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We study the 2d directed polymer in random environment in a novel
quasi-critical regime, which interpolates between the much studied sub-
critical and critical regimes. We prove Edwards-Wilkinson fluctuations
throughout the quasi-critical regime, showing that the diffusively rescaled
partition functions are asymptotically Gaussian. We deduce a corresponding
result for the critical 2d Stochastic Heat Flow. A key challenge is the lack of
hypercontractivity, which we overcome deriving new moment estimates.

1. Introduction. We study the 2d directed polymer in random environment, a key model
in statistical mechanics which has been the object of deep mathematical investigation (see
the recent monograph [C17]). More specifically, we focus on the partition functions and their
scaling limits, which have close links to singular stochastic PDEs, such as the Stochastic Heat
Equation and the KPZ equation, as we discuss in Subsection 1.4.

The partition functions of the 2d directed polymer in random environment are defined by

(1.1) 7%, 5(2) i= BleZna (BenS) 20} g — 2]

where N € N is the system size, 3 = 0 is the disorder strength, z € Z? is the starting point,
and we have two independent sources of randomness:

* S = (S,)n>0 is the simple random walk on Z? with law P and expectation E;
* w=(w(n, 2))nen, zez2 are i.i.d. random variables with law P, independent of .S, with

(12) E[w]=0, E[w}=1, AB):=logE[e*] < fors>0.
The factor A(/3) in (1.1) has the effect to normalise the expectation:
(1.3) E[Z§ 5(2)] =1.

Note that (Z%; 5(2))zez2 is a family of (correlated) positive random variables, depending on
the random variables w which play the role of disorder (or random environment).

In this paper we investigate the diffusively rescaled partition functions Zy B(W Nzl),
where |-| denotes the integer part. For an integrable test function ¢ : R? — R we set

A4 Zh(e)= | ZoaVNaDpla)d = 5 3 285 en).

2€72

where for R > 0 we define ¢ : Z?> — R by

(1.5) vr(z) = f cp(ﬁ) dy for z = (21, 22) € Z2.

[z1,214+1) x[22,22+1)
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(note that pp(2) ~ gp(ﬁ) if © is continuous). We look for the convergence in distribution

of Z 5 (¢) as N — oo, under an appropriate rescaling of the disorder strength 3 = .

Notation. We denote by ¢ € C,.(R?) the space of functions ¢ : R? — R that are continu-
ous and compactly supported. We write ay < by, ay ~ by, any » by to mean that the ratio
an /by converges respectively to 0,1, 00 as N — o0.

1.1. The phase transition. It is known since [CSZ17b] that the partition functions un-

dergo a phase transition on the scale 32 = 5%, = O(@), that we now recall.

Let Ry be the expected replica overlap of two independent simple random walks .S, S’

= ) P(S2n =0) =

n=1

N
log N
] %2 Lo,

N
(1.6) Ry := E®2[ D s, —s1)

n=1 7T

see the local limit theorem (3.8). Using the more convenient parameter
(1.7) 05 1= Var[e? AO)] = AEH=225)
(note that o3 ~ S as | 0, since A\(§) ~ %62), we can rescale 5 = By as follows:

22 22
2 B B . 5
(18) O'IBN:%N@, with 56(0700)

Let us recall some key results on the scaling limit of Z; B(gp) from (1.4) for 8 = By.

* In the sub-critical regime B < 1, after centering and rescaling by +/log N, the averaged
partition function Z% 5 () is asymptotically Gaussian, see [CSZ17b]:!

(19 Be(01):  ogN{Z§ s () ~E[Z§ 5, (0)]} —— N (0.1, 5).

N—o
for an explicit limiting variance v, 5 € (0,00) (which diverges as 31 1).

* In the critical regime 5 = 1, actually in the critical window @2 =1+ 191:&? 5\}) with 9 € R,

the averaged partition function 2%, 5 () is asymptotically non Gaussian, see [CSZ23]:

N o w d
(1.10) =1+ ﬂggﬁ) : ZR py (#) Vo (o) = JW o(x) 27 (dx),

where 2°7(dx) is a non-trivial random measure on R? called the Stochastic Heat Flow.

Note that the sub-critical convergence (1.9) involves a rescaling factor /log N, while no
rescaling is needed for the critical convergence (1.10). In view of this discrepancy, it is nat-
ural to investigate the transition between these regimes.

1.2. Main result. To interpolate between the sub-critical regime B < 1 and the critical
regime 3 = 1, we consider a quasi-critical regime in which 3 1 1 but slower than the critical
window B> =1 + O(@). Recalling (1.6) and (1.8), we fix 8 = Sy such that

1 ¥
(1.11) U%N =RN<1— logNN> forsome 1<« Yy <loghN.

!The result proved in [CSZ17b, Theorem 2.13] actually involves a space-time average, but the same result for
the space average as in (1.4) follows by similar arguments, see [CSZ20].
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(Note that ¥y = O(1) would correspond to the critical window, while ¥ = (1 — 32)log N
with B e (0,1) would correspond to the sub-critical regime.)

Our main result shows that the averaged partition function Z7 5 () has Gaussian fluctu-
ations throughout the quasi-critical regime (1.11), after centering and rescaling by the factor
v/, whose rate of divergence can be arbitrarily slow. This shows that non-Gaussian be-
havior does not appear before the critical regime. We call this result Edwards-Wilkinson
fluctuations in view of its link with stochastic PDEs, that we discuss in Subsection 1.4.

THEOREM 1.1 (Quasi-critical Edwards-Wilkinson fluctuations). Let Z% 5(@) denote the
diffusively rescaled and averaged partition function of the 2d directed polymer model, see
(1.1) and (1.4), for disorder variables w which satisfy (1.2). Then, for (Bn)Nen in the quasi-
critical regime, see (1.7) and (1.11), we have the convergence in distribution

d
(1.12) Vo e C.(R?): VOIN{ZH 5, (©) —E[Z5 5. (0)]} —— N(0,0,),

N—0
where the limiting variance is given by

1
1 z—z!2
(1.13) v, := f o(z) K (z,2") p(x') dz dz’ with K(z,2'):= 2—e" e du.
0 <U
R2xR2

The proof is given in Section 2. An interesting feature of the quasi-critical regime (1.7) is
that it can be used to approximate the Stochastic Heat Flow 2 (dz) as ¥ — —o0, see (1.10).
As a consequence, we can transfer our main result (1.12) to the Stochastic Heat Flow, proving
the following version of Edwards-Wilkinson fluctuations as 9 — —oo.

THEOREM 1.2 (Edwards-Wilkinson fluctuations for the SHF). Denoting by 2’ (dx) the
Stochastic Heat Flow in (1.10), as 9 — —o0 we have the convergence in distribution

(1.14) VpeCo(BY):  VIO[{2Z(p) —E[27(9)]} —2— N(0,v,),

¥——00

where the limiting variance v, is the same as in (1.13).

In the rest of the introduction, we first describe the strategy of the proof of Theorem 1.1
and we compare it with the literature, notably with the proof of the corresponding result (1.9)
in the sub-critical regime, pointing out the novel challenges that we need to face. We then
discuss the connection of our main result (1.12) with stochastic PDEs, in the framework of
so-called Edwards-Wilkinson fluctuations, highlighting future perspectives.

1.3. Strategy of the proof and comparison with the literature. We prove Theorem 1.1 by a
Central Limit Theorem under a Lyapunov condition (see Section 2 for a detailed description),
which is close in spirit to the proof of (1.9) in [CC22] for the sub-critical regime. On the
other hand, the original proof of (1.9) in [CSZ17b] exploited the Fourth Moment Theorem,
by analysing each term in the polynomial chaos expansion of Z7, 5 () (see Subsection 3.1)
and checking that second and fourth moments match the ones of a Gaussian.

Both the approaches in [CC22, CSZ17b] require that the main contribution to the variance
comes from chaos of bounded order, i.e. the tail of the chaos expansion must be small in L?
(c.f. hypotesis (d) in [NouPec12, Theorem 6.3.1] for the Fourth Moment Theorem). This
holds in the sub-critical regime ,5’ < 1 but, crucially, it fails in the quasi-critical regime (1.11)
that we consider, where each fixed order chaos has variance converging to zero. The tail
of the chaos expansion thus gives the main contribution to the variance in the quasi-critical
regime, which is one of the main technical challenges we face in this paper.



In our proof of Theorem 1.1, we will need to bound moments of the partition function
ZN (¢) of order higher than two (to verify a Lyapunov condition). In the sub-critical
regime, such bounds can be obtained exploiting the hypercontractivity of polynomial chaos
expansions, as in [CC22]. However, this property fails in the quasi-critical regime (1.11) for
the same reason pointed out above, namely the tail of the chaos expansion is non negligible.

For this reason, we derive novel quantitative estimates on high moments of the partition
function, see Sections 4 and 5, extending the strategy developed in [GQT21, CSZ23,LZ21+].
We believe that these estimates will find several applications in future research.

REMARK 1.3. An alternative approach to bounding moments of the partition function
was developed in [CZ23] based on estimating the collision local time of multiple independent
random walks. This approach yields estimates on very high moments, whose order diverges as
N — o0, but they are restricted to (a strict subset of) the sub-critical regime 5 < 1, hence they
do not cover the quasi-critical regime that we consider. We also point out the recent paper
[LZ24+], where bounds on very high moments are obtained in the critical regime (1.10).

Let us finally comment on the scaling factor /9y in our main result (1.12). This can be
determined by a variance computation: we show in Proposition 2.1, see (2.4), that as N — o0

’U2

(119 Var [25,,0)] ~ 52
with v, as in (1.13). We can explain heuristically the scaling in (1.15) as follows. Due to the
averaging on the diffusive scale v/N determined by @ (-) in (1.4), the variance of ZN B (p)
is essentially determined by Cov[Zy 5 (), Zy 5, (y)] for |z —y| ~ v/N. Such a covariance
is approximately given by the product of three factors (see (3.15) below):

* the expected number of times two independent random walks meet before time N starting
from x and y (see the term in brackets in (3.15)), which is of order 1;

* the factor o%N ~ 1/log N arising from the variance of ePo=2B) see (1.7);

* the second moment of the partition function Z%; 5 (z) from a single point (1 — U%N Ry)~!
(see the last fraction in (3.15)), which is of order log /9, see (1.11).

Combining these factors, we obtain Var[Z5 5 (¢)] ~ 1/Un in agreement with (1.15).
1.4. Relevant context and future perspectives. The Gaussian fluctuations for Z'y B(go) in

Theorem 1.1 are closely connected to a stochastic PDE, the Edwards-Wilkinson equation,
also known as Stochastic Heat Equation with additive noise:

(1.16) 0w (t,x) = %Axv(s’c)(t,x) + cW(t,x),

where s, c > 0 are fixed parameters and W(t, x) is space-time white noise. This equation is
well-posed in any spatial dimension d > 1: its solution is the Gaussian process

¢ .
v (t,z) = v&9(0,2) + cf J Is(t—u) (T — 2) W(u, 2) dudz,
0 Jra

where g;(x) := (2xt)~%? e~ '3 is the heat kernel on R%. It is known that z > v(5) (t,x) is
a (random) function only for d = 1, while for d > 2 it is a genuine distribution.

Henceforth we focus on d = 2. The solution (%) (¢, -) with initial condition v(&)(0,-) =
0, averaged on test functions ¢ € C,.(IR?), is the centered Gaussian process with covariance

B0 O = [ e KE ) vty
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where we set
t 2 st

1.17 K (2,y) = 2[ S —y)du = =
( ) t (x7y) c 0925 (x y) {0 25 0 27TU

Comparing with (1.13), we can rephrase our main result (1.12): for any ¢ € C,(R?)

1
S= =
1.18)  \iIn {24 —E[Z% —L 9 ith 2
(L18) VI {85, (9) ~ BLZR 5, (O]} 2 w09 (L) witn 1272
In other term, the diffusively rescaled partition functions in the quasi-critical regime con-
verge, dfter centering and rescaling, to the solution of the Edwards-Wilkinson equation.

REMARK 1.4. Also relation (1.9), in the sub-critical regime /3 € (0,1), can be rephrased

as a convergence to the Edwards-Wilkinson solution v (1, o) with & = \/m 3/4/1 — /32

The reason why stochastic PDEs emerge naturally in the study of directed polymers is
that, by the Markov property of simple random walk, the diffusively rescaled partition func-
tion up (t,x) := Ziv, B([\/N x]) solves (up to a time reversal) a discretized version of the
Stochastic Heat Equation with multiplicative noise:

(1.19) oru(t,z) = %Axu(t,x) + ﬁW(t,x) u(t,x),

with initial condition «(0,x) = 1. This gives a hint how the Edwards-Wilkinson equation
(1.16) may arise in the scaling limit of directed polymer partition functions: intuitively, the
singular product W (¢, x) u(t, ) in (1.19) for u(t, z) = un (¢, z) converges to an independent
white noise as N — o0 (see [CC22, Theorem 3.4] in the sub-critical regime).

