THE CONTINUUM DISORDERED PINNING MODEL

FRANCESCO CARAVENNA, RONGFENG SUN, AND NIKOS ZYGOURAS

ABSTRACT. Any renewal processes on Ng with a polynomial tail, with exponent « € (0, 1),
has a non-trivial scaling limit, known as the a-stable regenerative set. In this paper we
consider Gibbs transformations of such renewal processes in an i.i.d. random environment,
called disordered pinning models. We show that for a € (%, 1) these models have a universal
scaling limit, which we call the continuum disordered pinning model (CDPM). This is a
random closed subset of R in a white noise random environment, with subtle features:

e Any fized a.s. property of the a-stable regenerative set (e.g., its Hausdorff dimension)
is also an a.s. property of the CDPM, for almost every realization of the environment.

e Nonetheless, the law of the CDPM is singular with respect to the law of the a-stable
regenerative set, for almost every realization of the environment.

The existence of a disordered continuum model, such as the CDPM, is a manifestation of
disorder relevance for pinning models with a € (%, 1).

1. INTRODUCTION

We consider disordered pinning models, which are defined via a Gibbs change of measure
of a renewal process, depending on an external i.i.d. random environment. First introduced
in the physics and biology literature, these models have attracted much attention due to
their rich structure, which is amenable to a rigorous investigation; see, e.g., the monographs
of Giacomin [GO7, [GI10] and den Hollander [dHO9].

In this paper we define a continuum disordered pinning model (CDPM), inspired by
recent work of Alberts, Khanin and Quastel [AKQ14b| on the directed polymer in random
environment. The interest for such a continuum model is manifold:

o It is a universal object, arising as the scaling limit of discrete disordered pinning models
in a suitable continuum and weak disorder limit, cf. Theorem

e It provides a tool to capture the emerging effect of disorder in pinning models, when
disorder is relevant, cf. Subsection for a more detailed discussion.

e [t can be interpreted as an a-stable regenerative set in a white noise random environ-
ment, displaying subtle properties, cf. Theorems [I.4] [I.5] and [I.6]

Throughout the paper, we use the conventions N := {1,2,...}, Ny := {0} UN, and write
ap, ~ by, to mean lim, o an /b, = 1.

1.1. RENEWAL PROCESSES AND REGENERATIVE SETS. Let 7 := (7,),>0 be a renewal
process on Ny, that is 7o = 0 and the increments (7, — 7,—1)nen are i.i.d. N-valued random
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variables (so that 0 = 79 < 71 < 72 < ...). Probability and expectation for 7 will be denoted
respectively by P and E. We assume that 7 is non-terminating, i.e., P(1 < oc0) = 1, and

K(n):=P(r1 =n) = f;l(fi,

as n — 0o, (1.1)

where o € (0,1) and L(-) is a slowly varying function [BGT87|. We assume for simplicity that
K(n) > 0 for every n € N (periodicity complicates notation, but can be easily incorporated).

Let us denote by C the space of all closed subsets of R. There is a natural topology on C,
called the Fell-Matheron topology [F62, M5, IM05], which turns C into a compact Polish
space, i.e. a compact separable topological space which admits a complete metric. This can
be taken as a version of the Hausdorff distance (see Appendix [A| for more details).

Identifying the renewal process 7 = {7, }n>0 with its range, we may view 7 as a random
subset of Ny, i.e. as a C-value random variable (hence we write {n € 7} := {J,>o{7n = n}).
This viewpoint is very fruitful, because as N — oo the rescaled set -

% - {X}}WO (1.2)

converges in distribution on C to a universal random closed set 7T of [0,00), called the
a-stable regenerative set (cf. [FEM85|, |[GO7, Thm. A.8]). This coincides with the closure of
the range of the a-stable subordinator or, equivalently, with the zero level set of a Bessel
process of dimension § = 2(1 — «) (see Appendix , and we denote its law by P<.

Remark 1.1. Random sets have been studied extensively [M75, [M05]. Here we focus
on the special case of random closed subsets of R. The theory developed in [FEMS5]| for
regenerative sets cannot be applied in our context, because we modify renewal processes
through inhomogeneous perturbations and conditioning (see — below). For this
reason, in Appendix [A] we review and develop a general framework to study convergence of
random closed sets of R, based on a natural notion of finite-dimensional distributions.

1.2. DISORDERED PINNING MODELS. Let w := (wp)nen be i.i.d. random variables
(independent of the renewal process 7), which represent the disorder. Probability and
expectation for w will be denoted respectively by P and E. We assume that

Elw,] =0, Var(wy,) =1, Jto>0: A(t) :=logE[e""] < 0o for |t| <tp. (1.3)

The disordered pinning model is a random probability law P<; 3., ON subsets of {0,..., N},
indexed by realizations w of the disorder, the system size N € N, the disorder strength g > 0
and bias h € R, defined by the following Gibbs change of measure of the renewal process 7:

w
PS50 (T N[0, NT) _ 1 e (Bon—A(B)+h)1 (nery (1.4)
P(r N[0, NJ) ZN b ,
where the normalizing constant
Z% g p = [625:1(/3Wn*/\(5)+h)]1{ner} (1.5)

is called the partition function. In words, we perturb the law of the renewal process 7 in
the interval [0, N], by giving rewards/penalties (Bwy, — A(8) + h) to each visited site n € 7.
(The presence of the factor A(3) in —, which just corresponds to a translation of h,
allows to have normalized weights E[e®»~AB)) =1 for h = 0.)
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The properties of the model P“](,, b especially in the limit N — oo, have been studied in
depth in the recent mathematical literature (see e.g. [GO7, [G10l [dHQ9] for an overview). In
this paper we focus on the problem of defining a continuum analogue of PR sh-

Since under the “free law” P the rescaled renewal process 7/N converges in distribution
to the a-stable regenerative set 7, it is natural to ask what happens under the “interacting
law” Ngn Heuristically, in the scaling limit the i.i.d. random variables (wy,),en should be
replaced by a one-dimensional white noise (th)te[O,oo), where W = (Wt)te[o,oo) denotes a
standard Brownian motion (independent of 7). Looking at (L.4), a natural candidate for

the scaling limit of 7/N under PR s.n would be the random measure P%I/;’I,/h on C defined by

aPgY

T76’h ( R

(T n[0,7]) := 7
ar 275

where the continuum partition function Z%th would be defined in analogy to (1.5)). The
problem is that a.e. realization of the a-stable regenerative set T has zero Lebesgue measure,
hence the integral in (1.6)) vanishes, yielding the “trivial” definition P%gvh = P>

These difficulties turn out to be substantial and not just technical: as we shall see, a non-
trivial scaling limit of P%; 8.h does exist, but, for o € (%, 1), it is not absolutely continuous
with respect to the law P® (hence no formula like (1.6 can hold). Note that an analogous
phenomenon happens for the directed polymer in random environment, cf. [AKQ14b].

eJo Lirer) (BAWi+(h—35%)d1) (1.6)

1.3. MAIN RESULTS. We need to formulate an additional assumption on the renewal
processes that we consider. Introducing the renewal function

u(n):=Pner)= ZP(Tk =n),
k=0

assumption (|1.1)) yields u(n + €)/u(n) — 1 as n — oo, provided ¢ = o(n) (see (2.10) below).

We ask that the rate of this convergence is at least a power-law of %:

u(n+¥¢)

0
AC, ng € (0,00), €, € (0,1] : —1‘§C’<£) Vn >mng, 0 <l <en. (1.7)

n

Remark 1.2. As we discuss in Appendix condition is a very mild smoothness
requirement, that can be verified in most situations. E.g., it was shown by Alexander [A11]
that for any a > 0 and slowly varying L(-), there exists a Markov chain X on Ny with +1
steps, called Bessel-like random walk, whose return time to 0, denoted by T, is such that
L(n) LT
K(n) =P(T =2n) = Tra as n — 0o, with L(n) ~ L(n). (1.8)

We prove in Appendix [Bf that any such walk always satisfies ((1.7)).

Recall that C denotes the compact Polish space of closed subsets of R. We denote by
M (C) the space of Borel probability measures on C, which is itself a compact Polish space,
equipped with the topology of weak convergence. We will work with a conditioned version
of the disordered pinning model , defined by

PRan() =PRgn(-IN 7). (1.9)

w,C

(In order to lighten notation, when N ¢ N we agree that P‘Xf’fﬁ’h = PLNJ,B,h')
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Recalling ([1.2)), let us introduce the notation
-
P?J\f%,ﬁN,hN(d(T/N)) := law of the rescaled set N N[0, 7] under PL]U\;%WBNth . (1.10)

For a fixed realization of the disorder w, P37 sy (A(T/IV)) is a probability law on C, i.e.
an element of M;(C). Since w is chosen randomly, the law P%;ﬁ iy (d(T/N)) is a random
element of M;(C), i.e. a M;(C)-valued random variable.
Our first main result is the convergence in distribution of this random variable, provided
€ (%, 1) and the coupling constants = Sy and h = hy are rescaled appropriately:

~L(N .
BN = (_2, hn:=h
N*"2

for NeN, >0, heR. (1.11)

Theorem 1.3 (Existence and universality of the CDPM). Fiz a € (1,1), T > 0,
B3>0, h € R. There exists a M1 (C)-valued random variable P;;gfg, called the (conditioned)

continuum disordered pinning model (CDPM), which is a fuﬁction of the parameters
(o, T, B, h) and of a standard Brownian motion W = (Wy)i>0, with the following property:

e for any renewal process T satisfying (1.1) and (L1.7), and By, hy defined as in (1.11));
e for any i.i.d. sequence w satisfying (|1.3));

the law P‘J‘JV’CTﬁN’hN(d(T/N)) of the rescaled pinning model, cf. (1.10), viewed as a M1(C)-
POC WC
76 h
We refer to Subsection [I4] for a discussion on the universality of the CDPM. We stress
that the restriction o € (%, 1) is substantial and not technical, being linked with the issue of
disorder relevance, as we explain in Subsection (see also |CSZ13]).

valued random variable, converges in distribution to as N — co.

Let us give a quick explanation of the choice of scalings ([1.11). This is the canonical
scaling under which the partition function Z% 5, in (1.5) has a nontrivial continuum
limit. To see this, write

N N

2 51 :E[H(Heﬁvh 11n67)} =14y Y P e, eT),
n=1 k=11<nj<--<np<N

where eﬁh = ePon—AB)+h _ 1 By Taylor expansion, as 3,h tend to zero, one has the

asymptotic behavior E[sﬁ’h] h and Var(eh™) ~ B2. Using this fact, we see that the
asymptotic mean and variance behavior of the first term (k = 1) in the above series is

N e
[Ze’fﬁhPHET } %h;P(nET)%h(N),
Var [ng’hP(n €T) } 62ZP (ner) g;;); ,

because P(n € 7) ~ n®"!/L(n), by (L.I) (see (2.10) below). Therefore, for these quantities

to have a non-trivial limit as N tends to infinity, we are forced to scale Sy and hy as in
(1.11). Remarkably, this is also the correct scaling for higher order terms in the expansion
for Z 5 1. as well as for the measure PR, 5, = to converge to a non-trivial limit.
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We now describe the continuum measure. For a fixed realization of the Brownian motion
W = (W) efo,00), Which represents the “continuum disorder”, we call P W}f the quenched
law of the CDPM, while

s

B[pete] ()= [PoleC)pam) (12

will be called the averaged law of the CDPM. We also introduce, for T' > 0, the law P77 of
the a-stable regenerative set T restricted on [0, 7] and conditioned to visit 7™

P7(-)=P*rn[0,T] € -|TeT), (1.13)

which will be called the reference law. (Relation ((1.13]) is defined through regular conditional
distributions.) Note that both E[P77] and P are probability laws on C, while P/
is a random probability law on C. "

Intuitively, the quenched law P; Wee could be conceived as a “Gibbs transformation” of

7y

the reference law P7/°, where each visited site ¢t € 7N [0, 7] of the a-stable regenerative set

th + iz, like in the discrete case. This heuristic interpretation

should be taken with care, however, as the following results show.

is given a reward/ penalty 6

Theorem 1.4 (Absolute Continuity of the Averaged CDPM). For all a € (3,1),
T>0,38>0,hecR, the avemged law E[Pa WC] of the CDPM is absolutely continuous

T7187h
with respect to the reference law PZ°. It follows that any typical property of the reference
law PF is also a typical property of the quenched law P ;V;, for a.e. realization of W :
VA C C such that PE(A) =1 P;;EV;LC(A) =1 for P-a.e. W. (1.14)

In particular, for a.e. realization of W, the quenched law P ;th of the CDPM is supported

7 )

on closed subsets of [0,T] with Hausdorff dimension «.

