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Abstract. In these lecture notes, we review recent progress in the study of the stochastic
heat equation and its discrete analogue, the directed polymer model, in spatial dimension 2.
It was discovered that a phase transition emerges on an intermediate disorder scale,
with Edwards-Wilkinson (Gaussian) fluctuations in the sub-critical regime. In the critical
window, a unique scaling limit has been identified and named the critical 2d stohcastic
heat flow. This gives a meaning to the solution of the stochastic heat equation in the
critical dimension 2, which lies beyond existing solution theories for singular SPDEs. We
outline the proof ideas, introduce the key ingredients, and discuss related literature on
disordered systems and singular SPDEs. A list of open questions is also provided.

A picture of the critical 2d stochastic heat flow is shown on the left, and on the right,
a resembling natural landscape located in central Greece and named Meteora (photo by
Stathis Floros, CC BY-SA 4.0). The picture of the critical 2d stochastic heat flow has been
obtained by simulating the partition function of the directed polymer model. The plateaus
in the simulation are a result of a truncation of high peaks.
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1. Introduction

Our goal here is to review recent progress in making sense of the two-dimensional stochastic
heat equation (SHE) [CSZ17b, CSZ19b, GQT21, CSZ23a, CSZ23b, Tsa24]

Btupt, xq “
1

2
∆upt, xq ` β ξpt, xqupt, xq , t ą 0, x P R2 . (SHE)

This is a singular stochastic partial differential equation (SPDE) due to the presence of the
term ξpt, xqupt, xq, where the potential (or disorder) ξpt, xq is a space-time white noise, i.e.,
a generalised Gaussian field with mean 0 and covariance Erξpt, xqξps, yqs “ δpt´ sqδpx´ yq,
and upt, xq is also expected to be a generalised function (i.e. distribution in the sense of
Schwartz). The constant β ě 0 tunes the strength of the interaction.

Via the Cole-Hopf transformation h “ log u, SHE is also related to the celebrated
Kardar-Parisi-Zhang (KPZ) equation

Bthpt, xq “
1

2
∆hpt, xq `

1

2
|∇hpt, xq|2 ` β ξpt, xq , t ą 0, x P Rd, (KPZ)

which is a model for random interface growth and has been studied extensively in d “ 1 as
a canonical example in the KPZ universality class [QS15, Cor12, Cor16, Zyg22].

In recent years, there have been fundamental breakthroughs in the study of singular
SPDEs [Hai13, Hai14, GIP15, Kup16, GJ14], including the KPZ equation in d “ 1. However,
these theories only apply to sub-critical singular SPDEs, while dimension d “ 2 is critical
for SHE and KPZ. In a series of papers culminating in [CSZ23a], we were able to give a
meaning to the solution of the 2d SHE on an intermediate disorder scale (i.e. by regularising
the noise ξ and, simultaneously, rescaling the disorder strength β Ó 0 at a suitable rate, as the
regularisation is removed). In particular, it was shown that a phase transition exists on this
scale, with Edwards-Wilkinson (Gaussian) fluctuation in the sub-critical regime [CSZ17b].
For the 2d KPZ, the same Edwards-Wilkinson fluctuation in the subcritical regime was
established in [CSZ20, Gu20]. Most interestingly, it was shown in [CSZ23a] that in a window
around the critical point, we can make sense of the solution of the 2d SHE as a random
measure-valued process, which is called the critical 2d stochastic heat flow (SHF). This is
a rare example where a model in the critical dimension and at the phase transition point
admits a non-Gaussian limit, in contrast to e.g. the Ising and Φ4 models at the critical
dimension d “ 4 [ADC21].

Our motivation to make sense of the 2d SHE came from a different direction, which is
the study of continuum limits of disordered systems (see discussions in Section 11.1), in
particular, the directed polymer model (DPM). The DPM is one of the simplest and yet most
challenging disordered system, which models a random walk interacting in equilibrium with
a random environment (disorder). As the strength of the disorder (inverse temperature β)
increases, the model undergoes a phase transition from diffusive behaviour for the random
walk, with path delocalisation, to expected super-diffusive behaviour and path localisation
(see [Com17, Zyg24] for more details). The DPM lies at the heart of two different areas of
intense research in recent years. On the one hand, it is a canonical example in the KPZ
universality class of random interface growth models, with the 0-temperature DPM in
d “ 1 being exactly the last passage percolation model. On the other hand, it provides a
discretisation of the SHE (and the KPZ equation via the Cole-Hopf transformation), which
are classical examples of singular SPDEs. It is this latter connection that we will exploit to
make sense of the 2d SHE.

In the rest of the introduction, we will first explain heuristically why d “ 2 is critical for
SHE and what is the standard procedure to define the solution of a singular SPDE such as
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the 2d SHE. We will then introduce the directed polymer model, its connection to SHE, and
the intermediate disorder scale on which a phase transition exists and our analysis will be
carried out. We will then conclude the introduction with an outline of the rest of the article.

1.1. Stochastic heat equation. We start with a heuristic scaling argument that
shows why d “ 2 is critical for the stochastic heat equation (SHE)

Btupt, xq “
1

2
∆upt, xq ` β ξpt, xqupt, xq , t ą 0, x P Rd. (1.1)

In the spirit of renormalisation group theory [Kup16], we note that the space-time rescaled
solution ũpt, xq :“ upε2t, εxq formally solves

Btũ “
1

2
∆ũ` β ε1´

d
2 ξ̃ ũ , t̃ ą 0, x̃ P Rd, (1.2)

where ξ̃pt, xq :“ ε1` d
2 ξpε2t, εxq is a new space-time white noise with the same distribution

as ξ. We now see that as we send ε Ó 0 and zoom into smaller and smaller space-time scales,
the strength of the noise vanishes in dimensions d ă 2 and diverges in dimensions d ą 2.
But in the critical dimension d “ 2, the exponent 1´ d

2 vanishes, and how scaling affects
the effective strength of the noise depends on finer details of the model. In the language
of singular SPDEs [Hai13, Hai14, GIP15], the regimes d ă 2, d “ 2 and d ą 2 are called
respectively sub-critical, critical, and super-critical.

The main difficulty in making sense of the solution of singular SPDEs such as (SHE) is
the roughness on small scales of the solution (expected to be a generalised function), which
makes terms such as ξpt, xqupt, xq mathematically undefined. The standard procedure is to
perform a regularisation, also called ultraviolet cutoff, to smoothen things below a small
spatial scale ε, which leads to an approximate solution uε. We then check whether there
exist suitable centering and scaling constants Aε and Bε, and suitable choice of the model
parameter β “ βε, such that puε ´Aεq{Bε converges to a non-trivial limit as ε Ó 0. If such a
non-trivial limit exists, then we can interpret it as the solution of (a renormalised version
of) this singular SPDE.

There are several different ways of performing the ultraviolet cutoff. The most common
approach is to mollify the space-time white noise ξ on the spatial scale ε. More precisely, let
j P C8c pR

2
q be a smooth probability density function with compact support, and define the

mollified noise ξε :“ jε ˚ ξ by convolving ξ in space with jεpxq :“ ε´2jpxε q. This leads to the
mollified SHE

Btu
ε
“

1

2
∆uε ` βεu

εξε, uεp0, ¨q ” 1, (1.3)

which admits a classical Itô solution. Furthermore, the solution admits a Feynman-Kac
representation (see [BC95, Section 3]) with

uεpt, xq “ E
”

e
şt
0pβεξ

ε
pt´s,Bsq´λεqds

ˇ

ˇ

ˇ
B0 “ x

ı

, (1.4)

where Er¨s is w.r.t. a standard Brownian motion B in R2, and λε :“ β
2
ε
2 Varpξεps, xqq “ β

2
ε

2ε
2 }j}

2
2

ensures that Eruεpt, xqs “ 1.
Another approach to smoothen things on small scales is to discretize space and define an

approximate solution on a grid with lattice spacing ε. This is the approach we will follow,
where the approximate solution turns out to coincide with the partition functions of the
directed polymer model. Yet another approach is to truncate the high frequency modes in
the Fourier decomposition of upt, ¨q, see e.g. [CT24] and the references therein. It is expected
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that modulo a change of parameters, the different procedures of ultraviolet cutoff will lead to
the same limits, which are believed to be universal. This has been shown for the 2d SHE (and
KPZ) in the subcritical regime in [CSZ17b], and in the critical window in [CSZ23a, Tsa24].

1.2. The KPZ equation. The KPZ equation (KPZ) in the critical dimension d “ 2 is
also singular, due to the presence of the term |∇h|2. To make sense of its solution, we also
need to perform an ultraviolet cutoff and then pass to the limit. In particular, if ξε denotes
the same spatially mollified noise as in (1.3), then we consider the mollified KPZ equation

Bth
ε
“

1

2
∆hε `

1

2
|∇hε|2 ` βε ξ

ε
´ Cε, hεp0, ¨q ” 0, (1.5)

where Cε :“ β2
ε ε
´2
}j}22 ensures that hε is related to the solution of the mollified SHE (1.3)

through the Cole-Hopf transformation hεpt, xq “ log uεpt, xq, see e.g. [CSZ20].
One could also consider the KPZ equation with different coefficients in front of the

Laplacian and the non-linearity, that is,

Bth̃
ε
“
ν

2
∆h̃ε `

λ

2
|∇h̃ε|2 `Dξε . (1.6)

For example, we could set ν “ D “ 1 and λ “ βε as in [CD20]. However, by scaling (see e.g.
[CSZ20, Appendix A]), the three parameters ν, λ and D can be reduced to a single effective
coupling constant β2 :“ λ2D{ν3. Therefore it suffices to consider (1.5) with only the noise
strength βε dependent on ε.

1.3. Directed polymer model. The directed polymer model (DPM) is defined as
a random walk interacting with a random environment (disorder) [Com17, Zyg24]. To
avoid complications caused by periodicity, instead of considering the simple symmetric
random walk on Z2 as done in [CSZ23a], we consider an irreducible aperiodic random walk
S “ pSnqně0 whose increment ξ :“ S1´S0 has mean 0, covariance matrix being the identity
matrix, and Ereb|ξ|s ă 8 for some b ą 0. Let P and E denote probability and expectation
for S, and denote its transition probability kernels by

qnpzq :“ PpSn “ z |S0 “ 0q, z P Z2, n P N0. (1.7)

The disorder (random environment) is given by a family of i.i.d. random variables
ω :“ pωpn, zqq

nPN,zPZ2 with

Erωs “ 0 , Erω2
s “ 1 ,

Dβ0 ą 0 such that λpβq :“ logEreβωs ă 8 @β P r0, β0s .
(1.8)

Probability and expectation for ω will be denoted by P and E.
Given N P N, β ą 0, z P Z2, and ω, the polymer with length N P N, starting point z, and

disorder strength (inverse temperature) β in the random environment ω is defined by the
Gibbs measure

dPβ, ωN pS |S0 “ zq :“
1

ZβN pzq
e
řN´1
n“1 tβωpn,Snq´λpβqu dPpS |S0 “ zq , (1.9)

where

ZβN pzq “ E

„

e
řN´1
n“1 tβωpn,Snq´λpβqu

ˇ

ˇ

ˇ

ˇ

S0 “ z



(1.10)
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is called point-to-plane partition function. Note that λpβq in the exponent ensures that
ErZβN pzqs “ 1 and, in fact, pZN pzqqNPN is a martingale. It is also useful to consider the
point-to-point partition functions: for M ď N P N0 “ t0, 1, 2, . . .u and x, y P Z

2, we define

ZβM,N px, yq :“ E

„

e
řN´1
n“M`1tβωpn,Snq´λpβqu 1SN“y

ˇ

ˇ

ˇ

ˇ

SM “ x



, (1.11)

and denote ZβM,N px,1q :“
ř

yPZ2 ZβM,N px, yq and Z
β
M,N p1, yq :“

ř

xPZ2 ZβM,N px, yq.
Comparing (1.10) with (1.4), we note that the Feynman-Kac representation of the

solution uεpt, xq of the mollified SHE is the partition function of a Brownian directed
polymer in a white-noise random environment, where the random walk pSiq0ďiďN in (1.10)
is replaced by the Brownian motion pBsq0ďsďt, and the i.i.d. space-time disorder ωp¨, ¨q
is replaced by the time-reversed mollified space-time white noise ξεpt´ ¨, ¨q. If we rescale
space-time diffusively in the DPM, then pStNtu{

?
Nqtě0 converges in law to pBtqtě0, while

p 1
N ωptNtu, t

?
Nxuqq

pt,xqPRˆR2 converges in law to the space-time white noise ξ. In particular,
the family of partition functions

uN pt, xq :“ Z
βN
0,tN p1, x

?
Nq, t P

1

N
N0, x P

1
?
N

Z2, (1.12)

gives an approximate solution to the 2d SHE through a discretisation of space and time.
Compared with uε in (1.3), we see that N corresponds to ε´2, and βN corresponds to βε.

Instead of asking whether there are suitable choices of βε, Aε and Bε such that puε´Aεq{Bε
has a non-trivial limit, we can consider instead whether there are suitable choices of βN ,
AN and BN such that puN ´AN q{BN has a non-trivial limit. It turns out that the correct
choice of βN is exactly the scale on which the DPM undergoes a phase transition.

1.4. Phase transition on an intermediate disorder scale. It is known
that (see [Com17, Zyg24] and the references therein) the DPM undergoes a phase transition
in the sense that, there is a critical value βc P r0,8q such that for β ă βc, the partition
function ZβN p0q defined in (1.10) converges a.s. to a positive random variable Z8p0q, and the
polymer measure Pβ,ωN converges to the Wiener measure under diffusive scaling of space-time
and is hence delocalised in space [CY06]. On the other hand, when β ą βc, Z

β
N p0q converges

almost surely to 0, and the polymer measure Pβ,ωN experiences localisation in space [CSY03].
A recent breakthrough [JL24] has shown that when the disorder ω is bounded, there is also
delocalisation at βc, while localisation always manifests itself in a strong form.

It is known that βc “ 0 in dimensions d “ 1, 2, and βc ą 0 in d ě 3. However, it was
discovered in [CSZ17b] that in d “ 2, there is still a phase transition on an intermediate
disorder scale. Recall that the expected replica overlap between two independent random
walks with the same distribution as S is defined by

RN :“
N
ÿ

n“1

ÿ

xPZ2

qnpxq
2
“

N
ÿ

n“1

q2np0q „
logN

4π
as N Ñ8 , (1.13)

where the asymptotics follows from the local limit theorem, see (2.6) below.
It was shown in [CSZ17b] that if we choose β to be

βN “
β̂ ` op1q
?
RN

, β̂ P p0,8q, (1.14)
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then a phase transition occurs at the critical value β̂c “ 1 (see Section 3 below for more
details). We call β̂ ă 1 the subcritical regime, and β̂ ą 1 the supercritical regime. For the
mollified SHE (1.3), the analogous choice is (see [CSZ17b, Theorem 2.15])

βε “ pβ̂ ` op1qq

d

2π

log ε´1 , β̂ P p0,8q. (1.15)

This intermediate disorder scale turns out to be the correct scale on which uN from (1.12)
has non-trivial limits.

As will be discussed in more detail in Section 6, around the critical point β̂ “ 1, there is
in fact a finer window which we call the critical window, with βN in this window satisfying

σ2
N :“ eλp2βN q´2λpβN q ´ 1 “

1

RN

ˆ

1`
ϑ` op1q

logN

˙

for some fixed ϑ P R . (1.16)

Note that for every ϑ P R, we have βN „ 1{
?
RN because λpβq „ 1

2β
2 as β Ó 0, see (1.8).

So the parameter ϑ only appears in the second order asymptotics of βN . However, different
ϑ will lead to different scaling limits for the DPM partition functions regarded as a random
field, which are the so-called critical 2d stochastic heat flows. It will become clear in Section
2.2 why it is more convenient to define the critical window in terms of σ2

N “ σ2
N pϑq.

For the mollified SHE (1.3), the critical window corresponds to choosing

β2
ε “

2π

log 1
ε

´

1`
ϑ

| log ε|

¯

. (1.17)

1.5. Outline. Assume that βN is chosen as in (1.14) for some β̂ ą 0, and in the case
β̂ “ 1, βN is chosen in the critical window as in (1.16) for some ϑ P R. Recall uN pt, xq from
(1.12). We will discuss the following results in the rest of this article.

‚ Sections 3 and 4 will be devoted to results in the subcritical regime β̂ ă 1, which
include:

- As N Ñ8, for each pt, xq, uN pt, xq defined in (1.12) converges to a log-normal
limit when β̂ ă 1 and converges to 0 when β̂ ě 1. This shows that there is a
phase transition with critical value β̂c “ 1.

- After suitable scaling, the centred random field uN pt, ¨q ´ 1 converges to a
Gaussian limit, which is the solution of the additive SHE, also known as the
Edwards-Wilkinson equation.

- After suitable scaling, the centred random field log uN pt, ¨q ´ Erlog uN pt, ¨qs,
which solves the 2d KPZ equation regularised through space-time discretisation,
converges to the same Gaussian limit as uN pt, ¨q ´ 1.

‚ In Section 5, we discuss various results connected to the 2d SHE in the subcritical
regime.

‚ Sections 6 and 7 will be devoted to the following key result (and its proof outline) in
the critical window for some ϑ P R:

- Without centering and scaling, the random measure uN pt, ¨q converges in law
to a unique limit, which is called the critical 2d stochastic heat flow (SHF) with
parameter ϑ, denoted by SHFpϑq “ pSHFϑs,tpdx,dyqq0ďsďtă8.
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‚ In Sections 8 and 9, we will explain some key technical ingredients in the proof,
focusing on the second moment and higher moments calculations.

‚ In Section 10, we will discuss some properties of the critical 2d SHF, including:

- An almost sure Chapman-Kolmogorov type property that justifies the name
flow;

- A recent axiomatic characterisation of the SHFpϑq by Tsai [Tsa24];

- SHFpϑq cannot be obtained as the exponential of a generalised Gaussian field
(i.e., it cannot be a Gaussian multiplicative chaos);

- The marginal distribution of SHFpϑq at each time is almost surely singular w.r.t.
the Lebesgue measure.

‚ In Section 11, we will discuss some open questions.

Before discussing the results above, in Section 2, we will first warm up by introducing the
polynomial chaos expansion for the directed polymer partition function and performing a
second moment calculation that identifies the intermediate disorder scale.

2. Basic tools and preliminary results

2.1. Polynomial chaos expansion. The starting point of our analysis is the poly-
nomial chaos expansion of the partition function, based on the Mayer cluster expansion.
More precisely, with β “ βN allowed to depend on N , for each pn, zq P NˆZ2, we can write

epβNωpn,zq´λpβN qq1Sn“z “ 1` ξN pn, zq1Sn“z,

where pξN pn, zqqpn,zqPNˆZ2 is an i.i.d. family defined by

ξN pn, zq :“ eβNωpn,zq´λpβN q ´ 1

with ErξN pn, zqs “ 0 , VarrξN pn, zqs “ eλp2βN q´2λpβN q ´ 1 “: σ2
N .

(2.1)

We can then rewrite the partition function ZβNN pzq from (1.10) as follows:

Z
βN
N pzq “ E

„

e
řN´1
n“1 pβNωpn,Snq´λpβN qq



“ E

„

ź

pn,xqPt1,...,N´1uˆZ2

epβNωpn,xq´λpβN qq1Sn“x


“ E

„

ź

pn,xqPt1,...,N´1uˆZ2

`

1` ξN pn, xq1Sn“x
˘



“ 1`
8
ÿ

r“1

ÿ

n0“0ăn1ă¨¨¨ănrăN

z0:“z,z1,...,zrPZ
2

r
ź

i“1

qni´ni´1
pzi ´ zi´1qξN pni, ziq. (2.2)

This is called a polynomial chaos expansion because it can be seen as a discrete analogue of
a Wiener-Itô chaos expansion with respect to a space-time white noise on r0,8q ˆ R2. The
terms of the expansion are L2-orthogonal, and each term is a multilinear polynomial in the
i.i.d. random variables pξN pn, xqqpn,xqPNˆZ2 .
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For the point-to-point partition function ZβNM,Lpx, yq defined in (1.11), we have a similar
expansion:

Z
βN
M,Lpx, yq “ qL´M py ´ xq (2.3)

`

8
ÿ

r“1

ÿ

z0:“x,z1,...,zrPZ
2

n0:“Măn1ă¨¨¨ănrăL

r
ź

i“1

qni´ni´1
pzi ´ zi´1qξN pni, ziq ¨ qL´nrpy ´ zrq

“ qL´M py ´ xq `
8
ÿ

r“1

ÿ

z0:“x,z1,...,zrPZ
2

n0:“Măn1ă¨¨¨ănrăL

¨ ¨ ¨ ¨ ¨ ¨
ξN pnr, zrq

ξN pn1, z1q

pM,xq

pL, yq

,

where in the graphical representation, the laces represent the transition kernels qni´ni´1
pzi´

zi´1q, the solid dots represent the disorder variables ξN pni, ziq, and the hollow circles at
pM,xq and pL, yq means the absence of the disorder variables ξN pM,xq and ξN pL, yq.

Similarly, the solution uε of the mollified SHE (1.3) admits a Wiener-Itô chaos expansion
w.r.t. the underlying white noise ξ (see [CSZ20, (5.9)]), which can also be obtained by Picard
iterations:

uεpt, xq
dist
“ 1`

ÿ

kě1

βkε

ż

¨ ¨ ¨

ż

z1,...,zkPR
2

0ăs1ă¨¨¨ăskătε
´2

˜

ż

pR2
q
k

k
ź

i“1

gsi´si´1
pyi´yi´1q jpyi´ziq d~y

¸

k
ź

i“1

ξ̃psi, ziqdsidzi ,

(2.4)
where s0 :“ 0, y0 :“ ε´1x, gsp¨q is the heat kernel, and ξ̃ is obtained from ξ via diffusive
rescaling and has the same distribution.

2.2. A transition in the second moment. We now show that the second moment
of the point-to-plane partition function ErZβNN p0q2s, see (1.10), undergoes a transition exactly
at the critical point β̂ “ 1 defined in (1.14). The fact that this L2 transition point coincides
with the actual phase transition point is unique to dimension d “ 2 and far from trivial (see
Section 3 for more details). We will also see in Corollary 2.2 that for βN chosen as in (1.14),
changing the time horizon from N to Nα effectively replaces β̂2 by αβ̂2.

We first recall the local central limit theorem. Let gt be the heat kernel on R2, i.e.,

gtpxq :“
1

2πt
e´

|x|
2

2t , gtpx, yq :“ gtpy ´ xq . (2.5)

Since the increments of the random walk pSnqně0 have an identity covariance matrix, by
the local central limit theorem, see e.g. [LL10, Theorems 2.3.5 & 2.3.11], we have

qnpxq “ gnpxq `O
`

1

n
2

˘

“ gnpxq e
O
`

1
n

˘

`O
`

|x|
4

n
3

˘

, n P N, x P Z2. (2.6)
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Lemma 2.1 (Transition in the second moment). Let βN “ β̂{
?
RN for some β̂ P

p0,8q. Then the point-to-plane partition function ZN :“ Z
βN
N p0q defined in (1.10) satisfies

lim
NÑ8

ErZ2
N s “

$

’

&

’

%

1

1´ β̂2 for β̂ ă 1,

8 for β̂ ě 1.

(2.7)

We will show in Section 8 that ErZ2
N s „ C logN at the critical point β̂ “ β̂c “ 1.

Proof. By the polynomial chaos expansion (2.2) for the point-to-plane partition function
ZN :“ Z

βN
N p0q, which is an L2-orthogonal expansion, we have

ErZ2
N s “ 1`

8
ÿ

r“1

ÿ

n0“0ăn1ă¨¨¨ănrăN

z1,...,zrPZ
2

r
ź

i“1

qni´ni´1
pzi ´ zi´1q

2ErξN pni, ziq
2
s

“ 1`
8
ÿ

r“1

ÿ

n0“0ăn1ă¨¨¨ănrăN

σ2r
N

ÿ

z1,...,zrPZ
2

r
ź

i“1

qni´ni´1
pzi ´ zi´1q

2

“ 1`
8
ÿ

r“1

ÿ

n0“0ăn1ă¨¨¨ănrăN

σ2r
N

r
ź

i“1

q2pni´ni´1q
p0q. (2.8)

Note that since βN Ñ 0, we have

σ2
N “ eλp2βN q´2λpβN q ´ 1 „ β2

N “
β̂2

RN
„

4πβ̂2

logN
as N Ñ8. (2.9)

For each r P N, we then have the upper bound

ÿ

n0“0ăn1ă¨¨¨ănrăN

σ2r
N

r
ź

i“1

q2pni´ni´1q
p0q ď

´

σ2
N

N
ÿ

n“1

q2np0q
¯r
„

´ 4πβ̂2

logN

N
ÿ

n“1

1

4πn

¯r
“ pβ̂ ` op1qq2r,

and the lower bound

ÿ

n0“0ăn1ă¨¨¨ănrăN

σ2r
N

r
ź

i“1

q2pni´ni´1q
p0q ě

´

σ2
N

N{r
ÿ

n“1

q2np0q
¯r
„

´ 4πβ̂2

logN

N{r
ÿ

n“1

1

4πn

¯r
„ β̂2r,

where we used that RN “
řN
n“1 q2np0q and the local limit theorem (2.6). For each r P N, the

upper and lower bounds match asymptotically. The conclusion (2.7) then follows readily. �

The following corollary shows that changing the time horizon from N to Nα effectively
changes β̂2 to αβ̂2. It also implies that in the subcritical regime β̂ ă 1, the partition function
Z
βN
N p0q can be approximated in L2 by Z

βN
N
αp0q with α P p0, 1q close to 1. In particular,

Z
βN
N p0q is essentially determined by disorder variables ωpn, xq (equivalently ξN pn, xq) with

n ! N . This fact will be an important feature that drives the phenomenology and the
analysis for β̂ ă 1. This feature will become clear in our sketch of the proof of Theorem 3.1.