Edwards-Wilkinson fluctuations were recently proved also for a non-linear Stochastic
Heat Equation, see [DG22, T22+], always in the sub-critical regime. It would be interest-
ing to extend these results in the quasi-critical regime, generalizing our Theorem 1.1.

REMARK 1.5. The multiplicative Stochastic Heat Equation (1.19) in the continuum is
well-posed in one space dimension d = 1, e.g. by classical Ito-Walsh stochastic integration,
but it is ill-defined in higher dimensions d > 2. For this reason, directed polymer partition
functions can provide precious insight on the equation (1.19). In particular, for d = 2, their
scaling limit in the critical regime was obtained in [CSZ23] and called the critical 2d Stochas-
tic Heat Flow, see (1.10), as a natural candidate for the ill-defined solution of (1.19).

In the same spirit, the log-partition function Ay (t,x) := log Zive) 5([\/N x|) provides a
discretized approximation for the Kardar-Parisi-Zhang (KPZ) equation [KPZ86]:

Oh(t, ) = SAM(ET) + S[VA(LD + BW(t),

with initial condition A(0,z) = 0. This equation too, in the continuum, is only fully under-
stood in one space-dimension d = 1, via recent breakthrough techniques of regularity struc-
tures [H14] or paracontrolled distributions [GIP15, GP17]; see also [GJ14, K16]. Similar to
(1.9), Edwards-Wilkinson fluctuations have been proved for hy (¢, ) in the entire sub-critical
regime (1.8) with Be (0,1) [CSZ20, G20, CD20]: for € C..(R?)

(1.20) Vg N {log Z§ 5, () — Ellog Z§ s, ()]} N;iog w9 (1,9),

with s, € as in Remark 1.4. This was recently extended in [NN23], which focuses on a mol-
lification (rather than discretization) of the Stochastic Heat Equation (1.19): phrased in our
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setting, the results of [NN23] prove Gaussian fluctuations in the sub-critical regime for gen-
eral transformations F'(Z% ;5 ), besides F'(z) = log z, with general initial conditions.

It would be very interesting to extend (1.20) to the quasi-critical regime (1.11), namely to
prove an analogue of our Theorem 1.20 for log Z]“\’,, B (), which we expect to hold. A natural
strategy would be to generalize the linearization procedure established in [CSZ20] to handle
the logarithm. This requires estimating negative moments of the partition function, which is
a challenge in the quasi-critical regime (since Zy 5 (2) — 0 for fixed z € Z2).

Local averages on sub-diffusive scales have also been investigated for the mollified KPZ
solution in the sub-critical regime, see [C23, T23+]. Similar results can be expected for the
mollified solution of the Stochastic Heat Equation (1.19), or for the directed polymer partition
function, which should be obtainable in the sub-critical regime as in [CSZ17b]. It would be
natural to study such local averages also in the quasi-critical regime.

We finally mention that Edwards-Wilkinson fluctuations like (1.9) and (1.20) have also
been obtained in higher dimensions d > 3, in the so-called L?-weak disorder phase where
the partition function has bounded second moment [CN21, LZ22, CNN22, CCM21+], see
also the previous works [MU18, GRZ18, CCM20, DGRZ20]. Unlike the two-dimensional
setting, for d > 3 the partition function admits a non-zero limit also beyond the L*-weak
disorder phase: see [J22, J22+] for recent results in this challenging regime. It would be
natural to investigate whether our approach can also be applied in higher dimensions d > 3,
in order to prove Gaussian fluctuations slightly beyond the L?-weak disorder phase.

1.5. Organization of the paper. 'The paper is structured as follows.

* In Section 2 we present the structure of the proof of Theorem 1.1 based on two key steps,
formulated as Propositions 2.1 and 2.3, and we prove Theorem 1.2.

* In Section 3 we prove Proposition 2.1.

* In Section 4 we derive upper bounds on the moments of the partition functions.

* In Section 5 we prove Proposition 2.3.

* Finally, some technical points are deferred to Appendix A.

2. Proof of Theorems 1.1 and 1.2. Let us call X the LHS of (1.12): recalling (1.4)
and (1.3), we can write

Xy =N {Z 5, (0) — E[Z 5, ()]}

VNS {2 () Lon(2).

2€Z?

2.1

with ¢ as in (1.5). In this section, we prove Theorem 1.1 via the following two main steps:

1. we first approximate X in L? by a sum Zf\i 1 X](\?) y of independent random variables,

for M = M — oo slowly enough;
2. we then show that the random variables (XJ(\Z,) w 1<i<m for M = My satisfy the assump-
tions of the classical Central Limit Theorem for triangular arrays.

2.1. Firststep. Inorder to define the random variables X ](\? yrforMeNandl<i< M,
we introduce a variation of (1.1), for —o0 < A < B < o0:

2.2) Z¢) g1 5(2) 1= E[eZnetamonlPenS) =200} g — 4]
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We then define X ](V) v replacing Z7 5 by Z (=1N, % N8 in the definition (2.1) of X:

’]VI

i N
2.3) Xiar = Yo 2 {2y a0, () — L en(2)

M

z€Z?
Note that Z&,B],ﬁ( z) only depends on w(n, x) for A < n < B, moreover ]E[Z(A B, s(z)]=1.

As a consequence, X ](\,) s for 1 <@ < M are independent and centered random variables.

The core of this first step is the following approximation result, proved in Section 3.

PROPOSITION 2.1 (L? approximation). For (8x)nen in the quasi-critical regime, see
(1.7) and (1.11), the following relations hold for any p € CC(R2), with vy, as in (1.13):

(2.4) ]313100 E[X3] =ve.
" ()
(2.5) VMeN:  lim H Xy — Z Xnm| =

By general arguments, see [CC22, Remark 4.2], relation (2.5) still holds if M — oo slowly
enough as NV — c0. More precisely, there exists a sequence My — oo such that

My -
(2.6) lim H Xy — Y XV | =0 forany My < My.
=1 L2

PROOF OF (2.6). If we set a7 n i=max, iy XN — wal X(i)M || 1,2, it follows by (2.5) that for any
M e N we have lim pr_, o, NN = = 0, hence we can find NM € N such that o NS < 1/M (say) for N > ]\A/M
and we can take M — N N 1ncreas1ng Given N € N, we call My the largest M € N for which N > Ny N
that is M := max{M € N: NM < N}. This ensures that ORIN N S < 1/My, hence NN
because My — 00. The definition of a MN then directly implies (2.6). O

—0as N —

Relation (2.6) shows that we can approximate Xy in L? by a sum of independent and
centered random variables. We then obtain, by (2.4),

2 My
27 ]\P_r,nooEKZXNMN) ] J\}EanE[(XJ(\?MNﬂ =y

=1

REMARK 2.2. A decomposition of the partition function is employed in the recent paper
[CD24+] to give an alternative proof of the asymptotic log-normality of the partition function

(@)

in the sub-critical regime. In our decomposition (2.5), each individual piece X/ ,, for i =

1,..., M contributes on the order of ﬁ to the total limiting variance v, (see Lemma 3.2).
The same holds for the decomposition in [CD24+].

There are, however, key differences: the decomposition in [CD24+] is multiplicative
whereas ours is additive, as seen in (2.5); additionally, the decomposition in [CD24+] is
based on the exponential time scale N 37 , while ours is defined on the linear time scale ﬁN ,
reflecting the different limits that are obtained (log-normal vs. normal).

We also point out that analogous decompositions —both in linear and exponential time
scales— had already been used in [CC22].



2.2. Second step. Recalling (2.1), we can rephrase our goal (1.12) as X A N(0,v,).
In view of (2.6), this follows if we prove the convergence in distribution

My
2.8) > XN == N (0,vy).
i=1

Since (X](\?) MN)1<1< M, are independent and centered, we apply the classical Central Limit
Theorem for triangular arrays, see e.g. [Bil95, Theorem 27.3]: since we have convergence of
the variance by (2.7), it is enough to check the Lyapunov condition

MN .
2. f 2. i E[X(’) p] —0.
2.9) or some p > Nlinoo Z_Zl ’ N My | 0
This follows from the next result, proved in Section 4, where we focus on the case p = 4.

PROPOSITION 2.3 (Fourth moment bound). For (8x)nen in the quasi-critical regime,
see (1.7) and (1.11), and for any ¢ € CC(RQ), there is a constant C' < o0 such that

: . o 4] C
(2.10) VMeN, VI<i<M: 11]1an;p1@[(X§V?M)]<W.

Since the constant C' in (2.10) does not depend on M, we can let My — oo slowly enough
and the estimate will still hold if the RHS is doubled, say. More precisely, there exists a
sequence M), — oo such that

Oi)'] 20
@2.11) 132]\);NE[(XN7MN) 3B

for any My < M.

PROOF OF (2.11). If we call apy v := maxj<j< s IE[(X](\?M)ZL], then by (2.10), for any M € N, there is
NM € N such that apy v < ]%/[—C; for all N > ]\AfM We can take M — ]\AfM increasingjnd setting MJ,V =
max{M e N: Nps < N} we see that M < M} is the same as N > Ny, and limpn_, o M/ v = o0. O

If we finally take My = min{My, M4}, both estimates (2.6) and (2.11) hold. This shows
that (2.9) holds with p = 4 (the sum therein is < 2C/My — 0 as N — o0).

The proof of Theorem 1.1 is then completed once we prove Propositions 2.1 and 2.3. The
next sections are devoted to these tasks.

2.3. Proof of Theorem 1.2. Recalling (1.8), we define for J € R and N € N the value
BS() such that

2 L 1 ,19

Then we can rephrase (1.10) as follows:

(2.12) Vpe Co(RY), VOER:  Z§ gos (g (9) —— Z7(p).

N—o

Let us fix ¢ € C.(R?) and an artbitrary negative sequence ¥}, < 0 such that 99}, — —o0. It
is enough to prove (1.14) along ¥, that is, for any fixed continuous and bounded f : R — R,

@.13) E|f (VI {27 () = §0}) | T E[F WV (0,00))]
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where we have replaced E[ 277 (¢ Sgp by properties of the Stochastic Heat Flow, and we
also note that E[Z% 5(¢)] = Zzezz on(z) = §¢ by construction, see (1.5).

The idea is, for any fixed k£ € N, to take Ny € N large enough so that, by (2.12), we can
approximate 2~ () with Z%, N B (0 )( ) in the LHS of (1.14), more precisely

(2.14) ‘E[f(\/W{fﬂ’“(@)—Sso})] [ <\/WT{ZNk75%t(I9k )” %
LiogN

By possibly enlarging Vi, we assume that N > kx| which ensures |9k | <

log Ny, as k — oo0. Writing 95 = —|J| since J; < 0, we have

og

BSI(0),) = ﬁ(l—diﬁv‘k) with 1« |9] « log Ny,

This means that ,Bf\}it (¥k) is in the quasi-critical regime (1.11), hence we can apply our main
result (1.12) and deduce that

E[f(\/mw%k,ﬁx;(m SSO})] ——E[f(N(0,v,))].

Recalling (2.14), we obtain our goal (2.13). ]

3. Second moment bounds: proof of Proposition 2.1. In this section we prove Propo-
sition 2.1 exploiting a polynomial chaos expansion of the partition function. We fix (55 )ven
in the quasi-critical regime, see (1.7) and (1.11), and ¢ € C.(R?). We denote by C,C’, ...
generic constants that may vary from place to place.

3.1. Polynomial chaos expansion. The partition function admits a key polynomial chaos
expansion [CSZ17a]. Let us define, for 8 > 0,

(3.1) g(n,x) = ePmD=AE) 1 forneN, zeZ?.
Recalling (1.7), we note that ({3(n, =) )nen,zez> are independent random variables with
(3.2) E[¢s] =0, E[l=03, E[&[1<Crof Vhk>2

for some C}, < oo (for the bound on E[|£5|k] see, e.g., [CSZ17a, eq. (6.7)]).
We denote by ¢, (z) the random walk transition kernel:

(3.3) () :=P(Sn =[S =0).

Then, writing e2n{3(2)=XB)} = TT (1 + ¢5(n,x)) and expanding the product, we can
write ZE”A B B(Z) in (2.2) as the following polynomial chaos expansion:

0
Ztappz) =1+ > > qn, (1 — 2) §p(n1, 21) X
k=1 A<n;<...<np<B
(34) Il,...,IkEZZ

x anj—nj (5 — wj1) Epny, aj)

where we agree that the time variables n; < ... < nj are summed in the set (A, B] N Z (in
particular, the seemingly infinite sum over k can be stopped at B — A).