It is tempting to deduce from ) the absolute continuity of the quenched law P’ ;Vlf

with respect to the reference law P?f , for a.e. realization of W, but this is false.

Theorem 1.5 (Singularity of the Quenched CDPM). For alla € (3,1), T > 0, B>0,
heR and for a.e. realization of W, the quenched law P ;V}f f the CDPM is singular with

7 )

respect to the reference law P3°:

for P-a.e. W, 3ACC such that P7F°(A) =1 and P’ ;VhC(A) =0. (1.15)

The seeming contradiction between ((1.14) and ([1.15]) is resolved noting that in ((1.14)) one

cannot exchange “VA C C” and “for P-a.e. W”, because there are uncountably many A C C
(and, of course, the set A appearing in ([1.15)) depends on the realization of W).

We conclude our main results with an explicit characterization of the CDPM. As we
discuss in Appendix [A] each closed subset C' C R can be identified with two non-decreasing
and right-continuous functions g;(C') and d¢(C), defined for ¢ € R by

g:(C) :==sup{z: z € CN[-oo,t|}, di(C) :==inf{z: z € CN(t, 00]}. (1.16)
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As a consequence, the law of a random closed subset X C R is uniquely determined by the
finite dimensional distributions of the random functions (g;(X)):cr and (d¢(X))ser, i.e. by

the probability laws on R given, for k € N and —oo < t] <ty < ... <t < o0, by

P(gtl(X) €dxy, d¢ (X) €dyr, ..., g, (X) € dag, 44, (X) € dyk) . (1.17)

As a further simplification, it is enough to focus on the event that X N [t;, t;11] # 0 for all
i=1,...,k, that is, one can restrict (x1,y1,..., 2k, yx) in (1.17) on the following set:

k .
Rgo,)...,tkﬂ = {(@L, Y1, T Yk) ¢ @i € [tim1, b, yi € [t tigr] fori=1,... K,

(1.18)
such that y; < ;41 forizl,...,k—l},

with tg = —oo and ;11 := +00. The measures ([1.17) restricted on the set ([1.18]) will be
called restricted finite-dimensional distributions (f.d.d.) of the random set X (see §A.3).

We can characterize the CDPM by specifying its restricted f.d.d.. We need two ingredients:

(1) The restricted f.d.d. of the a-stable regenerative set conditioned to visit 7', i.e. of the
reference law P77 in (1.13)): by Proposition these are absolutely continuous with
respect to the Lebesgue measure on R?*, with the following density (with yo := 0):

fr T1yYly -y Thy = , 1.19
T (191 & 3i) ZI_II (i —yi-1)' 7 (g — )t ) (T —yp) (1.19)
a81n(7ra)

with Cp 1= ——— (1.20)

™

where we restrict (x1,y1,. .., 2k, yg) on the set (1.18), with tg = 0 and tx1 :=T.

(2) A family of continuum partition functions for our model:

(ZZ,WC(S’ t))0§s§t<oo :

These were constructed in [CSZ13| as the limit, in the sense of finite-dimensional
distributions, of the following discrete family (under an appropriate rescaling):

29%(a,b) = E [ezi;i+1(ﬁwn—Acﬂwh)n{nef}

aET,bGT}, 0<a<b. (1.21)

In Section [2] we upgrade the f.d.d. convergence to the process level, deducing important
a.s. properties, such as strict positivity and continuity (cf. Theorems and [2.4)).

We can finally characterize the restricted f.d.d. of the CDPM as follows.

Theorem 1.6 (F.d.d. of the CDPM). Fiz o € (3,1), T >0, 3 > 0, h € R and let
a;We

(Zlgh (S t>)0<s<t<oo

For a.e. realization of W, the quenched law Pa WAC of the CDPM (cf. Theorem.) can be

defined as the unique probability law on C whzch satzsﬁes the following properties:

(i) P; ZV: is supported on closed subsets T C [0, T) with {0,T} C .

be an a.s. continuous version of the continuum partition functions.
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(ii) For allk e Nand 0 =:tg < t; < -+ <ty < tgy1 := T, and for (x1,y1,..., Tk, Yk)
restricted on the set ™" mn - the f.d.d. of Pa WC have densities given by

Lo, tk+1

P??’; (gtl("') edxy, dt, (1) € dyi, ..., 8, (T) € dag, dp, (T) € dyk)

dxidy; ---dxy dys
| Zg;;‘;v’c(yi, Tiy1)
ng’c(o, T)

(1.22)

a;c
fT;tl,.A.,tk (.Tl, Yis- -5 T, yk) )

where we set yo := 0 and xpy1 =T, and where 77 ¢, (1) 1s defined in (1.19).

1.4. DISCUSSION AND PERSPECTIVES. We conclude the introduction with some obser-
vations on the results stated so far, putting them in the context of the existing literature,
stating some conjectures and outlining further directions of research.

1. (Disorder relevance). The parameter § tunes the strength of the disorder in the model
P‘X,’fﬂ’h, cf. (1.9), (1.4). When § = 0, the sequence w disappears and we obtain the so-called
homogeneous pinning model. Roughly speaking, the effect of disorder is said to be:

e irrelevant if the disordered model (8 > 0) has the same qualitative behavior as the
homogeneous model (8 = 0), provided the disorder is sufficiently weak (5 < 1);

e relevant if, on the other hand, an arbitrarily small amount of disorder (any g > 0)
alters the qualitative behavior of the homogeneous model (5 = 0).

Recalling that « is the exponent appearing in ([1.1]), it is known that disorder is irrelevant

for pinning models when o < % and relevant when a > %, while the case a = % is called

marginal and is more delicate (see [G10] and the references therein for an overview).

It is natural to interpret our results from this perspective. For simplicity, in the sequel we

set hy := h L(N)/N®, as in (L.11)), and we use the notation PNT,BN hy (A(T/IN)), cf. (1.10),
for the law of the rescaled set 7 /N under the pinning model.

In the homogeneous case (8 = 0), it was shown in [Soh09, Theorem 3. 1]|I| that the weak
limit of P75, (d(7/N)) as N — oo is a probability law P B ; on C which is absolutely

) )

continuous with respect to the reference law P7 (recall (1.13)):

dP;E h( )= ohlr(r) (1.23)
dP3® * 7 Elehtr(n)]’ '

where L7(7) denotes the so-called local time associated to the regenerative set 7. We stress
that this result holds with no restriction on « € (0,1).

Turning to the disordered model 5 > 0, what happens for a € (0, %)7 In analogy with
B89, I[CY 06|, we conjecture that for fixred f > 0 small enough, the limit in distribution of
P;‘G;ﬁ hy (A(T/N)) as N — oo is the same as for the homogeneous model (8 = 0), i.e. the
law Pa “ ; defined in (T:23). Thus, for a € (0, 3), the continuum model is non-disordered

’

(determmlstlc) and abbolutely continuous with respect to the reference law.

fActually [SohQ9] considers the non-conditioned case (I.4)), but it can be adapted to the conditioned case.
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This is in striking contrast with the case a € (%, 1), where our results show that the

continuum model P;;’;LC is truly disordered and singular with respect to the reference law

(cf. Theorems . In other terms, for a € (%, 1), disorder survives in the scaling
limit (even though Bn,hny — 0) and breaks down the absolute continuity with respect to
the reference law, providing a clear manifestation of disorder relevance.

We refer to |[CSZ13| for a general discussion on disorder relevance in our framework.

2. (Universality). The quenched law P;’;V’hc of the CDPM is a random probability law on

C, i.e. a random variable taking values in7/7\/ll(C). Its distribution is a probability law on
the space M;(C) —i.e. an element of M;(M;(C))— which is universal: it depends on few
macroscopic parameters (the time horizon T, the disorder strength and bias B, h and the
exponent «) but not on finer details of the discrete model from which it arises, such as the
distributions of w; and of 71: all these details disappear in the scaling limit.

Another important universal aspect of the CDPM is linked to phase transitions. We do not
explore this issue here, referring to [CSZ13, §1.3] for a detailed discussion, but we mention
that the CDPM leads to sharp predictions about the asymptotic behavior of the free energy
and critical curve of discrete pinning models, in the weak disorder regime A\, h — 0.

3. (Bessel processes). In this paper we consider pinning models built on top of general
renewal processeses T = (7x)ken, satisfying and . In the special case when the
renewal process is the zero level set of a Bessel-like random walk [A08] (recall Remark ,
one can define the pinning model , as a probability law on random walk paths
(and not only on their zero level set).

Rescaling the paths diffusively, one has an analogue of Theorem [I.3] in which the CDPM is
built as a random probability law on the space C([0, 7], R) of continuous functions from [0, 7]
to R. Such an extended CDPM is a continuous process (X¢)ye[o,7], that can be heuristically
described as a Bessel process of dimension 6 = 2(1 — «) interacting with an independent
Brownian environment W each time X; = 0. The “original” CDPM of our Theorem [I.3]
corresponds to the zero level set 7 := {t € [0,T] : X; = 0}.

We stress that, starting from the zero level set 7, one can reconstruct the whole process
(Xt)tefo,r) by pasting independent Bessel excusions on top of 7 (more precisely, since the
open set [0,7] \ 7 is a countable union of disjoint open intervals, one attaches a Bessel
excursion to each of these intervals).ﬂ This provides a rigorous definition of (X)) in
terms of 7 and shows that the zero level set is indeed the fundamental object.

4. (Infinite-volume limit). Our continuum model P;;W’FLC is built on a finite interval [0, T7.

An interesting open problem is to let T — oo, proving that P;;V: converges in distribution

laal

to an infinite-volume CDPM P Such a limit law would inherit scaling properties from

m? bl
the continuum partition functions, cf. Theorem (). (See also [RVY0S] for related work
in the non-disordered case 5 = 0.)

1.5. ORGANIZATION OF THE PAPER. The rest of the paper is organized as follows.
e In Section |2 we study the properties of continuum partition functions.

fAlternatively, one can write down explicitly the f.d.d. of (X ¢)tefo,r) in terms of the continuum partition
functions Zg;gv’c(s, t) (see Section . We skip the details for the sake of brevity.
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e In Section [3] we prove Theorem [I.6] on the characterization of the CDPM, which also
yields Theorem [I.3]

e In Section [4 we prove Theorems [I.4] and [I.5] on the relations between the CDPM and
the a-stable regenerative set.

e In Appendix[A] we describe the measure-theoretic background needed to study random
closed subsets of R, which is of independent interest.

e Lastly, in Appendices [B] and [C] we prove some auxiliary estimates.

2. CONTINUUM PARTITION FUNCTIONS AS A PROCESS

In this section we focus on a family (Z g;gv’c(s, t)) of continuum partition functions

0<s<t<oo
for our model, which was recently introduced in [CSZ13| as the limit of the discrete family
(1.21)) in the sense of finite-dimensional distributions. We upgrade this convergence to the
process level (Theorem , which allows us to deduce important properties (Theorem [2.4]).

Besides their own interest, these results are the key to the construction of the CDPM.

