofs are also given in Appendix C.

We recall the weights Wt and VI
s , see (4.29) and (4.45). We will choose the parameters

t, s“Op 1?
L

q, see (4.41) and (4.47), hence the following constants are uniformly bounded:

(4.54)
pC :“ 4000 c2 e8c t

2L ,
p

pC :“ 4000 c2 e8c pt`2sq2L ,

qC :“ 2e4c t
2L ,

q

qC :“ 2e4c pt`sq2L .

We first estimate the “bulk random walk term” which involves pQI,J
L , see (4.26).
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PROPOSITION 4.23 (Bulk random walk term). For any hě 2, tě 0, L P N we have, for
any q P p1,8q and pC from (4.54),

(4.55)
›

›pQL

›

›

Wt

ℓqÑℓq
:“ max

I,J‰˚, I‰J

›

›Wt
pQI,J
L

1
Wt

›

›

ℓqÑℓq
ď h! pC

h
q q

q´1 .

Moreover, for sě 0 and p

pC from (4.54),

(4.56) max
I,J pairs, I‰J

›

›

Wt

VJ
s

pQI,J
L

1
Wt VI

s

›

›

ℓqÑℓq
ď h!

p

pC h q q
q´1 .

(note that the weights VJ
s ,VI

s appear in the denominator on both sides).

We next focus on the term
›

›|pU|L,λ,β
›

›

W
ℓqÑℓq

from (4.27) which depends on the operator
|pU|IL,λ,β , see (4.9) and (4.15). Recalling RN from (1.6) and qnpxq from (3.3), we define

(4.57) R
pλq

N :“
N
ÿ

n“1

e´λn q2np0q ,

which reduces to RN for λ“ 0. In the next result we are going to assume that |ErξIβs| ď σ2β
for any partition I ‰ ˚, which holds for β ą 0 small enough (see Proposition 4.13).

PROPOSITION 4.24 (Bulk interacting term). Let β ą 0 satisfy maxI‰˚ |ErξIβs| ď σ2β . For

any hě 2, tě 0, L P N, λě 0 such that σ2βR
pλq

L ă 1 we have, for any q P p1,8q and qC from
(4.54),

›

›|pU|L,λ,β
›

›

Wt

ℓqÑℓq
:“ max

I‰˚

›

›Wt |pU|IL,λ,β
1
Wt

›

›

ℓqÑℓq
ď 1 ` qC

h σ2βR
pλq

L

1 ´ σ2βR
pλq

L

.(4.58)

Moreover, for any sě 0 we have, for τ P t`1,´1uand q

qC from (4.54),

max
J pair
I‰˚

›

› pVJ
s qτ Wt |pU|IL,λ,β

1
Wt pVJ

s qτ

›

›

ℓqÑℓq
ď 1 `

q

qC h
σ2βR

pλq

L

1 ´ σ2βR
pλq

L

.(4.59)

5. Proof of Proposition 2.3. In this section we prove Proposition 2.3. The key difficulty
is that our goal (2.10) involves the (optimal) 1{M2 dependence on the width of the time
interval p i´1

M N, i
MN s (recall the definition (3.7) of the random variableXpiq

N,M ). This requires
sharp ad hoc estimates.

5.1. Setup. By formula (4.5) from Remark 4.1, for l “ 1, . . . ,M we can write

(5.1) E
”

pX
plq
N,M q4

ı

“
ϑ2N
N4

M4
L,βpf, gq

where L,β, f, g are given as follows:

(5.2) L“
N

M
, β “ βN in p1.11q , fp¨q “ qφN

l´1

M
N

p¨q in (1.5)-(3.5) , gp¨q ” 1 .
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We can bound M4
N

M
,βN

pf, gq exploiting (4.18) for h“ 4 and λ“ 0, which yields

(5.3) E
“

pX
plq
N,M q4

‰

ď
ϑ2N
N4

ˆ

Ξp1q ` Ξp2q `

8
ÿ

r“3

Ξprq

˙

,

where Ξprq is defined in (4.19). We show that the only non-negligible term in (5.3) is Ξp2q:
more precisely, we will prove that there is C ă 8 such that, for any M P N,

limsup
NÑ8

ϑ2N
N4

Ξp2q ď
C

M2
,(5.4)

while

(5.5) lim
NÑ8

ϑ2N
N4

Ξp1q “ 0 and lim
NÑ8

ϑ2N
N4

8
ÿ

r“3

Ξprq “ 0 .

This will complete the proof of Proposition 2.3.
We estimate Ξprq exploiting the bound (4.24)-(4.25) with the choice

p“ q “ 2 .

We need to control the boundary terms and the bulk terms, see (4.28). We recall that the
weights Wt and VI

s are defined in (4.29) and (4.45), and we fix

(5.6) t“ 1?
N
, s“ 1?

L
“

b

M
N .

For notational lightness, we write aÀ b whenever aď C b for some constant 0 ăC ă 8.
We also denote by }φ}p :“ p

ş

R2 φpxqp dxq1{p the usual Lp norm of a function φ :R2 Ñ R.

5.2. Boundary terms. We estimate the left boundary term
›

›

pq
|f |,I
L

1
Wt

›

›

ℓ2
applying (4.43).

We recall from (5.2) that fp¨q “ qφN
l´1

M
N

p¨q for 1 ď l ďM . Let us estimate }
f
wt

}ℓ8 and }
f
wt

}ℓ2 ,

starting from the former. By (4.37), for l ďM and t“ 1?
N

we have
›

›

›

›

f

wt

›

›

›

›

ℓ8

ď c e2c t
2 l´1

M
N

›

›

›

›

φN

wt

›

›

›

›

ℓ8

ď c e2c
›

›

›

›

φN

wt

›

›

›

›

ℓ8

.

Since φ is compactly supported, say in a ball Bp0,Rq, we have that φN is supported in
Bp0,R

?
N `

?
2q ĎBp0,2R

?
Nq, see (1.5). By wtpxq “ e´t|x|, we then obtain

›

›

›

›

φN

wt

›

›

›

›

ℓ8

ď et2R
?
N
›

›φN

›

›

ℓ8 ď e2R }φ}8 À 1 , hence
›

›

›

›

f

wt

›

›

›

›

ℓ8

À 1 ,(5.7)

because }φN}ℓ8 ď }φ}8. We next estimate }
f
wt

}ℓ2 . By a Riemann sum approximation, we
see from (1.5) that }φN}ℓ2 À

?
N }φ}2, hence by (4.37) we obtain

(5.8)
›

›

›

›

f

wt

›

›

›

›

ℓ2
ď c e2c

›

›

›

›

φN

wt

›

›

›

›

ℓ2
ď c e2c e2R

›

›φN

›

›

ℓ2
À

?
N .

We can finally apply the estimate (4.43) for p“ 2 and h“ 4 to get, since L“ N
M ,

(5.9) max
I‰˚

›

›

›
pq

|f |,I
L

1
Wt

›

›

›

ℓ2
ď 4C hL

›

›

›

›

f

wt

›

›

›

›

ℓ8

›

›

›

›

f

wt

›

›

›

›

3

ℓ2
À
N

5

2

M
.
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We now estimate the right boundary term
›

›q
|g|,J
L Wt

›

›

ℓ2
: applying (4.52) for q “ 2 and

h“ 4, since g ” 1 and t“ 1?
N

, we obtain

(5.10) max
J‰˚

›

›q
|g|,J
L Wt

›

›

ℓ2
ď
`

12C
˘4 }g}48

t3
À N

3

2 .

Overall, we have shown that

(5.11)
´

max
I‰˚

›

›

pq
|f |,I
L

1
W
›

›

ℓp

¯´

max
J‰˚

›

›W sq
|g|,J
L

›

›

ℓq

¯

À
N4

M
.

In view of (4.24), it remains to estimate Ξbulkprq defined in (4.25).

5.3. Bulk terms. We next estimate the bulk terms, see (4.26)-(4.27). For the first bulk
term, see (4.26), we apply directly the estimate (4.55) with q “ 2 and h“ 4 to get

(5.12)
›

›pQL

›

›

Wt

ℓqÑℓq
“ max

I,J‰˚, I‰J

›

›Wt
pQI,J
L

1
Wt

›

›

ℓ2Ñℓ2
ď 4! pC

4
4 À 1 .