Plugging (3.4) into (2.1), we obtain a corresponding polynomial chaos expansion for X,
recall (2.1) and (1.5): if we define the averaged random walk transition kernel

(3.5) qf (z) := Z an(z — 2) @(2), for p:7Z?> >R,

2E€E72



10

we obtain
(3.6)
0 k
Xy = \/]\T Z DT gy (@) &y (nn,w1) [ [ any—n,o (25 — 25-1) €p, (g, 7).

i
0<n1< <np<N J
T1,...,L,EZ>

The analogous polynomial chaos expansmn for the random variables XJ(V) e see (2.3), is
obtained from (3.6) restricting the sum to 7~ IN<ni<...<ngp < A}N :

i ViN <
Xvu="§ 25 X a gy ma)x
k=

=1 i=1 i
“r N<n1<...<nk<MN

3.7) T1,e, T EL3

REMARK 3.1. Since the random variables (fﬁ(n, Z))neN,zez2 are independent and cen-
tered, see (3.1), the terms in the polynomial chaos (3.4), (3.6), (3.7) are orthogonal in L?.

We finally recall the local limit theorem for the simple random walk on 72, see [LL10,
Theorem 2.1.3]: as n — oo, uniformly for « € Z? we have’
—3lyl?
e 2

(3.8)  gn(z) = n%( (ﬁ)ﬂ)( ))2]1<n,x)ezzven> where  g(y):=— —,

and we set Z3 o, :={y = (y1, y2, y3) €Z>: y1 + y2 + y3 €2Z }.

3.2. Proof of Proposition 2.1. Note that Zf\i 1 X](\?)M is a polynomial chaos where all

time variables ny < ... < ny belong to one of the intervals (“s+ N , 7N, see (3.7). It fol-
(i)

lows that X is a larger polynomial chaos than Zf\i 1 XN'pp» 1.€. it contains more terms,

hence the difference X — S| X](\Z}) vy is orthogonal in L2 10 Y | X ](\? s (see Remark 3.1):
2 ) Mo e
7
L= 1l = 21Xl e

| - 220 > X8
i=1 i=1 i=1

As a consequence, to prove our goals (2.4) and (2.5) it is enough to show that

2 2
= [ Xw]. -
L2

. 7 2
(39 lim E[X}]=v,, VMeN:  lim ZE[ (x9)) ]_vw,
where we recall that v, is defined in (1.13). The first relation in (3.9) follows from the second

one, because Xy = X ](\})1. Then the proof is completed by the next result. 0

LEMMA 3.2 (Quasi-critical variance). Fix (On)nen in the quasi-critical regime, see
(1.7) and (1.11), and o € C.(R?). For any M € N, the following holds for all i = 1,..., M:
(3.10)

tim E[(X,)"] = vy (o1 2} = f cp(:z)go(x')(J‘]& 1 e du) dzda’ .

N—oowo i-1 20
R2 xR2 M

’The scaling factor in (3.8) is n/2 because the covariance matrix of the simple random walk on 72 is %I ,
while the factor 21 (m,z)eZ3 is due to periodicity.
) even
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PROOF. Letus fix M e Nand 1 <¢ < M. We split the proof of (3.10) in the two bounds

(i) |2
3.11) limsup E[(X00)?] <0052 41
and

X 2
(3.12) liminf E| (X{,)*] 2 v, 0017

We first obtain an exact expression for the second moment of X](\? by (3.7): since the
random variables {g(n, x) are independent with zero mean and variance ag, we have

0 k
B[ (xV)*] = fN Z 05" > a7 (1) | [ anyn,o (2 —2-1)°.

EHN<n<.<np <& N j=2
T1,...,TLEL?

We can sum the space variables xy, x;_1,. .., 22 because Y _,» qn(az)2 = q2,,(0), see (3.3),
while to handle the sum over z; we note that, recalling (3.5),

(3.13) Z ¢f(r)>=q5¥  where weset ¢£¥:= Z am(z — 2" ) o(2) p(2').

TEZ? 2,2'€7?

We then obtain

o0 qtﬁNAON k
2n,
(3.14) E[(X ]: ZaﬁN D = [ 2,00
k=1 EIN<ni<.<np<=N j=2

=M

We then prove the upper bound (3.11). We rename n; = n and enlarge the sum over the
other time variables no, ..., ny, by letting each increment m; :=n; —n;_1 for j=2,...,k
vary in the whole 1nterval ( N]: since Z _1%22m(0) = Ry, see (1.6), we obtain

(i) 2 GO
E|(x0h)] <ov Y S 2 (08, (B)*
1N<n<MN k=1
PN;PN
a3 2 1
(3.15) =19N{ > e }'05N~10_2 =
SIN<n<iN By TN

where we summed the geometric series since UEN Ry = lo v < 1forlarge N, by (1.11).
We will prove the following Riemann sum approximation for any given0<a<b<1:

Q;DN’SDN ’ *1 z—a /
(3.16) ]\}lm Z % = f (p(:t)go(.%')(f ug( NG >du> dzdz’,

aN<n<bN R2 XR2 a

where g(y) = 5- L o3l i the standard Gaussian density on R?, see (3.8). Plugging this into
(3.15), smcel—aﬁ RN— oo a8 IV — 0 by (1.11) and (1.6), we

obtain precisely the upper bound (3.11) (note that 7 & g(%= e ') — = exp(—%)).

1
10gN and 0,3 ~ Ry log

Let us now prove (3.16). This is based on the local limit theorem (3.8) as n — o0, hence
the case a = 0 could be delicate, as the sum in (3.16) starts from n = 1 and, therefore, n
needs not be large. For this reason, we first show that small values of n are negligible for
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(3.16). Since ¢ is compactly supported, when we plug f = ¢y into qg;Lf , see (3.13), we can

restrict the sums to |2’| < C'v/N, which yields the following uniform bound:

(3.17) vmeN: gy eI<ell, Y D) am(z =) <Clelf N
|z’\<C\/NZEZZ

In particular, the contribution of n < N to the LHS of (3.16) is O(¢). As a consequence, it
is enough to prove (3.16) when a > 0, which we assume henceforth.
Recalling (3.13) and applying (3.8), we can write the LHS of (3.16) as follows:

q<2perV7(pN 1 2 z—2z z z'
Yo X X L) em) el el
aN<n<bN aN<n<bN 2z 2'€Z?:
(n,z—2")eZ?

even

where o(1) — 0 as N — oo (because n > alN — o0 and we assume a > 0). The additive
term o(1) gives a vanishing contribution as N — o0, because we can bound 2 < N and

lo()] < ||, and the sums contain O(N?) terms (since |z|,|2'| < CV/N). Introducmg the

rescaled variables u : N and z : \/Z—N, = \/N we can then rewrite the RHS as
1 2 o
= % Y S (9(=E) e@ea) + ofv),
(a,b] % x,x'€ 327

(Nu,V/N(z—"))€L2 en

which is a Riemann sum for the integral in the RHS of (3.16). Note that the restriction
(Nu,v/N(z — 2)) € Z2,., effectively halves the range of the sum: indeed, for any given

even
w and z, the sum over 2’ = “= € £ s restricted to points 2’ € Z? with a fixed parity (even

VN - VN
or odd, depending on wu,x). This restriction is compensated by the multiplicative factor 2,
which disappears as we let N — oo. This completes the proof of (3.16).

We finally prove the lower bound (3.12). We fix € > 0 small enough and we bound the
RHS of (3.14) from below as follows:

* we rename n = np and we restrict its sum to the interval ( %N , (1— e)ﬁ'N ];

e for k > 2, we introduce the “displacements” m; := n; —ny from ny, for j = 2,..., k, and
we restrict the sum over na, ..., ng tothe set 0 <mg < ... <my <egpN.
We thus obtain by (3.14)
(3.18)
PN,PN
(i) \2 42
E[(X{)?] = 0w e X
HN<n<(l—e) 4N
0 k
x <agN + > (02" > G2my (0 H (my—m, )) :
k=2 O<my<..<mp<eZ=N Jj=3
We now give a probabilistic interpretation to the sum over mao,...,mg: following
[CSZ19a] and recalling (1.6), given N € N we define i.i.d. random variables (Ti(N))ieN with

distribution

(0
(3.19) P(T\Y) =) = qu](V) L, vy (1),
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so that the second line of (3.18) can be written, renaming £ = k — 1, as
[0 0]
U% ( Z ag RN)E (TI(N) .+ T( ) MN))
/=1
a0
(1 ZaﬁN )'p(T (N)+...+TZ(N)>5A2N>>.

Plugging this into (3.18) and recalhng (3.17), we obtain

(3.20)

(3.21)
i 2 qS"TIL\MWN O.QN
o] 3 BT
SFN<n<(1-e)3N BTN
0
- (€16l OB, DA R BT+ 7 5 ).
=1

The first term in the RHS is similar to (3.15), just with (1 — ) instead of -, therefore we

already proved that it converges to v o, (=2 (1-e) ] G5 N — o0, see (3.16) and the following
lines (recall also (3.10)). Letting € | 0 after N — o0 we recover Vg (i=1, 515 hence to prove

’ 1\ 71\/I

(3.12) we just need to show that the second term in the RHS of (3. 21) is negligible:
(3.22) lim 9y o?, Z(a%NRN)ZP(Tl(N) TR AL %N) —0.
=1
Recall that the random variables (TZ-(N))EN are 1.i.d. with distribution (3.19). Since

q2n(0) < % by the local limit theorem (3.8), we have E[TZ-(N)] = % S ngen(0) < C’%
and, by Markov’s inequality, we can bound

(V) (N)
P(Tl(N)+...+TZ(N)>A€4N><E[T1 +€~'+Tz ]g ECK
N 7 B
Since >0, Lxt = = )2,we obtain
0 2R
2 2 ¢ (N) (N) _ & < 9 C g N
UN OB, ;(UﬁNRN) P(Tl N MN) <Unoj, &Ry (103 Ry)?

Note that 1 — 05 Ry = lgﬁ and 05 logN by (1.11) and (1.6), hence the last

N

term is asymptotically equivalent to w g—N — 0 as N — oo, since ¥y — o0, see (1.11). This
shows that (3.22) holds and completes the proof of Proposition 2.1. O

4. General moment bounds. In this section we estimate the moments of the partition
function Z7 5 through a refinement of the operator approach from [CSZ23, Theorem 6.1] and
[LZ21+, Theorem 1. 3] (inspired by [GQT21]). We point out that these papers deal with the
critical and sub-critical regimes, while we are interested the quasi-critical regime (1.11).

For transparency, and in view of future applications, we develop in this section a non
asymptotic approach which is independent of the regime of [3: we obtain bounds with explicit
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constants which hold for any given system size L and disorder strength 3. Some novelties
with respect to [CSZ23, LZ21+] are described in Remarks 4.4, 4.7, 4.9. These bounds will
be crucially applied in Section 5 to prove Proposition 2.3.

The section is organised as follows:

* in Subsection 4.1 we give an exact expansion for the moments, see Theorem 4.5, in terms
of suitable operators linked to the random walk and the disorder;

» Subsection 4.2 we deduce upper bounds for the moments, see Theorems 4.8 and 4.11,
which depend on two pairs of quantities, that we call boundary terms and bulk terms;

* in Subsection 4.3 we state some basic random walk bounds needed in our analysis (we
consider general symmetric random walks with sub-Gaussian tails);

* in Subsections 4.4 and 4.5 we obtain explicit estimates on the boundary terms and bulk
terms, which plugged in Theorem 4.11 yield explicit bounds on the moments.

4.1. Moment expansion. The partition function Z{; 5, 5(2) in (2.2) is called “point-to-
plane”, since random walk paths start at Sy = z but have no constrained endpoint. We intro-
duce a “point-to-point” version, for simplicity when (A, B] = (0, L] for L € N, restricting to
random walk paths with a fixed endpoint S, = w

4.1) 2% 4(z,w) 1= E[eZﬁ;i{Bw(n,Sn)*A(ﬂ)} L1, —u) ‘So - z]

(we stop the sum at n = L — 1 for later convenience).
Given two “boundary conditions” f, g : Z? — R, we define the averaged version

(4.2) 27 5(f.9): Z f(2) ZF p(z,w) g(w)
z,WeZ?

where we use a different font to avoid confusions with the diffusively rescaled average (1.4).
We focus on the centred moments of Z¢ 4(f, g), that we denote by

(4.3) M 5(F,9) = E|(Z5,5(f,9) ~EIZZ5(f.0])"|  forheN.

REMARK 4.1. Recalling the definition (2.3) of X ](\? > We have the equality in law

i 9 )
(4.4) XYy 2 TNZL 5o (frg)  forsuitable L, f,g

More precisely, in view of the translated partition function Z%, appearlng in (2.3),

(57N, N1LB
relation (4.4) holds if we choose:

o« L=1L N — Z;IIN = % by translation invariance;
e f= q1 1 - thatis f is the function ¢ from (2.3) “evolved from time 0 to time ‘57 N

under the random walk”, i.e. convolved with the random walk kernel qi-1 i1y as in (3.5);
° g= 1.

We can thus write
i V3 f =g
45 E[(xQ)| =M (Fug),  where { o

To prove Proposition 2.3, in Section 5 we will focus on M‘i 5( f,9).
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Henceforth we fix h € N with h > 2 (the interesting case is h > 3). We are going to give
an exact expression for M’i ﬁ( f,9), see Theorem 4.5. We first need some notation.