2.1. FINE PROPERTIES OF CONTINUUM PARTITION FUNCTIONS. Recalling (1.21)),
where Zg, (a,b) is defined for a,b € Ny, we extend Z57 (-, -) to a continuous function on

[O,oo)QS ={(s,t) €[0,00)%: 0<s5<t<o0},

bisecting each unit square [m — 1, m] x [n — 1,n], with m < n € N, along the main diagonal
and linearly interpolating ZE; (+,-) on each triangle. In this way, we can regard

(Z5:¢, (sN,tN)) (2.1)

BN hN 0<s<t<o0

as random variables taking values in the space C([0,00)%,R), equipped with the topology
of uniform convergence on compact sets and with the corresponding Borel o-algebra. The
randomness comes from the disorder sequence w = (wy)neN-

Even though our main interest in this paper is for a € (%, 1), we also include the case
a > 1 in the following key result, which is proved in Subsection [2.2] below.

Theorem 2.1 (Process Level Convergence of Partition Functions). Let o € (%, 1)y
(1,00), B >0, h € R. Let 7 be a renewal process satisfying (1.1) and (1.7), and w be an
i.i.d. sequence satisfying (1.3). For every N € N, define Sy, hn by (recall (1.11)))

~ L(N) B
By =7 a—1 BN == —=
N2 forae (31, \/N fora>1. (2.2)
hy = 7 L(N) J— ﬁ
’ N« N = N

As N — oo the two-parameter family (ZB’I’VC hN(sN, tN))
2 : a;We

on C([O,OO)S,R) to a family (ZBJ} (S’t))0§s§t<oo’

For all 0 < s <t < 00, one has the Wiener chaos representation

O<s<i<oo COTVETGES I distribution

called continuum partition functions.

00 k

s // WOt t) [[(BdWs, + hdty),  (2.3)

=1

a;We
ZB P (s,t)
k=1 sty <o<ip<t
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where W = (Wy)i>0 is a standard Brownian motion, the series in (2.3) converges in L2,
and the kernel Y5y (t1, ..., ty) is defined as follows, with Cy as in (1.20) and to := s:

k
(t_ S)l—a . .
H - ) — l1-« if e (§7l)a
Yol (b, ) = ( (ti tl 1) (t—ty,)

1= 1

(2.4)

fa > 1.
Bl F if
Remark 2.2. The integral in (2.3)) is defined by expanding formally the product of differ-
entials and reducing to standard multiple Wiener and Lebesgue integrals. An alternative
equivalent definition is to note that, by Girsanov’s theorem, the law of (8W; + ht),c(o,1) is
absolutely continuous w.r.t. that of (BWt)te[O,T}) with Radon-Nikodym density

1ch

h _1(h
frpn (W)= BWr—2 (31T (2.5)

o<s<i<p (or h=0)

a;Wie a;Wie
It follows that (Z (s, t))og <i<p has the same law as (Z% 0 (s,t))

under a change of measure with density ([2.5)). For further details, see [CSZ13].

Remark 2.3. Theorem [2.]] still holds if we also include the two-parameter family of
unconditioned partition functions (ZE’N v (sN, tN))0<s<t<Oo, defined the same way as
Zg - (a,b) in (1.21)), except for removing the conditioning on b € 7. The limiting process

Zg gv(s, t) will then have a kernel 9§, which modifies 75y in ), by setting

k
(6% COé .
Po(ta, k) :HT—QI_M if a € (3,1). (2.6)

i=1

By Theorem [2.1, we can fix a version of the continuum partition functions Za Wc(s, t)

which is continuous in (s, ). This will be implicitly done henceforth. We can then state
some fundamental properties, proved in Subsection

Theorem 2.4 (Properties of Continuum Partition Functions). For all o € (3,1),

5’ > 0, h €R the following properties hold:
Zoz;I/V,c

(i) (Positivity) For a.e. realization of W, the function (s,t) — B4

and strictly positive at all 0 < s <t < 0.
ii) (Translation Invariance) For any fized t > 0, the process A t,t+u))y>0 has the
Bh =

(s,t) is continuous

ZoWe

same distribution as ( (0,4))y>0, and is independent of (Zg;g/’c(s,u))ogsgugt.

(iii) (Scaling Property) For any constant A > 0, one has the equality in distribution

( aWC(AS At)) dgt (Za;W,c

o . 2.
Bk Aa*l/%,Aah(s’t))ogngoo 27

0<s<t<o0

(iv) (Renewal Property) Setting Z(s,t) := Zg;;v’c(s,t) for simplicity, for a.e. realization
of W one has, for all0 < s <u <t < o0, ’

Co Z(s,t) / / C’Zs:c) 1 Co Z(y,t)
= daxdy 2.8
t_sl @ €(s,u) Jye(u,t) $—S (y_w)l—i-a (t_y) ( )
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which can be rewritten, recalling (1.19), as follows:
Z(s,t) = EXC, [z(s, gu(7)) Z (du(7), t)} . (2.9)

The rest of this section is devoted to the proof of Theorems and We recall that
assumption (|I.1]) entails the following key renewal estimates, with C, as in ((1.20)):

G if0<a<l,
L(n)nt—
u(n) == Pner) ~ ) (2.10)
= (const.) € (0,00) if a>1,
Fy  (const) € (0.50)

by the classical renewal theorem for aw > 1 and by |[GL63, [D97] for a € (0,1). Let us also
note that the additional assumption (1.7) for e € (0,1) can be rephrased as follows:

— d
lu(q) —u(r)| < C(u) u(q), Vr>q>ng with r—q<er, (2.11)
T
up to a possible change of the constants C, ng, .

2.2. PROOF OF THEOREM [2.7] We may assume T = 1. For convergence in distribution
on C([0,1]%,R) it suffices to show that {(Z} e sy (8N, EN)Jo<s<e<1}nen is a tight family,
because the finite-dimensional distribution convergence was already obtained in [CSZ13]
(see Theorem 3.1 and Remark 3.3 therein). We break down the proof into five steps.

Step 1. Moment criterion. We recall a moment criterion for the Holder continuity of a
family of multi-dimensional stochastic processes, which was also used in [AKQ14a] to prove
similar tightness results for the directed polymer model. Using Garsia’s inequality [G72),
Lemma 2| with ¥(x) = |z|P and ¢(u) = u? for p > 1 and pq > 2d, the modulus of continuity
of a continuous function f : [0,1]¢ — R can be controlled by

lz—yl B lz—yl g1/p {BL/p
_ -1 — qy — q,. _ a—2d/p
@) = rwi<s [ e ()ae =8 [ Sonaten = St -yl

where

— B(f) = f@) -~ 1) _ a2 [f(@) = F )l
B = B(f) //U),l]dx[o,”dq’< D) )dady =d //{O’”dx[ovud ey

Suppose now that (fy)nen are random continuous function on [0, 1]% such that
Ellfn(x) = In@)PP] < Clo —y[",

for some C,p, q,n € (0,00) with pg > 2d and 1 > pq — d, uniformly in N € N, z,y € [0,1]%.
Then E[B(fx)] is bounded uniformly in N, hence {B(fn)}nen is tight. If the functions fx
are equibounded at some point (e.g. fy(0) = 1 for every N € N), the tightness of B(fn)
entails the tightness of {fN}NeN, by the Arzela-Ascoli theorem [B99, Theorem 7.3].

To prove the tightness of {(Z} e h (sN,tN))o<s<t<1}nen, it then suffices to show that

|:|ch SlN,th) —Zg;hN(SgN,tQN)‘p] § C(\/(Sl —82)2—|—(t1 —t2)2)n, (212)
which by triangle inequality, translation invariance and symmetry can be reduced to

C>0,p>1,1>2: [\Z“h (0,tN) — 255, (0, sN)ﬂ <Olt—s|", (2.13)
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uniformly in N € Nand 0 < s < ¢t < 1. (Conditions pg > 2d and 1 > pg — d are then

fulfilled by any ¢ € (%, 2%), since d = 2). Since Z; ", (0, ) is defined on [0, 00) via linear
interpolation, it suffices to prove (2.13) for s,¢ with sN,tN € {0} UN.

Step 2. Polynomial chaos expansion. To simplify notation, let us denote

Uy, =25 ChN (0,7) [H e(Bnwn—ABN)+hN )L {nery

TET] for r € N,

and Wy := 1. Since e*lrert =1 + (e* — Dlfpery for all z € R, we set
En i e PN AEN) hy _ (2.14)

and rewrite WUy . as a polynomial chaos expansion:

r—1

[T+ évilien)

=1

Un, =E

re 7'] = Z P(ICrT|rerT) H&Vﬂ" (2.15)

IC{1,r—1} iel

using the notation {1 C 7} := ;¢ {i € 7}.
Recalling (2.2)) and (1.3)), it is easy to check that

E¢n,] =" — 1 = hy + O(h}),

2.16
\/Var(fNﬂ-) _ \/e2hN (eA(QBN)*2A(5N _ 1 \/BN + O ﬁN) BN + O(/B?V)a ( )

where we used the fact that hy = o(8y) and we Taylor expanded A(t) := log E[e’“1], noting
that A(0) = A’(0) = 0 and A”(0) = 1. Thus hy and Sy are approximately the mean and
standard deviation of ;. Let us rewrite ¥y, in (2.15]) using normalized variables (y ;:

\I]N,'r = Z ¢N,T(I) H CN,i) where CN,i = BthN’z ’ (217)

Ic{l,...r—1} il
where ¢ () :==1 and for I = {n; < ng <--- <mng} CN, recalling (2.10), we can write

k+1
1 +

bnp(I) = by p(ne,...,ng) == BEPUI C rlre7) = (BN)kTr) [T utni —nic), (218

( i=1

with ng := 0, ng41 :=7.

To prove (2.13)), we write ZZ; Ch (0,sN) = ¥y 4 and Z;‘; Ch (0,tN) = Uy, with ¢ := sN
and r :=tN, so that 0 < ¢ <r < N. For a given truncation level m = m(q,r,N) € (0,q),
that we will later choose as

m =m(q,r,N) := {0 ifg<yNr—q (2.19)

q—+/N(r—gq) otherwise ’
so that 0 <m < g <r < N, we write

Uny —WnNg=E1+E2—E3



THE CONTINUUM DISORDERED PINNING MODEL 13

with
g = Z (wN,r( —Ung(! HCNu
Ic{1,....m} i€l
Ep = > ewe]]¢vi  and =3 = S e ] v
Ic{1,...,r—1} icl IC{1,...,q—1} iel
IN{m+1,..., r—1}#£0 INn{m+1,..., q—1}#£0
(2.20)
To establish (2.13)) and hence tightness, it suffices to show that for each i = 1,2, 3,
—q\"
3C>0,p>1,n>2:  E[Z] gC(TNq) VNeN, 0<qg<r<N. (221)

Step 3. Change of measure. We now estimate the moments of {x; defined in ({2.14)).
Since (a + b)?F < 228~ 4 b?%), for all k € N, and hy = O(%) by (2.2)), we can write

B[ ]2\%1] < 22k—1€2k(hN—A(5N))]E[(eﬁNUJi _ 1)%] + 22/€—1(€—A(5N)+h1\7 _ 1>2k

< C( Y E[ (5 /0 " netnat) ™)+ 0t + 13y (2.99)

BN
< CwB [ Bl + o) = O(3R)).

because E[w?* Zkt‘”i] is uniformly bounded for t € [0,to/4k] by our assumption (1.3).
Recalling ([2.16] , and , the random variables ((n;)icn are i.i.d. with
ho 1
\4 ] o~ 1 E[(¢n.0)*" : 2.23
Nix BYN arlonl oy b sup Bl(Gna)™] <o (2.23)

It follows, in particular, that {C]Q\“}Z ~en are uniformly integrable. We can then apply a change
of measure result established in [CSZ13| Lemma B.1|, which asserts that we can construct i.i.d.

