UNIVERSALITY FOR THE PINNING MODEL IN THE WEAK COUPLING REGIME

FRANCESCO CARAVENNA, FABIO TONINELLI, AND NICCOLO TORRI

AsBsTtrRACT. We consider disordered pinning models, when the return time distribution of the underlying
renewal process has a polynomial tail with exponent « € (%, 1). This corresponds to a regime where
disorder is known to be relevant, i.e. to change the critical exponent of the localization transition and
to induce a non-trivial shift of the critical point. We show that the free energy and critical curve have
an explicit universal asymptotic behavior in the weak coupling regime, depending only on the tail of
the return time distribution and not on finer details of the models. This is obtained comparing the
partition functions with corresponding continuum quantities, through coarse-graining techniques.

1. INTRODUCTION AND MOTIVATION

Understanding the effect of disorder is a key topic in statistical mechanics, dating back at least to
the seminal work of Harris [27]. For models that are disorder relevant, i.e. for which an arbitrary
amount of disorder modifies the critical properties, it was recently shown in [[12] that it is interesting
to look at a suitable continuum and weak disorder regime, tuning the disorder strength to zero as
the size of the system diverges, which leads to a continuum model in which disorder is still present.
This framework includes many interesting models, including the 2d random field Ising model with
site disorder, the disordered pinning model and the directed polymer in random environment (which
was previously considered by Alberts, Quastel and Khanin [2} [1]]).

Heuristically, a continuum model should capture the properties of a large family of discrete
models, leading to sharp predictions about the scaling behavior of key quantities, such free energy
and critical curve, in the weak disorder regime. The goal of this paper is to make this statement
rigorous in the context of disordered pinning models [21} 22} [14], sharpening the available estimates
in the literature and proving a form of universality. Although we stick to pinning models, the main
ideas have a general value and should be applicable to other models as well.

In this section we give a concise description of our results, focusing on the critical curve. Our
complete results are presented in the next section. Throughout the paper we use the conventions
N =1{1,2,3,...} and Ny = N U {0}, and we write a,, ~ b,, to mean lim,,_,.c a,,/b,, = 1.

To build a disordered pinning model, we take a Markov chain (S = (S ,)aen,, P) starting at a
distinguished state, called 0, and we modify its distribution by rewarding/penalizing each visit to 0.
The rewards/penalties are determined by a sequence of i.i.d. real random variables (w = (Wp)nen, P),
independent of S, called disorder variables (or charges). We make the following assumptions.

e The return time to O of the Markov chain 7| := min{n € N : §, = 0} satisfies

P(1) < 00) =1, K(n) =P (1 =n)~%, n— oo, (1.1
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where a € (0, 00) and L(n) is a slowly varying function [§]]. For simplicity we assume that
K(n) > 0 for all n € N, but periodicity can be easily dealt with (e.g. K(n) > 0 iff n € 2N).

e The disorder variables have locally finite exponential moments:
3By > 0: A(B) := log E(eP*!) < oo, VB € (=0, Bo); E(wy) =0, Viw) =1, (1.2
where the choice of zero mean and unit variance is just a convenient normalization.

Given a P-typical realization of the sequence w = (wy)nen, the pinning model is defined as the

following random probability law P;“; n.y O Markov chain paths S
dpP¥ Zoli (Bwn=ABY+h) s, o)
’h’N e4~n=1 n N _
e i )
B.h

where N € N represents the “system size” while § > 0 and / € R tune the disorder strength and bias.
(The factor A(B) in (T.3)) is just a translation of A, introduced so that E[¢/“—AB)] = 1.)

Fixing § > 0 and varying A, the pinning model undergoes a localization/delocalization phase
transition at a critical value h.(8) € R: the typical paths S under P/(;, py Are localized at O for i > h.(B),
while they are delocalized away from O for & < h.(B) (see (2.10) below for a precise result).

It is known that A.(-) is a continuous function, with A.(0) = 0 (note that for § = O the disorder
w disappears in (I.3) and one is left with a homogeneous model, which is exactly solvable). The
behavior of /4.(8) as 8 — 0 has been investigated in depth [23} 3,15} 14} [13]], confirming the so-called
Harris criterion [27): recalling that « is the tail exponent in (I.1), it was shown that:

e fora < % one has h.(8) = 0 for 8 > 0 small enough (irrelevant disorder regime);

o fora > %, on the other hand, one has £.(8) > 0 for all 8 > 0. Moreover, it was proven [26]
that disorder changes the order of the phase transition: free energy vanishes for 4 | .(5) at
least as fast as (4 — h.(8))?, while for 8 = 0 the critical exponent is max(1/a, 1) < 2. This case
is therefore called relevant disorder regime;

o fora = %, known as the “marginal” case, the answer depends on the slowly varying function
L(-) in (I.TI): more precisely one has disorder relevance if and only if }, m = oo, as
recently proved in [7] (see also [4} 23] [24] for previous partial results).

In the special case @ > 1, when the mean return time E[7] is finite, one has (cf. [6])

fim B _ 1 @
-0 B2 2E[T1]1 + &

1.4)

In this paper we focus on the case a € (%, 1), where the mean return time is infinite: E[7|] = 0. In
this case, the precise asymptotic behavior of 4.(8) as § — 0 was known only up to non-matching
constants, cf. [3,[15]]: there is a slowly varying function L, (determined explicitly by L and «) and
constants 0 < ¢ < C < oo such that for 8 > 0 small enough

e Lo(3) BT < he(B) < C Lo(}) p7. (15)

Our key result (Theorem [2.4] below) shows that this relation can be made sharp: there exists
my € (0, 00) such that, under mild assumptions on the return time and disorder distributions,
he
lim % = Mg (1.6)
p=0 L(Y(B)ﬁm
Let us stress the universality value of (1.6): the asymptotic behavior of .(8) as 8 — 0 depends
only on the tail of the return time distribution K(n) = P(t; = n), through the exponent @ and the
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slowly varying function L appearing in (T.T)) (which determine Z,): all finer details of K(n) beyond
these key features disappear in the weak disorder regime. The same holds for the disorder variables:
any admissible distribution for w; has the same effect on the asymptotic behavior of /.(3).

Unlike (I.4), we do not know the explicit value of the limiting constant m, in (L.6), but we
can characterize it as the critical parameter of the continuum disordered pinning model (CDPM)
recently introduced in [11} [12]]. The core of our approach is a precise quantitative comparison
between discrete pinning models and the CDPM, or more precisely between the corresponding
partition functions, based on a subtle coarse-graining procedure which extends the one developed
in [9} [10] for the copolymer model. This extension turns out to be quite subtle, because unlike
the copolymer case the CDPM admits no “continuum Hamiltonian”: although it is built over
the a-stable regenerative set (which is the continuum limit of renewal processes satisfying (1.1),
see §5.2), its law is not absolutely continuous with respect to the law of the regenerative set,
cf. [11]]. As a consequence, we need to introduce a suitable coarse-grained Hamiltonian, based on
partition functions, which behaves well in the continuum limit. This extension of the coarse-graining
procedure is of independent interest and should be applicable to other models with no “continuum
Hamiltonian”, including the directed polymer in random environment [[1]].

Overall, our results reinforce the role of the CDPM as a universal model, capturing the key
properties of discrete pinning models in the weak coupling regime.

2. MAIN RESULTS

2.1. Pinning model revisited. The disordered pinning model Pz,'h v Was defined in (L.3) as a

perturbation of a Markov chain S. Since the interaction only takes place when S, = 0, it is

customary to forget about the full Markov chain path, focusing only on its zero level set
T={neNy: S,=0}

that we look at as a random subset of Ny. Denoting by 0 = 79 < 7] < 72 < ... the points of 7, we
have a renewal process (ty)ren,, i.€. the random variables (7 — 7;_1) jen are i.i.d. with values in N.
Note that we have the equality {S, = 0} = {n € 7}, where we use the shorthand

net):= U{rk = n).

kENo
Consequently, viewing the pinning model P;“ .y as alaw for 7, we can rewrite (L.3) as follows:
dp¥ Zo 1 Bon=AB+M)Ljner)
BAN , . e=n=] w — El pZn- Bon—A@B+)1
—— (1) := , 73 ,(N) := E[e&n=17¢" tner) | 2.1)
dp zg,(N) B [ ]

To summarize, henceforth we fix a renewal process (7 = (Tx)ken,, P) satisfying (I.I)) and an i.i.d.
sequence of disorder variables (w = (wy)nen, P) satisfying (I.2)). We then define the disordered
pinning model as the random probability law P}‘é’ 4 for 7 defined in 2.1).

In order to prove our results, we need some additional assumptions. We recall that for any renewal
process satisfying (I.T)) with & € (0, 1), the following local renewal theorem holds [18] [16]]:

p— [ 3 y—
un) :=Pmner)~ W, n— oo, with C, =
In particular, if £ = o(n), then u(n + €)/u(n) — 1 as n — oo. We are going to assume that this

convergence takes place at a not too slow rate, i.e. at least a power law of 5, asin [11} eq. (1.7)]:

a sin(arr) 2.2)

un+{) B

AC,ng € (0,0); €,6 € (0,1] :
u(n)

56
I‘SC(—) , VYn>=ng, 0< €< en. (2.3)
n
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Remark 2.1. This is a mild assumption, as discussed in [[11, Appendix B]. For instance, one can
build a wide family of nearest-neighbor Markov chains on Ny with +1 increments (Bessel-like
random walks) satisfying (I.)), cf. [5]], and in this case (2.3) holds for any § < a.

Concerning the disorder distribution, we strengthen the finite exponential moment assumption
(1.2), requiring the following concentration inequality:

Fy > 1,C1,C; € (0,00) : forall n € Nand forall f: R" — R convex and 1-Lipschitz

P(|f(a)1,...,a)n)—Mf|Zt)sclexp(_é_yz), (2.4)

where 1-Lipschitz means |f(x) — f(y)| < |x — y| for all x,y € R", with | - | the usual Euclidean
norm, and My denotes a median of f(wy,...,w,). (One can equivalently take M to be the mean
E[f(wi,...,wy)] just by changing the constants Cy, C,, cf. [29, Proposition 1.8].)

It is known that holds under fairly general assumptions, namely:

e (y =2) if w; is bounded, i.e. P(lw;| < a) = 1 for some a € (0, 00), cf. [29, Corollary 4.10];
e (y =2) if the law of w; satisfies a log-Sobolev inequality, in particular if w; is Gaussian, cf.
[29] Theorems 5.3 and Corollary 5.7]; more generally, if the law of w is absolutely continuous

with density exp(—U — V), where U is uniformly strictly convex (i.e. U(x) — cx? is convex,
for some ¢ > 0) and V is bounded, cf. [29, Theorems 5.2 and Proposition 5.5];

e (y € (1,2)) if the law of w; is absolutely continuous with density given by c, e (see
Propositions 4.18 and 4.19 in [29] and the following considerations).

2.2. Free energy and critical curve. The normalization constant Z;‘; ,(N) in 2.1) is called partition
function and plays a key role. Its rate of exponential growth as N — oo is called free energy:

1 1
F(.h):= lim —logZg,(N) = lim NE[logZEh(N)], P-as. andin L',  (2.5)

where the limit exists and is finite by super-additive arguments [21, [14]. Let us stress that F(5, h)
depends on the laws of the renewal process P(t; = n) and of the disorder variables P(w; € dx), but
it does not depend on the P-typical realization of the sequence (wj)qen. Also note that i — F(B, h)
inherits from 4 — log ZE’, ,(IV) the properties of being convex and non-decreasing.

Restricting the expectation defining Z;;’, »(N) to the event {r; > N} and recalling the polynomial
tail assumption (1.1, one obtains the basic but crucial inequality

FB,h) >0 VB=>0,heR. (2.6)
One then defines the critical curve by
he(B) :=sup{h e R: F(B,h) =0}. 2.7)
It can be shown that 0 < A.(8) < oo for § > 0, and by monotonicity and continuity in / one has
FB,h) =0 if h < h.(B), F(B,h) > 0 if h> h.(B). (2.8)

In particular, the function & — F(B, h) is non-analytic at the point A.(8), which is called a phase
transition point. A probabilistic interpretation can be given looking at the quantity

N
ty =) Tpuer =[N (O, N]], (2.9)
n=1

which represents the number of points of 7 N (0, N]. By convexity, & — F(5, h) is differentiable at all
but a countable number of points, and for pinning models it can be shown that it is actually C* for
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h # h(B) [25]. Interchanging differentiation and limit in (2.5)), by convexity, relation (2.1)) yields

fN] AFB,h) |=0 ifh < h(B)
NI oh >0 ifh>h(B)

for P-a.e. w, Al/lm EE) A N[ (2.10)
This shows that the typical paths of the pinning model are indeed localized at O for & > h.(8) and
delocalized away from O for h < hc(ﬂ)ﬂ We refer to [21} 122, [14] for details and for finer results.

2.3. Main results. Our goal is to study the asymptotic behavior of the free energy F(8, h) and
critical curve h.(B) in the weak coupling regime 5,7 — 0.

Let us recall the recent results in [[12} [11], which are the starting point of our analysis. Consider
any disordered pinning model where the renewal process satisfies (I.1]), with a € (%, 1), and the
disorder satisfies (1.2). If we let N — co and simultaneously 8 — 0, 4 — 0 as follows:

B =By ::BLN?, h=hy ::ELN), for fixed 3> 0, h e R, (2.11)
N2 N®

the family of partition functions Z;;N I (Nt), with t € [0, 00), has a universal limit, in the sense of
finite-dimensional distributions [[12, Theorem 3.1]:

( (N ))te[O o (W())temm), N > oo. (2.12)

The continuum partition function ZW (t) depends only on the exponent o and on a Brownian motion

(W = (W0, P), playing the role of continuum disorder. We point out that Z;V (1) has an explicit

Wiener chaos representation, as a series of deterministic and stochastic integrals (see (4.4) below),
and admits a version which is continuous in ¢, that we fix henceforth (see §2.5|for more details).

