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Abstract. It is well known that many random graphs with infinite variance degrees are ultra-
small. More precisely, for configuration models and preferential attachment models where the
proportion of vertices of degree at least k is approximately k−(τ−1) with τ ∈ (2, 3), typical dis-

tances between pairs of vertices in a graph of size n are asymptotic to 2 log logn
| log(τ−2)| and 4 log logn

| log(τ−2)| ,

respectively. In this paper, we investigate the behavior of the diameter in such models. We
show that the diameter is of order log logn precisely when the minimal forward degree dfwd of
vertices is at least 2. We identify the exact constant, which equals that of the typical distances
plus 2/ log dfwd. Interestingly, the proof for both models follows identical steps, even though the
models are quite different in nature.

1. Introduction and results

In this paper, we study the diameter of two different random graph models: the configuration
model and the preferential attachment model, when these two models have a power-law degree
distribution with exponent τ ∈ (2, 3), so that the degrees have finite mean but infinite variance. In
this first section, we give a brief introduction to the models, stating the main technical conditions
required as well as the two main results proved in the paper.

Throughout the paper, we write “with high probability” to mean “with probability 1− o(1) as
n → ∞, or as t → ∞”, where n and t denote the number of vertices in the configuration model
and in the preferential attachment model, respectively.

1.1. Configuration model and main result. The configuration model CMn is a random graph
with vertex set [n] := {1, 2, . . . , n} and with prescribed degrees. Let d = (d1, d2, . . . , dn) be a
given degree sequence, i.e., a sequence of n positive integers with total degree

`n =
∑
i∈[n]

di, (1.1)

assumed to be even. The configuration model (CM) on n vertices with degree sequence d is con-
structed as follows: Start with n vertices and di half-edges adjacent to vertex i ∈ [n]. Randomly
choose pairs of half-edges and match the chosen pairs together to form edges. Although self-loops
may occur, these become rare as n → ∞ (see e.g. [Bol01, Theorem 2.16], [Jan09]). We denote
the resulting multi-graph on [n] by CMn, with corresponding edge set En. We often omit the
dependence on the degree sequence d, and write CMn for CMn(d).

Regularity of vertex degrees. Let us now describe our regularity assumptions. For each n ∈ N
we have a degree sequence d(n) = (d(n)

1 , . . . , d(n)
n ). To lighten notation, we omit the superscript

(n) and write d instead of d(n) or (d(n))n∈N and di instead of d(n)

i . Let (pk)k∈N be a probability
mass function on N. We introduce the empirical degree distribution of the graph as

p(n)

k =
1

n

∑
i∈[n]

1{di=k}. (1.2)
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We can define now the degree regularity conditions:

Condition 1.1 (Degree regularity conditions). Let CMn be a configuration model, then we say
that d satisfies the degrees regularity conditions (a), (b), with respect to (pk)k∈N if:

(a) for every k ∈ N, as n→∞
p(n)

k −→ pk. (1.3)

(b)
∑

k kpk <∞, and as n→∞ ∑
k∈N

kp(n)

k −→
∑
k∈N

kpk. (1.4)

As notation, we write that d satisfies the d.r.c. (a), (b).

Let Fd,n be the distribution function of (p(n)

k )k∈N, that is, for k ∈ N,

Fd,n(k) =
1

n

∑
i∈[n]

1{di≤k}. (1.5)

We suppose that d satisfies the d.r.c. (a) and (b) with respect to some probability mass function
(pk)k∈N, corresponding to a distribution function F .

Condition 1.2 (Polynomial distribution condition). We say that d satisfies the polynomial dis-
tribution condition with exponent τ ∈ (2, 3) if for all δ > 0 there exist α = α(δ) > 1

2 , c1(δ) > 0
and c2(δ) > 0 such that, for every n ∈ N, the lower bound

1− Fd,n(x) ≥ c1x
−(τ−1+δ) (1.6)

holds for all x ≤ nα, and the upper bound

1− Fd,n(x) ≤ c2x
−(τ−1−δ) (1.7)

holds for all x ≥ 1.

There are two examples that explain Condition 1.2. Consider the case of i.i.d. degrees with
P (Di > x) = cx−(τ−1), then the degree sequence satisfies Condition 1.2 a.s. A second case is

when the number of vertices of degree k is nk = dnF (k)e−dnF (k−1)e, and 1−F (x) = cx−(τ−1).
Condition 1.2 allows for more flexible degree sequences than just these examples.

If we fix β < min{α, 1
τ−1+δ}, the lower bound (1.6) ensures that the number of vertices of

degree higher than x = nβ is at least n1−β(τ−1+δ), which diverges as a positive power of n. If we
take β > 1

2 , these vertices with high probability form a complete graph. This will be essential for
proving our main results. The precise value of β is irrelevant in the sequel of this paper.

For an asymptotic degree distribution with asymptotic probability mass function (pk)k∈N, we
say that

dmin = min {k ∈ N : pk > 0} (1.8)

is the minimal degree of the probability given by (pk)k∈N. With these technical requests, we can
state the main result for the configuration model:

Theorem 1.3 (Diameter of CMn for τ ∈ (2, 3)). Let d be a sequence satisfying Condition 1.1
with asymptotic degree distribution (pk)k with dmin ≥ 3. Suppose that d satisfies Condition 1.2
with τ ∈ (2, 3) and di ≥ dmin for all i ∈ [n]. Then

diam(CMn)

log log n

P−−−−→
n→∞

2

log(dmin − 1)
+

2

| log(τ − 2)|
, (1.9)

where
P−−−−→

n→∞
denotes convergence in probability as n→∞.

In fact, the result turns out to be false when p1 +p2 > 0, as shown by Fernholz and Ramachan-
dran [FR07] (see also [HHZ07b]), since then there are long strings of vertices with low degrees
that are of logarithmic length.
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1.2. Preferential attachment model and main result. The configuration model presented
in the previous section is a static model, because the size n ∈ N of the graph was fixed.

The preferential attachment model instead is a dynamic model, because, in this model, vertices
are added sequentially with a number of edges connected to them. These edges are attached to
a receiving vertex with a probability proportional to the degree of the receiving vertex at that
time plus a constant, thus favoring vertices with high degrees.

The idea of the preferential attachment model is simple, and we start by defining it informally.
We start with a single vertex with a self loop, which is the graph at time 1. At every time t ≥ 2,
we add a vertex to the graph. This new vertex has an edge incident to it, and we attach this edge
to a random vertex already present in the graph, with probability proportional to the degree of
the receiving vertex plus a constant δ, which means that vertices with large degrees are favored.
Clearly, at each time t we have a graph of size t with exactly t edges.

We can modify this model by changing the number of edges incident to each new vertex we
add. If we start at time 1 with a single vertex with m ∈ N self loops, and at every time t ≥ 2 we
add a single vertex with m edges, then at time t we have a graph of size t but with mt edges, that
we call PAt(m, δ). When no confusion can arise, we omit the arguments (m, δ) and abbreviate
PAt = PAt(m, δ). We now give the explicit expression for the attachment probabilities.

Definition 1.4 (Preferential attachment model). Fix m ∈ N, δ ∈ (−m,∞). Denote by {t j→ v}
the event that the j-th edge of vertex t ∈ N is attached to vertex v ∈ [t] (for 1 ≤ j ≤ m). The
preferential attachment model with parameters (m, δ) is defined by the attachment probabilities

P
(
t
j→ v

∣∣∣PAt,j−1

)
=


Dt,j−1(v) + 1 + jδ/m

ct,j
for v = t,

Dt,j−1(v) + δ

ct,j
for v < t,

(1.10)

where PAt,j−1 is the graph after the first j − 1 edges of vertex t have been attached, and corre-
spondingly Dt,j−1(v) is the degree of vertex v. The normalizing constant ct,j in (1.10) is

ct,j := [m(t− 1) + (j − 1)] (2 + δ/m) + 1 + δ/m . (1.11)

We refer to Section 4.1 for more details and explanations on the construction of the model (in
particular, for the reason behind the factor jδ/m in the first line of (1.10)).

Consider, as in (1.2), the empirical degree distribution of the graph, which we denote by Pk(t),
where in this case the degrees are random variables. It is known from the literature ([BRST01],
[Hof17]) that, for every k ≥ m, as t→∞,

Pk(t)
P−−−→

t→∞
pk, (1.12)

where pk ∼ ck−τ , and τ = 3 + δ/m. We focus on the case δ ∈ (−m, 0), so that PAt has a
power-law degree sequence with power-law exponent τ ∈ (2, 3).

For the preferential attachment model, our main result is the following:

Theorem 1.5 (Diameter of the preferential attachment model). Let (PAt)t≥1 be a preferential
attachment model with m ≥ 2 and δ ∈ (−m, 0). Then

diam(PAt)

log log t

P−−−−→
t→∞

2

logm
+

4

| log(τ − 2)|
, (1.13)

where τ = 3 + δ/m ∈ (2, 3).

In the proof of Theorem 1.5 we are also able to identify the typical distances in PAt:

Theorem 1.6 (Typical distance in the preferential attachment model). Let V t
1 and V t

2 be two
independent uniform random vertices in [t]. Denote the distance between V t

1 and V t
2 in PAt by

Ht. Then
Ht

log log t

P−−−→
t→∞

4

| log(τ − 2)|
. (1.14)
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Theorems 1.5–1.6 prove [HHZ07b, Conjecture 1.8].

1.3. Structure of the paper and heuristics. The proofs of our main results on the diameter
in Theorems 1.3 and 1.5 have a surprisingly similar structure. We present a detailed outline in
Section 2 below, where we split the proof into a lower bound (Section 2.1) and an upper bound
(Section 2.2) on the diameter. Each of these bounds is then divided into 3 statements, that
hold for each model. In Sections 3 and 4 we prove the lower bound for the configuration model
and for the preferential attachment model, respectively, while in Sections 5 and 6 we prove the
corresponding upper bounds. In [CGH16, Appendix], some proofs of technical results that are
minor modifications of proofs in the literature are presented in detail.

Even though the configuration and preferential attachment models are quite different in na-
ture, they are locally similar, because for both models the attachment probabilities are roughly
proportional to the degrees. The core of our proof is a combination of conditioning arguments
(which are particuarly subtle for the preferential attachment model), that allow to combine local
estimates in order to derive bounds on global quantities, such as the diamter.

Let us give a heuristic explanation of the proof (see Figure 1.1 for a graphical representation).
For a quantititative outline, we refer to Section 2. We write PAn instead of PAt to simplify
the exposition, and denote by dfwd the minimal forward degree, that is dfwd = dmin − 1 for the
configuration model and dfwd = m for the preferential attachment model.

• For the lower bound on the diamter, we prove that there are so-called minimally-connected
vertices. These vertices are quite special, in that their neighborhoods up to distance
k−n ≈ log logn/ log dfwd are trees with the minimal possible degree, given by dfwd + 1. This
explains the first term in the right hand sides of (1.9) and (1.13).

Pairs of minimally-connected vertices are good candidates for achieving the maximal
possible distance, i.e., the diameter. In fact, the boundaries of their tree-like neighbor-
hoods turn out to be at distance equal to the typical distance 2k̄n between vertices in
the graph, that is 2k̄n ≈ 2cdist log log n/| log(τ − 2)|, where cdist = 1 for the configuration
model and cdist = 2 for the preferential attachment model. This leads to the second term
in the right hand sides of (1.9) and (1.13).

In the proof, we split the possible paths between the boundaries of two minimally
connected vertices into bad paths, which are too short, and typical paths, which have the
right number of edges in them, and then show that the contribution due to bad paths
vanishes. The degrees along the path determine whether a path is bad or typical.

The strategy for the lower bound is depicted in the bottom part of Figure 1.1.
• For the upper bound on the diamter, we perform a lazy-exploration from every vertex

in the graph and realize that the neighborhood up to a distance k+
n , which is roughly

the same as k−n , contains at least as many vertices as the tree-like neighborhood of a
minimally-connected vertex. All possible other vertices in this neighborhood are ignored.

We then show that the vertices at the boundary of these lazy neighborhoods are with
high probability quickly connected to the core, that is by a path of hn = o(log log n) steps.
By core we mean the set of all vertices with large degrees, which is known to be highly
connected, with a diameter close to 2k̄n, similar to the typical distances (see [HHZ07b]
for the configuration model and [DHH10] for the preferential attachment model).

The proof strategy for the upper bound is depicted in the top part of Figure 1.1.

1.4. Links to the literature and comments. This paper studies the diameter in CMn and
PAt when the degree power-law exponent τ satisfies τ ∈ (2, 3), which means the degrees have
finite mean but infinite variance. Both in (1.9) and (1.13), the explicit constant is the sum of two
terms, one depending on τ , and the other depending on the minimal forward degree (see (2.2)),
which is dmin− 1 for CMn and m for PAt. We remark that the term depending on τ is related to
the typical distances, while the other is related to the periphery of the graph.

There are several other works that have already studied typical distances and diameters of
such models. Van der Hofstad, Hooghiemstra and Znamenski [HHZ07a] analyze typical distances
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Figure 1.1. Structure of the proof in a picture

in CMn for τ ∈ (2, 3), while Van der Hofstad, Hooghiemstra and Van Mieghem [HHVM05] study
τ > 3. They prove that for τ ∈ (2, 3) typical distances are of order log log n, while for τ > 3
is of order log n, and it presents the explicit constants of asymptotic growth. Van der Hofstad,
Hooghiemstra and Znamensky [HHZ07b] shows for τ > 2 and when vertices of degree 1 or 2 are
present, that with high probability the diameter of CMn is bounded from below by a constant
times log n, while when τ ∈ (2, 3) and the minimal degree is 3, the diameter is bounded from
above by a constant times log log n. In [HK17], Van der Hofstad and Komjáthy investigate
typical distances for configuration models and τ ∈ (2, 3) in great generality, extending the results
in [HHZ07b] beyond the setting of i.i.d. degrees. Interestingly, they also investigate the effect of
truncating the degrees at nβn for values of βn → 0. It would be of ineterest to also extend our
diameter results to this setting.

We significantly improve upon the result in [HHZ07b] for τ ∈ (2, 3). We do make use of similar
ideas in our proof of the upper bound on the diameter. Indeed, we again define a core consisting
of vertices with high degrees, and use the fact that the diameter of this core can be computed
exactly (for a definition of the core, see (2.8)). The novelty of our current approach is that we
quantify precisely how far the further vertex is from this core in the configuration model. It is a
pair of such remote vertices that realizes the graph diameter.

Fernholz and Ramachandran [FR07] prove that the diameter of CMn is equal to an explicit
constant times log n plus o(log n) when τ ∈ (2, 3) but there are vertices of degree 1 or 2 present
in the graph, by studying the longest paths in the configuration model that are not part of
the 2-core (which is the part of the graph for which all vertices have degree at least 2). Since
our minimal degree is at least 3, the 2-core is whp the entire graph, and thus this logarithmic
phase vanishes. Dereich, Mönch and Mörters [DMM12] prove that typical distances in PAt are
asymptotically equal to an explicit constant times log log t, using path counting techniques. We
use such path counting techniques as well, now for the lower bound on the diameters. Van der
Hofstad [Hof18+] studies the diameter of PAt when m = 1, and proves that the diameter still
has logarithmic growth. Dommers, van der Hofstad and Hooghiemstra [DHH10] prove an upper
bound on the diameter of PAt, but the explicit constant is not sharp.

Again, we significantly improve upon that result. Our proof uses ideas from [DHH10], in the
sense that we again rely on an appropriately chosen core for the preferential attachment model,
but our upper bound now quantifies precisely how the further vertex is from this core, as for the
configuration model, but now applied to the much harder preferential attachment model.



6 CARAVENNA, GARAVAGLIA, AND VAN DER HOFSTAD

CMn and PAt are two different models, in the sense that CMn is a static model while PAt is
a dynamic model. It is interesting to notice that the main strategy to prove Theorems 1.3 and
1.5 is the same. In fact, all the statements formulated in Section 2 are general and hold for both
models. Also the explicit constants appearing in (1.9) and (1.13) are highly similar, which reflects
the same structure of the proofs. The differences consist in a factor 2 in the terms containing τ
and in the presence of dmin − 1 and m in the remaining term. The factor 2 can be understood
by noting that in CMn pairs of vertices with high degree are likely to be at distance 1, while in
PAt they are at distance 2. The difference in dmin− 1 and m is due to the fact that dmin− 1 and
m play the same role in the two models, i.e., they are the minimal forward degree (or “number
of children”) of a vertex that is part of a tree contained in the graph. We refer to Section 2 for
more details.

While the structures of the proofs for both models are identical, the details of the various steps
are significantly different. Pairings in the configuration model are uniform, making explicit com-
putations easy, even when already many edges have been paired. In the preferential attachment
model, on the other hand, the edge statuses are highly dependent, so that we have ro rely on
delicate conditoning arguments. These conditioning arguments are arguably the most significant
innovation in this paper. This is formalized in the notion of factorizable events in Definition 4.4.

Typical distances and diameters have been studied for other random graphs models as well,
showing log log behavior. Bloznelis [Blo09] investigates the typical distance in power-law inter-
section random graphs, where such distance, conditioning on being finite, is of order log log n,
while results on diameter are missing. Chung and Lu [CL02, CL01] present results respectively
for random graphs with given expected degrees and Erdős and Rényi random graphs G(n, p), see
also van den Esker, the last author and Hooghiemstra [EHH08] for the rank-1 setting. The setting
of the configuration model with finite-variance degrees is studied in [FR07]. In [CL02], they prove
that for the power-law regime with exponent τ ∈ (2, 3), the diameter is Θ(log n), while typical
distances are of order log log n. This can be understood from the existence of a positive propor-
tion of vertices with degree 2, creating long, but thin, paths. In [CL01], the authors investigate
the different behavior of the diameter according to the parameter p.