(Also note that
›

›pQL

›

›

Wt

ℓqÑℓq
ě Wtp0q pQI,J

L p0,0q 1
Wtp0q

ě Q2p0,0q Á 1.)

We then focus on the second term, see (4.27). For L“ N
M ďN and β “ βN as in (1.11)

(5.13) 1 ´ σ2βN
RL ě 1 ´ σ2βN

RN ě
ϑN

logN
ą 0 , in particular σ2βN

RL ă 1 .

Then by (4.58) with λ“ 0 (so that Rpλq

N “RN ) we obtain, recalling that ϑN ! logN ,

(5.14)
›

›|pU|L,λ,β
›

›

Wt

ℓqÑℓq
“ max

I‰˚

›

›Wt |pU|IL,λ,β
1
Wt

›

›

ℓ2Ñℓ2
ď 1 ` qC

4 σ2βN
RL

1 ´ σ2βN
RL

À
logN

ϑN
.

Since βN Ñ 0, the bound (4.31) ensures that |ErξIβN
s| “ Opσ2βN

q ď Op 1
RN

q “ Op 1
logN q for

any I ‰ ˚ and N large, therefore there is C ă 8 such that

(5.15)
´

max
I‰˚

ˇ

ˇErξIβN
s
ˇ

ˇ

¯

›

›pQL

›

›

Wt

ℓqÑℓq

›

›|pU|L,λ,β
›

›

Wt

ℓqÑℓq
ď

C

ϑN
.

5.4. Terms r ě 3. We are ready to prove the second relation in (5.5), which shows that
the terms r ě 3 give a negligible contributions to E

“

pX
plq
N,M q4

‰

, recall (5.3).
Let us denote by cphq P N the number of partitions I $ t1, . . . , hu with I ‰ ˚. Then by

(4.25) we have the geometric bound

Ξbulkprq ď
`›

›pQL

›

›

Wt

ℓqÑℓq

˘´1
!

cphq

´

max
I‰˚

ˇ

ˇErξIβN
s
ˇ

ˇ

¯

›

›pQL

›

›

Wt

ℓqÑℓq

›

›|pU|L,λ,β
›

›

Wt

ℓqÑℓq

)r
,

and note that the term in brackets is ă 1
2 for large N , by (5.15) and ϑN Ñ 8, therefore

8
ÿ

r“3

Ξbulkprq À Ξbulkp3q À
1

ϑ3N
.

Applying (4.24) and (5.11), we then obtain the second relation in (5.5):

ϑ2N
N4

8
ÿ

r“3

Ξprq ď
ϑ2N
M

8
ÿ

r“3

Ξbulkprq À
1

M ϑN
ÝÝÝÝÑ
NÑ8

0 .

REMARK 5.1. The same arguments can be applied to show that in the quasi-critical
regime, the contribution of the terms r ą

X

h
2

\

for the h-th moment of Xplq
N,M is negligible as

N Ñ 8.
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5.5. Term r “ 1. We now prove the first relation in (5.5). A partition I $ t1,2,3,4u with
full support is either a double pair I “ tta, bu, tc, duu or the quadruple I “ t1,2,3,4u, hence
ErξIβN

s À σ4βN
for large N , by (4.10) and (3.2) (see also Proposition 4.13). Then, by (4.25),

Ξbulkp1q “
ÿ

I$t1,...,hu
with full support

ˇ

ˇErξIβN
s
ˇ

ˇ

›

›|pU|L,λ,β
›

›

Wt

ℓqÑℓq
À σ4βN

›

›|pU|L,λ,β
›

›

Wt

ℓqÑℓq
À

1

plogNqϑN
,

where we applied (5.14) and σ2βN
ď 1

RN
“Op 1

logN q. Applying (4.24) and (5.11), and recall-
ing that ϑN ! logN , we obtain the first relation in (5.5):

ϑ2N
N4

Ξp1q ď
ϑ2N
M

Ξbulkp1q À
ϑN

M logN
ÝÝÝÝÑ
NÑ8

0 .

5.6. Term r “ 2. We finally prove (5.4), which completes the proof of Proposition 2.3.
We recall that Ξp2q, defined by (4.19), is a sum over two partitions I1, I2 $ t1, . . . , hu with
I1 ‰ ˚, I2 ‰ ˚ and I1 ‰ I2. We then split Ξp2q “ Ξpairsp2q ` Ξothersp2q where:

• Ξpairsp2q is the contribution to (4.19) when both I1, I2 are pairs;
• Ξothersp2q is the complementary contribution when I1 and/or I2 is not a pair.

We first focus on Ξothersp2q and on the corresponding quantity Ξbulk
othersp2q, see (4.25). If

either I1 or I2 is not a pair, by Proposition 4.13 we can bound |ErξI1βN
sErξI2βN

s| À σ5βN
, hence

Ξbulk
othersp2q À σ5βN

›

›pQL

›

›

Wt

ℓqÑℓq

`›

›|pU|L,λ,β
›

›

Wt

ℓqÑℓq

˘2
À

1

plogNq5{2

ˆ

logN

ϑN

˙2

À
1

ϑ2N
?
logN

,

where we applied (5.12), (5.14) and σ2βN
ď 1

RN
“Op 1

logN q. Then, by (4.24) and (5.11),

ϑ2N
N4

Ξothersp2q ď
ϑ2N
M

Ξbulk
othersp2q À

1

M
?
logN

ÝÝÝÝÑ
NÑ8

0 ,

which shows that the contribution of Ξothersp2q to (5.4) is negligible.

It only remains to focus on Ξpairsp2q: since ErξIβs “ σ2β when I is a pair, we can write

Ξpairsp2q :“
ÿ

I1‰I2$t1,...,hu
pairs with full support

σ4β

A

pq
|f |,I1
L , |pU|

I1
L,λ,β

pQI1,I2
L |pU|

I2
L,λ,β sq

|g|,Ir
L

E

.

Besides inserting 1
Wt

Wt as above, we also insert VI2
s

1
VI2

s

on the left of pQI1,I2
L and |pU|

I1
L,λ,β ,

while we insert 1
VI1

s

VI1
s on the right of pQI1,I2

L and |pU|
I2
L,λ,β (recall (4.45)): we thus obtain

Ξpairsp2q ď
ÿ

I1‰I2$t1,...,hu
pairs with full support

σ4β

›

›

›
pq

|f |,I1
L

VI2
s

Wt

›

›

›

ℓp

›

›

›

Wt

VI2
s

|pU|
I1
L,λ,β

VI2
s

Wt

›

›

›

ℓqÑℓq
¨

¨

›

›

›

Wt

VI2
s

pQI1,I2
L

1
Wt VI1

s

›

›

›

ℓqÑℓq

›

›

›
Wt VI1

s |pU|
I2
L,λ,β

1
Wt VI1

s

›

›

›

ℓqÑℓq

›

›

›
Wt VI1

s sq
|g|,Ir
L

›

›

›

ℓq
.

(5.16)

It remains to estimate these norms. Let us recall that h “ 4, p “ q “ 2 and t “ 1?
N

, s “

1?
L

, where L“ M
N . We start with the boundary terms:
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• applying the estimate (4.48), in view of (5.7)-(5.8), we improve the estimate (5.9):

(5.17) max
I,J pairs
I‰J

›

›

›
pq

|f |,I
L

VJ
s

Wt

›

›

›

ℓ2
ď 6C 4 L

s

›

›

›

›

f

wt

›

›

›

›

2

ℓ8

›

›

›

›

f

wt

›

›

›

›

2

ℓ2
À L

3

2 N À
N

5

2

M
3

2

;

• applying the estimate (4.53), since g ” 1, we improve the estimate (5.10):

(5.18) max
I,J pairs
I‰J

›

›Wt VI
s q

|g|,J
L

›

›

ℓ2
ď
`

12C
˘4 }g}4ℓ8

s t2
À

?
LN À

N
3

2

?
M

.