Remark 2.2. For an intuitive explanation of why By, iy should scale as in (2.11)), we refer to the
discussion following Theorem 1.3 in [11]. Alternatively, one can invert the relations in (2.11)), for
simplicity in the case 8 = 1, expressing N and /% as a function of § as follows:

~LGPEEL h~hL(hpE @.13)
N (03 ﬁ ’ (04 ﬁ £ .

where L, is the same slowly varying function appearing in (T.3)), determined explicitly by L and a.
Thus h = hy is of the same order as the critical curve h.(8y), which is quite a natural choice.
More precisely, one has L,(x) = M#(x)_ﬁ, where M* is the de Bruijn conjugate of the slowly
varying function M(x) := 1/ L(xﬁ), cf. [8, Theorem 1.5.13], defined by the asymptotic property
M*(xM(x)) ~ 1/M(x). We refer to (3.17) in [12] and the following lines for more details.

It is natural to define a continuum free energy F*(B, h) in terms of ZW (t) in analogy with (2.5).

Our first result ensures the existence of such a quantity along ¢ € N, if we average over the disorder.
One can also show the existence of such limit, without restrictions on ¢, in the P(dW)-a.s. and L
senses: we refer to [31] for a proof.

Theorem 2.3 (Continuum free energy). For all @ € (3,1), B> 0, h € R the following limit exists
and is finite:
. 1
1% . : - w
F“(@B,h) ;= lim _— E[log Zﬁfl(t)] . (2.14)

—00, te

INote that, in Markov chain terms, €y is the number of visits of S to the state 0, up to time N.
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The function F*(B, h) is non-negative: F*(B,h) > 0 for all B > 0, h € R. Furthermore, it is a convex
function of h, for fixed B, and satisfies the following scaling relation.:

Fo(c"2f,ch) = cF*B,h),  VB>0, heR, ce(0,0). 2.15)
In analogy with (2.7), we define the continuum critical curve h“([%) by
h®(3) = sup{h e R : F*(B,h) = (2.16)
which turns out to be positive and finite (see Remark@]below). Note that, by (2.13),

Py : -
()BT hence  BI(B) = hE(HE. @17)

ﬁ 2a-1

W@%:W@

Heuristically, the continuum free energy F?(3, i) and critical curve h?(B) capture the asymptotic
behavior of their discrete counterparts F(8, ) and h.(8) in the weak coupling regime 4,8 — 0. In
fact, the convergence in distribution (2.12) suggests that

w .
E [log Zﬁﬁ(t)] = lim E [logZy , (ND)]. (2.18)
Plugging (2.18) into @ and interchanging the limits t — co and N — oo would yield

Fo(B,h) = hm — lim [logZy , (ND)| = lim N lim —E[log o D], (2.19)

t—o00 —00 t—>oo

which by (2.5)) and (Im leads to the key relation (with € = +):

A 1 A
A F(Be* 2 L1, hevL(L
Fe(B, h) = A}im NFE@By, hy) = lilr(r)l ® () (E)). (2.20)
—00 €

€

We point out that relation (2.18)) is typically justified, as the family (log ZZ;N’ I (N1))Nen can be shown
to be uniformly integrable, but the interchanging of limits in is in general a delicate issue.
This was shown to hold for the copolymer model with tail exponent @ < 1, cf. 9, [10], but it is
known to fail for both pinning and copolymer models with @ > 1 (see point 3 in [12 §1.3]).

The following theorem, which is our main result, shows that for disordered pinning models with
a € (%, 1) relation does hold. We actually prove a stronger relation, which also yields the
precise asymptotic behavior of the critical curve.

Theorem 2.4 (Interchanging the limits). Let F(B, h) be the free energy of the disordered pinning
model 21)-@23), where the renewal process t satisfies (LI)-23) for some a € (3, 1) and the
disorder w satisfies (T.2)-24). For all > 0, h € R and n > 0 there exists ) > 0 such that

F(Be L(L), herL(L))

€

Fa (ﬁ’ il - 77) <
As a consequence, relation (2.20) holds, and furthermore

B0 J ( )ﬁza T

<F'(B.h+n), Vee(0.q). (2.21)

= h*(1), (2.22)

where L, is the slowly function appearing in 2.13) and the following lines.

Note that relation (2.20) follows immediately by (2.21)), sending first ¢ — 0 and then n — 0,
because /i > F%(B, h) is continuous (by convexity, cf. Theorem . Relation (2.22)) also follows
by @2.21), cf. §5.1] but it would not follow from (2.20), because convergence of functions does not
necessarily imply convergence of the respective zero level sets. This is why we prove (2.21).



UNIVERSALITY FOR THE PINNING MODEL IN THE WEAK COUPLING REGIME 7

Remark 2.5. Relation (2.22), coupled with the known bounds (I.5]) from the literature, shows in
particular that 0 < h?(1) < oo (hence 0 < h%(3) < oo for every 8 > 0, by (2.17)). Of course, in
principle this can be proved by direct estimates on the continuum partition function.

2.4. On the critical behavior. Fix 3 > 0. The scaling relations (2.17) imply that for all € > 0

F'GhB) +e) =5

mle“[l,hg(1)+ < ].

ﬁZa—l

Thus, as € | 0 (i.e. as /1 | hY (B)) the free energy vanishes in the same way; in particular, the critical
exponent vy is the same for every j3 (provided it exists):

F(LR) = (R-hy*0 = F@h) = T (h-h@y . (2.23)

hihg (1) hihg (1)

Another interesting observation is that the smoothing inequality of [26] can be extended to the
continuum. For instance, in the case of Gaussian disorder w; ~ N(0, 1), it is known that the discrete
free energy F(B, h) satisfies the following relation, for all 5 > 0 and / € R:

l+a

2 - he(B))”

Consider a renewal process satisfying (I.T)) with L = 1 (so that also L, = 1, cf. Remark .
Choosing 8 = B€* 2 and h = h € and letting € | 0, we can apply our key results (2.20) and (2.22)
(recall also (2.17)), obtaining a smoothing inequality for the continuum free energy:

l+a /s, PRY

2[32 (h a h"(ﬂ)) ’

In particular, the exponent y in (2.23)) has to satisfy y > 2 (and consequently, the prefactor in the
second relation in (2.23)) is 877 with n > 0).

0<F@B.h) <

F*B, h) <

2.5. Further results. Our results on the free energy and critical curve are based on a comparison
of discrete and continuum partition function, whose properties we investigate in depth. Some of the
results of independent interest are presented here.

Alongside the “free” partition function Z2', (N) in (2.1), it is useful to consider a family Zghc (a,b)
of “conditioned” partition functions, for a, b € Ny with a < b:

74/ (a,b) = B X o A@ e

actbe T) . (2.24)
If we let N — oo with By, hy as in (2.11)), the partition functions Z;’}:th (Ns, Nt), for (s,1) in

[0,00)2 := {(s5,1) € [0,00)* | s < 1},
converge in the sense of finite-dimensional distributions [12, Theorem 3.1], in analogy with (2.12)):

(22, (Ns,N1) fﬂ@g@m

BNy (s,t)E[O,OO)i

N — oo, (2.25)

(s.1)€[0,00)2”
where Z;V}f(s, t) admits an explicit Wiener chaos expansion, cf. (4.3) below.

It was shown in [11, Theorem 2.1 and Remark 2.3] that, under the further assumption (2.3), the
convergences (2.12)) and (2.25) can be upgraded: by linearly interpolating the discrete partition
functions for Ns, Nt ¢ Ny, one has convergence in distribution in the space of continuous functions
of ¢ € [0, co) and of (s, 7) € [0, )2, respectively, equipped with the topology of uniform convergence
on compact sets. (In this setting, by linearly interpolating a function f in a square [m—1, m]x[n—1, n],
with m, n € N we mean bisecting the square along the main diagonal and linearly interpolating f on
each triangle, like in [[11, Section 2.1].) We strengthen this result, by showing that the convergence is
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locally uniform also in the variable & € R. We formulate this fact through the existence of a suitable
coupling.

Theorem 2.6 (Uniformity in /). Assume (L) and @3), for some a € (%, 1), and (L2). For all
B> 0, there is a coupling of discrete and continuum partition functions such that the convergence
(2.12)), resp. (2.25)), holds P(dw, dW)-a.s. uniformly in any compact set of values of (t, h), resp. of

A

(5,1, h).

We prove Theoremby showing that partition functions with /2 # 0 can be expressed in terms of
those with 2 = 0 through an explicit series expansion (see Theorem below). This representation
shows that the continuum partition functions are increasing in 4. They are also log-convex in 4,
because & — log Z;{h and 4 — log Z‘ﬁ”hc are convex functions (by Holder’s inequality, cf. (2.I) and
(2.24))) and convexity is preserved by pointwise limits. Summarizing:

Proposition 2.7. Forall a € (%, 1) and ,@ > 0, the process Z};VE(I), resp. Zg’{(s, 1), admits a version
which is continuous in (t, ), resp. in (s, t, h). For fixed t > 0, resp. t > s, the function h log Zgi,(t)’

resp. b — log Z;V’ilc(s, 1), is strictly convex and strictly increasing.
We conclude with some important estimates, bounding (positive and negative) moments of the
partition functions and providing a deviation inequality.

Proposition 2.8. Assume (I.I) and @3), for some a € (3,1), and ([2). Fix 3 > 0, h € R. For all
T > 0and p € [0, o), there exists a constant C, 7 < oo such that

E[ sup Z;’}th(Ns, Nt)p} <Cpr, VYN eN. (2.26)
0<s<t<T
Assuming also (2.4), relation (2.20) holds also for every p € (—o0,0], and furthermore one has
Y
sup P(logZ%c (Ns,Nt) < —x)<Arex (—x—), Vx>0, VNeN, 2.27
sup B(logZyf, (Ns.Ni < —x) < Ar exp| -5~ (2.27)

for suitable finite constants Ar, Br. Finally, relations (2.26), (2.27) hold also for the free partition
JunctionZg | (NT) (replacing supos<,<p With SUpog<7)-

For relation (2.27) we use the concentration assumptions (2.4)) on the disorder. However, since
log Z;;]’VchN is not a uniformly (over N € N) Lipschitz function of w, some work is needed.

Finally, since the convergences in distribution (2.12)), (2.23)) hold in the space of continuous
functions, we can easily deduce analogues of (2.26), (2.27) for the continuum partition functions.

Corollary 2.9. Fixa € (%, 1), >0, heR. Forall T > 0and p € R there exist finite constants Ar,
Br, Cp 1 (depending also on «, ﬁ, h ) such that

E[ sup ZYS(Ns,NO’ | < Cpr, (2.28)
0<s<t<T h
W,c x’
sup P(log Z"(N's,N1) < —x) < A exp (——) ., ¥Yx>0. (2.29)
0<s<I<T B.h Br

The same relations hold for the free partition function Z};Vﬁ(t) (replacing supg<;<7 With Supg,<r).
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2.6. Organization of the paper. The paper is structured as follows.
e We first prove Proposition[2.8]and Corollary [2.9]in Section 3]
e Then we prove Theorem [2.6]in Section [

e In Section [5|we prove our main result, Theorem [2.4] Our approach yields as a by-product the
existence of the continuum free energy, i.e. the core of Theorem 2.3]

e The proof of Theorem [2.3]is easily completed in Section [6]

e Finally some more technical points have been deferred to the Appendices[A]and [B]

3. PROOF OF PROPOSITION AND COROLLARY

In this section we prove Proposition[2.8] Taking inspiration from [17], we first prove (2.27)), using
concentration results, and later we prove (2.26). We start with some preliminary results.

3.1. Renewal results. Let (00 = (0)nen,, P) be a renewal process such that P(o; = 1) > 0 and

n—oo

wn) =Pneo) ~ with ve(0,1) and M(-) slowly varying. 3.1

Mn)n'~’
This includes any renewal process 7 satisfying (I.I)) with @ € (0, 1), in which case (3.1]) holds with
v =a and M(n) = L(n)/C,, by (2.2). When a € (%, 1), another important example is given by the
intersection renewal o = T N 7/, where 7’ is an independent copy of 7: since w(n) = Pme tN7’) =
P(n € 7)? in this case, by (2.2) relation (3.1]) holds with v = 2 — 1 and M(n) = L(n)*/C2.

For N € Ny and 6 € R, let ¥5(N), ¥§(N) denote the (deterministic) functions

Ys(N) =E [eéz::’:l 1'!5"] , l}lg(N) =E [8625:/;11 Lo | N € o

; (3.2)

which are just the partition functions of a homogeneous (i.e. non disordered) pinning model. In the
next result, which is essentially a deterministic version of [11, Theorem 2.1] (see also [30]), we
determine their limits when N — oo and 6 = 6y — 0 as follows (for fixed & € R):

M(N)
N

Theorem 3.1. Let the renewal o satisfy (3.1). Then the functions (Ws, (N1))1e[0,00)» (‘I’(‘;N (N1))se[0,00),

with 8y as in (3.3) and linearly interpolated for Nt ¢ Ny, converges as N — oo respectively to

o k
R 1 | |
6() Z T}_V(tz—tl)l_v'“(l‘k—tk—l)]_v i=1 l oy

k=1 0<h<o<n<t

o _ k
. l‘l v
\Ip:,c(t) =1+ (Sk f f dti, (35)
5 kZ_; 0t = 1)V (g — ) (= 1)1 1:1[

- O<t) <<ty <t

SN ~ 0 (3.3)

where the convergence is uniform on compact subsets of [0, co). The limiting functions ‘I’g(t), ‘I’g’c(t)
are strictly positive, finite and continuous in t.

Before proving of Theorem [3.1] we summarize some useful consequences in the next Lemma.