We denote by I + {1,...,h} a partition of {1,...,h}, ie. a family [ = {I',...., 1} of
non empty disjoint subsets I/ < {1,...,h} with I' U ... U I™ = {1,...,h}. We single out:
o the unique partition [ = = := {{1},{2},...,{h}} composed by all singletons;

+ the (}) partitions of the form I = {{a,b},{c}: ¢ # a,c # b}, that we call pairs.

EXAMPLE 4.2 (Cases h = 2,3,4). All partitions [ - {1,2} are [ = = and I = {{1,2}}.

All partitions [ + {1,2,3} are I = «, three pairs I = {{a,b},{c}} and I = {{1,2,3}}.

All partitions I - {1,2,3,4} are I = , six pairs I = {{a,b},{c}, {d}}, three double pairs
I = {{a,b},{c,d}}, four triples I = {{a,b,c},{d}} and the quadruple I = {{1,2,3,4}}.

Given a partition [ = {I',...,I™} - {1,...,h}, we define for x = (z',...,2") e (Z?)"

b

2® =2 ifa,be I for some i,

(4.6) x ~1 if and only if 4 . A

2@ # 2 ifael’,be I’ for some i # j with |I?],|I7| > 2.
For instance  ~ {{1,2}, {3}, {4}} means ! = 22, while  ~ {{1,2},{3,4}} means 2! = 22
and 2% = 2% with ! # 23. Note that  ~ * imposes no constraint. We also define

(4.7) (2} :={ze (@' z=(a',...,2") ~ I},

which is essentially a copy of (Z2)™ embedded in (Z?)", because x ~ I = {I',...,I™}
means that we only have m “free” variables, one for each component I°.

A family I4,..., I, of partitions I; = {I},..., I""} - {1,..., h} is said to have full support
if any a € {1,...,h} belongs to some partition I; not as a singleton, i.e. a € I with |I]| > 2.

EXAMPLE 4.3 (Full support for h = 4). A single partition I - {1,2,3,4} with full sup-
port is either the quadruple I; = {{1,2,3,4}} or a double pair I; = {{a, b}, {c,d}}. There are
many families of two partitions I1, I3 - {1,2, 3,4} with full support, for instance two non
overlapping pairs such as I} = {{1,3},{2}, {4}}, I. = {{2,4},{1},{3}}.

We now introduce h-fold analogues of the random walk transition kernel (3.3) and of its

averaged version (3.5): given partitions I,.J - {1,...,h}, we define for x, z € (Z2)"
h h
(4.8) QrIzJ(Za m) = ]l{z~l,m~J} HQn(l‘l - ZZ) ’ qffj(m) = ]l{m~J} H%{("L‘Z) :
i=1 i=1

Given m € Ng and J + {1,...,h} with J # %, we define for x, 2z € (Z?)" the weighted
Green’s kernel

0 k
k J,J .

Z (E[£5]) Z HQnifni,l(yi—hyi) ifm=1,

@49) Upp(mm)e= (7 0 S
Yo:=2, Y=

11{z=w~J} ifm=0,
where the outer sum is actually finite (k < m by the constraints on the n;’s) and we define
(4.10) E¢fl= |] E[élém] for J = {J,..., J} with J # .

i |Ji]|=2

When J is a pair, this reduces to E[fg] = E[gg] = ag, see (3.2).
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REMARK 4.4 (On the definition of U’). We point out that U’ was only defined in
[CSZ23, LZ21+] when J is a pair. Defining U’ for any partition ./ makes formulas sim-
pler, as it avoids to distinguish between pairs and non-pairs in the sums (4.13) and (4.19).

For a pair J = {{a,b},{c} : ¢ # a,b}, since & ~ J for x = (z',...,2") € (Z*)" simply
means % = 2°, by Chapman-Kolmogorov we can express

4.11) U;{%B(Z, x) = Unpg(x® —2%) Ligo_ge sv—z0 H Gm (€ —2°),
c#a,b

where we define U, g(z) for z € Z? by

o0 k
(4.12) Unp(z) =Y (05)" > [ Jan—n (@i —2i1)*.
k=1 =1

O=mg<ni<--<np:=m
z0:=0, Tp_1€EZ2%, Tp:i=2
0:=0,Z1,...,TK-1 , Tkt

(We denote a generic sequence of points x; € Z? using subscripts, while we use superscripts
to denote the h components ¢ € Z2 of a vector x = (z',...,2") e (Z?)"))

Given the countable set T = (Z?2)", for the one-variable functions q/,q9 : T — R and the
two-variable functions U;, Q; : T x T — R we use the matrix-vector notation

<qf, Ul{HQiUi} > N(z1) Ui(21,27) {HQz zj_1,%i) Ui(zi, z)}qg<z'/r)'
i=2 % eT

77777

r

We can now give the announced expansion for Mz 3 (f,g), that we prove in Appendix A.

THEOREM 4.5 (Moment expansion). Ler Z}/ 5( f,q) be the averaged partition function
in (4.2) with centred moments M}i 5(f,g), see (4.3). For any h € N with h > 2 we have

Mg =Y 3 v { HE[@?]} 9

r=1 0<ny<my<--<n,<m,<L I, L.{1,..h} =1
with full support
(4.13) and L#I;_y, Ii#% Vi

Il 11 i—1 I 7[7*
<q£1 ) Um1 —n1,B { HQ'II —Mi—1 ni,B } q%mr> :

REMARK 4.6 (Sanity check). Incase h = 2, the conditions I; # I;_; and I; # * in (4.13)
force r = 1 and I; = {{1,2}}. Then, recalling (4.11)-(4.12), formula (4.13) reduces to

M3 5(fo9) = Var[ZE 5(f. o)l =0F Y, ah(x)Un—nple —2)a]_,(2),
O<n<m<L
2,2€Z?

which is a classical expansion for the variance, see e.g. [CSZ23, eq. (3.51)].

REMARK 4.7 (Boundary conditions). In [CSZ23, L221+] the quantity qf I (4.13) is
expanded as QI“ f®h (recall (4.8) and (3.5)); similarly for q7 L_mr. We keep these quantities
unexpanded in order to derive tailored estimates, see Subsection 4.4, which could not be
derived by simply applying operator norm bounds on Q{fl’* as in [CSZ23, LZ21+].
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4.2. Moment upper bounds. We next obtain upper bounds from (4.13). For L € N we
define the summed kernels

(4.14) Q’ (z,2) = i QL (zx),  apf(x):= i af ().
n=1 n=1
Recalling (4.9) and (4.10) we set, with some abuse of notation,
(4.15) ]U]mﬁ(z x):= Umﬂ(z x) from (4.9) with E[ﬁé] replaced by |E[§é]| .
Then, for L € N and A\ > 0, we define the Laplace sum
L
(4.16) ]0\,‘{7Aﬁ(z,w) =1gy + Z e M \U|;{%ﬁ(z,az).
m=1

Finally, we introduce a uniform bound on the right boundary function q%’ ", 10 (4.13):

4.17) c_]%‘](z) = max q%7(2).

n
1<n<L

We can now state our first moment upper bound.

THEOREM 4.8 (Moment upper bound, I). Let Z¢ B( f,g) denote the averaged partition

function in (4.2) with centred moment M}iﬁ(f, g), see (4.3), for h e N with h > 2. For any
A = 0 we have the upper bound

(4.18) (M5 5(f.9)] Z E(r

with
(4.19)

== % (T (@ 0, {1185 01

I, I+{1,...,h}
with full support
and 17:#]7‘,_1, 1175*Vl

Ja)

PROOF. Replacing E[Eé], f, g, U in (4.13) respectively by |E[§é]| |f], 1g], |U], every

term becomes non-negative. We next replace q%'_’{n by the uniform bound q|g M and then

enlarge the sum in (4.13), allowing increments n; — m;—; and m; — n; to vary freely in
{1,...,L}. Plugging 1 < eM e~ ?Amr < M e ARini(mi—ni) "we obtain (4.18). O

REMARK 4.9 (On the right boundary condition). The function qg . in (4.13) is con-
trolled in [CSZ23, LZ21+] by introducing an average over L, which forces the function g to

be estimated in /*°. Our approach avoids such averaging, via the quantity g’ 7 7 from 4.17):
this lets us estimate the function ¢ in £ also for ¢ < oo (see Proposition 4.21).

We next bound Z(r) in (4.19), starting from the scalar product. Let us recall some func-
tional analysis: given a countable set T and a function f : T — R, we define

(4.20) fmm=w@:(2uva’ for pe [1,0).

zeT
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For a linear operator A : £4(T) — ¢2(T"), with p, g € (1, c0) such that % + % =1, we have

1A gl gar
4.21) [Algs—pa := sup PRI sup {f,Ag).
g20  glesery 111w <1, lgleaim <t

By Holder’s inequality (g, h)| < ||g|¢v [|h]|ea, so the scalar product in (4.19) is bounded by

la—pa { H HQI o Z‘?—>Eq} H .

REMARK 4.10 (Restricted £9 spaces). Due to the constraint 1, .7 5~ 7} in (4.8), we may

@22 [a/"",

A8 fa—sfa ’U’L A8 fa "

regard QL I 7 as a linear operator from 01((Z2)") to L4((Z2)h), see (4.7). Similarly, we may
view \U\ 7. as a linear operator from ((Z*)h) 1o itself.

To make the bound (4.22) more useful, we introduce a weight W : (Z?)" — (0, o), that
we also identify with the diagonal operator W(x) 1 {@=y}> SO that in particular

1
WA L) (z,y) =W(x)Alz,y) —— .
(WA ) (@ 9) = W(w) Alw ) 3 s
Inserting (W %) between each pair of adjacent operators in (4.18), we improve (4.22) to
A|f‘711 1
i B o] PR

(4.23)

{ [TV Al by

In view of (4.18)-(4.19), this leads directly to our second moment upper bound.

va

THEOREM 4.11 (Moment upper bound, II). Let Z¥ [3( f,g) be the averaged partition
function in (4.2), whose centred moment are known to satisfy M% 5(f19) < M3 E(r)

for h =2 and \ >0, see (4.3) and (4.18). For any weight W : (Z*)" — (0,0) and for
p,q € (1,00) with 1% + % = 1, we have the following upper bound on =(r) from (4.19):

(r) < (max |l [, ) (max|wa], ) =)

[1]

(4.24)

with

4.25)  EPUE(r) = > {H!E & } e

I, I+{1,...,h}
with full support
and]iyéfi,l, I,,?é* Vi

Zy—)ﬁ‘?)r

vn) (01

where we set for short

(4.20) HQL qu_,gq }nax “WQQJ vlv fa—ga
I#J
N w ._ (1L 1
4.27) [lUlzx8 faspe *T IPEX | A8 W|eq—>£q'

Note that the bound (4.24)-(4.25) depends on two pairs of quantities, that we call

" Q!

w ||zp }eq—wq

ol and  bulk terms
waz"

(4.28) boundary terms

/4
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We will estimate these terms in Subsections 4.4 and 4.5 respectively, exploiting some basic
random walk bounds that we collect in Subsection 4.3.

REMARK 4.12 (Choice of the parameters). For our goals, we will later fix p = ¢ = 2 (in
other contexts, such as [LZ21+], one needs to take p = p;, — 1, ¢ = q, — o0). We will then

choose an exponential weight VW = W; of rate t = 0: for x = (z', ..., 2") e (Z?)"
h .
(4.29) Wi(x) := H we(z") where wy(z) := e for z € 72.
i=1

The exponential decay ensures that ||g w; ¢ < oo for the “flat” boundary condition g = 1, see
(4.5), and we will fix t = 1/v/N so that | f w; || < 0 for f = on ~ o(-/v/N).
Note that by the triangle inequality we can bound, for all x, z € (Z?)",

Wi(2) _ 17t
(4.30) e < He .

We will later need to consider an additional weight VSI , see (4.45) below.

We finally bound the product [];_, ]E[fé] in (4.25). We assume that 5 > 0 is small
enough so that (say) 0[23 < 1 (recall og from (1.7) and (3.2) and note that limg g og = 0).

PROPOSITION 4.13 (Moments of disorder). Assume that a% < 1. For any h € N there is
C(h) < o (which depends on the disorder distribution) such that
o2 if I ={{a,b},{c}: c+# a,b} is a pair,
@431)  foranyI#+: [E[e}]]<{ ” fI= a0 {e) bisap
C(h)ag if I # = is not a pair .
Moreover

4.32) ifL,...,I,+{1,...,h} have full support: H ‘E[ﬁé]‘ <C(h)" aglax{%’h} :
i=1

PROOF. We have |E[§é]| = U% if I is a pair, see (3.2) and (4.10). Consider now any par-
tition J = {I*,...,I™} - {1,...,h} with I # %: denoting by |[I| := X7, |[I"| L{:|>0; the
number of a € {1,...,h} which are not singletons in /, by (3.2) and (4.10) we can bound

I| .
(4.33) E[¢l]| < C(h) o with  C(h):= max Ch, -
’ [ 8 ‘ B ##£I1-{1,...,h} i k}:—[pﬂ
Since |I| > 3 if I # = is not a pair, we obtain (4.31) since o5 < 1.