An interesting open problem is the study of fluctuations of the diameters in CMn and PAt

around the asymptotic mean, i.e., the study of the difference between the diameter of the graph
and the asymptotic behavior (for these two models, the difference between the diameter and the
right multiple of log log n). In [HHZ07a], the authors prove that in graphs with i.i.d. power-
law degrees with τ ∈ (2, 3), the difference ∆n between the typical distance and the asymptotic
behavior 2 log log n/| log(τ −2)| does not converge in distribution, even though it is tight (i.e., for
every ε > 0 there is M < ∞ such that P(|∆n| ≤ M) > 1 − ε for all n ∈ N). These results have
been significantly improved in [HK17].

In the literature results on fluctuations for the diameter of random graph models are rare.
Bollobás in [Bol81], and, later, Riordan and Wormald in [RW10] give precise estimates on the
diameter of the Erdös-Renyi random graph. It would be of interest to investigate whether the
diameter has tight fluctuations around c log logn for the appropriate c.

2. General structure of the proofs

We split the proof of Theorems 1.3 and 1.5 into a lower and an upper bound. Remarkably,
the strategy is the same for both models despite the inherent difference in the models. In this
section we explain the strategy in detail, formulating general statements that will be proved for
each model separately in the next sections.

Throughout this section, we assume that the assumptions of Theorems 1.3 and 1.5 are satisfied
and, to keep unified notation, we denote the size of the preferential attachment model by n ∈ N,
instead of the more usual t ∈ N.

Throughout the paper, we treat real numbers as integers when we consider graph distances.
By this, we mean that we round real numbers to the closest integer. To keep the notation light
and make the paper easier to read, we omit the rounding operation.
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2.1. Lower bound. We start with the structure of the proof of the lower bound in (1.9) and
(1.13). The key notion is that of a minimally-k-connected vertex, defined as a vertex whose
k-neighborhood (i.e., the neighborhood up to distance k) is essentially a regular tree with the
smallest possible degree, equal to dmin for the configuration model and to m+1 for the preferential
attachment model. Due to technical reasons, the precise definition of minimally-k-connected
vertex is slightly different for the two models (see Definitions 3.2 and 4.2).

Henceforth we fix ε > 0 and define, for n ∈ N,

k−n = (1− ε) log logn

log(dfwd)
, (2.1)

where dfwd denotes the forward degree, or “number of children”:

dfwd =

{
dmin − 1 for CMn;

m for PAn.
(2.2)

Our first goal is to prove that the number of minimally-k−n -connected vertices is large enough, as
formulated in the following statement:

Statement 2.1 (Moments of Mk−n
). Denote by Mk−n

the number of minimally-k−n -connected

vertices in the graph (either CMn or PAn). Then, as n→∞,

E
[
Mk−n

]
→∞, Var

(
Mk−n

)
= o

(
E
[
Mk−n

]2
)
, (2.3)

where Var(X) := E[X2]− E[X]2 denotes the variance of the random variable X.

The proof for the preferential attachment model makes use of conditioning arguments. Indeed,
we describe as much information as necessary to be able to bound probabilities that vertices are
minimally-k connected. Particularly in the variance estimate, these arguments are quite delicate,
and crucial for our purposes.

The bounds in (2.3) show that Mk−n

P−−→ ∞ as n → ∞. This will imply that there is a pair

of minimally-k−n -connected vertices with disjoint k−n -neighborhoods,1 hence the diameter of the
graph is at least 2k−n , which explains the first term in (1.9) and (1.13). Our next aim is to prove
that these minimally connected trees are typically at distance 2cdist log logn/| log(τ − 2)|, where
cdist = 1 for the configuration model and cdist = 2 for the preferential attachment model.

For this, let us now define

k̄n = (1− ε)cdist log logn

| log(τ − 2)|
, (2.4)

where

cdist =

{
1 for CMn;

2 for PAn.
(2.5)

The difference in the definition of cdist is due to fact that in CMn vertices with high degree are
likely at distance 1, while in PAn are at distance 2. We explain the origin of this effect in more
detail in the proofs.

It turns out that the distance between the k−n -neighborhoods of two minimally-k−n -connected
vertices is at least 2k̄n. More precisely, we have the following statement:

Statement 2.2 (Distance between neighborhoods). Let Wn
1 and Wn

2 be two random vertices

chosen independently and uniformly among the minimally-k−n -connected ones. Denoting by H̃n the

distance between the k−n -neighborhoods of Wn
1 and Wn

2 , we have H̃n ≥ 2k̄n with high probability.

1A justification for this fact is provided by the following Statement 2.2 (the randomly chosen vertices Wn
1 and

Wn
2 have disjoint k−n -neighborhoods, because H̃n > 0 with high probability). For a more direct justification, see

Remark 3.6 for the configuration model and Remark 4.7 for the preferential attachment model.
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It follows immediately from Statement 2.2 that the distance between the vertices Wn
1 and Wn

2

is at least 2k−n + 2k̄n, with high probability. This proves the lower bound in (1.9) and (1.13).

It is known from the literature that 2k̄n, see (2.4), represents the typical distance between two
vertices chosen independently and uniformly in the graph. In order to prove Statement 2.2, we
collapse the k−n -neighborhoods of Wn

1 and Wn
2 into single vertices and show that their distance is

roughly equal to the typical distance 2k̄n. This is a delicate point, because the collapsed vertices
have a relatively large degree and thus could be closer than the typical distance. The crucial
point why they are not closer is that the degree of the boundary only grows polylogarithmically.
The required justification is provided by the next statement:

Statement 2.3 (Bound on distances). Let us introduce the set

Vn :=


{
v ∈ [n] : dv ≤ log n

}
for CMn;{

v ∈ [n] : v ≥ n
(logn)2 } for PAn.

(2.6)

Then, denoting the distance in the graph of size n by distn,

max
a,b∈Vn

P
(
distn(a, b) ≤ 2k̄n

)
= O

(
1

(log n)2

)
. (2.7)

The proof of Statement 2.3 is based on path counting techniques. These are different for the
two models, but the idea is the same: We split the possible paths between the vertices a and b
into two sets, called good paths and bad paths. Here good means that the degrees of vertices along
the path increase, but not too much. We then separately and directly estimate the contribution
of each set. The details are described in the proof.

2.2. Upper bound. We now describe the structure of the proof for the upper bound, which is
based on two key concepts: the core of the graph and the k-exploration graph of a vertex.

We start by introducing some notation. First of all, fix a constant σ ∈ (1/(3 − τ),∞). We
define Coren as the set of vertices in the graph of size n with degree larger than (log n)σ. More
precisely, denoting by Dt(v) = Dt,m(v) the degree of vertex v in the preferential attachment
model after time t, i.e. in the graph PAt (see the discussion after (1.10)), we let

Coren :=

{
{v ∈ [n] : dv ≥ (log n)σ} for CMn;

{v ∈ [n] : Dn/2(v) ≥ (log n)σ} for PAn.
(2.8)

The fact that we evaluate the degrees at time n/2 for the PAM is quite crucial in the proof of
Statement 2.4 below. In Section 6, we also give bounds on Dv(n) for v ∈ Coren, as well as for
v 6∈ Coren, that show that the degrees cannot grow too much between time n/2 and n. The
first statement, that we formulate for completeness, upper bounds the diameter of Coren and is
already known from the literature for both models:

Statement 2.4. Define cdist as in (2.5). Then, for every ε > 0, with high probability

diam(Coren)

log log n
≤ (1 + ε)

2cdist

| log(τ − 2)|
. (2.9)

Statement 2.4 for CMn is [HHZ07b, Proposition 3.1], for PAn it is [DHH10, Theorem 3.1].

Next we bound the distance between a vertex and Coren. We define the k-exploration graph of
a vertex v as a suitable subgraph of its k-neighborhood, built as follows: We consider the usual
exploration process starting at v, but instead of exploring all the edges incident to a vertex, we
only explore a fixed number of them, namely dfwd defined in (2.2). (The choice of which edges to
explore is a natural one, and it will be explained in more detail in the proofs.)

We stress that it is possible to explore vertices that have already been explored, leading to
what we call a collision. If there are no collisions, then the k-exploration graph is a tree. In
presence of collisions, the k-exploration graph is not a tree, and it is clear that every collision
reduces the number of vertices in the k-exploration graph.
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Henceforth we fix ε > 0 and, in analogy with (2.1), we define, for n ∈ N,

k+
n = (1 + ε)

log logn

log(dfwd)
. (2.10)

Our second statement for the upper bound shows that the k+
n -exploration graph of every vertex

in the graph either intersects Coren, or it has a bounded number of collisions:

Statement 2.5 (Bound on collisions). There is a constant c <∞ such that, with high probability,
the k+

n -exploration graph of every vertex in the graph has at most c collisions before hitting Coren.
As a consequence, for some constant s > 0, the k+

n -exploration graph of every vertex in the graph
either intersects Coren, or its boundary has cardinality at least

s(dfwd)k
+
n = (log n)1+ε+o(1). (2.11)

With a bounded number of collisions, the k+
n -exploration graph is not far from being a tree,

which explains the lower bound (2.11) on the cardinality of its boundary. Having enough vertices
on its boundary, the k+

n -exploration is likely to be connected to Coren fast, which for our purpose
means in o(log log n) steps. This is the content of our last statement:

Statement 2.6. There are constants B,C < ∞ such that, with high probability, the k+
n -

exploration graph of every vertex in the graph is at distance at most hn = dB log log log n + Ce
from Coren.

The proof for this is novel. For example, for the configuration model, we grow the k+
n + hn

neighborhood of a vertex, and then show that there are so many half-edges at its boundary that
it is very likely to connect immediately to the core. The proof for the preferential attachment
model is slightly different, but the conclusion is the same. This shows that the vertex is indeed
at most at distance k+

n + hn away from the core.
In conclusion, with high probability, the diameter of the graph is at most

(k+
n + hn) + diam(Coren) + (k+

n + hn),

which gives us the expressions in (1.9) and (1.13) and completes the proof of the upper bound.

3. Lower bound for configuration model

In this section we prove Statements 2.1, 2.2 and 2.3 for the configuration model. By the
discussion in Section 2.1, this completes the proof of the lower bound in Theorem 1.3.

In our proof, it will be convenient to choose a particular order to pair the half-edges. This is
made precise in the following remark:

Remark 3.1 (Exchangeability in half-edge pairing). Given a sequence d = (d1, . . . , dn) such that
`n = d1 + . . .+ dn is even, the configuration model CMn can be built iteratively as follows:

� start with di half-edges attached to each vertex i ∈ [n] = {1, 2, . . . , n};
� choose an arbitrary half-edge and pair it to a uniformly chosen half-edge;
� choose an arbitrary half-edge, among the `n − 2 that are still unpaired, and pair it to a

uniformly chosen half-edge; and so on.

The order in which the arbitrary half-edges are chosen does not matter in the above, by exchange-
ability (see also [Hof17, Chapter 7]).

3.1. Proof of Statement 2.1. With a slight abuse of notation (see (1.8)), in this section we set

dmin = min{d1, . . . , dn} .

Given a vertex v ∈ [n] and k ∈ N, we denote the set of vertices at distance at most k from v (in
the graph CMn) by U≤k(v) and we call it the k-neighborhood of v.
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Definition 3.2 (Minimally-k-connected vertex). For k ∈ N0, a vertex v ∈ [n] is called minimally-
k-connected when all the vertices in U≤k(v) have minimal degree, i.e.,

di = dmin for all i ∈ U≤k(v) ,

and furthermore there are no self-loops, multiple edges or cycles in U≤k(v). Equivalently, v is
minimally-k-connected when the graph U≤k(v) is a regular tree with degree dmin.

We denote the (random) set of minimally-k-connected vertices byMk ⊆ [n], and its cardinality
by Mk = |Mk|, i.e. Mk denotes the number of minimally-k-connected vertices.

Remark 3.3 (The volume of the k-neighborhood of k-minimally connected vertices). For a
minimally-k-connected vertex v, since U≤k(v) is a tree with degree dmin, the number of edges
inside U≤k(v) equals (assuming dmin ≥ 2)

ik =
k∑
l=1

dmin(dmin − 1)l−1 =


dmin k if dmin = 2;

dmin
(dmin − 1)k − 1

dmin − 2
if dmin ≥ 3.

(3.1)

Moreover, the number of vertices inside U≤k(v) equals ik + 1. By (3.1), it is clear why dmin > 2,
or dmin ≥ 3, is crucial. Indeed, this implies that the volume of neighborhoods of minimally-k-
connected vertices grows exponentially in k.

Remark 3.4 (Collapsing minimally-k connected trees). By Remarks 3.1 and 3.3, conditionally on
the event {v ∈Mk} that a given vertex v is minimally-k-connected, the random graph obtained
from CMn by collapsing U≤k(v) to a single vertex, called a, is still a configuration model with
n−ik vertices and with `n replaced by `n−2ik, where the new vertex a has degree dmin(dmin−1)k.

Analogously, conditionally on the event {v ∈Mk, w ∈Mm, U≤k(v) ∩ U≤m(w) = ∅} that two
given vertices v and w are minimally-k and minimally-m-connected with disjoint neighborhoods,
collapsing U≤k(v) and U≤m(w) to single vertices a and b yields again a configuration model with
n− ik − im vertices, where `n is replaced by `n − 2ik − 2im and where the new vertices a and b
have degrees equal to dmin(dmin − 1)k and dmin(dmin − 1)m, respectively.

We denote the number of vertices of degree k in the graph by nk, i.e.,

nk =
∑
i∈[n]

1{di=k}. (3.2)

We now study the first two moments of Mk, where we recall that the total degree `n is defined
by (1.1):

Proposition 3.5 (Moments of Mk). Let CMn be a configuration model such that dmin ≥ 2. Then,
for all k ∈ N,

E[Mk] = ndmin

ik∏
i=1

dmin(ndmin
− i)

`n − 2i+ 1
, (3.3)

where ik is defined in (3.1). When, furthermore, `n > 4ik,

E[M2
k ] ≤ E[Mk]

2 + E[Mk]

(
(ik + 1) + i2k dmin

ndmin

`n − 4ik

)
. (3.4)

Before proving Proposition 3.5, let us complete the proof of Statement 2.1 subject to it. We are
working under the assumptions of Theorem 1.3, hence dmin ≥ 3 and the degree sequence d satisfies
the degree regularity condition Condition 1.1, as well as the polynomial distribution condition
Condition 1.2 with exponent τ ∈ (2, 3). Recalling (1.1)-(1.2), we can write ndmin

= n p(n)

dmin
and

`n = n
∑

k∈N kp
(n)

k , so that, as n→∞,

ndmin
=n pdmin

(1 + o(1)) , `n = nµ(1 + o(1)) , with pdmin
> 0 , µ :=

∑
k∈N

kpk <∞.

(3.5)
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Recalling the definition (2.1) of k−n and (3.1), for k = k−n ,

ik−n = dmin
(dmin − 1)k

−
n − 1

dmin − 2
=

dmin

dmin − 2
(log n)1−ε(1+o(1)), hence i2k−n = O((log n)2(1−ε)).

(3.6)
Bounding E[Mk] ≤ n, it follows by (3.4) that

Var[Mk−n
] ≤ E[Mk−n

]
(
O(ik−n ) +O(i2k−n )

)
≤ nO((log n)2(1−ε)) = n1+o(1) . (3.7)

On the other hand, applying (3.3), for some c ∈ (0, 1) one has

E[Mk−n
] ≥ n pdmin

(
dmin pdmin

µ
+ o(1)

)i
k−n ≥ n pdmin

c(logn)1−ε
= n1−o(1) . (3.8)

Relations (3.7) and (3.8) show that (2.3) holds, completing the proof of Statement 2.1. �

Remark 3.6 (Disjoint neighborhoods). Let us show that, with high probability, there are vertices
v, w ∈Mk−n

with U≤k−n (v)∩U≤k−n (w) = ∅. We proceed by contradiction: fix v ∈Mk−n
and assume

that, for every vertex w ∈Mk−n
, one has U≤k−n (v)∩U≤k−n (w) 6= ∅. Then, for any w ∈Mk−n

there

must exist a self-avoiding path from v to w of length ≤ 2k−n which only visits vertices with degree
dmin (recall that U≤k−n (v) and U≤k−n (w) are regular trees). However, for fixed v, the number of

such paths is O((dmin − 1)2k−n ) = O((log n)2(1−ε)), see (2.1), while by Statement 2.1 the number

of vertices w ∈Mk−n
is much larger, since Mk−n

∼ E[Mk−n
] = n1−o(1), see (3.8).