Lemma 3.2. Let T be a renewal process satisfying (LI) with « € (3, 1) and let w satisfy (I.2). For
every 8 > 0, h € R, defining By, hy as in Z.11), one has:

2
Jim B[75S, O.No]=¥eS o, lim B|(Ze5,0.80) | = Y20, 6o
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uniformly on compact subsets of t € [0, o). Consequently

:= inf fEZ‘”c t A= E[Z‘”C Nt ] . i
5 o o B ON0] > 0 i up s B(Z55,0.00) o

Analogous results hold for the free partition function.

Proof. We focus on the constrained partition function (the free one is analogous), starting with the
first relation in (3.6). By (2.24)), for Nt € Ny we can write

E|zyc, (0.N1)]| =E [ehN Zit her| Nt € r] =¥}, (N,

where we used (3.2) with o = 7. As we observed after @ we have M(n) = L(n)/C, in this case,

so comparing (3.3) with (Z.11) we see that &y ~ &y with & = C,h. Theorem.then yields (3.6).
Next we prove the second relation in (3.6). Denoting by 7" an independent copy of 7, note that

E[eBr— AP Liert k)] = oACA-2AB)Liernw  Then, again by (2.24)), for hy = 0 we can write

[(Zw 00, Nt)) ] [E [eZstlwwwk—AwN>><ﬂker+ﬂka/>

-E [em(zﬂm—z/\w» ! Lierner

Ntetn T'H
(3.8)

Nt eETN T/:| = \PZ(ZﬁN)—ZA(ﬂN)(Nt) )

where in the last equality we have applied (3.2) with o = 7 N 7/, for which v = 2a — 1 and M(n) =

L(n)*/C2. Since A(B) = 38% + o(8%) as B — 0, by ([.2), it follows that A(28x) — 2A(By) ~ B3, ~ On

with § = C232, by @.11) and (3.3). In particular, Theoremyields the second relation in (3.6).
Finally we prove (3.7). Since the convergence (3.6)) is uniform in ¢,

. w,C _ @,C
i, Jaf, B (255, 0.N0] = Jnf, We 0> 0.

because ¢ — W22 1¢(¢) is continuous and strictly positive. On the other hand, for fixed N € N,

Cip?
w,C _ . w,C
Inf B[Z5<, (0, Np)| = ne{(rﬁlvriN}E[ZﬁN e 0, m| >0,
so the first relation in (3.7) follows. The second one is proved with analogous arguments. ]

Proof of Theorem 3.1} The continuity in 7 of Wi, ‘I’g’c(t) can be checked directly by (3.4)-(3.3).

They are also non-negative and non-decreasing in 8, being pointwise limits of the non-negative
and non-decreasing functions (3.2) (these properties are not obviously seen from (3.4)-(3.5), when
5 < 0). Since ‘I’V(t) ‘I’VC(t) are clearly analytic functions of §, they must be strictly increasing in 6,
hence they rnust be strlctly positive, as stated.

Next we prove the convergence results. We focus on the constrained case ‘PgN (N?), since the free
one is analogous (and simpler). We fix T € (0, o0) and show uniform convergence for ¢ € [0, T].
This is equivalent, as one checks by contradiction, to show that for any given sequence (¢y)yen in
[0, T'] one has limy_, 0 I‘PgN(N tN) — ‘I’g’c(tN)l = 0. By a subsequence argument, we may assume that
(tn)nen has a limit, say limy_,o ty =t € [0, T], so we are left with proving

lim W5 (N1y) = 350 (3.9)

We may safely assume that Nty € Ny, since ¥, (Nt) is linearly interpolated for Nt ¢ Ny. For

notational simplicity we also assume that §y is exactly equal to the right hand side of (3.3).
Recalling (3.1), for 0 < n; < ... < nx < Nty we have

w(npw(ny —ny) - - - w(Nty — ny)

Niy € ] e . (3.10)

E ﬂnlea]lnzerr . ]lnkea'




UNIVERSALITY FOR THE PINNING MODEL IN THE WEAK COUPLING REGIME 11

Since et = 1 + (¢° — 1)1,¢r, a binomial expansion in (3.2) then yields

Niy—1
WS (Nty) =1+ Z (e — 1)
k=1

Z w(n)w(ny —ny) - - - w(Nity — ny)
w(Nty)

O<n<--<m<Nty

(3.11)

Niy—1 k
Cs i (eéN_1) [ 5y Wi (0, 2 W (2, ) - Wiy, 1)

ON Nk Wy (0,ty) ’

k=1 O<ni<--<n<Nty

where we have introduced for convenience the rescaled kernel
Wy (r, s) ;== M(N)N'™'w([Ns] - [Nr]), 0<r<s<oo,

and [x] := min{n € N : n > x} denotes the upper integer part of x. We first show the convergence of
the term in brackets in (3.11)), for fixed k € N; later we control the tail of the sum.

For any € > 0, uniformly for 7 — s > € one has limy_,.. Wx(r,s) = 1/(s =)', by (3.1). Then,
for fixed k € N, the term in brackets in (3.11)) converges to the corresponding integral in (3.5]) by a
Riemann sum approximation, provided the contribution to the sum given by n; — n;_; < eN vanishes
as € — 0, uniformly in N € N. We show this by a suitable upper bound on Wy(r, s). For any n > 0,
by Potter’s bounds [8, Theorem 1.5.6], we have M(y)/M(x) < C max{(%)” , (;—f)”}, hence

c! C
———— < Wn(r,5) £ ———, YNeN,VO<r<s<T, (3.12)
(l’ _ S)l—v—r] (}" _ s)l—v+r]
for some constant C = C,, 7 < oo. Choosing 77 € (0, v), the right hand side in (3.12)) is integrable
and the contribution to the bracket in (3.11)) given by the terms with n; — n,_; < eN for some i is

dominated by the following integral

Cck+2 tl—v—n k
N | |
f‘ : f ]l{t,-—t,',1Se, for some i=1,--- ,k} ds;. (3.13)
t i=1

e = )1ty — )
O<t) <<t <ty

Plainly, for fixed k € N, this integral vanishes as € — 0 as required (we recall that ty — ¢ < c0).

It remains to show that the contribution to (3.11)) given by k > M can be made small, uniformly
in N € N, by taking M € N large enough. By (3.12)), the term inside the brackets in (3.11]) can be
bounded from above by the following integral (where we make the change of variables s; = t;/ty):

k+2 J1-v-n k
ff iy | |dt-
— l

17— )y — 1)

O<ty <<t <ty

Cck+2 tk(v—n)—Zn (.14)

k
= cee 1_V+n N l_[dsl S Cl; Cle—czklogk’
sp sy = s (1= ) g

O<sy<--<s<l

for some constant C7 depending only on T (recall that zy — ¢ € [0, T]), where the inequality is
proved in [[12, Lemma B.3], for some constants cy, c; € (0, ), depending only on v, 5. This shows
that (3.9) holds and that the limits are finite, completing the proof. O

3.2. Proof of relation (2.27). Assumption (2.4) is equivalent to a suitable concentration inequality
for the Euclidean distance d(x, A) := infyc4 [y — x| from a point x € R" to a convex set A € R". More
precisely, the following Lemma is quite standard (see [29| Proposition 1.3 and Corollary 1.4], except
for convexity issues), but for completeness we give a proof in Appendix [B.I]



UNIVERSALITY FOR THE PINNING MODEL IN THE WEAK COUPLING REGIME 12

Lemma 3.3. Assuming 2.4), there exist C},C’, € (0,0) such that for every n € N and for any

convex set A C R" one has (setting w = (w1, . .., w,) for short)
24
P(w € A)P(d(w,A) > 1) < C| exp (_F) , Yt >0. (3.15)
2

Viceversa, assuming (3.13), relation (2.4)) holds for suitable Cy,C3 € (0, o).

The next result, proved in Appendix [B.2] is essentially [29, Proposition 1.6] and shows that (3.15)
yields concentration bounds for convex functions that are not necessarily (globally) Lipschitz.

Proposition 3.4. Assume that (3.15)) holds for every n € N and for any convex set A C R". Then,
for every n € N and for every differentiable convex function f : R" — R one has

(t/c)
=

P(f(w) <a—-1)P(f(w) > a, [Vf(w)| < c) < C|exp (— ) , YaeR, Vt,ce (0,0), (3.16)

where |V f(w)| == XL, (8if (a)))2 denotes the Euclidean norm of the gradient of f.

The usefulness of (3.16) can be understood as follows: given a family of functions (f;)e/, if we
can control the probabilities p; := P(fi(w) > a, |Vfi(w)| < ¢), showing that inf;e; p; = 6 > 0 for
some fixed a, c, then (3.16) provides a uniform control on the left tail P(f;(w) < a — t). This is the
key to the proof of relation (2.27)), as we now explain.

We .recall that Z,Z,’thN(a, b) was defined in (2.24). Our goal is to prove relation (2.27). Some
preliminary remarks:

e we consider the case 7 = 1, for notational simplicity;

e we can set s = 0 in (2.27)), because Z“’ S (a, b) has the same law as Z%* Ch ©0,b - a).

We can thus reformulate our goal (2.27) as follows: for some constants A, B < co
%
sup P(logZy, (0,N1) < —x) < Aexp (—%) ,  V¥x>0,YNeN. (3.17)
0<r<1

We can further assume that 4y < 0, because for iy > 0 we have Z;’};ChN (0, N?t) = ZZI;CO(O, Nt) and
replacing Ay by 0 yields a stronger statement. Applying Proposition[3.4]to the functions

fniw) :=log Z‘” Ch (0,N1),
relation ( is implied by the following result.
Lemma 3.5. Fix ﬁ > 0 and h < 0. There are constants a € R, ¢ € (0, o) such that

1{{2& . El[r(l)f P(fyw) 2 a, [Viy(w) <c)=:6>0.

Proof. Recall Lemma [3.2] in particular the definition (3.7) of p and A. By the Paley-Zygmund
inequality, for all N € N and ¢ € [0, 1] we can write

E[ngCh (0, Nt)]] § ( [Z“’ € (O, Nt)])

P(Z‘“Ch (0O,N?) > )> ]P’[Z‘“Ch (O,N?t) > > (3.18)

- 48|(z5,, 0.N0) | '

Replacing Ay < 0 by 0 in the denominator, we get the following lower bound, with a := log g:

2
P(fyviw) 2 a) = (Z“’C (0, Nt) > '0) Z/l

By VN eN, te[0,1]. (3.19)



UNIVERSALITY FOR THE PINNING MODEL IN THE WEAK COUPLING REGIME 13

Next we focus on V fy(w). Recalling (2.24), we have

Ofwe, .. EllicreZict G- APlicr| Ny ¢ 7]
(@) = By T
ﬁNshN( 9 Z’)

Ticni-1
80),' = ’

hence, denoting by 7’ an independent copy of T,

N
0
V@l = Y (;_;V

i=1

Nt-1

E[(CN T Nierne) eZimt BvoABvsietlic)|Nt € 70 7]
Z,LBU&C,hN (0, N1y? ‘

2
<w)) =B
Since hy < 0, we replace hy by 0 in the numerator getting an upper bound. Recalling that a = log ‘2—’

(cf. the line before (3.19)),

2
BV fud @)Lzl EUVINAOF Lzee, onn=4)]
2 - 2

P (fuw) = a, [Vfyw) > c) < -

Nt—1
[ﬁlzv Z ]liem,] S ACBN=20BY) ZNGT e
i=1

C
4

<52
P

E

Nte*rﬂr'}.
c

We recall that A(28y) —2A(By) ~ B3, by (T2), hence A(2By) — 2A(By) < CB3, for some C € (0, o).
Since x < e* for all x > 0, we obtain

4 . 4
P(fy(w) = a, |Vfy(w)] > c) < WE [e(c+l)'312\1 T e | NE € 70 T'] = —¥°< (Np),

p2C2 (C+1)By

where we used the definition (3.2), with o = N7, which we recall that satisfies (3.1) with v = 2 —1
and M(n) = L(n)?/ C(Zy. In particular, as we discussed in the proof of Lemma , ,812\, ~ 6y in (3.3)

with & = C2/3%, hence ‘I’f Criy (N?) is uniformly bounded, by Theorem 3.1
N

:=sup sup P¢ (N1) < 00. (3.20)
¢ Negze[og] (C+DBy

In conclusion, with p, A, ¢ defined in (3.7)-(3.20)), setting a := logg one has, for every ¢ > 0,
P(fni(w) = a, |V fn(w)l < ¢) =P(fy(w) = a) — P(fy(w) = a, |Viy(w)]>c)

2
4
S X g uNeN re[o.1].
42 p3c?
Choosing ¢ > 0 large enough one has 6 > 0, and the proof is completed. O

3.3. Proof of (2.20), case p > 0. To control the sample path Holder continuity of the stochastic
process Z;’I;ChN (a, b) we use the Garsia-Rodemich-Rumsey inequality [19, Lemma 2] (see also [20])).

This inequality says that for any continuous f : [0, 1] — R one has

-l B _
)~ f)I < 8 f v )de,  with B = f f T(M)dxdy,
0 u [0,11x[0,1]¢ (75

where ¥ : R — [0, 00) and ¢ : [—1, 1] — [0, c0) are arbitrary even continuous functions such that ¥
is convex with (o) = oo, and ¢(u) is non-decreasing for # > 0 with ¢(0) = 0. Choosing ¥(x) = |x|?
and @(u) = u, for p > 1, u > 0 with pu > 2d, yields (renaming B'/? as B)

8 B _ P
H Blx -y} ¥ with BP = g? ff dedy.
- [0,1]9x[0,1}¢

2d x — ylpH
D lx =yl

lf(0) = fOl <
J7i
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We apply this to the random functions Z;i)z;chN (a,b), hence d = 2: it follows that, for all 0 < s; <
t<1,i=1,2,

|22, (Ns1, Niw) = 73S, (Nso, No)| < _“pBN|(s1,n)—<sz,rz>|”‘4/P (3.21)

where | - | denotes the Euclidean norm and By is an explicit (random) constant depending of p:

(s1,21) — (s2 1)|PH dsidridsydr,. (3.22)

Since Z“’ Ch (0,0) =1 and |a + b|P < 2P(|lalP + |b|P), it follows that

Nsi,Nty) = 7€ (Nsy, Nt |
p=2“/2f | VSN =25, (Nsy, Np)
[0,112%[0,1]2

p
E[ sup 7 (Ns,Nt)P]§2p(1+(lu_8’u ) (\/ET)I’”“‘E[BfV]).