Consider now I1,. .., I, with full support. Each a € {1, ..., h} is a non-trivial element (not
a singleton) of some partition I;, hence |I1|| + ... + |I.| = h which yields [ [}_; ‘E[ﬁé]‘ <
C(h) ol by (4.33)and 03 < 1. Since [ [[_; [E[¢]| < (03)" by (4.31), we obtain (4.32). [
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4.3. Random walk bounds. In this subsection we collect some useful random walk
bounds, stated in Lemmas 4.16, 4.17 and 4.18. The proofs are deferred to Appendix B.

Instead of sticking to the simple random walk on Z2, we can allow for any symmetric
random walk with sub-Gaussian tails, in the following sense.

ASSUMPTION 4.14 (Random walk). We consider a random walk S = (S,,),>0 on Z?
with a symmetric distribution, i.e. q1(z) = P(S1 = x) = q1(—=x) for any z € Z?, and with
sub-Gaussian tails, i.e. for some ¢ > 0 we have, writing x = (:rl, :c2),

wh\;

(4.34) VteR, Va=1,2: E[ets?] = Z ™ qi(z) <ef

TE€Z?

REMARK 4.15. The simple random walk on Z? satisfies (4.34) with ¢ = 1: indeed, we
1 2 2
can compute Y, ;. €' q1(z) = 5(1+ cosh(t)) < exp(t?/2) (because cosh(t) < exp(t?/2)).

We derive useful bounds for the random walk transition kernel ¢, () = P(S,, = x).

LEMMA 4.16 (Random walk bounds). Let Assumption 4.14 hold. There is c € [1,0)
such that for all t = 0 and ne N

(4.35) Va=1,2: Z e g (x) < ect?”, Z el an(2) <ef7m,

TEZ? TEZ?

2
)
S
—
(=)
~

Moreover, recalling wy(x) = e~ from (4.29), we can bound

q c chtzn
n

Wt

n
wy

(4.36) ‘

t 2ct?
e‘$|qn($)<cec n, ‘

= sup {etm qn(:z:)} <

(o  TEZ? n

& peze?

We next extend the bounds in (4.36) to the averaged random walk transition kernel qfl (),
see (3.5), for any f : Z? — R. Let us agree that ax :=1 for any a > 0.

LEMMA 4.17 (Averaged random walk bounds). Let Assumption 4.14 hold and let c be

the constant from Lemma 4.16. For any t = 0 and n € N we have, with w(x) = e~ tel,
f f 2ct’n
ce
437)  Wpe[l,o]: ’q” <cextn| L) ‘q” <= |1 .
Wt | pp Wt || pp Wt | peo nr Wt || go

We finally prove a variant of the Hardy-Littlewood maximal inequality (see Appendix B).
Let us introduce a multi-dimensional generalisation of (3.5), for m e N and F : (Z?)™ — R:

(4.38) q,c?mF(xl,...,xm):: Z <an z—zz> F(z1,...y2m).-

s ZmE€L2

We also use the standard notation w?m(xl, @) = [ we(ws).

LEMMA 4.18 (Maximal random walk bounds). Let Assumption 4.14 hold and let c be

the constant from Lemma 4.16. For any m € N, t > 0 and L € N we have, with w(x) = e*tm,
. p m ®
Vpe (1,00]: H lglffL <;HE |[Fup™|,

(4.39)
with € := 50007 c2 e*ct’L

(we agree that ;25 :=1).
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4.4. Boundary terms. In this section we estimate the boundary terms appearing in (4.24),
see (4.28). The proofs are deferred to Appendix C.

We recall that the weight W, : (Z2)" — (0, o0) is defined in (4.29) for ¢ > 0. Our estimates
contain the following constants (with ¢ from Lemma 4.16):

(4.40) @ i=ce™l @ = 50007 et

where L is the “time horizon” of the partition function Z7' 5( f,9), see (4.2). We anticipate
that we will take

(4.41) t=—5  with N>L.
hence the constants € and € are uniformly bounded in this regime.

We start estimating the left boundary term which involves alLﬂ’[ (see (4.14) and (4.8)). It

was proved® in [LZ21+, Proposition 3.4], extending [CSZ23, Proposition 6.6], that for any
h =2 there is C' = C'(h) < oo such that, for any p € (1, ),
f h

Wt

(4.42) max Ha‘,.f"’ Al o<omornts

IT#% Vi3

L .
p—1 o

For our goals it will be fundamental to have a linear dependence in L, which would amount
to take p = oo in (4.42), but this is not allowed by our approach. To solve this problem, we
improve the estimate (4.42), showing that for p € (0, 00) we can still have a linear dependence

in L in the RHS, provided we replace one factor || w% ¢ by || wi, e -

PROPOSITION 4.19 (Left boundary term, I). Recall the weights Wy and w,; from (4.29).
Forany h=2,t>0, L e N we have, for any p € (1,00) and € as in (4.40),

1.1 f F
(4.43) max 4}/ 51| <4(€hLH L
I+ ¢ llew W | poo || Wt | go
More generally, for any r € [1,00] we have (with % =00, 227 :=1)
I 1 h p yp1-t| S f
I~ ) 3 T bl |

We further improve the bound (4.43) through a restricted weight VI : (Z*)" — (0,0),
defined for a pair I + {1,...,h} and s > 0 by

(4.45) Vi) = wy(z® — ) =121 for I = {{a,b},{c}: c #a,b}.
Note that ||z — 2°| — [z — 2°|| < [2% — 2%| + |2 — 2P|, therefore we can estimate
VI(Z) a a b b
4.46 s < s|lz—x%|+s|2zb—x |
o Vi) =°
In analogy with (4.41), we anticipate that we will take
=L
(4.47) §= 1

3The factor q= p%l in the RHS of (4.42), first identified in [LZ21+], is essential to allow for p which can
vary with the system size L.
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PROPOSITION 4.20 (Left boundary term, I). Forany h>=3,t>0, s€ (0,1], Le N we
have, for any p € (1,0) and € as in (4.40),

(4.48) max Hq‘f'l v/ H <367 ¢" = f i
J pair SP P op
IT#%,1DJ

where I 2 J, for I ={I',... . I"™} and J = {{a,b},{c} : ¢ # a,b}, means I 2 {a,b} Vj.

We next estimate the right boundary term which involves q‘g L7 , see (4.17) and (4.8), ob-
taining estimates analogous to (4.44) and (4.48).

PROPOSITION 4.21 (Right boundary term). For any h =2, t >0, L € N we have, for
any q € (1,00) and € as in (4.40),

lgl,J

7h —
max [af" Wil ., < g5 " lgwilfo lgwilf;?

(4.49)

—h —
7€ lgwiles lgwde-

A

Moreover, for any h > 3, s € (0,1] we have, for € as in (4.40),

—lgl,J Zh 1 he
(4.50) max [@ WV, < 5" 5 lgwele [gwell?.
J#%, JDI 54

where J D I, for J = {J',...,J™} and I = {{a,b},{c} : c # a,b}, means J' D {a, b} Vi.

REMARK 4.22.  We can bound | g w¢|s= < | glle= |wt o= and |gwe|ea < | gllee |we]ea. By
a direct computation, see (C.16), we have

T 36%
4.51) lwillee =1, |wifes = < > eq“|> <,
2€72 ta
therefore we obtain from (4.49)
h
lol.J 1k gl
(4.52) max laf" Wi, < ;45 (364%) TR

Similarly, from (4.50) we deduce that

tovn gl
WS F7(860%) 5

—lgl,J I
(4.53) max Hng WV, ta(h R

I pair
J#x, JPI

4.5. Bulk terms. In this section we estimate the the bulk terms appearing in (4.25), i.e.
~ W A~

We recall the weights W, and VS{ , see (4.29) and (4.45). We will choose the parameters

t,s = O(ﬁ), see (4.41) and (4.47), hence the following constants are uniformly bounded.:

2)_) 4o from (4.26)-(4.27). The proofs are also given in Appendix C.

% = 4000c%e3°L @ 1= 4000 2 e (H129)°L
(4.54)

~

¢ =2k ¢ =2t )L

We first estimate the “bulk random walk term” which involves Qé"], see (4.26).
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PROPOSITION 4.23 (Bulk random walk term). Forany h > 2, t >0, L € N we have, for
any q€ (1,00) and € from (4.54),

(4.55) lQw|Y . = IWeQL 5t o < h!%hqqfql.

IJ7’: I#J

Moreover, for s = 0 and ‘5 from (4.54),

IJ 1 2h q
max <hlE"qg-L-
1,J pairs, I#J H L WiVl q

(4.56) tipa S 1

(note that the weights V7, V! appear in the denominator on both sides).

We next focus on the term H|U| L, /\ﬁHZqVH 04 from (4.27) which depends on the operator
|U|£ A,3> see (4.9) and (4.15). Recalling Ry from (1.6) and g,, (z) from (3.3), we define

(4.57) Z e M g2, (0

which reduces to Ry for A = 0. In the next result we are going to assume that |E[§é]| < 0?3

for any partition I # =, which holds for 8 > 0 small enough (see Proposition 4.13).

PROPOSITION 4.24 (Bulk interacting term). Let 3 > 0 satisfy maxy .y |E[§6]| JB For

anyh>2,t>0, LeN, X\ >0 such that a% R(LA) < 1 we have, for any q € (1,0) and‘ffrom
(4.54),

<1+%

@58)  [|OlLas e < W ‘

@—»@ = fax “ Wi |U|L A8 wt

Moreover, for any s = 0 we have, for 7 € {+1,—1}and & from (4.54),

e T, 0'%; R(L)‘)
@59 ma | VWO s Wiy e <160 =y
I;ﬁ* O-B L

5. Proof of Proposition 2.3. In this section we prove Proposition 2.3. The key difficulty
is that our goal (2.10) involves the (optimal) 1/M 2 dependence on the width of the time

interval (%N , ﬁN ] (recall the definition (3.7) of the random variable X ](\;) ar)- This requires
sharp ad hoc estimates.

5.1. Setup. By formula (4.5) from Remark 4.1, for [ = 1,..., M we can write

192
(5.1) E [(X}@M)‘*] = yiMis(f9)

where L, 3, f, g are given as follows:

Il
—_

(5.2) L= N

3 A=Ay (L), f()=gf () n(15-G5). o)



24

We can bound M?*, B (f,g) exploiting (4.18) for h = 4 and A\ = 0, which yields

0 a1 %% SRS
(5.3) E[(Xy)'] < 31 ( 20 +E( Z:

where Z(r) is defined in (4.19). We show that the only non-negligible term in (5.3) is =(2):
more precisely, we will prove that there is C' < oo such that, for any M € N,

B ooy - C

(5.4) hfvnfip NiE@ < 7m,
while
93 9% &
(5.5) Jim ﬁz(l) =0 and  lim Fﬁ 35(7~) =0.

This will complete the proof of Proposition 2.3.
We estimate Z(r) exploiting the bound (4.24)-(4.25) with the choice

p=q=2.

We need to control the boundary terms and the bulk terms, see (4.28). We recall that the
weights W; and V! are defined in (4.29) and (4.45), and we fix

1 _ 1 _ /M
For notational hghtness we erte a < b whenever a < C'b for some constant 0 < C' < c0.
We also denote by |, := ({3, ¢ ()P dz)'/? the usual L norm of a function ¢ : R? — R.

5.2. Boundary terms. We estimate the left boundary term Hq'f W A H 42 applying (4.43).

We recall from (5.2) that f(-) = q,_lN( ) for 1 <1 < M. Let us estimate H%Hu and ||wit||gz,
starting from the former. By (4.37), for [ < M and t = m we have

I
wy

Since ¢ is compactly supported, say in a ball B(0, R), we have that ¢ is supported in
B(0, RV'N ++/2) € B(0,2R+/N), see (1.5). By w;(z) = eI, we then obtain

c|$PN
Wy

2
<ce

221N || PN
<ce*t m || T—=
wt

£* £

<1,

(5.7) 'W’ <PV on ], <
W Vs

<epp <1, hence Hf

because |¢on|e= <[]l We next estimate H%H ¢2. By a Riemann sum approximation, we
see from (1.5) that |||z < VN |p|2, hence by (4.37) we obtain

< ceX el H‘PNHW <+VN.
[2

c| PN
Wt

2
<ce

w o

We can finally apply the estimate (4.43) for p = 2 and h = 4 to get, since L = %
f

5
3 ]\[5
<

(5.9 max . S

q'Lfl WtHZ <4¢"L H

wt Al
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We now estimate the rzght boundary term ||q|g 7 WtH 42 applying (4.52) for ¢ = 2 and
h=4,sinceg=1andt= \/ﬁ we obtain

(5.10) max [@ W ,. < (12%)" Hg“"o < N:.
Overall, we have shown that

I J Nt
(5.11) (I}ljﬁ(” gl L ) (maXHqug‘ £q> < U

In view of (4.24), it remains to estimate ZP"¥ (1) defined in (4.25).