[CN z]

random variables (ZN,i)iGN with marginal distribution IP’(ZNJ € dz) = fn(z)P((n, € dx),
for which there exists C' > 0 such that for all p € R and i, NV € N

E[lvi =0, E[RJ<1+C/VN, and E[fn((n)?]<1+C/N.  (224)

Let EZ be the analogue of =; constructed from the 5 ~,i’s instead of the (x;’s. By Holder,

N N
B[] =E|=" HfN«N,Z-)l‘TI HfN(cN,n—ﬂ

<E[Fz” [fN(CN1)1 d 7 lEUHZH
Relation (12.21)), and hence the tightness of {Zg;,hN(W ')}NGNv is thus reduced to showing

=1
I

E[|Zi]'] gc(r&q)" forall NeNand0<gq<r<N, (2.25)
for some [ € N, [ > 2 and n > 0 satisfying n > 2%

Step 4. Bounding E[|Z|!]. We note that the bound for E[|Z3]Y] is exactly the same as
that for E[|=5|!], and hence will be omitted. First we write =5 as
1

<

—_
'—1
—92

[I]

, where %gk) = Z Y1) H ZN,ia (2.26)

k=1 1=k IC {1, r—1) il
IN{m+1,..., r—1}#0
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with ggk) consisting of all terms of degree k. The hypercontractivity established in [MOO1I0L
Prop. 3.16 & 3.12] allows to estimates moments of order [ in terms of moments of order 2:
more precisely, setting || X ||, := E[|X[P]'/P, we have for all [ > 2

r—1
IZall) = B[] (ZHuQ 1) < (S (@ IE0) (227)

k=1

where ¢; := 2Vl — 1 maxyen (Ill‘CS'N’lI‘I‘l) is finite and depends only on I, by (2.23).
N,1ll2

We now turn to the estimation of Hégk) ||l2. Let us recall the definition of ¢y, in (2.18]). It
follows by (2.24)) that Var((y1) <1+ C/v/N <2 for all N large. We then have

k—

,_A

=(k) H k >
IES 13 = E[(EY 3 Y3, (na,. .. ng) Var(Qu )
y:O 1<ny <--<ny<m
m+1§ny+1<»-<<nk§'r71
k—1
2% 3 BRF u(ni)*u(ng —n1)?- - u(r —ny)?
2

y:(] 1<ny < <ny<m U(T)

m+1§ny+1<'“<nk§r71

k—1
. [ WEBNu(IN])? - (VR Bwulr — [N])?
=1 [/ (VN B u(r))?

Aty ---dty. (2.28)

Y=V o<ty <<ty <2
R <typ1<-<tp<{r

It remains to estimate this integral, when % < a < 1 (the case a > 1 is easy). By (2.10)

1 1 <ul) < 1
It SIS T Er e

vl eN,
for some ¢ € (0,00). Since [Nt] — [Ns] +1 > N(t — s), recalling (2.2) we obtain

L(N) 1
VN (INI = INST) < e — T 1) (= o

Let us now fix

' 1 when a > 1

o = n ber in (1 1 .
y number in (2,a) when 5 <a <1

(2.29)

Since L(-) is slowly varying, by Potter bounds [BGT87, Theorem 1.5.6] for every € > 0 there
is D. € (0,00) such that L(a)/L(b) < D max{(a/b)¢, (b/a)} for all a,b € N. It follows that

1
(t —s)l—a"”’

for some C' € (0,00), uniformly in 0 < s <t <1 and N € N. Analogously, again by ({2.10))
and Potter bounds, if 0 < s <t < & we have

VNByu([Nt] — [Ns]) < C (2.30)

u([NH = [Ns]) _ o Lr+1) N s o
ufr) LN~ [Ns]+ 1) (Nt =)0 = (6 - )
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Plugging (2.30) and (2.31)) into (2.28)), and applying Lemma [C.1] then gives

2(1—a’)
1257115 < Z / / 2=y (/M) dty - - - dty
« t1)2(1—a’) . (T/N _ tk)Q(l—a’)

y=0 o<u<- <ty<W
Wty < <tp <K

< C* yzo C e~ C2klogh <%) (20/~1)y (T ;Vm) (20 —=1)(k—7v)

< Cge*@’“ogk(%)za - (2.32)

where the last inequality follows by crude estimates (observe that m/N < 1).
We can substitute the bound (2.32)) into (2.27) to obtain
r c — o/ =11 — (a'—1)
) < (et eyt () Y L o(rImy @ g

k=1

for some C' depending only on I. We now choose m as in (2.19)), so that
r—m _ r—q++/N( —q) <2(r—q)§
N N - N ’
(if m = 0 we first write r = r — ¢ + ¢ and we use that in this case ¢ < \/N(r — q)), hence
s 1N1
,)5

- , — o (o=
E[|Z,]] < ¢ 2@ *%ﬂ(%) e (2.34)
Since o/ > $ by our choice in (2:29), relation (2.25) is satisfied with n = (a/ — 3)

has n > 2Z_L1, as required, provided [ € N is chosen large enough).

(and one

N~

Step 5: bounding E[|Z;|"]. Following the same steps as the bound for E[|Zs]!], it suffices
to establish an analogue of (2.32)) for

k
== Y (ne(n, ) — dng(nn H Nomes (2.35)

1<ni<--<np<m

where we recall that 0 < m < ¢ <r < N, because m = m(q,r, N) is chosen as in CIf
= 0 then Hgk) = 0 and there is nothlng to prove, hence we assume m > 0 henceforth

Slnce (CNz)zeN are i.i.d. with IE[CN 1] =0 and Var({N 1) <14+ C/V/N <2 for N large,
=(k =(k 2
IEPIE=e[E")] <2 Y (Unr(ny - onk) — ng(ne,. . me))°. (2.36)
1<n) <-—<ng<m
Let € be as in condition ([2.11)). We first consider the case r — ¢ > %, for which we bound
IE))12 < okt! > (N (1, k) + N g (ny - mg)?) (2.37)

1<ni<--<np<m
S 2k+1 Z ¢N7T’(n17"'7nk)2+2k+1 Z wN,q(n17~"ank)2'
1<ni < <np<r—1 1<ni<-<np<g—1
Applying the bound ([2.32) with m = 0, since ¢ < r, we obtain

IE0)2 < 2k+1 0y C4klogk((N>2a . (;)W—l) < Cw—cmog%;\'[)?a’—l’ (2.38)
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By the same calculation as in (2.33)), we then have, using r — ¢ > £2r,

EE ] < (1) a,_é)l<c(r—q>(a’—§)17

N - 8(20/—1)l N
which gives the desired bound ([2.25)).
Now we consider the case r — ¢ < £2r. Denote I := {ny,...,n;}. Recalling the definition

of Y, in (2.18)), we have

2
(D) = g (D)7 = (B Pt -l =y (M) L)) g 5

Since we assume m > 0, by (2.19) we have m = ¢ — /N(r — ¢) and ¢, > m + v/'N.
Recalling that u(n) = P(n € 7), we can bound the last factor in (2.39) as follows:

‘P(r—nk €7) Plg—mn 67')) _ ‘P(qET)P(r—nk eT)—P(rer)P(qg—ni 67’)‘
P(rer) P(qge ) P(ge 7)P(rer)
B ‘ [P(ger)—Pren)|P(r—nyer)+P(rer)[Pr—nyer)—Plg—n, €7)] ’
P(ge)P(rer)
< !P(q eT)—P(re T)’P(r —nER €T) N ‘P(q—nk eT)—P(r—m; € T)’P(q —ng €T)
- P(gen)P(rer) P(q—ni € T)P(q € 1) '
We now apply , using the assumption r — ¢ < e?r < er and noting that

(r—mw) —(g—m) _ 74 _\/T;{q<\/r—q<€’

T — Nk T g—m B ro

which yields

u(r —ng)  u(g—ng)

SC(r—q)‘;u(r—nk)JFC(7“—(1)fsu(q—nk)

u(r) u(q) r u(r) r—ny u(q)
r—a\su(r —n r—qg\%/2u(q —n
= C( r q) (u(r) s + C( r q) (qu(q) k)

Plugging this into (2.39) and recalling (2.18) then gives
) r— N\ 20 r—g\©®
(Vv (1) = g(1)” < 207 () oo (1) + 202 () " (1)

<20 (") (o ()2 g (1)

r

We can finally substitute this bound back into (2.36]) and follow the same calculations as in
(2-37)-([2:38), with an extra factor (*-2)°, to obtain

=(k) 2<C —Ceklogk(r_q)6<i)2alfl<c _C6klogk<r—q>5/\(2a’fl)
1277z < Cre — N s Cre N .

By the same calculation as in (2.33)), we then have

SA (22 —1)
=51

E[E[] < o ()

Since § > 0 and o/ > 1/2, this gives the desired bound (2.25) for E[|Z:]"], provided [ € N is
chosen large enough. This completes the proof. O



THE CONTINUUM DISORDERED PINNING MODEL 17

2.3. PROOF OF THEOREM [2.4] We fix o € (1/2,1) and T € (0,00). By Remark [1.2]
and Lemma in the appendix, we can construct a renewal process 7 satisfying (|1.1)),
with L(n) — 1 as n — oo, such that condition (2.11) is satisfied. By Theorem for

this particular renewal process, the discrete partition functions (Zg;\f,hN (sN, tN))Ogsgth

converge in distribution as N — oo to the continuum family (Z g;gv’c(s, t))o <scpeps Viewed as

random variables in C([0,7]2,R). By Skorohod’s representation theorem [B99, Thm. 6.7], we
q 7w, : W,
can couple ( BN,hN)NeN and Zg,h ¢ so that, a.s., Z,Z’J;,h (sN,tN) converges to ZO‘ (s, 1)
uniformly on [0, T]S' We assume such a coupling from now on.
Property is readily checked from the Wiener chaos representation (2.3)). Alternatively,

one can observe that similar properties hold for the disordered pinning partition functions
(Zg;,h]\, (1, j))o <i<? which are preserved in the scaling limit.
We next prove (jiv), where we may assume 0 < s < u < t < T. Let us fix a typical

wc ZaWc

realization of (Z B by and under the above coupling. Let ay := |sN ], by :=

)NEN
|uN | and ¢y = [tN]. Recalling the definition of Z h - in ((1.21]) and summing on the index
k € N for which 7, < by < 7,41 and on the values z =Tk, ] = Tk+1, We obtain

Zgzihzv (aN, CN)P(CN —an € 7‘)

_ w,C ) (6 W’L_A(B )+h )ﬂl a
- Z Z Z N,hN(aN’ )Zﬁ hN(j’CN) e nT ey (2.40)

an<i<by by<j<cy
x P(i —ay € T)P(r = j —i)P(exy —j €7) e(ﬁN“j*A(ﬁN>+hN>1{j<cm.
Multiply both sides of (2.40) - by N'=% and let N — oo. Since P(n € 7)
Co Z?"W’C(s,t)
Zg;hN(aN, en)NT™°Pley —an € 7) el #

For the RHS of (2.40), note that (e(®nwi=ABN)+hN)) i1y converge uniformly to 1 as
N — oo (because max{w; : i < TN} = O(log N) by Borel-Cantelli estimates, cf. (1.3)).
Moreover, for i = |[xN| and j = |yN |, with s <z <u < y < t,

) W, W, .
ZEJ]\IChN(aNa L‘TNJ)ZWC (LyNJucN) N—> Zo‘[’il C(S,JI)Z;E C(ya t) umformly,

)

BnhN
while by P(r1 =n) = Ll(fl and P(n € 1) ~ -7, cf. and (| , we get
N2N'Y"P(|zN| —ay € 7)P(r; = LyNj - Lx )P(en — LyNJ €T)

o2 (2.41)
N (o= 8oy — o) (- )

for all s < z < u <y <t (the convergence is even uniform for x — s,y — x,t —y > ¢, for any
e > 0). Again by and with L(n) ~ 1, the LHS of is uniformly bounded by
a constant multiple of the RHS, which is integrable over = € (s,u) and y € (u,t). Therefore,
by a Riemann sum approximation, the RHS of , multiplied by N'~¢, converges to

Ca Z5; We (s, z) 1 Co Z3(y,1)
/ / B, dzdy,
(s,u) ye(ut

(z — 5)1 @ (y—a)te -yl
which establishes .
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We then turn to (fif), where we may restrict s,t € [0,T]. The fact that Z%’ WC( ,+) is a.s.
continuous and non-negative follows readily from Theorem . (recall that Z“’ & hy(67) =0,
cf. (L.21)). For the a.s. strict positivity, we apply (2.8) with u := (s+1)/2: since ZO‘ We s,
for any € > 0 restricting the integrals to z < s + ¢ and y > s — ¢ yields the lower bound

Co Z9VC(5,2) Z% (y, 1)

ZC};?V’C 1) > 1 —« // B.h Bih dedy. (2.42

g (2= (@ s)i-aly —m)Fra( gyia r - (242)
(s,(s+e)At), ye((t—e)Vs,t)

Since Zg;;f/’c(u, u) =1 for all uw > 0, cf. (2.3)), by continuity a.s. there is (a random) € > 0
such that Zg;i‘?/’c(u,v) > 0 for all u,v € [0,7] with 0 < v —u < e. Observing that both
s—x<eand y—t<ein (2.42) yields that a.s. Zg;gv’c(s,t) >0forall0<s<t<T.