Overall, the product of the two boundary terms is À N4

M2 , which improves on the previous
estimates by an essential factor 1

M , thanks to the use of the restricted weight VI
s .

We next estimate the bulk terms:

• applying (4.56) with p“ q “ 2 and h“ 4, we obtain an analogue of (5.12):

(5.19) max
I,J pairs
I‰J

›

›

Wt

VJ
s

pQI,J
L

1
Wt VI

s

›

›

ℓ2Ñℓ2
ď 4!

p

pC 4 4 À 1 ;

• applying (4.59) for both τ “ `1 and τ “ ´1, we obtain an analogue of (5.14):

(5.20) max
I,J pairs

›

› pVJ
s qτ Wt |pU|IL,λ,β

1
Wt pVJ

s qτ

›

›

ℓ2Ñℓ2
ď 1 `

q

qC 4
σ2βN

RL

1 ´ σ2βN
RL

À
logN

ϑN
.

Plugging the previous estimates into (5.16), since σ2βN
ď 1

RN
“Op 1

logN q, we finally obtain

Ξpairsp2q À
1

plogNq2

N
5

2

M
3

2

ˆ

logN

ϑN

˙2 N
3

2

?
M

“
N4

M2 ϑ2N
,

which completes the proof of (5.4), hence of Proposition 2.3.

APPENDIX A: SOME TECHNICAL PROOFS

We give the proof of Theorem 4.5. We recall that the averaged partition function Zω
L,βpf, gq

is defined in (4.1)-(4.2). In analogy with (3.4) and (3.6), by (4.1)-(4.2) we can write

Zω
L,βpf, gq ´ ErZω

L,βpf, gqs “

8
ÿ

k“1

ÿ

0ăn1ă...ănkăL
x1,...,xkPZ2

qfn1
px1q ξβpn1, x1qˆ

ˆ

" k
ź

j“2

qnj´nj´1
pxj ´ xj´1q ξβpnj , xjq

*

qgL´nk
pxkq ,

(A.1)

where we recall the random walk kernels (3.3) and (3.5). Recalling (4.3), we obtain
(A.2)

Mh
L,βpf, gq “ E

«˜

8
ÿ

k“1

ÿ

0ăn1ă...ănkăL
x1,...,xkPZ2

qfn1
px1q ξβpn1, x1qˆ

ˆ

" k
ź

j“2

qnj´nj´1
pxj ´ xj´1q ξβpnj , xjq

*

qgL´nk
pxkq

¸h ff

.

When we expand the h-th power, we obtain a sum over h families of space-time points
Ai :“ tpni1, x

i
1q, . . . , pniki

, xiki
qu for i “ 1, . . . , h. These points must match at least in pairs,
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i.e. any point pniℓ, x
i
ℓq in any family Ai must coincide with at least another point pnjm, x

j
mq

in a different family Aj for j ‰ i, otherwise the expectation vanishes (since ξβpn,xq are
independent and centered). In order to handle this constraint, following [CSZ23, Theorem
6.1], we rewrite (A.2) by first summing over the set of all space-time points

A :“
h
ď

i“1

Ai “

h
ď

i“1

tpni1, x
i
1q, . . . , pniki

, xiki
qu Ď N ˆ Z2

and then specifying which families each point pn,xq PA belongs to.
Let us fix the time coordinates n1 ă . . . ă nr of the points in A. For each such time

n P tn1, . . . , nru, we have pn,xq P A for one or more x P Z2 (there are at most h{2 such x,
by the matching constraint described above). We then make the following observations:

• if pn,xq “ pnij , x
i
jq belongs to the familyAi, then we have in (A.2) the product of a random

walk kernel “entering” pn,xq and another one “exiting” pn,xq:

qn´ni
j´1

px´ xij´1q ¨ qni
j`1´npxij`1 ´ xq ;

• if pn,xq does not belong to the family Ai, then we have in (A.2) a random walk kernel
“jumping over time n”, say qni

j´ni
j´1

pxj ´ xj´1q with nij´1 ă n ă nij : we can split this
kernel at time n by Chapman-Kolmogorov, writing

(A.3) qni
j´ni

j´1
pxij ´ xij´1q “

ÿ

zPZ2

qn´ni
j´1

pz ´ xij´1q ¨ qni
j´npxij ´ zq .

Then, to each time n P tn1, . . . , nru, we can associate a vector y “ py1, . . . , yhq P pZ2qh with
h space coordinates, where yi “ x if the family Ai contains pn,xq and yi “ z from (A.3)
otherwise. The constraint that a point pn,xq P A belongs to two families Ai and Ai1

means
that the corresponding coordinates of the vector y must coincide: yi “ yi

1

. In order to specify
which families Ai share the same points, we assign a partition I $ t1, . . . , hu to each time
n P tn1, . . . , nru and we require that y „ I , see (4.6).

We are now ready to provide a convenient rewriting of (A.2) by first summing over the
number r ě 1 and the time coordinates n1 ă . . . ă nr , then on the corresponding space co-
ordinates y1, . . . ,yr and partitions I1, . . . , Ir $ t1, . . . , hu with yi „ Ii. Recalling the defini-
tions of QI,J

n and qf,Jn from (4.8), we can rewrite (A.2) as follows:

(A.4)

Mh
L,βpf, gq “

8
ÿ

r“1

ÿ

0ăn1ă¨¨¨ănrăL
y1,...,yrPpZ2qh

ÿ

I1,...,Ir$t1,...,hu
with full support

and Ii‰˚ @i

qf,I1n1
py1qErξI1β s ˆ

ˆ

" r
ź

i“2

Q
Ii´1,Ii
ni´ni´1

pyi´1,yiqErξIiβ s

*

qg,IrL´nr
pyrq .

Finally, formula (4.13) follows from (A.4) grouping together stretches of consecutive re-
peated partitions, i.e. when Ii “ J for consecutive indexes i. The kernel UJ

m´n,βpz,xq from
(4.9) does exactly this job, which leads to (4.13).

REMARK A.1. Formula (4.13) still contains the product of ErξIiβ s because these factors
from (A.4) are only partially absorbed in UJ

m´n,βpz,xq: indeed, in (4.9) we have k`1 points
n0 ă n1 ă . . .ă nk, but the factor ErξJβ s therein is only raised to the power k.

APPENDIX B: RANDOM WALK BOUNDS

In this section we prove the random walk bounds from Lemmas 4.16, 4.17 and 4.18. We
also prove a heat kernel bound, see Lemma B.1 below.
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B.1. Proof of Lemma 4.16. We prove each of the four bounds in (4.35)-(4.36) for a
different constant c (it then suffices to take the maximal value).

The first bound in (4.35) with c “ c follows by (4.34), thanks to the independence of the
increments of the random walk. This directly implies the first bound in (4.36): it suffices to
estimate

ř

xPZ2 et|x| qnpxq ď
ř

xPZ2 e2t|x
1| qnpxq (by |x| ď |x1| ` |x2|, Cauchy-Scwharz and

symmetry) and then e|z| ď ez ` e´z , hence
ř

xPZ2 et|x| qnpxq ď 2e2ct
2n.

To get the second bound in (4.36), we fix ℓă n and write qnpxq “
ř

yPZ2 qℓpyq qn´ℓpx´yq

by Chapman-Kolmogorov. We next decompose the sum in the two parts xy,xy ą 1
2 |x|2 and

xy,xy ď 1
2 |x|2: renaming y as x´ y in the second part, we obtain

(B.1) qnpxq ď
ÿ

yPZ2: xy,xyě 1

2
|x|2

␣

qℓpyq qn´ℓpx´ yq ` qn´ℓpyq qℓpx´ yq
(

.

We can bound qkpx´ yq ď supzPZ2 qkpzq ď c
k by the local limit theorem (any random walk

satysfying Assumption 4.14 is in L2 with zero mean). We next observe that xy,xy ě 1
2 |x|2

implies |x| ď 2|y| by Cauchy-Schwarz, therefore the first bound in (4.36) yields

@x P Z2 : et|x| qnpxq ď c
ÿ

yPZ2

e2t|y|

"

qℓpyq

n´ ℓ
`
qn´ℓpyq

ℓ

*

ď
2c e8ct

2n

mintn´ ℓ, ℓu
.