0<s<t<T 4/p

We are thus reduced to estimating E[B ].
It was shown in 11, Section 2.2] that for any p > 1 there exist C,, > 0 and 17, > 2 for which

sup (|25, Vs Nt = 25, (Voo N[ ) e s = s, (323)
Ne

The value of 7, is actually explicit, cf. [11, eq. (2.25), (2.34), last equation in §2.2], and such that

1
hm@—,u>0 where ﬁz—min{a’—%,é},
p—o© p 2

where 6 > 0 is the exponent in (2.3) and ¢’ is any fixed number in (%, a). If we choose any u € (0, f1),
plugging (3.23)) into (3.22)) we see that the integral is finite for large p, completing the proof. O

3.4. Proof of (2.26), case p < 0. We prove that an analogue of (3.23)) holds. Once proved this, the
proof runs as for the case p > 0, using Garsia’s inequality (3.21)) for 1/ Z;’[;ChN (Ns, Ni).
We first claim that for every p > 0 there exists D, < oo such that

E(z5S, (Ns,N»P)<D,, VNeN,0<s<r<l. (3.24)
This follows by (2.27):

E(zyc, (0,Nt)P) = fooP(z‘“ch O.NO™? > y)dy = fooP(logZ“’ch (0.N) < —plogy)dy
0 0

oo (1 Y 00 1274
sl+Af exp _plllogy)” dy:1+Af exp P ey < o0
1 B 0 B

where in the last step we used y > 1. Then, by (3.24)), applying the Cauchy-Schwarz inequality
twice gives
Pl :|

1
2p\2 (323)
< D4pE(|Z;)]’thN(NS1,Nt1)—ZZA’th(st,le| ) \/D4p L 1(t1, 51) = (85, s2)I™012

chh (Nsy1,Nty) — chh (Ns2, Ntp)
(Nsl,Nfl)chh (N2, N12)

1 1

Z;’]’vth(Nsl ,Nt1) Z;’;C,hN(st, Nty)

E

ﬁN hN

completing the proof. O
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4. PrOOF OF THEOREM

Throughout this section we fix 8 > 0. We recall that the discrete partition functions Z;f; Z(ND),

Zz;’hc(N s, Nt) are linearly interpolated for Ns, Nt ¢ Ny. We split the proof in three steps.

Step 1. The coupling. For notational clarity, we denote with the letters Y,Y the discrete and
continuum partition functions Z, Z in which we set i, h = 0:
YE(N) =Z5,(N), Y0 =25 (@),

(@.1)
Yi(a,b) := Zs(a,b), Y[ZV’C(S, 1) = Zgg-(s, .

We know by [11, Theorem 2.1 and Remark 2.3] that for fixed h (in particular, for h = 0) the
convergence in distribution (2.12), resp. (2.25)), holds in the space of continuous functions of
t € [0,00), resp. (s,¢) € [0,00)%, with uniform convergence on compact sets. By Skorohod’s
representation theorem (see Remzirk[zl;f]below), we can fix a continuous version of the processes Y
and a coupling of Y, Y such that P(dw, dW)-a.s.

YT >0: sup

0<1<T

Yo (=YY 0 — 0, sup

0<s<t<T

w,C _yvWc
Yy, (Ns,Ni) Yﬁ (s, T 0. 4.2
We stress that the coupling depends only on the fixed value of 3 > 0.

The rest of this section consists in showing that under this coupling of Y, Y, the partition functions
converge locally uniformly also in the variable 4. More precisely, we show that there is a version of
the processes ngil(t) and Z;V’ilc(s, 1) such that P(dw, dW)-a.s.

VT, M € (0, 0) : sup |z,;;

w
W (ND) = Z A(z)| — 0,
0<1<T, |hl<M A pih N—oo

4.3
sup |25, (N, No) = 2 (5,0 —= 0. )
0<s<t<T, |hl<M

Remark 4.1. A slightly strengthened version of the usual Skorokhod representation theorem [28
Corollaries 5.11-5.12] ensures that one can indeed couple not only the processes Y, Y, but even the
environments w, W of which they are functions, so that (4.2)) holds. More precisely, one can define
on the same probability space a Brownian motion W and a family (™M) yen, where @™ = (a)EN)),»eN
is for each N an i.i.d. sequence with the original disorder distribution, such that plugging w = w™
into YE’N(-), relation (4.2)) holds a.s.. (Of course, the sequences w™ and ™" will not be independent

for N # N’.) We write P(dw, dW) for the joint probability with respect to (w™)yen and W. For
notational simplicity, we will omit the superscript N from ¥ in Y5 (). 2, () ete..

Step 2. Regular versions. The strategy to deduce (@.3) from (4.2)) is to express the partition functions
Z,Z for h # 0 in terms of the 4 = 0 case, i.e. of Y, Y. We start doing this in the continuum.
We recall the Wiener chaos expansions of the continuum partition functions, obtained in [12,

Theorem 3.1], where as in (2.2)) we define the constant C, := %(‘m)

N o no )
ZV =1+ ff @ | | dW, + hdt,). 4.4
B,h( ) Z t [i—a(tz ) (1 — 1)1 | (BdW,, ) (4.4)

n=10ct <ty<.<t, < 1

W.c _
Zys(s,0 =1+

Cl(t—s)'@ L PN C )
2 ff (n—s)l—“(tz—tl)l—“---(tn—tn_l)l—“(t—tn)l—“B(BdW”'Jrhdt’)'

n=1 o <<ty <t
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These equalities should be understood in the a.s. sense, since stochastic integrals are not defined
pathwise. In the next result, of independent interest, we exhibit versions of the continuum partition
functions which are jointly continuous in (¢, ) and (s, t, #). As a matter of fact, we do not need this
result in the sequel, so we only sketch its proof.

LA W, .
Theorem 4.2. Fix 3 > 0 and let (Y};V(f))te[o,oo), (Yﬁ (s, t))(s,t)E[O,oo)i be versions of [@.1)) that are

continuous in t, resp. in (s, 1). Then, for all h € R and all s € [0, ), resp. (s, 1) € [0, 00)2,

YA (0, n)YA ‘U,n) YV (o) K
280 (“)YW(t)+ c ik f f P dr |
Z _“ (fz—tl)l_“ (tx — ty—1)' @ l_l

0<f)<tr<...<tx<t i=1

(4.6)

ZYVE( n ) Y;V’C(s, 0+ (t— 5"

(S t) YA “(f1,12) (tk 15 tk) YA “(tx, 1) 4.7
X Z Ck hk f f 7 .- l_[ dy | .
-

s)l-@ (fz—tl)1 @ (fk—l‘k—l)l @ (f—lk)l_“ i

S<H < <..<tp<t

The right hand sides of ([4.6), (4.7) are versions of the continuum partition functions {@.4), (4.3) that
are jointly continuous in (t, h), resp. in (s, t, h).

Remark 4.3. The equalities (#.6) and (@.7) hold on a set of probability 1 which depends on /. On
the other hand, the right hand sides of these relations are continuous functions of /4, for W in a fixed
set of probability 1.

Proof (sketch). We focus on (4.7), since (4.06)) is analogous. We rewrite the n-fold integral in (4.3)
expanding the product of differentials in a binomial fashion, obtaining 2" terms. Each term contains
k “deterministic variables” dt; and n — k ““stochastic variables” thj, whose locations are intertwined.
If we relabel the deterministic variables as u; < ... < ug, performing the sum over n in {.5)) yields

ZYVF(s H=1+(-s" “ZC" ff ACs, u)A(uy, ) -+ - Aty l,uk)A(uk,t)l_lhdu,,

=1 s<u)<up<...<up<t

where A(u, un+1) gathers the contribution of the integrals over the stochastic variables dW;; with

indexes t; € (U, Uy41), 1.€. (relabeling such variables as 71, ..., #,)
1
Ala,b) =——+
b-a

C}’l
e ff (t — @)=t = 1) (b — ) “<b-t)lwnﬁdwff

=1 a<ti<hr<..<ty<b

A look at (#3) shows that A(a, b) = = a)l QZWC(S f) = (b—al)lfa ng’c(s, 1), proving @.7).

Since the process Y€ (s, 1) is continuous by assumption, it is locally bounded and consequently

the series in (4.7) converges by the upper bound in [11, Lemma C.1] (that we already used in (3.14))).
The continuity of the right hand side of (4.7)) in (s, 7, 2) is then easily checked. O

Step 3. Proof of (.3)). We now prove (4.3)), focusing on the second relation, since the first one is
analogous. We are going to prove it with ng’hc(s, 1) defined as the right hand side of (4.7).
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Since e = 1 + (¢ = 1)1,,¢;, a binomial expansion yields

r—1 r—gq—1

r—1
Ml = [T Mo =14 3 X (=D e Ty (48)

n=q+1 k=1 g+1<ni<--<m<r-1
We now want to plug (4.8)) into (2.24)). Setting np := ¢, we can write (in analogy with (3.10))
E (ez;;;l(ﬁwk—A(ﬁ))nkg]lme

T " ]lnker
k Y, (e, r) [ u(r—n
- ’ )
=\ [T OY g i, m) | e |[ [ = nin) | =,
i=1 Y (@) i wr=q)
where we recall that Y,;*“ := Z 7, of (@.1)). For brevity we set
Qj(a, b) := AP Y5 (a,b). (4.9)
Then, plugging (@.8) into (2.24)), we obtain a discrete version of (4.7):
Z3y(a.r) =Yg (q,r)

C]ET,I"ET)

! Qmar)

i Y . u(r—ny) (4.10)
+ Z(e -1) Z l_[Q(n, 1,7;) “’C(q,r) l_lu(ni_ni—l) W=

k=1 g+1<n;<--<m<r—1 i=1

We are now ready to prove (4.3). For this purpose we are going to use an analogous argument as
in Theorem [3.1} it will be necessary and sufficient to prove that, P(dw, dW)-a.s., for any convergent
sequence (sy, Iy, AnN)NeN — (Scos foos Noo) 101 [0, T]i X [0, M] one has

lim ch (NSN,NIN) Z (SN,IN)

N—oo

where hy = hy L(IN)N~®. Recall that we have fixed a coupling under which Y;’A’]C(N s, Nt) con-
verges uniformly to Y;;V’C(s, 1), P-a.s. (cf. (4.2)). Borel-Cantelli estimates ensure that max,<y |w,| =
O(log N) P-a.s., by (I.2), hence QE’N(N s, Nt) in (4.9) also converges uniformly to Y};V’C(s, 1), P-a.s..
We call this event of probability one Qy. In the rest of the proof we work on Qy, proving @.11).

It is not restrictive to assume Nsy, Nty € Ny. Then we rewrite (.10) with ¢ = Nsy, r = Nty as
a Riemann sum: setting #y = sy, fx+1 = ty,

ZZ};C,hN(NsN, Niy) = YZ);VC(NSN, Niy)

4.11)

+

Ny zsw)—1 (ehN - l)k 1 Z s {Q‘g’N(Nti—l,Nfi) (N hy) u(Nt; - Nfi—l)}
hy Q;;J;C(NS, Nt) (N hy) u(Nty — Nsy)

k=1 AT th%No
SN<t <-<t <ty
(4.12)
Observe that N hy = hy LIN)N'=® ~ ho, LIN)N'~?. Recalling (2.2)), on the event Qy we have
A Y;V’C(x, y)
lim Q% (Nx, Ny) (Nin) u([Ny] = [Nx]) = hooCo———— VYO < x<y< oo, 4.13)
Nosoo ~BN (y— x)l—a

and for any € > O the convergence is uniform on y — x > e. Then, for fixed k£ € N, the term in
brackets in (#.12)) converges to the corresponding integral in (.7)), by Riemann sum approximation,
because the contribution to the sum given by #; — #;_; < € vanishes as € — 0. This claim follows
by using Potter’s bounds as in (3.12)), with Wy(r, s) = L(N)N'~®u([Nr] - [Ns]), and the uniform
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convergence of QE’N(N s, Nt) which provides for any n > 0 a random constant C,, 7 € (0, o) such

that forall N e Nand forall0 < x <y <T
-1

CTI,T Cyr
(y _ x)l—a—r] (y _ x)l—a+n :

Therefore the contribution of the terms #; — #;_; < € in the brackets of (4.12)) is estimated by

.. s =1 t;.
_ J— _ I—a+7 ... _ JE— {ti—ti_1<e, for some i=1,--- ,k} l_[ i
(f1 — sn) (2 —11) (I — 1) i

SN<t] <- <t <Iny

< Qg (Nx,Ny) (N hy) u(TNy] = [Nx]) < (4.14)

For any fixed k € N once chosen 1 € (0, @) this integral vanishes as € — 0 (recall that (sy, ty) —
(S0, to) € [0, T]i). To get the convergence of the whole sum (4.12) we show that the contribution of
the terms k > M in (4.12)) can be made arbitrarily small uniformly in N, by taking M large enough.
This follows by the same bound as in (3.14), as the term in brackets in (4.12) is bounded by

CK2(sy — ty) ="
e i dt - - - dr
_ 1-a+n _ l-a+n. .. _ 1-a+n 1 k
(t1 — sN) (2 — 11) (tn — 1)

SN<H <-<tp <ty
k+2 k(a—n)—-2
/ ChiPay = sy o2

1—
My = )17 (1= agg) 1o

duy -+ dug < (Cpr)iereokloek,

O<uy<---<ur<l

for some constant C‘n,T € (0, ), cf. [11, Lemma B.3]. This completes the proof. O

5. PrOOF OF THEOREM

In this section we prove Theorem[2.4] Most of our efforts are devoted to proving the key relation
(2.21)), through a fine comparison of the discrete and continuum partition functions, based on a
coarse-graining procedure. First of all, we (easily) deduce (2.22) from 2.21).