THE CRITICAL 2d STOCHASTIC HEAT FLOW 11

Corollary 2.2 (Exponential time scale). Let βN “ β̂{
?
RN for some β̂ P p0,8q, and

let α P p0,8q. Then we have

lim
NÑ8

ErpZβN
N
αq

2
s “

$

’

&

’

%

1

1´ αβ̂2 for αβ̂2
ă 1,

8 for αβ̂2
ě 1.

(2.10)

Furthermore, for β̂ P p0, 1q and α P p0, 1s, we have

lim
NÑ8

}Z
βN
N
α ´ Z

βN
N } :“ lim

NÑ8
ErpZβN

N
α ´ Z

βN
N q

2
s
1{2
“

p1´ αqβ̂2

p1´ αβ̂2
qp1´ β̂2

q

αÒ1
ÝÑ 0. (2.11)

Proof. If we set M :“ Nα, then using the asymptotics for RN from (1.13), we can write

βN “
β̂

?
RN

“
1

?
RM

¨
β̂
?
RM?
RN

“
β̂
?
α` op1q
?
RM

.

The corollary then follows immediately from Lemma 2.1. Alternatively, we can also repeat
the proof of Lemma 2.1 and note that the key calculation is now

σ2
N

N
α

ÿ

n“1

q2np0q “
β̂2

RN
¨RNα „ β̂2 logNα

logN
“ αβ̂2,

which replaces the original parameter β̂2.
Note that for α ă 1, the polynomial chaos expansion for ZβN

N
α , see (2.2), contains only

a subset of terms in the polynomial chaos expansion for ZβNN , which is an L2-orthogonal
expansion. The claim in (2.11) then follows from (2.10). �

3. Gaussian fluctuations in the subcritical regime

In this section, we review results in the subcritical regime, that is, results (a)-(c) listed in
Section 1.5. Throughout the rest of this section, we will consider βN chosen as in (1.14) for
some β̂ P p0, 1q. Instead of considering uN pt, xq, the solution of the space-time discretised
SHE defined in (1.12), for simplicity, we will fix t “ 1 and consider the time reversed field of
point-to-plane partition functions ZβNN px

?
Nq “ Z

βN
0,N px

?
N,1q, x P 1?

N
Z2.

3.1. One point fluctuation. In [CSZ17b, Theorem 2.8], it was shown that on the
intermediate disorder scale defined in (1.14), the DPM in dimension d “ 2 undergoes a
phase transition similar to the phase transition in d ě 3.

Theorem 3.1 (Limit of individual partition function). We have the following conver-
gence result for the point-to-plane partition function ZβNN p0q:

Z
βN
N p0q

d
ÝÝÝÝÑ
NÑ8

Z β̂ :“

$

&

%

exp

ˆ

σβ̂W1 ´
σ

2
β̂

2

˙

if β̂ ă 1

0 if β̂ ě 1
. (3.1)

where W1 is a standard Gaussian random variable and

σ2
β̂

:“ log
1

1´ β̂2 . (3.2)
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Remark 3.2. In [CSZ17b, Theorem 2.12], it was shown that logZ
βN
N pxN q and logZ

βN
N pyN q

converge to a pair of independent normal random variables in the subcritical regime β̂ ă 1
if xN{

?
N and yN{

?
N converge to distinct x, y P R2. A non-trivial bivariate normal limit

arises only if }xN ´ yN} “ Nα`op1q for some α P p0, 1{2q. Similar multivariate normal limits
hold for the joint distribution of k log-partition functions logZ

βN
N
γi px

i
N q, 1 ď i ď k, with

non-trivial change of the covariance matrix as we vary the exponents γi P p0, 1q in the time
horizon Nγi .

In what follows, we sketch several alternative proof strategies for Theorem 3.1, which will
help shed light on the structure of the 2d DPM and SHE in the subcritical regime.

Proof strategy 1 [CSZ17b, Theorem 2.15]. We start with the polynomial chaos expansion
(2.2) for the point-to-plane partition function

Z
βN
N p0q “ 1`

8
ÿ

r“1

ÿ

n0“0ăn1ă¨¨¨ănrăN

z0:“0,z1,...,zrPZ
2

r
ź

i“1

qni´ni´1
pzi ´ zi´1qξN pni, ziq, (3.3)

where the parameter β̂ ă 1 is contained in the variance of ξN , see (2.9). From the second
moment calculations in Lemma 2.1 and Corollary 2.2, we see that the dominant contribution
to the series in (3.3) comes from terms which of order r “ Op1q – there is an exponential
decay of order β̂r in the chaoses of order r – the times differences are of order ni´ni´1 “: N ti

for ti P p0, 1q, and the spatial coordinates }zi ´ zi´1} “ Op
?
ni ´ ni´1q “ OpN ti{2q, for

1 ď i ď r. The contributions coming from ti « tj for i ‰ j is negligible, and furthermore,
the dominant contribution comes from }zi} “ Op

?
niq, 1 ď i ď r.

The key observation of [CSZ17b] is that, we should rewrite (3.3) by partitioning

pt1, t2, . . . , trq “ ps1,1, . . . , s1,r1
; s2,1, . . . , s2,r2

; . . . ; sk,1 . . . , sk,rkq,

where s1,1, s2,1, . . . , sk,1 are the successive running maxima along the original sequence
pt1, . . . , trq, and each subsequence ps1,1, . . . , si,riq is called a dominated sequence because the
first element si :“ si,1 dominates the subsequent elements si,2, . . . , si,ri . Recall that in (3.3),
N si “ nM`1 ´ nM with M “ r1 ` ¨ ¨ ¨ ` ri´1, and

nM “ N t1 ` ¨ ¨ ¨N tM .

The fact that si “ si,1 is a running maxima of pt1, . . . , trq means that si ą t1, t2, . . . , tM ,
and hence

nM`1 ´ nM “ N si " N t1 ` ¨ ¨ ¨N tM “ nM .

In particular, nM`1 ´ nM « nM`1. Therefore in (3.3), at the cost of a small error in
L2, we can replace the factor qnM`1´nM

pzM`1 ´ zM q by qnM`1
pzM`1q, since the dominant

contribution to (3.3) comes from }zM} “ Op
?
nM q !

?
nM`1.

Now observe that the replacement qnM`1´nM
pzM`1 ´ zM q ù qnM`1

pzM`1q in (3.3) at
each running maxima of the sequence ni ´ ni´1 “ N ti , 1 ď i ď r, leads to the factorisation

Z
βN
N p0q « 1`

8
ÿ

k“1

ÿ

0ăs1ă¨¨¨ăskă1

N
siPN

k
ź

i“1

Ξ
βN
N pN siq, (3.4)
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where for s P p0, 1q with n1 :“ N s
P N,

Ξ
βN
N pn1q :“

8
ÿ

r“1

ÿ

z1,...,zrPZ
2

ni´ni´1ăn1

qn1
pz1qξN pn1, z1q

r
ź

i“2

qni´ni´1
pzi ´ zi´1qξN pni, ziq. (3.5)

The key point is that for s P p0, 1q, Ξ
βN
N pN s

q depends essentially only on ξN pn, ¨q with
n P rN s, N s`op1q

s. In particular, for s ă t, Ξ
βN
N pN s

q and Ξ
βN
N pN t

q are essentially independent
and approximate the increments of a time changed Brownian motion. More precisely, it
turns out that

M
βN
N ptq :“

ÿ

1ďn1ďN
t

Ξ
βN
N pn1q

d
ÝÝÝÝÑ
NÑ8

ż t

0

β̂
b

1´ β̂2s
dW psq, t P r0, 1s, (3.6)

whereW is a standard Brownian motion. Just to check that the variances match, one can use
the same calculations as in Section 2.2 to show that VarpM

βN
N ptqq Ñ

şt
0

β̂
2

1´β̂
2
s
ds. It follows

that Ξ
βN
N pN t

q «
β̂?

1´β̂
2
t
dW ptq, which implies that the r.h.s. of (3.4) should converge to the

Wick exponential : exp
` ş1

0
β̂?

1´β̂
2
t
dW ptq

˘

:, thus matching the conclusion of Theorem 3.1.

The actual proof in [CSZ17b] is fairly involved and gives more information. In particular,
the terms in (3.5) corresponding to different r P N can be shown to converge to increments
of independent Brownian motions. In particular, the white noise dW in (3.6) is the sum of a
sequence of independent white noises, which arise as the limits of random fields defined from
degree r polynomials of ξN p¨, ¨q, one for each r P N. The proof is based on the Fourth Moment
Theorem for Gaussian limits, see [CSZ17b, Theorem 4.2] and the references therein. �

Proof strategy 2 [CC22, Theorems 3.5 & 3.6]. Instead of proving that ZβNN p0q converges
in distribution to a log-normal random variable, i.e. the exponential of a Gaussian, see (3.1),
it is also possible to prove directly that logZ

βN
N p0q converges to a Gaussian. To this end,

we approximate logZ
βN
N p0q in terms of a random variable Xdom

N obtained by restricting the
sum in (3.3) to a single dominated sequence n1 ě maxtn2 ´ n1, . . . , nk ´ nk´1u:

Xdom
N :“

8
ÿ

r“1

ÿ

n0“0ăn1ă¨¨¨ănrăN
n1ěmaxtn2´n1,...,nk´nk´1u

z0:“0,z1,...,zrPZ
2

r
ź

i“1

qni´ni´1
pzi ´ zi´1qξN pni, ziq . (3.7)

One can show that Xdom
N is asymptotically Gaussian, more precisely ErpXdom

N q
2
s Ñ σ2

β̂
and

Xdom
N Ñ Np0, σ2

β̂
q in distribution, see [CC22, Theorems 3.6]. The proof is based on the

classic Feller-Lindeberg Central Limit Theorems for sums of independent random variables
(obtained by partitioning the sums in (3.7) in disjoint intervals). A strengthened version of
Theorem 3.1 is then obtained by showing that logZ

βN
N p0q « Xdom

N ´ 1
2ErpX

dom
N q

2
s in L2 (not

just in distribution), which is shown in [CC22, Theorems 3.5] by exploiting a decomposition
in terms of dominated sequences similar to the one described in Proof strategy 1.

Proof strategy 3. In [CD24], yet another proof of Theorem 3.1 was presented. The main
idea was to approximate ZβNN p0q by a product of independent random variables. More
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precisely, ZβNN p0q «
śM
l“1 Z

βN
N,k where ZβNN,k :“ E

”

e
řτk
n“τk´1`1pβNωpn,Snq´λpβN qq

ı

, with τ0 :“ 0

and τk “ rNk{M
s for k “ 1, ...,M . Note that pτkq encode the same exponential time scales

as in Proof strategy 1, and pZβNN,kq1ďkďM are independent random variables with mean 1

and variance of order 1{M (cf. Corollary 2.2). Applying a classic Lindeberg Central Limit
Theorem to logZ

βN
N p0q «

řN
k“1 logZ

βN
N,k then gives the the convergence of logZ

βN
N p0q in

distribution to a Gaussian random variable with mean ´σ2
β̂
{2 and variance σ2

β̂
. This requires

Taylor expanding logZ
βN
N,k “ log

`

1 `
`

Z
βN
N,k ´ 1

˘˘

and bounding the p2 ` εq moments of
Z
βN
N,k ´ 1. The latter is achieved by applying hypercontractivity estimates for polynomial

chaos expansions from [MOO10], which bounds moments higher than 2 by the second
moment of a modified polynomial chaos expansion. In out setting, this amounts to increasing
β̂ in (1.14) to some β̂1 ą β̂. Thanks to the fact that we are considering the subcritical regime
β̂ ă 1, we can choose β̂1 ă 1 to be subcritical as well, which ensures that we have the desired
control on the second moments of the partition functions.

3.2. Random field fluctuation. In [CSZ17b, Theorem 2.13], it was shown that
in the subcritical regime β̂ ă 1, the fluctuation of the random field of partition functions
pZ

βN
tN px

?
Nqq

tP 1
N
r0,1s,xP 1?

N
Z2 (and its mollified SHE analogue uε from (1.3)) is asymptotically

Gaussian and solves the Edwards-Wilkinson equation (or additive SHE).

Theorem 3.3 (Edwards-Wilkinson fluctuation for DPM). For any test function
φ P CcpR

2
q and any t P p0, 1s, we have

1

βN

ż

R2
φpxq

´

Z
βN
tN ptx

?
N uq ´ 1

¯

dx
d

ÝÝÝÝÑ
NÑ8

ż

R2
φpxqvpt, xqdx, (3.8)

where vpt, xq is a generalised Gaussian field that solves the 2d Edwards-Wilkinson equation

Btvpt, xq “
1

2
∆vpt, xq `

d

1

1´ β̂2 ξpt, xq,

vp0, xq ” 1.

(3.9)

Proof sketch. Without loss of generality, assume t “ 1. Using the polynomial chaos
expansion for ZβNN pzq from (2.2), we can rewrite the left-hand side of (3.8) as

ΦN :“
1

βNN

8
ÿ

r“1

ÿ

z0,z1,...,zrPZ
2

0“n0ăn1ă¨¨¨ănrăN

φ
` z0?

N

˘

r
ź

i“1

qni´ni´1
pzi ´ zi´1qξN pni, ziq

“
1

N

ÿ

z1PZ
2

0ăn1ăN

´

ÿ

z0PZ
2

φ
` z0?

N

˘

qn1
pz1 ´ z0q

¯

loooooooooooooooooooooooomoooooooooooooooooooooooon

qN,φpn1,z1q

Ξ
βN
N pn1, z1q, (3.10)

where

Ξ
βN
N pn1, z1q :“

ξN pn1, z1q

βN

´

1`
8
ÿ

k“2

ÿ

z2,...,zkPZ
2

n1ăn2ă¨¨¨ănkăN

k
ź

i“2

qni´ni´1
pzi ´ zi´1qξN pni, ziq

¯
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is simply the product of ξN pn1, z1q{βN with the point-to-plane partition function ZβNN pn1, z1q

starting at pn1, z1q and ending at time N .
Note that the sum in (3.10) is an L2-orthogonal decomposition, each Ξ

βN
N pn1, z1q has

variance of order 1, and the averaging w.r.t. the kernel qN,φpn1, z1q ensures that the dominant
contribution to ΦN comes from pn1, z1q of the order pN,

?
Nq. Now the key observation

is that, by Corollary 2.2 and the calculations therein, each Ξ
βN
N pn1, z1q depends only on

ξN pn, zq with pn, zq in a sub-diffusive time-space window around pn1, z1q. Therefore ΦN is
an average of the field of random variables Ξ

βN
N pn1, z1q with very local dependence. It is

then not surprising that such an average has a Gaussian limit as N Ñ 8. This was first
proved in [CSZ17b] using the Fourth Moment Theorem for polynomial chaos expansions.
See also [CC22] for an alternative proof using more classic tools from the proof of CLT for
triangular arrays. �

4. The 2d KPZ in the subcritical regime

In this section we will discuss the fluctuation of the solution to the KPZ equation (1.5)
in the subcritical regime β̂ ă 1. The one-point statistics can be easily deduced from the
log-normality of the SHE via the Cole-Hopf transformation hεpt, xq “ log uεpt, xq as

hεpt, xq
d
ÝÝÑ
εÓ0

#

σβ̂W1 ´
1
2σ

2
β̂

if β̂ ă 1

´8 if β̂ ě 1
with σ2

β̂
:“ log 1

1´β̂
2 , W1 „ Np0, 1q , (4.1)

The random field fluctuations are more subtle as the operation of averaging does not commute
with nonlinear functions such as log x, i.e.,

ş

φpxq log uεpt, xqdx ‰ log
ş

φpxquεpt, xqdx.
Surprisingly, the limiting random field fluctuation for log uε turns out to be the same as the
fluctuation for uε and its polymer partition function analogue in Theorem 3.3. The theorem
we obtained in [CSZ20] (see also [Gu20]) is the following:

Theorem 4.1 (Edwards-Wilkinson fluctuation for subcritical 2d KPZ - [CSZ20,
Gu20]). Let hε be the solution of the mollified KPZ equation (1.5) with initial condition

hεp0, xq ” 0 and βε “ β̂

b

2π{ log ε´1, β̂ P p0, 1q. Denote

hεpt, xq :“
hεpt, xq ´ Erhεpt, xqs

βε
“

b

log ε´1

?
2π β̂

`

hεpt, xq ´ Erhεpt, xqs
˘

, (4.2)

where the centering satisfies Erhεpt, xqs “ ´1
2σ

2
β̂
` op1q as ε Ó 0, see (4.1).

For any t ą 0 and φ P CcpR
2
q, the following convergence in law holds:

xhεpt, ¨q, φp¨qy “

ż

R2
hεpt, xqφpxqdx

d
ÝÝÑ
εÓ0

xvpt, ¨q, φp¨qy, (4.3)

where vp¨, ¨q is the solution of the two-dimensional Edwards-Wilkinson equation in (3.9).

The analogue of Theorem 4.1 for the log partition functions of the directed polymer is
also given in [CSZ20]. This will be the theorem whose proof we will outline. The proof of
Theorem 4.1 follows exactly the same lines if instead of working with the polynomial chaos
expansion of the partition function we work with the Wiener chaos expansion of uε as in
(2.4). We refer to [CSZ20, Section 5] for details.
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Theorem 4.2. Assume the same setting as in Theorem 3.3 for some β̂ P p0, 1q. Apart from
(1.8), suppose that the disorder ω also satisfies the concentration of measure property †:

Dγ ą 1, C1, C2 P p0,8q : for all n P N and f : Rn Ñ R convex and 1-Lipschitz

P
´

ˇ

ˇfpω1, . . . , ωN q ´Mf

ˇ

ˇ ě t
¯

ď C1 exp

ˆ

´
tγ

C2

˙

,
(4.4)

where Mf denotes a median of fpω1, . . . , ωN q. Denote‡

hN pt, xq :“
logZ

βN
tN px

?
Nq ´ ErlogZ

βN
tN s

βN
“

?
logN
?

4π β̂

`

logZ
βN
tN px

?
Nq ´ ErlogZ

βN
tN s

˘

, (4.5)

For any t ą 0 and φ P CcpR
2
q, the following convergence in law holds with vp¨, ¨q as in (3.9):

xhN pt, ¨q, φp¨qy “

ż

R2
hN pt, xqφpxqdx

d
ÝÝÝÝÑ
NÑ8

xvpt, ¨q, φp¨qy , (4.6)

Remark 4.3. We note that the constant 4π that appears in (4.5) is different than the
constant 2π that appears in the corresponding statement in [CSZ20]. This discrepancy is due
to the fact that in this review we work with aperiodic random walks.

Proof sketch for Theorem 4.2. The main idea is to “linearize” logZ
βN
N pxq by Taylor

expansion, but not around ErZ
βN
N pxqs “ 1. Rather, we should Taylor expand logZ

βN
N pxq

around ZAN,βN pxq, which depends only on disorder in a small time-space window around the
starting point of the polymer, but with ZAN,βN pxq « Z

βN
N pxq by Corollary 2.2. More precisely,

we define the time-space window

AxN :“
!

pn, zq P Nˆ Z2 : n ď N1´aN , |z ´ x| ă N
1
2´

aN
4

)

, (4.7)

where

aN “
1

plogNq1´γ
with γ P p0, γ˚q, (4.8)

for some γ˚ ą 0 depending only on β̂, which makes the time window ! N . The precise
choice of γ˚ is more of a technical nature and we will not bother with it here; one can refer
to [CSZ20] for details. The spatial window of the set AxN is slightly superdiffusive compared
to the time window to ensure that the random walk starting from x at time 0 will stay
inside AxN till the end of the time window with high probability.

We define now the partition function ZAN,βpxq which only uses disorder in AxN , i.e.,

ZAN,βN pxq :“ Ex
“

e
H
βN

A
x
N

‰

, where H
βN
A
x
N

:“
ÿ

pn,xqPA
x
N

pβNωn,x ´ λpβN qq1tSn“xu . (4.9)

This allows us to decompose the original partition function ZβNN pxq as follows:

Z
βN
N pxq “ ZAN,βN pxq ` Ẑ

A
N,βN

pxq, (4.10)

†Condition (4.4) is satisfied if ω are bounded, Gaussian, or if they have a density expp´V p¨q`Up¨qq, with
V uniformly strictly convex and U bounded. We refer to [Led01] for more details.

‡The scaling constant
?

4π here is different than the constant
?
π in [CSZ20] due to the aperiodicity of

the random walk we consider here.
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where ẐAN,βN pxq
L

2

« 0 is the “remainder”, although it will be the source of the limiting
fluctuation in (4.6). We now perform the Taylor expansion

logZ
βN
N pxq “ logZAN,βN pxq ` log

´

1`
ẐAN,βN pxq

ZAN,βN pxq

¯

“ logZAN,βN pxq `
ẐAN,βN pxq

ZAN,βN pxq
`ON pxq,

(4.11)

where ON pxq is the error term. This approximation is quantified via the following estimates.

Estimate 1. For suitable test functions φp¨q, we have
a

logN ¨
1

N

ÿ

xPZ2

`

ON pxq ´ ErON pxqs
˘

φp x?
N
q

L
2
pPq

ÝÝÝÝÑ
NÑ8

0 . (4.12)

The proof of this estimate uses a simple Taylor expansion estimate, which says that,

essentially, the error term ON pzq is bounded by
` Ẑ

A
N,βN

pxq

Z
A
N,βN

pxq

˘2. In order to bound this error, we

apply Hölder inequality to separate the numerator and denominator. This in turn requires
bounds on the moments of the partition function of order slightly higher than 2, and
bounds on arbitrarily negative moments. In [CSZ20], hyper-contractivity was used to bound
moments of order higher than 2. Alternatively, one can also use more recent techniques from
[LZ23, CZ23] to bound moments of all orders in the subcritical regime.

To bound the negative moments, we use Assumption (4.4) and concentration of measure
estimates ([CSZ20, Poposition 3.1]):
Negative tails. For any β̂ P p0, 1q, there exists c “ cpβ̂q P p0,8q with the following

property: for every N P N and for every choice of Λ Ď t1, . . . , Nu ˆ Z2, one has

@t ě 0 : PplogZΛ,βN
ď ´tq ď c e´t

γ
{c , (4.13)

where γ ą 1 is the same exponent appearing in assumption (4.4).
Next, we need:
Estimate 2. For ZAN,βN p¨q defined as in (4.9) and suitable test function φ,

a

logN ¨
1

N

ÿ

xPZ2

`

logZAN,βN pxq ´ ErlogZAN,βN pxqs
˘

φp x?
N
q

L
2
pPq

ÝÝÝÝÑ
NÑ8

0 . (4.14)

The proof of this is a fairly simple L2
pPq estimate and uses the fact that ZAN,βN p¨q has

very local dependence on the disorder, i.e., ZAN,βN pxq and ZAN,βN pyq are independent if

|x´ y| ě 2N
1
2´

aN
4 !

?
N .

Estimates 1 and 2 imply that the fluctuations of the field logZ
βN
N p¨q is governed by the

fluctuations of the field
Ẑ
A
N,βN

p¨q

Z
A
N,βN

p¨q
. The crucial point here is that the numerator approximately

factorises in a way that cancels the denominator, and what remains is a restricted polymer
partition function for which we can apply a variant of Theorem 3.3. With reference to Figure
1 (B), we define the partition function

ZBN,βN pxq :“ Ex
“

e
H
βN
BN

‰

where H
βN
BN

:“
ÿ

pn,xqPBN

pβNωn,x ´ λpβN qq1tSn“xu
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AxN

N1´aN

¨ ¨ ¨p0, xq

(a) Partition fuction ZAN,βN
pxq.

N1´aN

AxN

BN

p0, xq ¨ ¨ ¨

(b) Partition function ZBN,βN
pxq.

Figure 1. The above figures depict the chaos expansions of ZAN,βN pxq and
ZBN,βN pxq. The disorder used by ZAN,βN pxq is restricted to the set AxN , while
the disorder used by ZBN,βN pxq is restricted to BN .

where the set BN is as in Figure 1. The crucial approximation that we establish in [CSZ20]
is

ẐAN,βN pxq « ZAN,βN pxq
`

ZBN,βN pxq ´ 1
˘

. (4.15)

Here we use again the fact that the time-space window AxN is of microscopic scale compared
to the diffusive scale pN,

?
Nq. The quantitative estimate related to this approximation is

Estimate 3. For ZAN,βN p¨q, Ẑ
A
N,βN

p¨q, ZBN,βN p¨q defined as above and for suitable test
function φ, we have

a

logN ¨
1

N

ÿ

xPZ2

ˆ

ẐAN,βN pxq

ZAN,βN pxq
´

`

ZBN,βN pxq ´ 1
˘

˙

φp x?
N
q

L
1
pPq

ÝÝÝÝÑ
NÑ8

0 .