If we choose ℓ“ tn2 u, we obtain the second bound in (4.36) renaming c.
It remains to prove the second bound in (4.35). We first note that qnpxq2{q2np0q ď c qnpxq

for some c P r1,8q, because qnpxq2 ď }qn}ℓ8 qnpxq and }qn}ℓ8 ď c q2np0q by the local limit
theorem. Since qnpxq “ qnp´xq, we get
ÿ

xPZ2

etx
a qnpxq2

q2np0q
´ 1 “

ÿ

xPZ2

´

etx
a

`e´txa

2 ´ 1
¯ qnpxq2

q2np0q
ď c

ÿ

xPZ2

´

etx
a

`e´txa

2 ´ 1
¯

qnpxq

ď c
`

ec
t2

2
n ´ 1

˘

“ c
8
ÿ

k“1

1
k!

`

c t2

2 n
˘k

ď

8
ÿ

k“1

1
k!

`

c2 t2

2 n
˘k

“ ec
2 t2

2
n ´ 1 ,

which proves the second bound in (4.35) if we rename c2 as c.

B.2. Proof of Lemma 4.17. For any y P Z2 and p P r1,8s we can write, recalling (3.5),

qfnpyq

wtpyq
“ qfnpyq et|y| ď

ÿ

zPZ2

et|z| |fpzq|
␣

et|y´z| qnpy ´ zq
(

ď

›

›

›

›

f

wt

›

›

›

›

ℓp

›

›

›

›

qn
wt

›

›

›

›

ℓq
,

where q P r1,8s is such that 1
p ` 1

q “ 1. Since }
qn
wt

}
q
ℓq ď }

qn
wt

}
q´1
ℓ8 }

qn
wt

}ℓ1 , it suffices to apply
the bounds in (4.36) to obtain the second bound in (4.37).

We next prove the first bound in (4.37), assuming p P r1,8q: we have, by Hölder,
ˇ

ˇ

ˇ

ˇ

qfnpxq

wtpxq

ˇ

ˇ

ˇ

ˇ

p

“

ˇ

ˇ

ˇ

ˇ

ÿ

zPZ2

fpzq

wtpzq
qnpx´ zq

wtpzq

wtpxq

ˇ

ˇ

ˇ

ˇ

p

ď

#

ÿ

zPZ2

|fpzq|p

wtpzqp
qnpx´ zq

wtpzq

wtpxq

+#

ÿ

zPZ2

qnpx´ zq
wtpzq

wtpxq

+p´1

ď
`

c e2ct
2n
˘p´1

ÿ

zPZ2

|fpzq|p

wtpzqp
qnpx´ zq

wtpzq

wtpxq
,

(B.2)

where the last inequality holds by the first bound in (4.36), since wtpzq

wtpxq
ď et|x´z|. Summing

over x and applying again (4.36), we obtain the first bound in (4.37).
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B.3. Proof of Lemma 4.18. Given a real function G, we set tGą λu :“ ty : Gpyq ą λu

for λ P R, and we denote by |A| the cardinality of a set A. Let us define the constant

(B.3) C :“ 200π c2 e4c t
2L .

We are going to show that
›

›

›
max

1ďnďL

ˇ

ˇqbm,F
n wbm

t

ˇ

ˇ

›

›

›

ℓ8
ď Cm

›

›F wbm
t

›

›

ℓ8 ,(B.4)

@λą 0 :
ˇ

ˇ

ˇ

!

max
1ďnďL

|qbm,F
n wbm

t | ą λ
)ˇ

ˇ

ˇ
ď p25Cqm

}F wbm
t }ℓ1

λ
.(B.5)

Note that (B.4) implies our goal (4.39) for p “ 8, while (B.5) means that the sub-linear
operator F ÞÑ max1ďnďL

ˇ

ˇqbm,F
n wbm

t

ˇ

ˇ is of weak type p1,1q, see [Gra14]. Then, for every
1 ă pă 8, our goal (4.39) where C “ 25C follows by Marcinkiewicz’s Interpolation Theo-
rem, see [Gra14, Theorem 1.3.2 and Exercise 1.3.3(a)].

We now prove (B.4) and (B.5). For any dimension d P N, we denote by Bdpx, rq the set of
integer points in the Euclidean ball in Rd with center x P Zd and radius r ą 0:

(B.6) Bdpx, rq :“
␣

y P Zd : |y ´ x| “
a

py1 ´ x1q2 ` . . .` pyd ´ xdq2 ď r
(

.

We focus on the case d“ 2m and we write x “ px1, . . . , xmq with xi P Z2. Given a function
F : pZ2qm Ñ R, we define the maximal function MF : pZ2qm Ñ r0,8s by

(B.7) MF pxq :“ sup
0ără8

#

1

|B2mpx, rq|

ÿ

yPB2mpx,rq

|F pyq|

+

.

We are going to prove the following discrete version of Hardy-Littlewood maximal inequality:

(B.8) @λą 0 : |tMF ą λu| ď 25m
}F }ℓ1

λ
.

We are also going to prove the following upper bound: for any m P N, L P N, x P Z2,

(B.9) max
1ďnďL

|qbm,F
n pxqwbm

t pxq| ď CmMFwbm
t pxq

Since clearly }MG}ℓ8 ď }G}ℓ8 , this directly implies (B.4) and, coupled to (B.8), also (B.5).
To complete the proof, it only remains to prove (B.8) and (B.9).

B.3.0.1. Proof of (B.8). We follow closely the classical proof of the Hardy-Littlewood max-
imal inequality, see [Gra14, Theorem 2.1.6], which is stated on Rd instead of Zd. By defini-
tion of MF , see (B.7), for every point x P tMF ą λu there is rx ą 0 such that

(B.10)
ÿ

yPB2mpx,rxq

|F pyq| ą λ |B2mpx, rxq| .

It suffices to fix any finite set K Ď tMF ą λu and prove that (B.8) holds with the LHS
replaced by |K|. From the family of balls F :“ tB2mpx, rxq : x P Ku we extract a disjoint
sub-family F 1 :“ tB2mpz, rzq : z P K 1u with K 1 ĎK by the greedy algorithm, see [Gra14,
Lemma 2.1.5]: we first pick the ball of largest radius, then we select the ball of largest radius
among the remaining ones which do not intersect the balls that have already been picked,
and so on. By construction, if a ball B2mpx, rxq is not included in F 1, then it must overlap
with some ball B2mpz, rzq of larger radius rz ě rx, therefore B2mpx, rxq Ď B2mpz,3rzq. In
other terms, tripling the radii of the balls in F 1 we cover all the balls in F , hence

|K| ď
ÿ

zPK1

|B2mpz,3rzq| .
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We prove below that, for any dimension d P N, z P Zd and r ą 0,

(B.11) |Bdpz,3rq| ď 5d |Bdpz, rq| .

Setting d“ 2m and applying (B.10), we then obtain (B.8):

|K| ď 25m
ÿ

zPK1

|B2mpz, rzq| ď
25m

λ

ÿ

zPK1

ÿ

yPB2mpz,rzq

|F pyq| ď
25m

λ
}F }ℓ1 ,

where the last inequality holds because the balls B2mpz, rzq for z PK 1 are disjoint.
It remains to prove (B.11). We fix z “ 0 and we proceed by induction on d P N.

• The case d “ 1 is proved by direct computation. Note that B1p0, rq “ t´tru, . . . , truu,
hence |B1p0, rq| “ 2tru ` 1. For 0 ď r ă 1 we have |B1p0, rq| “ 1 while |B1p0,3rq| ď 5,
therefore (B.11) holds (as an equality for 2

3 ď r ă 1). More generally, given k P N0, for
k ď r ă k ` 1 we have tru “ k and t3ru ď 3k ` 2, therefore |B1p0, rq| “ 2k ` 1 while
|B1p0,3rq| ď 2 p3k ` 2q ` 1 “ 6k ` 5, which yields

|B1p0,3rq|

|B1p0, rq|
ď

6k ` 5

2k ` 1
“ 3 `

2

2k ` 1
ď 3 ` 2 “ 5 .