Lastly we prove (fii). For any A > 0, recalling (2.3) and setting Wy =AY 2W a¢, the
change of variables ¢t — u := t/A yields the equality in distribution (jointly in s,t)

k
ZZVC(AS At):1+ / / IlibAsAt tl,u-»tk)H(Bthi"i'ildti)
=1

=1 As<ti<<ty<At

k
st 1+Z // P (Aur, . Aug) [[(AY2B AW, + Al duy).
=1

k=1 sy <o <up<t

Since P55 4, (Aua, ..., Aug) = ACTDEPTE (uy, ... uy), by ([24), it follows that

W, dlst W
Za C(A At) Zja 1(;25 Aah(s t)
Since W = (Wt)tzo is still a standard Brownian motion, the proof is completed. O

3. CHARACTERIZATION AND UNIVERSALITY OF THE CDPM

In this section we prove Theorems [T.3] and We recall that C is the space of all closed
subsets of R, and refer to Appendix |A| for some key facts on C-valued random variables (in
particular for the notion of restricted f.d.d., cf. §A.3). Let us summarize our setting:

e we have two independent sources of randomness: a renewal process 7 = (T3 )n>0
satisfying (1.1) and (1.7)), and an i.i.d. sequence w = (wy)n>1 satisfying (1.3);
e we fix T > 0 and consider the conditioned pinning model P37 5, defined in (1.9) and
(1.4), with the parameters § = By and h = hyy chosen as in (1.11])
Let us denote by Xy the rescaled set 7/N N[0, 7], cf. (1.2), under the law P;"V% e 1 WE

fix a realization of w, then X is a C-valued random variable (with respect to 7).

Our strategy to prove Theorems and is based on two main steps:
(1) first we define a suitable coupling of w with a standard Brownian motion W

(2) then we show that, for P-a.e. fized realization of (w, W), the restricted f.d.d. of Xy
converge weakly as N — oo to those given in the right hand side of (|1.22)).
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We can then apply Proposition , which guarantees that the densities in (|1.22]) are
a;Wie,
T,5,h’
furthermore, X converges in distribution on C toward X, as N — oo, for P-a.e. fized
realization of (w, ). This is nothing but Theorem in a strengthened form, with a.s.

convergence instead of convergence in distribution (thanks to the coupling). Theorem is
also proved, once we note that P WHC is the unique probability law on C satisfying conditions

and therein, because restricted f.d.d. characterize laws on C, cf. Proposition .
It only remains to prove points and .

By Theorem the family Zy := (Z/Z)JI:IC,hN (sN, tN))0<S<t<T of discrete partition func-
1.21]

the restricted f.d.d. of a C-valued random variable X,, whose law on C we denote by P

tions defined in ((1.21)), viewed as a C([0,T ]%,R)—Valued random variable, converges in
distribution to the continuum family Z := (Z?‘;YV’C

i (s,t))0<s<t<T as N — oo. Note that Zy

is a function of w ) = (wi,...,wn—1), while Z is a function of a standard Brownian
motion W = (W)¢>0. By an extension of Skorohod’s representation theorem [K97, Cor. 5.12],
we can couple the discrete environments (w(o x))ven and W on the same probability space,
so that Zny — Z a.s.. This completes point .

Coming to point , we prove the convergence of the restricted f.d.d. of Xy , i.e. the laws
of the vectors (g, (Xn),. .., 8¢, (Xn)) restricted on the event Aiff\.]..,tk defined in (A.8). Since
Xy = 7/NnNJ0,T] under the pinning law P‘;}%BN hy Welixk € Nand 0 <y <... <t <T,

as well as a continuous and bounded function F : R%* — R, and we have to show that

I =By | F (80 (T/N), 06, (7/N), - 1, (7/N), iy (7/N)) T A | ey
converges as N — oo to the integral of F' with respect to the density in (|1.22)), i.e.

W
Hf Ozgh (yuxz-&-l)
// F(:El,yla---amkayk)x aWc

0<z <ty <y <zo<ty B h (0 T)
<'”<zk<tk<yk<T (32)

y ﬁ Ca Tlfa
o @i —gi) (i — ) e | (T —yg) e

drdy,

where we set yg := 0, 41 := T and dz dy is a shorthand for da1dy; - - - dzgdys.
Denoting by P the law of the renewal process 7 N [0, N] conditioned to visit NV,

PS(-) :==P(rN[0,N] € -|Ner), (3.3)

the pinning law P‘]’JV(:'B , can be written as follows, cf. (1.4)), (1.9) and (1.21):

PNB’ ( ) — L 625:_11(60)71_A(6)+h)1{n67} . (34)

Pi(r) ~ Z55(0.N)

In particular, the law P?’Jifﬁh reduces to P%, for B = h = 0. In this special case, the
convergence Iy — I is shown in the proof of Proposition , cf. (A.15)) and the following
lines, exploiting the renewal decomposition (A.17)) for Iy. In the general case, with P;ﬁ, 8.1
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instead P55, we have a completely analogous decomposition, thanks to (3.4)):

1 b b
20 VNN D ISP D¢ S 5

0<a1<Nt1; Nt1<bi<a2<Nty Ntp_1<bip_1<ap,<Ntp Ntp<bp,<NT

k k w,C o
X { H PN (wa; +wp, ) =2A(Bn)+2hN } { [li=g Zn (bi, ait1) }
79 (0,NT)

i=1 BN hN

k
X [HN2 u(ai — bz‘_l)K(bi — az)] M
i=1

u([NT])

We stress that the difference with respect to is only given by the two terms in brackets
appearing in the middle line. The first term in brackets converges to 1 as N — 0o, because
maxo<n<nNT |wn| = O(log N) (as we already remarked in . When we set a; = Nux;
and b; = Ny;, the second term in brackets converges to its analogue in involving the
continuum partition functions, for P-a.e. fixed realization of (w, W) (thanks to our coupling),
and is uniformly bounded by some (random) constant, because the continuum partition
functions are a.s. continuous and strictly positive, cf. Theorem [2.4] - . Since the convergence
of (| - to is shown by a Riemann sum approximation, the convergence of (| . ) to
- follows 1mmed1ately, completing the proof of point (|2 . O

4. KEY PROPERTIES OF THE CDPM

In this section, we prove Theorems and The parameters o € (%, 1), T >0, 3 >0
and h € R are fixed throughout the section. We use in an essential way the continuum

partition functions (Zg;zv’c(s, t))0<s<t<T’ cf. Theorems [2.1{and and the characterization

of the CDPM quenched law P;;th in terms of restricted f.d.d., given in Theorem

Proof of Theorem Assume that h = 0, and recall definition ([1.13)) of the “reference

law” P77°. We will show at the end of the proof the following equality of two probability
measures on C:

w, W, ;
E[Z5)°0. 1) PE()] = PEC). (@.1)
Let us assume this for the moment.
By (4.1), if P7°(A) = 0 for some A C C, then P ;VC(A) = 0 for P-a.e. W (because

5,0

]E[P; ;VE)C()] is absolutely continuous with respect to P7°(-), proving Theorem [1.4] for h=0.

We now turn to the case h # 0. By Remark the continuum partition functions
(Zgjgv’c(s, t))ogsgth have a law that, for h #£ 0, is absolutely continuous with respect to

case h = 0, with Radon-Nikodym density frs ; (W) given in ([2.5). Since the restricted

f.d.d. of Pa;gv,ﬁc are expressed in terms of continuum partition functions, cf. (1.22)), the two

W

probability measures E[P;;V]:()] and E[f;, 5, (W) P;i ;VOC( )] on C have the same restricted

f.d.d. and hence are identical, by Proposition |A.6 . As a consequence, if E[Pa hC(A)] =0
for h = 0, the same is true also for h = 0, completing the proof of Theorem

Z2WC0,T) > 0 as. by Theorem. . ), hence E[PZ WC(A)] = 0. This shows that the law
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It remains to establish (4.1)). Note that its LHS is indeed a probability law on C, since
]E[Zg;gv’c(o, T)] = 1 by the Wiener-chaos expansion in (2.3) with h = 0. It suffices to show
that the LHS and RHS in . have the same restricted f.d.d., by Proposition m ., and

this follows immediately from relations (1.19)) and (1.22)), because E[Za “(yi,iy1)] = 1.

Lastly, we note that the a-stable regenerative set T a.s. has Hausdorﬁ dimension « (see
e.g. [B96, Thm. I11.15]), and the same holds a.s. under the conditioned measure P, which
then carries over to the quenched law P;g/}f of the CDPM, for a.e. realization of W. [

Proof of Theorem [L.5l Let us set

C07T = {K €eC:0,TeKC [O,T]}.

a;We
ﬁ 0
o-algebra F. Recalling the definition of the maps g;,d;, for n € N let F, be the

o-algebra on Cor generated by gir and d T for 1 < i < 2" — 1. Then (Fp)pen is a

By construction, P and P are probability measures on Cp 7, equipped with the Borel

filtration on Cp 7 that generates the Borel o- algebra F on Co,r, by Lemma [A.2) -

Let fWV : Cor — [0,00] be the Radon-Nikodym derivative of P ?/h with respect to P7°
on (Cor,Fn). If T is a Cy r-valued random variable with law P, then (fYV(7))nen is a

% ;V; is singular w.r.t. P7°

if and only if f/V(7) — 0 a.s.. To prove Theorem [1.5 . it suffices to show that, under the
joint law of 7 and W,

non-negative martingale adapted to the filtration (F,,),en, and P

fV(r) —— 0  in probability, (4.2)

n—0o0
because we already know that the martingale limit lim,, o £}V (T) exists a.s..
We next identify V(7). Without loss of generality, assume 7 = 1. To remove duplicates
among the random variables g i ,d_i , for 1 <7 <2" — 1, let us set
2n 2n

L(m):={2<i<2"—1: 7N (5, 5] # 0},
ap;(T) :==min {7 N []2;”1, 2]7]} . bpy(T) i=max {TN 2n1’ 2];1}} )
Then we claim that the following explicit expression for £V (7) holds:

e (rugeny 255 (an (1), bo (7))

() = T (4.3)
Zﬁh (0,1)
In order to prove it, first note that fV(7) must necessarily be a function of the vector
Va(r) = (207 (At ()81 (7)) gy dio (7)) (4.4)

because the variables g i (1), d s (7) for i & I,,(7) are just repetitions of those in Vn('r)ﬂ
27L 27L

Then observe that V,,(7) can be rewritten equivalently as

Valr) = (g, (1), a1, (1), (g4 ()45 (1) ;e ) -

2n
because if j < j' are consecutive points in I,,(7) then d ( ) = d (7). Finally, note that
on the event I,,(T) = J, defining ¢ := 5 and {to,... ,tk} := {3k }jes, the density of the

TThe presence of g (t) and d (7) in (4.4)) is due to the fact that 0 and T are accumulation points
of 7, P{*°(dr)-a.s., hence 7N (0, 7] # 0 and 7 N (1 — 55, 1] # 0.
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random vector V,,(7) (w.r.t. Lebesgue measure on R?¥) under Pl' is given by (L.19), while

under PO‘ Wf: is given by - then ) follows comparing and (| -

Since Zg gVC(O, 1) > 0 a.s. by Theorem [2.4] relation will follow by showing that

P{“-as., E[(fTI:V(T)Zg;S/’C(O, 1))’] — 0 for some v € (0,1). (4.5)

n—oo

We can reduce to the case h =0 using Remark cf. in particular , writing
E[(£7 (1255 0.1)"] = E[f, 5, (W) (£ (1250, 1))]

<E[f, 5, W)7T] 7 E[(f) (1) 255(0,1))"] 7

Choosing p € (1,00) close to 1, it suffices to prove (4.5) in the special case h = 0.