Proof of Proposition 3.5. To prove (3.3) we write

Mk =
∑

v∈[n] : dv=dmin

1{v∈Mk}, (3.9)

and since every vertex in the sum has the same probability of being minimally-k-connected,

E [Mk] = ndmin
P(v ∈Mk). (3.10)

A vertex v with dv = dmin is in Mk when all the half-edges in U≤k(v) are paired to half-edges
incident to distinct vertices having minimal degree, without generating cycles. By Remark 3.1,
we can start pairing a half-edge incident to v to a half-edge incident to another vertex of degree
dmin. Since there are ndmin

− 1 such vertices, this event has probability

dmin(ndmin
− 1)

`n − 1

We iterate this procedure, and suppose that we have already successfully paired (i − 1) couples
of half-edges; then the next half-edge can be paired to a distinct vertex of degree dmin with
probability

dmin(ndmin
− i)

`n − 2(i− 1)− 1
=
dmin(ndmin

− i)
`n − 2i+ 1

. (3.11)

Indeed, every time that we use a half-edge of a vertex of degree dmin, we cannot use its remaining
half-edges, and every step we make reduces the total number of possible half-edges by two. By
(3.1), exactly ik couples of half-edges need to be paired for v to be minimally-k-connected, so
that

E[Mk] = ndmin
P(v ∈Mk) = ndmin

ik∏
i=1

dmin(ndmin
− i)

`n − 2i+ 1
. (3.12)

which proves (3.3). If ndmin
≤ ik the right hand side vanishes, in agreement with the fact that

there cannot be any minimally-k-connected vertex in this case (recall (3.1)).
To prove (3.4), we notice that

E[M2
k ] =

∑
v,w∈[n] : dv=dw=dmin

P(v, w ∈Mk). (3.13)
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We distinguish different cases: the k-neighborhoods of v and w might be disjoint or they may
overlap, in which case w can be included in U≤k(v) or not. Introducing the events

Av,w = {U≤k(v) ∩ U≤k(w) 6= ∅} , Bv,w = {w ∈ U≤k(v)} , (3.14)

we can write the right hand side of (3.13) as∑
v,w∈[n]

dv=dw=dmin

[
P
(
v, w ∈Mk, A

c
v,w

)
+ P (v, w ∈Mk, Av,w, Bv,w) + P

(
v, w ∈Mk, Av,w, B

c
v,w

) ]
. (3.15)

Let us look at the first term in (3.15). By Remarks 3.3 and 3.4, conditionally on {v ∈Mk}, the
probability of {w ∈ Mk, A

c
v,w} equals the probability that w is minimally-k-connected in a new

configuration model, with `n replaced by `n − 2ik and with the number of vertices with minimal
degree reduced from ndmin

to ndmin
− (ik + 1). Then, by the previous analysis (see (3.12)),

P
(
v, w ∈Mk, A

c
v,w

)
=

ik∏
i=1

dmin(ndmin
− i− ik − 1)

`n − 2i− 2ik + 1
P (v ∈Mk) . (3.16)

By direct computation, the ratio in the right hand side of (3.16) is always maximized for ik = 0
(provided `n ≥ 2ndmin

− 3, which is satisfied since `n ≥ dminndmin
≥ 3ndmin

by assumption).
Therefore, setting ik = 0 in the ratio and recalling (3.12), we get the upper bound

P
(
v, w ∈Mk, A

c
v,w

)
≤

[
ik∏
i=1

dmin(ndmin
− i)

`n − 2i+ 1

]
P(v ∈Mk) = P (v ∈Mk)

2 . (3.17)

Since there are at most n2
dmin

pairs of vertices of degree dmin, it follows from (3.17) that∑
v,w∈[n]

dv=dw=dmin

P
(
v, w ∈Mk, A

c
v,w

)
≤ n2

dmin
P (v ∈Mk)

2 = E[Mk]
2, (3.18)

which explains the first term in (3.4).
For the second term in (3.15), v and w are minimally-k-connected with overlapping neighbor-

hoods, and w ∈ U≤k(v). Since {v, w ∈Mk} ∩Av,w ∩Bv,w ⊆ {v ∈Mk} ∩Bv,w, we can bound∑
v,w∈[n]

dv=dw=dmin

P (v, w ∈Mk, Av,w, Bv,w) ≤ E
[ ∑
v∈[n]: dv=dmin

1{v∈Mk}
∑

w∈[n]: dw=dmin

1Bv,w

]
, (3.19)

and note that
∑

w∈[n] 1Bv,w = |U≤k(v)| = ik + 1, by Remark 3.3. Therefore∑
v,w∈[n]

dv=dw=dmin

P (v, w ∈Mk, Av,w, Bv,w) ≤ E[Mk] (ik + 1), (3.20)

which explains the second term in (3.4).
For the third term in (3.15), v and w are minimally-k-connected vertices with overlapping

neighborhoods, but w 6∈ U≤k(v). This means that dist(v, w) = l+ 1 for some l ∈ {k, . . . , 2k− 1},
so that U≤k(v) ∩ U≤l−k(w) = ∅ and, moreover, a half-edge on the boundary of U≤(l−k)(w) is
paired to a half-edge on the boundary of U≤k(v), an event that we call Fv,w;l,k. Therefore

{w ∈Mk} ∩Av,w ∩Bc
v,w ⊆

2k−1⋃
l=k

{w ∈Ml−k} ∩ {U≤k(v) ∩ U≤l−k(w) = ∅} ∩ Fv,w;l,k. (3.21)

and we stress that in the right hand side w is only minimally-(l−k)-connected (in case l = k this
just means that dw = dmin). Then

P
(
v, w ∈Mk, Av,w, B

c
v,w

)
≤

2k−1∑
l=k

E
[
1{v∈Mk, w∈Ml−k, U≤k(v)∩U≤l−k(w)=∅}1Fv,w;l,k

]
. (3.22)
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By Remark 3.4, conditionally on {v ∈Mk, w ∈Ml−k, U≤k(v)∩U≤l−k(w) = ∅}, we can collapse
U≤k(v) and U≤l−k(w) to single vertices a and b with degrees respectively dmin(dmin − 1)k and
dmin(dmin−1)l−k, getting a new configuration model with `n replaced by `n−2ik−2il−k. Bounding
the probability that a half-edge of a is paired to a half-edge of b, we get

P(Fv,w;l,k | v ∈Mk, w ∈Ml−k, U≤k(v) ∩ U≤l−k(w) = ∅)

≤ dmin(dmin − 1)kdmin(dmin − 1)l−k

`n − 2ik − 2il−k − 1
≤ d2

min(dmin − 1)l

`n − 4ik
,

(3.23)

because l ≤ 2k− 1 and, consequently, il−k ≤ ik−1 ≤ ik − 1. Plugging (3.23) into (3.22), and then
forgetting the event {w ∈Ml−k, U≤k(v) ∩ U≤l−k(w) = ∅}, leads to

∑
v,w∈[n]

dv=dw=dmin

P
(
v, w ∈Mk, Av,w, B

c
v,w

)
≤

(
2k−1∑
l=k

d2
min(dmin − 1)l

`n − 4ik

) ∑
v,w∈[n]

dv=dw=dmin

P(v ∈Mk)

≤ dmin(dmin − 1)

`n − 4ik
i2k−1 ndmin

E[Mk] ,

(3.24)

where we have used the definition (3.1) of i2k−1. Since (dmin − 1)i2k−1 ≤ i2k, again by (3.1), we
have obtained the third term in (3.4). �

3.2. Proof of Statement 2.2. We recall that Wn
1 and Wn

2 are two independent random vertices
chosen uniformly inMk−n

(the set of minimally-k−n -connected vertices), assuming thatMk−n
6= ∅

(which, as we have shown, occurs with high probability). Our goal is to show that

lim
n→∞

P(En) = 0, (3.25)

where we set

En :=
{

dist
(
U≤k−n (Wn

1 ), U≤k−n (Wn
2 )
)
≤ 2k̄n

}
=
{

dist(Wn
1 ,W

n
2 ) ≤ 2k−n + 2k̄n

}
. (3.26)

We know from Statement 2.1 that as n→∞

P
(
Mk−n

≤ 1

2
E[Mk−n

]

)
≤ P

(
|Mk−n

− E[Mk−n
]| > 1

2
E[Mk−n

]

)
≤

Var[Mk−n
]

1
4E[Mk−n

]2
= o(1). (3.27)

Therefore,

P(En) = P
(
En ∩ {Mk−n

> 1
2E[Mk−n

]}
)

+ o(1)

= E
[ ∑
v1,v2∈[n]

1{Wn
1 =v1,Wn

2 =v2}1{dist(v1,v2)≤2k−n +2k̄n}1{Mk−n
> 1

2
E[M

k−n
]}

]
+ o(1)

≤ E
[ ∑
v1,v2∈[n]

1{v1∈Mk−n
,v2∈Mk−n

}

M2
k−n

1{dist(v1,v2)≤2k−n +2k̄n}1{Mk−n
> 1

2
E[M

k−n
]}

]
+ o(1)

≤
∑

v1,v2∈[n]

P
(
v1, v2 ∈Mk−n

, dist(v1, v2) ≤ 2k−n + 2k̄n

)
1
4E[Mk−n

]2
+ o(1).

(3.28)

In analogy with (3.14), we introduce the event

Av1,v2 :=
{
U≤k−n (v1) ∩ U≤k−n (v2) 6= ∅

}
,

and show that it gives a negligible contribution. Recalling the proof of Proposition 3.5, in par-
ticular (3.20) and (3.24), the sum restricted to Av1,v2 leads precisely to the second term in the
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right hand side of (3.4):

∑
v1,v2∈[n]

P
(
v1, v2 ∈Mk−n

, Av1,v2

)
1
4E[Mk−n

]2
≤

E[Mk−n
]

(
(ik−n + 1) + i2k−n

dmin ndmin
`n−4i

k−n

)
1
4E[Mk−n

]2

=
O(ik−n ) +O(i2k−n )

E[Mk−n
]

=
O((log n)2)

n1−o(1)
= o(1) ,

(3.29)

where we have used (3.6) and (3.8) (see also (3.5)).
We can thus focus on the event Acv1,v2

= {U≤k−n (v1) ∩ U≤k−n (v2) = ∅}. By Remark 3.4,

P
(

dist(v1, v2) ≤ 2k−n + 2k̄n | v1, v2 ∈Mk−n
, Acv1,v2

)
= P̂

(
dist(a, b) ≤ 2k̄n

)
, (3.30)

where P̂ is the law of the new configuration model which results from collapsing the neighborhoods

U≤k−n (v1) and U≤k−n (v2) to single vertices a and b, with degrees dmin(dmin−1)k
−
n = O(log n) (recall

(2.1)-(2.2)). The degree sequence d̂ of this new configuration model is a slight modification of
the original degree sequence d: two new vertices of degree O(log n) have been added, while

2(ik−n + 1) = O(log n) vertices with degree dmin have been removed (recall (3.6)). Consequently d̂

still satisfies the assumptions of Theorem 1.3, hence Statement 2.3 (to be proved in Section 3.3)

holds for P̂ and we obtain

P̂
(
dist(a, b) ≤ 2k̄n

)
= o(1). (3.31)

We are ready to conclude the proof of Statement 2.2. By (3.28)-(3.29)-(3.30),

P(En) =
∑

v1,v2∈[n]

P
(
v1, v2 ∈Mk−n

, dist(v1, v2) ≤ 2k−n + 2k̄n, A
c
v1,v2

)
1
4E[Mk−n

]2
+ o(1)

≤ P̂
(
dist(a, b) ≤ 2k̄n

) ∑
v1,v2∈[n]

P
(
v1, v2 ∈Mk−n

)
1
4E[Mk−n

]2
+ o(1)

= P̂
(
dist(a, b) ≤ 2k̄n

) E[(Mk−n
)2]

1
4E[Mk−n

]2
+ o(1).

Observe that E[(Mk−n
)2] = E[Mk−n

]2 + Var(Mk−n
) = O(E[Mk−n

]2), by the second relation in (2.3).

Applying (3.31), it follows that P(En) = o(1), completing the proof of Statement 2.2. �

3.3. Proof of Statement 2.3. In this section, we give a self-contained proof of Statement 2.3
for CMn, as used in the proof of Statement 2.2.

Given two vertices a, b ∈ [n], let Pk(a, b) be the set of all self-avoiding paths of length k from a
to b, i.e. of all sequences (π0, π1, . . . , πk) ∈ [n]k+1 with π0 = a, πk = b and such that (πi−1, πi) is
an edge in the graph, for all i = 1, . . . , k. Analogously, let Pk(a) = ∪b∈[n]Pk(a, b) denote the set
of all paths of length k starting at a.

Let us fix an arbitrary increasing sequence (gl)l∈N0 (that will be specified later). Define, for
a, b ∈ R, a ∧ b := min{a, b}. We say that a path π ∈ Pk(a, b) is good when dπl ≤ gl ∧ gk−l for
every l = 0, . . . , k, and bad otherwise. In other words, a path is good when the degrees along the
path do not increase too much from π0 to πk/2, and similarly they do not increase too much in
the backward direction, from πk to πk/2.

For k ∈ N0, we introduce the event

Ek(a, b) = {∃π ∈ Pk(a, b) : π is a good path} . (3.32)

To deal with bad paths, we define

Fk(a) = {∃π ∈ Pk(a) : dπk > gk but dπi ≤ gi ∀i ≤ k − 1} . (3.33)
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If distCMn(a, b) ≤ 2k̄, then there must be a path in Pk(a, b) for some k ≤ k̄, and this path might
be good or bad. This leads to the simple bound

P(distCMn(a, b) ≤ 2k̄) ≤
2k̄∑
k=0

P(Ek(a, b)) +
k̄∑
k=0

[P(Fk(a)) + P(Fk(b))] . (3.34)

We give explicit estimates for the two sums in the right hand side. We introduce the size-biased
distribution function F ∗n associated to the degree sequence d = (d1, . . . , dn) by

F ∗n(t) =
1

`n

∑
v∈[n]

dv 1{dv≤t}. (3.35)

If we choose uniformly one of the `n half-edges in the graph, and call D∗n the degree of the vertex
incident to this half-edge, then F ∗n(t) = P(D∗n ≤ t). We also define the truncated mean

νn(t) = E
[
(D∗n − 1)1{D∗n≤t}

]
=

1

`n

∑
v∈[n]

dv(dv − 1)1{dv≤t}. (3.36)

Now we are ready to bound (3.34).

Proposition 3.7 (Path counting for configuration model). Fix d = (d1, . . . , dn) (such that `n =
d1 + . . .+ dn is even) and an increasing sequence (gl)l∈N0. For all distinct vertices a, b ∈ [n] with
da ≤ g0, db ≤ g0, and for all k̄ ∈ N,

P
(
distCMn(a, b) ≤ 2k̄

)
≤dadb

`n

2k̄∑
k=1

(
1− 2k

`n

)−k k−1∏
l=1

νn(gl ∧ gh−l)

+ (da + db)

k̄∑
k=1

(
1− 2k

`n

)−k
(1− F ∗n(gk))

k−1∏
l=1

νn(gl).

(3.37)

Proof. Fix an arbitrary sequence of vertices π = (πi)0≤i≤k ∈ [n]k+1. The probability that vertex
π0 is connected to π1 is at most

dπ0dπ1

`n − 1
,

because there are dπ0dπ1 ordered couples of half-edges, each of which can be paired with prob-
ability 1/(`n − 1) (recall Remark 3.1), and we use the union bound. By similar arguments,
conditionally on a specific half-edge incident to π0 being paired to a specific half-edge incident to
π1, the probability that another half-edge incident to π1 is paired to a half-edge incident to π2 is
by the union bound bounded from above by

(dπ1 − 1)dπ2

`n − 3
.

Iterating the argument, the probability that π is a path in CMn is at most

dπ0dπ1

`n − 1

(dπ1 − 1)dπ2

`n − 3

(dπ2 − 1)dπ3

`n − 5
· · ·

(dπk−1
− 1)dπk

`n − (2k − 1)
. (3.38)

Let us now fix a, b ∈ [n] with a 6= b. Recalling (3.32)-(3.36), choosing π0 = a, πk = b and
summing (3.38) over all vertices π1, . . . , πk−1 satisfying dπi ≤ gi ∧ gk−i yields

P(Ek(a, b)) ≤ dadb
(`n − 2k − 1)!!

(`n − 1)!!

(
k−1∏
i=1

`n νn(gi ∧ gk−i)

)
. (3.39)

Bounding (`n − 2k − 1)!!/(`n − 1)!! ≤ (`n − 2k)−k yields the first term in the right hand side of
(3.37). The bound for P(Fk(a)) is similar. Recalling (3.33)-(3.35), choosing π0 = a and summing
(3.38) over vertices π1, . . . , πk−1, πk such that dπi ≤ gi for i ≤ k − 1 while dπk > gk gives

P(Fk(a)) ≤ da
(`n − 2k − 1)!!

(`n − 1)!!

(
k−1∏
i=1

`n νn(gi)

){
`n
(
1− F ∗n(gk)

)}
, (3.40)
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and the same holds for P(Fk(b)). Plugging (3.39) and (3.40) into (3.34) proves (3.37). �

In order to exploit (3.37), we need estimates on F ∗n and νn, provided by the next lemma:

Lemma 3.8 (Tail and truncated mean bounds for D∗n). Assume that Condition 1.2 holds. Fix
η > 0, then there exist two constants C1 = C1(η) and C2 = C2(η) such that, for every x ≥ 0,

1− F ∗n(x) ≤ C1x
−(τ−2−η), νn(x) ≤ C2x

(3−τ+η). (3.41)

Proof. For every x ≥ 0 and t ≥ 0 we can see that

1− F ∗n(x) =
1

`n

∑
v∈[n]

dv1{dv>x} =
n

`n

[ 1

n

∑
v∈[n]

dv1{dv>x}

]
=

n

`n
E
[
Dn1{Dn>x}

]
, (3.42)

where we recall that Dn is the degree of a uniformly chosen vertex. This means that

n

`n
E[Dn1{Dn>x}] =

n

`n

∞∑
j=0

P
(
Dn1{Dn>x} > j

)
=

n

`n

∞∑
j=0

P (Dn > j,Dn > x)

=
n

`n

∞∑
j=0

P (Dn > j ∨ x) =
n

`n

∞∑
j=0

(
1− Fd,n(j ∨ x)

)
=

n

`n

[
x(1− Fd,n(x)) +

∞∑
j=x

(
1− Fd,n(j)

)]
≤ n

`n
C
[
x−(τ−2−η) +

∞∑
j=x

j−(τ−1−η)
]
≤ C1x

−(τ−2−η),

(3.43)

where we have used Condition 1.2 in the second last step (recall that 2 < τ < 3).
For νn, we can instead write

νn(x) =
1

`n

∑
v∈[n]

dv(dv − 1)1{dv≤x} =
n

`n

[ 1

n

∑
v∈[n]

dv(dv − 1)1{dv≤x}

]
=

n

`n
E
[
Dn(Dn − 1)1{Dn≤x}

]
≤ n

`n
E
[
D2
n1{Dn≤x}

]
,

(3.44)

where Dn is again the degree of a uniformly chosen vertex. The claim now follows from

n

`n
E
[
D2
n1{Dn≤x}

]
=

n

`n

∞∑
j=0

(2j + 1)P
(
Dn1{Dn≤x} > j

)
=

n

`n

∞∑
j=0

(2j + 1)P (Dn > j,Dn ≤ x) ≤ n

`n

x−1∑
j=0

(2j + 1)P (Dn > j)

=
n

`n

x−1∑
j=0

(2j + 1)[1− Fd,n(j)] ≤ n

`n

x−1∑
j=0

Cj−(τ−2−η) ≤ n

`n
C2x

3−τ+η.