• We next assume that (B.11) is proved for some d P N and we prove it for d` 1. Recalling
(B.6) and writing y “ py1, . . . , ydq, we sum over the possible values of y :“ y1 to write

(B.12) |Bd`1p0, rq| “
ÿ

yPt´tru,...,truu

|Bdp0,
a

r2 ´ y2q| .

In particular, replacing r by 3r and applying the induction assumption (B.11), we get

|Bd`1p0,3rq| ď 5d
ÿ

yPt´t3ru,...,t3ruu

|Bdp0,
a

r2 ´ py{3q2q|

ď 5d
ÿ

yPt´t3ru,...,t3ruu

|Bdp0,
a

r2 ´ ry{3s2q| ,

where in the last inequality we increased the radius
a

r2 ´ py{3q2 replacing y{3 by ry{3s

defined as ty{3u for y ě 0 and as ry{3s for y ă 0, so that |ry{3s| ď |y{3|. We finally note
that, as y ranges in t´t3ru, . . . , t3ruu, the variable ỹ :“ ry{3s ranges in t´tru, . . . , truu,
and each value of ỹ comes either 3 or 5 values of y.4 We thus obtain, recalling (B.12),

|Bd`1p0,3rq| ď 5d ¨ 5
ÿ

ỹPt´tru,...,truu

|Bdp0,
a

r2 ´ ỹ2q| “ 5d`1 |Bd`1p0, rq| ,

which completes the proof of (B.11).

B.3.0.2. Proof of (B.9). We claim that for all 1 ď nď L and x P Z2

(B.13) qnpxq et|x| ď
C1

n
e´

|x|2

16cn where C1 :“ 6c e4c t
2L .

Indeed, we prove in Lemma B.1 below that qnpxq ď 6c
n e´

|x|2

8cn , see (B.14), therefore

qnpxq et|x| ď
6c

n
et|x|´

|x|2

8cn ď
6c

n
e´

|x|2

16cn ¨

´

sup
γě0

etγ´
γ2

16cn

¯

“
6c

n
e´

|x|2

16cn e4c t
2n ,

4Indeed, ỹ “ 0 comes from y P t´2,´1,0,1,2u, while ỹ “ ℓ ą 0 comes from y P t3ℓ,3ℓ ` 1,3ℓ ` 2u, and
similarly for ỹ “ ℓ ă 0.
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which shows that (B.13) holds for nď L.
Let us now deduce (B.9) from (B.13). Since wtpxq

wtpzq
ď et|x´z|, by (4.38) and (B.13) we get

|qbm,F
n pxqwbm

t pxq| ď
ÿ

zPpZ2qm

|F pzq|wbm
t pzq

m
ź

i“1

qnpxi ´ ziq e
t|xi´zi|

ď

ˆ

C1

n

˙m
ÿ

zPpZ2qm

|F pzq|wbm
t pzq e´

|x´z|2

16cn ,

where |x´z|2 “
řm

i“1 |xi ´ zi|
2 is the Euclidean norm on pR2qm. Recalling (B.6), we write

e´
|x´z|2

16cn “

ż 1

0
ds1

tsďe´
|x´z|2

16cn u
“

ż 1

0
ds1tzPBbmpx,rn,squ with rn,s :“ 16cn log 1

s ,

therefore, recalling (B.7), we get

|qbm,F
n pxqwbm

t pxq| ď

ˆ

C1

n

˙m

MFwbm
t pxq ¨

ż 1

0
ds

ˇ

ˇBbmpx, rn,sq
ˇ

ˇ .

Since
ˇ

ˇBbmpx, rn,sq
ˇ

ˇ “
ř

zPpZ2qm 1
tsďe´

|x´z|2

16cn u
“
ř

yPpZ2qm 1
tsďe´

|y|2

16cn u
, we finally obtain

|qbm,F
n pxqwbm

t pxq| ď

ˆ

C1

n

ÿ

yPZ2

e´
|y|2

16cn

˙m

MFwbm
t pxq ,

and it remains to show that the term in parenthesis is at most C, see (B.9). By monotonicity
ÿ

aPZ
e´ a2

16cn ď 1 `

ż

R
e´ x2

16cn dx“ 1 `
?
16π cn ,

hence writing y “ pa, bq, so that |y|2 “ a2 ` b2, we obtain

C1

n

ÿ

yPZ2

e´
|y|2

16cn “
C1

n

ˆ

ÿ

aPZ
e´ a2

16cn

˙2

ď C1 2p1 ` 16π cnq

n
ď p2 ` 32πq cC1 ď 33π cC1 ,

where the second last inequality holds by ně 1 and c ě 1. Since 33π cC1 ď C, see (B.3) and
(B.13), the proof is completed.

LEMMA B.1 (Heat kernel bound). Let Assumption 4.14 hold and let c be the constant
from Lemma 4.16. Then for every n P N and x P Z2 we have

(B.14) qnpxq ď
6c

n
e´

|x|2

8cn .

PROOF. We assume that n ě 2, since the case n “ 1 is easier. Let us apply the formula
(B.1) with ℓ“ tn2 u, so that n

3 ď ℓď n
2 : by (4.36) (with t“ 0) we have qkpx´ yq ď c

k ď 3c
n for

both k “ ℓ and k “ n´ ℓ, therefore for any ϱě 0

(B.15) qnpxq ď
3c

n
e´ϱ|x|

ÿ

yPZ2: xy,xyě 1

2
|x|2

e
2ϱ xy, x

|x|
y
␣

qℓpyq ` qn´ℓpyq
(

,

where we bounded 1 ď e´ϱ|x|e
2ϱ xy, x

|x|
y because xy,xy ě 1

2 |x|2 (with x
|x|

:“ 0 for x“ 0). For
any w “ pw1,w2q P R2, by (4.35) and Cauchy-Schwarz we can bound

ÿ

yPZ2

exy,wy qℓpyq ď

d

ÿ

yPZ2

e2y1w1 qℓpyq ¨
ÿ

yPZ2

e2y2w2 qℓpyq ď ec |w|2ℓ ,
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and similarly for qn´ℓp¨q, therefore for maxtℓ,n´ ℓu ď n
2 we obtain by (B.15)

qnpxq ď
6c

n
e´ϱ|x|`2cϱ2 n .

Optimising over ϱ leads us to choose ϱ“
|x|

4cn , which yields (B.14).

APPENDIX C: ESTIMATES ON BOUNDARY AND BULK TERMS

In this section we prove the estimates on the boundary terms (Propositions 4.19 and 4.20
for the left boundary, Proposition 4.21 for the right boundary) and on the bulk terms (Propo-
sition 4.23 and Proposition 4.24).

C.1. Proof of Propositions 4.19. By the triangle inequality we can bound

(C.1)
›

›

›

›

pq
|f |,I
L

Wt

›

›

›

›

ℓp
ď

L
ÿ

n“1

›

›

›

›

q
|f |,I
n

Wt

›

›

›

›

ℓp
.

Writing I “ tI1, . . . , Imu we can write, recalling (4.8), (4.14) and (4.29),

(C.2)
›

›

›

›

q
|f |,I
n

Wt

›

›

›

›

p

ℓp
“

ÿ

xPpZ2qh

q
|f |,I
n pxqp

Wtpxqp
ď

m
ź

j“1

#

ÿ

yPZ2

q
|f |
n pyqp|Ij |

wtpyqp|Ij |

+

“

m
ź

j“1

›

›

›

›

q
|f |
n

wt

›

›

›

›

p|Ij |

ℓp|Ij |

.