5.3. Bulk terms. We next estimate the bulk terms, see (4.26)-(4.27). For the first bulk
term, see (4.26), we apply directly the estimate (4.55) with ¢ = 2 and h = 4 to get

(5.12) Qul e =, max IWQL el <018 51,

(Also note that HQLquﬁzq > Wt(()) i’J(O, 0)#(0) > Q2(0,0) = 1.)

We then focus on the second term, see (4.27). For L = = < N and 8= By asin (1.11)
IN . )
(5.13) 1-03 RL>1-03 Ry> gy > 0:  inparticular o5 RL<1.

Then by (4.58) with A = 0 (so that RE\}\) = Ry) we obtain, recalling that ¥ « log IV,

2
W - ) 4 05 Rp log N
oo =X [ WUIL s gy o e < 14+€7 1= o2 Ry~ On

Since S — 0, the bound (4.31) ensures that |E[§éN]| = O(U[%N) < O(ﬁ) =0O(
any [ # = and N large, therefore there is C' < oo such that

(5.15) (1}135 Elgh, 1)) [Quly

|zqt—>z«

(5.14) [0l s

1ogN) for

C

W
< —.
|€f1 —la 19N

U208

5.4. Terms r = 3. We are ready to prove the second relation in (5.5), which shows that
the terms r > 3 give a negligible contributions to IE[(X](V) M)4], recall (5.3).

Let us denote by ¢(h) € N the number of partitions I - {1,...,h} with I # %. Then by
(4.25) we have the geometric bound
}T

=) < (|Qu ) T {etn) (max [ELeh, 1)) QL] |10

and note that the term in brackets is < % for large IV, by (5.15) and ¥y — o0, therefore

& 1

Z EbUIk(T‘) < Ebulk(g) < .

193
r=3 N
Applying (4.24) and (5.11), we then obtain the second relation in (5.5):

9% < 1
UN =(r N Z bulk (. 0
N4 =3 M’l9N N—0

REMARK 5.1. The same arguments can be applied to show that in the quasi-critical

regime, the contribution of the terms r > [ J for the h-th moment of X ](V) s 18 negligible as
N — 0.
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5.5. Termr = 1. We now prove the first relation in (5.5). A partition I - {1,2, 3,4} with

full support is either a double pair I = {{a, b}, {c,d}} or the quadruple I = {1,2,3,4}, hence
E[fé 1< aé for large N, by (4.10) and (3.2) (see also Proposition 4.13). Then, by (4.25)

Ebulk(l) _ Z |

I+{1,...,h}
with full support

1
05N |||U|L>\5||£<I—>Zq S W

where we applied (5.14) and U,%N < 5o O(10 z ~ )- Applying (4.24) and (5.11), and recall-
ing that ¥ « log N, we obtain the ﬁrst relation in (5.5):

19?\7 19%\[ bulk ﬁN
N=(1) < Ntk <
A VO A Vo ey e

5.6. Term r = 2. We finally prove (5.4), which completes the proof of Proposition 2.3
We recall that =(2

(2), defined by (4.19), is a sum over two partitions Iy, Is - {1

,-..,h} with
Iy # %, Iy # = and I; # I5. We then split Z(2) = Zpairs(2) + Zothers(2) where
* Epairs(2) is the contribution to (4.19) when both I, I are pairs;

Eothers(2) is the complementary contribution when I and/or I is not a pair.

We first focus on ZEg¢hers(2) and on the corresponding quantity Egyﬁlgrs@), see (4.25). If
either I or I3 is not a pair, by Proposition 4.13 we can bound \E[féiv] E[¢ éfv]] < agN, hence
—bulk

A A 0 t 1 log N i 1
‘—‘others(z) < O-gN HQLHE}HZ‘? (|||U|L,)\,B||2}ng)2 s < 5 > . 192

~ (log N)>2 \ dn % VIog N’
where we applied (5.12), (5.14) and a%N < ﬁ = O(log ) Then, by (4.24) and (5.11),
1

0,
logN N-w
which shows that the contribution of ZE¢pers(2) to (5.4) is negligible

79%\7 7'9%\7 bulk
N4 others(2) < M :oélhers(Q) <

It only remains to focus on Zpairs(2): since E[fé] = O'% when [ is a pair, we can write

= - A|fl, [1 11712 —|gl.I»
Epairs(2) 1= Z U@< |U|L)\B ar .
Li#LH{1,...,h}
pairs with full support

S . . A7
Besides inserting 75~ W; as above, we also insert V12 L o
Wi

and |U|L WL
ST V11 on the right of QQ’IQ and |U| LS (recall (4.45)): we thus obtain
(5.16)
— VIRV TEA 2
S < 3 o[l ], [ 03,
L#LH{1,...,h}

pairs with full support

AL I, =lgl,1»
. Q 1d2 WVt q
’ 0954 s AL )

It remains to estimate these norms. Let us recall that h =4, p=qg=2and t = Jn S
ﬁ, where L = % We start with the boundary terms:

W, vfl

11 1
th |U’Lkﬂwv11

la—pa
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* applying the estimate (4.48), in view of (5.7)-(5.8), we improve the estimate (5.9):

2 2
S L <2 N<N2,
wt wtg M2

5.17) max |[q;j " y5- ,

1,J pairs
I#J

<6<€4£
2 S

{©

* applying the estimate (4.53), since g = 1, we improve the estimate (5.10):

(5.18) s | Wivla|, < (12%)" HgHea <vIng

Overall, the product of the two boundary terms is < M2 , which improves on the previous
estimates by an essential factor ﬁ thanks to the use of the restricted weight V..
We next estimate the bulk terms:

e applying (4.56) with p = ¢ = 2 and h = 4, we obtain an analogue of (5.12):

IJ | <
(5.19) max |95 Qy sl < 4 Glaxgi;
I#J

* applying (4.59) for both 7 = +1 and 7 = —1, we obtain an analogue of (5.14):

2
*r 05 R
s <1yt ot < los V.
et 1_U,BNRL IN

(5:20)  max |V Wil st

Plugging the previous estimates into (5.16), since O'I% < ﬁ = O(@), we finally obtain

= ()< 1 N3 <logN> N3 N4
—pairs ~

(logN)2 prs VM M2192 ’
which completes the proof of (5.4), hence of Proposition 2.3. O

APPENDIX A: SOME TECHNICAL PROOFS

We give the proof of Theorem 4.5. We recall that the averaged partition function Z7 ; (f,9)
is defined in (4.1)-(4.2). In analogy with (3.4) and (3.6), by (4.1)-(4.2) we can write

Z7 5(f,9) —E[Z2 5(f. 9)] Z > a, (x1) €(ny, 1) %

k=1 O<ni<...<np<L

(A 1) :El,‘..,xk.EZQ
{ang—nj =) €atrg) o),

where we recall the random walk kernels (3.3) and (3.5). Recalling (4.3), we obtain
(A.2)

ML[B fv = [(Z Z q?{I(xl)gﬁ(nlvml)X

k=1 O<ni<...<np<L
Il,...,IkEZQ

{H%] (@) — x5 1)55(ng,xj)}qink(xk)>h].

When we expand the h-th power, we obtain a sum over h families of space-time points
A ={(n1,71),...,(ny,,xy,)} for i = 1,... h. These points must match at least in pairs,
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i.e. any point (n},z}) in any family A; must coincide with at least another point (ndn, )
in a different family A; for j # i, otherwise the expectation vanishes (since {g(n,x) are
independent and centered). In order to handle this constraint, following [CSZ23, Theorem
6.1], we rewrite (A.2) by first summing over the set of all space-time points

A= UAi = U{(n’l,xﬁ),j(nﬁcb,xﬁﬁ)} c N x 72

and then specifying which families each point (n,x) € A belongs to.

Let us fix the time coordinates n1 < ... < n, of the points in A. For each such time
ne{ni,...,n.}, we have (n,z) € A for one or more = € Z? (there are at most h/2 such z,
by the matching constraint described above). We then make the following observations:

o if (n,x) = (né, xé) belongs to the family A;, then we have in (A.2) the product of a random
walk kernel “entering” (n,x) and another one “exiting” (n, x):
(ZC - x;—l) ’ qn§+lfn(x§+1 - l‘) )

* if (n,x) does not belong to the family A;, then we have in (A2)a random walk kernel
“jumping over time n”, say ¢,: i (z; —x;j—1) with ni_; <n <mn}: we can split this
kernel at time n by Chapman Kolmogorov writing

An— nt_,

A g (@ = 250) = ) a5 25) (25— 2).
2€7.2
Then, to each time n € {ny,...,n,}, we can associate a vector y = (y!,... Y ") e (Z%)" with

h space coordinates, where y* = x if the family A contains (n,z) and 3’ = z from (A.3)
otherwise. The constraint that a point (n,z) € A belongs to two families A* and A means
that the corresponding coordinates of the vector y must coincide: 3 = " . In order to specify
which families A’ share the same points, we assign a partition I - {1,... h} to each time
ne€{ny,...,n,} and we require that y ~ I, see (4.6).

We are now ready to provide a convenient rewriting of (A.2) by first summing over the
number 7 > 1 and the time coordinates n; < ... < n,, then on the corresponding space co-
ordinates y1, . ..,y, and partitions I, ..., I, - {1,..., h} with y, ~ I;. Recalling the defini-

tions of Q,Il"] and qn"] from (4.8), we can rewrite (A.2) as follows:

ML,B f:9) Z Z Z anll(yl)EKh] X

r=1 0<ny<--<n.<L I,.,I.+{1,..,h}

Y-y, €(Z*)"  with full support
(A4) and I; #* Vi

{HQfL o (Y y)E [€éi]}q%’“nr(yr)-

Finally, formula (4.13) follows from (A.4) grouping together stretches of consecutive re-
peated partitions, i.e. when I; = J for consecutive indexes i. The kernel U;{1 n B< x) from
(4.9) does exactly this job, which leads to (4.13).

REMARK A.1. Formula (4.13) still contains the product of E[gé] because these factors
from (A.4) are only partially absorbed in U’ e ﬁ( x): indeed, in (4.9) we have k + 1 points
ng <ni <...<ng, but the factor E[¢ ﬂ] therein is only raised to the power k.

APPENDIX B: RANDOM WALK BOUNDS

In this section we prove the random walk bounds from Lemmas 4.16, 4.17 and 4.18. We
also prove a heat kernel bound, see Lemma B.1 below.
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B.1. Proof of Lemma 4.16. We prove each of the four bounds in (4.35)-(4.36) for a
different constant c (it then suffices to take the maximal value).

The first bound in (4.35) with ¢ = ¢ follows by (4.34), thanks to the independence of the
increments of the random walk. This directly implies the first bound in (4.36): it suffices to
estimate Y . e/l g, (z) <3 2?17 g, () (by |x| < |2!| + |2?|, Cauchy-Scwharz and
symmetry) and then el < e? +¢~%, hence 3 ;. e!*l g, () < 2%,

To get the second bound in (4.36), we fix £ < n and write gn(z) = X, c72 9¢(y) gn—e(z —y)
by Chapman-Kolmogorov. We next decompose the sum in the two parts {y,z) > %|;1c|2 and
{y,x) < %’SE‘QI renaming y as x — y in the second part, we obtain

(B.1) () < > {0e() @u—o(z —y) + @ns(y) ae(z —y)} -
yeZ?: {y,a)=> ;x|

We can bound g, (z — y) < sup,cz2 qx(2) < ¢ by the local limit theorem (any random walk
satysfying Assumption 4.14 is in L? with zero mean). We next observe that {y,z) > $|z|?
implies || < 2|y| by Cauchy-Schwarz, therefore the first bound in (4.36) yields

2. tal g, () < 2ty qn—é(y) __ 2ce
VreZ”: e CZ { 7 \min{n—ﬁ,ﬁ}‘

8ct?n

yeZ?
If we choose £ = | 5|, we obtain the second bound in (4.36) renaming c.
It remains to prove the second bound in (4.35). We first note that g, (x)? /g2, (0) < c g, (z)
for some c € [1,0), because ¢, (2)? < | qn = gn(z) and | g, e < cgon(0) by the local limit
theorem. Since qn(aj) = qn(—1), we get

S i1 ) B e B (e

QZn

TEZ? TEZ? TEZ?
2 & 2 k & 2 k 212
<c(ec€n—1)=czkl(ct—n) <Z%(c2%n) —e“ 2" -1,
k= k=1
which proves the second bound in (4.35) if we rename c? as c. ]

B.2. Proof of Lemma 4.17. For any y € Z? and p € [1, 0] we can write, recalling (3.5),

@) _ s ol < 2 @ guly — 2)

wt(y) 272 H wy ’

Y4

23

where g € [1,00] is such that 1 + 1 = 1. Since | 2|7, < H%H?; | &1, it suffices to apply
the bounds in (4.36) to obtain the second bound in (4.37). /
We next prove the first bound in (4.37), assuming p € [1,00): we have, by Holder,

AP |w 16 wEp
we(z)| =, we(z) an(w = 2) wy ()
)P wi(2) ()"
(B.2) < n(r —2 (T — 2
= {ZGZZIQ wt(z)pq ( )wt(gj)}{zezzz’"q ( )wt(:z)}

2ct?n p 1 |f(2)[P _ w(2)
< (ce 2w ) 0y
thZ)

where the last inequality holds by the first bound in (4.36), since ) S < etl*=2 Summing
over x and applying again (4.36), we obtain the first bound in (4.37). O
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B.3. Proof of Lemma 4.18. Given a real function G, we set {G > A} :={y: G(y) > A}
for A € R, and we denote by | A| the cardinality of a set A. Let us define the constant

(B.3) C:=200mc? el
We are going to show that
m,F , & ®
B4 |, Ja " wfm | < cmEuEn
Xm
: Om,F | @m < (25 cym 1w e
(B.5) YA 0 ‘{lglnagL]qn w |>)\}‘ < (25C) L

Note that (B.4) implies our goal (4.39) for p = oo, while (B.5) means that the sub-linear
operator F' — maxi<n<r |q§mF wt®m| is of weak type (1,1), see [Gral4]. Then, for every
1 < p < o0, our goal (4.39) where € = 25 C follows by Marcinkiewicz’s Interpolation Theo-
rem, see [Gral4, Theorem 1.3.2 and Exercise 1.3.3(a)].