(3.45)

�

We are finally ready to complete the proof of Statement 2.3:

Proof of Statement 2.3. As in (2.4), we take

k̄n = (1− ε) log logn

| log(τ − 2)|
, (3.46)

and our goal is to show that, as n→∞,

max
a,b∈[n]: da,db≤logn

P
(
distCMn(a, b) ≤ 2k̄n

)
−→ 0. (3.47)



DIAMETER IN ULTRA-SMALL SCALE-FREE RANDOM GRAPHS 17

We stress that τ ∈ (2, 3) and ε > 0 are fixed. Then we choose η > 0 so small that

2η < τ − 2 and
| log(τ − 2− 2η)|
| log | log(τ − 2)|

≤ 1− ε/2
1− ε

. (3.48)

We use the inequality (3.37) given by Proposition 3.7, with the following choice of (gk)k∈N0 :

gk := (g0)p
k
, where

{
g0 := (log n)log logn;

p := 1
τ−2−2η > 1.

(3.49)

Let us focus on the first term in the right hand side of (3.37), that is

dadb
`n

2k̄∑
k=1

(
1− 2k

`n

)−k k−1∏
l=1

νn(gl ∧ gh−l) . (3.50)

Since `n = µn(1 + o(1)) by (3.5), for k ≤ 2k̄n we have(
1− 2k

`n

)−k
≤
(

1− 4k̄n
`n

)−2k̄n

= 1 +O

(
k̄2
n

`n

)
= 1 +O

(
(log log n)2

n

)
= 1 + o(1) . (3.51)

Then observe that, by Lemma 3.8 and (3.49), for k ≤ 2k̄n

k−1∏
l=1

νn(gl ∧ gk−l) =

k/2∏
l=1

νn(gl)
2 ≤ Ck/22

k/2∏
l=1

(gl)
2(3−τ+η) = C

k/2
2 (g0)2(3−τ+η)

∑k/2
l=1 p

l

≤ C k̄n2 (g0)2(3−τ+η)C pk̄n ,

(3.52)

with C = p
p−1 . Note that C k̄n2 = O((log n)c) for some c ∈ (0,∞), see (3.46), while by (3.48)

pk̄n = exp
(
| log(τ−2−2η)|(1−ε) log logn

| log(τ − 2)|)

)
= (log n)

(1−ε) | log(τ−2−2η)|
| log(τ−2)| ≤ (log n)(1−ε/2), (3.53)

hence the right hand side of (3.52) is no(1) (since g0 = (log n)log logn). Then, for da, db ≤ log n,

(3.50) ≤ (log n)2

`n
(2k̄n)

(
1 + o(1)

)
no(1) = O

(
(log n)2

n
(log log n)no(1)

)
= o(1) .

It remains to look at the second sum in (3.37):

(da + db)

k̄n∑
k=1

(
1− 2k

`n

)−k
(1− F ∗n(gk))

k−1∏
l=1

νn(gl). (3.54)

By Lemma 3.8 ,we can bound 1−F ∗n(gk) ≤ C1(gk)
−(τ−2−η). By (3.51) and C k̄n1 = O((log n)c) for

some c ∈ (0,∞), see (3.46), bounding the product in (3.54) like we did in (3.52) yields

O
(
(log n)c

)
(da + db)

k̄n∑
k=1

(gk)
−(τ−2−η)(g0)(3−τ+η)Cpk−1

, (3.55)

where p = 1/(τ − 2− 2η) and C = p
p−1 . By (3.49)

(gk)
−(τ−2−η)(g0)

− p
p−1

(3−τ+η)pk−1

= (gk−1)−p(τ−2−η)(gk−1)
p
p−1

(3−τ+η)
, (3.56)

where

p(τ − 2− η) =
τ − 2− η
τ − 2− 2η

> 1, and
p

p− 1
(3− τ + η) =

3− τ + η

3− τ + 2η
< 1. (3.57)

This means that, setting D := p(τ − 2− η)− p
p−1(3− τ + η) > 0, by (3.49),

(3.55) = O
(
(log n)c

)
(da + db)

k̄n∑
k=1

(g0)−Dp
k−1 ≤ O

(
(log n)c

) da + db
(g0)D

. (3.58)
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Since g0 = (log n)log logn while da, db ≤ log n, the right hand side of (3.58) is o(1). �

4. Lower bound for preferential attachment model

In this section we prove Statements 2.1, 2.2 and 2.3 for the preferential attachment model. By
the discussion in Section 2.1, this completes the proof of the lower bound in Theorem 1.5.

We recall that, given m ∈ N and δ ∈ (−m,∞), the preferential attachment model PAt is a
random graph with vertex set [t] = {1, 2, . . . , t}, where each vertex w has m outgoing edges,
which are attached to vertices v ∈ [w] with probabilities given in (1.10). In the next subsection
we give a more detailed construction using random variables. This equivalent reformulation will
be used in a few places, when we need to describe carefully some complicated events. However,
for most of the exposition we will stick to the intuitive description given in Section 1.2.

4.1. Alternative construction of the preferential attachment model. We introduce ran-
dom variables ξw,j to represent the vertex to which the j-th edge of vertex w is attached, i.e.

ξw,j = v ⇐⇒ w
j→ v . (4.1)

The graph PAt is a deterministic function of these random variables: two vertices v, w ∈ [t] with
v ≤ w are connected in PAt if and only if ξw,j = v for some j ∈ [m]. In particular, the degree of
a vertex v after the k-th edge of vertex t has been attached, denoted by Dt,k(v), is

Dt,k(v) :=
∑

(s,i)≤(t,k)

(
1{ξs,i=v} + 1{s=v}

)
, (4.2)

where we use the natural order relation

(s, i) ≤ (t, j) ⇐⇒ s < t or s = t, i ≤ j .

Defining the preferential attachment model amounts to giving a joint law for the sequence
ξ = (ξw,j)(w,j)∈N×[m]. In agreement with (1.10), we set ξ1,j = 1 for all j ∈ [m], and for t ≥ 2

P
(
ξt,j = v | ξ≤(t,j−1)

)
=


Dt,j−1(v) + 1 + jδ/m

ct,j
if v = t;

Dt,j−1(v) + δ

ct,j
if v < t,

(4.3)

where ξ≤(t,i−1) is a shorthand for the vector (ξs,i)(s,i)≤(t,i−1) (and we agree that (t, 0) := (t−1,m)).
The normalizing constant ct,j in (4.3) is indeed given by (1.11), because by (4.2),∑

v∈[t]

Dt,j−1(v) =
∑

(s,i)≤(t,j−1)

(1 + 1) = 2((t− 1)m+ (j − 1)) .

The factor jδ/m in the first line of (4.3) is commonly used in the literature (instead of the
possibly more natural δ). The reason is that, with such a definition, the graph PAt(m, δ) can be
obtained from the special case m = 1, where every vertex has only one outgoing edge: one first
generates the random graph PAmt(1, δ/m), whose vertex set is [mt], and then collapses the block
of vertices [m(i− 1) + 1,mi) into a single vertex i ∈ [t] (see also [Hof17, Chapter 8]).

Remark 4.1. It is clear from the construction that PAt is a labeled directed graph, because any
edge connecting sites v, w, say with v ≤ w, carries a label j ∈ [m] and a direction, from the newer
vertex w to the older one v (see (4.1)). Even though our final result, the asymptotic behavior of
the diameter, only depends on the underlying undirected graph, it will be convenient to exploit
the labeled directed structure of the graph in the proofs.
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4.2. Proof of Statement 2.1. We denote by U≤k(v) the k-neighborhood in PAt of a vertex
v ∈ [t], i.e. the set of vertices at distance at most k from v, viewed as a labeled directed subgraph
(see Remark 4.1). We denote by Dt(v) = Dt,m(v) the degree of vertex v after time t, i.e. in the
graph PAt (recall (4.2)).

We define the notion of minimally-k-connected vertex in analogy with the configuration model
(see Definition 3.2), up to minor technical restrictions made for later convenience.

Definition 4.2 (Minimally-k-connected vertex). For k ∈ N0, a vertex v ∈ [t] \ [t/2] is called
minimally-k-connected when Dt(v) = m, all the other vertices i ∈ U≤k(v) are in [t/2] \ [t/4] and
have degree Dt(i) = m + 1, and there are no self-loops, multiple edges or cycles in U≤k(v). The
graph U≤k(v) is thus a tree with degree m+ 1, except for the root v which has degree m.

We denote the (random) set of minimally-k-connected vertices by Mk ⊆ [t] \ [t/2], and its
cardinality by Mk = |Mk|.

For the construction of a minimally-k-connected neighborhood in the preferential attachment
model we remind that the vertices are added to the graph at different times, so that the vertex
degrees change while the graph grows. The relevant degree for Definition 4.2 is the one at the
final time t. To build a minimally-k-connected neighborhood, we need

ik = 1 +

k∑
i=1

mi =
mk+1 − 1

m− 1
(4.4)

many vertices. The center v of the neighborhood is the youngest vertex in U≤k(v), and it has
degree m, while all the other vertices have degree m+ 1.

Our first goal is to evaluate the probability P(v ∈ Mk) that a given vertex v ∈ [t] \ [t/2] is
minimally-k-connected. The analogous question for the configuration model could be answered
quite easily in Proposition 3.5, because the configuration model can be built exploring its vertices
in an arbitrary order, in particular starting from v, see Remark 3.1. This is no longer true for the
preferential attachment model, whose vertices have an order, the chronological one, along which
the conditional probabilities take the explicit form (1.10) or (4.3). This is why the proofs for the
preferential attachment model are harder than for the configuration model.

As it will be clear in a moment, to get explicit formulas it is convenient to evaluate the
probability P(v ∈ Mk, U≤k(v) = H), where H is a fixed labeled directed subgraph, i.e. it comes
with the specification of which edges are attached to which vertices. To avoid trivialities, we
restrict to those H for which the probability does not vanish, i.e. which satisfy the constraints in
Definition 4.2, and we call them admissible.

Let us denote by Ho := H \ ∂H the set of vertices in H that are not on the boundary (i.e.
they are at distance at most k − 1 from v). With this notation, we have the following result:

Lemma 4.3. Let {PAt}t∈N be a preferential attachment model. For any vertex v ∈ [t] \ [t/2] and
any directed labeled graph H which is admissible,

P (v ∈Mk, U≤k(v) = H) = L1(H)L2(H) , (4.5)

where

L1(H) :=
∏
u∈Ho

m∏
j=1

m+ δ

cu,j
, (4.6)

L2(H) :=
∏
u6∈Ho

m∏
j=1

[
1− Du−1(H) + |H ∩ [u− 1]|δ

cu,j

]
, (4.7)

and Du−1(H) =
∑

w∈H Du−1,m(w) is the total degree of H before vertex u is added to the graph,
and the normalization constant cu,j is defined in (1.11).

Proof. We recall that {a i→ b} denotes the event that the i-th edge of a is attached to b (see
(4.1)). Since H is an admissible labeled directed subgraph, for all u ∈ Ho and j ∈ [m], the j-th
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edge of u is connected to a vertex in H, that we denote by θHj (u). We can then write

{v ∈Mk, U≤k(v) = H} =
( ⋂
u∈Ho

m⋂
j=1

{u j→ θHj (u)}
)
∩
( ⋂
u6∈Ho

m⋂
j=1

{u
j

6→ H}
)
, (4.8)

where of course {u
j

6→ H} :=
⋃
w 6∈H{u

j→ w}. The first term in (4.8) is exactly the event that
the edges present in H are connected in PAt as they should be. The second term is the event
that the vertices u 6∈ Ho are not attached to H, so that U≤k(v) = H. Notice that in (4.8) every
vertex and every edge of the graph appears. For a vertex u ∈ Ho, by (1.10)

P
(
u

j→ θHj (u) | PAu,j−1

)
=
m+ δ

cu,j
, (4.9)

because the vertex θHj (u) has degree precisely m (when u is not already present in the graph).
For u 6∈ Ho, we have to evaluate the probability that its edges do no attach to H, which is

P
(
u

j

6→ H | PAu−1,j−1

)
= 1− Du−1(H) + |H ∩ [u− 1]|δ

cu,j
. (4.10)

Using conditional expectation iteratively, we obtain (4.9) or (4.10) for every edge in the graph,
depending on whether the edge is part of H or not. This proves (4.6) and (4.7). �

The event {v ∈ Mk, U≤k(v) = H} is an example of a class of events, called factorizable, that
will be used throughout this section and Section 6. For this reason we define it precisely.

It is convenient to use the random variable ξw,j , introduced in Section 4.1, to denote the
vertex to which the j-th edge of vertex w is attached (see (4.1)). Any event A for PAt can be
characterized iteratively, specifying a set As,i ⊆ [s] of values for ξs,i, for all (s, i) ≤ (t,m):

A =
⋂

(s,i)≤(t,m)

{
ξs,i ∈ As,i

}
.

Of course, the set As,i is allowed to depend on the “past”, i.e. As,i = As,i
(
ξ≤(s,i−1)

)
, or equivalently

As,i = As,i
(
PAs,i−1

)
. Let us set A≤(s,i) :=

⋂
(u,j)≤(s,i)Au,j .

Definition 4.4 (Factorizable events). An event A for PAt is called factorizable when the condi-
tional probabilities of the events {ξs,i ∈ As,i}, given the past, are deterministic. More precisely,
for any (s, i) there is a (non-random) ps,i ∈ [0, 1] such that

P
(
ξs,i ∈ As,i | ξ≤(s,i−1)

)
= ps,i (4.11)

on the event ξ≤(s,i−1) ∈ A≤(s,i−1). As a consequence, the chain rule for probabilities yields

P(A) =
∏

(s,i)≤(t,m)

ps,i .

Remark 4.5. Relations (4.9) and (4.10) show that A = {v ∈Mk, U≤k(v) = H} is a factorizable
event. In fact, As,i is either the single vertex θHi (s) (if s ∈ Ho) or the set [s− 1] \H (if s 6∈ Ho).
In both cases, the set As,i ⊆ [s − 1] has a fixed total degree and a fixed cardinality, hence the
conditional probabilities (4.11) are specified in a deterministic way (recall (4.3)).

Note that the event {v ∈ Mk} is not factorizable. This is the reason for specifying the
realization of the k-neighborhood U≤k(v) = H.

Henceforth we fix ε > 0. We recall that k−n was defined in (2.1). Using the more customary t
instead of n, we have

k−t = (1− ε) log log t

logm
. (4.12)

We recall that Mk−t
= |Mk−t

| denotes the number of minimally-k−t -connected vertices in PAt (see

Definition 4.2). We can now prove half of Statement 2.1 for the preferential attachment model,
more precisely the first relation in equation (2.3).
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Proposition 4.6 (First moment of Mk−t
). Let (PAt)t≥1 be a preferential attachment model, with

m ≥ 2 and δ ∈ (−m, 0). Then, for k−t as in (4.12), as t→∞,

E[Mk−t
] −→∞. (4.13)

Proof. Similarly to the proof of (3.3), we write

E[Mk] =
∑

v∈[t]\[t(2]

P (v ∈Mk) =
∑

v∈[t]\[t/2]

∑
H⊆[t]\[t/4]

P
(
v ∈Mk, U≤k(v) = H

)
, (4.14)

where the sum is implicitly restricted to admissible H (i.e., to H that are possible realizations of
U≤k(v)).

Since we will use (4.5), we need a lower bound on (4.6) and (4.7). Recalling (1.11), it is easy
to show, since the number of vertices in Ho equals ik −mk = ik−1, and u ≤ v for u ∈ Ho,

L1(H) ≥
[

m+ δ

v(2m+ δ) + 1 + δ/m

]mik−1

. (4.15)

Note that for u ≤ t/4 all the factors in the product in (4.7) equal 1, because H ⊆ [t] \ [t/4].
Restricting to u > t/4 and bounding Du−1(H) + |H ∩ [u− 1]|δ ≤ (m+ 1 + δ)ik, we get

L2(H) ≥
[
1− (m+ 1 + δ)ik

t
4(2m+ δ)

]3mt/4

. (4.16)

Let us write H = {v} ∪H ′ where H ′ is a subset of [t/2] \ [t/4] with |H ′| = ik − 1. Clearly, for
any such subset there is at least one way to order the vertices to generate an admissible H. The

number of possible subsets in [t/2] \ [t/4] is at least
(
t/4
ik−1

)
. Then, we obtain

E[Mk] ≥
∑

v∈[t]\[t/2]

(
t/4

ik − 1

)[
m+ δ

v(2m+ δ) + 1 + δ/m

]mik−1
[
1− (m+ 1 + δ)ik

t
4(2m+ δ)

]3mt/4

. (4.17)

Recalling that (
t/4

ik − 1

)
=

tik

4ik(ik − 1)!
(1 + o(1)), (4.18)

since mik−1 ≤ ik, we obtain

E[Mk] ≥
t

2

tik

4ik(ik − 1)!

[
m+ δ

t(2m+ δ) + 1 + δ/m

]ik [
1− (m+ 1 + δ)ik

t
4(2m+ δ)

]3mt/4

. (4.19)

Choosing k = k−t as in (4.12) and bounding 1− x ≥ e−2x for x small, as well as m+ 1 ≤ 2m, we
obtain

E[Mk−t
] ≥ t

2

t
i
k−t

4
i
k−t ik−t

!

( m
C t

)i
k−t exp

(
−3 cm ik−t

)
≥ 1

(C ′)
i
k−t

t

2 ik−t
!
exp

(
−3 cm ik−t

)
, (4.20)

where C is a constant and C ′ = 4C/m. Recalling that ik is given by (4.4), and k−t by (4.12),

hence ik−t
= m

m−1m
k−t (1 + o(1)) ≤ 2(log t)1−ε, hence

ik−t
! ≤ b2(log t)1−εc! ≤

[
2(log t)1−ε]2(log t)1−ε

= to(1) , (4.21)

and also (C ′e3 cm)
i
k−t = to(1). This implies that E[Mk]→∞, as required. �

Remark 4.7 (Disjoint neighborhoods for minimally k-connected pairs). We observe that, on the
event {v, w ∈Mk} with v 6= w, necessarily

U≤k(v) ∩ U≤k(w) = ∅,

because if a vertex x is in U≤k(v)∩U≤k(w) and x 6= v, w, this means that Dx(t) = m+2, because
in addition to its original m outgoing edges, vertex x has one incident edge from a younger vertex
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in U≤k(v) and one incident edge from a younger vertex in U≤k(u), which gives a contradiction.
Similar arguments apply when x = v or x = w.