Henceforth we ﬁx h = 0. For a given realization of 7, we note that the factors in the

numerator of (| are independent, by Theorem . Therefore
E[(f (v ) zg 00 1= II E[(Z5) (@ns(r)buy(1)]

Jje{1}Ul, (7)u{2"} (4.6)
o a;Wic ¥ :
iy 11 ELZ5, im0 1))

je{1}ul, (7)u{2n}

where we set f3, j(r) = B(by, () — an;(1))*71/2 and we used the translation invariance
and scaling property of ZO‘ WC( ,-) established in Theorem . . (i)

We claim that for any v 6 (0, %) there exists ¢ = ¢(y) > 0 such that for 3 > 0 sufficiently
small,
W, A —cB?
E[(Z5,°0.1)] <1-cp? < (4.7)
Substituting this bound into (4.6]) then gives
logE[(fy (1) 2557°(0,1))"] < =eB* D" (bug(r) = ang(r))** "
JeE{1}Ul, (T)u{2"}
The RHS diverges P{"°(dT)-a.s. as n — oo, because {[an;(T), bn;(T)]}jefi1un,uq2ny is a
covering of 7 with balls of diameter at most 27", and 7 a.s. has Hausdorff dimension «,
which is strictly larger than 2o — 1 for a € ( %, 1). The divergence follows from the definition

of the Hausdorff dimension (see e.g. [B96, Section III.5].
Lastly we prove (4.7)). By (2.3)), we have the representation

o0
Z;WC(O D=1+ Y,
0 k=1

where Y}, is a random variable in the k-th order Wiener chaos expansion, and we recall that
the series converges in L? for all 3 > 0. By Taylor expansion, there exist £, C' > 0 such that

(1+2)7" <14 vz - Ca? for all |z| < e.

For later convenience, let us define

o0 [e.9]

k=1 =2
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We then obtain
a;Wie o
E[(25,°(0,1)"] = E[(1+85) s, 1<ep] + E[(1+85) 115, 5)]
< 1+E[Sgl s, <] — OE[SE]IHSB‘SE}] +E[1+ S3"P(|Sg] > €)'
=1- CE[S] + { = 1E[Sgl s, 5] + CEIS s, 5] + P(IS5] > €)' 7}, (4.8)
having used the fact that E[S;] = 0 in the last line. Observe that

~

E[S2 =Y F*EIVZ] =BV +0(3Y)  asflo,
k=1

hence the first two terms in (4.8)) give the correct asymptotic behavior, cf. (4.7]). It remains
to show that the three terms in brackets are o(3?). Note that

E[T2 = Y PEN?] = 0(3),

k=2
and moreover E[Y}}] < (const.)E[Y?]? < oo, by the hyper-contractivity of Wiener chaos
expansions (see e.g. [J97, Thm. 3.50]). Writing S; = Y1 + T, we obtain

P(\S5] > &) < P(BYi| > 3e) + P(IT3| > 5e) < (2)'E[Y{)3" + (2)°E[TH) = O(3Y).
Since ]E[S;] = O($3?), we can also write
E[SgLys, >e]| < EISIV2B(IS;] > €)/2 = 0(5°),
and analogously
E[S3Lys;5e)] < 2E[(BY1)* Lyjs,5e)] + 2E[TE Lyis, 541
< PRIV RS, > o) /2 + 2BTZ] = O(F).

The terms in bracket in ([{.8) are thus O(3%) + O(3*) + O(3*1=), which is o(32) provided
we choose 4(1 —7) > 2, ie. v < % This concludes the proof of (4.5) and Theorem O

APPENDIX A. RANDOM CLOSED SUBSETS OF R

In this section, we give a self-contained account of the theoretical background needed to
study random closed sets of R.

A.1. CLOSED SUBSETS OF R. We denote by C the class of all closed subsets of R
(including the empty set):
C:={C CR: Cisclosed}. (A1)

We equip the set C with the so-called Fell-Matheron topology, built as follows.
We first compactify R by defining R := R U {£oc}, equipped with the metric

d(z,y) = | arctan(y) — arctan(z)| for all z,y € R. (A.2)
The Hausdorff distance of two compact non-empty subsets K, K’ C R is defined by

du(K, K') := max{ sulr; d(z, K", Sug d(a', K)}, (A.3)
€ ' eK’
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where d(a, B) := infycpg d(a,b). (Note that dy (K, K') < ¢ if and only if for each z € K
there is 2’ € K’ with d(x,2’) < e, and vice versa switching the roles of K and K'.)

Coming back to C, one can identify a closed subset C' C R with the compact non-empty
subset C'U {#o0o0} C R. This allows to define a metric dgy on C:

dFM(C, Cl) = dH(C U {:i:OO}, C'u {:l:OO}), C, C'ecC. (A4)

The topology induced by the distance dpy on C is called the Fell-Matheron topology [MT75),
Prop. 1-4-4 and Remark on p.14]. Since the metric space (C, dpm) is compact (hence separable
and complete), cf. [M75, Th. 1-2-1], it follows that C is a Polish space.

Remark A.1. By (A.3)-(A.4)), C,, — C in C if and only if the following conditions hold:
e for every open set G C R with GNC # (), one has G N C,, # ) for large n;
e for every compact set K C R with K NC = (), one has K N C,, = () for large n.

We also observe that the Fell-Matheron topology on closed subsets can be studied for more
general topological space, together with the topology induced by the Hausdorff metric (A.3)
on compact non-empty subsets (called myope topology): for more details, we refer to [MT75],
IM05, Appendixes B and C| and [SSS14, Appendix B].

A.2. FINITE-DIMENSIONAL DISTRIBUTIONS. The space C is naturally equipped with
the Borel o-algebra B(C) generated by the open sets. By random closed subset of R we mean
any C-valued random variable X. We are going to characterize the law of X, which is a
probability measure on C, in terms of suitable finite-dimensional distributions, which provide
useful criteria for convergence in distribution.

To every element C' € C we associate two non-decreasing and right-continuous functions
t 5 g1(C) and t > d4(C), defined for t € R with values in R as follows:

gi(C) :=sup{z: z€C, z <t} d(C):=inf{z: 2 €C, z >t} (A.5)

(where sup ) := —oo and inf () := +00). Note that either function determines the set C,
because ¢t € C' if and only if g,(C) =t if and only if d;—(C) = t. It is therefore natural to
describe a random closed set X in terms of the random functions ¢ — g¢(X) and ¢ — d¢(X).

For convenience, we state results for both g and d, even if one could focus only on one of
the two. We start with some basic properties of the maps g¢(-) and dy(-).

Lemma A.2. For everyt € R, consider gi(-) and d;(-) as maps from C to R.

(i) These maps are measurable with respect to the Borel o-algebra B(C), and they generate
it as the index t ranges in a dense set T C R, i.e. B(C) = o((gt)te7) = 0((dt)teT)-

(ii) These maps are not continuous on C. In fact, the map g(-) is continuous at C' € C if
and only if the function g.(C) is continuous at t. The same holds for dy(-).

Given a C-valued random variable X, we call g-finite-dimensional distributions (g-f.d.d.)
of X the laws of the random vectors (g¢, (X),...,g:. (X)), for k € N and ¢1,...,t; € R.
Analogously, we call d-f.d.d. the laws of the random vectors (d¢, (X), ..., ds, (X)). We simply
write f.d.d. to mean either g-f.d.d. or d-f.d.d., or both, when no confusion arises.

Since X is determined by the functions ¢ — g;(X) and ¢ — d;(X), it is not surprising
that the law of X on C is uniquely determined by its f.d.d., and that criteria for convergence
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in distribution X,, = X of C-valued random variables can be given in terms of f.d.d.. Some
care is needed, however, because the maps g;(-) and d;(-) are not continuous on C. For this
reason, given a C-valued random variable X, we denote by Zg(X) the subset of those t € R
for which the function s — gs(X) is continuous at s = ¢ with probability one:

Te(X) = {t e R: P(g—(X) = g(X)) = 1}. (A.6)
One defines Z4(X) analogously. We then have the following result.

Proposition A.3 (Characterization and convergence via f.d.d.). Let (X,,)pen, X
be C-valued random variables.

(i) The set Ig(X) is cocountable, i.e. R\ Zg(X) is at most countable.
(ii) The law of X is determined by its g-f.d.d. with indices ti,...,ty in a dense set T C R.

(iii) Assume that X, = X. Then the g-f.d.d. of X, with indices in the cocountable set
T (X) converge weakly to the g-f.d.d. of X: for all k € N and t1,. ..t € Ig(X),

(gtl (Xn)v <o By, (Xn)) = (gt1 (X)7 w8y (X))

(iv) Assume that the g-f.d.d. of X,, with indices in a set T C R with full Lebesque measure

converge weakly: for k € N, t1,...,t; € T there are measures fis, .. 4, on R” such that

(gtl (Xn)v <o Bty (Xn)) = Ky, b

Then there is a C-valued random variable X such that X,, = X. In particular, the
g-f.d.d. of X with indices in the set T NLg(X) are given by pu, . 1, -

The same conclusions hold replacing g by d.

Remark A.4. In Proposition it is sufficient that 7 has uncountably many points
in every non-empty open interval (a,b) C R, as the proof shows. In fact, arguing as in [EK86),
Th. 7.8 in Ch. 3|, it is even enough that 7 is dense in R (in which case the f.d.d. of X must
be recovered from ..+, by a limiting procedure, since 7 N Zg(X) could be empty).

Remark A.5. The map C — (g:(C))icr allows one to identify C with a class of functions
Dy that can be explicitly described:

Do:={f:R—->RU{—o0}: f(t) <tand f(t+) = f(t), Vt € R;

if f(t) < wu for some u < t, then f(u) = f(t)}. (A7)

The functions in Dy are non-decreasing and right-continuous, hence cadlag, and it turns out
that the Fell-Matheron topology on C corresponds to the Skorokhod topology on Dy. As a
matter of fact, given the structure of Dy, convergence f,, — f in the Skorokhod topology is
equivalent to pointwise convergence f,,(x) — f(z) at all continuity points z of f.

We do not prove these facts, because we do not use them directly. However, as the reader
might have noticed, the key results of this section are translations of analogous results for
the Skorokhod topology, cf. [B99, [EKS86, [IS03].