We now prove (B.4) and (B.5). For any dimension d € N, we denote by Bd(ac, r) the set of
integer points in the Euclidean ball in R¢ with center a € Z¢ and radius r > 0:

(B.6) B (x,r) = {ye 28 ly—x| =~/ (y1 —x1)2 + ...+ (yg — 24)% < r}.
We focus on the case d = 2m and we write = (1, ..., 2,,) with z; € Z2. Given a function
F: (Z*)™ — R, we define the maximal function M*" : (Z2)™ — [0, 0] by
1
O<r<oo 9 yeB2m (z,r)
We are going to prove the following discrete version of Hardy-Littlewood maximal inequality:
Flp
(B.8) YA>0: \{MF>/\}|<257”|)\|€.
We are also going to prove the following upper bound: for any me N, Le N, z € Z2,
(B.9) max [¢@™F (@) w®™ (x)| < Cm MPU" ()
1<n<L

Since clearly | M| < |G| ¢, this directly implies (B.4) and, coupled to (B.8), also (B.5).
To complete the proof, it only remains to prove (B.8) and (B.9).

B.3.0.1. Proofof (B.8). We follow closely the classical proof of the Hardy-Littlewood max-
imal inequality, see [Gral4, Theorem 2.1.6], which is stated on R4 instead of Z¢. By defini-
tion of MF', see (B.7), for every point x € {MF > A} there is 75 > 0 such that

(B.10) D P> AB (@)
yeB2™ (x,ry)

It suffices to fix any finite set K < {M¥ > \} and prove that (B.8) holds with the LHS
replaced by |K|. From the family of balls F := {B?"(x,r;) : = € K} we extract a disjoint
sub-family F' := {B?"(z,r,) : ze€ K'} with K’ € K by the greedy algorithm, see [Gral4,
Lemma 2.1.5]: we first pick the ball of largest radius, then we select the ball of largest radius
among the remaining ones which do not intersect the balls that have already been picked,
and so on. By construction, if a ball B2™(z,r;) is not included in F, then it must overlap
with some ball B*™(z,r,) of larger radius 7, > 7, therefore B>™(x,r4,) < B*™(2z,3r;). In
other terms, tripling the radii of the balls in F' we cover all the balls in F, hence

K| < D) 1B (2,3r2)|.
zeK’
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We prove below that, for any dimension de N, z € Z% and r > 0,
(B.11) |B4(z,3r)| < 5% |B%(z,7)].
Setting d = 2m and applying (B.10), we then obtain (B.8):
25 25™
K| <25™ ) [B*(2,72)| < D IFw)< 1 ler

zeK' 2€K’' yeB2™(z,ry,)

where the last inequality holds because the balls B2 (z,r,) for z € K’ are disjoint.
It remains to prove (B.11). We fix z = 0 and we proceed by induction on d € N.

* The case d = 1 is proved by direct computation. Note that B*(0,7) = {—|r],...,|r|},
hence |BY(0,7)] =2|r] + 1. For0 <r <1 e have |B1(0,7)| = 1 while |B*(0,3r)| < 5,
therefore (B.11) holds (as an equality for 2 5 <r < 1). More generally, given k € Ny, for
k<r<k+1wehave |r| =k and |3r] < 3k + 2, therefore |B1(0,7)| = 2k + 1 while
|BY(0,3r)] <2(3k + 2) + 1 = 6k + 5, which yields

|BL(0,3r)] _ 6k+5 2
< =3+ <3+2=5.
IBL(0,r)] "~ 2k+1 2k +1

* We next assume that (B.11) is proved for some d € N and we prove it for d + 1. Recalling

(B.6) and writing y = (y1,...,Yyq), we sum over the possible values of y := y; to write

(B.12) BH0,r) = D [BY0,4/r2—y?)
ye{_l_TJr--?lTJ}
In particular, replacing r by 3r and applying the induction assumption (B.11), we get
B 0,3r)| <5 ), BY(0,4/r2 — (y/3)?)]
yE{—l?)TJ,...,lST‘J}

<5t > BUONE - [y/3P)]

yG{—I_37‘J,...,|_37”J}

where in the last inequality we increased the radius /7% — (y/3)? replacing y/3 by [y/3]
defined as |y/3| for y = 0 and as [y/3] for y <0, so that |[y/3]| < |y/3|. We finally note
that, as y ranges in {—|3r|,...,|3r|}, the variable § := [y/3] ranges in {—|r|,...,|r]|},
and each value of § comes either 3 or 5 values of 7.* We thus obtain, recalling (B.12),

B710,3r)<5%-5 Y |BY0,/r? =541 B0, 1),
ZJE{—[TJ,...,L’I‘J}
which completes the proof of (B.11).

B.3.0.2. Proof of (B.9). We claim that for all 1 <n < L and z € Z?

! 2 5
(B.13) qn(x)eﬂx‘ < = e ten where C':=6cet’.
n

Indeed, we prove in Lemma B.1 below that ¢, (z) < 6 e -8 , see (B.14), therefore

6c 22 6C _ Je? 2 6c _ e 2y,
q?’L( ) t|$| < t|$| 8cn < 76 16cn - <Supet,y_ lgcn,> = —e_ 16cn e4Ct
n n ~=0 n

9

“Indeed, ¢ = 0 comes from y € {—2,—1,0,1,2}, while § = £ > 0 comes from y € {3¢,3¢ 4+ 1,3¢ + 2}, and
similarly for y = ¢ < 0.
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which shows that (B.13) holds for n < L.

Let us now deduce (B.9) from (B.13). Since Zi—g; < etlr—=l, by (4.38) and (B.13) we get
g™ (@) wP™ (@) < Y [F(2)wP™(2) | [ an(zi — 2) 7
ze(22)™ i=1
c\™ - _lz—z[?
<(Z) X IFE)wpr(z)e

ze(22)m
where |z — 2|2 = Y | |z; — z;|? is the Euclidean norm on (R?)™. Recalling (B.6), we write

_ \w—z\z

1 1
e 16cn = J ds1 \mfz\Q} = J ds ]l{zeB®m(m,rn,s)} with Tn,s = 16cn log %,
0

0 {séef 16cn

therefore, recalling (B.7), we get

c\™ @m 1
& (@) wP™ ()| < <n> MI () J ds [BE™ (x,7n,s)|
0
Since ‘B®m(w’ rn,s)‘ - Zze(Z?)m ﬂ{sse_%} = Zye(zg)m ﬂ{sge_ Jul2 y we finally obtain

F
™" () w™ ()|

N

o w2\ e
<n dle mcn) M (),

YEZ?

and it remains to show that the term in parenthesis is at most C, see (B.9). By monotonicity

Ze—lgmgl—i—je_lgcndx=1+m,

R

hence writing y = (a, b), so that |y|? = a® + b, we obtain

/ 2 2\ 2 2(1+ 16
= e_lscn:<Ze_16cn> gC'w<(2+32ﬁ)cC’<33wcC',
n n n

a€’Z

where the second last inequality holds by n > 1 and ¢ > 1. Since 337 cC’ < C, see (B.3) and
(B.13), the proof is completed. O

LEMMA B.1 (Heat kernel bound). Let Assumption 4.14 hold and let c be the constant
from Lemma 4.16. Then for every n € N and x € 7> we have
6c _ =12

(B.14) gn(z) < — e sen .
n

PROOF. We assume that n > 2, since the case n = 1 is easier. Let us apply the formula
(B.1) with £ = | 3], so that § < £ < 5: by (4.36) (with t = 0) we have g (z —y) < § < % for
both k = ¢ and k = n — ¢, therefore for any o > 0

(B.15) gole) < Zedel N ORI g (y) + gui(y) ]
yer?: (y,z)>; |z|?
where we bounded 1 < e~271e*2 ¥ 17 because (y, z) > 3|z[? (with fa1 += 0 for 2 = 0). For

x|

any w = (w',w?) € R?, by (4.35) and Cauchy-Schwarz we can bound

Z YWy q(y) < Z 20 gy (y) - Z 200 g, (y) <eC\wW,
yeZ? yeZ? yeZ?
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and similarly for g,,_,(-), therefore for max{¢,n — ¢} < Z we obtain by (B.15)

qn(CC) < @ efg|x|+2c o’n )
n
Optimising over p leads us to choose o = %, which yields (B.14). O

APPENDIX C: ESTIMATES ON BOUNDARY AND BULK TERMS

In this section we prove the estimates on the boundary terms (Propositions 4.19 and 4.20
for the left boundary, Proposition 4.21 for the right boundary) and on the bulk terms (Propo-
sition 4.23 and Proposition 4.24).

C.1. Proof of Propositions 4.19. By the triangle inequality we can bound
AlfIT Ny
3/ a

Wy

L

(C.1)

124 Lp

Writing I = {I',..., I™} we can write, recalling (4.8), (4.14) and (4.29),

LfLTp |f|1 \f| |19 Lf1 ol 17|
qn (z )p ¢ (y)P an
(C.2) ‘ = T = .
Wi lle me(zzz)h Wi(z) H EZZ: pu Jl_[1 i
(k—1) ; .
Since | - [ M <|- Hp H |7 from Y27, |I7| = h we get (raising to 1/p)
\f|f \f| h—m |f| |f\ |f|
© I e I B

where the last mequahty holds since m < h — 1 for I # * (note that | - [~ < | - [e). By
(4.37), for any r € [1, 0],

If] 2ct?n | f]

@ ce f @ octzn | f
(C.4) < — = <ce*tn | L

Wt || poo nr Wt || pr Wt || pp Wt || gp

hence we obtain for n < L, recalling the definition of % in (4.40),

TS

wy Wt || gp

h—1

IfI,I h
(C.5) i <

=1
23 nr or

Plugging this into (C.1), since Zn 1 na < So Ldx = %, we obtain

P NS

Wt Wt

’\|f‘7l h—1
qr

Wi

. <t ghpie
(C.6) max 1 ¢

124 or 124

which proves (4.44) for r = p (so that min{ ', - £} =
then = 3 P 7 hence (C.6) still proves (4.44).