We use the previous remark to prove the second relation in Statement 2.1 for the preferential
attachment model.

Proposition 4.8 (Second moment of Mk−t
). Let (PAt)t≥1 be a preferential attachment model,

with m ≥ 2 and δ ∈ (−m, 0). Then, for k ∈ N,

E[M2
k ] ≤ exp

(
32mi2k/t

)
E[Mk]

2 + E[Mk]. (4.22)

Consequently, for k = k−t as in (4.12), as t→∞,

E[M2
k−t

] ≤ (1 + o(1))E[Mk−t
]2 . (4.23)

Proof. We write

E
[
M2
k

]
=

∑
v,w∈[t]\[t/2]

P (v, w ∈Mk) =
∑
v 6=w

P (v, w ∈Mk) + E[Mk]. (4.24)

By Remark 4.7, for v 6= w we can write

P (v, w ∈Mk) =
∑

Hv∩Hw=∅
P (v, w ∈Mk, U≤k(v) = Hv, U≤k(w) = Hw) . (4.25)

The crucial observation is that the event {v, w ∈ Mk, U≤k(v) = Hv, U≤k(w) = Hw} is factor-
izable (recall Definition 4.4 and Remark 4.5). More precisely, in analogy with (4.6) and (4.7):

P (v, w ∈Mk, U≤k(v) = Hv, U≤k(w) = Hw) = L1(Hv, Hw)L2(Hv, Hw), (4.26)

where now

L1(Hv, Hw) =
∏

x∈Ho
v∪Ho

w

m∏
j=1

m+ δ

cx,j
, (4.27)

L2(Hv, Hw) =
∏

x6∈Ho
v∪Ho

w

m∏
j=1

[
1− Dx−1(Hv ∪Hw) + |(Hv ∪Hw) ∩ [x− 1]|δ

cx,j

]
. (4.28)

To prove (4.26), notice that in (4.27) and (4.28) every edge and every vertex of the graph appear.
Further, (4.27) is the probability of the event {U≤k(v) = Hv, U≤k(w) = Hw}, while (4.28) is the
probability that all vertices not in the two neighborhoods do not attach to the two trees.

A look at (4.6) shows that L1(Hv, Hw) = L1(Hv)L1(Hw). We now show that analogous
factorization holds approximately also for L2. Since, for every a, b ∈ [0, 1], with a + b < 1, it is
true that 1− (a+ b) ≤ (1− a)(1− b), we can bound[

1− Dx−1(Hv ∪Hw) + |(Hv ∪Hw) ∩ [x− 1]|δ
cx,j

]
(4.29)

≤
[
1− Dx−1(Hv) + |Hv ∩ [x− 1]|δ

cx,j

] [
1− Dx−1(Hw) + |Hw ∩ [x− 1]|δ

cx,j

]
.

When we plug (4.29) into (4.28), we obtain L2(Hv)L2(Hw) (recall (4.7)) times the following terms: ∏
x∈Ho

w

[
1− Dx−1(Hv) + |Hv ∩ [x− 1]|δ

cx,j

]−1 ∏
x∈Ho

v

[
1− Dx−1(Hw) + |Hw ∩ [x− 1]|δ

cx,j

]−1

.

(4.30)
We can bound Dx−1(Hv) + |Hv ∩ [x − 1]|δ ≤ Dx−1(Hv) ≤ (m + 1)ik (recall that δ < 0) and
analogously for Hw. The square brackets in (4.30) equal 1 for x ≤ t/4 (since Hv, Hw ⊆ [t] \ [t/4]
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by construction), and for x > t/4 we have cx,j ≥ t
4(2m+ δ) ≥ m

4 t by (1.11) and δ > −m. We can
thus write

L2(Hv, Hw) ≤ L2(Hv)L2(Hw)
∏

x∈Ho
v∪Ho

w

m∏
j=1

[
1− (m+ 1)ik

m
4 t

]−1

≤ L2(Hv)L2(Hw) exp

(
2(2ik)m

(m+ 1)ik
m
4 t

)
,

(4.31)

where we have used the bound 1− z ≥ e−2z for small z > 0. Since m+ 1 ≤ 2m, we obtain∑
v 6=w

[ ∑
Hv∩Hw=∅

P (v, w ∈Mk, U≤k(v) = Hv, U≤k(w) = Hw)

]
≤ exp

(
32mi2k/t

) ∑
v∈[t]\[t/2]

∑
Hv

L1(Hv)L2(Hv)
∑

w∈[t]\[t/2]

∑
Hw

L1(Hw)L2(Hw)

= exp
(
32mi2k/t

)
E[Mk]

2.

(4.32)

Substituting (4.32) in (4.24) completes the proof of (4.22).
Finally, for k = k−t as in (4.12) we have ik−t

≤ 2(log t)1−ε (recall that ik is given by (4.4)). We

have already shown in Proposition 4.6 that E[Mk−t
]→∞, hence (4.23) follows. �

Together, Propositions 4.6 and 4.8 prove Statement 2.1. This means, as for the configuration

model, since Var(M2
k−t

) = o(E[Mk−t
]2), that Mk−t

/E[Mk−t
]

P−−−→
t→∞

1, so in particular Mk−t

P−−−→
t→∞

∞.

�

4.3. Proof of Statement 2.3. Fix ε > 0 and define, as in (2.4),

k̄t = (1− ε) 2 log log t

| log(τ − 2)|
. (4.33)

Statement 2.3 follows from the following result on distances between not too early vertices:

Proposition 4.9 (Lower bound on distances). Let (PAt)t≥1 be a preferential attachment model,
with m ≥ 2 and δ ∈ (−m, 0). Then, there exists a constant p > 0 such that

max
x,y≥ t

(log t)2

P
(
distPAt(x, y) ≤ 2k̄t

)
≤ p

(log t)2
. (4.34)

Inequality (4.34) is an adaptation of a result proved in [DMM12, Section 4.1]. Consequently
we just give a sketch of the proof (the complete proof can be found in [CGH16, Appendix A]).

Let us denote by u↔ v the event that vertices u, v are neighbors in PAt, that is

{u↔ v} =

m⋃
j=1

(
{u j→ v} ∪ {v j→ u}

)
.

(As a matter of fact, {v j→ u} is only possible if v > u, while {u j→ v} is only possibly if v < u.)
Given a sequence π = (π0, π1, . . . , πk) ∈ [t]k+1 of distinct vertices, we denote by {π ⊆ PAt} the
event that π is a path in PAt, that is

{
π ⊆ PAt

}
= {π0 ↔ π1 ↔ π2 · · · ↔ πk} =

k⋂
i=1

{πi−1 ↔ πi} .

The proof of Proposition 4.9 requires the following bound on the probability of connection
between two vertices from [DHH10, Lemma 2.2]: for γ = m/(2m + δ) ∈ (1

2 , 1), there exists
c ∈ (0,∞) such that, for all vertices u, v ∈ [t].

P (u↔ v) ≤ c(u ∨ v)γ−1(u ∧ v)−γ . (4.35)
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From [DHH10, Corollary 2.3] we know, for any sequence π = (π0, π1, . . . , πk) ∈ [t]k+1 of distinct
vertices,

P
(
π ⊆ PAt

)
≤ p(π0, π1, . . . , πk) :=

k−1∏
i=0

Cm

(πi ∧ πi+1)γ(πi ∨ πi+1)1−γ , (4.36)

where C is an absolute constant. The history of (4.36) is that it was first proved by Bollobás and
Riordan [BR04] for δ = 0 (so that γ = 1− γ = 1/2), and the argument was extended to all δ in
[DHH10, Corollary 2.3].

Remark 4.10. Proposition 4.9 holds for every random graphs that satisfies (4.36).

We proceed in a similar way as in Section 3.3. Given two vertices x, y ∈ [t], we consider paths
π = (π0, π1, . . . , πk) between x = π0 and y = πk. We fix a decreasing sequence of numbers (gl)l∈N0

that serve as truncation values for the age of vertices along the path (rather than the degrees
as for the configuration model). We say that a path π is good when πl ≥ gl ∧ gk−l for every
l = 0, . . . , k, and bad otherwise. In other words, a path is good when the age of vertices does not
decrease too much from π0 to πk/2 and, backwards, from πk to πk/2. Intuitively, this also means
that their degrees do not grow too fast. This means that

P(distPAt(x, y) ≤ 2k̄t) ≤
2k̄t∑
k=1

P(Ek(x, y)) +

k̄t∑
k=1

[P(Fk(x)) + P(Fk(y))] , (4.37)

where Ek(x, y) is the event of there being a good path of length k, as in (3.32), while Fk(x) is the
event of there being a path π with πi ≥ gi for i ≤ k − 1 but πk < gk, in analogy with (3.33).

Recalling the definition of p(π0, π1, . . . , πk) in (4.36), we define for l ∈ N,

fl,t(x,w) = 1{x≥g0}

t∑
π1=g1

t∑
π2=g2

· · ·
t∑

πl−1=gl−1

p(x, π1, . . . , πl−1, w), (4.38)

setting f0,t(x,w) = 1{x≥g0} and f1,t(x,w) = 1{x≥g0}p(x,w). From (4.37) we then obtain

P(distPAt(x, y) ≤ 2k̄t) ≤
2k̄t∑
k=1

t∑
l=gbk/2c

fbk/2c,t(x, l)fdk/2e,t(y, l)

+

k̄t∑
k=1

gk−1∑
l=1

fk,t(x, l) +

k̄t∑
k=1

gk−1∑
l=1

fk,t(y, l).

(4.39)

This is the starting point of the proof of Proposition 4.9.
We will show in [CGH16, Appendix A] that the following recursive bound holds

fk,t(x, l) ≤ αkl−γ + 1{l>gk−1}βkl
γ−1, (4.40)

for suitable sequences (αk)k∈N, (βk)k∈N and (gk)k∈N (see [CGH16, Definition A.2]). We will
prove recursive bounds on these sequences that guarantee that the sums in (4.39) satisfy the
required bounds. We omit further details at this point, and refer the interested reader to [CGH16,
Appendix A].

4.4. Proof of Statement 2.2. Consider now two independent random vertices W t
1 and W t

2 that
are uniformly distributed in the set of minimally-k−t -connected vertices Mk−t

. We set

Et :=
{

dist
(
U≤k−t

(W t
1), U≤k−t

(W t
2)
)
≤ 2k̄t

}
=
{

dist(W t
1,W

t
2) ≤ 2k−t + 2k̄t

}
(4.41)

and, in analogy with Section 3.2, our goal is to show that

lim
t→∞

P(Et) = 0. (4.42)
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We know from Statement 2.1 that, as t→∞,

P
(
Mk−t

≤ 1

2
E[Mk−t

]

)
≤ P

(
|Mk−t

− E[Mk−t
]| > 1

2
E[Mk−t

]

)
≤

Var(Mk−t
)

1
4E[Mk−t

]2
= o(1). (4.43)

We also define the event

Bt :=

{
max
v∈[t]

Dt(v) ≤
√
t

}
(4.44)

and note that it is known (see [Hof17, Theorem 8.13]) that limt→∞ P(Bt) = 1. Therefore,

P(Et) = P
(
Et ∩ {Mk−t

> 1
2E[Mk−t

]} ∩Bt
)

+ o(1)

= E
[ ∑
v1,v2∈[t]

1{W t
1=v1,W t

2=v2}1{dist(v1,v2)≤2k−t +2k̄t}1{Mk−t
> 1

2
E[M

k−t
]}1Bt

]
+ o(1)

≤ E
[ ∑
v1,v2∈[t]\[t/2]

1{v1∈Mk−t
,v2∈Mk−t

}

M2
k−t

1{dist(v1,v2)≤2k−t +2k̄t}1{Mk−t
> 1

2
E[M

k−t
]}1Bt

]
+ o(1)

≤
∑

v1,v2∈[t]\[t/2]

P
(
v1, v2 ∈Mk−t

, dist(v1, v2) ≤ 2k−t + 2k̄t, Bt

)
1
4E[Mk−t

]2
+ o(1).

(4.45)

The contribution of the terms with v1 = v2 is negligible, since it gives∑
v1∈[t]\[t/2] P

(
v1 ∈Mk−t

)
1
4E[Mk−t

]2
=

4

E[Mk−t
]

= o(1),

because E[Mk−t
] → ∞ by Proposition 4.6. Henceforth we restrict the sum in (4.45) to v1 6= v2.

Summing over the realizations H1 and H2 of the random neighborhoods U≤k−t
(v1) and U≤k−t

(v2),

and over paths π from an arbitrary vertex x ∈ ∂H1 to an arbitrary vertex y ∈ ∂H2, we obtain

P(Et) ≤
4

E[Mk−t
]2

∑
v1,v2∈[t]\[t/2]

v1 6=v2

∑
H1, H2⊆[t]\[t/4]

∑
x∈∂H1, y∈∂H2

∑
π:x→y
|π|≤2k̄t

P
(
U≤k−t

(v1) = H1, U≤k−t
(v2) = H2, π ⊆ PAt, Bt

)
+ o(1).

(4.46)

The next proposition, proved below, decouples the probability appearing in the last expression:

Proposition 4.11. There is a constant q ∈ (1,∞) such that, for all v1, v2, H1, H2 and π,

P
(
U≤k−t

(v1) = H1, U≤k−t
(v2) = H2, π ⊆ PAt, Bt

)
≤ q P

(
U≤k−t

(v1) = H1, U≤k−t
(v2) = H2

)
P (π ⊆ PAt) .

(4.47)

The proof of Proposition 4.11 reveals that we can take q = 2 for t sufficiently large. Using
(4.47) in (4.46), we obtain

P(Et) ≤
4q

E[Mk−t
]2

∑
v1,v2∈[t]\[t/2]

∑
H1, H2⊆[t]\[t/4]

P (U≤k(v1) = H1, U≤k(v2) = H2)

×

{ ∑
x∈∂H1, y∈∂H2

∑
π:x→y
|π|≤2k̄t

P (π ⊆ PAt)

}
.

(4.48)

If we bound P (π ⊆ PAt) ≤ p(π) in (4.48), as in (4.36), the sum over π can be rewritten as the
right hand side of (4.39) (recall (4.37)-(4.38)). We can thus apply Proposition 4.9 —because the
proof of Proposition 4.9 really gives a bound on (4.39)— concluding that the sum over π is at
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most p/(log t)2, where the constant p is defined in Proposition 4.9. Since |∂H1| = |∂H2| = mk−t =
(log t)1−ε (recall (4.12)), we finally obtain

P(Et) ≤
4q

E[Mk−t
]2
p(log t)2(1−ε)

(log t)2
E[M2

k−t
] =

(
1 + o(1)

) 4pq

(log t)2ε
, (4.49)

where the last step uses Proposition 4.8. This completes the proof that P(Et) = o(1). �

Proof of Proposition 4.11. We recall that H1 ⊆ [t]\[t/4] is a labeled directed subgraph containing
v1, such that it is an admissible realization of the neighborhood U≤k−t

(v1) of the minimally-k−t -

connected vertex v1 (recall Definition 4.2); in particular, H1 \ {v1} ⊆ [t/2] \ [t/4]. We also recall
that, for all u ∈ Ho

1 := H1 \ ∂H1 and j ∈ [m], the j-th edge of u is connected to a well specified

vertex in H1, denoted by θH1
j (u). Analogous considerations apply to H2.

We have to bound the probability

P
(
U≤k−t

(v1) = H1, U≤k−t
(v2) = H2, π ⊆ PAt, Bt

)
, (4.50)

where π = (π0, π1, . . . , πk) ∈ [t]k+1 is a given sequence of vertices with π0 ∈ ∂H1 and πk ∈ ∂H2.
The event in (4.50) is not factorizable, because the degrees of the vertices in the path π are not
specified, hence it is not easy to evaluate its probability. To get a factorizable event, we need to
give more information. For a vertex v ∈ [t], define its incoming neighborhood N (v) by

N (v) := {(u, j) ∈ [t]× [m] : u
j→ v} . (4.51)

The key observation is that the knowledge of N (v) determines the degree Ds(v) at any time s ≤ t
(for instance, at time t we simply have Dt(v) = |N (v)|+m).

We are going to fix the incoming neghborhoods N (π1) = K1, . . . , N (πk−1) = Kk−1 of all
vertices in the path π, except the extreme ones π0 and πk (note that N (π0) and N (πk) reduce to
single points in Ho

1 and Ho
2 , respectively, because π0 ∈ ∂H1 and πk ∈ ∂H2). We emphasize that

such incoming neighborhoods allow us to determine whether π = (π0, . . . , πk) is a path in PAt.
Recalling the definition of the event Bt in (4.44), we restrict to

|Ki| ≤
√
t, for i ∈ [k − 1], (4.52)

and simply drop Bt from (4.50). We will then prove the following relation: for all v1, v2, H1, H2,
π = (π0, . . . , πk), and for all K1, . . . ,Kk−1 satisfying (4.52), we have

P
(
U≤k−t

(v1) = H1, U≤k−t
(v2) = H2, {N (π1) = K1, . . . ,N (πk−1) = Kk−1}

)
≤ q P

(
U≤k−t

(v1) = H1, U≤k−t
(v2) = H2

)
P (N (π1) = K1, . . . ,N (πk−1) = Kk−1) .