A.3. RESTRICTED FINITE-DIMENSIONAL DISTRIBUTIONS. It turns out that, in order
to describe the f.d.d. of a C-valued random variable X, say the law of (g, (X),..., g, (X)),
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with —oo <t < ... <t < 400, it is sufficient to focus on the event
At)i St T {X N (t1,t2] # 0, XN (ta,ts3] # 0, ..., Xn (tg—1,tr] # @} (A.8)

We thus define the restricted g-f.d.d. of X as the laws of the vectors (g, (X), ..., g (X))
restricted on the event Aff .t~ T'hese are sub-probabilities, i.e. measures with total mass
P(At)f“_.’tk) < 1, and we equip them with the usual topology of weak convergence with

respect to bounded and continuous functions. One defines analogously the restricted d-f.d.d.
of X. We can then rephrase Proposition as follows.

Proposition A.6 (Characterization and convergence via restricted f.d.d.). Let
(Xn)nen, X be C-valued random variables.

(i) The law of X is determined by its restricted g-f.d.d. with indices in a dense set T C R.

(ii) Assume that X, = X. Then the restricted g-f.d.d. of Xy, with indices in the cocountable
set Ig(X) NZq(X) converge weakly to those of X.

(iii) Assume that the restricted g-f.d.d. of X,, with indices in a set T C R with full Lebesgue

—k .
measure converge weakly to some measures ureSt ¢, on R™. Then there is a C-valued

random vartable X such that X,, = X. In partzcular the restricted g-f.d.d. of X with
indices in the set T N Tg(X) NZa(X) are given by pi®™

ot

The same conclusions hold replacing g by d.

Remark A.7. Note that X N (s,t] # () if and only if s < ds(X) < g¢(X) < t. Recalling the

definition (1.18)) of the set Rgg,)th.-.,tk,tkﬂv the event A7 . in (A.8) can be rewritten as
AY = {0 (0,30 (X), .. g (X). 4 (X)) € REL o (A.9)

Also note that, in case X C [a, b] a.s., it is enough to specify the restricted f.d.d. with indices
t; € [a,b], using correspondingly ngt) _t,,.p instead of 7?,( ) oo 1 (A9).

—00,t1,.

A.4. THE o-STABLE REGENERATIVE SET. For each a € (0,1) there is a universal
random closed set T of [0, 00), called the a-stable regenerative set. Its probability law P
on C is then characterized by the following restricted f.d.d. densities: for all £k € N and
0<t; <...<tp < oo, setting yg := 0 and C, .= asin(ra)

iy )

Po‘(gtl(T) €dxy, d¢, (1) € dyt, ..., g, (T) € day, dy (T) € dyk)
dzidyr - dzg dys
k o (A.10)
= fg,...,tk(whyla"‘7$kayk = H 2

i (@i =y (g — ) e

restricting (1,y1,. .., Tk, Yr) in the set 7?,(() t)1 ..... teoo © R?* of. (A9)-(T19).

The a-stable regenerative set can be characterized in many ways (e.g., as the zero level
set of a Bessel process of dimension § := 2(1 — «) € (0,2) [RY99], or as the closure of the
range of the a-stable subordinator [FFMS5]). One of the most expressive is to view it as the
universal scaling limit of discrete renewal processes: for any renewal process 7 := (T )nen,
on Ny satisfying , the rescaled random set 7/N, cf. , viewed as a C-valued random
variable, converges in distribution as N — oo toward the a-stable regenerative set.
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This can be shown using the general theory of regenerative sets, cf. [FFMS85]|, but it is
instructive to prove it directly, as an application of Proposition (which shows, as a
by-product, that the restricted f.d.d. define indeed a probability law on C). We spell
this out in the conditioned case, which is more directly linked to our main results, but the
proof for the unconditioned case is analogous (and actually simpler).

Proposition A.8 (Characterization and universality of a-stable regenerative set).
Let T := (Tn)nen, be a renewal process on Ng satisfying , for some a € (0,1). For
fized T > 0, the rescaled random set 7/N N [0,T], cf. (1.2), conditioned on |TN]| € T,
converges in distribution as N — 0o to the probability law Pgﬁc of the a-stable regenerative
set 7N [0,T] conditioned on T € T, cf. . This law is characterized by the following

restricted f.d.d.: for allk € N and 0 < t; < --- <ty <T, and for (x1,y1,..., Tk, Y) in the

set R(()’ft)lwwtk,T C R, ¢f (A9) and (T.15),
P (g, (1) € day, de, (7) € dyr, ..., g1, (T) € dwy, dy, (7) € dyp)
e N Tl-o (A.11)
= frh @y T k) =1 (@Y, T Yk) T —g o’

where £, , () are the f.d.d. densities of the a-stable regenerative set, cf. (A.10).

A.5. PROOFS. We now give the proofs of the results stated in the previous subsections.

Proof of Lemma [A.2l We start proving part (ii). Fix C € C and ¢ € R and recall
Remark If the function g.(C) is not continuous at ¢, i.e. g (C) < g¢(C), defining
C, =C+ % (i.e. translating C' to the right by %) one has C,, - C as n — oo, but
g:(Cp) = gtfi(C’) +1 — g (C) # g(C). Thus g(-) is not continuous at C.

Assume now that g.(C') is continuous at t. We set s := g;(C') and distinguish two cases.

o If s <t thent ¢ C by . Assume for simplicity that s > —oo (the case s = —c0
is analogous). For € > 0 small one has (s —e,s +¢) N C # ), while [s +¢,t]NC = 0.
If C,, » C, then (s —e,s+e)NCy, # 0 and [s + &,¢t] N C,, = O for large n, hence
gt(Cp) € (s —e,s+ ¢). This shows that g,(Cy,) — g:(C), i.e., g(+) is continuous at C.

o If s =t since g;_(C) = g(C) = t, for every € > 0 one has (t —e,t) NC # 0. If
Cy, — C, then (t —e,t) N C, # 0 for large n, hence g(C,) € (t —¢,t). This shows that
g:(Cr) — g¢(C), that is, g¢(-) is continuous at C.

Thus g¢(-) is continuous at C' € C if and only if g.(C) is continuous at ¢, proving part ({i).

We now turn to part (i). Defining Gy, (C) := 1 tt+€ max{gs(C), —m} ds, we can write
gt(C) = limpy, 00 limy, 00 Gy 1/, (C) for all t € R and C' € C. The measurability of g;(:)
will follow if we show that Gy (-) is continuous, and hence measurable. If C;, — C' in
C, we know that gs(C,) — gs<(C) at continuity points s of the non-decreasing function
g.(C), hence for Lebesgue a.e. s € R. Since gs(C) < s, dominated convergence yields
Gime(Cr) = Gme(C) as n — o0, i.e. the function Gy, o(-) is continuous on C.

Finally, setting B’ := o((gt)ie7), where T C R is a fixed dense set, the measurability of
the maps g;(+) yields B’ C B(C). If we exhibit measurable maps 1, : (C,B") — (C,B(C))
such that C' = lim;,,_,o0 ¥, (C) in C, for all C' € C, it follows that the identity map ¢ (C) := C
is measurable from (C,B’) to (C,B(C)), as the pointwise limit of 1, hence B(C) C B'.
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Extracting a countable dense set {t; }ieny C T, we define ¢, (C) := {g¢, (C), ..., g, (C)}NR,
so that ¢, (C) is a finite subset of R and 1,,(C) — C in C. Since g:(-) is a measurable map
from (C,B') to R and (x1,...,7,) — {z1,...,2;} NR is a continuous, hence measurable,

map from R" to (C,B(C)), it follows that 1, : (C,B") — (C,B(C)) is measurable. O

Proof of Proposition Since the path t — g;(X) is increasing and right-continuous,
its discontinuity points ¢, at which g;(X) # g;—(X), are at most countably many, a.s.. The
corresponding fact that P(g;(X) # g— (X)) > 0 is possible for at most countably many ¢
follows by a classilcal argument, see e.g. [B99, Section 13|. This proves part .

The proof of part is an easy consequence of Lemma A generator for the Borel
o-algebra B(C) is given by sets of the form {C € C: g, (C) € Ay,...,g,(C) € A}, for
keN, ty,...,t,, €T and Ay, ..., Ay Borel subsets of B. Note that such sets are a m-system,
i.e. they are closed under finite intersections. It is then a standard result that any probability
on (C,B(C)) — in particular, the distribution of any C-valued random variable X — is
characterized by its values on such sets, i.e. by its finite-dimensional distributions.

We now turn to part . If X,, = X on C, by Skorokhod’s Representation Theorem
[B99, Th. 6.7] we can couple X,, and X so that a.s. X,, = X in C. If ¢, ...t} € Zg(X), the
maps g, (-) are a.s. continuous at X, by Lemma , hence one has the a.s. convergence
(gt (Xn)s -84 (X5)) = (86, (X), ..., 8, (X)), which implies weak convergence of the f.d.d..

We finally prove part . Since C is a compact Polish space, every sequence (X, )nen
of C-valued random variables is tight, and hence relatively compact for the topology of
convergence in distribution [B99 Th. 2.7|. We can then extract a subsequence X, converging
in distribution to some C-valued random variable X. To show that the whole sequence
X,, converges to X, by [B99, Th. 2.6] it is enough to show that for any other converging
subsequence X,,; = X', the random variables X and X’ have the same distribution.

By assumption, the f.d.d. of X,, with indices t1,...,t; in a set 7 C R with full Lebesgue
measure converge to jis, .. ¢ . Since X, = X, the f.d.d. of X are given by p,, ., for indices
in T NZg(X), by part ; analogously, the f.d.d. of X’ are given by p, .4, for indices in
T NZg(X'). Thus X and X’ have the same f.d.d. with indices in T N Zg(X) N Zg(X'). Since
this set is dense, X and X’ have the same distribution, by Proposition . (I

Proof of Proposition We start proving part . Fix a C-valued random variable X
and let gy, 4 (dz1,...,dxy) be the g-f.d.d. of X, i.e. the law on R” of (g (X), ..., 8. (X)).
Analogously, let pf®t |, (dz1,...,dxy) be the restricted g-f.d.d. of X, cf. (A.8)-(A.9). Since
X N (s,t] # 0 if and only if g((X) € (s,t], the restricted f.d.d. pf , is just the f.d.d.

[it,,... 1, Testricted on the subset [—oo,t1] x (t1,t2] X ... X (tk—1, ts]:

k

k

st (o, dag) = e (Ao, de) [ Lmeq gy (A.12)
=2

To prove that the f.d.d. can be recovered from the restricted f.d.d., we show that g, ¢ (+)

can be written as a mixture of 1}**(+), as I ranges in the subsets of {¢1,...,t;}. For k=1

there is nothing to prove, since us, = ,ugfs‘“, so we assume k > 2 henceforth. We associate to

X the (possibly empty) subset Z(X) C {1,...,k — 1} defined by
B(X)={je{l,....k—1}: XN (t,tjp] #0}.
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Performing a decomposition over the possible values of Z(X), we can write
pr, (e, dag) = > Plgy (X) € dan, .., g, (X) € day, B(X) = B). (A.13)
BC{2,...,k}

It remains to express each term in the right hand side in terms of restricted f.d.d..
We first consider the case B = (). On the event {#(X) = 0} = {X N (t1,t;] = 0} we have

g, (X) =+ =g;, (X) <t Recalling that p; = pj**, we can write
P(gi, (X) € day, ..., g (X) € day, B(X) =0)
k—1 k—1
= P(g, (X) € drg) Ty <oy H Oz, (dai) = pi(dag) Lig<iy H Oy (dazy),
i=1 =1

and this expression depends only on the restricted f.d.d..

If B # 0, we can write B = {j1,...,jet with1 </ <k—land1<j; <...<jp<k—1.
Let us also set jo := 0 and jg1 := k. On the event {# = B}, we have g¢;, ., (X) =
g, (X)) =...=g (X) € (), 1:tj,_ 1+1], for every n =1,... £+ 1, therefore

P(g, (X) e day, ..., g, (X) € dog, B(X) = {j1,...,Je})

= P( m {gt ) € dzj, ) { H ]l{mjne(tjnptjn1+l]}< H Ozj,, (dxm)> }’

n=1 m=jn—1+1
where we set (g, -] := [—00, -] and the product over m equals one when j, — j,—1 = 1. The
first term in the right hand side of (A.14) is the f.d.d. p; ... b (dwjy,...,dx;,, ). However,
by (A.12 - this coincides with the restmcted fdd. it o (dwyy,...,dxj,, ), because each

Ligseibipgy
variable x;j, is restricted on (¢;,_,,t;,_,+1] C (¢j,_,,t;,.]. Part () is thus proved.