Since
›

› ¨
›

›

pk

ℓpk
ď
›

› ¨
›

›

ppk´1q

ℓ8

›

› ¨
›

›

p

ℓp
, from

řm
j“1 |Ij | “ h we get (raising to 1{p)

(C.3)
›

›

›

›

q
|f |,I
n

Wt

›

›

›

›

ℓp
ď

›

›

›

›

q
|f |
n

wt

›

›

›

›

h´m

ℓ8

›

›

›

›

q
|f |
n

wt

›

›

›

›

m

ℓp
ď

›

›

›

›

q
|f |
n

wt

›

›

›

›

ℓ8

›

›

›

›

q
|f |
n

wt

›

›

›

›

h´1

ℓp
,

where the last inequality holds since m ď h ´ 1 for I ‰ ˚ (note that } ¨ }ℓ8 ď } ¨ }ℓp ). By
(4.37), for any r P r1,8s,

(C.4)
›

›

›

›

q
|f |
n

wt

›

›

›

›

ℓ8

ď
c e2c t

2n

n
1

r

›

›

›

›

f

wt

›

›

›

›

ℓr
,

›

›

›

›

q
|f |
n

wt

›

›

›

›

ℓp
ď c e2c t

2n

›

›

›

›

f

wt

›

›

›

›

ℓp
,

hence we obtain for nď L, recalling the definition of C in (4.40),

(C.5)
›

›

›

›

q
|f |,I
n

Wt

›

›

›

›

ℓp
ď

C h

n
1

r

›

›

›

›

f

wt

›

›

›

›

ℓr

›

›

›

›

f

wt

›

›

›

›

h´1

ℓp
.

Plugging this into (C.1), since
řL

n“1
1
na ď

şL
0

1
xa dx“ L1´a

1´a , we obtain

(C.6) max
I‰˚

›

›

›

›

pq
|f |,I
L

Wt

›

›

›

›

ℓp
ď r

r´1 C hL1´ 1

r

›

›

›

›

f

wt

›

›

›

›

ℓr

›

›

›

›

f

wt

›

›

›

›

h´1

ℓp
,

which proves (4.44) for r ě p (so that mint r
r´1 ,

p
p´1u “ r

r´1 ). More generally, if r ě
3p

1`2p ,
then r

r´1 ď 3 p
p´1 hence (C.6) still proves (4.44).

It remains to prove (4.44) for r P r1, 3p
1`2p s Ď r1, pq. Let us obtain an estimate alternative

to (C.5). Since } ¨ }
p
ℓp ď } ¨ }

p´r
ℓ8 } ¨ }rℓr for r ă p, by (4.37) we obtain

(C.7)
›

›

›

›

q
|f |
n

wt

›

›

›

›

ℓp
ď

›

›

›

›

q
|f |
n

wt

›

›

›

›

1´ r

p

ℓ8

›

›

›

›

q
|f |
n

wt

›

›

›

›

r

p

ℓr
ď

c e2c t
2n

n
1

r
´ 1

p

›

›

›

›

f

wt

›

›

›

›

ℓr
,
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which we can use to estimate one factor of }
q|f|
n

wt
}ℓp appearing in (C.3) (recall that h ě 2):

applying again the first bound in (C.4), for nď L we obtain from (C.3)

(C.8)
›

›

›

›

q
|f |,I
n

Wt

›

›

›

›

ℓp
ď

C h

nγ

›

›

›

›

f

wt

›

›

›

›

2

ℓr

›

›

›

›

f

wt

›

›

›

›

h´2

ℓp
with γ :“ 2

r ´ 1
p “ 1

r `
p´r
pr .

The RHS of (C.8) is smaller than the RHS of (C.5) if and only if

(C.9)
1

nγ

›

›

›

›

f

wt

›

›

›

›

ℓr
ă

1

n
1

r

›

›

›

›

f

wt

›

›

›

›

ℓp
ðñ ną ñ :“

˜

}
f
wt

}ℓr

}
f
wt

}ℓp

¸
pr

p´r

.

Note that for r P r1, 3p
1`2p s we have γ ´ 1 ě

2p1`2pq

3p ´ 1
p ´ 1 “

p´1
3p ą 0, hence γ ą 1. Then

ř8
nąñ

1
nγ ď

ş8

ñ
1
xγ dx“ 1

γ´1 ñ
1´γ ď

3p
p´1 ñ

1´γ , hence by (C.8) we can bound

ÿ

nąñ

›

›

›

›

q
|f |,I
n

Wt

›

›

›

›

ℓp
ď

3p
p´1 C h ñ1´γ

›

›

›

›

f

wt

›

›

›

›

2

ℓr

›

›

›

›

f

wt

›

›

›

›

h´2

ℓp
“

3p
p´1 C h

›

›

›

›

f

wt

›

›

›

›

rpp´1q

p´r

ℓr

›

›

›

›

f

wt

›

›

›

›

h´
rpp´1q

p´r

ℓp
,

where the equality follows by the definitions of ñ in (C.9) and γ in (C.8). For the contribution
of nď ñ, the previous bound (C.5) with r “ p yields, as in (C.6),

ñ
ÿ

n“1

›

›

›

›

q
|f |,I
n

Wt

›

›

›

›

ℓ2
ď

p
p´1 C h ñ1´ 1

p

›

›

›

›

f

wt

›

›

›

›

h

ℓp
“

p
p´1 C h

›

›

›

›

f

wt

›

›

›

›

rpp´1q

p´r

ℓr

›

›

›

›

f

wt

›

›

›

›

h´
rpp´1q

p´r

ℓp
,

having used the definition of ñ in (C.9). Overall, see (C.1), for r P r1, 3p
1`2p s we have

(C.10) max
I‰˚

›

›

›

›

pq
|f |,I
L

Wt

›

›

›

›

ℓp
ď

4p
p´1 C h

›

›

›

›

f

wt

›

›

›

›

1

α

ℓr

›

›

›

›

f

wt

›

›

›

›

h´ 1

α

ℓp
loooooooooooooomoooooooooooooon

A

with α :“ p´r
rpp´1q

P p0,1s .

At the same time, we can apply again the previous bound (C.6) with r “ p to estimate

(C.11) max
I‰˚

›

›

›

›

pq
|f |,I
L

Wt

›

›

›

›

ℓp
ď

p
p´1 C hL1´ 1

p

›

›

›

›

f

wt

›

›

›

›

h

ℓp
looooooooooomooooooooooon

B

.

Combining these bounds we get maxI‰˚

›

›

pq|f|,I
L

Wt

›

›

ℓ2
ďAαB1´α, hence

@r P r1, 3p
1`2p s : max

I‰˚

›

›

›

›

pq
|f |,I
L

Wt

›

›

›

›

ℓp
ď

4p
p´1 C hL1´ 1

r

›

›

›

›

f

wt

›

›

›

›

ℓr

›

›

›

›

f

wt

›

›

›

›

h´1

ℓp
,

which coincides with our goal (4.44), since mint r
r´1 ,

p
p´1u “

p
p´1 for r ă p.

C.2. Proof of Proposition 4.20. We follow the proof of Proposition 4.19. By the triangle
inequality, as in (C.1), it is enough to show that

(C.12)
›

›

›

›

q
|f |,I
n

Wt
VJ
s

›

›

›

›

ℓp
ď

36
1

p C h

s2{p

›

›

›

›

f

wt

›

›

›

›

2

ℓ8

›

›

›

›

f

wt

›

›

›

›

h´2

ℓp
.

We assume for ease of notation that J “ tt1,2u, t3u, . . . , thuu. Let us fix a partition I “

tI1, . . . , Imu such that I Ğ J , say 1 P I1 and 2 P I2. In analogy with (C.2), we have

(C.13)
›

›

›

›

q
|f |,I
n

Wt
VJ
s

›

›

›

›

p

ℓp
ď pΣp1,2q

n ¨

m
ź

j“3

›

›

›

›

q
|f |
n

wt

›

›

›

›

p|Ij |

ℓp|Ij |

.
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where

(C.14) pΣp1,2q
n :“

ÿ

y1,y2PZ2

`

q|f |
n py1q et|y

1|
˘p|I1| `

q|f |
n py2q et|y

2|
˘p|I2|

e´ps|y1´y2| .

By a uniform bound, we can estimate

pΣp1,2q
n ď

›

›

›

›

q
|f |
n

wt

›

›

›

›

p|I1|

ℓ8

ÿ

y1,y2PZ2

ˆ

q
|f |
n py2q

wtpy2q

˙p|I2|

e´ps|y1´y2|

“

›

›

›

›

q
|f |
n

wt

›

›

›

›

p|I1|

ℓ8

›

›

›

›

q
|f |
n

wt

›

›

›

›

p|I2|

ℓp

ˆ

ÿ

yPZ2

e´ps|y|

˙

.