5.1. Proof of relation (2.22) assuming (2.21). We set 3 = 1 and we use (Z-11)-@2-13) (with € = )
to rewrite (2.21)) as follows: for all & € R, 17 > O there exists 8y > 0 such that

. F(B, hLa(}) =)
Fe (l’h B 77) = = 1\ o2
La(B)zﬁza’l

If we take /2 := h%(1) — 27, then F(1,/ + 17) = 0 by the definition (Z.16)) of h?. Then (5.1)) yields
F (8. h La(3)B7°T) = 0 for § < o, that is h(B) = h Lo(3) BT by the definition (27) of ke, hence

. he(B)
lim inf ~]—2a
p=0 La([g)ﬁm

<F'(Lh+n),  VBe(0.5). (5.1)

>h=he1)-27.

Letting 7 — 0 proves “half” of (2.22)). The other half follows along the same line, choosing
h :=h%(1) + 25 and using the first inequality in (5.1). O

5.2. Renewal process and regenerative set. Henceforth we devote ourselves to the proof of
relation (2.21)). For N € N we consider the rescaled renewal process

v={v)
N |\ NJien

viewed as a random subset of [0, ). As N — oo, under the original law P, the random set 7/N
converges in distribution to a universal random closed set 7%, the so-called a-stable regenerative
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set. We now summarize the few properties of 7 that will be needed in the sequel, referring to [11}
Appendix A] for more details.
Given a closed subset C C R and a point ¢ € R, we define

g:/(C) :=supf{x|xe CN[-00,0)}, d(C):=inf{x|xe CN[t 00)}. 5.2)
A key fact is that as N — oo the process ((g;(7/N), d;(T/N)):e[0,.0) converges in the sense of finite-
dimensional distribution to ((g/(7%), d/(7%))se[0,00) (s€€ [11, Appendix A]).

Denoting by P, the law of the regenerative set started at x, that is P,(7% € -) := P(t® + x € -), the
joint distribution (g,(7%), d,(T%)) is

Px (gt(Ta) € dI/t, dt(Ta) € dV) _ ﬂue(x,t)nve(t,oo) (5 3)
du dv M- )y —wylre’ '
where C,, = %(m) We can deduce
P (9/(7") € du) _ & Lue(x (5.4)
du a (u—-x)-t—-ue’ )
P, (d(rY) edv| g;(v*) =u)  a(t—u)®
X - t — o M)1+a ]lve(t,oo) . (5.5)

Let us finally state the regenerative property of 7. Denote by G, the filtration generated by
7 N [0, u] and let o be a {G,}.>0-stopping time such that P(o- € 7*) = 1 (an example is o = d,(7%)).
Then the law of T N [0, 00) conditionally on G, equals P,|,=s, i.e. the translated random set
(% — o) N [0, 00) is independent of G, and it is distributed as the original 7* under P = P,

5.3. Coarse-grained decomposition. We are going to express the discrete and continuum partition
functions in an analogous way, in terms of the random sets 7/N and 7%, respectively.

We partition [0, o) in intervals of length one, called blocks. For a given random set X — it will
be either the rescaled renewal process 7/N or the regenerative set 7¥ — we look at the visited blocks,
i.e. those blocks having non-empty intersection with X. More precisely, we write [0, c0) = [ J;2, Bk ,
where By = [k — 1, k), and we say that a block By is visited if X N By # 0. If we define

J1(X) :=min{j > 0: B;nX # 0}, 3 (X) :==min{j > J4_1 : B;N X # 0}, (5.6)
the visited blocks are (Bj,(x));c- The last visited block before ¢ is By,(x), Where we set
m(X) :=supf{k > 0: Jx(X) < t}. (5.7
We call si(X) and ti(X) the first and last visited points in the block Bj,(x), i.e. (recalling (5.2))
sk(X) :=inf{x € XN By, } = d;,-1(X), tx(X) :==sup{x € XN By, } = 9;,(X). (5.8)

(Note that J4(X) = [sr(X)] = [tx(X)] can be recovered from s;(X) or tx(X); analogously, m,(X) can
be recovered from (J;(X))ren; however, it will be practical to use Jx(X) and m,(X).)

Definition 5.1. The random variables (Jx(X), si(X), tx(X))reny and (m;(X))sen Will be called the
coarse-grained decomposition of the random set X C [0, c0). In case X = 7* we will simply write
(Ik, Sk» ti)ren and (my);erv, while in case X = 7/N we will write (J(N), s,(cN), t/(cN))keN and (mEN))teN.
Remark 5.2. For every ¢ € N, one has the convergence in distribution

d
(mz(‘N)v (S]((N)’ t]((N))ISkSij)) N—>—oo) (mls (Sk, tk)]ﬁkﬁm[) s (59)
thanks to the convergence in distribution of (gs(7/N), ds(7/N))sen toward (g5(7%), ds(T%)) sen-

Using (5.3)) and the regenerative property, one can write explicitly the joint density of Ji, s, tx.
This yields the following estimates of independent interest, proved in Appendix [A.1]
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Ficure 1. In the figure we have pictured a random set X, given as the zero level set
of a stochastic process, whose excursions are represented by the semi-arcs (dotted
arcs represents excursions between two consecutive visited blocks). The coarse-
grained decomposition of X is given by the first and last points — s;(X), tx(X) —
inside each visited block [J; — 1(X), Jx(X)), marked by a big dot in the figure. By
construction, between visited blocks there are no points of X; all of its points are

contained in the set UkeN[sk(X), tk(X)].

Lemma 5.3. For any a € (0, 1) there are constants A,, By € (0, 00) such that for all y > 0

sup Py(tae[da—7.d0]lt =y) <A, y'7?, (5.10)
(x,y)€[0,1]§
sup P.(ta—sy <y|t;=y) <B,)", (5.11)
(x.y)el0.112

where P, is the law of the a-stable regenerative set starting from Xx.

We are ready to express the partition functions Z - (Nt) and Z (t) in terms of the random sets

7/N and 7%, through their coarse-grained decomposmons. Recall that B, hy are linked to N and 3, h
by (2.T1)). For notational lightness, we denote by E the expectation with respect to either 7/N or 7°.

Remark 5.4. It is convenient to slightly modify the definitions (2.1)) and (2.24) of the partition
functions Z% h(N) and Z‘” C(a b), extending the range of summationto0 <n < Nanda <n < b,
respectlvely This av01ds annoying boundary terms in relation (5.14) below. We stress that the
difference is immaterial, since for Sy, hy as in (Z.I1) we have e/¥Nor=ABMIThY 5 1 a5 N — oo
uniformly for 0 < n < N, P(dw)-a.s., because yields maxo<,<y |w,| = O(log N).

In §5.7|below it will be convenient to consider the piecewise constant extension Z“’A’]chN( [Ns], [Nt])
of discrete partition functions, instead of linear interpolation. Plainly, relation ([1;3’]3 still holds.

Theorem 5.5 (Coarse-grained Hamiltonians). For t € N we can write the discrete and continuum
partition functions as follows:

(T/N) ()
Zg  (ND = E[ M ai ] Zg}l(t) = E[ B ] (5.12)
where the coarse-grained Hamiltonians H(t/N) and H(t®) depend on the random sets /N and ™

only through their coarse-grained decompositions, and are defined by

(N)

m,
) w,C (N) (N) w vy _ W
Hy o (@IN) —ZlogZ NS NEY), Ht;[),ﬁ(r‘)—;loglﬁﬁ(sk,tk). (5.13)
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Proof. Starting from the definition (2.1)) of Z};N I (N?), we disintegrate according to the random

variables mﬁN) and (s,((N ), t,({N ))1 <ken™- Recalling (2.24), the renewal property of 7 yields
— ) ) , N) N) , N) (N)
Z;;N,hN(Nt) =E ZE)N(,:hN (O’ Ntl ) ZE)N(,:hN (NS2 ’ Nt2 ) o Z,Z’)N(,:hzv (NsmﬁN)’ NtmgN) ’ (5' 14)

which is precisely the first relation in (5.12), with H defined as in (5.13).

The second relation in (5.12) can be proved with analogous arguments, by the regenerative
property of 7. Alternatively, one can exploit the convergence in distribution (5.9)), that becomes a.s.
convergence under a suitable coupling of 7/N and 7¢; since Z;),’}th (Ns,Nt) — Z;V’ilc(s, t) uniformly
for 0 < s <t < T, under a coupling of w and W (by Theorem [2.6), letting N — o in (5.14) yields,
by dominated convergence, the second relation in (5.12)), with H defined as in (5.13). o

The usefulness of the representations in (5.12) is that they express the discrete and continuum
partition functions in closely analogous ways, which behave well in the continuum limit N — oo.
To appreciate this fact, note that although the discrete partition function is expressed through an
Hamiltonian of the form 3.V, (Bw, — A(B) + 1)1 yeq), cf. @-1), such a “microscopic” Hamiltonian
admits no continuum analogue, because the continuum disordered pinning model studied in [11] is
singular with respect to the regenerative set 7%, cf. [[1L1, Theorem 1.5]. The “macroscopic” coarse-

grained Hamiltonians in (5.13)), on the other hand, will serve our purpose.

5.4. General Strategy. We now describe a general strategy to prove the key relation (2.21)) of
Theorem [2.4] exploiting the representations in (5.12)). We follow the strategy developed for the
copolymer model in [9, [10], with some simplifications and strengthenings.

Definition 5.6. Let f;(N, 3, h) and g,(N, 3, h) be two real functions of t, N € N, 3 > 0, h € R. We
write f < g if for all fixed 3, h, i’ with h < i’ there exists No(B, i, h’) < oo such that for all N > Ny

lim sup ﬁ(N’ﬁ’ 7:[) < lim sup gl(NaBa il/),
t—00 . t—00 . (515)
lign inf fi(N,B, h) < li;n inf g;(N, B, h').
where the limits are taken along ¢ € N. If both f < g and g < f hold, then we write f ~ g.

Keeping in mind (Z.3) and 2.14), we define " and f respectively as the continuum and
discrete (rescaled) finite-volume free energies, averaged over the disorder:

DN A 7y L W

FOWN,B,R) = tE(logZﬁjl(t)), (5.16)
a1 "

fOW,B R = ;E(log zg . (ND) . (5.17)

(Note that £V does not depend on N.) Our goal is to prove that f® ~ 1) because this yields the
key relation (2.21) in Theorem[2.4] and also the existence of the averaged continuum free energy as
t — oo along ¢ € N (thus proving part of Theorem [2.3)). Let us start checking these claims.

Lemma 5.7. Assuming f® =~ fU the following limit exists along t € N and is finite:
o a A 1
F'(B. 1) := lim FOWLB R = lim ;E(log Z[‘}”@(t)) . (5.18)
Proof. The key point is that ftm admits a limit as t — oo: by (2.5)), for all N € N we can write

lim f(N.B,h) = NF(By. hw) (5.19)
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where we agree that limits are taken along ¢ € N. For every € > 0, the relation f® ~ £ yields

limsup £ (N, B, h - 2€) < lim FOWNBh-e) < lim inf , DN, Iy, (5.20)

t—00

for N € N large enough (depending on 3, & and €). Plugging the definition (5.16) of f; (D which does
not depend on N € N, into this relation, we get

1
lim sup —E (log (t)) < hm 1nf E (log yAd (t)) (5.21)
t—00

The left hand side of this relation is a convex function of € > 0 (being the lim sup of convex functions,
by Proposition[2.7) and is finite (it is bounded by N F(By, hy) < co, by (5.19) and (5.20)). It follows
that it is a continuous function of € > 0, so letting € | 0 completes the proof. O

Lemma 5.8. Assuming f® =~ fO, relation @21)) in Theorem[2.4 holds true.

Proof. We know that lim, e f,(l)(N, B.h) = Fe(B, h) by Lemma Recalling (5.19)), relation
F® ~ £ can be restated as follows: for all 3> 0, i € R and 57 > 0 there exists Ny < oo such that
L(N) .L(N)

| ’

F*(B, h - n)<NF( )sF“(ﬁ;,f}m), YN > Np.

Incidentally, this relation holds also when N € [NO, o0) is not an integer, because the same holds for

relation (5.19). Setting € := + and € := NLO yields precisely relation (2.21). o

The rest of this section is devoted to proving f) ~ & By (5.16)-(5.17) and (5.12), we can
write

DN, B, h) = —]E logE [ ) . SN, B, ) = —]E logE | hazi™M) - (5.22)
g t g
Since relation = is transitive, it suffices to prove that
f0 = [~ O, (5.23)

for a suitable intermediate quantity f® which somehow interpolates between f( and f®. We
define f® replacing the rescaled renewal 7/N by the regenerative set 7% in f*:

OB 1) = LB (log E[Musi™]) . (5.24)
t " g
Note that each function f @ fori=1,2,3, is of the form
1 (i)
SN, B R = —E(logE [eHNwD, (5.25)

for a suitable Hamiltonian Hi\i/)z-[; W We recall that E is expectation with respect to the disorder (either
w or W) while E is expectatidri with respect to the random set (either 7/N or 7%).
The general strategy to to prove fD < U can be described as follows (i = 1, j = 2 for clarity).

For fixed B3, h, i’ with i < I, we couple the two Hamiltonians H(l)_A - and Hﬁ) ey (both with respect
to the random set and to the disorder) and we define for € € (0, 1)
AP :=H) - (1-eHY (5.26)

N.t:Bh N.t.B.