(4.53)

Our goal (4.47) follows by summing this relation over all K1, . . . ,Kk−1 for which π ⊆ PAt.
The first line of (4.53) is the probability of a factorizable event. In fact, setting for short

R :=
(
Ho

1 × [m]
)
∪
(
Ho

2 × [m]
)
∪ K1 ∪ . . . ∪ Kk−1 ,

the event in the first line of (4.53) is the intersection of the following four events (see (4.8)):

⋂
u∈Ho

1

m⋂
j=1

{u j→ θH1
j (u)} ,

⋂
u∈Ho

2

m⋂
j=1

{u j→ θH2
j (u)} ,

k−1⋂
i=1

⋂
(u,j)∈Ki

{u j→ πi},

⋂
(u,j)∈[t]×[m] \R

{u
j

6→ (H1 ∪H2 ∪ πo)} ,
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where we set πo := π \ {π0, πk} = (π1, . . . , πk−1). Generalizing (4.9)-(4.10), we can rewrite the
first line of (4.53) as follows, recalling (1.10):

P
(
U≤k−t

(v1) = H1, U≤k−t
(v2) = H2, {N (π1) = K1, . . . ,N (πk−1) = Kk−1}

)
=

{ ∏
u∈Ho

1

m∏
j=1

m+ δ

cu,j

}{ ∏
u∈Ho

2

m∏
j=1

m+ δ

cu,j

}{
k−1∏
i=1

∏
(u,j)∈Ki

Du,j−1(πi) + δ

cu,j

}
{ ∏

(u,j)∈[t]×[m] \ R

(
1− Du,j−1(H1 ∪H2 ∪ πo) + |(H1 ∪H2 ∪ πo) ∩ [u− 1]|δ

cu,j

)}
.

(4.54)

We stress that Du,j−1(πi) is non-random, because it is determined by Ki. Analogous considera-
tions apply to Du,j−1(H1 ∪H2 ∪ πo). We have thus obtained a factorizable event.

Next we evaluate the second line of (4.53). Looking back at (4.26)-(4.28), we have

P
(
U≤k−t

(v1) = H1, U≤k−t
(v2) = H2

)
=

{ ∏
u∈Ho

1

m∏
j=1

m+ δ

cu,j

}{ ∏
u∈Ho

2

m∏
j=1

m+ δ

cu,j

}
{ ∏

(u,j)∈[t]×[m] \ (Ho
1∪Ho

2 )×[m]

(
1− Du,j−1(H1 ∪H2) + |(H1 ∪H2) ∩ [u− 1]|δ

cu,j

)}
.

(4.55)

On the other hand,

P (N (π1) = K1, . . . ,N (πk−1) = Kk−1) =

{
k−1∏
i=1

∏
(u,j)∈Ki

Du,j−1(πi) + δ

cu,j

}
{ ∏

(u,j)∈[t]×[m] \ K1∪...∪Kk−1

(
1− Du,j−1(πo) + |πo ∩ [u− 1]|δ

cu,j

)}
.

(4.56)

Using the bound (1− (a+ b)) ≤ (1− a)(1− b) in the second line of (4.54), and comparing with
(4.55)-(4.56), we only need to take into account the missing terms in the product in the last lines.
This shows that relation (4.53) holds if one sets q = C1C2 therein, where

C1 :=

{ ∏
(u,j)∈K1 ∪ ... ∪ Kk−1

(
1− Du,j−1(H1 ∪H2) + |(H1 ∪H2) ∩ [u− 1]|δ

cu,j

)}−1

,

C2 :=

{ ∏
(u,j)∈(Ho

1∪Ho
2 )×[m]

(
1− Du,j−1(πo) + |πo ∩ [u− 1]|δ

cu,j

)}−1

.

To complete the proof, it is enough to give uniform upper bounds on C1 and C2, that does not
depend on H1, H2, π. We start with C1. In the product we may assume u > t/4, because the
terms with u ≤ t/4 are identically one, since H1, H2 ⊆ [t] \ [t/4]. Moreover, for u > t/4 we have
cu,j ≥ t(2m + δ)/4 ≥ mt/4 by (1.11) and δ > −m. Since Du,j−1(H1 ∪H2) ≤ 2(m + 1)ik, using
1− x ≥ e−2x for x small and recalling that δ < 0, it follows that

C−1
1 ≥

∏
(u,j)∈K1 ∪ ... ∪ Kk−1

(
1− 2(m+ 1)ik

m
4 t

)
≥ e−

8(m+1)
tm

|K[k−1]|ik , (4.57)

where K[k−1] = K1 ∪ . . . ∪ Kk−1. Since ik is given by (4.4), for k = k−t as in (4.12) we have

ik = m
m−1m

k−t (1 + o(1)) ≤ 2(log t)1−ε. Recalling also (4.52) and bounding m+ 1 ≤ 2m, we obtain

C1 ≤ e
8(m+1)
tm

|K[k−1]|ik ≤ e16k ik/
√
t = eO(log t/

√
t) = 1 + o(1) .
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For C2, since Du,j−1(πo) ≤ Dt(π
o) = |K[k−1]| ≤ k

√
t, again by (4.52), we get

C−1
2 ≥

∏
(u,j)∈(Ho

1∪Ho
2 )×[m]

(
1− k

√
t

m
4 t

)
≥ e
− 8
m

k√
t
|Ho

1∪Ho
2 |m ≥ e−16 k ik/

√
t = 1− o(1) . (4.58)

It follows that C1C2 is bounded from above by some constant q. This completes the proof. �

4.5. Proof of Theorem 1.6. Dereich, Mönch and Mörters [DMM12] have already proved the
upper bound. For the lower bound we use Proposition 4.9. In fact, for k̄t as in (4.33),

P
(
Ht ≤ 2k̄t

)
=

∑
v1,v2∈[t]

P
(
V1 = v1, V2 = v2,dist(v1, v2) ≤ 2k̄t

)
. (4.59)

If v1 and v2 are both larger or equal than g0 = d t
(log t)2 e, then we can apply Proposition 4.9. The

probability that V1 < g0 or V2 < g0 is

P ({V1 < g0} ∪ {V2 < g0}) ≤ 2g0/t = o(1), (4.60)

hence we get

1

t2

∑
v1,v2∈[t]\[g0]

P
(
dist(v1, v2) ≤ 2k̄t

)
+ o(1) ≤ (t− g0)2

t2
p

(log t)2
+ o(1) = o(1),

and this completes the proof of Theorem 1.6. �

5. Upper bound for configuration model

In this section we prove Statements 2.5 and 2.6 for the configuration model. By the discussion
in Section 2.2, this completes the proof of the upper bound in Theorem 1.3, because the proof of
Statement 2.4 is already known in the literature, as explained below Statement 2.4.

Throughout this section, the assumptions of Theorem 1.3 apply. In particular, we work on a
configuration model CMn, with τ ∈ (2, 3) and dmin ≥ 3.

5.1. Proof of Statement 2.5. We first recall what Coren is, and define the k-exploration graph.
Recall from (2.8) that, for CMn, Coren is defined as

Coren = {i ∈ [n] such that di > (log n)σ} ,

where σ > 1/(3 − τ). Since the degrees di are fixed in the configuration model, Coren is a
deterministic subset.

For any v ∈ [n], we recall that U≤k(v) ⊆ [n] denotes the subgraph of CMn consisting of the

vertices at distance at most k from v. We next consider the k-exploration graph Û≤k(v) as a
modification of U≤k(v), where we only explore dmin half-edges of the starting vertex v, and only
dmin − 1 for the following vertices:

Definition 5.1 (k-exploration graph in CMn). The k-exploration graph of a vertex v is the

subgraph Û≤k(v) built iteratively as follows:

� Starting from Û≤0(v) = {v}, we consider the first dmin half-edges of v and we pair them,

one by one, to a uniformly chosen unpaired half-edge (see Remark 3.1), to obtain Û≤1(v).

� Assume that we have built Û≤`(v), for ` ≥ 1, and set Û=`(v) := Û≤`(v) \ Û≤(`−1)(v). For

each vertex in Û=`(v), we consider the first dmin−1 unpaired half-edges and we pair them,

one by one, to a uniformly chosen unpaired half-edge, to obtain Û≤(`+1)(v). (Note that,

by construction, each vertex in Û=`(v) has at least one already paired half-edge.)

Definition 5.2 (Collision). In the process of building the k-exploration graph Û≤k(v), we say
that there is a collision when a half-edge is paired to a vertex already included in the k-exploration
graph.
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We now prove Statement 2.5. Let us fix ε > 0 and set

k+
n = (1 + ε)

log logn

log(dmin − 1)
. (5.1)

Proposition 5.3 (At most one collision). Under the assumption of Theorem 1.3, the following
holds with high probability: the k+

n -exploration graph of every vertex either intersects Coren, or
it has at most one collision.

Proof. Let us fix a vertex v ∈ [n]. We are going to estimate the probability

qn(v) := P
(

there are at least 2 collisions in Û≤k+
n

(v) and Û≤k+
n

(v) ∩ Coren = ∅
)
.

If we show that supv∈[n] qn(v) = o(1/n), then it follows that
∑

v∈[n] qn(v) = o(1), completing the

proof.
Starting from the vertex v, we pair successively one half-edge after the other, as described in

Definition 5.1 (recall also Remark 3.1). In order to build Û≤k+
n

(v), we need to make a number of
pairings, denoted by N , which is random, because collisions may occur. In fact, when there are
no collisions, N is deterministic and takes its maximal value given by ik+

n
in (3.1), therefore

N ≤ ik+
n
≤ dmin

dmin − 2
(dmin − 1)k

+
n ≤ 3 (log n)1+ε . (5.2)

Introducing the event Ci := “there is a collision when pairing the i-th half-edge”, we can write

qn(v) ≤ E

[ ∑
1≤i<j≤N

1{Ci, Cj , Û≤k+
n

(v)∩Coren=∅}

]
=

∑
1≤i<j≤3(logn)1+ε

P
(
Ci, Cj , j ≤ N , Û≤k+

n
(v) ∩ Coren = ∅

)
.

(5.3)

Let E` be the event that the first ` half-edges are paired to vertices with degree ≤ (log n)σ

(i.e., the graph obtained after pairing the first ` half-edges is disjoint from Coren). Then

P
(
Ci, Cj , j ≤ N , Û≤k+

n
(v) ∩ Coren = ∅

)
≤ P

(
Ci, Cj , Ej−1

)
= P(Ei−1)P(Ci |Ei−1)P(Cj |Ci, Ej−1) .

(5.4)

On the event Ei−1, before pairing the i-th half-edge, the graph is composed by at most i − 1
vertices, each with degree at most (log n)σ, hence, for i ≤ 3(log n)1+ε,

P(Ci |Ei−1) ≤ (i− 1)(log n)σ

`n − 2i+ 1
≤ 3(log n)1+ε(log n)σ

`n − 6(log n)1+ε
≤ c (log n)σ+1+ε

n
,

for some c ∈ (0,∞), thanks to `n = nµ(1 + o(1)) (recall (3.5)). The same arguments show that

P(Cj |Ci, Ej−1) ≤ c (log n)σ+1+ε

n
.

Looking back at (5.3)-(5.4), we obtain

sup
v∈[n]

qn(v) ≤
∑

1≤i<j≤3(logn)1+ε

c2 (log n)2(σ+1+ε)

n2
≤ 9 c2 (log n)2σ+4(1+ε)

n2
= o

(
1

n

)
,

which completes the proof. �

Corollary 5.4 (Large boundaries). Under the assumptions of Theorem 1.3 and on the event

Û≤k+
n

(v) ∩ Coren = ∅, with high probability, the boundary Û=k+
n

(v) of the k+
n -exploration graph

of any vertex v ∈ [n] contains at least (dmin − 2)(dmin − 1)k
+
n−1 ≥ 1

2(log n)1+ε vertices, each one
with at least two unpaired half-edges.
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Proof. By Proposition 5.3, with high probability, every k+
n -exploration graph has at most one

collision before hitting Coren. The worst case is when the collision happens immediately, i.e.
a half-edge incident to v is paired to another half-edge incident to v: in this case, removing

both half-edges, the k+
n -exploration graph becomes a tree with (dmin − 2)(dmin − 1)k

+
n−1 vertices

on its boundary, each of which has at least (dmin − 1) ≥ 2 yet unpaired half-edges. Since

(dmin − 2)/(dmin − 1) ≥ 1
2 for dmin ≥ 3, and moreover (dmin − 1)k

+
n = (log n)1+ε by (5.1), we

obtain the claimed bound.
If the collision happens at a later stage, i.e. for a half-edge incident to a vertex different from

the starting vertex v, then we just remove the branch from v to that vertex, getting a tree with

(dmin − 1)(dmin − 1)k
+
n−1 vertices on its boundary. The conclusion follows. �

Together, Proposition 5.3 and Corollary 5.4 prove Statement 2.5. �

5.2. Proof of Statement 2.6. Consider the k+
n -exploration graph Û = Û≤k+

n
(v) of a fixed vertex

v ∈ [n], as in Definition 5.1, and let x1, . . . , xN be the (random) vertices on its boundary. We
stress that, by Corollary 5.4, with high probability N ≥ 1

2(log n)1+ε. Set

hn =
⌈
B log log log n+ C

⌉
, (5.5)

where B,C are fixed constants, to be determined later on.

Henceforth we fix a realization H of Û = Û≤k+
n

(v) and we work conditionally on the event

{Û = H}. By Remark 3.1, we can complete the construction of the configuration model CMn by
pairing uniformly all the yet unpaired half-edges. We do this as follows: for each vertex x1, . . . , xN
on the boundary of Û , we explore its neighborhood, looking for fresh vertices with higher and
higher degree, up to distance hn (we call a vertex fresh if it is connected to the graph for the first
time, hence it only has one paired half-edge). We now describe this procedure in detail:

Definition 5.5 (Exploration procedure). Let x1, . . . , xN denote the vertices on the boundary of

a k+
n -exploration graph Û = Û≤k+

n
(v). We start the exploration procedure from x1.

� Step 1. We set v(1)

0 := x1 and we pair all its unpaired half-edges. Among the fresh vertices

to which v(1)

0 has been connected, we call v1 the one with maximal degree.
� When there are no fresh vertices at some step, the procedure for x1 stops.
� Step 2. Assuming we have built v(1)

1 , we pair all its unpaired half-edges: among the fresh

connected vertices, we denote by v(1)

2 the vertex with maximal degree.

� We continue in this way for (at most) hn steps, defining v(1)

j for 0 ≤ j ≤ hn (recall (5.5)).

After finishing the procedure for x1, we perform the same procedure for x2, x3, . . . , xN , defining
the vertices v(i)

0 , v
(i)

1 , . . . , v
(i)

hn
starting from v(i)

0 = xi.

Definition 5.6 (Success). Let x1, . . . , xN be the vertices on the boundary of a k+
n -exploration

graph Û = Û≤k+
n

(v). We define the event Sxi := “xi is a success” by

Sxi :=
{
{v(i)

0 , v
(i)

1 , . . . , v
(i)

hn
} ∩ Coren 6= ∅

}
=
{
d
v

(i)
j

> (log n)σ for some 0 ≤ j ≤ hn
}
.

Here is the key result, proved below:

Proposition 5.7 (Hitting the core quickly). There exists a constant η > 0 such that, for every

n ∈ N and for every realization H of Û ,

P
(
Sx1

∣∣ Û = H
)
≥ η, (5.6)

and, for each i = 2, . . . , N ,

P
(
Sxi
∣∣ Û = H , Scx1

, . . . , Scxi−1

)
≥ η. (5.7)

This directly leads to the proof of Statement 2.6, as the following corollary shows:
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Corollary 5.8 (Distance between periphery and Coren). Under the hypotheses of Theorem 1.3,
with high probability, the distance of every vertex in the graph from Coren is at most

(1 + ε)
log log n

log(dmin − 1)
+ o (log log n) . (5.8)

Proof. By Corollary 5.4, with high probability, every vertex v ∈ [n] either is at distance at most

k+
n from Coren, or has a k+

n -exploration graph Û = Û≤k+
n

(v) with at least N ≥ 1
2(log n)1+ε vertices

on its boundary. It suffices to consider the latter case. Conditionally on Û = H, the probability
that none of these vertices is a success can be bounded by Proposition 5.7:

P
(
Scx1
∩ · · · ∩ ScxN

∣∣ Û = H
)

= P
(
Scx1

∣∣ Û = H
) N∏
j=2

P
(
Scxj

∣∣ Û = H , Scx1
, . . . , Scxj−1

)
≤ (1− η)N ≤ (1− η)

1
2

(logn)1+ε
= o(1/n) .

(5.9)

This is uniform over H, hence the probability that no vertex is a success, without conditioning,
is still o(1/n). It follows that, with high probability, every v ∈ [n] has at least one successful
vertex on the boundary of its k+

n -exploration graph. This means that the distance of every vertex
v ∈ [n] from Coren is at most k+

n + hn = k+
n + o(log log n), by (5.5). Recalling (5.1), we have

completed the proof of Corollary 5.8 and thus of Statement 2.6. �

To prove Proposition 5.7, we need the following technical (but simple) result:

Lemma 5.9 (High-degree fresh vertices). Consider the process of building a configuration model
CMn as described in Remark 3.1. Let Gl be the random graph obtained after l pairings of half-
edges and let Vl be the random vertex incident to the half-edge to which the l-th half-edge is paired.
For all l, n ∈ N and z ∈ [0,∞) such that

l ≤ n

4
(1− Fd,n(z)), (5.10)

the following holds:

P
(
dVl+1

> z , Vl+1 6∈ Gl
∣∣Gl) ≥ z[1− Fd,n(z)]

n

2`n
. (5.11)

In particular, when Conditions 1.1 and 1.2 hold, for every ζ > 0 there are c > 0, n0 < ∞ such
that

∀ n ≥ n0 , 0 ≤ z ≤ n1/3 , l ≤ n1/3 : P
(
dVl+1

> z , Vl+1 6∈ Gl
∣∣Gl) ≥ c

zτ−2+ζ
. (5.12)

Proof. By definition of CMn, the (l + 1)-st half-edge is paired to a uniformly chosen half-edge
among the `n − 2l − 1 that are not yet paired. Consequently

P
(
dVl+1

> z , Vl+1 6∈ Gl
∣∣Gl) =

1

`n − 2l − 1

∑
v 6∈Gl

dv1{dv>z}. (5.13)

Since |Gl| ≤ 2l ≤ n
2 (1− Fd,n(z)) by (5.10), we obtain

1

`n − 2l − 1

∑
v 6∈Gl

dv1{dv>z} ≥
z

`n

(
n(1− Fd,n(z))− |Gl|

)
≥ z(1− Fd,n(z))

n

2`n
, (5.14)

which proves (5.11).
Assuming Conditions 1.1 and 1.2, we have `n = µn(1 + o(1)), with µ ∈ (0,∞), see (3.5), and

there are c1 > 0 and α > 1/2 such that 1 − Fd,n(z) ≥ c1 z
−(τ−1) for 0 ≤ z ≤ nα. Consequently,

for 0 ≤ z ≤ n1/3, the right hand side of (5.10) is at least n
4

c1
n(τ−1)/3 . Note that (τ − 1)/3 < 2/3

(because τ < 3), hence we can choose n0 so that n
4

c1
n(τ−1)/3 ≥ n1/3 for all n ≥ n0. This directly

leads to (5.12). �

With Lemma 5.9 in hand, we are able to prove Proposition 5.7:
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Proof of Proposition 5.7. We fix v ∈ [n] and a realization H of Û = Û≤k+
n

(v). We abbreviate

P∗( · ) := P( · | Û = H) . (5.15)

The vertices on the boundary of Û are denoted by x1, . . . , xN . We start proving (5.6), hence we
focus on x1 and we define v(1)

0 , v(1)

1 , . . . , v(1)

hn
as in Definition 5.5, with v(1)

0 = x1.