The above estimates reduce the study of the fluctuation of the field logZ
βN
N p¨q to those of

the field ZBN,βN p¨q, which is a restricted partition function and we can apply the same proof
as for Theorem 3.3 to establish the Edward-Wilkinson limit. �

5. Related results outside the critical regime

In this section we will briefly list some further related work. The focus will be on the
critical dimension, but below the critical disorder strength. We will also discuss results in
the quasi-critical regime and results in higher dimensions.

5.1. Other marginally relevant directed polymer models. Theorems 3.1
and 3.3 are special cases of more general results in [CSZ17b] concerning one-point and
random field fluctuations of directed polymer models that are marginally relevant. Roughly
speaking, a directed polymer model in the time-space domain Nˆ Zd is marginally relevant
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if its replica overlap

RN :“
N
ÿ

n“1

ÿ

xPZd
PpSn “ S1nq,

with S and S1 being two independent random walks on Zd with law P, diverges as a slowly
varying function in N . We will explain in more detail what is meant by the marginal
relevance of a disordered systems and the connection with singular SPDE in Section 11.1.

As we have seen, for the 2d DPM, the divergence of the replica overlap RN is logarithmic.
Besides the 2d DPM, other examples include directed polymer in NˆZd with d “ 1, defined
from a heavy-tailed random walk in the domain of attraction of the Cauchy distribution,
i.e. PpSn ą xq „ x´1, or the disordered pinning model which can be regarded as a directed
polymer on N ˆ Zd with d “ 0, defined from a renewal process on N ˆ t0u (marginally
relevant if the renewals are the times when a simple symmetric random walk on Z returns
to 0). It was shown in [CSZ17b] that these marginally relevant directed polymer models
all exhibit the same asymptotic limit behavior as in Theorems 3.1 for the 2d DPM, which
shows a surprising universality across different dimensions.

5.2. Stochastic Heat Equation. The analogue of Theorem 3.1 for the solution uε

of the mollified SHE (1.3) was proved in [CSZ17b, Theorem 2.15]. More precisely,

Theorem 5.1 (1-point statistics for the mollified SHE). If βε “ pβ̂ ` op1qq
b

2π
log 1

ε

with β̂ P p0, 1q, then for any t ą 0 and x P R2, we have

uεpt, xq
d

ÝÝÝÑ
εÑ0

$

&

%

exp

ˆ

σβ̂W1 ´
σ

2
β̂

2

˙

if β̂ ă 1

0 if β̂ ě 1
,

with W1 a standard normal random variable and σ2
β̂
“ log 1

1´β̂
2 .

Moreover, the analogue Theorem 3.3, i.e. Edwards-Wilkinson limit for the field of the
solution uεpt, ¨q was also established in [CSZ17b]:

Theorem 5.2 (Edwards-Wilkinson fluctuation for the mollified SHE). If βε “
pβ̂ ` op1qq

b

2π
log 1

ε

with β̂ P p0, 1q, then for any test function φ P CcpR
2
q, we have

1

βε

ż

R2
φpxq

´

uεpt, xq ´ 1
¯

dx
d

ÝÝÝÑ
εÑ0

ż

R2
φpxqvpt, xqdx,

where vpt, xq is an in (3.9).

Theorem 2.17 in [CSZ17b] actually considered the fluctuation of the solution as a space-
time field instead of as a field in space at a given time, as stated above. The proof of
Theorem 5.2 is simpler. The joint limit of the solution at finitely many space-time points at
sub-diffusive scales is identified in [CSZ17b, Theorem 2.15].

5.3. Alternative approach to subcritical 2d KPZ. In a subset of the sub-
critical regime for the 2d KPZ considered in Theorem 4.1, tightness of the fluctuation field
was first established in [CD20], while [Gu20] gave an alternative proof using tools from
stochastic analysis. The linearisation strategy is the same as in [CSZ20], but [Gu20] used
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the Clark-Ocone formula (see [Nua06] for a reference and more background on Malliavin
calculus) to express

log uεpt, xq “ Er log uε s `

ż t

0

ż

R2
E
“

Ds,y log uεpt, xq |Fs
‰

dW ps, yq,

where Ds,y is the Malliavin derivative and Fs is the filtration generated by the white noise
field pW pr, xq : r ă sq up to time s. Using Malliavin calculus, the above is equal to

log uεpt, xq “ Er log uε s `

ż t

0

ż

R2
E
”Ds,yu

ε
pt, xq

uεpt, xq

ˇ

ˇ

ˇ
Fs

ı

dW ps, yq . (5.1)

The linearisation is based on the same observation as in Section 4, namely, uεpt, xq can be
approximated by a quantity that only depends on the noise in a tiny neighborhood of pt, xq,
and hence decouples from the numerator in the right-hand side of (5.1) as well as the σ-field
Fs. Once the linearisation is achieved, the Edwards-Wilkinson limit is obtained via the
second order Poincaré inequality [Cha09, NPR09], which states that given a random variable
X defined from a white noise W on a domain Λ, the total variation distance between the
distribution of X and that of a normal random variable ζ with matching mean and variance
can be bounded by

dTV pX, ζq ď C E
“

}DX}4H
‰1{4 E

“

}D2X}4op

‰1{4
, (5.2)

where D is again the Malliavin derivative, H is the L2 space of functions on Λ, and } ¨ }op is
the operator norm of the Hessian operator D2X. The fact that the second order Poincaré
inequality involves a fourth moment is why the result of [Gu20] is restricted to a subset of
the subcritical regime.

We also mention that, spatial averages of the solution of the mollified 2d KPZ equation
on the mesoscopic scale have been shown in [Tao24b] to also have Gaussian fluctuations. In
[NN23], Theorem 4.1 has been generalised to the fluctuation field of F puεpt, xqq with general
initial condition uεp0, ¨q and for a suitable class of functions F that includes F pzq “ log z.

5.4. Nonlinear stochastic heat equations. A program to study nonlinear sto-
chastic heat equations at the critical dimension two was initiated in [DG22] and studied
further in [Tao24a, DG23, DG24]. In [DG22, Tao24a], they consider SPDEs of the form

Btu
ε
“

1

2
∆uε `

?
2π

a

| log ε|
σ
`

uε
˘

ξε, t ą 0, x P R2, (5.3)

where σ : r0,8q Ñ r0,8q is a globally Lipschitz function with Lipschitz constant Lippσq ă 1,
which is below the critical value β̂c “ 1 of the linear SHE.

In [DG22], the analogue of Theorem 5.1 on the limit of one-point distribution was
established. More precisely, if uεp0, ¨q ” a ě 0, then the solution uεpt, xq of (5.3) at any
t ą 0 and x P R2 converges in distribution to a random variable Ξa,QpQq with Q “ 2, which
solves the following forward-backward SDE (FBSDE):

dΞa,Qpqq “ JpQ´ q,Ξa,QpqqqdBpqq, q P p0, Qs,

Ξa,Qp0q “ a,

Jpr, bq “
1
?

2
E
“

σ2`Ξb,rprq
˘‰1{2

,

(5.4)
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where pBpqqqqě0 is a one-dimensional Brownian motion, and a is the initial condition of the
FBSDE Ξa,Qp¨q, with terminal time Q. When σpuq “ cu with c ă 1, Ξa,2p2q is log-normal
and this recovers Theorem 5.1.

The connection between (5.3) and the FBSDE (5.4) is that for Q P p0, 2s, uεpε2´Q, xq „
Ξa,QpQq. Furthermore, given Q P p0, 2s, one has

uεpε2´Q
´ ε2´pQ´qq, xq « Ξa,Qpqq, q P r0, Qs,

where ε´pQ´qq corresponds to the exponential time scale N
Q´q

2 in Corollary 2.2 with N “ ε´2.
Such exponential time scales for the nonlinear SHE are motivated by the same type of
second moment calculations as in Corollary 2.2. The heuristic justification for (5.4) is the
following. Denote T “ ε2´Q and r “ Q´ q. By second moment calculations, a small error
is incurred if we turn off the noise ξε (i.e., evolve according to the heat equation) in the
time interval pT ´ ε2´r, T ´ ε2´r`δ

q for a very small δ ą 0. Smoothing by the heat flow on
this time interval allows one to replace uεpT ´ ε2´r`δ, ¨q by a random constant distributed
roughly as Ξa,Qpqq “ Ξa,QpQ´rq, which becomes the initial condition for the evolution of uε

from time T ´ ε2´r`δ onward. Consider the evolution of uε till a later time T ´ ε2´r`∆ for
some small ∆ ą δ. The time duration of this evolution is T ´ ε2´r`∆

´pT ´ ε2´r`δ
q « ε2´r,

and therefore to compute the increment of the quadratic variation of uεp¨, xq in this time
interval, it suffices to consider (5.3) with initial condition Ξa,QpQ´ rq and time duration
ε2´r, which leads to the SDE in (5.4) with diffusion coefficient Jpr,Ξa,QpQ´ rqq.

The analogue of Theorem 5.2 on the Edwards-Wilkinson limit for the non-linear SHE
(5.3) was established in [Tao24a].

In [DG23, DG24], the results in [DG22] and [Tao24a] were extended to σ that do not
necessarily satisfy the condition Lippσq ă 1. For technical convenience, they considered a
variant of (5.3) where smoothing is performed on σpuqξ instead of on ξ, but the result is
expected to be the same. The key idea of [DG23] is that if Lippσq “:

?
A ą 1, then the

result of [DG22] applies to uε up to a time scale of ε̃2 :“ ε2´ 2
A with the corresponding

spatial scale ε̃ “ ε1´ 1
A . Heuristically, if one performs an averaging on this space-time scale,

then ε̃ replaces ε as the basic spatial scale of smoothing, while Jp2{A, ¨q “: σ̃p¨q replaces
σp¨q as the renormalised diffusion function. If Lippσ̃q “:

a

Ã ă 8, then one can apply
[DG22] to this renormalised non-linear SHE up to a time scale of ε̃2´ 2

Ã “ pεp2´
2
A
q
q
1´ 1

Ã " ε̃2.
This procedure can then be iterated to find the maximal time scale ε2´Q at which one can
identify the distributional limit of uεpε2´Q, xq. The corresponding Edwards-Wilkinson limit
was obtained in [DG24].

5.5. Anisotropic KPZ and related models. The general 2-dimensional KPZ is
formally written as

Bth “
1

2
∆h` x∇h,Q∇hy ` ξ, t ą 0, x P R2, (5.5)

where x¨, ¨y is the Euclidean inner product, ξ is the usual space-time white noise, and Q

is a 2ˆ 2 matrix. When Q “
ˆ

1 0
0 ´1

˙

, it is called the purely anisotropic KPZ (AKPZ).

This model emerged in the physics literature in [Wol91]. It was shown in [CET23] that the

correlation length of the interface grows like
b

tplog tq1{2.
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Although the 2-dimensional anistropic KPZ is also a critical singular SPDE, just as the
2-dimensional SHE and isotropic KPZ, the techniques are very different. We refer to the
lecture notes by Cannizzaro and Toninelli [CT24] for more details, where their techniques
apply to a family of critical and supercritical singular SPDEs, including the stochastic Navier
Stokes equation with divergence-free driving noise, Burgers equation, diffusion in the curl of
a 2d Gaussian Free Field, self-repelling Brownian polymers, etc.

The weak coupling limit of (5.5), with the same noise strength as in Theorem 4.1 for the
isotropic KPZ, has also been studied [CES21, CET23]. More precisely, in [CES21, CET23],
instead of mollifying the noise, all Fourier modes beyond order 1{ε are truncated, which is
an alternative method of performing the so-called ultraviolet cutoff to smoothe things at
spatial scale ε. The strength of non-linearity in the AKPZ (c.f. (1.6)) is then scaled down as

λ “

b

λ̂{ log ε´1. The random field fluctuation of the AKPZ in this weak coupling regime is
shown to converge to the solution of the following Edwards-Wilkinson equation:

Bth “
νeffpλ̂q

2
∆h`

b

νeffpλ̂q ξ, with νeffpλ̂q “

c

2

π
λ̂2
` 1. (5.6)

We note that, in contrast to the isotropic 2d KPZ treated in Theorem 4.1, the coefficient of
∆h is also modified. But there is no phase transition in λ̂ in the sense that the strength of
the limiting noise ξ is bounded for all λ̂ ą 0. A key property needed in the analysis of the
AKPZ is that it has an explicit Gaussian invariant measure (the Gaussian free field). This
is a common feature shared by models in this class. Again, we refer to the lecture notes
[CT24] for more details.

5.6. The quasi-critical regime. The fluctuations of the partition functions as a
random field have very different features in the sub-critical and critical regimes:

‚ in the sub-critical regime β̂ ă 1, fluctuations are asymptotically Gaussian after
centering and rescaling by β´1

N „ β̂´1?logN , see Theorem 3.3:

a

logN

ż

R2
φpxq

´

Z
βN
tN ptx

?
N uq ´ 1

¯

dx
d

ÝÝÝÝÑ
NÑ8

β̂
b

1´ β̂2

ż

R2
φpxqv̂pt, xqdx , (5.7)

where Btv̂pt, xq solves a normalised version of the Edwards-Wilkinson equation (3.9),
namely Btv̂pt, xq “ 1

2∆v̂pt, xq ` ξpt, xq v̂pt, xq with Btv̂p0, ¨q “ 1 (we moved the scaling
factor p1´ β̂2

q
´1{2 into (5.7) for later comparison, see below);

‚ on the other hand, in the critical regime β̂ “ 1, and actually in the whole critical
window β̂2

“ 1`Op 1
logN q, see (1.16), a non-Gaussian scaling limit emerges with no

need of centering and rescaling, see Theorem 6.1:
ż

R2
φpxqZ

βN
tN ptx

?
N uqdx

d
ÝÝÝÝÑ
NÑ8

ż

R2
ϕpxqSHFϑ0,tpdx,R

2
q ,

where SHFϑs,tpdx, dyq is the critical 2d stochastic heat flow, see Section 6.

To interpolate between these regimes, we can let β̂ “ β̂pNq Ò 1 from below the critical
window. In view of (1.16), this amounts to taking β “ βN in the quasi-critical regime defined
by:

σ2
βN
“

1

RN

ˆ

1´
ϑN

logN

˙

with 1 ! ϑN ! logN . (5.8)
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It is proved in [CCR23] that throughout this quasi-critical regime, the partition function as
a random field has Gaussian fluctuations, after centering and rescaling by

a

ϑN , a factor
which interpolates between

?
logN and 1:

a

ϑN

ż

R2
φpxq

´

Z
βN
tN ptx

?
N uq ´ 1

¯

dx
d

ÝÝÝÝÑ
NÑ8

ż

R2
φpxqv̂pt, xqdx , (5.9)

where v̂pt, xq, as in (5.7), solves the Edwards-Wilkinson equation.† This shows that non-
Gaussian behavior does not appear below the critical window. Note that setting formally
β̂2
“ 1´ ϑN

logN in (5.7), as prescribed by (5.8), we would obtain (5.9).
The strategy to prove (5.9), inspired by [CC22], is to decompose the space-averaged

partition function approximately into a sum of independent random variables and then
apply a Central Limit Theorem under a Lyapunov condition, which requires estimating
moments of the partition function of order higher than two. A key difficulty is the lack of
hypercontractivity, which holds in the sub-critical regime β̂ ă 1, but not in the quasi-critical
regime (5.8) (nor in the critical regime β̂ “ 1), since the main contribution now comes from
terms of diverging order in the chaos expansion. To this end, novel moment estimates are
derived in [CC22] by exploiting and extending the strategy in [CSZ23a, LZ23].

5.7. Higher dimensions. The Directed Polymer Model, the Stochastic Heat Equation
and the KPZ equation have also been studied in dimensions d ě 3. A difference in the higher
dimensional setting is that, contrary to the two-dimensional case, the L2 critical point (at
which the second moment of the polymer partition function diverges) and the true critical
point (where the polymer undergoes a localisation-delocalisation phase transition) do not
coincide. This is a phenomenon known for some time in the directed polymer literature,
see the references in [Com17, Zyg24]. The analogue of Theorems 3.3, 5.2, and 4.1 have
been established in dimensions d ě 3 below the L2 critical point [MU18, CCM24, CCM20,
CNN22, LZ22], which requires scaling of the noise strength in mollified SHE and KPZ by a
factor of ε

d´2
2 (equivalent to no scaling in the inverse temperature β in the directed polymer

model). Characterising the random field in d ě 3 beyond the L2 regime remains a challenging
task. Some progress has been made in the directed polymer setting by Junk [Jun22, Jun23],
and the equivalence of the fluctuation for the mollified SHE and the mollified KPZ has
recently been established in [JN24], where the limiting field is believed to solve an analogue
of the Edwards-Wilkinson equation driven by a stable noise field.

5.8. Space-time mollifications of noise. So far, we have been discussing spatial
mollifications of the noise, which is convenient because the noise is still white in time and
hence we can define the solution of the mollified SHE (1.3) in terms of Itô integral. However,
it is also meaningful to consider a regularisation where the noise is mollified in both space
and time. This approach was considered in [GRZ18] for the SHE in dimensions d ě 3 and
in [Kot24] in d “ 2. Even though there is still Edwards-Wilkinson limit in the weak disorder
regime, there are additional difficulties because the time mollification destroys the martingale
structure of the process and the path measures are tilted by self-intersections local times.
We refer to [GRZ18, Kot24] for details.

†To compare with [CCR23, Theorem 1.1], note that the RHS of (5.9) is a Gaussian random variable with

variance σ2
t,φ :“

ş

R2
ˆR2 φpxqKtpx, x

1
qφpx

1
qdxdx

1 with Ktpx, x
1
q :“

şt

0
1

2u
e
´
|x´x

1
|
2

2u du.
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Figure 2. The pictures above illustrate the critical 2d stochastic heat
flow, SHFpϑq, and its scaling properties. The top-right picture and the two
bottom pictures are zoomed-in snapshots of the upper-left picture, which is
a simulation of SHFpϑq with ϑ “ 0. The singularity of the critical 2d SHF
w.r.t. the Lebesque measure can be seen from the upper-left picture. The
zoomed-in snapshots demonstrate the scaling covariance of SHFpϑq stated in
(10.1). In particular, the zoomed-in fields appear to be smoother than the
original field, since (10.1) shows that zooming in has the effect of decreasing
the disorder strength ϑ.

6. The Critical 2d SHF

6.1. Main result. We assume throughout this section that βN and σ2
N have been

chosen in the critical window as in (1.16) for some ϑ P R.
Recall the family of point-to-point partition functions ZβNM,N px, yq from (1.11). To keep

the notation simple, we will omit βN from Z
βN
M,N . We regard ZM,N p¨, ¨q as a random measure
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on Z2
ˆZ2. Scaling space and time diffusively and also the mass of the random measure, we

define the family of rescaled random measures ZN :“
`

ZN ; s,tpdx,dyq
˘

0ďsďt
by

ĳ

R2
ˆR2

ϕpxqψpyqZN ; s,tpdx,dyq :“
1

N

ÿ

x,yPZ2

ϕ
´ x
?
N

¯

ψ
´ y
?
N

¯

ZtNsu,tNtupx, yq, (6.1)

where ϕ,ψ P CcpR
2
q are test functions with compact support. We regard ZN ; s,tpdx,dyq as

a random variable taking values in the space of Radon measures MpR2
ˆ R2

q on R2
ˆ R2,

equipped with the vague topology.
The main result from [CSZ23a] is that in the critical window, the rescaled partition

function ZN ; s,tpdx, dyq, regarded as a stochastic process in the space MpR2
ˆ R2

q indexed
by 0 ď s ď t ă 8, converges in law to a unique limit, that we denote by SHFϑs,tpdx,dyq.

Theorem 6.1 (Critical 2d SHF). Let βN be chosen in the critical window (1.16) for some
ϑ P R. As N Ñ8, the family of random measures ZN “ pZN ; s,tpdx, dyqq0ďsďt converges in
finite dimensional distribution to a unique limit

SHFpϑq :“ pSHFϑs,tpdx, dyqq0ďsďtă8 ,

called the critical 2d stochastic heat flow. The limit SHFpϑq does not depend on the law of
the disorder ω except for the assumptions in (1.8). The first and second moments are

ErSHFϑs,tpdx,dyqs “ gt´spy ´ xq dx dy , (6.2)

CovrSHFϑs,tpdx,dyq, SHF
ϑ
s,tpdx

1, dy1qs “ Kϑ
t´spx, x

1; y, y1qdx dy dx1 dy1 , (6.3)

with the kernel Kϑ
t´s defined by

Kϑ
t px, x

1; y, y1q :“ 4π g t
2

`

y`y
1

2 ´ x`x
1

2

˘

ĳ

0ăaăbăt

g2apx
1
´ xqGϑpb´ aq g2pt´bqpy

1
´ yq da db ,

(6.4)

where g is the heat kernel in R2 defined in (2.5), and Gϑ is defined in (8.12)-(8.13).

Remark 6.2. The original definition of the Stochastic Heat Flow in [CSZ23a, Theorem 1.1],
denoted by Z ϑ, was derived from directed polymers with simple symmetric random walk,
which is periodic and has variance 1

2 (in each component). The definition of SHFpϑq here
is slightly different, because the random walk S is aperiodic and has unit variance, which
matches the scaling limit of the solution of the mollified SHE. To match the two definitions,
it suffices to rescale space, time, and the measure in order to match the first two moments:
compare (6.2)-(6.4) with [CSZ23a, eqs. (1.13) and (3.56)]. This leads to the identification

SHFϑs,tpdx,dyq
d
“ 4 Z ϑ

s,tpd
x?
2
, d y
?

2
q
d
“ 2 Z ϑ´log 2

2s,2t pdx, dyq , (6.5)

where the second equality holds by scaling covariance, see [CSZ23a, Theorem 1.2] and
Theorem 10.1 below, and νpdx, dyq “ µpd x?

2
, d y
?

2
q denotes the measure νpAq :“ µp 1?

2
Aq for

A Ď R2
ˆ R2. Relation (6.5) corrects a misprint in [CSZ23a, Remark 1.5].

Remark 6.3. The covariance kernel Kϑ
t´spx, x

1; y, y1q was first identified in [BC98] psee
also [CSZ19b]q and is logarithmically divergent near the diagonals x “ x1 or y “ y1. One
can also express Kϑ

t´spx, x
1; y, y1q in terms of the Volterra function, see [CM23, CM24] and

the references therein.
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In what follows, we will sketch the proof Theorem 6.1 in [CSZ23a], which was carried out
without any axiomatic characterisation of the limit SHFpϑq. This difficulty was overcome by
comparing with a family of coarse-grained models and then applying a Lindberg principle.
Recently, Tsai [Tsa24] gave an axiomatic characterisation of SHFpϑq and then applied it
to show that the solution of the mollified 2d SHE in the critical window also converges to
SHFpϑq. We will discuss this in more detail in Section 10.3.

6.2. Universality via a Lindeberg principle. To illustrate some of the proof
ingredients for Theorem 6.1 in a simpler setting, we sketch here how one might apply a
Lindeberg principle to show that the limit of the random measures ZN in Theorem 6.1, if it
exists, does not depend on the law of the disorder variables ω “ pωpn, zqq

pn,zqPNˆZ2 .
Let us consider the averaged point-to-plane partition function

ZN pϕq :“
1

N

ÿ

xPZ2

ϕ
´ x
?
N

¯

Z
βN
N pxq, ϕ P CcpR

2
q, (6.6)

which equals
ť

ϕpxqZN ;0,1pdx,dyq in the notation introduced in (6.1).
By (2.2), ZN pϕq admits the polynomial chaos expansion

ZN pϕq “ ϕN `
1

N

8
ÿ

r“1

ÿ

z0,z1,...,zrPZ
2

n0:“0ăn1ă¨¨¨ănrăN

ϕ
´ z0?

N

¯

r
ź

i“1

qni´ni´1
pzi ´ zi´1qξN pni, ziq, (6.7)

where
ϕN :“

1

N

ÿ

z0PZ
2

ϕ
´ z0?

N

¯

. (6.8)

Note that ZN pϕq is a function of the i.i.d. random variables ξN :“ pξN pn, xqqn,xPNˆZ2 .
A Lindeberg principle is said to hold when the law of a function Ψpζq of a family of

random variables ζ “ pζiqiPT does not change much if ζ is replaced by another family
of random variables η “ pηiqiPT with matching first few moments. Lindeberg principles
provide powerful tools to prove universality, the simplest instance being the universality
of the Gaussian distribution from the central limit theorem. The usual formulation such
as in [Cha06] requires the family of random variables to be independent (or exchangeable),
and Ψ needs to have bounded first three partial derivatives. This is not satisfied when
Ψ is a multilinear polynomial, whose derivatives are unbounded. This case was treated
in [Rot79, MOO10] (see also [CSZ17a]). Although the results in these references are not
directly applicable to ZN pϕq for reasons that we will explain shortly, we can still apply the
general approach. We first recall the Lindeberg principle from [MOO10].