(we omit the dependence of A%’?(r) on B3, h, i’ for short). Holder’s inequality then gives

1-€
0 @) 12
E (eHN,t;[S,fz) <E (eHN,t;ﬁ,ﬁ’) E (eiANg (U)
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Denoting by lim;_, , either liminf,_,«, or lim sup,_,, (or, for that matter, the limit of any convergent
subsequence), recalling (5.23)) and applying Jensen’s inequality leads to
* P * P 1 (1.2
tim £ WN.B. 1) < (1 = @) lim £7(N.B.]) + €lim sup — log EE (e%AN.s <f>) .

t—00

In order to prove V) < f@ it then suffices to show the following: for fixed 3, i, i’ with i < I,
N

3 . : 1 1AG2(0)
€€ (0,1), Ny € (0,00) : hmsup;logEE(ef N.e )SO, Y
t—00
(Of course, € and Ny will depend on the fixed values of B, fz, iz’.)
We will give details only for the proof of f( < f® < f® because with analogous arguments
one proves () > f@ » 3 Before starting, we describe the coupling of the coarse-grained
Hamiltonians.

5.5. The coupling. The coarse-grained Hamiltonians H and H, defined in (5.13)), are functions of
the disorders w and W and of the random sets 7/N and 7. We now describe how to couple the
disorders (the random sets will be coupled through Radon-Nikodym derivatives, cf. §5.7).

Recall that [a, b)z ={(x,y): a<x<y<b}.ForneN, we let 25\’,') and Z™ denote the families
of discrete and continuum partition functions with endpoints in [, 7 + 1):

AR (Z“”C (N's, Nt))

(n) ._ W,c
N B iy VAERES (Z,[;ﬁ (s, t))

(s.0€lnn+1)2 ’ (s.elnn+1)2

Note that both (ZX;))HGN and (Z™M),en are i.i.d. sequences. A look at (5.13) reveals that that the
coarse-grained Hamiltonian H depends on the disorder w only through (Zg\';))neN, and likewise H
depends on W only through (Z™),.c;y. Consequently, to couple H and H it suffices to couple (Zg\';))neN

and (Z™),en, i.e. to define a law for the joint sequence ((ZX,”, Z(")))neN. We take this to be i.i.d.:
discrete and continuum partition functions are coupled independently in each block [n,n + 1).

It remains to define a coupling for Zg\}) and Z". Throughout the sequel we fix 8 > 0 and A, i’ € R
with & < /. We can then use the coupling provided b}/ TAheorem which ensures that relation
(4.3) holds P(dw,dW)-a.s., with T = 1 and M = max({|al, |1’|}.

5.6. First step: £ < f@. Our goal is to prove (5.27). Recalling (5.26), (5.22) and (5.24)), as well
as (5.13), for fixed 3, h, i’ with h < i’ we can write

W,c
Z'éﬁ (Sk, tr)

m;
1,2)
A0 = Bl () = (1= HY 5 () = ) log e

. , (5.28)
N.tBh =1 ﬁN,h;\,(Nsk’ ]Vtk)l_E
where we set i, = i’ L(N)/N® for short, cf. (Z.IT). Consequently
1
m, YANER) ¢
EE (e%AEVIf)(’)) =E n Ine(sk tr) where  fye(s, 1) :=E Pl (5.29)
| S Tz (s Nnle |
= N

because discrete and continuum partition functions are coupled independently in each block [, n+1),
cf. hence the E-expectation factorizes. (Of course, fy (s, ?) also depends on j, hi)

Let us denote by Fy = o ((s;, t;) : i < M) the filtration generated by the first M visited blocks.
By the regenerative property, the regenerative set 7% starts afresh at the stopping time s;_;, hence

E[ fv.e(Sk, ) | Fi-1] = E[ fve(Sto ) [ St—1, Ta1] s (5.30)
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where we agree that E[ - | sg, to] := E[ - ]. Defining the constant
Ane:= sup E[fye(sr t)lsi-1,te-1], (5.31)

k,Sk—-1,tk-1

we have E[ fy.e(Sk, tk) | Fr-1] < Ay, hence E [H,i”zl In.e(sks tk)] < (AN,E)M for every M € N, hence

m, (<) M
l_[fN,Ask,tk)} <D E ]_[fN,e<sk,tk)] Z(ANaM ﬁ 0,
k=1 M=1 Lk=1 N.e

(5.32)
provided Ay < 1. The next Lemma shows that this is indeed the case, if € > 0 is small enough and
N > Ny(é). This completes the proof of (5.27), hence of f( < f®.

Lemma 5.9. The following relation holds for Ay ¢ defined in (5.31)), with fy . defined in (5.29):
limsup limsup Ay =0. (5.33)

e—0 N—>oo
The proof of Lemma[5.9]is deferred to the Appendix [A.2] The key idea is that, for fixed s < 1,
the function fy (s, 7) in (5.29) is small when € > 0 small and N large, because the discrete partition
function in the denominator is close to the continuum one appearing in the numerator, but with
I > h (recall that the continuum partition function is strictly increasing in &, by Proposition 2. .
To prove that Ay ¢ in (3.31)) is small, we replace s, 7 by the random points sy, tx, showing that they
cannot be too close to each other, conditionally on (and uniformly over) si_1, tx_1.

5.7. Second Step: [ < f®. Recalling (5.22)) and (5.12)-(5.13), we can write f© as follows:

(N)

OB Iy = —E logE ]_[z‘“c NsM Nt ] (5.34)

EE (eeA(‘”(t))

Note that £, defined in (5.24), enjoys the same representation , with m™ and s(N) t(kN)

replaced respectively by their continuum counterparts m, and sy, ty. Slnce we extend the dlscrete
partition function in a piecewise constant fashion Zg,’]’vchN( LNs], [Nt]), cf. Remark we can replace

Sk, Ty by their left neighbors S(N ) t(N ) on the lattice %No, ie.
Ns Nt
s(kN) - L NkJ , t}({N) - L NkJ ’ (5.35)
getting to the following representation for f; 2,
fAOW,B. Ry = —E[logE ]_[z‘” € Vs, Nt(N))D (5.36)

The random vectors (m,, (S(N) t(N))1 <k <m(N)) and (m(N) (S(N) t,(fv))1 <) are mutually absolutely
continuous. Let us denote by R, the Radon—leodym derivative

P( M =M, sV M = (xk,Yk)]/(Vil)
p( =M, (s(N) tgv))kM:1 = (xk,)’k)kle)

R, (M, Gat yiiLy ) = : (5.37)

for M € N and xi, yx € %No (note that necessarily x; = 0). We can then rewrite (5.34) as follows:

ﬁ(zw Ch (Ns(N) t(N))) R, (mt, (s(N) tch))IISI:I)U , (5.38)

k=1
which is identical to @, apart from the Radon-Nikodym derivative R;.

PN, B, ) = ~E|logE
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Relations (5.36) and (5.38) are useful because f> and /' are averaged with respect to the same
random set T (through its coarse-grained decomposition m, and S(N ) t,({N )). This allows to apply the

general strategy of §5.4 Defining Ay, = AEV 53) as in (5.26), we can write by (5.36)-(5.38)

1
79 ch (NS(N) t(N)) €

E
k:l—l[ Zg, (NS N1

1
R, (m, (s, ¢/ )|, (5:39)

EE (eéAN’f(t)) -E

and our goal is to prove (5.27) with A(  replaced by Ay c: explicitly, for fixed B.h, W with h < I,

1
e 1), Noe(©.0):  limsup- logEE (eeANf“)) <0, YN=N. (5.40)

t—00

In order to simplify (5.39), in analogy with (5.29), we define

Zo<, (Ns.N)
(Ns,Nt)l—¢

(5.41)
,6’ h’

gN,é(s7 t) =E [

The Radon-Nikodym derivative R, in (5.37)) does not factorize exactly, but an approximate factoriza-
tion holds: as we show in section [A.3] (cf. Lemmal[A.T]), for suitable functions ry and 7y

M
R; (M, (xk,)’k)livil) < {l_[ rN(ye-1, xe,y{f)} iNOms 1), (5.42)
t=1
where we set yg := 0 (also note that x; = 0). Looking back at (5.39)), we can write
m 1 1
1 el = e
EE(e!0) < B {]‘[ e (S, £9) y (69 5 £9) } o (29,1 } L6
k=1

Let us now explain the strategy. We can easily get rid of the last term 7y by Cauchy-Schwarz,
so we focus on the product appearing in brackets. The goal would be to prove that (5.40) holds by
bounding (5.43)) through a geometric series, as in (5.32). This could be obtained, in analogy with
(5.30)-(5.31)), by showing that for € small and N large the conditional expectation

N N N N N
Elg E(S() ())r (t;c )1, ()t( ))

N N N
] = Blawe s 1) vt s

€| Sk-1, T 1]

is smaller than 1, uniformly in sy_1, ty—;. Unfortunately this fails, because the Radon-Nikodym term
ry is not small when t;_; is close to the right end of the block to which it belongs, i.e. to J;_;.

To overcome this difficulty, we distinguish the two events {t;_; < J;z_1 —7y}and {ty—1 > Jp_1 — v},
for y > 0 that will be chosen small enough. The needed estimates on the functions gy, ry and 7y
are summarized in the next Lemma, proved in Appendix[A.3] Let us define for p > 1 the constant

ANep = sup E(gN,e(Sk, tk)”| Sk—lytk—l) , (5.44)

k,Sk—1,tk-1

where we recall that gy (s, 7) is defined in (5.41)), and we agree that E[ - | so, to] := E[-].

Lemma 5.10. Let us fix B € R and h, i € Rwithh < It

e Forallp > 1
limsup limsup Aye, =0. (5.45)

e—0 N—oo
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e Foralle € (0,1), p > 1thereis Ce ), < o such that for all N € N

P
viz2: Bl (e s 1) | st | < € (5.46)
P
E[?N (t,(n]y),t)e] <Cep. (5.47)

e Foralle € (0,1), p> 1,y €(0,1) there is Ny = Ny(e, p, y) < oo such that for N > Ny

p
™) LN\
sV, ¢! )

Vk=2: E|m(x,

Si-1 tk_l] <2 ontheevent{ty_; < Jr_1—7y}, (5.48)
P
E[rN (0. 0, t(lN))f] <2. (5.49)
We are ready to estimate (5.43)), with the goal of proving (5.40). Let us define

N N)\2 N N N\ 2
0, = gne (s, V) (£, s, €07 (5.50)

with the convention that tE)N) := 0 (note that also S(IN) = 0). Then, by (5.47) and Cauchy-Schwarz,

m; =) M
[EE (elAN,Ea))]z <CoE|[ [oN |2 Ca DB |2
k=1 M=1 k=1
We are going to show that
M 1
Jee(0,1), Noe (0,0 :  E|[ [f] < o YMEN. N =Ny, (5.51)
k=1

which yields the upper bound EE(e <) < 1/Ce., completing the proof of (5.40).

In the next Lemma, that will be proved in a moment, we single out some properties of (I)/(fz)v’ that
are direct consequence of Lemma [5.10

Lemma 5.11. For every € > 0 small enough there exist ¢ € (1,00), y € (0,1) and Ny < oo such that
for N > Ny

E[00] < 1

¢ always
Sk—1, tk—l] < , (5.52)
{i on{ti-1 < Jj-1 — v}

and moreover

1
E @) Lit,51-] < s Vk=22: E[@,f}v]l{tk>3k_y}| Sk_1, tk_l] < (5.53)

Let us now deduce (5.51)). We fix €, ¢, ¥ and Ny as in Lemma [5.T1] Setting for compactness

M
Dy := n CD,(;)\,,
k=1

we show the following strengthened version of (5.51)):

1 1
E[Dyn] < 557 E [Dyn Tty < s YMEN, N2No. (5.54)



UNIVERSALITY FOR THE PINNING MODEL IN THE WEAK COUPLING REGIME 27

We proceed by induction on M € N. The case M = 1 holds by the first relations in (5.52)), (5.53).
For the inductive step, we fix M > 2 and we assume that (5.54)) holds for M — 1, then

E[Dun] = E[DM—LNE((DEEI)’N’ (FM—l)] = E[DM—I,NE((DE\?N‘ SM-1, tM—l)

=E [DM—I,NE(q)E‘?N| SM-1 tM—l) ]l{tM,1>JM,1—y}]

+E [DM—I,NE(QDEEI?N | SM-1 tM—l) ]l{tM_ISJM_l—y}]

1 1 1 1 1
< CE[DM_I’N]I{tM—1>JM—1_’Y}:| + ZE[DM—LN] <c M1 + 2oMT < R
where in the last line we have applied (5.52) and the induction step. Similarly, applying the second
relation in (5.53)) and the induction step,

1

1
E[DM,N]l{tM>JM—y}] = E[DM—I,NE ((DESI)’N]I{tM>JM—y} | SM-1, tM—l)] < gE[DM—I,N] S o

This completes the proof of (5.54), hence of (5.51)), hence of f@ < f©.