It remains to prove (4.44) for r € [1, =2-] < [1,p). Let us obtain an estimate alternative

’ 142p
to (C.5). Since | - |7, <[ |}=" | - |} for r < p, by (4.37) we obtain
H |f|

‘ \fl \fl

P— 1) More generally, if r > +2p,

2
Ce?ct n

(C.7)

Wi

1

x 1 5
48 nr r Lr

{©
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which we can use to estimate one factor of HQLH ¢» appearing in (C.3) (recall that h > 2):
applying again the first bound in (C 4), forn < L we obtain from (C.3)

|f1.1 h h—2
dn € f f . 2 1 1 —r
C.8 < —|— — with =2 —x==x4 BT
( ) ‘ Wt . nY wy - wy ” g r P r pr

The RHS of (C.8) is smaller than the RHS of (C.5) if and only if

f =
1 1 o (e
(C.9) RN - vl — n>n:= “;f )
nY W llpe nv (| Wellge ||f||gp
Note that for r € [1, 143;1;;9] we have vy — 1 > 2(1;;)2]3) — 1 _1-2-150 hence~ > 1. Then
w 1 © 1 1 ~1- 3p s1-
Ynmins SV mdr =57 n!=7 < Pra' Y, hence by (C.8) we can bound
‘f':l 2 h—2 r(p—1) h— r(p—1)
| < 3p goh iy S L 3p_gph A I I
—1 — p—1 )
v Wy o P Wt | pr || Wt || gp P Wt || pr Wt | pp

where the equality follows by the definitions of 72 in (C.9) and + in (C.8). For the contribution
of n < n, the previous bound (C.5) with r = p yields, as in (C.6),

_ fILI h r(p—1) h— r(p—1)
j L PRy ey B el il e
el 02 p=l Wt || gp p-l Wt || pr Wt || gp
having used the definition of 7 in (C.9). Overall, see (C.1), for r € [1, l_i—gp] we have
(C.10) max 9L Ap_gh EA e with a := (p__rl) € (0,1].
I#x | Wy o Wt | pr || Wt || gp ne
A

At the same time, we can apply again the previous bound (C.6) with r = p to estimate

a‘qu hoi | £
11 L L »||—
e e T

B

Combining these bounds we get maxy H Wi H 2 SAYB 1=a hence

3 af ap coh p1-1 | f F"
Vrell, —=2-]: <L | e
re| 71+2p] I}ljf Wt " S o1 e 2wt
which coincides with our goal (4.44), since min{; 5, -5} = B for r <p. O

C.2. Proof of Proposition 4.20. We follow the proof of Proposition 4.19. By the triangle
inequality, as in (C.1), it is enough to show that
|f‘ I 36i %h
32/10

2
S E
o Wt || peo || Wt || gp

We assume for ease of notation that J = {{1,2},{3},...,{h}}. Let us fix a partition I =
) ) ) b p
{I',...,I"™} such that I 2 J, say 1€ I' and 2 € I. In analogy with (C.2), we have

I j
\fl % p| 7]

h—2

(C.12) v/

<50.2)
1’7 J:3

(C.13) v’

Wt || gpi13)
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where

~ 1 I 2 1?2 _ 1_,,2
(C.14) 502 .- Z (g (") el I)P‘ | (g2 el \)P| | a=psly'—y?|
y'yrer?

By a uniform bound, we can estimate

I I
’ |f\ Pl <qnf|(y2))1’| |e—ps\y1—y2\
2 4 y2622 wt(yZ)
(C.15)
If\ plI| |f| p|12|
’ < Z epsy|> .
£» 12 yEZ?
Since 2|z| > |21| + |2%| for z = (2!,2%) € Z® and 1 —e™® > 2z for 0 < z < §, we can bound
(C.16) Dle g Y el < () e 3% 2 < 2 Y <30
' 2 b 2 h = 1-— e_g h 82 '
2EL 2EZL TEL
Plugging these estimates into (C.13) and bounding || HW < || Hp(k 2 H Hep, since
2 |I7| = h and m < h — 1, we obtain (raising to 1/p)
QM _ 36 ﬁ h—m-+1 % m—1 36 Lf\ 2 % h—2
op h SQ/p Wt || peo Wt | go S2/p Wt g || Wt |lgv
Applying the estimates in (C.4), we obtain (C.12). O

C.3. Proof of Proposition 4.21. The second line of (4.49) follows by the first line be-
cause | - |2, < |- e | - [ . Let us prove the first line of (4.49). Writing J = {J',..., J™}
and recalling (4.17) and (4.8) we can write, as in (C.2),

m

[ wli = Y @@ Wi < Y max [T (@) wily) "
we(z2)" ye(zeyn S a1

We next observe that for k = |.J7| > 1, arguing as in (B.2) with 1/w; replaced by w;, we have

(@ @) we)* < €™ S | FEF wn(2) galy — 2) 24
(C.17) o wi(2)

2ct2p\k—1 kgt
_ (ceretm)tL gl

(y) we(y) -

Introducing the function
(C.18) Gy, Ym) ng 17wy ()71

and recalling the notation (4.38), we can thus write

Wil <[ Tee™) 70 30 max (489 (y) wf™ (4))"
(C.19) i=1 ye(z)m

< ?Q(h—m) H ®@m,G ®m

H lgl,J

max_ gy,

1<n<L ’

la
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because c e’ < @, see (4.40), and Zm_l |J7| = h. We can now apply (4.39) to get

(C.20) [at w,

It remains to compute

(C.21) | ( > lgCy)|?”! wt(yj)q"”> ]_[ g -

j=1 \yez?

HGw

q

Wil <

Since J # *, we have |Jj] 2 for at least one j, say for j = 1, hence for k£ = \J1| we
k

bound | - g < | [ - .-

|- H[ H .- Since DT |J7| = h, and m < h — 1 for J # %, we obtain

h—m—1

while for all other k = |.J7| > 1 we simply bound | -

éqk S

|G o0 < lgwrlle™ ™ lgwnlfe o el ™ < g el o wells

because | - [[g= < | - |l¢a, || - [£2a. This completes the proof of the first line of (4.49).
We next prove (4.50). We may assume that I = {{1,2},{3},...,{h}}. Letus fix a partition
J={J', ..., J"} with J 21, say 1€ J! and 2 € J2. Then we can write

[l WVl < Y wily' —y?)? max {(QJf'(yl)wt(yl))qIJ1|

1<n<L
ye (Z2 )m,

ﬁ \g\ (y;) w ))qJ’I}'

By (4.39) for m = 1, we can bound q|g|( D we(y1) < |g we| g <€ |gwe|e-. Then the sum
over y; € Z? yields ||ws|,. If we define G’ as G from (C.18) with the product ranging from
2 to m, then arguing as in (C.17)-(C.19) we get

lg]

=lgl,J —a(h— 1)) qlJ* _1)¢
e Wyl <@ g8 o, | mase SO0 )
Applying (4.39), as in (C.20)-(C.21), we then obtain
a/’ gt -1 ®(m—1
Hq‘iq‘ WtVSIHqu% " ”gwtug:f‘stHﬁq g™ HG'wt (m )qu
1oz Jt J7|
<5 %" [wilen gl 'mgwt\'w

—h h—(m— _
<58 [woler lgwelyz ™ lgwel i,

where the last inequality holds by | - ‘W < H : Hzm H : |£q fork=|I7| > 1.Sincem < h —1,
the proof of (4.50) is complete. O

C.4. Proof of Proposition 4.23. Let us set for short p : = q%’l (so that % + % =1). We are
going to use a key functional inequality from [CSZ23, Lemma 6.8], in the improved version
from [LZ21+, eq. (3.21) in the proof of Proposition 3.3]:

(C.22)
v f(z)g(x)

14|z —2[?)

( — <C1pq|flellgles  where Cy:=22"(1+4m)".
z€(2?)}, ze(2?)}
(The value of C] is extracted from [LZ21+, proof of Proposition 3.3] where C <
23h+1(§)h_1pq with ¢ < 1 4 7 from [LZ21+, proof of Lemma A.1], hence C; < 22+2 (1 +

ﬂ.)h—l‘)



QUASI-CRITICAL FLUCTUATIONS FOR 2D DIRECTED POLYMERS 37

We show below the following bound on QZ’*(z, x) = 27%:1 ]_[?:1 qn (2t — 2%):

_lz—z|?
(C.23) Qi (z,2) < (1f|2;_z°;)h_l where Cy := h!(200c2)".

Recalling (4.30), since Qé"](z, x) = QZ’*(Z, @) L1 zngy- se (4.8)-(4.14), we obtain

Coliznta~yy
(14 |z — z|?)r1

‘Zmilz 02 e8Cht2L]l{z~[’m~‘]}
(1+|x—2z[2)r-1 7

t|zt—zt|—

(WtQIJ L )(z,a:) <

~

i=1
because max,eg{ta — Ig%} = 8ct?L. Applying (C.22), get (4.55) since 800(1 + 7) < 4000.

We next prove (4.56). Let I,J be pairs, say I = {{a,b},{c}: c # a,c # b} and J =
{{a,b},{c}: c# a,c+ b}. For z ~ I and x ~ J we have z® = 2%, hence
1
Vi(x)

< es|x“—xb| < es{\x“—z“|+|z“—zb|+\z”—mb|} _ es|m“—z“’\ es|zb—wb

and similarly V%(z) < eslot =57 gslz’—a’|, Arguing as above, we obtain (4.56):

h
( Q )( ) CQ]I{ZNI x~J} (t+25)|zifﬂci|7161w\zif:):i\2
LWV’zw 1+|z—z2)p-111°
=1

2
Cs e8ch(t+2s)*L ]l{z~l,m~J}

(14 |x— z|2)h_1

Let us prove (C.23). By the bound ¢, (z) < GC et proved in Lemma B.1 we obtain

(6c) oz
Q**Za; an:l,’—z h e &n ,

hence for & = z we get QF*(x,z) = YF_, Qi*(2,2) < (60)" Y7, L= (6o <
2 (6¢)" which is compatible with (C.23). We next assume that & # z: note that for A =

|z—=|?

>0
Liemn et (1 & e 2
Z % < T {A go(ﬁ)} where o(t) := o
n=1 n=1
Since ¢(+) is unimodal, we can bound % > | (%) < {7 ¢(t)dt + 4[] and note that

§o w(t) =2"1{P sh=2e75ds = 2"~ (h — 2)! while |¢|o = (2h)h ~h < 2Phl/N2mh <
f%Zhh!, therefore for A > 1 we get 5 > (%) < 2"hl. Overall, recalling (4.14), we have
orx #z

_(a8c?)he” St oy < (200c2)h e~ ot
|z — z|2(h—1) T (Lt — 2Rt

Qp*(z,2) < ZQ** <

where we last bounded | — z|? > (1 + | — z|?) for = # z. We have proved (C.23). [
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C.5. Proof of Proposition 4.24. Let us define p := —%; so that 1y 5 = 1. Since

IAgs— g0 = sup f(z)A(z,m)g(m),
fvg: HfH£P§17||g”é‘1<1 Z,iEE(ZQ)?

we canbound 3, ,, f(2) [0 (2, @) g(x) < (3, , f(2)? [0/ (,2)) * (2, » 10/ (z,2) g(x)?)
by Cauchy-Schwarz, hence we obtain

(C.24) [ Allga—¢a Smax{ sup Z Az, x) sup Z Az, x }
z€(2?)} xe(Z2)h me(Z 1 ze(Z2)%

We will prove (4.58) and (4.59) exploiting this bound.
We recall that U,, g(x) is defined in (4.12) and we define

k
(C.25) =Y Unpla) = Z (03)F > [ [ 4200 1(0)

x€Z2 O=:nmg<n;<--<np:=n i=1

When we sum U, g for n =1,..., L, if we enlarge the sum range in (C.25) by letting each
increment m; :=n; — n,;_; vary freely in {1,..., M}, recalling (4.57) we obtain

L L k o]
(C.26) Z “Mngr < Z ( Zl o Am q2m(0)) - ];1(05 R(L/\))k -

0?3 R(L)‘)

I— 2R

We next estimate the exponential spatial moments of U, 3(z). Pluggin the second bound

from (4.35) into (4.12), writing 2 = (z',22) and 2% = 3% (2% — 2% |), we obtain

2
Va=1,2: > ™ Uyp(@) <e 2" Upg.
T€Z?

From this, by || < |z'| + |22|, Cauchy-Schwarz and !l < ! + e~ we deduce that

(C.27) D ellU, g(z) <26 U, g

TEZ?

We now fix a partition I = {I',...,I™} # % and a pair J = {{a, b}, {c} : ¢ # a,b}. Our
goal is to prove (4.59), which also yields (4.58) for s = 0. By (4.30) and (4.46) we have the
following rough bound, for any 7€ {—1,+1}:

J T
(C.28) Wilz) Vi (2)" < e2(t+s)|zt =2 H olts)|ze—2=|

Wile) VY (@) AL

We may order [I'| > |I?| > ... > |I™], so that |I'| > 2. Given z,x € (Z*)}, denoting by =’
the common value of ¢ for a € 17, by (4.8) we can write

m
It 1 1 4 It
Q) = e == [T )" < e <" [T

because g, (-) < 1. Since |E[£ 5]\ < Jﬂ by assumption, from (4.9) we can bound

m
Ul s(z2) < Upp(a” —2") [ Tan(a" —
j=2



QUASI-CRITICAL FLUCTUATIONS FOR 2D DIRECTED POLYMERS 39

therefore by (C.27), (C.28) and the first bound in (4.36) we obtain

(C.29)

Wi(2) Vs(2)" :
I 13 <9h 4hc (t+s)*n
:cG(ZZQ)h (|U|n’6(zj$) Wi(x) Vs(z)™ = Une

which yields, recalling (4.16),

(C.30)

2L we(z2))

L
~ W, V, T 2
sp SOl pzm) (=) S(Z)T < 1 4 b ethe(t+9)°L S ey, g,

Wt(m) V8($)

n=1

and the same holds exchanging  and z by symmetry (note that the bound (C.28) is symmet-
ric in ¢ <> z). Recalling (C.24) and (C.26), we obtain (4.59) (hence (4.58)). ]
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