We first fix some parameters. Since 2 < τ < 3, we can choose ζ, γ > 0 small enough so that

ξ := 1− eγ(τ − 2 + ζ) > 0 . (5.16)

Next we define a sequence (g`)`∈N0 that grows doubly exponentially fast:

g` := 2eγ` = exp
(
(log 2) exp(γ `)

)
. (5.17)

Then we fix B = 1/γ and C = log(σ/ log 2) in (5.5), where σ is the same constant as in Coren,
see (2.8). With these choices, we have

ghn = eσedlog log logne
> eσ log logn = (log n)σ , while ghn−1 < (log n)σ . (5.18)

Roughly speaking, the idea is to show that, with positive probability, one has d
v

(1)
j

> gj . As

a consequence, d
v

(1)
hn

> ghn ≥ (log n)σ, that is v(1)

hn
belongs to Coren and x1 is a success. The

situation is actually more involved, since we can only show that d
v

(1)
j

> gj before reaching Coren.

Let us make the above intuition precise. Recalling (5.15), let us set

H−1 := ∅ , H0 := H , Hk := H ∪ {v(1)

1 , . . . , v(1)

k } for 1 ≤ k ≤ hn .
Then we introduce the events

T` :=
⋃̀
k=0

{
d
v

(1)
k

> (log n)σ
}
, W` :=

⋂̀
k=0

{
d
v

(1)
k

> gk , v
(1)

k 6∈ Hk−1

}
. (5.19)

In words, the event T` means that one of the vertices v(1)

0 , . . . , v(1)

` has already reached Coren,

while the event W` means that the degrees of vertices v(1)

0 , . . . , v(1)

` grow at least like g0, . . . , g`
and, furthermore, each vk is a fresh vertex (this is actually already implied by Definition 5.5,
otherwise vk would not even be defined). We finally set

E0 := W0 , Ej := Tj−1 ∪Wj for 1 ≤ j ≤ hn .
Note that Thn coincides with Sx1 = “x1 is a success”. Also note that Whn ⊆ {dv(1)

hn

> (log n)σ},
because d

v
(1)
hn

> ghn > (log n)σ by (5.18), hence

Ehn = Thn−1 ∪Whn ⊆ Thn−1 ∪ {dv(1)
hn

> (log n)σ} = Thn = Sx1 .

Consequently, if we prove that P∗(Ehn) ≥ η, then our goal P∗(Sx1) ≥ η follows (recall (5.6)).

The reason for working with the events Ej is that their probabilities can be controlled by an
induction argument. Recalling (5.15), we can write

P∗(Ej+1) = P∗(Tj) + P∗(T cj ∩Wj+1)

= P∗(Tj) + P
(
d
v

(1)
j+1

> gj+1 , v
(1)

j+1 6∈ Hj

∣∣ {Û = H} ∩ T cj ∩Wj

)
P∗(T cj ∩Wj) .

(5.20)

The key point is the following estimate on the conditional probability, proved below:

P
(
d
v

(1)
j+1

> gj+1 , v
(1)

j+1 6∈ Hj

∣∣ {Û = H} ∩ T cj ∩Wj

)
≥ 1− εj , where εj := e−c(gj)

ξ/2 ,

(5.21)

with ξ > 0 is defined in (5.16) and c > 0 is the constant appearing in relation (5.12). This yields

P∗(Ej+1) ≥ P∗(Tj) + (1− εj)P∗(T cj ∩Wj) ≥ (1− εj)
(
P∗(Tj) + P∗(T cj ∩Wj)

)
= (1− εj)P∗(Tj ∪Wj) ≥ (1− εj)P∗(Tj−1 ∪Wj)

= (1− εj)P∗(Ej) ,
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which leads us to

P∗(Ehn) ≥ P∗(E0)

hn−1∏
j=0

(1− εj) ≥ P∗(E0)

∞∏
j=0

(1− εj) =: η .

Since
∑

j≥0 εj < ∞ and εj < 1 for every j ≥ 0, by (5.21) and (5.17), the infinite product is

strictly positive. Also note that P∗(E0) = P∗(d
v

(1)
0

≥ 2) = 1, because g0 = 2 and d
v

(1)
0

≥ dmin ≥ 3.

Then η > 0, as required.

It remains to prove (5.21). To lighten notation, we rewrite the left hand side of (5.21) as

qj+1 := P
(
d
v

(1)
j+1

> gj+1 , v
(1)

j+1 6∈ Hj

∣∣Dj

)
, where Dj := {Û = H} ∩ T cj ∩Wj . (5.22)

Note that, on the event Dj ⊆Wj , vertex v(1)

j is fresh (i.e., it is connected to the graph for the first

time), hence it has m = d
v

(1)
j

−1 unpaired half-edges. These are paired uniformly, connecting v(1)

j

to (not necessarily distinct) vertices w(1), . . . , w(m). Let us introduce for 1 ≤ ` ≤ m the event

C` :=
⋂̀
k=1

{
dw(k) > gj+1 , w

(k) 6∈ Hj

}c
. (5.23)

By Definition 5.5, v(1)

j+1 is the fresh vertex with maximal degree among them, hence{
d
v

(1)
j+1

> gj+1 , v
(1)

j+1 6∈ Hj

}c
= Cm .

Since m = d
v

(1)
j

− 1 > gj − 1 on Wj ⊆ Dj , the left hand side of (5.21) can be estimated by

qj+1 = 1− P
(
Cm

∣∣Dj

)
≥ 1−

gj−1∏
k=1

P
(
Ck
∣∣Dj ∩ Ck−1

)
= 1−

gj−1∏
k=1

(
1− P

(
dw(k) > gj+1 , w

(k) 6∈ Hj

∣∣Dj ∩ Ck−1

))
.

(5.24)

We claim that we can apply relation (5.12) from Lemma 5.9 to each of the probabilities in the
last line of (5.24). To justify this claim, we need to look at the conditioning event Dj ∩ Ck−1,
recalling (5.23), (5.22) and (5.19). In order to produce it, we have to do the following:

� First we build the k+
n -exploration graph Û≤k+

n
(v) = H, which requires to pair at most

O((dmin − 1)k
+
n ) = O((log n)1+ε) half-edges (recall Definition 5.1);

� Next, starting from the boundary vertex x1, we generate the fresh vertices v(1)

0 , . . . , v(1)

j

all outside Coren, because we are on the event T cj , and this requires to pair a number of

half-edges which is at most (log n)σj ≤ (log n)σhn = O((log n)σ+1);
� Finally, in order to generate w(1), . . . , w(k−1), we pair exactly k − 1 half-edges, and note

that k − 1 ≤ gj − 1 ≤ ghn − 1 = O((log n)σ) (always because vj 6∈ Coren).

It follows that the conditioning event Dj ∩ Ck−1 is in the σ-algebra generated by Gl for l ≤
O((log n)1+σ+ε) (we use the notation of Lemma 5.9). In particular, l ≤ n1/3. Also note that

z = gj+1 ≤ ghn = O((log n)σ), see (5.18), hence also z ≤ n1/3. Applying (5.12), we get

qj+1 ≥ 1−
(

1− c

(gj+1)τ−2+ζ

)gj−1

≥ 1− exp

(
− c gj − 1

(gj+1)τ−2+ζ

)
(5.25)

≥ 1− exp

(
− c

2

gj
(gj+1)τ−2+ζ

)
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because 1− x ≤ e−x and n− 1 ≥ n/2 for all n ≥ 2 (note that gj ≥ g0 = 2). Since gj+1 = (gj)
eγ ,

by (5.17), we finally arrive at

qj+1 ≥ 1− exp

(
− c

2
(gj)

1−eγ(τ−2+ζ)

)
= 1− e−c (gj)

ξ/2 , (5.26)

which is precisely (5.21). This completes the proof of (5.6).

In order to prove (5.7), we proceed in the same way: for any fixed 2 ≤ i ≤ N , we start from the

modification of (5.15) given by P∗( · ) := P( · | Û = H , Scx1
, . . . , Scxi−1

) and we follow the same

proof, working with the vertices v(i)

1 , . . . , v(i)

hn
instead of v(1)

1 , . . . , v(1)

hn
(recall Definition 5.5). We

leave the details to the reader. �

6. Upper bound for Preferential attachment model

In this section we prove Statements 2.5 and 2.6 for the preferential attachment model. By the
discussion in Section 2.2, this completes the proof of the upper bound in Theorem 1.5, because
the proof of Statement 2.4 is already known in the literature, as explained below Statement 2.4.

6.1. Proof of Statement 2.5. Recall the definition of Coret in (2.8). It is crucial that in Coret,
we let Dt/2(v) be large. We again continue to define what a k-exploration graph and its collisions
are, but this time for the preferential attachment model:

Definition 6.1 (k-exploration graph). Let (PAt)t≥1 be a preferential attachment model. For
v ∈ [t], we call the k-exploration graph of v to be the subgraph of PAt, where we consider the
m edges originally incident to v, and the m edges originally incident to any other vertex that is
connected to v in this procedure, up to distance k from v.

Definition 6.2 (Collision). Let (PAt)t≥1 be a preferential attachment model with m ≥ 2, and let
v be a vertex. We say that we have a collision in the k-exploration graph of v when one of the
m edges of a vertex in the k-exploration graph of v is connected to a vertex that is already in the
k-exploration graph of v.

Now we want to show that every k-exploration graph has at most a finite number of collisions
before hitting the Coret, as we did for the configuration model. The first step is to use [DHH10,
Lemma 3.9]:

Lemma 6.3 (Early vertices have large degree). Fix m ≥ 1. There exists a > 0 such that

P
(

min
i≤ta

Dt(i) ≥ (log t)σ
)
−→ 1 (6.1)

for some σ > 1/(3− τ). As consequence, [ta] ⊆ Coret with high probability.

In agreement with (2.10) (see also (4.12)), we set

k+
t = (1 + ε)

log log t

logm
. (6.2)

We want to prove that the exploration graph Û≤k+
t

(v) has at most a finite number of collisions

before hitting Coret, similarly to the case of CMn, now for PAt. As it is possible to see from (2.8),
Coret ⊆ [t/2], i.e., is a subset defined in PAt when the graph has size t/2. As a consequence,
we do not know the degree of vertices in [t/2] when the graph has size t. However, in [DHH10,
Appendix A.4] the authors prove that at time t all the vertices t/2 + 1, . . . , t have degree smaller
than (log t)σ.

We continue by giving a bound on the degree of vertices that are not in Coret. For vertices
i ∈ [t/2] \ Coret we know that Dt/2(i) < (log t)σ, see (2.8), but in principle their degree Dt(i)
at time t could be quite high. We need to prove that this happens with very small probability.
Precisely, we prove that, for some B > 0,

P
(

max
i∈[t/2]\Coret

Dt(i) ≥ (1 +B)(log t)σ
)

= o(1). (6.3)
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This inequality implies that when a degree is at most (log t)σ at time t/2, then it is unlikely to
grow by B(log t)σ between time t/2 and t. This provides a bound on the cardinality of incoming
neighborhoods that we can use in the definition of the exploration processes that we will rely on,
in order to avoid Coret. We prove (6.3) in the following lemma that is an adaptation of the proof
of [DHH10, Lemma A.4]. Its proof is deferred to [CGH16, Appendix B]:

Lemma 6.4 (Old vertex not in Coret). There exists B ∈ (0,∞) such that, for every i ∈ [t/2],

P
(
Dt(i) ≥ (1 +B)(log t)σ | Dt/2(i) < (log t)σ

)
= o(1/t). (6.4)

We can now get to the core of the proof of Statement 2.5, that is we show that there are few
collisions before reaching Coret:

Lemma 6.5 (Few collisions before hitting the core). Let (PAt)t≥1 be a preferential attachment
model, with m ≥ 2 and δ ∈ (−m, 0). Fix a ∈ (0, 1) and l ∈ N such that l > 1/a. With k+

t as in
(6.2), the probability that there exists a vertex v ∈ [t] such that its k+

t -exploration graph has at
least l collisions before hitting Coret ∪ [ta] is o(1).

Next we give a lower bound on the number of vertices on the boundary of a k+
n -exploration

graph. First of all, for any fixed a ∈ (0, 1), we notice that the probability of existence of a vertex
in [t] \ [ta], that has only self loops is o(1). Indeed, the probability that a vertex s has only
self-loops is O( 1

sm ). Thus, the probability that there exists a vertex in [t] \ [ta] that has only
self-loops is bounded above by ∑

s>ta

O(
1

sm
) = O(t−a(m−1)) = o(1), (6.5)

since we assume that m ≥ 2. We can thus assume that no vertex in [t] \ [ta] has only self-loops.
This leads us formulate the following Lemma, whose proof is also deferred to [CGH16, Appendix
B].

Lemma 6.6 (Lower bound on boundary vertices). Let (PAt)t≥1 be a preferential attachment
model, with m ≥ 2 and δ ∈ (−m, 0). For a ∈ (0, 1), consider a vertex v ∈ [t] \ (Coret ∪ [ta]) and
its k-exploration graph. If there are at most l collisions in the k-exploration graph, and no vertex
in [t] \ [ta] has only self loops, then there exists a constant s = s(m, l) > 0 such that the number
of vertices in the boundary of the k-exploration graph is at least s(m, l)mk.

Together, Lemmas 6.3, 6.5 and 6.6 complete the proof of Statement 2.5.

The rest of this section is devoted to the proof of Lemma 6.5. We first need to introduce
some notation, in order to be able to express the probability of collisions. We do this in the next
subsection.

6.1.1. Ulam-Harris notation for trees. Define

W` := [m]` , W≤k :=

k⋃
`=0

W` ,

where W0 := ∅. We use W≤k as a universal set to label any regular tree of depth k, where each
vertex has m children. This is sometimes called the Ulam-Harris notation for trees.

Given y ∈ W` and z ∈ Wm, we denote by (y, z) ∈ W`+m the concatenation of y and z. Given
x, y ∈W≤k, we write y � x if y is a descendant of x, that is y = (x, z) for some z ∈W≤k.

Given a finite number of points z1, . . . , zm ∈ W≤k, abbreviate ~zm = (z1, . . . , zm), and define

W (~zm)

≤k to be the tree obtained from W≤k by cutting the branches starting from any of the zi’s

(including the zi’s themselves):

W
(~zk)

≤k :=
{
x ∈W≤k : x 6� z1, . . . , x 6� zm

}
. (6.6)
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Remark 6.7 (Total order). The set W≤k comes with a natural total order relation, called shortlex
order, in which shorter words precede longer ones, and words with equal length are ordered
lexicographically. More precisely, given x ∈ W` and y ∈ Wm, we say that x precedes y if either
` < m, or if ` = m and xi ≤ yi for all 1 ≤ i ≤ `. We stress that this is a total order relation, unlike
the descendant relation � which is only a partial order. (Of course, if y � x, then x precedes y,
but not vice versa).

6.1.2. Collisions. We recall that, given z ∈ [t] and j ∈ [m], the j-th half-edge starting from vertex
z in PAt is attached to a random vertex, denoted by ξz,j . We can use the set W≤k to label the

exploration graph Û≤k(v), as follows:

Û≤k(v) =
{
Vz
}
z∈W≤k

, (6.7)

where V∅ = v and, iteratively, Vz = ξVx,j for z = (x, j) with x ∈W≤k−1 and j ∈ [m].
The first vertex generating a collision is VZ1 , where the random index Z1 ∈W≤k is given by

Z1 := min
{
z ∈W≤k : Vz = Vy for some y which precedes z

}
,

where “min” refers to the total order relation on W≤k as defined in Remark 6.7.
Now comes a tedious observation. Since VZ1 = Vy for some y which precedes Z1, by definition

of Z1, then all descendants of Z1 will coincide with the corresponding descendants of y, that is
V(Z1,r) = V(y,r) for all r. In order not to over count collisions, in defining the second collision

index Z2, we avoid exploring the descendants of index Z1, that is we only look at indices in W
(Z1)

≤k ,

see (6.6). The second vertex representing a (true) collision is then VZ2 , where we define

Z2 := min
{
z ∈W (Z1)

≤k : z follows Z1, i.e., Vz = Vy for some y which precedes z
}
,

Iteratively, we define

Zi+1 := min
{
z ∈W (~Zi)

≤k : z follows Zi, i.e., Vz = Vy for some y which precedes z
}
,

so that VZi is the i-th vertex that represents a collision. The procedure stops when there are no
more collisions. Denoting by C the (random) number of collisions, we have a family

Z1, Z2, . . . , ZC

of random elements of W≤k, such that (VZi)1≤i≤C are the vertices generating the collisions.