Proof of Lemmal[5.11] We fix €) > 0 small enough such that, by relation (5.43), for every € € (0, &)
there is Ny = No(€) < oo such that

1 N
ANeap < 3 VYN >Ny, forbothp=1andp=2. (5.55)

Given the parameter y € (0, 1), to be fixed later, we are going to apply relations (5.48)-(5.49).,

that hold for N > Ny(y) and for p € {1,2} (we stress that € has been fixed). Defining Ny :=

max{No(y), No}, whose value will be fixed once v is fixed, henceforth we assume that N > Ny.
Recalling and (5.44), for k > 2 and p € {1, 2} one has, by Cauchy-Schwarz,

E [(q)l(:/)v)p’ Sk-1, tk_l]z < E[gN,e (SEN), t](cN))A'p

4p
V) V) LT
-E[rN(t sV, ¢! )

Sk—1, tr-1

k-1

Sk-1, tk—l]

N) V) L)L (5-56)
< ANedp - E[rN (tk_l, S,(( ), t, )E Sk-1, tk—l}
1
< 31—2 . C€,4p1 always
2= on {tg <1 -}

having used (3.53)). Setting p = 1, the second relation in (5.52)) holds with ¢ := 1/%. The first

relation in (5.52)) is proved similarly, setting E[ - | s¢, to] := E[ -] in (5.536) and applying (5.49).
Coming to (5.53)), by Cauchy-Schwarz

(e 2 o )2
E q)k7N]l{tk>Jk—y}’ Sk—1, tk—l] < E[((D,QN) Sk—1, tk—l] Pty > Jp =yl Sp-1, te-1)

(5.57)
CE,S —
<35 sup Pi(ta>J—-ylti=y,,
(xy)el0,1)2
having applied (5.56)) for p = 2, together with the regenerative property and translation invariance
of . By Lemma[5.3] we can choose y > 0 small enough so that the second relation in (5.53) holds
(recall that ¢ > 1 has already been fixed, as a function of € only). The first relation in (5.53)) holds by

similar arguments, setting E[ - | so, to] := E[ -] in (5.57). O
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6. PrOOF OF THEOREM

The existence and finiteness of the limit (2.14) has been already proved in Lemma[5.7] The fact
that F*(B, h) is non-negative and convex in / follows immediately by relation (Z.20) (which is a
consequence of Theorem [2.4] that we have already proved), because the discrete partition function
F(B, h) has these properties. (Alternatively, one could also give direct proofs of these properties,
following the same path as for the discrete model.) Finally, the scaling relation (2.15]) holds because
Z/?/iz(d) has the same law as Z" | (#), by (Z-T1)-(2:12) (see also [I1} Theorem 2.4]).

T2B,c%h
APPENDIX A. REGENERATIVE SET

A.1. Proof of Lemma We may safely assume that y < 1, since for y > § relations (5.10)-
(5.11)) are trivially satisfied, by choosing A,, B, large enough.
We start by (5.11)), partitioning on the index J, of the block containing s, t (recall (3.6), (5.8)):

P,(t—-s2 <yt =Y)=pr(t2—szﬁ% h=nlt;=y),
n=2
for (x,y) € [0, l]i. Then (5.11) is proved if we show that there exists ¢, € (0, c) such that
Ca
n1+a

Yh, Vn>2,V(x,y) €[0,12. (A.l)

Pn(y,x,y) =Py (ta =8 <y, lo=n|t =y <

Let us write down the density of (t;,s,,32) given s; = x, t| = y. Writing for simplicity
g; := g,(t%) and d; := d,(7%), we can write for (z,w) € [n — 1, n]i

P, (g1 €dy, d; €dz, g, € dw)

P.(syedz,thedw,lr=n|t; =y) =

P,(g1 € dy)
_ P, (g1 € dy, d; € d2) P (g, € dw)
- Px(gl € d)’) ’
where we have applied the regenerative property at the stopping time d;. Then by (5.3)), (5.4) we get
P (syedz,toedw,lo=n|t;=y) (I-y*
dzdw STyt - w)e (A2)

for x<y<1, n-1<z<w<n.

where C,, = %(m) Note that this density is independent of x. Integrating over w, by (5.4)) we get
Py (sp€dz,Jo=n|t;=y) . 1-y*
dz (Z _ y)l+a

We can finally estimate p,(y, x, y) in (A.TI). We compute separately the contributions from the
events {Sp < n — vy} and {s, > n — vy}, starting with the former. By (A.2)

L1 oy 1
Call =) fn-l (z—y)t+a (fz (w—2)=%n - w)? dw)dz

C =y 1
S—a(l—y)"vaf dz,

Z
@ -1 @=He(—y-2)°

because n —w >n—vy —z. Incase n > 3, since z—y > n — 2 (recall that y € [0, 1]),

Co 1 "y 1 Co v

(Ad) < —»" dz < , A5

«’ -2 fn—1 n—y-2°  ~ al-a) (n-2)" (A->)
which matches with the right hand side of (A.I)) (just estimate n — 2 > n/3 for n > 3). The same
computation works also for n = 2, provided we restrict the last integral in (A4) on 3 <z <2 -4,

for x<y<l1, n-1<z<n. (A.3)

(A.4)
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which leads to (A3) with (n — 2) replaced by 1/2. On the other hand, in case n =2 and 1 <z < 3,
weboundn—y—-z=2-y—-z> % in (A.4) (recall that y < }l by assumption), getting

C, 0 1 C,
< 22 (1 —y)¥y2 4 - dz=
(A4 S (I=y%y fl P

@
Finally, we consider the contribution to p,(y, x,y) of the event {s, > n — v}, i.e. by (A.3)

n 1=y
f a%dzs a+, Vn =2,
n—y (Z—)’) ra (}’l— ~_)1+a

because fory < 1 wehavez—y>n-y-12n-3 3 (recall that y < 4) Recalling that @ < 1, this
matches with (A.T), completing the proof of @])

Next we turn to (5.10). Disintegrating over the value of J,, for 0 < x <y < 1 we write

24'1’)/0’<o<)

Pi(t2€[I—y. ]Ity =y) = pr(tZ €n—-y,nl, o=nlt =y) = an(%x,y)-
n=2 _

It suffices to prove that there exists ¢, € (0, 00) such that

gn(y, x,y) < Ca yl_”, Yn>2, Y(x,y) € [0, l]i . (A.6)
" <

I+a
By (A.2) we can write

n\/)s A, =L 1_ ¢ . A
an(y,x,y)=Co (1 —y) jr:—y (L_l Ty —— dz) P dw (A.7)

Ifn>3thenz—y >n—2(since y < 1), which plugged into in the inner integral yields

(1 —y) 1f" 1 1 1yl
W) S Cp 2 — [ ——dw<C, — : A8
Gn(Y: %) - a S —we T m— e o (1-a) (A-8)

which matches with (A.6), since n — 2 > n/3 for n > 3. An analogous estimate applies also for

n = 2, if we restrict the inner integral in (A77) to z > n— 1 + § = 2, in which case @]} holds with

(n — 2) replaced by 1/ 2 On the other hand, always for n = 2, in the range 1 <z < 2 5 we can bound
-z22Q2-v)- 5 > 4 in the inner integral in (A.7) (recall that y < 4) getting the upper bound

([ ] )25
( )1 @ (z—- y)1+(1 2y (2 —w) - a(l —a) Y .

This completes the proof of (A.6), hence of Lemmal[5.3] o

A.2. Proof of Lemma[5.9} Recall the definition (5.31)) of Ay,. Note that

E[fv.e(Sk th) I sk-1, tro1] = Ex[ five(s2, t2) [ 1 = y]|(x,y)=(sk_1,tk_1) ;
where we recall that E, denotes expectation with respect to the regenerative set started at x, and
t; under P, denotes the last visited point of 7% in the block [n,n + 1), where n = | x], while s;, t»

denote the first and last points of 7% in the next visited block, cf. (5.6). Then we can rewrite (5.31)) as

Ave=sup  sup B fve(sato)| ti=)]. (A.9)

n€No (x,y)e[n,n+1)2

We first note that one can set n = 0 in (A.9), by translation invariance, because fy (s +n,t+n) =
. . "V,C ,C
(s, 1), cf. (5.29), and the joint law of (Zﬁ,ﬁ (s,0), Z;)N,h;\,(NS’ Nt))(s,t)e[m,m+l)é does not depend on
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m € N, by the choice of the coupling, cf. §5.5] Setting n = 0 in (A.9)), we obtain

1
W,c €
Zﬁﬁ (s2,t2) ]
1=y

(A.10)

Z2¢  (Nsy, Nty)l-e

Ane= sup E\|E [
Bnhy

(xel0,1)2

In the sequel we fix 8 > 0 and &, i’ € R with &’ > h (thus hy, > hy). Our goal is to prove that

limsup limsup Ay =0. (A.11)

e—0 N—oo

By Proposition [2.8] there exists a constant C < oo such that

sup sup E Z;;’Ch, (Ns,No’| =sup sup E Z;”Ch, (Ns,No?| < C,
NeN 0<s<t<oo: |t-s|<1 VN NeN (5,0 (0,112 NN

where the first equality holds because the law of Z;’I’Vch, (N's, Nt) only depends on ¢ — s. If we set
N

W,c W,c
Z,éjl (s,1) 7. (s,1)

w,C >
Zy<, (Ns.N0) e

Wi (s, 1) := (A.12)

we can get rid of the exponent 1 — € in the denominator of (A.I0), by Cauchy-Schwarz:
1
[ Zyssn 1

w,C 1 1 212
= E[Zﬁ’ . (Ns,N1) WN(s,t)f] < CzE[WN(s, z)e] .
NIy

w,C 1—-
Zy), (Ns.NDI=e

We can then conclude by Jensen’s inequality that

2
(Ane? <C  sup EX(E[WN(sz,tz)e]
(x)el0,1)2

ty-1 = y) , (A.13)

and we can naturally split the proof of our goal (A.TT)) in two parts:

Ye>0: limsup (Ay)?> <C  sup E, (E [W(Sz, tz)%]
N—oo (x)El0,D)Z

ty-1 = y) , (A.14)

lim sup
e—0

sup Ey [E (W(sz, tz)%)
(xy)el0,1)2

We start proving (A.T4). Let € > 0 be fixed. It suffices to show that the right hand side of (A.T3)
converges to the right hand side of (A.14) as N — oco. Writing the right hand sides of (A.13) and
(A.T4) respectively as Csup(, yc(o.12 &n(%,¥) and Csup, 0,12 8(%, ), it suffices to show that
SUP (1 y)ef0,112 lgn(x,y) — g(x,y)] = 0 as N — oo. Note that

Y zy]] = 0. (A.15)

lgn(x,y) — glx, y)| =

Ex| B (Wats, t2)7)

t = y] -E, [E(W(sz, tz)%)

t1=yH

IA

E, [E (|WN(52, tz)% - W(s,, tZ)%

)‘ Y =y] (A.16)

).

where the last inequality holds because n < s, < t; < n + 1 for some integer n € N. The joint law
of (Wi (s, 1), W(s, D) yyefnn+172 does not depend on n € N, by our definition of the coupling in @

IA

sup sup E(|WN(S, t)% — W(s, t)%

neNo (s,nelnn+112




UNIVERSALITY FOR THE PINNING MODEL IN THE WEAK COUPLING REGIME 31

hence the sup, ., in the last line of (A.16) can be dropped, setting n = 0. The proof of (A.14) is
thus reduced to showing that

Ye>0:  lim B[Sy]=0,  with Sy:= sup |WN(s,z)%— (A.17)

(s.0€[0,11%

Recall the definition (A.12)) of Wy and Wy and observe that limy_,. Sy = 0 a.s., because by
construction Z% Ch (Ns, Nt) converges a.s. to ZWC(S 1), uniformly in (s, ) € [0, 1]2, and ZWC(s ) >

0 uniformly in (s, ) € [0, 1]<, by [11, Theorem 2.4]. To prove that limy_. E[Sy] = O it then
suffices to show that (SN)NeN_ is bounded in L? (hence uniformly integrable). To this purpose we
observe
SIZ\, <2 sup Wy(s, t)% +2 sup W, t)% ,
(s,.0€[0,112 (s,0€[0,11%
and note that W(s, 1) < 1, because i — Z‘AVAC(S t) is increasing, cf. Proposition |2. nally, the first
term has bounded expectation, by Proposmon [2.8]and Corollary [2.9} recalling (A.12)),

2

2

_8
sup  Z¥€, (s,1) €

We
sup 7. (u, v) B
(s.1)el0,112 N

4
sup  Wy(s, 1)«
(u,v)€l0,112 B

(u,v)€[0,112

supE
NeN

supE
NeN

<00,

Having completed the proof of (A.14), we focus on (A.13). Let us fix y > 0. In analogy with
(A.16), we can bound the contribution to (A.15)) of the event {t, — s, > y} by

sup  sup E[W(s,z)%]: sup EW(s,z)%]sE sup W0, (A8)
neNo (s.)elnnt11 (s.0€l0.112 (s.0el0.112
[t—s|>y [t—s|>y |t—s[>y

where the equality holds because the law of (W(s, 1), nefnn+1p2 does not depend on n € Np. Recall
that by Propositionone has, a.s., W(s, ?) < 1 for all (s,¢) € (0, 1]2, with W(s,7) < 1for s < t. By
continuity of (s, ) — W(s, t) it follows that also SUD (5 ef0,112: [—sl>y W(s, 1) < 1, a.s., hence the right
hand side of (A.T8)) vanishes as € — 0, for any fixed y > 0, by dominated convergence. This means
that in order to prove (A.15]) we can focus on the event {t; — s, < y}, and note that

2
sup E;, E(W(Sz,tz)f) Lit,-s,<y1| 11

(r))el0, )2

< sup Pi(tra-sa<ylti=Yy),
(X,Y)E[O,l)i

=Y

because W(s, 7) < 1. Since y > 0 was arbitrary, in order to prove (A.T3)) it is enough to show that

hm sup Py(tr—so <vy|t;=y)=0. (A.19)
720 (eyyefo.n?

This is a consequence of relation ( in Lemmal5.3] which concludes the proof of Lemma[5.9] O

A.3. Proof of Lemma[5.10} We omit the proof of relation (5.43), because it is analogous to (and
simpler than) the proof of relation (5.33) in Lemma[5.9} compare the definition of fyc in (5.29) with
that of gy ¢ in (5.41)), and the definition of Ay in (5.31)) with that of Ay, in (5.44) (note that the
exponent p in (5.44) can be brought inside the E-expectation in (5.41)), by Jensen’s inequality).