Lindeberg principle [MOO10]. Consider a function Ψpxq defined as a sum of mutilinear
polynomials in the variables x “ pxiqiPT by

Ψpxq :“
ÿ

IĂT,|I|ă8
ψpIq

ź

iPI

xi, (6.9)

where ψ is a real-valued function defined on finite subsets of the index set T.
Let ζ “ pζiqiPT and η “ pηiqiPT be two i.i.d. family with mean 0, variance 1, and

Er|ζi|
3
s _ Er|ηi|

3
s ă 8. Then we note that

ErΨpζqs “ ErΨpηqs “ ψpHq and VarpΨpζqq “ VarpΨpηqq “
ÿ

IĂT,1ď|I|ă8
ψpIq2.
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Without loss of generality, we assume that Ψ has been normalised with VarrΨpζq2s “ 1. To
identify conditions that ensure Ψpζq and Ψpηq are close in distribution, we consider

ErfpΨpηqqs ´ ErfpΨpζqqs for f P C3
b pRq,

i.e., bounded continuous test functions with bounded first three derivatives.
Assume for simplicity that T is a finite set with elements labelled by 1, . . . , |T|. Then we

replace ζi by ηi one variable at a time and for each 0 ď k ď |T|, define the k-th interpolating
family by ζpkq with ζpkqi “ ηi for 1 ď i ď k and ζpkqi “ ζi for i ą k. Note that ζp0q “ ζ and
ζp|T|q “ η. We can then write the telescopic sum

ErfpΨpηqqs ´ ErfpΨpζqqs “
|T|
ÿ

k“1

ErfpΨpζpkqqq ´ fpΨpζpk´1q
qqs. (6.10)

Denote gk,ζ,ηpxq :“ fpΨpη1, . . . , ηk´1, x, ζk`1, . . . , ζ|T|qq. By Taylor expansion,

fpΨpζpkqqq ´ fpΨpζpk´1q
qq “ gk,ζ,ηpηkq ´ gk,ζ,ηpζkq

“ g1k,ζ,ηp0qpηk ´ ζkq `
1

2
g2k,ζ,ηp0qpη

2
k ´ ζ

2
kq `Rpηkq ´Rpζkq,

where Rpxq is the remainder in the Taylor expansion of gk,ζ,ηpxq and satisfies

|Rpxq| ď }g3k,ζ,η}8|x|
3
ď }f3}8|BkΨpζ

pkq
q|

3
|x|3.

Here BkΨ denotes the partial derivative w.r.t. xk and does not depend on xk – note that
because Ψ is multilinear, B2

kΨ “ 0. Substituting the above calculations into (6.10) and using
the fact that pζk, ηkq are independent of pζi, ηiqi‰k, we find that the first and second order
terms in the Taylor expansion cancel out, and

ˇ

ˇErfpΨpηqqs ´ ErfpΨpζqqs
ˇ

ˇ ď }f3}8

|T|
ÿ

k“1

Er|BkΨpζ
pkq
q|

3
s pEr|ζk|

3
s ` Er|ηk|

3
sq

ď }f3}8max
k

`

Er|ζk|
3
s ` Er|ηk|

3
s
˘

|T|
ÿ

k“1

E
“ˇ

ˇBkΨpζ
pkq
q
ˇ

ˇ

3‰
.

(6.11)

This is the point where the analysis in [MOO10] is no longer adequate when considering the
critical case.

Note that for each k, BkΨpζq (we replaced ζpkq by ζ for simplicity) also admits a polynomial
chaos expansion in the variables ζ. In [MOO10], E

“ˇ

ˇBkΨpζq
ˇ

ˇ

3‰ is bounded using hyper-
contractivity (see also [CSZ20, Theorem B.1]), which bounds higher than 2 moments by
the second moment with an additional weight ck´1

3 on each chaos component of order k.
Therefore,

E
“ˇ

ˇBkΨpζq
ˇ

ˇ

3‰
ď

´

ÿ

IĂT: kPI

c
2p|I|´1q
3 ψpIq2

¯
3
2
ď c

3degpΨq
3

´

ÿ

IĂT: kPI

ψpIq2
¯

3
2
“ c

3degpΨq
3 InfkpΨq

3
2 ,

where c3 ą 1 depends only on the law of ζ, degpΨq :“ maxt|I| : ψpIq ą 0u is the degree of
Ψ, and

InfkpΨq :“ ErpBkΨpζqq
2
s “

ÿ

IĂT: kPI

ψpIq2
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is called the influence of ζk on Ψpζq in [MOO10]. We can then bound the r.h.s. of (6.11) by

ˇ

ˇErfpΨpηqqs ´ ErfpΨpζqqs
ˇ

ˇ ď Cf,ζ,ηc
3degpΨq
3

`

max
k

InfkpΨq
˘

1
2

|T|
ÿ

k“1

ÿ

IĂT: kPI

ψpIq2

“ Cf,ζ,ηc
3degpΨq
3

`

max
k

InfkpΨq
˘

1
2

ÿ

IĂT:|I|ě1

|I|ψpIq2

ď Cf,ζ,ηc
3degpΨq
3 degpΨq

`

max
k

InfkpΨq
˘

1
2VarpΨpζqq. (6.12)

When we consider a sequence ΨN with uniformly bounded degree and variance, the r.h.s. of
(6.12) tends to 0 once we show that the maximum influence maxk InfkpΨN q Ñ 0 as N Ñ8.

The argument above fails when applied to the averaged partition function ZN pϕq in the
critical window, because we will see in Section 8 that in the polynomial chaos expansion
of ZN pϕq in (6.7), the dominant contribution comes from terms of degree A logN where
A ą 0 can be arbitrarily large. Therefore in (6.12), c3degpΨq

3 « c3A logN
3 can overwhelm

maxk InfkpΨN q, and we will need sharper bounds than provided by hyper-contractivity.

Applying Lindeberg to ZN pϕq. Our starting point is (6.11), which was actually derived
only using the assumption that for each i P T, ηk and ζk have matching first two moments.
Recall the i.i.d. family ξN “ pξN pn, zqqpn,zqPNˆZ2 from (2.1), and denote

ΨN pξN q :“ ZN pϕq “ ϕN `
1

N

8
ÿ

r“1

ÿ

z0,z1,...,zrPZ
2

n0:“0ăn1ă¨¨¨ănrăN

ϕ
´ z0?

N

¯

r
ź

i“1

qni´ni´1
pzi ´ zi´1qξN pni, ziq.

To show that the distribution of ΨN pξN q hardly changes if we replace ξN by another family
ζN with matching first two moments (and fourth moment of the same order), we apply the
bound in (6.11), where the index set is now T “ NˆZ2. For each pn, zq P T, we observe the
factorisation

Bpn,zqΨN pξN q “
1

N
Z0,npϕN , zqZn,N pz,1q, (6.13)

where 1pzq ” 1, ϕN pzq :“ ϕpz{
?
Nq for z P Z2, and for any ψ : Z2

Ñ R and m ă n,

Zm,npψ, zq “
ÿ

xPZ2

ψpxqZm,npx, zq and Zm,npz, ψq “
ÿ

yPZ2

Zm,npz, yqψpyq

are the point-to-plane partition functions with the free endpoint weighted by the function ψ
(recall the point-to-point partition function Zm,npx, yq from (2.3)).

Note that Z0,npϕN , zq and Zn,N pz,1q are independent, while Z0,npϕN , zq has the same dis-
tribution as Z0,npz, ϕN q and Zn,N pz,1q has the same distribution as Z0,N´npz,1q. Therefore
we have

ˇ

ˇErfpΨN pξN qqs ´ ErfpΨN pζN qqs
ˇ

ˇ

ď }f3}8max
pn,zq

`

Er|ξN pn, zq|
3
s ` Er|ζN pn, zq|

3
s
˘

ÿ

pn,zqPNˆZ2

E
“ˇ

ˇBpn,zqΨpζ
pn,zq
N q

ˇ

ˇ

3‰ (6.14)

ď
}f3}8

N3 max
pn,zq

`

Er|ξN pn, zq|
3
s ` Er|ζN pn, zq|

3
s
˘

ÿ

pn,zqPNˆZ2

E
“

|Z0,npz, ϕN q|
3‰E

“

|Z0,N´npz,1q|
3‰,

where ζpn,zqN is a family that interpolates between ξN and ζN as in ζpkq in (6.10).
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As will be discussed in Section 9, the key bound is that for any δ ą 0, we have

E
“

Z0,N´npz,1q
4‰
ď CN δ and E

“

Z0,npz, ϕN q
4‰
ď Ce

´
c|z|
?
NN δ, (6.15)

where the exponential factor e´
c|z|
?
N comes from the assumption that ϕN “ ϕp¨{

?
Nq is

supported on a subset of Z2 within distance C
?
N of the origin. Substituting these bounds

into (6.14) and using the fact that

Er|ξN pn, zq|
3
s ď ErξN pn, zq

4
s
3{4
ď Cσ3

N ď
C

plogNq3
, (6.16)

which follows easily from the definition of ξN in (2.1), this gives an upper bound of order
σ

3
N

N
3N

2`2δ, with the factor 1

N
3 coming from the normalisation in (6.14). This upper bound

tends to 0 as N Ñ8 if we choose δ ă 1{2.
Although this argument does not address whether ZN pϕq converges in distribution to a

unique limit, which is the heart of Theorem 6.1, it does bring out several key ingredients
in the proof of Theorem 6.1, namely, the Lindeberg principle that led to (6.14), and the
necessary moment bounds (6.15) for the partition function. We will see more complex
variants of these when we sketch the proof of Theorem 6.1 in Section 7.

6.3. Proof outline of Theorem 6.1. We now sketch the proof of Theorem 6.1
– the main result of [CSZ23a]. The key difficulty is the lack of a characterisation of the
limit, i.e., the critical 2d stochastic heat flow (SHF). As will be discussed in Section 9,
earlier results [CSZ19b, GQT21, Che24b] established the convergence of all positive integer
moments of the averaged point-to-point partition functions

ZβN
N pϕ,ψq :“

1

N

ÿ

xPZ2

ϕ
´ x
?
N

¯

Z
βN
0,N px, yqψ

´ x
?
N

¯

, ϕ P CcpR
2
q, ψ P CbpR

2
q, (6.17)

which equals
ť

ϕpxqψpyqZN ;0,1pdx,dyq in the notation introduced in (6.1). However, as
shown in [CSZ23b], the limiting moments limNÑ8 ErZβN

N pϕ,ψqks diverge too fast in k P N
to uniquely characterise the distributional limit of ZβN

N pϕ,ψq.
Our strategy is to show that the laws of pZβN

N pϕ,ψqqNPN form a Cauchy sequence, i.e.,

ZβM
M pϕ,ψq and ZβN

N pϕ,ψq are close in distribution for large M,N P N . (6.18)

We took inspiration from the work of Kozma [Koz07] on the convergence of the loop erased
random walk on Z3, which also lacked a characterisation of the scaling limit.

To establish (6.18), for each ε P p0, 1q, we will define a coarse-grained partition function
Z pcgq
ε pϕ,ψ|Θq, which has a similar structure to ZβN

N pϕ,ψq and admits a polynomial chaos
expansion w.r.t. a family of random variables Θ. We will use Z pcgq

ε as a bridge between ZβM
M

and ZβN
N . More precisely, we first perform a coarse-grained approximation for ZβN

N pϕ,ψq on
the time-space scale pεN,

?
εNq and show that

ZβN
N pϕ,ψq

L
2

« Z pcgq
ε pϕ,ψ|ΘN,εq, (6.19)

where ΘN,ε is a family of weakly dependent coarse-grained disorder variables that depend
on N and ε, and the approximation error can be made arbitrarily small in L2 by choosing ε
small and N large.
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We then prove (6.18) by showing that

Z pcgq
ε pϕ,ψ|ΘN,εq

dist
« Z pcgq

ε pϕ,ψ|ΘM,εq, (6.20)

which follows by applying a Lindeberg principle for sums of multilinear polynomials of a
family of weakly dependent random variables Θ. Such a Lindeberg principle was developed
in [CSZ23a, Appendix A].

Similar to the discussions in Section 6.2 where we tried to apply a Lindeberg principle
directly to ZβN

N pϕ,ψq as a function of the disorder variables ξN pn, zq, the key ingredients
for the Lindeberg principle are uniform bounds on Er|ΘN,ε|

3
s, where ΘN,ε turns out to

be an averaged partition function itself, and similar moment bounds as in (6.15) for the
point-to-plane versions of the coarse-grained partition function Z pcgq

ε pϕ,ψ|ΘN,εq.
Here is a summary of the key proof ingredients:

A. Coarse-Graining, which leads to coarse-grained partition functions with a similar
structure to the original polymer partition functions;

B. Time-Space Renewal Structure, which gives a probabilistic representation for the
second moment calculations and leads in the continuum limit to the so-called Dickman
subordinator;

C. Lindeberg Principle for multilinear polynomials of dependent random variables, which
controls the effect of changing Θ in the coarse-grained partition function Z pcgq

ε pϕ,ψ|Θq;

D. Functional Inequalities for Green’s Functions of multiple random walks on Z2, which
yield sharp higher moment bounds for both the original partition functions and the
coarse-grained partition functions.

Remark 6.4. The proof steps outlined above can be applied to models with different micro-
scopic details in the critical window, such as directed polymer models with different underlying
random walks, or the solution of the mollified 2d SHE (1.3). As long as space-time is scaled
to produce the same diffusion constant, they can all be compared to the same coarse-grained
model Z pcgq

ε pϕ,ψ|Θq, just with different coarse-grained variables ΘN,ε. In particular, they
should lead to the same limiting SHF Z ϑ in Theorem 6.1 if their mean are normalised to the
same value, the disorder strength is chosen to produce matching values of limNÑ8 ErΘ2

N,εs

for each ε ą 0, and there are uniform bounds on Er|ΘN,ε|
3
s. See Section 7 for more details.

7. Coarse graining and Lindeberg

7.1. Coarse graining. We now explain how to define the coarse-grained partition
function Z pcgq

ε pϕ,ψ|ΘN,εq, see (6.19), and the family of coarse-grained disorder variables
ΘN,ε. We will sketch the key ideas. The more precise details can be found in [CSZ23a,
Section 4].

Given ε P p0, 1q, we partition space-time into mesoscopic blocks indexed by i P N and
a “ pa1, a2q P Z

2:

BεN pi, aq :“ ppi´ 1qεN, iεN s
loooooooomoooooooon

TεN piq

ˆppa´ p1, 1qq
?
εN, a

?
εN s

looooooooooooooomooooooooooooooon

SεN paq

X Z3 , (7.1)

where
`

pa´ p1, 1qq
?
εN, a

?
εN

‰

:“
`

pa1 ´ 1q
?
εN, a2

?
εN

‰

ˆ
`

pa2 ´ 1q
?
εN, a2

?
εN

‰

.
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Figure 3. Space-time is partitioned into mesoscopic boxes BεN pi, aq as in
(7.1). Given Γ “ ppn1, z1q, ..., pnr, zrqq, the sequence of space-time points
associated with a given term in the chaos expansion in (7.2), the boxes
containing the dotted lines are the ones that intersect Γ. The starting point
pd, xq P Γ and the end point pf, yq P Γ of each dotted line are the points of
entry and exit in Γ for that mesoscopic time interval TεN piq. Each dotted
line contributes a factor Xd,f px, yq to the corresponding term in the chaos
expansion, while each solid line contributes a random walk transition kernel.

By (6.17) and (2.3), we see that ZβN
N pϕ,ψq admits a polynomial chaos expansion in the

disorder variables ξN :

ZβN
N pϕ,ψq “ qN0,N pϕ,ψq (7.2)

`
1

N

8
ÿ

r“1

ÿ

z0,...,zr`1PZ
2

n0:“0ăn1ă...ănrăN

ϕN pz0q

#

r
ź

j“1

qnj´nj´1
pzj ´ zj´1qξN pnj , zjq

+

qN´nrpzr`1 ´ zrqψN pzr`1q,

where ϕN pxq :“ ϕp x?
N
q, ψN pxq :“ ψp x?

N
q, and

qNm,npϕ,ψq :“
1

N

ÿ

x,yPZ2

ϕ
´ x
?
N

¯

qn´mpy ´ xqψ
´ y
?
N

¯

.

Note that each term in (7.2) is associated with a sequence of space-time points

Γ :“ ppn1, z1q, . . . , pnr, zrqq,

which contribute the product of disorder variables
śr
i“1 ξN pni, ziq. We will group the terms

in (7.2) according to the set of mesoscopic blocks BεN pi, aq visited by points in Γ. More
precisely, we proceed as follows (see Figure 3):

‚ First, we decompose the sum in (7.2) according to the set of mesoscopic time intervals
TεN piq visited by points in Γ “ ppn1, z1q, ..., pnr, zrqq.

‚ For each time interval TεN piq visited by points in Γ, let pd, xq P Γ be the point of
entry into TεN piq, with pd, xq P BεN pi, aq for some a P Z2. Similarly, let pf, yq P Γ be
the point of exit from TεN piq, with pf, yq P BεN pi, a

1
q for some a1 P Z2, which could be

different from a (see Figure 3).



32 F. CARAVENNA, R. SUN, AND N. ZYGOURAS

Given the above coarse-grained decomposition, we can rewrite

ZβN
N pϕ,ψq “ qN0,N pϕ,ψq

`
1

N

ÿ

v,wPZ2

ϕN pvq
8
ÿ

k“1

ÿ

0ăi1ă...ăikď
1
ε

ÿ

d1ďf1 P TεN pi1q, ... , dkďfk P TεN pikq
x1, y1, ... ,xk, yk PZ

2

(7.3)

qd1
px1 ´ vqXd1,f1

px1, y1q

#

k
ź

j“2

qdj´fj´1
pxj ´ yj´1qXdj ,fj

pxj , yjq

+

qN´fkpw ´ ykqψN pwq,

where, recalling the point-to-point partition function from (1.11),

Xd,f px, yq :“

#

ξN pd, xq1tx“yu if d “ f,

ξN pd, xqZ
βN
d,f px, yq ξN pf, yq if d ă f.

(7.4)

Ideally, we would like to use the local limit theorem (2.6) to replace the random walk
transition kernels qdj´fj´1

pxj ´ yj´1q by a heat kernel

qdj´fj´1
pxj ´ yj´1q ù gpij´ij´1qεN

ppaj ´ a1j´1q
?
εNq “

1

εN
gij´ij´1

paj ´ a1j´1q, (7.5)

which depends only on the index of the mesocopic blocks BεN pij´1, a
1
j´1q Q pfj´1, yj´1q and

BεN pij , ajq Q pdj , xjq. Namely, approximate (7.3) by

Zpmock´cgq
N,ε pϕ,ψ|ΘN,εq “ g1pϕ,ψq (7.6)

` ε

t 1
ε

u
ÿ

k“1

ÿ

0ăi1ă...ăikďt 1
ε u

a
1
0,a1,a

1
1,...,a

1
k,ak`1PZ

2

ϕεpa
1
0q

ˆ k
ź

j“1

gij´ij´1
paj ´ a1j´1qΘN,εpij ,~ajq

˙

¨ g 1
ε
´ir
par`1 ´ a1rqψεpar`1q,

where g1pϕ,ψq :“
ş

ϕpxqg1py ´ xqψpyqdxdy, and

ϕεpaq :“
1

εN

ÿ

vPSεN paqXZ
2

ϕN pvq , ψεpaq :“
1

εN

ÿ

wPSεN paqXZ
2

ψN pwq

and ΘN,εpi,~aq :“
1

εN

ÿ

pd,xqPBεN pi,aq
pf,yqPBεN pi,a

1
q

with dďf

Xd,f px, yq, for ~a :“ pa, a1q P pZ2
q
2. (7.7)

However, the above approximation is not good enough (this is why we gave the name
“mock-cg”) because to have a negiligible error from the local limit approximation, we require
that:

(R1) The mesoscopic time intervals TεN pijq, j “ 1, ..., k, are well separated, that is, ij´ij´1 ą

Kε for some Kε P N that diverges fast enough as ε Ó 0, so that replacing any point in
BεN pij´1, a

1
j´1q, resp. BεN pij , ajq, by a single point induces a negligible error in the

local limit theorem approximation. Furthermore, we need the cumulative error in the
local limit theorem approximations to be small.

(R2) The space-time coordinates of the transition kernels gij´ij´1
paj ´ a1j´1q obey diffusive

scaling, that is, |aj ´ a1j´1| ăMε

a

ij ´ ij´1 for some Mε that diverges slow enough as
ε Ó 0 (Mε “ log log 1

ε suffices), so that the local limit theorem approximation induces a
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Figure 4. A simplified coarse-graining that defines Zpmock´cgq
N,ε pϕ,ψ|ΘN,εq.

A coarse-grained disorder variable ΘN,εpi,~aq is defined for each visited meso-
scopic time interval TεN piq. The random walk transition kernel connecting
TεN piq and TεN pjq, with i ă j, is replaced by a heat kernel connecting the
corner of the mesoscopic spatial box of exit from TεN piq to the corner of the
box of entry in TεN pjq, represented here by a solid line. Such replacements
can lead to poor approximations if j´ i ă Kε.

negligible error, while restricting the spatial coordinates to such an essentially diffusive
window captures the dominant contribution to the partition function.

With regards to the first requirement (R1), a suitable choice is Kε :“ plog 1
ε q

6, which
ensures that in the chaos expansion (7.2), configurations of Γ “ ppn1, z1q, . . . , pnr, zrqq that
visit three mesoscopic time intervals TεN pijq, TεN pij`1q, TεN pij`2q with ij`1 ´ ij ă Kε and
ij`2 ´ ij`1 ă Kε give a negligible contribution to the partition function. We can therefore
restrict the chaos expansion for ZN pϕ,ψq to such no-triple configurations. However, it can
be shown by L2 calculations that there will always be non-negligible contributions from
configurations that contain Op1q number of mesoscopic time indices ij with ij`1 ´ ij ă Kε.
This is why Zpmock´cgq

N,ε pϕ,ψq is not a good approximation of ZN pϕ,ψq, although it captures
some key features of the coarse-grained partition function that we need.

To obtain a good coarse-grained approximation of ZN pϕ,ψq, we proceed as follows.
As discussed above, we may restrict the chaos expansion of ZN pϕ,ψq to the no-triple
configurations. Given a configuration Γ “ ppn1, z1q, . . . , pnr, zrqq in the chaos expansion (7.2),
we call a visited mesoscopic time interval TεN pijq isolated if ij ´ ij´1, ij`1 ´ ij ě Kε. If aj
(resp. a1j) denotes the mesoscopic spatial box of entry (resp. exit) by Γ in the time interval
TεN pijq, then we define an associated coarse-grained disorder variable ΘN,εpij ,~ajq as in (7.7),
with

ΘN,εpi,~aq :“
1

εN

ÿ

pd,xqPBεN pi,aq
pf,yqPBεN pi,a

1
q

with dďf

Xd,f px, yq. (7.8)

We also need to consider mesoscopic time intervals TεN pijq and TεN pij`1q visited by Γ
with ij`1 ´ ij ă Kε, in which case, the no-triple configuration assumption ensures that
mesoscopic time intervals TεN pi

˚
q with ij ă i˚ ă ij`1, or i

˚
ě ij ´Kε, or i

˚
ď ij`1 `Kε are

not visited by the configuration Γ. If aj (resp. a1j`1) denotes the mesoscopic spatial box
of entry (resp. exit) by Γ in TεN pijq (resp. from TεN pij`1q), then we define an associated
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Figure 5. A more accurate coarse-graining approximation. Since the second
and third visited boxes are separated by less than Kε mesoscopic time
intervals, they need to be grouped together as part of a single coarse-grained
disorder variable ΘN,εp

~i,~aq.

coarse-grained disorder variable ΘN,εpij , ij`1, aj , a
1
j`1q by

ΘN,εp
~i,~aq :“ ΘN,εpi, i

1, a, a1q (7.9)

:“
1

εN

ÿ

pd,xqPBεN pi,aq
pf
1
,y
1
qPBεN pi

1
,a
1
q

ÿ

b: |b´a|ďMε

b
1
: |b
1
´a
1
|ďMε

such that
|b
1
´b|ďMε

?
i
1
´i

ÿ

pf,yqPBεN pi,bq
pd
1
,x
1
qPBεN pi

1
,b
1
q

such that
dďf, d

1
ďf

1

Xd,f px, yq qd1´f px
1
´ yq Xd

1
,f
1px1, y1q,

where i ă i1, and we imposed a constraint on the mesoscopic spatial variables b, b1 relative
to a and a1. To unify notation, when i “ i1, we will let ΘN,εp

~i,~aq :“ ΘN,εpi,~aq as defined in
(7.8). Schematically, the coarse-grained disorder variable can be represented as

ΘN,εp
~i,~aq :“

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

if i “ i1,

if i1 ´ i ě 1.

(7.10)

Comparing with (7.2), we can also interpret ΘN,εp
~i,~aq as an averaged partition function,

where the time window has length pi1´ i` 1qεN and the spatial average is on the scale
?
εN .

We are now ready to introduce a more accurate coarse-grained approximation of the
partition function ZβN

N pϕ,ψq than Zpmock´cgq
N,ε pϕ,ψ|ΘN,εq in (7.6).

Definition 7.1 (Coarse-grained partition function). Let ϕε, ψε be defined in (7.7),
and let ΘN,ε :“ pΘN,εp

~i,~aqq~i“pi,i1q,~a“pa,a1q be the family of coarse-grained disorder variables
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defined in (7.8) and (7.9). Then we define the coarse-grained partition function

Z pcgq
ε pϕ,ψ|ΘN,εq :“ g1pϕ,ψq ` ε

plog 1
ε
q
2

ÿ

k“1

ÿ

b,cPZ2

ÿ

p~i1,...,~ikqP~A
pno tripleq
ε

p~a1,...,~akqP~A
pdiffq
ε; b,c

ϕεpbqgi1pa1 ´ bqΘN,εp
~i1,~a1q

ˆ

#

k
ź

j“2

gij´i
1
j´1
paj ´ a1j´1qΘN,εp

~ij ,~ajq

+

g
t 1
ε

u´i
1
k
pc´ a1kqψεpcq .