(C.15)

Since 2|z| ě |z1| ` |z2| for z “ pz1, z2q P Z2 and 1´ e´x ě 2
3x for 0 ď xď 1

2 , we can bound

(C.16)
ÿ

zPZ2

e´ps|z| ď
ÿ

zPZ2

e´s|z| ď

ˆ

ÿ

xPZ
e´s |x|

2

˙2

ď

ˆ

2

1 ´ e´ s

2

˙2

ď
36

s2
.

Plugging these estimates into (C.13) and bounding
›

› ¨
›

›

pk

ℓpk
ď

›

› ¨
›

›

ppk´1q

ℓ8

›

› ¨
›

›

p

ℓp
, since

řm
j“1 |Ij | “ h and mď h´ 1, we obtain (raising to 1{p)

›

›

›

›

q
|f |,I
n

Wt
VJ
s

›

›

›

›

ℓp
ď

36
1

p

s2{p

›

›

›

›

q
|f |
n

wt

›

›

›

›

h´m`1

ℓ8

›

›

›

›

q
|f |
n

wt

›

›

›

›

m´1

ℓp
ď

36
1

p

s2{p

›

›

›

›

q
|f |
n

wt

›

›

›

›

2

ℓ8

›

›

›

›

q
|f |
n

wt

›

›

›

›

h´2

ℓp
.

Applying the estimates in (C.4), we obtain (C.12).

C.3. Proof of Proposition 4.21. The second line of (4.49) follows by the first line be-
cause } ¨ }2ℓ2q ď } ¨ }ℓ8 } ¨ }ℓq . Let us prove the first line of (4.49). Writing J “ tJ1, . . . , Jmu

and recalling (4.17) and (4.8) we can write, as in (C.2),

›

›q
|g|,J
L Wt

›

›

q

ℓq
“

ÿ

xPpZ2qh

q
|g|,J
L pxqqWtpxqq ď

ÿ

yPpZ2qm

max
1ďnďL

m
ź

j“1

`

q|g|
n pyjqwtpyjq

˘q|Jj |
.

We next observe that for k “ |J j | ě 1, arguing as in (B.2) with 1{wt replaced by wt, we have

`

q|f |
n pyqwtpyq

˘k
ď
`

c e2ct
2n
˘k´1

ÿ

zPZ2

|fpzq|kwtpzqk qnpy ´ zq
wtpyq

wtpzq

“
`

c e2ct
2n
˘k´1

q|f |kwk´1
t

n pyqwtpyq .

(C.17)

Introducing the function

(C.18) Gpy1, . . . , ymq :“
m
ź

j“1

|gpyjq||J
j |wtpyjq

|Jj |´1 ,

and recalling the notation (4.38), we can thus write

›

›q
|g|,J
L Wt

›

›

q

ℓq
ď

m
ź

j“1

`

c e2ct
2n
˘qp|Jj |´1q

ÿ

yPpZ2qm

max
1ďnďL

`

qbm,G
n pyqwbm

t pyq
˘q

ď C
qph´mq

›

›

›
max

1ďnďL
qbm,G
n wbm

t

›

›

›

q

ℓq
,

(C.19)
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because c e2ct
2n ď C , see (4.40), and

řm
j“1 |J j | “ h. We can now apply (4.39) to get

(C.20)
›

›q
|g|,J
L Wt

›

›

ℓq
ď

q
q´1 C

h ›
›Gwbm

t

›

›

ℓq
.

It remains to compute

(C.21)
›

›Gwbm
t

›

›

ℓq
“

m
ź

j“1

ˆ

ÿ

yjPZ2

|gpyjq|q|Jj |wtpyjq
q|Jj |

˙1{q

“

m
ź

j“1

›

›gwt

›

›

|Jj |

ℓq|Jj |
.

Since J ‰ ˚, we have |J j | ě 2 for at least one j, say for j “ 1, hence for k “ |J1| we
bound

›

› ¨
›

›

k

ℓqk
ď
›

› ¨
›

›

k´2

ℓ8

›

› ¨
›

›

2

ℓ2q
, while for all other k “ |J j | ě 1 we simply bound

›

› ¨
›

›

k

ℓqk
ď

›

› ¨
›

›

k´1

ℓ8

›

› ¨
›

›

ℓq
. Since

řm
j“1 |J j | “ h, and mď h´ 1 for J ‰ ˚, we obtain

›

›Gwbm
t

›

›

ℓq
ď
›

›gwt

›

›

h´m´1

ℓ8

›

›gwt

›

›

2

ℓ2q

›

›gwt

›

›

m´1

ℓq
ď
›

›gwt

›

›

2

ℓ2q

›

›gwt

›

›

h´2

ℓq
,

because } ¨ }ℓ8 ď } ¨ }ℓq , } ¨ }ℓ2q . This completes the proof of the first line of (4.49).
We next prove (4.50). We may assume that I “ tt1,2u, t3u, . . . , thuu. Let us fix a partition

J “ tJ1, . . . , Jmu with J Ğ I , say 1 P J1 and 2 P J2. Then we can write
›

›q
|g|,J
L Wt VI

s

›

›

q

ℓq
ď

ÿ

yPpZ2qm

wspy1 ´ y2qq max
1ďnďL

"

`

q|g|
n py1qwtpy1q

˘q|J1|

ˆ

m
ź

j“2

`

q|g|
n pyjqwtpyjq

˘q|Jj |

*

.

By (4.39) form“ 1, we can bound q|g|
n py1qwtpy1q ď }q

|g|
n wt}ℓ8 ď C }gwt}ℓ8 . Then the sum

over y1 P Z2 yields }ws}
q
ℓq . If we define G1 as G from (C.18) with the product ranging from

2 to m, then arguing as in (C.17)-(C.19) we get
›

›q
|g|,J
L Wt VI

s

›

›

q

ℓq
ď C

qph´pm´1qq
}gwt}

q|J1|

ℓ8 }ws}
q
ℓq

›

›

›
max

1ďnďL
qbpm´1q,G1

n w
bpm´1q

t

›

›

›

q

ℓq
.

Applying (4.39), as in (C.20)-(C.21), we then obtain
›

›q
|g|,J
L Wt VI

s

›

›

ℓq
ď C

h´pm´1q
}gwt}

|J1|

ℓ8 }ws}ℓq
q

q´1 C
m´1 ›

›G1w
bpm´1q

t

›

›

ℓq

ď
q

q´1 C
h

}ws}ℓq }gwt}
|J1|

ℓ8

m
ź

j“2

›

›gwt

›

›

|Jj |

ℓq|Jj |

ď
q

q´1 C
h

}ws}ℓq }gwt}
h´pm´1q

ℓ8 }gwt}
m´1
ℓq ,

where the last inequality holds by
›

› ¨
›

›

k

ℓqk
ď
›

› ¨
›

›

k´1

ℓ8

›

› ¨
›

›

ℓq
for k “ |Ij | ě 1. Since mď h´ 1,

the proof of (4.50) is complete.

C.4. Proof of Proposition 4.23. Let us set for short p :“ q
q´1 (so that 1

p ` 1
q “ 1). We are

going to use a key functional inequality from [CSZ23, Lemma 6.8], in the improved version
from [LZ21+, eq. (3.21) in the proof of Proposition 3.3]:
(C.22)

ÿ

zPpZ2qhI ,xPpZ2qhJ

fpzqgpxq

p1 ` |x ´ z|2qh´1
ďC1 pq }f}ℓp }g}ℓq where C1 :“ 22hp1 ` πqh .

(The value of C1 is extracted from [LZ21+, proof of Proposition 3.3] where C1 ď

23h`1p c
2qh´1pq with cď 1 ` π from [LZ21+, proof of Lemma A.1], hence C1 ď 22h`2 p1 `

πqh´1.)
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We show below the following bound on pQ˚,˚
L pz,xq “

řL
n“1

śh
i“1 qnpxi ´ ziq:

(C.23) pQ˚,˚
L pz,xq ď

C2 e
´

|x´z|2

16cL

p1 ` |x ´ z|2qh´1
where C2 :“ h! p200 c2qh .