In order complete the proof of Lemma([5.10} we state an auxiliary Lemma, proved in §A.4below.
Recall that R, (M, (x, yk)]’:’i ,) was defined in (5.37), for t, M € N and xg, yi € —No satisfying the
constraints 0 = x| <y <xp <y2 <...<xy <yy <t Alsorecall that L : N — (O 00) denotes the
slowly varying function appearing in (I.I]), and we set L(0) = 1 for convenience.

Lemma A.1. Relation (5.42)) holds for suitable functions ry, Ty, satisfying the following relations:
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e there is C € (0, 00) such that for all N € N and all admissible y’, x, y, resp. z,1,
L(N(t -
(N(t—-72) (A.20)

L(N(x—-y")) LIN(Iyl1-y)) -
n(z,t) < C LIN(Z1 = 2) ;

(G, xy) < C :
WO ED) = C TN =) LIV — )

e foralln > 0 there is My = My(n7) < oo such that for all N € N and for admissible y', x, y

(A.21)

L(N -
rv(0,0,y) < (1 +1) (L(g\;y)y)), if yzwo;
L(N(x—y')) L(N([y] - M M
(N(x—y")) LIN([yl—y) if y—xzﬁo, x_yl‘WO' (A22)

rN(Y’,x’Y)S(lJFU) B B s
LIN(IY'T=y)) L(N(y - x))

We can now prove relations (5.46), (5.47). By Potter’s bounds [8, Theorem 1.5.6], for any § > 0
there is a constant ¢s > 0 such that L(m)/L({) < ¢s max {’2’%11 %}5 for all m, £ € Ny (the “+1” is
because we allow ¢, m to attain the value 0). Looking at (A.20)-(A.22)), recalling that the admissible

}6

values of y’, x,y are such that [y'] -y < x—y andy — x < 1, [y] —y < 1, we can estimate

x-y +y y—x+x l-y+4

- — | max B ;

1=y +y5 -y+y y-x+y
1 1

LIN(x —y) LIN(Y1 - y) _ &2
—yH R Oty

LIN(y1-y)) LING—-x) ~ °
/ 1
x=y +%
< 266% ( ’ ’ Nl )
1=y +5) Iyl
tZN) (so that [y'] = Jx—1 and [y] = J;). The first relation in

N N
()l’x_sgc),y_
1

We now pluginy’ =s
(A.20) then yields
(N) (N) 1
s, -t + % 1
(N) q(N) L (N) 5.2 |k k-1 ° N
rN(tk—l’Sk 4 )$C2c6[ N ] N N _ <N
T =t + L) 3=t + Ly @ - s 4 Ly
S — ti—1 )6 1 1
(=t (L —sp)°’

< C2%;

2 (
Jie-1 — et

1

op
Sy —y\€ 1
1-y

where the last inequality holds by monotonicity, since s,iN) < sy, tEN) <t;fori =k—1,kand
+ % >ty — sy by definition (5:33). Setting C} := C 2%, by the regenerative property
Y y‘ ,

(N) (N)
oS,

P
o o
(Jr—1t2)e (t2—8y)«

Sk—1 tk—l] < (C:;)g E,

B (), s, ¢")
with (x,y) = (St_1, ty_1). Since E[XYZ] < (E[X’]E[Y?]E[Z3])!/3 by Holder’s inequality, we split
the expected value in the right hand side in three parts, estimating each term separately.

First, given x,y € [n,n + 1) for some n € N, then t; = g,(t%) and s, = d,(7%), hence by (5.5))
2p @
) (=" 4

* 4, —y) ¥ -
52—y ¢ n(T) =Y\ ¢ a v-y
E t, = =E _— n = =
x(l—y) Y x( I-y ) %) y} fn(n—y (v —y)l+e
and the change of variable z := :l%y yields

ae
if 0<—.

i 3

ZIC1<OO,

0p
€

0 35p 1
—+—l-a
} i - —3‘2”

E,

S2—y
I-y

(A.23)
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Next, since E[X7¢] = J(;oo P(X™® >1ndt= fow P(X < /) dr for any random variable X > 0,
1
36p

t1=yl=f Px(Jz—tzﬁ)’_%
J2—ty)e 0

sAaf min{l,y "% dy = Cy < 0,  if o<
0

E,

t = )7) dy
(A.24)
(1-a)e

3p

>

having used (5.10). Analogously, using (5.11]),

E, ti=Yy

35p
(ty —s2)c
In conclusion, given € € (0,1) and p > 1, if we fix § < min{a, 1 — a}%, by (A23)-(A.24)-(A.23)
there are constants Cy, Cp, C3 < oo (depending on €, p) such that for all N € N and k > 2

P
V) ) (N ¢
E[rN(tk_l,sk 1)

which proves (5.46). Relation is proved with analogous (and simpler) estimates, using the
second relation in (A.20)).

Finally, we prove relations (5.48)-(5.49)), exploiting the upper bound (A.22)) in which we plug
y = s,(i/ )1 x= s,((N ), y = t]((N ) (recall that [y'] = Jx—1 and [y] = J;). We recall that, by the uniform
convergence theorem of slowly varying functions [8, Theorem 1.2.1], limy_,oo L(Na)/L(Nb) = 1
uniformly for a, b in a compact subset of (0, o). It follows by (A.22)) that for all n > 0 and for all
v, € (0,1), T € (0, o) there is No = No(y, 7,1, T) < oo such that for all N > Ny and for k > 2

< Baf min{l,y“’ﬁ}dy =:C3 <00, if 6< %. (A.25)
0 )4

r
Si-1 it | < (C5) (C1C2C9)'P =1 Cy < o0, (A.26)

k-1’
ontheevent {Jj_ -t 2yIN{ -t >y, tr—sp >y, sg —t—1 <T}.

N N N
rN(t( 1 st ¢! )) <(1+n)?

Consequently, on the event {J;_| — tg—; > v} = {ty—1 < Jx_1 — Yy} we can write

P
N) ) (M)
E[rN(tk_l, g, t")

Sk—1 Tr-1 ]

2 N) (N) L(N)\E
<(I+m<+E [FN (tl(c—)l’ S,(c ), t,(< )) Li3i—ti>9, ti-si27, si—ti 1 <T)| Sk-1 tk—l]

2p ~ ~
<A+ + JCp P~ 1227 ta- 512 7, S2 -y < TN [t =),

where in the last line we have applied Cauchy-Schwarz, relation and the regenerative property,
with (x,y) = (Sk-1, t—1). Since for x,y € [n,n + 1) one has t; = g,(7%) and s, = d,, (%), by (5.3)

o o [T =y 1
Px(Sz—)’>T|t1—y)—Px(dn(‘l'a)>T+Y|9n(Ta)—y)—£+deV5aTa,

because  — y < 1. Applying relations (5.10)-(5.11]), we have shown that for N > Ny and k > 2, on
the event {t;_; < J;—; — vy} we have the estimate

p
N) (V) ()€
E[rN(tk_l,sk 1Y)

St-1 tk_l] S+ % + y[Cenp (A1 + B3 +a71 T-0). (A27)

We can finally fix n, ¥ small enough and 7 large enough (depending only on € and p) so that
the right hand side of (A.27) is less than 2. This proves relation (5.48), for all € € (0,1), p > 1,

¥ € (0, 1), with Ny(e, p,y) := No(y, 7,1, T). Relation (5.49) is proved similarly, using (A.2T). O
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A.4. Proof of Lemma u We recall that the random variables S]((N ), t,((N ), mﬁN) in the numerator of

(5.37) refer to the rescaled renewal process 7/N, cf. Definition [5.1] By (I.1)-(2.2), we can write the
numerator in (5.37), which we call Ly, as follows: forO = x; <y <x <y <...<xy <yuy <t,
with x;,y; € 3Ny,

M
Ly = u(Nyr) (n K(N(x; = yi=1)) u(N(y; — xi))J K(N(t —ym)), (A.28)

i=2
where we set K(£) := 3,-, K(n). Analogously, using repeatedly (5.3)) and the regenerative property,
the denominator in ((5.37)), which we call I,;, can be rewritten as

M
Ca' Ca ]1{L1‘<V'} 1
Iy = - dvidusdvy - -dupsdvyy .
M ff v}_“[g(ui—vi—l)““(w—ui)l_“ at—vy) 7 MEM

u,'G[X,',)C,'+%], 2<isM
vielyiyit 1, 1<isM

(A.29)
Bounding uniformly
u,-—v,-_lgx,-—yi_1+%, vi—u,-Syi—xi+%, f—vy <t—yy+ %, (A.30)
we obtain a lower bound for I,; which is factorized as a product over blocks:
1 Ca = Co 1
N2M=T (p + g)t-e [g (i = Yiet + )1¥ i = xi + %)1_“} a(t=ym) (A31)

G ﬁ Ca 1
~ Wy + D (L VG = yis) + D NG —xi) + DI fa (NG =ya) + DT

Looking back at and recalling (5.37), it follows that relation (5.42) holds with

N(y—-x) + D' LIN(YT - y)

o NG - ) { EDIED L
Ca LIN(Y' 1= Y)

(Y, %, y) i= (N(x = y) + DY K(N(x = y"))

K(N(t - 7))

LN([21-2)°

where we have “artificially” added the last terms inside the brackets, which get simplified telescopi-

cally when one considers the product in (5.42). (In order to define ry(y’, x,y) also when y’ = x = 0,

which is necessary for the first term in the product in (5.42)), we agree that K(0) := 1.)
Recalling (I.1) and (2.2), there is some constant C € (1, co0) such that for all n € Ny

ﬂ , ﬂ , u(n) < CL .

(n + lte aln+ 1) L(n)(n + 1)1+e

Plugging these estimates into the definitions of ry, 7y yields the first and second relations in (A.20),

with C = C? and C = C, respectively. Finally, given 1 > 0 there is My = My(17) < oo such that for

n > My one can replace C by (1 + 1) in (A.32), which yields (A.21)) and (A.22). i

Remark A.2. To prove f(' < f® we have shown that it is possible to give an upper bound, cf.
(5.42), for the Radon-Nikodym derivative R, by suitable functions ry and 7y satisfying Lemma[5.10]
Analogously, to prove the complementary step @) < f®, that we do not detail, one would need an
analogous upper bound for the inverse of the Radon-Nikodym derivative, i.e.

vz, D) =a(N(it—-2)+1)*

K@n)<cC Kn)<cC (A.32)

M
R, (M. oyl < {]_[ avGe1, X, yw} NG, 1), (A33)
(=1
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for suitable functions gy and gy that satisfy conditions similar to ry and 7y in Lemma[A.T] thus
yielding an analogue of Lemma|[5.10] To this purpose, we need to show that the multiple integral I,
admits an upper bound given by a suitable factorization, analogous to (A.3T)). The natural idea is to
use uniform bounds that are complementary to (A.30), i.e. u; — vi-; > x; — yi_1 — % etc., which work

when the distances like x; — y;_; are at least % When some of such distances is O or %, the integral
must be estimated by hands. This is based on routine computations, for which we refer to [31]].

APPENDIX B. MISCELLANEA

B.1. Proof of Lemma 3.3l We start with the second part: assuming (3.15), we show that (2.4)
holds. Given n € N and a convex 1-Lipschitz function f : R" — R, the set A := {w € R" : f(w) < a}
is convex, for all @ € R, and { f(w) > a + t} C {d(w, A) > t}, because f is 1-Lipschitz. Then by (3.15)

P(f(w) < a)P(f(w) > a+1) <P(w € A)P(d(w,A) > 1) < C] exp (—é—y,) . (B.1)
2

Let My € R be a median for f(w), i.e. P(f(w) > My) > % and P(f(w) < My) > % Applying (B.1)
fora= Myanda = My —t yields

124
P(|f(w) - My| 2 1) <4 Cfexp (_C_z) :
which is precisely our goal (2.4).
Next we assume (2.4) and we show that (3.13) holds. We actually prove a stronger statement: for
any 1 € (0, c0)
o924

P(w € A)"P(d(w,A) > 1) < Ciw exp( - 2—), with g, :=
2

— T B2
(L+priy-t

In particular, choosing 7 = 1, (3:13) holds with C} := C3 and C}, = 20717, mi
If A is convex, the function f(x) := d(x, A) is convex, 1-Lipschitz and also My > 0, hence by

(o)

M?’
P(w € A) = P(f(w) < 0) < P(f(w) - M| > M) < Cy exp( - c_zf) (B.3)
(= Mf)7
P(d(w, A) > 1) < P(f(w) - M| > t - My) < Ci exp ( - c—) Vi>M;, (B4
2
hence for every n € (0, c0) we obtain
P(w € AY' B(d(w, A) > 1) < C\*7 exp( - Ciz(n M+ (1 - Mf)y)), Vi > M. (B.5)

The function m — nm? + (¢t — m)” is convex and, by direct computation, it attains its minimum in
the interval [0, #]. at the point m = n := ¢/(1 + n'/¥~D). Replacing M by / in (B.3) yields precisely

forall t > My.
It remains to prove (B.2) for ¢ € [0, M). This follows by (B.3):

4 M; 1+ & i
P(w € A)Y'P(d(w,A) > t) < P(w € A)" < C'{exp(— c )s c,” exp(— C—) for 1 < My,
2 2
where the last inequality holds because 1 > €, (by (B.2))) and C; > 1 (by (Z.4), for ¢ = 0). o
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B.2. Proof of Proposition 3.4, By convexity, f(w) — f(«') < (Vf(w),w — ') < |[Vf(w)llw - &'
for all w, w’ € R", where (-, -) is the usual scalar product in R”. Defining the convex set A := {w €
R": f(w) < a-t}, we get

flw)<a-t+|Vf(w)lw- o], Yo e R", Yo' €A,
hence f(w) < a—t+|Vf(w)ld(w, A) for all w € R". Consequently, by inclusion of events and (3.193),

P(f(w) > a, [Vf(w)| < ¢) < Pd(w,A) > t/c) < C ex /ey
o - T S Pwea) 7P ¢, )

Since P(w € A) = P(f(w) < a — t) by definition of A, we have proved (3.16). O
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