(7.11)

In (7.11), the indices of the mesoscopic time intervals i1 ď i11 ă i2 ď i12 ă ¨ ¨ ¨ ik ď i1k
have been grouped into blocks~ij “ pij , i

1
jq, each associated with a coarse-grained variable

ΘN,εp
~ij ,~ajq. The set ~Apno tripleq

ε ensures that for each j, ij ´ i1j´1 ě Kε, i
1
j ´ ij ă Kε, and

ij`1 ´ i1j ě Kε, while the set ~Apdiffq
ε; b,c imposes diffusive constraints on the mesoscopic spatial

indices ~aj “ paj , a
1
jq such that |a1j ´ aj | ď Mε

b

i1j ´ ij ` 1 and |aj ´ a1j´1| ď Mε

b

ij ´ i1j´1.

For the precise definitions of ~Apno tripleq
ε and ~Apdiffq

ε; b,c , see [CSZ23a, (4.4) and (4.6)].

Remark 7.2. Some remarks are in order:

1. In [CSZ23a], we imposed a further constraint in the definition of the coarse-grained
variables ΘN,ε so that each depends only on disorder in finitely many mesocopic space-
time blocks, which implies finite range dependence among the ΘN,ε’s. More precisely,
in the definition of Xd,f px, yq in (7.4), we replace the point-to-point partition function
Z
βN
d,f px, yq by a variant Zpdiffq

d,f px, yq that does not collect any disorder variables ξN pn, zq
outside a slightly super-diffusive window, see [CSZ23a, Section 4.3].

2. Z pcgq
ε pϕ,ψ|ΘN,εq is a polynomial chaos expansion in the family of coarse-grained dis-

order variables ΘN,ε “ pΘN,εp
~i,~aqq and has the same structure as the chaos expansion

for ZβN
N pϕ,ψq in (7.2), which shows a degree of self-similarity. The time horizon N

in ZβN
N pϕ,ψq is replaced by 1{ε, and the random walk transition kernels are replaced

by heat kernels. Although the i.i.d. family of disorder variables ξN has been replaced
by the dependent family ΘN,ε, the coarse-grained partition function Z pcgq

ε pϕ,ψ|ΘN,εq

is still critical since it approximates ZβN
N pϕ,ψq with βN in the critical window. See

also (7.15).

3. If we change the family ΘN,ε to ΘM,ε, then Z pcgq
ε pϕ,ψ|ΘM,εq will approximate

ZβM
M pϕ,ψq instead of ZβN

N pϕ,ψq. It was shown in [CSZ23a, Theorem 4.7] that

lim
εÓ0

lim sup
NÑ8

E
“`

ZβN
N pϕ,ψq ´Z pcgq

ε pϕ,ψ|ΘN,εq
˘2‰

“ 0. (7.12)

As we vary N , we only change the input ΘN,ε for the coarse-grained partition function
Z pcgq
ε pϕ,ψ|ΘN,εq. This paves the way to apply a Lindeberg principle to show that

Z pcgq
ε pϕ,ψ|ΘN,εq

dist
« Z pcgq

ε pϕ,ψ|ΘM,εq.

4. In (7.11), the order of the chaos expansion in the variables ΘN,ε is restricted to
r ď plog 1

ε q
2. This induces a negligible error because it can be shown that the dominant

contribution comes from terms of the order log 1
ε , similar to the fact that in the chaos
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expansion for the averaged partition function ZβN
N pϕ,ψq in the critical window, the

dominant contribution comes from terms of order logN , see Section 8. On the other
hand, restricting to r ď plog 1

ε q
2 allows us to control the cumulative error of replacing

random walk transition kernels by heat kernels as in (7.5).

7.2. Applying Lindeberg to the coarse-grained model. We now sketch how
to apply a Lindeberg principle to show that for each ε ą 0,

Z pcgq
ε pϕ,ψ|ΘN,εq

dist
« Z pcgq

ε pϕ,ψ|ΘM,εq as M,N Ñ8. (7.13)

That is, the laws of Z pcgq
ε pϕ,ψ|ΘN,εq, N P N, form a Cauchy sequence.

The key difference from what was sketched in Section 6.2 is that,

ΨεpΘq :“ Z pcgq
ε pϕ,ψ|Θq

is a multilinear polynomial of the family of dependant random variables Θ “ pΘp~i,~aqq, where
we take Θ “ ΘN,ε for N P N. Such a Lindeberg principle for multilinear polynomials of
dependent random variables was formulated in [CSZ23a, Lemma A.4]. Instead of repeating
the statement of this Lindeberg principle, we highlight here the key ingredients.

To establish (7.13), the first condition of the Lindeberg principle is that the covariances
of pΘN,εp

~i,~aqq converge to finite limits as N Ñ8 (see the bound in [CSZ23a, (A.11)]). It is
clear from their definitions that distinct ΘN,εp

~i,~aq are uncorrelated (but not independent).
Therefore we only need to verify that for each p~i,~aq “ ppi, i1q, pa, a1qq with 1 ď i ď i1 ď ε´1

and a, a1 P Z2, the limit
σ2
εp
~i,~aq :“ lim

NÑ8
E
”

`

ΘN,εp
~i,~aq

˘2
ı

(7.14)

exists and is finite. We will sketch the proof of this in Section 8.3. Although not needed for
the Lindeberg principle, we will also show in Section 8.3 that

σ2
εppi, iq, pa, aqq „

4π

log 1
ε

as ε Ó 0. (7.15)

Remark 7.3. As will be explained later in (8.22), among all coarse-grained disorder variables,
ΘN,εppi, iq, pa, aqq are the dominant ones as ε Ó 0. The precise asymptotics in (7.15) is a
signature of the critical nature of the model, because it matches exactly the variance of the
original disorder variable ErξN pn, zq

2
s “ σ2

N „
4π

logN in the critical window (see (2.9)) if we
identify the time horizon ε´1 with N . This shows a degree of self-similarity of the model
under renormalisation.

The second condition of the Lindeberg principle in [CSZ23a, Lemma A.4] is that the
input Θ of ΨεpΘq has a local dependency structure such that if Θp~i1,~a1q belongs to the
dependency neighbourhood of Θp~i,~aq, and Θp~i2,~a2q belongs to the dependency neighbourhood
of tΘp~i,~aq,Θp~i1,~a1qu, then no term in the chaos expansion of ΨεpΘq can contain at least
2 of the 3 factors among tΘp~i,~aq,Θp~i1,~a1q,Θp~i2,~a2qu. In our setting, this is guaranteed by
the facts that we only consider ΘN,εp

~i,~aq with i1 ´ i ă Kε, ΘN,εp
~i,~aq and ΘN,εp

~j,~bq are
independent when ri, i1sX rj, j1s “ H, and each term in the chaos expansion of ΨεpΘq consists
of well separated variables Θp~ii,~aiq with ii`1 ´ i1i ě Kε thanks to the no-triple configuration
condition in our coarse-graining. Details can be found in [CSZ23a], Lemma 9.3.

The last condition of the Lindeberg principle are fourth moment bounds on ΘN,εp
~i,~aq and

the coarse-grained point-to-plane partition function, analogous to (6.16) and (6.15). More
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precisely, we need to show that

lim sup
NÑ8

E
“

ΘN,εp
~i,~aq4

‰

ă
C

log 1
ε

, (7.16)

where C is uniform in p~i,~aq and ε ą 0 small. We will sketch the proof of this bound in
Section 9.3. This bound is not sharp, but already more than enough. In fact, it suffices to
have a bound of the order ε´c for some c ą 0 sufficiently small.

For a0 P Z
2 and m P r1, 1{εs, the point-to-plane analogue of the coarse-grained partition

function Z pcgq
ε pϕ,ψ|Θq in (7.11) is defined by

Z
pcgq
r0,mspa0, ψε|ΘN,εq :“ gmpa0, ψεq `

plog 1
ε
q
2

ÿ

k“1

ÿ

cPZ2

ÿ

p~i1,...,~ikqP~A
pno tripleq
ε

p~a1,...,~akqP~A
pdiffq
ε; a0,c

gi1pa1 ´ a0qΘN,εp
~i1,~a1q

ˆ

#

k
ź

j“2

gij´i
1
j´1
paj ´ a1j´1qΘN,εp

~ij ,~ajq

+

gm´i1k
pc´ a1kqψεpcq .

Note that in contrast to (7.11), we do not multiply the sum by ε because there is no spatial
averaging over the initial point a0. The plane-to-point partition function Z

pcgq
r0,mspϕε, a0|ΘN,εq

is defined similarly, and we can also shift the time window. We will then need the following
analogue of (6.15): For any δ ą 0 and ϕ P CcpR

2
q, uniformly in m P r1, 1{εs, a0 P Z2, N

large and ε small, we have

E
“

Z
pcgq
r0,mspa0,1|ΘN,εq

4‰
ď Cε´δ and E

“

Z
pcgq
r0,mspa0, ϕε|ΘN,εq

4‰
ď Ce´c

?
ε|a0|ε´δ. (7.17)

The same reasoning as in (6.14) explains why the above bounds are sufficient for the
application of the Lindeberg principle, and why the bound in (7.16) can be replaced by ε´c

for any c P p0, 1´ 2δq. We will sketch the proof of (7.17) in Section 9.3.

8. Second Moment Calculations and Dickman Subordinator

In this section, we explain how to compute the second moment of partition functions when
βN and σ2

N are chosen in the critical window defined in (1.16) for some ϑ P R. This is based
on a renewal representation that leads to the so-called Dickman subordinator in the scaling
limit. We will then discuss how these calculations can be applied to the coarse-grained
disorder variables ΘN,εp

~i,~aq introduced in Section 7.

8.1. Renewal representation. We recall from (2.2) the polynomial chaos expansion
of the point-to-plane partition function

Z
βN
N p0q “ 1`

8
ÿ

r“1

ÿ

n0“0ăn1ă¨¨¨ănrăN

z0:“0,z1,...,zrPZ
2

r
ź

i“1

qni´ni´1
pzi ´ zi´1qξN pni, ziq.

Since the summands are L2-orthogonal and ErξN pni, ziq
2
s “ σ2

N by (2.1), we have

ErpZβNN p0qq2s “ 1`
8
ÿ

r“1

ÿ

n0“0ăn1ă¨¨¨ănrăN

z0:“0,z1,...,zrPZ
2

σ2r
N

r
ź

i“1

qni´ni´1
pzi ´ zi´1q

2. (8.1)
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We now introduce a probabilistic representation of this sum by observing that

qnpxq
2

RN
1tnďNu

defines a probability kernel on t1, . . . , Nu ˆ Z2, which can be interpreted as the increment
distribution of a time-space renewal process. More precisely, if pT pNqi , X

pNq
i qiPN are i.i.d.

random variables with distribution qnpxq
2

RN
1tnďNu, and we denote their partial sums by

τ
pNq
k :“ T

pNq
1 ` . . .` T

pNq
k , S

pNq
k :“ X

pNq
1 ` . . .`X

pNq
k , (8.2)

then pτ pNqk qkPN0
(with τ pNq0 :“ 0) is a renewal process with increment distribution q2np0q

RN
1tnďNu,

and we have

ErpZβNN p0qq2s “ 1`
8
ÿ

r“1

ÿ

n0“0ăn1ă¨¨¨ănrăN

z0:“0,z1,...,zrPZ
2

pσ2
NRN q

rP
`

pτ
pNq
k , S

pNq
k q “ pnk, zkq for 1 ď k ď r

˘

“

8
ÿ

r“0

ˆ

1`
ϑ` op1q

logN

˙r

Ppτ pNqr ă Nq. (8.3)

where we used (1.16) for σ2
N in the critical window and summed over the intermediate values.

We have a similar renewal representation for the second moment of the point-to-point
partition function ZβNn,mpx, yq, whose chaos expansion is given in (2.3). Actually, a more
fundamental object in our analysis is

UN pn, xq :“ σ2
N Var

`

Z
βN
0,np0, xq

˘

“ σ2
N Var

`

Z
βN
`,``npz, x` zq

˘

,

for which we have

UN pn, xq :“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1tx“0u if n “ 0,

σ2
N qnpxq

2
`

8
ÿ

k“1

ÿ

z1,...,zkPZ
2

0ăn1ă...ănkăn

k`1
ź

j“1

σ2
Nqnj´nj´1

pzj ´ zj´1q
2

if n ě 1,

(8.4)

where n0 :“ 0, z0 “ 0, nk`1 :“ n and zk`1 :“ x. Similar to the graphical representation
(2.3) of the chaos expansion of Zβn,mpx, yq, we can graphically represent the expansion for
UN pm´ n, y ´ xq “ σ2

N Var
`

ZβNn,mpx, yq
˘

by

UN pm´ n, y ´ xq “
ÿ

rě1

ÿ

năn1ă¨¨¨ănrăm

z1,...,zr PZ
2

¨ ¨ ¨ ¨ ¨ ¨

pnr, zrq

pn1, z1q

pn, xq

pm, yq

where each lace corresponds to one factor of qnj´nj´1
pzj´zj´1q, each solid circle corresponds

to one factor of σ2
N , while the empty circle at pn, xq means there is no factor σ2

N assigned to
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pn, xq. A more compact graphical representation is

σ2
NUN pm´ n, y ´ xq ”

pn, xq pm, yq

or (8.5)

“
ÿ

rě1

ÿ

n1,...,nr
z1,...,zr

pn, xq pn1, z1q pn2, z2q pnk, zkq pm, yq

¨ ¨ ¨

where we included an extra factor of σ2
N to turn the empty circle at pn, xq into a solid circle.

Using the time-space renewal process introduced in (8.2), we can now write

UN pn, xq “
8
ÿ

r“1

´

1`
ϑ` op1q

logN

¯r
Ppτ pNqr “ n , SpNqr “ xq. (8.6)

Summing over x P Z2 then gives

UN pnq :“
ÿ

xPZ2

UN pn, xq “
8
ÿ

r“1

´

1`
ϑ` op1q

logN

¯r
Ppτ pNqr “ nq. (8.7)

To identify sharp asymptotics for ErpZβNN p0qq2s in (8.3) and for UN pn, xq and UN pnq as

N Ñ 8, the key observation is that
τ
pNq
ts logNu

N converges in distribution to a Lévy process
called the Dickman subordinator.

8.2. Dickman subordinator. We now introduce the Dickman subordinator, which
is a truncated, 0-stable Lévy process Y “ pYsqsě0 with Lévy measure

νpdtq :“
1

t
1p0,1qptq dt . (8.8)

For s ě 0, it has Laplace transform

EreλYss “ exp

"

s

ż 1

0
peλt ´ 1q

dt

t

*

. (8.9)

The density of the Ys can be computed explicitly as (see [CSZ19a, Theorem 1.1])

fsptq :“
PpYs P dtq

dt
“

$

’

’

’

&

’

’

’

%

s ts´1 e´γ s

Γps` 1q
for t P p0, 1s,

s ts´1e´γs

Γps` 1q
´ sts´1

ż t´1

0

fspaq

p1` aqs
da for t P p1,8q.

(8.10)

The calculation in [CSZ19a] was partly based on the observation that conditional on all
jumps of Y up to time s being smaller than a value t P p0, 1q, Ys{t has the same law as the
original Ys (see [CSZ19a, Prop. B.1]). More properties of the Dickman subordinator can be
found in [GKLV24].

The name Dickman subordinator is motivated by the fact that

eγf1ptq “ %ptq,

where γ “ ´
ş8

0 plog uqe´udu is the Euler–Mascheroni constant and %p¨q is the so-called
Dickman function. It was originally derived by Dickman [Dic30] in studying the distribution
of the largest prime factor of a uniformly chosen number in t1, . . . , nu. It also arises from
the distribution of the size of the longest cycle in a uniformly chosen random permutation
of n elements. More instances can be found in [PW04] and the references therein.
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The key observation in the asymptotic analysis of ErpZβNN p0qq2s, UN pn, xq and UN pnq is
the following convergence result for the time-space renewal process pτ pNq, SpNqq defined in
(8.2) (see [CSZ19a, Prop. 2.2] and [CSZ23a, Lemma 3.3]).

Lemma 8.1. We have the following weak convergence in càdlàg space:
˜

τ
pNq
ts logNu

N
,
S
pNq
ts logNu
?
N

¸

sě0

d
ÝÝÝÝÑ
NÑ8

pYs,
1?
2
WYs

qsě0, (8.11)

where pYsqsě0 is the Dickman subordinator and pWsqsě0 an independent standard Brownian
motion on R2.

Proof sketch. The finite-dimensional distribution convergence in (8.11) can be verified by
showing the convergence of their Laplace transforms. We will illustrate this for τ pNq:

E
”

e
λ
N τ

pNq
s logN

ı

“ E
”

e
λ
N T

pNq
1

ıs logN
“

´

1`
1

logN

N
ÿ

n“1

`

e
λ
N n
´ 1

˘1` op1q

n

¯s logN

ÝÝÝÝÑ
NÑ8

exp
´

s

ż 1

0

`

eλx ´ 1
˘dx

x

¯

,

where in the second equality we used the local central limit theorem to approximate
1
RN

q2np0q “
1

logN
1
np1 ` op1qq for n large. The full f.d.d. convergence can be found in the

proof of [CSZ19a, Prop. 2.2], while process level tightness was proved in [CSZ23a, Lemma
3.3]. �

In our analysis of the polymer partition functions in the critical window with parameter
ϑ, defined in (1.16), we will need the following weighted Green’s function of the Dickman
subordinator:

Gϑptq :“

ż 8

0
eϑs fsptq ds t P p0,8q, ϑ P R. (8.12)

When t P p0, 1s, by (8.10), we have the more explicit form

Gϑptq “

ż 8

0

epϑ´γqs s ts´1

Γps` 1q
ds , t P p0, 1s , ϑ P R . (8.13)

We note that Gϑ is related to the Volterra function

νptq :“

ż 8

0

ts

Γps` 1q
ds.

See [Ape10] for more information on functions of this type.
We also record here the small t asymptotics of Gϑptq, which plays a crucial role in our

analysis of the critical 2d SHF (see [CSZ19a, Prop. 1.6]):

Proposition 8.2. For t P p0, 1s, Gϑptq is C
8 and strictly positive. As t Ó 0, we have

Gϑptq “
1

tplog 1
t q

2

"

1`
2ϑ

log 1
t

`O

ˆ

1

plog 1
t q

2

˙*

(8.14)

and
ż t

0
Gϑpsqds “

1

log 1
t

"

1`
ϑ

log 1
t

`O

ˆ

1

plog 1
t q

2

˙*

. (8.15)
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These asymptotics were derived in [CSZ19a] via a renewal framework. But they can also
be derived from the asymptotic theory of Volterra functions [Ape10]. Note that Gϑ is barely
integrable near 0, which is the hallmark of a model at the critical dimension.

8.3. Asymptotics. We are now ready to state the asymptotics for ErpZβNN p0qq2s, UN pn, xq
and UN pnq in terms of the weighted Green’s function Gϑptq for the Dickman subordinator.
We will also illustrate how to identify the asymptotics of the coarse-grained disorder variables
ΘN,εp

~i,~aq introduced in Section 7.

Lemma 8.3. Let βN and σ2
N be chosen in the critical window defined in (1.16) for some

ϑ P R. Then we have

ErpZβNN p0qq2s “ pḠϑ ` op1qq logN with Ḡϑ :“

ż 1

0
Gϑptqdt. (8.16)

Proof. By (8.3), we have

ErpZβNN p0qq2s “
8
ÿ

r“0

ˆ

1`
ϑ` op1q

logN

˙r

Ppτ pNqr ă Nq

“ logN

ż 8

0

ˆ

1`
ϑ` op1q

logN

˙ts logNu

P
´ 1

N
τ
pNq
ts logNu

ă 1
¯

ds

“ p1` op1qq logN

ż 8

0
eϑsPpYs ă 1qds “

´

ż 1

0
Gϑptqdt` op1q

¯

logN,

where the last line follows from the convergence in Lemma 8.1 and the lower large deviation
bounds for the renewal process τ pNq stated in [CSZ19a, Lemma 6.1]. �

We also record here the asymptotics for UN pnq and UN pnq, which are of the local limit
theorem type and play a crucial in the analysis in [CSZ23a]. These results were proved in
[CSZ19a, Theorems 1.4, 2.3, 3.7], although the constants therein differ because the underlying
random was the simple symmetric random walk on Z2.

Proposition 8.4. Let ϑ P R be as in Lemma 8.3. For any fixed δ ą 0 and uniformly in
δN ď n ď N , as N Ñ8, we have

UN pnq “
logN

N
Gϑ

`

n
N

˘

p1` op1qq, (8.17)

UN pn, xq “
logN

N2 Gϑ
`

n
N

˘

g n
2N

`

x?
N
q
`

1` op1q
˘

. (8.18)

Proof Sketch. Because the asymptotics are of the local limit theorem type, they do not
follow directly from Lemma 8.1. Instead, using a renewal decomposition, (8.17) and (8.18)
were deduced from their integrated versions in [CSZ19a, Sections 6.2 & 8.3].

We sketch here an alternative approach that is more transparent. First of all, with a bit
more effort, the weak convergence in Lemma 8.3 can be upgraded to a local limit theorem:

P

ˆ

1

N
τ
pNq
ts logNu

“
n

N

˙

“
1

N
fs
`

n
N

˘

p1` op1qq, (8.19)

P

ˆ

1

N
τ
pNq
ts logNu

“
n

N
,

1
?
N
S
pNq
ts logNu

“
x
?
N

˙

“
1

N2 fs
`

n
N

˘

g n
2N

` x
?
N

˘

p1` op1qq, (8.20)
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where fsp¨q is the density of the Dickman subordinator in (8.10), gtp¨q is the heat kernel,
and the op1q error term is uniform in δN ď n ď N and |x| ď 1

δ

?
N .

To see (8.17), note that by (8.7), we have

UN pnq “
8
ÿ

r“1

´

1`
ϑ` op1q

logN

¯r
P
´ 1

N
τ pNqr “

n

N

¯

“ logN

ż 8

0

´

1`
ϑ` op1q

logN

¯ts logNu

P
`

1
N τ

pNq
ts logNu

“ n
N

˘

ds

“
logN

N

ż 8

0
p1` op1qqeϑsfs

`

n
N

˘

ds

“ p1` op1qq
logN

N
Gϑ

`

n
N

˘

.

Similarly, to see (8.18), we use (8.6) to write

UN pn, xq “
8
ÿ

r“1

´

1`
ϑ` op1q

logN

¯r
P
´ 1

N
τ pNqr “

n

N
,

1
?
N
SpNqr “

x
?
N

¯

“ logN

ż 8

0

´

1`
ϑ` op1q

logN

¯ts logNu

P
`

1
N τ

pNq
ts logNu

“ n
N ,

1?
N
S
pNq
ts logNu

“ x?
N

˘

ds

“
logN

N2

ż 8

0
p1` op1qqeϑsfs

`

n
N

˘

g n
2N

`

x?
N

˘

ds

“ p1` op1qq
logN

N2 Gϑ
`

n
N

˘

g n
2N

`

x?
N

˘

.

�

We now sketch the proof of (7.14), that is, the second moment of the coarse-grained
disorder variables ΘN,εp

~i,~aq converge as N Ñ8.

Proof Sketch for (7.14). For simplicity, we focus on ΘN,εpi,~aq defined in (7.8) and (7.10),
with i “ 1 and ~a “ p0, aq for some a P Z2. By (7.8) and (7.4), we have

ΘN,εp1, p0, aqq :“
1

εN

ÿ

pd,xqPBεN p1,0qXBεN p1,aq
ξN pd, xq `

1

εN

ÿ

pd,xqPBεN p1,0q
pf,yqPBεN p1,aq

with dăf

ξN pd, xqZ
βN
d,f px, yq ξN pf, yq.

Note that the first sum is 0 if BεN p1, 0q XBεN p1, aq “ H. The summands are L2-orthogonal,
and

ErξN pd, xq
2
pZ

βN
d,f px, yqq

2ξN pf, yq
2
s “ σ2

NUN pf ´ d, y ´ xq.

Therefore,

ErΘN,εp1, p0, aqq
2
s “

1

pεNq2

ÿ

pd,xqPBεN p1,0qXBεN p1,aq
σ2
N `

1

pεNq2

ÿ

pd,xqPBεN p1,0q
pf,yqPBεN p1,aq

with dăf

σ2
NUN pf ´ d, y ´ xq,

where the first term is bounded by σ2
N „ C{ logN and hence vanishes in the limit N Ñ8.

For the second term, we interpret pεNq´2 ř

pd,xqPBεN p1,0q as an expectation over a point pd, xq
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chosen uniformly from BεN p1, 0q. Using the same renewal representation of UN pf ´ d, y´ xq
as before, we find that

lim
NÑ8

1

pεNq2

ÿ

pd,xqPBεN p1,0q
pf,yqPBεN p1,aq

with dăf

σ2
NUN pf ´ d, y ´ xq “ 4π

ż 8

0
eϑsPBεp1,0qppYs, Vsq P Bεp1, aqqds,

where 4π comes from σ2
N „ 4π{ logN , and PBεp1,0q denotes the law of the continuum time-

space renewal process pYs, Vsq :“ pYs,
1?
2
WYs

q in Lemma 8.1 with pY0, V0q chosen uniformly
from Bεp1, 0q, with Bεpi, aq :“ ppi´ 1qε, iεq ˆ ppa´ p1, 1qq

?
ε, a
?
εq, cf. (7.1). Therefore,

σ2
εp1, p0, aqq :“ lim

NÑ8
ErΘN,εp1, p0, aqq

2
s “ 4π

ż 8

0
eϑsPBεp1,0qppYs, Vsq P Bεp1, aqqds. (8.21)

For more general coarse-grained disorder variables ΘN,εp
~i,~aq, the calculations are similar.