For part (i . we proceed as in the proof of Proposition |A.3] m . If X, = X on C, we
couple X,, and X so that a.s. X;, = X in C, by Skorokhod’s Representation Theorem. On
the event that g.(X) is continuous at ¢, if X N (s,¢] # 0 then also X N (s,t) # 0, which
implies X, N (s,t) # 0 for large n (cf. Remark [A.]). Analogously, on the event that d.(X) is
continuous at s, if X N (s,¢] = 0 then also X N [s,t] = (), which implies X,, N [s,t] = 0 for
large n. Therefore, if t1,...,t; € Zg(X)NZa(X) and f R" = R is bounded and continuous,

f(gtl (Xn)v <o Bl (Xn))]l{Xnﬁ(ti,l,ti];é@, Vi=2,...,k}
% f(gtl(X)7 <oy Bty (X))]I{Xﬂ(ti,hti};é@, Vi=2,...,k}"

Taking expectations of both sides, dominated convergence shows that the restricted f.d.d. of
X, with indices in Zg(X) NZg(X) converge weakly toward the restricted f.d.d. of X.

Finally, the proof of part is analogous to that of Proposition . Any sequence
Xy, of C-valued random variable is tight, hence it suffices to show that if X, , Xn; are
subsequences converging in distribtion to X, X’ respectively, then X and X’ have the same
law. Since the restricted g-f.d.d. of X,, with indices in 7 converge, X and X’ have the same
restricted g-f.d.d. with indexes in the dense set T N Zg(X) NZq(X) N Zg(X') N Za(X'), by
part . It follows by part that X and X’ have the same law. O

Proof of Proposition By Proposition (i), it is enough to prove the convergence
of restricted f.d.d.: forall k € N, 0 < t; < ... < tx < T and for every bounded and continuous
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function F : R?* — R, recalling (A.§)-(A.9) and (3.3)), we show that the integral
Iy i= By [F (g (7/N), duy (1/N), - 1, (7/N), oy (7/N)) oy t ] (A.15)

£l 5o &

converges as N — oo to the integral of F' with respect to the density f%f;l o, D (A.11)), i.e.

1= // F(xhylv"wa:kayk)

0<z <t1 <y <zo<ty

<ei<m <tp<yp<T (A.16)

A
Ca Tl—oc
X
[H (@i = yim)' (s — @) | (T —yp)'~

where yg := 0 and dz dy is a shorthand for dzdy; - - - dzpdys.
Recall that u(i) := P(i € 7) and K (i) := P(11 = 7). A renewal decomposition yields

1 b b
N SO e S8 (k)

0<a1<Nt1 Nt1<bi<a2<Nta Ntp_1<brp_1<ap<Ntr Ntp<bp<NT

—dxzdy,

k
X [H N?u(a; — bi-1) K (b; — ai)] u(LNT] — bi)
i=1

u([NT])
(A.17)

ﬁ (which cancels with the product of the N? inside the square

brackets) to make I appear as a Riemann sum. Setting z; = a;/N, y; = b;/N for 1 <i <k,
the summand converges pointwise to the integrand in (A.16)), since by (1.1)) and (2.10))
L(Nz) Co
) Nzl|) ~ N — .
wore N~ s ayre s N e
To conclude that Iy converges to the integral I in (A.16]), we provide a suitable domination.
By Potter bounds [BGT87, Theorem 1.5.6], for every € > 0 there is a constant D, such that
L(m)/L(¢) < D.max{(m/l)¢, (¢/m)¢} for all £,m € N. Since (y; —z;) < T, (x; —yi—1) < T
and max{a, 8} < af for o, 5 > 1, we can write
L(bi — a;) (yi — )" (2 — yz’—l)s} < D_T*
L(a; = bi-1) (v —yi-1)*" (yi — x)* (@i — yi-1)*(yi — 23)°
L(|NT T¢
(INT) ) |
L(INT] — bk) (T — yk)®
It follows that, for every € > 0, the summand in Iy is bounded uniformly in N by
k

where we write the factor

Vz>0: K(|Nz]) ~

< D.max {

1

C(T’ 6) (T _ yk)l—a-i-s :

1
A.18
il;[l (i — yim1) ot (y; — @) HHote ( )

It remains to show that, if we choose € > 0 sufficiently small, this function has finite
integral over the domain of integration in (A.16]). Let us set 1 := min;—; _x4+1(t; —t;—1) and
0 i=x; —y;—1 fori=1,...k+1, Sii=y;—m fori=1,...k,

where t) = yo := 0 and zj41 = tg41 := T. Each of the quantities d;, §; can be smaller or
larger than /3, and we split the integral of (A.18)) accordingly, as a sum of 22! terms.
Note that if §; < /3, either 0/_; or 0] must exceed 1/3 (because z;—1 < t;—1 < t; < y; and
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ti —ti—1 > n). Whenever any d; or ¢, exceeds 7/3, we replace them by 1/3, getting an upper
bound. This yields a factorization into a product of just four kind of basic integrals, i.e.

‘ / dyi—1 dx; dy; dx;41
(T = Y1) 70T (g — @) 1FOTE (2540 — y) 1m0t

ei—yi_1<3, vi—2;<3, vip1-v;<3

Yi—1 <1i<ti<yi<zi+1

and the analogous ones without the integration over y; 1 and/or x;41. The finiteness of such
integrals is easily checked if € > 0 is small (so that 1 —a+e<land l+a+e<2). O

APPENDIX B. RENEWAL ESTIMATES

In this section we show that assumption ([1.7)) holds true for renewal processes satisfying
(1.1)), under either of the following assumptions:

e o > 1 (in particular, the renewal process has finite mean);
e the renewal process is generated by a Bessel-like Markov chain, in the spirit of [A11].

Actually, it can be shown that condition is satisfied in much greater generality, e.g.
when one has an analogue of (1.7), but with u(-) replaced by the renewal kernel K (-). This
renewal-theoretic framework falls out of the scope of the present work and will be treated
elsewhere.

Let us, now, verify in the two cases, mentioned above. Note that the precise value of
€ > 0 therein is immaterial: if e'n < ¢ < en for 0 < &’ < ¢, relation is always satisfied
(with § = 1), as it follows by (2.10). We then set £ = % for simplicity and rewrite as

u(n +£)

Lemma B.1. Let 7 be a non-terminating renewal process satisfying (L.1)), with oo > 1. Then
(B.1) holds true.

Proof. In the case a > 1, by (L.1)) we have E[r]] < oo for some 1 > 1. We can then apply
the following result of Rogozin |[R73]:

19
IC, ny € (0,00), § € (0,1] : —1‘§C<€> Yn>mng, 0<£< (B.1)

n

=3

u(n) =P(ner)= E[lrl] + E[71'1]2 kzn;LlP(Tl > k) + Ry,

where R,, = o(n=2"=1) if 5 € (1,2), and R,, = o(n™") if n > 2, as n — co. Note that, for
any o/ € (1,a), by (1.1) we can choose C such that for all k € Ny
o0 oo
L(n) C C’
P<Tl>k>zzn1+a§§:m§ﬁ-
n=k+1 n=k+1
It follows that for n € N large enough and 0 </ < %

n+¢

u(n) = u(n + ) ! :
u(n) ‘ = C<kzn;s-1P(Tl s n2(=1) * (n+ 5)2(771)>

This establishes (B.1]) with § =1 A (2 — 2). O

u(n+4)
u(n)

_1‘:
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Lemma B.2. Let 7 be a non-terminating renewal process satisfying (1.1)), with oo € (0,1),
such that 21 has the same distribution as the first return to zero of a nearest-neighbor

Markov chain on N with £1 increments (cf. Remark[1.4). Then (B.1)) holds true.

Proof. Let X and Y be two copies of such a Markov chain, starting at the origin at times
—2¢ and 0 respectively, so that

u(n +¢) = P(Xs, =0) and u(n) = P(Ya, =0).

(Although X, is defined for n > —2¢, we only look at it for n > 0.) We can couple X and Y
such that they are independent until they meet, at which time they coalesce. Since X and
Y are nearest neighbor walks, X5, = 0 implies Y5, = 0, and

0 < P(Yan = 0) — P(Xaq = 0) = u(n) — u(n +0)
=P(Yon =0 # Xon) = P(Yan =0, X, £0 Y t € 0,2n])
/—1

< P(Yan = O)P(Xs 20V £ € [0,20]) < u(m) S u(k)P(r1 > n+0— k)
k=0

T
L

< u(n)P(r >n) u(k),
0

=
Il

where by the properties of regularly varying functions, see [BGT87, Prop. 1.5.8 & 1.5.10],

. L(k) Ln
Z (k) _L(n)

P(ri >n) = it ™ oo as n — oo,
k=n+1
(B.2)
5 u(k) = 5 Call +oll)) | Cat® as { — oo
B L(k)kl- aL(l) .
k=0 k=0

Observe that, for every ¢’ > 0 there exists ng < oo such that L(n)/L(f) < (n/f)¢ for n > ng
and ¢ < %, by Potter bounds [BGT87, Theorem 1.5.6], hence

ol () e ()

and therefore (B.1)) holds true for any § < a. O

APPENDIX C. AN INTEGRAL ESTIMATE
Lemma C.1. Let x € [0,1). Then there exist Cy,Co > 0 such that for all k € N,

- dty —Coklogh
< 2R 108 R 1
/ / - tk—tk 1) (1 —tg)x Cre (€

O<t1<---<trp<1

Furthermore, for any v € (0,1) and k1, ke € Ng := NU {0} with k :=k; + ky > 1,

' / tx(t itl)x . d?i t )X < Cle—Cgklogk v(lfx)kl(l _ U)(lfx)kz‘ (02)
1\2—0 e — Uk

0<ty <oty <v
v<tg) 41 <<t <l
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Proof. By the definition of the Dirichlet distribution
/ / dtl . -dtk . (P(l — X))kJrl
(b — e )X(1 = )X T((k+1)(1—x))
0<ty<-<tp<l

The bound then follows from the properties of the gamma function I'(-).

If k1 = 0, then can be obtained from noting that 1/tf < (1 —v)X/(t; — v)X
and performing a change of variable. The same applies to the case ko = 0. If k1, ks > 1, then
denoting the integral in by A, we have

) / dty - - dg, 1k,
1 (t2 = t1)X - (1 = gy gy )X

0<ty <~-tk1 <v
U<tk1+1<”'<tk1+k2 <1

ditg, dtr, +1 E1(1—x)—1 k2 (1—x)—1
= —— Ap 1t X Ay _1(1 — ik +1) 2(1=x)
t — )X 1 k1 2 1
O<tk1 <v ( kit kl)

’U<tk1+1<1

ki(l=x)-1,1
< 0%6—02(k1—1)log(k1—1)6—02(k2—1)log(kQ—l) b, (1~ thi+1)

N (tk1+1 - tk1)x
0<tk1 <v<tk1+1 <1

ko(1—x)—1

dty, dtg, 11

< 036—04(k1+k2)10g(k1+k2) U(l—x)k‘l(l _ v)(l—x)kz’

where the last inequality is obtained by first noting that max{k;, ko} > (k1 + k2)/2, and
then replacing ¢y, +1 — tg, with t5, 11 —v (resp. v—1tg,) if v < 1/2 (resp. v > 1/2). In this way
the integral factorizes and one obtains (C.2) after adjusting the values of C; and Cy. O
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