Recalling (4.30), since pQI,J
L pz,xq “ pQ˚,˚

L pz,xq1tz„I,x„Ju, see (4.8)-(4.14), we obtain

`

Wt
pQI,J
L

1
Wt

˘

pz,xq ď
C2 1tz„I,x„Ju

p1 ` |x ´ z|2qh´1

h
ź

i“1

et|z
i´xi|´

|zi´xi|2

16cL ď
C2 e

8cht2L 1tz„I,x„Ju

p1 ` |x ´ z|2qh´1
,

because maxaPRtta´ a2

16cLu “ 8c t2L. Applying (C.22), get (4.55) since 800p1`πq ď 4000.

We next prove (4.56). Let I, J be pairs, say I “ tta, bu, tcu : c ‰ a, c ‰ bu and J “

ttã, b̃u, tcu : c‰ ã, c‰ b̃u. For z „ I and x „ J we have za “ zb, hence

1

VI
s pxq

ď es|xa´xb| ď est|xa´za|`|za´zb|`|zb´xb|u “ es|xa´za| es|zb´xb| ,

and similarly 1
VJ

s pzq
ď es|xã´zã| es|zb̃´xb̃|. Arguing as above, we obtain (4.56):

`Wt

VJ
s

pQI,J
L

1
Wt VI

s

˘

pz,xq ď
C2 1tz„I,x„Ju

p1 ` |x ´ z|2qh´1

h
ź

i“1

ept`2sq|zi´xi|´ 1

16cL
|zi´xi|2

ď
C2 e

8chpt`2sq2L 1tz„I,x„Ju

p1 ` |x ´ z|2qh´1
.

Let us prove (C.23). By the bound qnpxq ď 6c
n e´

|x|2

8cn proved in Lemma B.1 we obtain

Q˚,˚
n pz,xq “

h
ź

i“1

qnpxi ´ ziq ď
p6cqh

nh
e´

|x´z|2

8cn ,

hence for x “ z we get pQ˚,˚
L px,xq “

řL
n“1Q

˚,˚
n pz,xq ď p6cqh

ř8
n“1

1
n2 “ p6cqh π2

6 ď

2 p6cqh which is compatible with (C.23). We next assume that x ‰ z: note that for A “
|x´z|2

8c ą 0

L
ÿ

n“1

e´ A

n

nh
ď

e´ A

2L

Ah´1

"

1

A

8
ÿ

n“1

φ
`

n
A

˘

*

where φptq :“
e´ 1

2t

th
.

Since φp¨q is unimodal, we can bound 1
A

ř8
n“1φ

`

n
A

˘

ď
ş8

0 φptq dt ` 1
A}φ}8 and note that

ş8

0 φptq “ 2h´1
ş8

0 s
h´2 e´s ds “ 2h´1 ph ´ 2q! while }φ}8 “ p2hqh e´h ď 2hh!{

?
2πh ď

1
22

hh!, therefore for Aě 1 we get 1
A

ř8
n“1φ

`

n
A

˘

ď 2hh!. Overall, recalling (4.14), we have
for x ‰ z

pQ˚,˚
L pz,xq ď

L
ÿ

n“1

Q˚,˚
n pz,xq ď

p48 c2qh e´
|x´z|2

16cL

|x ´ z|2ph´1q
2h h! ď

h! p200 c2qh e´
|x´z|2

16cL

p1 ` |x ´ z|2qh´1
,

where we last bounded |x ´ z|2 ě 1
2p1 ` |x ´ z|2q for x ‰ z. We have proved (C.23).
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C.5. Proof of Proposition 4.24. Let us define p :“ q
q´1 so that 1

p ` 1
q “ 1. Since

}A}ℓqÑℓq :“ sup
f,g : }f}ℓpď1, }g}ℓq ď1

ÿ

z,xPpZ2qhI

fpzqApz,xqgpxq ,

we can bound
ř

z,x fpzq |pU|Ipz,xqgpxq ď
`
ř

z,x fpzqp |pU|Ipz,xq
˘1{p`ř

z,x |pU|Ipz,xqgpxqq
˘1{q

by Cauchy-Schwarz, hence we obtain

(C.24) }A}ℓqÑℓq ď max

#

sup
zPpZ2qhI

ÿ

xPpZ2qhI

Apz,xq , sup
xPpZ2qhI

ÿ

zPpZ2qhI

Apz,xq

+

.

We will prove (4.58) and (4.59) exploiting this bound.
We recall that Un,βpxq is defined in (4.12) and we define

(C.25) Un,β :“
ÿ

xPZ2

Un,βpxq “

8
ÿ

k“1

pσ2βqk
ÿ

0“:n0ăn1ă¨¨¨ănk:“n

k
ź

i“1

q2pni´ni´1qp0q .

When we sum Un,β for n “ 1, . . . ,L, if we enlarge the sum range in (C.25) by letting each
increment mi :“ ni ´ ni´1 vary freely in t1, . . . ,Mu, recalling (4.57) we obtain

L
ÿ

n“1

e´λnUn,β ď

8
ÿ

k“1

pσ2βqk
ˆ L

ÿ

m“1

e´λm q2mp0q

˙k

“

8
ÿ

k“1

pσ2βR
pλq

L qk “
σ2βR

pλq

L

1 ´ σ2βR
pλq

L

.(C.26)

We next estimate the exponential spatial moments of Un,βpxq. Pluggin the second bound
from (4.35) into (4.12), writing x“ px1, x2q and xa “

řk
i“1pxai ´ xai´1q, we obtain

@a“ 1,2 :
ÿ

xPZ2

etx
a

Un,βpxq ď ec
t2

2
nUn,β .

From this, by |x| ď |x1| ` |x2|, Cauchy-Schwarz and et|x
a| ď etx

a

` e´txa

, we deduce that

(C.27)
ÿ

xPZ2

et|x|Un,βpxq ď 2e2c t
2nUn,β .

We now fix a partition I “ tI1, . . . , Imu ‰ ˚ and a pair J “ tta, bu, tcu : c ‰ a, bu. Our
goal is to prove (4.59), which also yields (4.58) for s“ 0. By (4.30) and (4.46) we have the
following rough bound, for any τ P t´1,`1u:

(C.28)
WtpzqVJ

s pzqτ

WtpxqVJ
s pxqτ

ď e2pt`sq|xa´za|
ź

c‰a,b

ept`sq|xc´zc| .

We may order |I1| ě |I2| ě . . .ě |Im|, so that |I1| ě 2. Given z,x P pZ2qhI , denoting by xI
j

the common value of xa for a P Ij , by (4.8) we can write

QI,I
n pz,xq “ qnpxI

1

´ zI
1

q|I1|

m
ź

j“2

qnpxI
j

´ zI
j

q|Ij | ď qnpxI
1

´ zI
1

q2
m
ź

j“2

qnpxI
j

´ zI
j

q ,

because qnp¨q ď 1. Since |ErξIβs| ď σ2β by assumption, from (4.9) we can bound

|U|In,βpz,xq ď Un,βpxI
1

´ zI
1

q

m
ź

j“2

qnpxI
j

´ zI
j

q ,
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therefore by (C.27), (C.28) and the first bound in (4.36) we obtain
ÿ

xPpZ2qhI

ˆ

|U|In,βpz,xq
WtpzqVspzqτ

WtpxqVspxqτ

˙

ď2h e4hc pt`sq2nUn,β ,(C.29)

which yields, recalling (4.16),

(C.30) sup
zPpZ2qhI

ÿ

xPpZ2qhI

|pU|JL,λ,βpz,xq
WtpzqVspzqτ

WtpxqVspxqτ
ď 1 ` 2h e4hc pt`sq2L

L
ÿ

n“1

e´λnUn,β ,

and the same holds exchanging x and z by symmetry (note that the bound (C.28) is symmet-
ric in x Ø z). Recalling (C.24) and (C.26), we obtain (4.59) (hence (4.58)).
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