See [CSZ23a, Section 7.1] for more details. �

Lastly, we sketch the proof of (7.15), which shows that the coarse-grained variable
ΘN,εpi, pa, aqq has an asymptotic variance of 4π{ log ε´1 as N Ñ 8 and ε Ó 0, which is
comparable to VarpξN pn, xqq “ σ2

N „ 4π{ logN for the original model if we identify ε´1 as
the time horizon of the coarse-grained model.

Proof Sketch for (7.15). It was shown in [CSZ23a, Lemma 7.1] that whenever i ą 1 or
a ‰ 0,

σ2
εpp1, iq, p0, aqq :“ lim

NÑ8
VarpΘN,εpp1, iq, p0, aqqq ď

Ce´c|a|
2
{i

plog 1
ε q

2 , (8.22)

while σ2
εpi, pa, aqq :“ σ2

εppi, iq, pa, aqq is of the order 1{ log 1
ε . Therefore among all the coarse-

grained disorder variables, ΘN,εpi, pa, aqq are dominant as N Ñ8 and ε Ó 0. Furthermore,
as ε Ó 0,

σ2
εp1, p0, 0qq “ p1` op1qq

ÿ

aPZ2

σ2
εp1, p0, aqq “ p1` op1qq lim

NÑ8
Var

´

ÿ

aPZ2

ΘN,εp1, p0, aqq
¯

,

where the op1q correction is due to (8.22). By (8.21), we have

σ2
εp1, p0, 0qq “ p1` op1qq4π

ż 8

0
eϑsPBεp1,0qpYs ă εqds

“
4π ` op1q

ε

ż ε

0

´

ż 8

0
eϑsPpYs ă ε´ uqds

¯

du

“
4π ` op1q

ε

ż ε

0

´

ż ε´u

0
Gϑptqdt

¯

du

“
4π ` op1q

ε

ż ε

0

1

log 1
ε´u

du “
4π ` op1q

log 1
ε

,

where we used that Y0 is uniformly distributed in r0, εs under PBεp1,0q and Y0 “ 0 under P.
We also used (8.15) in the last line. �
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8.4. Covariance kernel of the critical 2d SHF. We sketch here the covariance
kernel for the critical 2d stochastic heat flow SHFpϑq “ pSHFϑs,tpdx,dyqq0ďsďtă8 given in
Theorem 6.1.

Proof Sketch. The mean of SHFϑs,tpdx, dyq follows directly from the convergence in Theo-
rem 6.1, the definition of ZN ; s,t in (6.1), and the local limit theorem in (2.6).

For illustration, we will identify the kernel
rKϑ
t px, x

1
qdx dx1 :“ CovrSHFϑ0,tpdx,1q,SHF

ϑ
0,tpdx

1,1qs.

By the convergence in Theorem 6.1, we see that
rKϑ
t px, x

1
q “ lim

NÑ8
CovrZ

βN
tN p

?
Nxq, Z

βN
tN p

?
Nx1qs,

where ZβNtN pzq is the point-to-plane partition function with chaos expansion given in (2.2).
By this chaos expansion, we note that

CovrZ
βN
tN p

?
Nxq, Z

βN
tN p

?
Nx1qs “

ÿ

zPZ2
,1ďnďtN

qnpz ´
?
Nxqqnpz ´

?
Nx1qσ2

NErZtN´np0q
2
s

“

tN
ÿ

n“1

q2np
?
Npx1 ´ xqqσ2

NErZtN´np0q
2
s, (8.23)

where σ2
N comes from Erξ2

N pn, zqs, and we used the fact that the second moment of the
point-to-plane partition function starting from pn, zq and terminal time tN is exactly
ErZtN´np0q

2
s.

Denote u :“ n{N . By the same calculations as in the proof of Lemma 8.3, we have

ErZtN´np0q
2
s “

´

ż t´u

0
Gϑpaqda` op1q

¯

logN.

Substituting this into (8.23), using σ2
N „ 4π{ logN , the local limit theorem (2.6), and a

Riemann sum approximation, we obtain

rKϑ
t px, x

1
q “ p1` op1qq

tN
ÿ

n“1

1

4πn
e´

N |x´x
1
|
2

4n
4π

logN
¨ logN

ż t´u

0
Gϑpaqda

“ 4π

ĳ

0ăuăvăt

g2upx
1
´ xqGϑpv ´ uqdudv.

(8.24)

We refer to [CSZ23a, Prop. 3.6] for the complete derivation of Kϑ
t´s, where the constants

differ due to the periodicity of the simple symmetric random walk. �

9. Higher Moment Bounds

In this section, we explain how to bound higher moments of the averaged partition
function (cf. (6.1))

ZβN
N ;0,tpϕ,ψq “

1

N

ÿ

x,yPZ2

ϕ
´ x
?
N

¯

ψ
´ y
?
N

¯

Z0,tNtupx, yq, (9.1)

where βN is chosen in the critical window defined in (1.16) for some ϑ P R. As explained
in Section 6.2 and in particular in (6.15), such moment bounds (4th moment will suffice)
are needed to apply the Lindeberg principle. As explained in Section 6.3 and 7.2, to prove
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Theorem 6.1 on the critical 2d stochastic heat flow (SHF), we will apply a Lindeberg
principle for dependent random variables, which requires the moment bound (7.16) for the
coarse-grained disorder variables ΘN,εp

~i,~aq and the moment bound (7.17) for the coarse-
grained partition function Z pcgq

ε pϕ,ψ|ΘN,εq. We will focus mainly on the derivation of
moment bounds for ZβN

tN pϕ,ψq. We will then sketch how this implies the desired moment
bound for ΘN,εp

~i,~aq and how the same strategy can be used to derive moment bounds for
Z pcgq
ε pϕ,ψ|ΘN,εq. At the end of this section, we will also formulate moment bounds for the

critical 2d SHF and discuss related results on the 2d Delta-Bose gas.

9.1. Moment bounds and proof strategy. We now formulate the higher moment
bounds for the averaged partition function ZβN

N ;0,tpϕ,ψq defined in (9.1) for some parameter
ϑ P R in the critical window (1.16). For consistency with [CSZ23a, Theorem 6.1] where such
a bound was established, we will let N 1 “ tN and consider the partition averaged on the
spatial scale

?
N 1 instead of

?
N . Namely we consider

ZβN
N
1 pϕ,ψq “

1

N 1
ÿ

x,yPZ2

ϕN 1pxqZ0,N
1px, yqψN 1pyq, (9.2)

where for φ : R2
Ñ R, φN 1 : Z2

Ñ R is defined by setting φN 1pzq to be the average of φ on
the square of volume 1{N 1 centered at z{

?
N 1.

Theorem 9.1 (Higher moments). Fix p, q P p1,8q with 1
p `

1
q “ 1, any integer h ě 3,

and any weight function w : R2
Ñ p0,8q such that logw is Lipschitz continuous. Then

there exist C “ Cphq,C1 “ C1phq ă 8 such that, uniformly in large N 1 ď N P N and locally
integrable ϕ,ψ : R2

Ñ R, we have
ˇ

ˇ

ˇ
E
”´

ZβN
N
1 pϕ,ψq ´ ErZβN

N
1 pϕ,ψqs

¯hıˇ
ˇ

ˇ
ď

C

logp1` N
N
1 q

1

pN 1qh

›

›

›

ϕN 1

wN 1

›

›

›

h

`
p
}ψN 1}

h
`
8 }wN 11BN 1

}
h
`
q

(9.3)

ď
C1

logp1` N
N
1 q

›

›

›

ϕ

w

›

›

›

h

p
}ψ}h8 }w1B}

h
q , (9.4)

where }φ}`p :“ p
ř

z |φpzq|
p
q
1{p, B Ă R2 is any ball (could be R2) that contains the support

of ψ, and BN 1 :“ B
?
N 1.

Remark 9.2. Some remarks are in order:

‚ The bound in (9.4) follows from (9.3) via a simple Riemann sum approximation. For
ZβN
N ;0,tpϕ,ψq defined in (9.1) with averaging on the spatial scale

?
N , the same bound

(9.4) holds with t “ N 1{N . This can be seen by applying (9.3) with ϕ and ψ therein
replaced with ϕtpxq :“ ϕp

?
txq and ψtpxq :“ ψp

?
txq, and using the weight function

wN instead of wN 1. But there is probably room for improvement since we expect that
averaging on larger spatial scales will decrease the variance and the higher moments
of the averaged partition function.

‚ Theorem 9.1 with N 1 “ εN will be used later to deduce the moment bound (7.16) for
the coarse-grained variables ΘN,εp

~i,~aq.
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‚ The weight function w in (9.3) and (9.4) allows us to include the case ψ ” 1, and
to control the spatial decay when }ϕ}p ă 8 and the support of ψ moves away to 8,
which is needed for the bounds in (6.15) and (7.17).

‚ The bound (9.3) implies the moment bound for the point-to-plane partition function
Z0,N

1pz,1q in (6.15). Indeed, assume z “ 0 and let wpxq “ e´}x}, ψ ” 1, and choose

ϕ such that ϕN 1pyq “ N 1 ¨ 1y“0 and ZβN
N
1 pϕ,1q “ Z0,N

1p0,1q. Then (9.3) gives

ˇ

ˇE
“`

Z0,N
1p0,1q ´ 1

˘h‰ˇ
ˇ ď C}wN 1}

h
`
q ď C 1N

h
q , (9.5)

where the exponent can be made arbitrarily small by choosing q large.

‚ Theorem 9.1 can be strengthened by showing that the constants C and C1 in (9.3) and
(9.4) are proportional to pq, which allows one to send p “ pN Ó 1 and q “ qN Ò 8.
This was done in the subcritical regime in [LZ23, Theorem 1.5] and in the quasi-critical
regime in [CCR23] (cf. Section 5.6). There is in fact a unified bound for all disorder
strength βN in or below the critical window, which says that the h-th centred moment of
the averaged partition function ZβN

N pϕq :“ ZβN
N pϕ,1q can be controlled by its variance

raised to the power h{2, provided ϕ is sufficiently regular and is supported on an
appropriate spatial scale such that the variance remains bounded (we considered flat
terminal condition ψ “ 1 for simplicity): for some C “ Cphq ă 8

ˇ

ˇ

ˇ
E
”´

ZβN
N pϕq ´ ErZβN

N
1 pϕqs

¯hıˇ
ˇ

ˇ
ď C VarrZβN

N pϕqs
h
2 .

The details can be found in the forthcoming paper [CSZ25b]. Such a bound in the
quasi-critical regime can be found in [CCR23, Proposition 2.2].

Proof Sketch. The proof of Theorem 9.1 is based on the analysis of collision diagrams of
h independent random walks (see Figure 6). Let us first explain at the heuristic level before
formalising it in terms of operators. For simplicity, we will assume N 1 “ N .

Recalling from (7.2) the polynomial chaos expansion for ZN pϕ,ψq :“ ZβN
N pϕ,ψq, we can

write

ˇ

ˇE
“`

ZN pϕ,ψq ´ ErZN pϕ,ψqs
˘h‰ˇ

ˇ “
1

Nh
ˆ (9.6)

E

«

ˆ 8
ÿ

k“1

ÿ

x1,¨¨¨ ,xkPZ
2

0ăn1ă¨¨¨ănkăN

qn1
pϕN , x1qξN pn1, x1q

" k
ź

j“2

qnj´nj´1
pxj ´ xj´1qξN pnj , xjq

*

qN´nkpxk, ψN q

˙h
ff

,

where ϕN pxq :“ ϕp x?
N
q, ψN pxq :“ ψp x?

N
q,

qmpϕN , zq :“
ÿ

xPZ2

ϕN pxqqmpz ´ xq and qmpz, ψN q :“
ÿ

yPZ2

qmpy ´ zqψN pyq. (9.7)
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We can expand the power inside the expectation in (9.6) as

ÿ

k1,...,khě1

ÿ

pn
prq
i ,x

prq
i qPNˆZ2

1ďiďkr,1ďrďh

h
ź

r“1

q
n
prq
1
pϕN , x

prq
1 q

!

kr
ź

j“2

q
n
prq
j ´n

prq
j´1

px
prq
j ´ x

prq
j´1q

)

q
N´n

prq
kr

px
prq
kr
, ψN q

ˆ E
”

h
ź

r“1

kr
ź

j“1

ξN pn
prq
j , x

prq
j q

ı

, (9.8)

which sums over h sequences of time-space points Γprq :“ pn
prq
i , x

prq
i q1ďiďkr with 0 ă n

prq
1 ă

¨ ¨ ¨ ă n
prq
kr
ă N , and consecutive points in each sequence are connected by the random walk

transition kernel q. Since ξN is an i.i.d. family with zero mean, the factor Er
ś

ξN p¨, ¨qs is
non-zero only when each ξN pn, xq that appears in the product appears at least twice. It was
shown in [CSZ23a] that the dominant contribution (as N Ñ 8) to the expansion in (9.8)
comes from configurations of pΓprqq1ďrďh where ξN pn

prq
j , x

prq
j q are matched in pairs, with the

expectation of each matched pair contributing a factor of σ2
N as in (2.1). In other words,

any ξN pn, xq that is collected by one of the h sequences Γprq is collected by exactly 2 of the
h sequences, and we say there are only pair collisions among pΓprqq1ďrďh. We will focus on
such configurations of Γprq, 1 ď r ď h, and keep track of the matchings between points in
Γprq. In particular, we will partition the sum in (9.8) according to streaks of consecutive
matching between points in the same pair of sequences Γpiq and Γpjq.

As illustrated in Figure 6, we will rewrite the expansion (9.8) of the h-th moment by first
identifying the time intervals ra`, b`s, 1 ď ` ď m, where the streaks of consecutive matching
occurs (the wiggle lines in Figure 6). Denote by I` “ ti`, j`u the indices for the pair of Γprq

for which matching occurs in the `-th streak. Our decomposition ensures that I` ‰ I``1.
Summing over m, a`, b`, I`, and the spatial locations of the solid and hollow circles at times
a` and b` in Figure 6, we can then rewrite the expansion (9.8) using kernels:

1

Nh

8
ÿ

m“1

pσ2
N q

m
ÿ

I1,...,ImĂt1,...,hu
|I`|“2, I`‰I``1

ÿ

0ăa1ďb1ă¨¨¨ăamďbmăN

x1,...,xm ,y1,...,ymPpZ
2
q
h

Q˚,I1a1
pϕN ,x1qU

I1
N pb1 ´ a1,y1 ´ x1q

ˆ

m
ź

`“2

Q
I`´1,I`
a`´b`´1

py`´1,x`qU
I`
N pb` ´ a`,x`,y`qQ

Im,˚
N´bm

pym, ψN q ` op1q, (9.9)

where op1q accounts for the contribution from configurations of pΓprqq1ďrďh that contain
triple collisions, that is, there exists pn, xq that belongs to more than two different Γprq.

The kernels UI`N ,Q
˚,I1
a1

,Q
I`´1,I`
a`´b`´1

,Q
Im,˚
N´bm

are defined as follows:

1. Replica Evolution. Recall UN from (8.4). For I “ ti ă ju Ă t1, ..., hu and x “

pxaq1ďaďh,y “ pyaq1ďaďh P pZ
2
q
h, we define

UIN pn,x,yq :“ 1txi“xju ¨
´

ź

aPt1,...,huzti,ju

qnpya ´ xaq
¯

UN pn, yi ´ xiq ¨ 1tyi“yju . (9.10)
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p0, z1q

pa2, x2q pb2, y2q

pa3, x3q
pb3, y3q

pb1, y1q

p0, z2q

p0, z3q

pa1, x1q

p0, z4q

pa4, x4q

pb4, y4q

¨ ¨ ¨ ¨ ¨ ¨

Figure 6. Illustration of the expansion in (9.8) for the fourth moment.
Each wiggle line represents a streak of consecutive matchings of time-space
points in the same pair of sequences Γpiq and Γpjq, which is assigned weight
σ2
NUN pb ´ a, y ´ xq (see (8.5)) if the streak starts at pa, xq and ends at
pb, yq. Each solid curve between two circles is assigned a random walk tran-
sition kernel q, while each hollow circle at a point pt, yq arises from a se-
quence Γprq that is unmatched at time t and the Chapman-Kolmogorov
decomposition of the associated transition kernel q

n
prq
j´1,n

prq
j

px
prq
j´1, x

prq
j q “

ř

y qnprqj´1,t
px
prq
j´1, yqqt,nprqj

py, x
prq
j q at the intermediate time t. In each time in-

terval between consecutive dashed vertical lines, the product of the curve
weights define a kernel which we call Replica Evolution (see (9.10)) if it
contains a wiggle line, or Constrained Evolution (see (9.11)) if there is no
wiggle line in this time interval.

2. Constrained Evolution. For I “ ti ă ju, J “ tk ă `u Ă t1, ..., hu and x,y P pZ2
q
h, we

define

QI,Jn py,xq :“ 1tyi“yju ¨

˜

h
ź

a“1

qnpxa ´ yaq

¸

¨ 1txk“xlu . (9.11)

Removing the spatial constraint on either side, we define

Q˚,Jn py,xq :“
h
ź

a“1

qnpxa ´ yaq ¨ 1txk“xlu, QI,˚n py,xq :“ 1tyi“yju

h
ź

a“1

qnpxa ´ yaq,

(9.12)

while

Q˚,Jn pϕN ,xq :“
ÿ

zPpZ2
q
h

´

n
ź

i“1

ϕ
` zi?

N

˘

¯

Q˚,Jn pz,xq, (9.13)

and similarly for QI,˚n py, ψN q.
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To decouple the summation range for the time increments a1, b1 ´ a1, a2 ´ b1, . . . in (9.9),
we consider the Laplace transforms of the kernels above:

QI,Jλ,N py, zq :“
2N
ÿ

n“1

e´
λ
N
nQI,Jn py, zq, y, z P pZ2

q
h,

UJλ,N py, zq :“
2N
ÿ

n“0

e´
λ
N
n UJN pn,y, zq, y, z P pZ2

q
h.

(9.14)

Inserting the factor eλe´
λ
N

řm´1
i“1 ppai´bi´1q`pbi`1´aiqq´

λ
N
pN´bmq “ 1 in (9.9) and enlarging the

range of summation for a1, a2´ b1, . . . to t1, . . . , 2Nu and the range of summation for bi´ ai
to t0, . . . , 2Nu, we obtain the upper bound

1

Nh`1

8
ÿ

m“1

pσ2
N q

m
ÿ

I1,...,ImĂt1,...,hu
|I`|“2, I`‰I``1

x1,...,xm ,y1,...,ymPpZ
2
q
h

Q
˚,I1
λ,N pϕN ,x1qU

I1
λ,N pb1 ´ a1,y1 ´ x1q

ˆ

m
ź

`“2

Q
I`´1,I`
λ,N py`´1,x`qU

I`
λ,N px`,y`q ˆ Q

Im,˚
λ,N pym, ψN q, (9.15)

where there is an additional factor N´1 because to introduce the last kernel QIm,˚λ,N , we need
to sum over am`1 ´ bm P t1, . . . , 2Nu, instead of am`1 “ N as in (9.9). The additional sum
over am`1 is compensated by the averaging factor N´1, and the fact this averaging over
am`1 is comparable to having fixed am`1 “ N is justified by the following inequality (see
[CSZ23a, (6.11)])

Q
Im,˚
N´bm

`

ym, z
1
˘

ď
c

N

ÿ

am`1PtN`1,...,2Nu

Q
Im,˚
am`1´bm

`

ym, z
1
˘

.

Remark 9.3. Instead of averaging over the additional variable am`1, one could also take
the maximum over bm of the last random walk operator Q

Im,˚
N´bm

pym, ψN q (which requires
no assumption on ψN). This altenative approach, which has been developed in [CCR23],
leads to a slightly sharper version of the bound (9.4). The key point is that the maximal
random walk operator described above is bounded in Lq for q ą 1, thanks to a variant of the
Hardy-Littlewood maximal inequality, see [CCR23, Lemma 4.18].

The kernels UI`λ,N and Q
˚,I1
λ,N ,Q

I`´1,I`
λ,N ,Q

Im,˚
λ,N define integral operators and we can bound

(9.15) in terms of their operator norms. More precisely, the indicator constraints in (9.10)
and (9.11) suggest that we should regard UIλ,N , with I “ ti ă ju, as an integral operator
acting on functions defined on the following subset of pZ2

q
h:

pZ2
q
h
I :“ tx P pZ2

q
h : xi “ xju. (9.16)

Let `qppZ2
q
h
I q be the space of functions f : pZ2

q
h
I Ñ R with }f}q :“ p

ř

xPpZ2
q
h
I
|fpxq|qq1{q ă 8.

For q ą 1, we regard UIλ,N as an operator from `qppZ2
q
h
I q to `

q
ppZ2

q
h
I q with operator norm

}UIλ,N}q :“ sup
f,g:pZ2

q
h
IÑR

}f}p,}g}q“1

xf,UIλ,Ngy,
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where x¨, ¨y is the inner product and 1
p `

1
q “ 1.

For I “ ti ă ju and J “ tk ă lu, we will regard QI,Jλ,N as an integral operator from
`qppZ2

q
h
Jq to `

q
ppZ2

q
h
I q with operator norm }QI,Jλ,N}q defined as before. Similarly, Q˚,Iλ,N will

be an integral operator from `qppZ2
q
h
I q to `

q
ppZ2

q
h
q, and QI,˚λ,N an integral operator from

`qppZ2
q
h
q to `qppZ2

q
h
I q. Using the norms of these operators for a fixed q ą 1, we can now

bound (9.15) by

Ceλ

Nh`1

8
ÿ

m“1

pσ2
N q

m
ÿ

I1,...,Im

@

ϕbhN ,Q
˚,I1
λ,N U

I1
λ,N Q

I1,I2
λ,N ¨ ¨ ¨U

Im
λ,N Q

Im,˚
λ,N ψbhN

D

ď
Ceλ

Nh`1

8
ÿ

m“1

pσ2
N q

m
ÿ

I1,...,Im

}ϕbhN }p}Q
˚,I1
λ,N }q }U

I1
λ,N}q }Q

I1,I2
λ,N }q ¨ ¨ ¨ }U

Im
λ,N}q }Q

Im,˚
λ,N }q }ψ

bh
N }q, (9.17)

where φbhpxq :“
śh
i“1 φpxiq. The key is to bound these operator norms, which is summarised

in the following proposition.

Proposition 9.4. Fix an integer h ě 2 and p, q ą 1 with 1
p `

1
q “ 1. There exists

C “ Cphq ă 8 such that uniformly in λ ą 0, N large, and I ‰ J Ă t1, ..., hu with
|I| “ |J | “ 2, we have

›

›QI,Jλ,N
›

›

q
ď C pq ; (9.18)

›

›Q˚,Iλ,N
›

›

q
ď C N

1
q ,

›

›QI,˚λ,N
›

›

q
ď C N

1
p ; (9.19)

and
›

›UIλ,N
›

›

q
ď

C

plog λqσ2
N

. (9.20)

Substituting these bounds into (9.17) leads to a geometric series that is convergent
provided λ ą 0 is chosen large enough. To arrive at the final form in Theorem 9.1, we need
two modifications:

‚ Firstly, we need to modify (9.17) by introducing a weight function wbhN pxq with
wnpxq “ wpx{

?
Nq. This is done by rewriting (9.15) in terms of the weighted operators

pQI,Jλ,N py, zq :“ QI,Jλ,N py, zq
wbhN pyq

wbhN pzq
and pUJλ,N py, zq :“ UJN py, zq

wbhN pyq

wbhN pzq
. (9.21)

This allows us to replace the bound in (9.17) by
ˇ

ˇ

ˇ
E
”´

ZβN
N pϕ,ψq ´ ErZβN

N pϕ,ψqs
¯hıˇ

ˇ

ˇ

ď
Ceλ

Nh`1

ÿ

mě1

pσ2
N q

m
ÿ

I1,...,Im

AϕbhN

wbhN
, pQ
˚,I1
λ,N

pU
I1
λ,N

pQ
I1,I2
λ,N ¨ ¨ ¨ pU

Im
λ,N

pQ
Im,˚
λ,N wbhN ψbhN

E

ď
Ceλ

Nh`1

ÿ

mě1

pσ2
N q

m
ÿ

I1,...,Im

›

›

›

ϕbhN

wbhN

›

›

›

p
}pQ
˚,I1
λ,N }q }

pU
I1
λ,N}q }

pQ
I1,I2
λ,N }q ¨ ¨ ¨ }

pU
Im
λ,N}q }

pQ
Im,˚
λ,N }q }w

bh
N ψbhN }q.

The bounds in Proposition 9.4 remain valid for pQλ,N and pUλ,N , see [CSZ23a, Prop. 6.6].

‚ Secondly, to obtain the pre-factor 1{ logp1` N
N
1 q in Proposition 9.1 when N 1 ă N , we

need to replace the operator pUIλ,N by a variant that takes into account the shorter
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time horizon, even though βN and σ2
N remain the same. For more details, see [CSZ23a,

Prop. 6.6 and (6.24)].

�

9.2. Functional inequalities. In this subsection, we sketch how to obtain the
bounds in Proposition 9.4. We note that L2-variants of (9.18) first appeared in the work
of Dell’Antonio, Figari and Teta [DFT94] (see the proof of Lemma 3.1 therein) and was
then used in [GQT21, (5.2)] to bound the moments of the mollified SHE (1.3) in the critical
window. Since it is non-trivial to adapt the Fourier transform techniques of [DFT94] to our
discrete setting, we instead work directly in real space. Our method is robust enough to be
applied to the coarse-grained model introduced in Section 7. Our extension from L2 bounds
to Lq bounds for arbitrary q ą 1 is also important as discussed in (9.5).

The inequality (9.18) is reminiscent of the Hardy-Littlewood-Sobolev (HLS) inequality
[LL01, Theorem 4.3]: for f, g : Rd Ñ R, p, r ą 1 and 0 ă ν ă d satisfying 1

p `
1
r `

ν
d “ 2,

ˇ

ˇ

ˇ

ĳ

RdˆRd

fpxqgpyq

|x´ y|ν
dxdy

ˇ

ˇ

ˇ
ď Cpd, ν, pq}f}p}g}r. (9.22)

Indeed, (9.18) is equivalent to showing that for all f P `pppZ2
q
h
I q and g P `

q
ppZ2

q
h
Jq

ÿ

xPpZ2
q
h
I ,yPpZ

2
q
h
J

fpxqQI,Jλ,N px,yqgpyq ď Cpq}f}p}g}q, (9.23)

where for x P pZ2
q
h
I and y P pZ2

q
h
J , we have

QI,Jλ,N px,yq “
2N
ÿ

n“1

e´
λ
N
n

h
ź

i“1

qnpyi ´ xiq ď

$

’

’

’

&

’

’

’

%

C

p1` |y ´ x|2qh´1
for |x´ y| ď

?
N,

C

Nh´1
e´

|y´x|
2

CN for |x´ y| ą
?
N,

(9.24)

with a lower bound of the same order. In other words, for |x ´ y| ď
?
N , QI,Jλ,N px,yq is

comparable to the Green’s function of a random walk in Z2h. Note that in (9.23), the
variables x and y are being summed in a space of dimension 2ph´ 1q which corresponds to
dimension d in (9.22), r “ q, while at first glance, ν in (9.22) is comparable to the exponent
2ph´ 1q in QI,Jλ,N px,yq. This will be exactly the borderline case where the HLS inequality
fails because ν “ d. But what saves us is that when we restrict to x P pZ2

q
h
I and y P pZ2

q
h
J ,

we have made the identifications xi “ xj and yk “ yl, which makes p1 ` |y ´ x|2q1´h

more regular because |y ´ x| is greater than the Euclidean distance between x P pZ2
q
h
I

and y P pZ2
q
h
J regarded as two points in Z2ph´1q. Indeed, |x´ y|2 contains terms such as

|xi ´ yi|
2
` |xj ´ yj |

2
ě 1

3p|xi ´ yi|
2
` |yi ´ yj |

2
q, which penalises the summation in yi and

yj in (9.23) when they are far apart.

A naive attempt to bound (9.23) is to write QI,Jλ,N px,yq “ QI,Jλ,N px,yq
1
pQI,Jλ,N px,yq

1
q and

then apply Hölder’s inequality to bound

xf,QI,Jλ,Ngy ď
´

ÿ

xPpZ2
q
h
I ,yPpZ

2
q
h
J

|fpxq|pQI,Jλ,N px,yq
¯1{p´ ÿ

xPpZ2
q
h
I ,yPpZ

2
q
h
J

QI,Jλ,N px,yq|gpyq|
q
¯1{q

.

(9.25)
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This will not work because it can be shown that
ÿ

yPpZ2
q
h
J

QI,Jλ,N px,yq ě C log |xi ´ xj |. (9.26)

The trick is to insert a factor γpx,yq
γpx,yq and then apply Hölder such that the factor γ or 1{γ

will remove the logarithmic singularity. More precisely, we choose a small α ą 0 and bound
ÿ

xPpZ2
q
h
I ,yPpZ

2
q
h
J

fpxqQI,Jλ,N px,yqgpyq “
ÿ

x,y

fpxqQI,Jλ,N px,yq
|xk ´ x`|

α

|yi ´ yj |
α ¨

|yi ´ yj |
α

|xk ´ x`|
α gpyq

ď

˜

ÿ

x,y

fpxqpQI,Jλ,N px,yq
|xk ´ x`|

αp

|yi ´ yj |
αp

¸

1
p
˜

ÿ

x,y

QI,Jλ,N px,yq
|yi ´ yj |

αq

|xk ´ x`|
αq gpyq

q

¸

1
q

. (9.27)

A straightforward computation shows that
ÿ

yPpZ2
q
h
J

QI,Jλ,N px,yq
|xk ´ x`|

αp

|yi ´ yj |
αp ď C,

which gives (9.18) (see [CSZ23a, Section 6.2] for details). Keeping track of the constants
more carefully and optimising over α will reveal the dependence on p and q as in (9.23) (see
[LZ23, Prop. 3.3]).

The proof of (9.19) and (9.20) are similar. To see how the factor pσ2
N log λq´1 arises

in (9.20), we first recall that UIλ,N differs from QI,Iλ,N px,yq in that the transition kernels
qnpyi ´ xiqqnpyj ´ xjq in (9.11) are replaced by UN pn, yi ´ xiq in (9.10). Here we can apply
the naive approach (9.25):

ÿ

x,yPpZ2
q
h
I

fpxqUIλ,N px,yq gpxq ď
´

ÿ

x,y

fpxqp UIλ,N px,yq
¯

1
p
´

ÿ

x,y

UIλ,N px,yq gpxq
q
¯

1
q
,

where by (9.10), the definition of UN pnq in (8.7), and the asymptotics in (8.17) and (8.14),

ÿ

yPpZ2
q
h
I

UIλ,N px,yq “
2N
ÿ

n“1

e´
λ
N
nUN pnq ď C logN

ż 8

0
e´λtGϑptq dt “

C

σ2
N log λ

.

9.3. Moment bounds for the coarse-grained model. In this section, we
explain how to obtain the moment bounds (7.16) and (7.17), which are crucial in the
application of the Lindeberg principle to the coarse-grained model Z pcgq

ε pϕ,ψ|Θq as outlined
in Section 7.2.

To deduce (7.16), the key observation is that the chaos expansion for ΘN,εp
~i,~aq in (7.9)

and (7.10) is similar to the chaos expansion for the averaged partition function ZβN
N pϕ,1q

in (7.2). Indeed, if we follow the renewal interpretation of the sequence of time-space points
pn1, z1q, . . . , pnr, zrq in the chaos expansion for ZβN

N pϕ,1q as we did in Section 8.1, which is
based on an expansion for ErZβN

N pϕ,1q2s, then the first renewal point pn1, z1q is sampled
according to the mass function

Mpn1, z1q :“
1

N2

´

ÿ

z0PZ
2

ϕp z0?
N
qqn1

pz1 ´ z0q

¯2
, 0 ă n1 ă N, z1 P Z

2.
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It is easy to see that the total mass
ř

0ăn1ăN,zPZ
2 Mpn1, z1q converges to a positive constant

as N Ñ8, and if ϕpxq ě 1 for all }x} ď 1, then uniformly in 0 ă n1 ă N and }z1} ď
?
N ,

Mpn1, z1q is bounded from below by c{N2, i.e., a positive multiple of the uniform probability
mass function on the set of such pn1, z1q.

If we apply the same renewal interpretation to the chaos expansion for ΘN,εp
~i,~aq in (7.9),

then we see that the first renewal point pn1, z1q is sampled uniformly from the time-space
box with 0 ă n1 ă εN and }z1} ď

?
εN , which can be compared to the chaos expansion for

the averaged partition function ZβN
εN pϕ,1q defined in (9.2) with ϕpxq “ 1 for }x} ď 1, time

horizon N 1 “ εN and spatial averaging on the scale
?
N 1. This allows us to apply Theorem

9.1 with N 1 “ εN , ϕpxq “ 1t}x}ď1u and ψ ” 1 to deduce that for all N large,

E
“

ΘN,εp
~i,~aq4

‰

ă
C

log 1
ε

. (9.28)

See [CSZ23a, Section 7.2] for more details.
The moment bound (7.17) for the coarse-grained partition function follows from the

following analogue of Theorem 9.1.

Theorem 9.5. Let ZN,εpϕ,ψq :“ Z pcgq
ε pϕ,ψ|ΘN,εq be the coarse-grained partition function

defined in (7.11). Further, assume that }ψ}8 ă 8 and ψ is supported on a ball B (possibly
B “ R2). Then for any p, q P p1,8q with 1

p `
1
q “ 1 and any w : R2

Ñ p0,8q such that
logw is Lipschitz continuous, there exists C P p0,8q such that uniformly in ε P p0, 1q,

lim sup
NÑ8

E
”

`

ZN,εpϕ,ψq ´ ErZN,εpϕ,ψqs
˘4
ı

ď Cε
4
p

›

›

›

ϕ1{ε

w1{ε

›

›

›

4

`
p
pZ2
q
}ψ}48}w1B}

4
q , (9.29)

where for φ : R2
Ñ R, φε : Z2

Ñ R is defined as above Theorem 9.1.

This is Theorem 8.1 in [CSZ23a], which is proved by adapting the proof for Theorem 9.1.
Complications arise because the coarse-grained disorder variables ΘN,εp

~i,~aq is a family of
dependent random variables. We refer to [CSZ23a, Section 8] for details.

9.4. Moments of the Critical 2d SHF. We already gave the second moment of
the Critical 2d SHF in Theorem 6.1. Now we give a formula for higher integer moments of
the SHF, which arises as the limit of the expansion in (9.9) and hence consists of an infinite
series. In particular, the kernels UI`N ,Q

˚,I1
a1

,Q
I`´1,I`
a`´b`´1

,Q
Im,˚
N´bm

in (9.9) will be replaced by their
continuum analogues as follows.

Similar to (9.16), for I “ ti ă ju Ă t1, . . . , hu, define

pR2
q
h
I :“

 

x “ px1, . . . , xhq P pR
2
q
h : xi “ xj

(

. (9.30)

1. Replica Evolution. The continuum analogue of UIN pn,x,yq in (9.10) is given by the
kernel with density w.r.t. Lebesgue measure on pR2

q
h
I

GIϑ,tpx,yq :“
ź

`Pt1,...,huzI

gtpy` ´ x`q ¨Gϑptq g t
2
pyi ´ xiq, x,y P pR2

q
h
I , (9.31)

which is consistent with the definition of UIN pn,x,yq by (2.6) and (8.18). This kernel
defines an integral operator from LpppR2

q
h
I q to L

p
ppR2

q
h
I q. Similar to UN pn, yi ´ xiq

in (9.10), the factor Gϑptq g t
2
pyi ´ xiq gives the weight of the wiggle line in Figure 6.
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2. Constrained Evolution. For I “ ti ă ju and J “ tk ă `u, the continuum analogue of
QI,Jt in (9.11) is given by the kernel with density

QI,J
t py,xq :“

h
ź

a“1

gtpxa ´ yaq, y P pR2
q
h
I ,x P pR

2
q
h
J . (9.32)

This kernel defines an integral operator from LpppR2
q
h
Jq to L

p
ppR2

q
h
I q and corresponds

to time strips in Figure 6 that contain no wiggle line. As in (9.12) and (9.13), we can
define the boundary kernels QI,˚

t py,xq, Q
˚,J
t py,xq, Q˚,Jt pϕ,xq, and QI,˚

t py, ψq.

We can now give the formula for higher integer moments of the critical 2d SHF, which
was first derived in [GQT21]. The series representation for the 3rd moment was derived
earlier in [CSZ19b].

Theorem 9.6. Fix h P N with h ě 3. For ϕ P CcpR
2
q and ψ P CbpR

2
q, the h-th moment of

SHFϑ0,tpϕ,ψq is finite and admits the expression

E
“

SHFϑ0,tpϕ,ψq
h‰
“

ż

¨ ¨ ¨

ż

pR2
q
h
ˆpR2

q
h

ϕbhpzqK
phq
t pz,wqψbhpwq dz dw , (9.33)

where x “ px1, . . . , xhq P pR
2
q
h and φbhpxq “

śh
i“1 φpxiq, and

K
phq
t pz,wq :“

1`
8
ÿ

m“1

p4πqm
ÿ

I1,...,ImĂt1,...,hu
|I`|“2, I`‰I``1

ż

¨ ¨ ¨

ż

0ăa1ăb1ă...ăamăbmăt

d~ad~b

ż

¨ ¨ ¨

ż

x
p`q
,y
p`q
PpR2

q
h
I`

for `“1,...,m

m
ź

`“1

dxp`q dyp`q (9.34)

Q˚,I1a1
pz,xp1qqG

I1
ϑ,b1´a1

pxp1q,yp1qq
´

m
ź

`“2

QI`´1,I`
a`´b`´1

pyp`´1q,xp`qqG
I`
ϑ,b`´a`

pxp`q,yp`qq
¯

QIm,˚
t´bm

pypmq,wq.

The identity (9.34) can be proved by taking the limit N Ñ 8 in (9.9), see [GQT21].
Similar bounds as in Theorem 9.1 also hold for SHFϑ0,tpϕ,ψq, which allows one to take more
general ϕ and ψ in (9.33) as long as the terms in the r.h.s. of (9.4) are finite.

9.5. Related literature. The positive integer moments of the directed polymer
partition function can be expressed in terms of the collision local times of independent
random walks, which are also connected to the so-called Delta-Bose gas.

Exponential moments of collision local times. Recall the definition of the point-to-
point partition function ZβN pz, wq :“ Zβ0,N pz, wq from (1.11). Let us consider mixed moments
of the form ErZβN pz1, w1q ¨ ¨ ¨Z

β
N pzh, whqs. Assuming the disorder variables ωpn, zq are i.i.d.
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standard normal, we can then compute directly

E
”

h
ź

i“1

ZβN pzi, wiq
ı

“ EEbhz

”

e
řh
i“1

řN´1
n“1

`

βωpn,S
piq
n q´λpβq

˘ h
ź

i“1

1
tS
piq
N “wiu

ı

“ Ebhz

„

ź

pn,xqPt1,...,N´1uˆZ2

e
β

2 ř

1ďiăjďh 1
tS
piq
n “S

pjq
n “xu

h
ź

i“1

1
tS
piq
N “wiu



“ Ebhz

„

eβ
2 ř

1ďiăjďh L
ti,ju
N

h
ź

i“1

1
tS
piq
N “wiu



, (9.35)

where Ebhz denotes expectation w.r.t. h independent random walks pSpiqq1ďiďh starting from
z “ pz1, . . . , zhq respectively, and L

ti,ju
N :“

řN´1
n“1 1

tS
piq
n “S

pjq
n u

denotes the collision local time

between Spiq and Spjq.
When zi “ 0 for all 1 ď i ď h, the classic Erdős-Taylor theorem [ET60] shows that each

L
ti,ju
N {RN “ L

ti,ju
N {ErL

ti,ju
N s converges in distribution to an Expp1q random variable. When

I is a set of pairs ti ă ju such that the graph with vertex set t1, . . . , hu and edge set I
contains no loops, it follows from [GS09] that pLi,jN {RN qtiăjuĂI converges jointly to a family
of i.i.d. Expp1q random variables. Finally, [LZ24b] proved the joint convergence of the full
family pLi,jN {RN q1ďiăjďh to a family of i.i.d. Expp1q random variables. This implies that if we
choose β “ βN “ pβ̂{RN q

1{2 for some β̂ ă 1, i.e., the subcritical window defined in (1.14),
then we can identify the limit of (9.35) as N Ñ8 in terms of the exponential moments of
independent exponential random variables even if zi “ zj for some i ‰ j.

However, when β “ βN is critical with β̂ “ 1, allowing zi “ zj for i ‰ j will lead to
divergence in (9.35) as N Ñ8 because

Ereβ̂pL
i,j
N {RN qs “ ErZβNN p0q2s „ C logN,

where the aysmptotics follows from Lemma 8.3. Nevertheless, as long as pzi{
?
Nq1ďiďh

converge to a vector of distinct points z1 as N Ñ8 and the same holds for pwi{
?
Nq1ďiďh Ñ

w1, we expect (9.35) to converge (after normalising by Nh) to the kernel K
phq

1 pz1,w1q in
Theorem 9.6.

Delta-Bose gas and singular interacting diffusions. Formally, the continuum analogue
of (9.35) is

S
phq
t pz,wq :“ Ebhz

„

eβ
2 ř

1ďiăjďh

şt
0 δpB

i
s´B

j
sq ds

h
ź

i“1

δpBi
t ´ wiq



, (9.36)

where pBi
q1ďiďh are i.i.d. standard Brownian motion on R2, starting from z “ pz1, . . . , zhq

respectively, and δp¨q is the delta function at the origin. This is the Feynman-Kac semigroup
associated with the Schrödinger operator with delta potential on the diagonals

1

2
∆` β2

ÿ

1ďiăjďh

δpxi ´ xjq, (9.37)



56 F. CARAVENNA, R. SUN, AND N. ZYGOURAS

known as the Delta-Bose gas. In other words, S
phq
t pz,wq solves (formally) the parabolic

equation

Btupt,xq “
1

2
∆upt,xq ` β2

ÿ

1ďiăjďh

δpxi ´ xjqupt,xq, t ą 0,x P pR2
q
h,

up0,xq “
h
ź

i“1

δpxi ´ wiq.

(9.38)

Of course, the presence of the delta function makes (9.36)-(9.38) ill-defined, especially
because Brownian motion in R2 does not hit points. The challenge is to make sense of the
semigroup S

phq
t pz,wq and its associated operator. A natural approach is to replace the delta

function by its mollified version δεpxq “ 1

ε
2 jp

x
ε q for some smooth probability density function

j. This introduces a minimal spatial scale ε ą 0 and has the same effect as discretising space
by considering the discrete time-space kernel considered in (9.35). Similar to (1.15), the
most interesting choice will be to choose

β2
“ β2

ε “
2π

log 1
ε

´

1`
ϑ

| log ε|

¯

, (9.39)

which lies in the critical window with β̂ “ 1. This has been the choice considered in the
literature, see e.g. [AFHeK`92, DFT94, ABD95, BC98, DR04, AGHeKH05]. In particular,
[DFT94] defined self-adjoint extensions of the operator in (9.37) using an approach of
quadratic forms and Γ-convergence, while [DR04] followed an approach using resolvents and
L2 Fourier analysis. The latter approach is closely related to the diagrammatic expansions
used in [GQT21] and [CSZ23a], which is illustrated in Figure 6.

In light of the connection with the directed polymer and the stochastic heat equation, the
semigroup S

phq
t pz,wq in (9.36) should in fact be a family of semigroups indexed by ϑ P R,

given by the kernels K
phq
t pz,wq in Theorem 9.6 for the h-th moment of the critical 2d SHF.

The formal semigroups S
phq
t pz,wq in (9.36) were defined rigorously in [Che24a] as the

limit of approximate semigroups via mollification of the delta function and choosing β as
in (9.39). This naturally leads to a family of pR2

q
h-valued time-inhomogeneous Markov

processes Y T,phq
t “ pY

T,phq
1,t , . . . , Y

T,phq
h,t q, such that given terminal time T , it has transition

densities

g
T,phq
s,t px,yq :“ S

phq
t´spx,yq ¨

ş

S
phq
T´tpy, zqdz

ş

S
phq
T´spx, zqdz

, 0 ď s ă t ď T, x,y P pR2
q
h.

When h “ 2, [CM23] considered the difference XT
t :“ Y

T,p2q
2,t ´ Y

T,p2q
1,t between the two-

components and showed that it solves a stochastic differential equation (SDE) with a singular
drift toward the origin, which enables XT

¨ to visit and accumulate a local time at the origin,
defined as the limit (as ε Ó 0) of

Lεt :“
1

2ε2
plog 1

ε q
2

ˇ

ˇts P r0, ts : |XT
s | ď εu

ˇ

ˇ, t P r0, T s.

This stands in contrast to a standard Brownian motion in R2, which does not hit the origin.
The semigroups S

phq
t pz,wq were also constructed in [Che22, Che24b] via a stochastic

representation in the spirit of (9.36), but in terms of a special diffusion process instead of
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a Brownian motion. In particular, when h “ 2, the analogue of the semigroup in (9.36) in
terms of the relative motion B1

t ´B
2
t is given by

P %t fpz0q “ “ ” Ebh
„

eβ
2 şt

0 δpB
1
s´B

2
s q ds fpB1

t ´B
2
t q

ˇ

ˇ

ˇ

ˇ

B1
0 ´B

2
0 “ z0



:“ Ez0

«

e%tK0p
?
%|z0|q

K0p
?
%|Zt|q

fpZtq

ˇ

ˇ

ˇ

ˇ

Z0 “ z0

ff

,

where K0 is the Macdonald function or generalised Bessel function of second kind of order 0,
the parameter % is determined by ϑ in (9.39) and the mollifier j, and pZtqtě0 is an R2-valued
diffusion whose radial component |Zt| is a transformation of a Bessel process constructed by
Donati-Martin and Yor [DMY06], with 0 being a point of instantaneous reflection for |Zt|.

There have also been recent studies of delta-Bose gas in dimension d ě 3 [Wan24].

10. Further properties of critical 2d SHF

In this section, we list some further properties of the critical 2d SHF with parameter
ϑ P R, that we denote by SHFpϑq “ pSHFϑs,tpdx, dyqq0ďsďtă8.

10.1. Shift invariance and scaling covariance. The critical 2d SHF satisfies
the following shift invariance and scaling covariance properties.

Theorem 10.1 (Translation invariance and scaling covariance). The critical 2d SHF
is translation invariant in law:

pSHFϑs`a,t`apdpx` bq, dpy ` bqqq0ďsďtă8
dist
“ pSHFϑs,tpdx,dyqq0ďsďtă8 @a ě 0, @b P R2 ,

and it satisfies the following scaling relation:

pSHFϑas,atpdp
?
axq, dp

?
ayqqq0ďsďtă8

dist
“ pa SHFϑ`log a

s,t pdx,dyqq0ďsďtă8 @a ą 0 . (10.1)

The shift invariance is inherited from the shift invariance of the directed polymer model
and that of the underlying disorder ω. The scaling covariance relation can be checked by
computing the covariance of the critical 2d SHF. It shows that zooming out in space-time
diffusively has the effect of increasing the disorder strength ϑ.

10.2. Flow property. The heat equation induces the so-called heat flow in the sense
that the solution is linear in the initial condition and can be written as a mixture of heat
kernels that satisfy the Chapman-Kolmogorov equation ps,upx, dyq “

ş

ps,tpx, dzqpt,upz, dyq.
If the family of kernels ps,tpx, dyqsăt,xPR is replaced by a random family ppωs,tpx, dyqqsăt,xPR
such that for all s ă t ă u and x P R, almost surely pω satisfies the Chapman-Kolmogorov
equation

pωs,upx, dyq “

ż

pωs,tpx,dzqp
ω
t,upz,dyq, (10.2)

and pωsi,ti are independent over disjoint time intervals rsi, tis and translation invariant in law
under space-time shifts, then ppωs,tpx,dyqqsăt,xPR is a stochastic flow of kernels introduced
by Le Jan and Raimond [LJR04] and can be interpreted as the transition kernels of a
random motion in an ‘i.i.d.’ space-time random environment (see e.g. [SSS14]).The critical
2d SHF pSHFϑs,tpdx, dyqqsăt satisfies a similar property, except that it is not meaningful to
consider delta initial condition

ş

δx SHF
ϑ
s,tpdx,dyq as in (10.2). Instead, we should consider

SHFϑs,tpµ, dyq for initial condition µpdxq that is sufficiently regular.
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In a forthcoming work [CSZ25a], we will show that the critical 2d SHF defines a linear
measure-valued Markov process with a state space S, which consists of locally finite measures
µ, such that for any R ą 0,

ĳ

|x|,|y|ďR

log 1
|x´y| µpdxqµpdyq ă 8,

and
ş

e´|x|
2
{2tµpdxq ă 8 for all t ą 0. This is a natural state space for the critical 2d SHF,

since

Var
`

SHFϑ0,tpφq
˘

“

ĳ

pR2
q
2

φpxqφpx1q rKϑ
t px, x

1
qdx dx1,

where rKϑ
t px, x

1
q is as in (8.24) and rKϑ

t px, x
1
q „ c log 1

|x´x
1
|
as |x´ x1| Ñ 0.

We will show in [CSZ25a] that the critical 2d SHF satisfies the following almost sure
Chapman-Kolmogorov (flow) property: for all s ă t ă u and initial measure µ P S, almost
surely, SHFϑs,tpµ,dzq P S and

SHFϑs,upµ, dyq “

ż

SHFϑs,tpµ, dzq SHF
ϑ
t,upz,dyq “ SHFϑt,u

´

SHFϑs,tpµ, dzq, dy
¯

. (10.3)

Clark and Mian [CM24] have given a different formulation of the flow property, which
starts by defining a notion of ε-regularised convolution for measures. More precisely, let
X,X 1 be Polish spaces and let µ1, µ2 be Borel measures on XˆR2 and R2

ˆX 1, respectively.
Then the ε-regularised convolution of µ1 and µ2 is defined as a measure on X ˆ R2

ˆX 1

with

µ1 ˝ε µ2pds, dx, ds
1
q :“

ĳ

x
1
PR2

µ1pds, dxqgεpx´ x
1
qµ2pdx

1, ds1q,

where gε is the heat kernel at time ε. The following result was established in [CM24].

Theorem 10.2. Let SHFϑs,rpdx, dyq and SHFϑr,tpdy, dzq be marginals of the critical 2d SHF
at times s ă r ă t. Then there exists a random measure SHFϑs,r,tpdx,dy,dzq on pR

2
q
3 such

that

SHFϑs,rpdx,dyq ˝ε SHF
ϑ
r,tpdy,dzq

L
2
pPq

ÝÝÝÑ
εÓ0

SHFϑs,r,tpdx,dy,dzq, (10.4)

where the convergence is in L2
pPq. Moreover,

SHFϑs,tpdx, dzq “

ż

yPR2
SHFϑs,r,tpdx,dy,dzq.

This result also establishes an almost sure Chapman-Komogorov type of relation for the
critical 2d SHF. The procedure can be iterated to show that for 0 ă t1 ă ¨ ¨ ¨ ă tn, the
critical 2d SHF satisfies

SHFϑt1,t2pdx1,dx2q ˝ε ¨ ¨ ¨ ˝ε SHF
ϑ
tn´1,tn

pdxn´1,dxnq
L

2
pPq

ÝÝÝÑ
εÓ0

SHFϑt1,...,tnpdx1, ...,dxnq.
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10.3. Characterisation of the critical 2d SHF. Recently, Tsai [Tsa24] gave
an axiomatic characterisation of the critical 2d SHF, which says that, a process pZs,tp¨, ¨qqsďt
taking values in M`pR

2
ˆR2

q, the space of locally finite non-negative measures on R2
ˆR2

equipped with the vague topology, must have the same law as the critical 2d SHF with
parameter ϑ, denoted by SHFpϑq, if Zs,t is continuous in s and t, satisfies the flow property
formulated in (10.4), has independent increments, and has matching first four moments with
pSHFϑs,tp¨, ¨qqsďt.

Theorem 10.3 (Characterisation of the critical 2d SHF). Let Z “ pZs,tp¨, ¨qqsďt be a
stochastic process taking values in M`pR

2
ˆ R2

q such that:

(1) for any s ă t ă u, the random measures Zs,t, Zt,u and Zs,u satisfy the conclusions of
Theorem 10.2;†

(2) for any s ă t ă u, Zs,t and Zt,u are independent;

(3) for any s ă t ă u, 1 ď n ď 4, and φi, ψi P L
2
pR2
q for i “ 1, . . . , 4, the mixed moments

E
“
śn
i“1 Zs,tpφi, ψiq

‰

agree with that of SHFpϑq, cf. (9.33), for some ϑ P R.

Then Z has the same law as the critical 2d stochastic heat flow SHFpϑq. Furthermore,
pZs,tp¨, ¨qqsďt admits a version that is almost surely continuous in s ď t.

The characterization in Theorem 10.3 was proved in [Tsa24] via a Lindeberg principle,
while the continuity was established by verifying the Kolmogorov moment criterion. If Z
and rZ are two processes satisfying the assumptions in Theorem 10.3 for the same ϑ, then by
the Chapman-Kolmogorov property, Z0,1 is a functional of pZpi´1q{n,i{nq1ďiďn, and the same
holds for rZ. The basic idea is that, in the reconstruction of Z0,1 from pZpi´1q{n,i{nq1ďiďn, one
can successively replace Zpi´1q{n,i{n by rZpi´1q{n,i{n and control the error of each replacement.
If the cumulative error can be shown to tend to 0 as nÑ 8, then Z0,1 and rZ0,1 must be
equal in law, where we can take rZ to be SHFpϑq. Similar to the Lindeberg principle explained
in Section 6.2, controlling the error of each replacement requires Taylor expansions and
matching first two moments for Zpi´1q{n,i{n and rZpi´1q{n,i{n, plus suitable bounds on higher
moments (4-th moment should suffice). Of course Zpi´1q{n,i{n are much more complicated
objects than R-valued random variables, which requires more delicate analysis. We refer to
[Tsa24] for further details.

Theorem 10.3 makes it much easier to prove convergence to SHFpϑq since one only needs
to verify that every subsequential limit satisfies the axioms in Theorem 10.3. This was
carried out in [Tsa24] for the solution uε of the 2d mollified SHE in the critical window.

We also mention that there have been some recent progress in formulating martingale
problems for the SHF [Nak25, Che25], which might eventually lead to a well-posed martingale
problem characterisation for the SHF.

10.4. Non-GMCness of fixed time marginals. Let
`

Xpxq
˘

xPRd be a centered
(generalised) gaussian field with correlation function kpx, yq for x, y P Rd. The Gaussian
Multiplicative Chaos (GMC) is a random measure on Rd, which formally has the following

†In [Tsa24], the condition is formulated such that the Gaussian kernels gε in Theorem 10.2 can be replaced
by any family of mollifiers that ensure L2 convergence.
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“density” with respect to a reference measure σpdxq:

Mγpdxq :“ eγXpxq´
γ

2

2
ErX2

s σpdxq. (10.5)

Various assumptions can be imposed on the measure σpdxq (see [RV14]), but for simplicity,
we will just assume that σpdxq is the Lebesque measure. For any test function φ, we denote

Mγpφq :“

ż

Rd
φpxqMγpdxq.

The most interesting case is when the field X is log-correlated in the sense that kpx, yq „
c log 1

|x´y| as |x´ y| Ñ 0. Since kpx, xq “ 8, X is a generalised Gaussian field and Mγpdxq

is a priori undefined. To rigorously define Mγpdxq, the standard procedure is to first replace
X by a regularised field Xε (e.g., via mollification) and then show that

Mε,γpdxq :“ eγXεpxq´
γ

2

2
ErX2

εs σpdxq, (10.6)

has a limit as ε Ñ 0. Log-correlated Gaussian field X is of special interest because there
is a phase transition in the parameter γ in (10.6) that is similar to the phase transition in
the polymer partition function in Theorem 3.1. In particular, when σpdxq is the Lebesque
measure, Mε,γpdxq has a non-trivial limit if γ ă γc :“

?
2d, and Mε,γpdxq converges to the

zero measure if γ ě γc. We refer to [RV14] for more details.

It is natural to wonder whether the one-time marginal of SHFpϑq can be identified with
a GMC measure on R2. The answer turns out to be no, which suggests heuristically that
the logarithm of SHFpϑq (if defined rigorously, it will give a meaning to the solution of the
critical 2d KPZ equation with parameter ϑ), would be a Gaussian field.

Since GMC is defined from a Gaussian field, its law is entirely determined by its first two
moments. If we denote by M ϑ

t the candidate GMC with the same first two moments as the
critical 2d SHF SHFϑt at time t, then we can rule out the possibility of SHFϑt being a GMC
by showing that its higher moments do not match that of M ϑ

t . This is what we proved in
[CSZ23b].

Theorem 10.4 (The critical 2d SHF is not a GMC). Let gδ be the heat kernel at time
δ ą 0. Let SHFϑt p¨q be the critical 2d SHF started from Lebesgue measure and evaluated
at time t, and let M ϑ

t p¨q be the GMC measure on R2 with the same first two moments as
SHFϑt p¨q. For any ϑ P R and t ą 0,there exists η “ ηt,ϑ ą 0 such that for all h P N with
h ě 3, we have

lim inf
δÓ0

E
“

SHFϑt pgδq
h‰

E
“

M ϑ
t pgδq

h‰
ě 1` η ą 1 . (10.7)

To see heuristically why Theorem 9.1 might hold, we note that Wick’s theorem for the
moments of gaussian variables implies that

E
“

M ϑ
pgδq

h‰
“

ż

pR2
q
h
gδpz1q ¨ ¨ ¨ gδpzhq e

ř

1ďiăjďh kpzi,zjq dz1 ¨ ¨ ¨ dzh „ E
“

M ϑ
pgδq

2‰ph2q,

where each term kpzi, zjq represents a two-body interaction among the h particles at locations
z1, . . . , zh, and the last asymptotic uses the fact that

ErM ϑ
pdxqM ϑ

pdyqs “ ErSHFϑt pdxqSHF
ϑ
t pdyqs “: Kϑ

t px, yqdx dy



THE CRITICAL 2d STOCHASTIC HEAT FLOW 61

with Kϑ
t px, yq „ c log 1

|x´y| as |x ´ y| Ñ 0. In other words, E
“

M ϑ
pgδq

h‰ has the same
asymptotics as if there are only independent two-body interactions. This is no longer
the case for E

“

SHFϑt pϕq
h‰, where the interactions among the h particles are illustrated in

Figure 6. At the heart of the proof of Theorem 10.7 is the use of the Gaussian Correlation
Inequality [Roy14, LaM17], which together with additional analysis on the collision local
times of Brownian motions, shows that there are positive correlations among the two-body
interactions.

10.5. Singularity and Regularity. In the forthcoming work [CSZ25b], we show
that the marginal distribution of the critical 2d SHF at each time t ą 0 is a random measure
that is almost surely singular respect to Lebegues measure (see Figure 2).

Theorem 10.5 (Singularity of SHF). Fix any t ą 0 and ϑ P R. Almost surely,
SHFϑt pdxq :“

ş

yPR2 SHFϑ0,tpdy,dxq is singular with respect to the Lebesgue measure on R2.

However, SHFϑt pdxq barely fails to be a function.

Theorem 10.6 (Regularity of the SHF). Fix any t ą 0 and ϑ P R. Almost surely, the
critical 2d SHF SHFϑt pdxq belongs to C0´ :“

Ş

εą0 C
´ε, where C´ε is the negative Hölder

space of order ´ε.

A consequence of Theorem 10.6 is that, almost surely, SHFϑt pdxq contains no atoms, since
delta measures on Rd belong to C´d. Theorem 10.6 follows from moment estimates, see
(9.5), which imply that for any h P N and ε ą 0, there exists a constant C, depending on
h, ε, t, ϑ, such that for all small δ we have

E
”

SHFϑt
`

UBpx,δq
˘h
ı1{h

ď C δ´ε @x P R2 . (10.8)

Theorem 10.6 then follows from this moment bound and a general tightness criterion for
negative Hölder spaces [FM17, Theorem 2.30].

Theorem 10.5 follows by applying the Lebesgue differentiation theorem and showing that,
almost surely,

lim
δÓ0

SHFϑt
`

UBpx,δq
˘

“ 0 for Lebesgue a.e. x P R2 . (10.9)

where UBpx,δqp¨q :“ 1

πδ
2 1Bpx,δqp¨q for the Euclidean ball Bpx, δq :“

 

y P R2 : |y ´ x| ă δ
(

.

This is accomplished by bounding the fractional moments of SHFϑt
`

UBpx,δq
˘

, where we use
the monotonicity of the fractional moment in ϑ to decrease ϑ and send ϑ “ ϑpδq Ñ ´8 at a
suitable rate as δ Ó 0. More precisely, ϑpδq will be chosen such that SHFϑt

`

UBpx,δq
˘

converges
to a log-normal limit, similar to the point-to-plane partition function in the subcritical
regime in Theorem 3.1.

Theorem 10.7. Let ϑpδq “ 2 log δ. For any t ą 0 and x P R2, the following convergence in
distribution holds:

@% P p0,8q : SHFϑt
`

UBpx,δ%q
˘ d
ÝÝÝÑ
δÓ0

eN p0,σ
2
q´ 1

2
σ

2

with σ2
“ logp1` %q . (10.10)

Remark 10.8. The meta-theorem suggested by Theorem 10.7 is that, averaging the polymer
partition functions (or averaging the critical 2d SHF) has the effect of reducing the disorder
strength. If the averaging is on a suitably chosen spatial scale such that the mean and
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variance remain of a constant order, then the averaged partition function behaves like the
point-to-plane partition function of a 2d polymer in the subcritical regime with a log-normal
limit. Theorem 3.1 is one special case. We refer to [CSZ25b] for details.

11. Discussions and open questions

11.1. Disordered systems and singular SPDEs. Our motivation for studying
the 2d SHE came from the study of continuum limits of disordered systems, with the DPM
being one particular example.

Recalling its definition from Section 1.3, we can regard the DPM as a disorder perturbation
of the underlying random walk S. In dimensions d ě 3, this perturbation is called irrelevant
in the language of renormalisation group theory because the critical disorder strength
(inverse temperature) βcpdq ą 0, and it has been shown that [CY06] for β ă βc, the polymer
measure converges to the same limiting Wiener measure as the underlying random walk
S. On the other hand, in d “ 1 and 2, βcpdq “ 0 and hence at any β ą 0, the polymer
measure experiences path localisation [CSY03] and the path is expected to be super-diffusive.
Therefore the disorder perturbation is relevant in d “ 1 and 2. Dimension d “ 2 turns out
to be critical, and only finer details of the model determine whether disorder perturbation is
relevant (called marginal relevance) or irrelevant (called marginal irrelevance). In general, a
disorder perturbation of an underlying pure model (without disorder) is called relevant if
any fixed disorder strength β ą 0, no matter how small, changes the large scale behaviour
of the model (in particular, its scaling limit), and it is called irrelevant if small β ą 0
does not change the large scale behaviour and the scaling limit. We refer to [Gia11] for
more discussions on disordered systems and the Harris criterion [Har74] on when disorder
perturbation is predicted by physicists to be relevant/irrelevant.

The connection between disordered systems and singular SPDEs is that, we can regard
such SPDEs as a disorder perturbation of the deterministic PDE without the noise term.
As we saw in (1.2), in dimensions d ă 2, the effective strength of the noise tends to zero as
we zoom into smaller and smaller space-time scales, which makes the disorder perturbation
of the heat equation an irrelevant perturbation, while in dimensions d ą 2, the disorder
perturbation is a relevant perturbation, and d “ 2 is marginal. If we consider instead large
scale behaviour by sending ε Ò 8 in (1.2), then the disorder perturbation is relevant in
d ă 2, irrelevant in d ą 2, and marginal in d “ 2, which corresponds exactly to the DPM.
Therefore the notion of disorder relevance (resp. irrelevance) for disordered systems, which is
concerned with large scale behaviour, corresponds to the notion of the singular SPDE being
subcritical (resp. supercritical), which is concerned with small scale behaviour. Marginality
for disordered systems corresponds to criticality for singular SPDEs.

If a disorder perturbation of a pure model is relevant, then heuristically, the effective
strength of disorder will diverge as we zoom out in space-time (equivalently, take the
continuum limit by sending the lattice spacing to 0). It should then be possible to send the
disorder strength to 0 at a suitable rate as the lattice spacing tends to 0, such that we obtain
a continuum limit that has non-trivial disorder dependence. For disordered systems that
are disorder relevant (not marginal), this was first carried for the one-dimensional directed
polymer in [AKQ14b], which led to the continuum directed polymer model [AKQ14a].
Subsequently, it was shown in [CSZ17a] that similar results should hold for more general
disorder relevant binary-valued spin systems, including long range DPM [CSZ17a], the
disordered pinning model [CSZ16], and random field perturbation of the critical 2d Ising
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model [CSZ17a, BS22]. See [CSZ17a] for a more detailed discussion, and [LMS24] for an
extension to non-binary valued spin systems.

It is our attempt to investigate the disordered continuum limit of the DPM in the critical
dimension d “ 2 that led to the results discussed in this article. Following a similar approach,
the scaling limit of disordered pinning model with critical tail exponent α “ 1

2 was recently
obtained in [WY24], which is also connected to singular stochastic Volterra equations.

Note that disordered systems in general, such as the random field Ising model, have no
time dimension in the noise and hence do not correspond to any singular SPDE. In light of
our results for the 2d DPM, a natural question is:

Q. Are there marginally relevant disordered systems without a time dimension, for which
we can obtain a non-trivial disordered continuum limit?

11.2. More open questions. We close by presenting some open questions and possible
directions for future research.

1. Universality. It would be interesting to show that the critical 2d SHF arises as the
universal scaling limit of models beyond the directed polymer model and the mollified
SHE. Potential candidates include the non-linear SHE considered in [DG22, Tao24a,
DG23, DG24], although even identifying the correct critical point appears challenging.
It will also be interesting to explore connections to other statistical mechanics models.

2. Structure of the critical 2d SHF at a given time. We have established in
[CSZ25b] that the critical 2d SHF at any deterministic time is almost surely singular
with respect to the Lebesque measure. This raises the question: is the measure
supported on a set of fractal Hausdorff dimension? It is plausible that this dimension
is marginally below 2. Another unresolved question is whether the critical 2d SHF has
infinite speed of propagation, that is, starting with an initial measure with compact
support, at any later time, the SHF will almost surely assign positive mass to any
open ball.

3. Structure of the maxima. The critical 2d SHF is a non-negative measure-valued
process, which is a log-correlated field at each time. Over the past decade there
has been significant interests in studying log-correlated fields or their exponential
(Gaussian Multiplicative Chaos), and in particular the structure of their maxima.
Some examples are [RV14, BDZ16, DRSV17, CGRV19, Bis20, CFLW21], though the
list is much longer. A natural question is whether a similarly detailed picture can be
achieved for the peaks of the critical 2d SHF. The study of maxima is already very
interesting in the sub-critical regime, which is more closely connected to Gaussian
Multiplicative Chaos (see [CNZ25] for some recent progress).

4. Relation to GMC. We have shown in [CSZ23b] that at any given time, the critical
2d SHF cannot be realised as the (Wick) exponential of a generalised Gaussian field,
and hence is not a Gaussian Multiplicative Chaos (GMC). However, it remains open
whether the critical 2d SHF could be the exponential of a perturbation of a Gaussian
field. Alternatively, one might ask whether the law of the critical 2d SHF at each time
is absolutely continuous with respect to the law of a GMC.

Given the form of the exponential weight in (1.4), it is natural to regard it as the
exponential of a Gaussian field indexed by paths in the Wiener space, which could
lead to a GMC on path space. This was carried out in [BM22, BLM22] in dimension
d ě 3 in the subcritical regime. In dimension 2, Clark and Mian [CM24] constructed
a continuum polymer measure that is the path space extension of the critical 2d SHF.
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Although this polymer measure cannot be realised as a GMC with respect to the
underlying Wiener measure, an interesting open question raised in [CM24] is whether
the continuum polymer measure satisfies the ‘conditional GMC’ structure similar to
what is known on the continuum diamond hierarchical lattice [Cla23]. More precisely,
this means that for any ϑ ą ϑ1, the continuum polymer measure with parameter ϑ
can be realised as a GMC with the reference measure being the continuum polymer
measure with parameter ϑ1.

5. On the moments. It follows from the results in [GQT21] that all moments of
SHFϑs,tpφ, ψq, with φ, ψ P L

2
pR2
q, are finite†. The upper bound on the growth of the

n-th moment is exppecn
2

q (see [GQT21, (8.26)]), while existing lower bounds are of
the order exppcn2

q [CSZ23b]. However, predictions in the physics literature [Raj99]
suggest that the growth should be exppenq. Although the rapid growth of moments
does not allow one to uniquely determine the distribution, it would be valuable to
identify the correct order of growth and understand the underlying mechanism. Such
asymptotics could shed light on the tail statistics of SHFϑs,tpφ, ψq (for suitable φ, ψ). On
the other hand, it will also be interesting to investigate whether SHFϑs,tpφ, ψq possesses
negative moments. Recently, moment asymptotics have also been investigated in other
regimes, such as in the quasi-critical window [CN25] or over shrinking balls [LZ24a].
Extending and sharpening these results will also be interesting.

6. Interpolating nature and going beyond the critical window. The critical 2d
SHF sits precisely at the boundary between the weak and strong disorder phases (β̂ ă 1

vs β̂ ą 1 in (1.14)). The parameter ϑ in SHFϑs,t provides an interpolation between the
weak disorder phase (as ϑÑ ´8q and the strong disorder phase (as ϑÑ `8). An
interesting question is whether we can obtain information on the strong disorder phase
by taking ϑÑ `8. A first step is to determine whether the random measure SHFϑs,t
converges locally to 0 as ϑ Ò 8. Any progress in understanding potential scaling limits
in the strong disorder phase β̂ ą 1, or the very strong disorder phase βN ” β ą 0 in
(1.14), would be very interesting.

7. Construct the Critical 2d Polymer Measure. The critical 2d SHF arises as the
scaling limit of the directed polymer partition functions on the intermediate disorder
scale. From a statistical physics point of view, it will be very interesting to construct
a corresponding continuum polymer model and investigate its path properties and
phase transition. The continuum polymer measure constructed in [CM24] is an infinite
measure whose law is translation invariant in space. An open question is to construct a
continuum polymer probability measure started at a single point, similar to its discrete
analogue defined in (1.9). The main difficulty is that, the point-to-plane partition
function, which serves as a normalising constant in the discrete polymer measure in
(1.9), converges to 0 in the critical window as shown in Theorem 3.1.

8. Black noise. The critical 2d SHF determines a family of σ-fields Fs,t :“ σ
`

SHFϑu,v : s ď

u ă v ď t
˘

on the underlying probability space. The almost sure Chapman-Kolmogorov
property established by Clark and Mian [CM24] and stated in Theorem 10.2 already
implies that this family of σ-fields is a noise in the sense of Tsirelson, which is a

†The extension to LppR2
q spaces with p P p1,8q was achieved in [CSZ23a].
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continuum generalisation of the notion of a family of i.i.d. random variables.† It would
be very interesting to show that the noise generated by the critical 2d SHF is in fact
a (one-dimensional) black noise‡ (we refrain from giving here a precise definition of
black noise and refer to the survey by Tsirelson [Tsi04a]). Examples of one-dimensional
black noise include the Brownian web [Tsi04b] and the directed landscape [HP24], and
examples of two-dimensional black noise, which is much more challenging to prove,
include the continuum limit of critical planar percolation [SS11] and the Brownian
web [EF16].

9. Renormalisation of the 1-point statistics. Theorem 3.1 establishes that, in the
critical window of the intermediate disorder scale, the point-to-plane partition function
Z
βN
N p0q of the directed polymer converges in distribution to 0. This aligns with the

fact that the critical 2d SHF is almost surely singular with respect to the Lebesque
measure. A natural question is to determine the rate at which logZ

βN
N p0q (i.e., the

one-point statistic of the discretized 2d KPZ equation in the critical window) converges
to ´8. For critical GMC, which is connected to the directed polymer on trees, such a
rate of convergence to 0 has been identified [RV14].

Based an extrapolation from the subcritical regime, we conjecture that in the critical
window,

ErlogZ
βN
N p0qs „ ´

1

2
log logN,

with a variance of the same order log logN . It will be very interesting to identify the
limiting law of logZ

βN
N p0q after proper centering and scaling, which would provide a

partial interpolation between the Gaussian distribution in the weak disorder phase
β̂ ă 1 and the 2d analogue of the Tracy-Widom distribution in the very strong disorder
phase βn ” β ą 0 in (1.14).

10. Construct the Critical 2d KPZ. As shown in Theorem 4.1, in the subcritical regime
β̂ ă 1, the 2d KPZ has Gaussian fluctuations and solves the 2d Edwards-Wilkinson
equation. It remains open to define the solution of the 2d KPZ in the critical window
since we cannot perform the Cole-Hopf transformation on the critical 2d SHF, which
is a random measure and not a function. The challenge is to study the field of log
partition functions logZ

βN
N pzq, not only its mean and variance at each z P Z2, but also

its covariance at different z P Z2. It would also be interesting to compare with physics
works [FT94] where a dynamic renormalisation approach suggests that a non-Gaussian
limit (referred to as ‘fixed point’ in the physics language) exists if the parameter
ϑ “ ϑN in the critical window (1.16) is chosen to diverge at the rate of log logN .

11. Step into critical singular SPDEs. The theory of singular SPDEs has undergone
revolutionary developments thanks to the frameworks of regularity structures [Hai14],
paracontrolled calculus [GIP15], renormalisation group approach [Kup16, Duc22],
energy solutions [GJ14], etc. However, these theories are restricted to subcritical
singular SPDEs. For SHE and KPZ, this means dimension d ă dc “ 2. The critical 2d
SHF provides a rare example of a model in the critical dimension and at the critical

†The family pFs,tqsăt being a noise means that, for s ă t ă u, the σ-fields Fs,t and Ft,u are independent
and Fs,u is generated by Fs,t and Ft,u; moreover, there is a group pϑhqhPR of measure preserving maps
(time shifts) such that ϑhpAq P Fs`h,t`h for A P Fs,t.

‡After the completion of this article, Gu and Tsai [GT25] proved that the SHF is indeed a one-dimensional
black noise.



66 F. CARAVENNA, R. SUN, AND N. ZYGOURAS

point, which has a non-Gaussian scaling limit. A natural question is whether the
critical 2d SHF can help shed some light on other critical singular SPDEs, such as
dynamics for the φ4 model [MW17, AK20, BG20, GH21] and the Yang-Mills model
[CCHS22, CCHS24, CS23] at the critical dimension 4. Recently, there have much
progress in the analysis of critical and supercritical singular SPDEs that admit an
explicit Gaussian stationary measure, see the lecture notes [CT24] and the references
therein. However, these models do not exhibit a phase transition as we see in the 2d
SHE. It will be interesting to find other critical or supercritical singular SPDEs that
exhibit a phase transition.
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