6.1.3. Proof of Lemma 6.5. Recalling (6.7) and (6.6), given arbitrarily z1, . . . , zl ∈W≤k, we define

Û
(~zl)

≤k (v) =
{
Vz
}
z∈W (~zl)

≤k
, (6.8)

that is, we consider a subset of the full exploration graph Û≤k(v), consisting of vertices Vz whose
indexes z ∈W≤k are not descendants of z1, . . . , zl. The basic observation is that

Û≤k(v) = Û
(~zl)

≤k (v) on the event {C = l , Z1 = z1, . . . , Zl = zl} . (6.9)

In words, this means that to recover the full exploration graph Û≤k(v), it is irrelevant to look at
vertices Vz for z that is a descendant of a collision index z1, . . . , zl.

We will bound the probability that there are l collisions before reaching Coret ∪ [ta], occurring
at specified indices z1, . . . , zl ∈W≤k, for k = k+

t as in (6.2), as follows:

P
(
C = l , Z1 = z1, . . . , Zl = zl, Û≤k(v) ∩ (Coret ∪ [ta]) = ∅

)
≤ α(t)l , (6.10)

where, for the constant B given by Lemma 6.4, we define

α(t) =
4(1 +B)

m

(log t)σ+1+ε

ta
. (6.11)

Summing (6.10) over z1, . . . , zl ∈W≤k we get

P(C = l, Û≤k(v) ∩ (Coret ∪ [ta]) = ∅) ≤ α(t)l |W≤k|l .
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Since, for k = k+
t as in (6.2), we can bound

|W≤k| =
mk+1 − 1

m− 1
≤ 2mk ≤ 2 (log t)1+ε , (6.12)

the probability of having at least l collisions, before reaching Coret ∪ [ta], is O(α(t)l(log t)2l) =
o(1/t), because l > 1/a by assumption. This completes the proof of Lemma 6.5. It only remains
to show that (6.10) holds true.

6.1.4. Proof of (6.10): case l = 1. We start proving (6.10) for one collision. By (6.9), we can

replace Û≤k(v) by Û
(z1)
≤k (v) in the left hand side of (6.10), i.e., we have to prove that

P(C = 1 , Z1 = z1, Û
(z1)

≤k (v) ∩ (Coret ∪ [ta]) = ∅) ≤ α(t) . (6.13)

Since v, k and z1 are fixed, let us abbreviate, and recalling (6.8),

W := W
(z1)

≤k (v) , Û := Û
(z1)
≤k (v) =

{
Vz
}
z∈W . (6.14)

Note that Vz1 is the only collision precisely when Û is a tree and Vz1 ∈ Û . Then (6.13) becomes

P(Û is a tree , Vz1 ∈ Û , Û ∩ (Coret ∪ [ta]) = ∅) ≤ α(t) . (6.15)

We will actually prove a stronger statement: for any fixed deterministic labeled directed tree
H ⊆ [t] and for any y ∈ H,

P(Û = H , Vz1 = y , H ∩ (Coret ∪ [ta]) = ∅) ≤ α(t)

2(log t)1+ε
P
(
Û = H , Vz1 6∈ H

)
. (6.16)

This yields (6.15) by summing over y ∈ H —note that |H| ≤ |W≤k| ≤ 2(log t)1+ε by (6.12)—
and then summing over all possible realizations of H.

It remains to prove (6.16). We again use the notion of a factorizable event, as in the proof
of the lower bound. Since the events in (6.16) are not factorizable, we will specify the incoming
neighborhood N (y) (recall (4.51)) of all y ∈ H. More precisely, by labeling the vertices of H, see
(6.14), as

H = {vs}s∈W and y = vs̄ , for some s̄ ∈ W , (6.17)

we can consider the events {N (vs) = Nvs} where Nvs are (deterministic) disjoint subsets of
[t] × [m]. We say that the subsets (Nvs)s∈W are compatible with the tree H when (vs′ , j) ∈ Nvs

whenever s = (s′, j) with s, s′ ∈ W, j ∈ [m]. Then we can write

{Û = H} =
⋃

compatible (Nvs )s∈W

{N (vs) = Nvs for every s ∈ W} . (6.18)

Since the degree of vertex vs equals Dt(vs) = m+ |Nvs |, we can ensure that H ∩ (Coret∪ [ta]) = ∅
by restricting the union in (6.18) to those Nvs satisfying the constraints

vs > ta and |Nvs | ≤ (1 +B)(log t)σ −m, ∀s ∈ W . (6.19)

Finally, if we write
z1 = (x, j) for some x ∈ W , j ∈ [m] , (6.20)

then, since Vz1 = ξVx,j , the event {Vz1 = vs̄} amounts to require that2

(vx, j) ∈ Nvs̄ . (6.21)

Let us summarize where we now stand: When we fix a family of (Nvs)s∈W that is compatible
and satisfies the constraints (6.19) and (6.21), in order to prove (6.16) it is enough to show that

P(N (vs) = Nvs for every s ∈ W)

≤ α(t)

2(log t)1+ε
P(N (vs) = Nvs for every s ∈ W \ {s̄}, N (vs̄) = Nvs̄ \ {(vx, j)}) .

(6.22)

2Incidentally, we observe that the constraint (6.21) is not included in the requirement that (Nvs)s∈W are compatible,
because z1 = (x, j) 6∈ W by definition (6.14) of W.
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Let us set

N :=
⋃
s∈W

Nvs ⊆ [t]× [m] . (6.23)

The probability on the left-hand side of (6.22) can be factorized, using conditional expectations
and the tower property, as a product of two kinds of terms:

� For every edge (u, r) ∈ N —say (u, r) ∈ Nvs , with s ∈ W— we have the term

Du,r−1(vs) + δ

cu,r
(6.24)

corresponding to the fact that the edge needs to be connected to vs;
� On the other hand, for every edge (u, r) 6∈ N , we have the term

1− Du,r−1(H) + |H ∩ [u− 1]|δ
cu,r

, (6.25)

corresponding to the fact that the edge may not connect to any vertex in H.

(We emphasize that all the degrees D·,·( · ) appearing in (6.24) and (6.25) are deterministic,
since they are fully determined by the realizations of the incoming neighborhoods (Nvs)s∈W .)

We can obtain the right-hand side in (6.22) by replacing some terms in the product.

� Among the edges (u, r) ∈ N , whose contribution is (6.24), we have the one that creates
the collision, namely (vx, j). If we want this edge to be connected outside H, as in the
right-hand side in (6.22), we need to divide the left hand side of (6.22) by(

Dvx,j−1(vs̄) + δ

cvx,j

)(
1− Dvx,j−1(H) + |H ∩ [vx − 1]|δ

cvx,j

)−1

. (6.26)

We also have to replace some other terms corresponding to edges (u, r) ∈ Nvs̄ , because the
degree of vertex vs̄ is decreased by one after connecting (vx, j) outside H. More precisely,
for every edge (u, r) ∈ Nvs̄ that is younger than (vx, j), that is (u, r) > (vx, j), we can
reduce the degree of vs̄ by one by dividing the left-hand side of (6.22) by∏

(u,r)∈Nvs̄ , (u,r)>(vx,j)

Du,r−1(vs̄) + δ

Du,r−1(vs̄)− 1 + δ
=

Dt(vs̄) + δ

Dvx,j−1(vs̄) + δ
. (6.27)

Finally, the contribution of the edges (u, r) ∈ Nvs for s 6= s̄ is unchanged.
� For every edge (u, r) 6∈ N , the probability that such edge is not attached to H, after we

reconnect the edge (vx, j), becomes larger, since the degree of H is reduced by one.

It follows that the inequality (6.22) holds with α(t)/(2(log t)1+ε) replaced by β, defined by

β =

(
Dvx,j−1(vs̄) + δ

cvx,j

)(
1− Dvx,j−1(H) + |H ∩ [vx − 1]|δ

cvx,j

)−1 Dt(vs̄) + δ

Dvx,j−1(vs̄) + δ

=

(
Dt(vs̄) + δ

cvx,j

)(
1− Dvx,j−1(H) + |H ∩ [vx − 1]|δ

cvx,j

)−1

≤
(
Dt(vs̄)

cvx,j

)(
1− Dvx,j−1(H)

cvx,j

)−1

=: β′ ,

(6.28)

because δ ≤ 0. We only need to show that β′ ≤ α(t)/(2(log t)1+ε).
Since cv,j ≥ m(v − 1), the first relation in (6.19) yields

cvx,j ≥ ta.

Hence, since Dt(vs̄) ≤ (1 +B)(log t)σ by the second relation in (6.19), we can bound(
Dt(vs̄)

cvx,j

)
≤ (1 +B)(log t)σ

mta
.
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Likewise, since Dt(H) ≤ |H|(1 +B)(log t)σ, for k = k+
t we get, by (6.12),(

1− Dvx,j−1(H)

cvx,j

)−1

≤
(

1− 2(log t)1+ε(1 +B)(log t)σ

ta

)−1

≤ 2 ,

where the last inequality holds for t large enough. Recalling (6.11),

β′ ≤ 2
(1 +B)(log t)σ

mta
=

α(t)

2(log t)1+ε
.

This completes the proof of (6.22), and hence of (6.10), in the case where l = 1. �

6.1.5. Proof of (6.10): general case l ≥ 2. The proof for the general case is very similar to that
for l = 1, so we only highlight the (minor) changes.

In analogy with (6.13), we can replace Û≤k(v) by Û
(~zl)

≤k (v) in the left-hand side of (6.10), thanks

to (6.9). Then, as in (6.14), we write

W := W
(~zl)

≤k (v) , Û := Û
(~zl)

≤k (v) =
{
Vz
}
z∈W . (6.29)

The extension of (6.16) becomes that for any fixed deterministic labeled directed tree H ⊆ [t]
and for all y1, . . . , yl ∈ H,

P(Û = H , Vz1 = y1 , . . . , Vzl = yl , H ∩ (Coret ∪ [ta]) = ∅)

≤
(

α(t)

2(log t)1+ε

)l
P
(
Û = H , Vz1 6∈ H , Vz2 6∈ H , . . . , Vzl 6∈ H

)
.

(6.30)

As in (6.17), we can write

H = {vs}s∈W and y1 = vs̄1 , . . . , yl = vs̄l for some s̄1 , . . . , s̄l ∈ W .

To obtaint a factorizable event, we must specify the incoming neighborhoods Nvs = Nvs for all
s ∈ W, which must be compatible with H and satisfy the constraint (6.19). If we write

z1 = (x1, j1) , . . . , zl = (xl, jl) , for some x1, . . . , xl ∈ W, j1, . . . , jl ∈ [m] ,

then we also impose the constraint that obviously generalizes (6.21), namely

(vx1 , j1) ∈ Nvs̄1
, . . . , (vxl , jl) ∈ Nvs̄l

.

The analogue of (6.22) then becomes

P(N (vs) = Nvs for every s ∈ W)

≤
(

α(t)

2(log t)1+ε

)l
P
(
N (vs) = Nvs for every s ∈ W \ {s̄1, . . . , s̄l},

N (vs̄i) = Nvs̄i
\ {(vxi , ji)} for every i = 1, . . . , l

)
.

(6.31)

When we define N as in (6.23), the probability in the left-hand side of (6.31) can be factorized
in a product of terms of two different types, which are given precisely by (6.24) and (6.25). In
order to obtain the probability in the right-hand side of (6.31), we have to divide the left-hand
side by a product of factors analogous to (6.26) and (6.27). More precisely, (6.26) becomes

l∏
i=1

(
Dvxi ,ji−1(vs̄i) + δ

cvxi ,ji

)(
1−

Dvxi ,ji−1(H) + |H ∩ [vxi − 1]|δ
cvxi ,ji

)−1

, (6.32)

while (6.27) becomes
l∏

i=1

Dt(vs̄i) + δ

Dvxi ,ji−1(vs̄i) + δ
.
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We define β accordingly, namely we take the product for i = 1, . . . , l of (6.28) with x, j, s̄ replaced
respectively by xi, ji, s̄i. Then it is easy to show that

β ≤
(

α(t)

2(log t)1+ε

)l
,

arguing as in the case l = 1. This completes the proof of (6.31). �

6.2. Proof of Statement 2.6. The next step is to prove that the boundaries of the k+
t -

exploration graphs are at most at distance

ht = dB log log log t+ Ce (6.33)

from Coret, where B,C are constants to be chosen later on. Similarly to the proof in Section
5.2, we consider a k+

t -exploration graph, and we enumerate the vertices on the boundary as

x1, . . . , xN , where N ≥ s(m, l)mk+
t from Lemma 6.6 and l is chosen as in Lemma 6.5. We next

define what it means to have a success:

Definition 6.8 (Success). Consider the vertices x1, . . . , xN on the boundary of a k+
t -exploration

graph. We say that xi is a success when the distance between xi and Coret is at most 2ht.

The next lemma is similar to Lemma 5.7 (but only deals with vertices in [t/2]):

Lemma 6.9 (Probability of success). Let (PAt)t≥1 be a preferential attachment model, with
m ≥ 2 and δ ∈ (−m, 0). Consider v ∈ [t/2] \ Coret and its k+

t -exploration graph. Then there
exists a constant η > 0 such that

P
(
Sx1 | PAt/2

)
≥ η, (6.34)

and for all j = 2, . . . , N ,

P
(
Sx1 | PAt/2, S

c
x1
, . . . , Scxj−1

)
≥ η. (6.35)

The aim is to define a sequence of vertices w0, . . . , wh that connects a vertex xi on the boundary
with Coret. In order to do this, we need some preliminar results. We start with the crucial
definition of a t-connector:

Definition 6.10 (t-connector). Let (PAt)t≥1 be a preferential attachment model, with m ≥ 2.
Consider two subsets A,B ⊆ [t/2], with A ∩ B = ∅. We say that a vertex j ∈ [t] \ [t/2] is a
t-connector for A and B if at least one of the edges incident to j is attached to a vertex in A and
at least one is attached to a vertex in B.

The notion of t-connector is useful, because, unlike in the configuration model, in the prefer-
ential attachment model typically two high-degree vertices are not directly connected. From the
definition of the preferential attachment model, it is clear that the older vertices have with high
probability large degree, and the younger vertices have lower degree. When we add a new vertex,
this is typically attached to vertices with large degrees. This means that, with high probability,
two vertices with high degree can be connected by a young vertex, which is the t-connector.

A further important reason for the usefulness of t-connectors is that we have effectively de-
coupled the preferential attachment model at time t/2 and what happens in between times t/2
and t. When the sets A and B are appropriately chosen, then each vertex will be a t-connector
with reasonable probability, and the events that distinct vertices are t-connectors are close to
being independent. Thus, we can use comparisons to binomial random variables to investigate
the existence of t-connectors. In order to make this work, we need to identify the structure of
PAt/2 and show that it has sufficiently many vertices of large degree, and we need to show that
t-connectors are likely to exist. We start with the latter.

In more detail, we will use t-connectors to generate the sequence of vertices w1, . . . , wh between
the boundary of a k+

n -exploration graph and the Coret, in the sense that we use a t-connector to
link the vertex wi to the vertex wi+1. (This is why we define a vertex xi to be a success if its
distance from Coret is at most 2ht, instead of ht.) We rely on a result implying the existence of
t-connectors between sets of high total degree:
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Lemma 6.11 (Existence of t-connectors). Let (PAt)t≥1 be a preferential attachment model, with
m ≥ 2 and δ ∈ (−m, 0). There exists a constant µ > 0 such that, for every A ⊆ [t/2], and
i ∈ [t/2] \A,

P
(
@j ∈ [t] \ [t/2] : j is a t-connector for i and A | PAt/2

)
≤ exp

(
−µDA(t/2)Di(t/2)

t

)
, (6.36)

where DA(t/2) =
∑

v∈ADv(t/2) is the total degree of A at time t/2.

Proof. The proof of this lemma is present in the proof of [DHH10, Proposition 3.2]. �

Remark 6.12. Notice that this bound depends on the fact that the number of possible t-
connectors is of order t.

A last preliminary result that we need is a technical one, which plays the role of Lemma 5.9 for
the configuration model and shows that at time t/2 there are sufficiently many vertices of high
degree, uniformly over a wide range of what ‘large’ could mean:

Lemma 6.13 (Tail of degree distribution). Let (PAt)t≥1 be a preferential attachment model, with
m ≥ 2 and δ ∈ (−m, 0). Then, for all ζ > 0 there exists a constant c = c(ζ) such that, for all
1 ≤ x ≤ (log t)q, for any q > 0, and uniformly in t,

P≥x(t) =
1

t

∑
v∈[t]

1{Dv(t)≥x} ≥ cx−(τ−1+ζ). (6.37)

Proof. The degree distribution sequence (pk)k∈N in (1.12) satisfies a power law with exponent
τ ∈ (2, 3). As a consequence, for all ζ > 0 there exists a constant c̄ = c̄(ζ) such that

p≥x :=
∑
k≥x

pk ≥ c̄x−(τ−1+ζ). (6.38)

We now use a concentration result on the empirical degree distribution (for details, see [Hof17,
Theorem 8.2]), which assures us that there exists a second constant C > 0 such that, with high
probability, for every x ∈ N,

|P≥x − p≥x| ≤ C
√

log t

t
. (6.39)

Fix now ζ > 0, then from this last bound we can immediately write, for a suitable constant c̄ as
in (6.38),

P≥x ≥ p≥x − C
√

log t

t
≥ c̄x−(τ−1+ζ) − C

√
log t

t
≥ c̄

2
x−(τ−1+ζ), (6.40)

if and only if

C

√
log t

t
= o

(
x−(τ−1+ζ)

)
. (6.41)

This is clearly true for x ≤ (log t)q, for any positive q. Taking c = c̄/2 completes the proof. �

With the above tools, we are now ready to complete the proof of Lemma 6.9:

Proof of Lemma 6.9. As in the proof of Proposition 5.7, we define the super-exponentially grow-
ing sequence g` as in (5.17), where γ > 0 is chosen small enough, as well as ζ > 0, so that (5.16)
holds. The constants B and C in the definition (6.33) of ht are fixed as prescribed below (5.17).

We will define a sequence of vertices w0, . . . , wh such that, for i = 1, . . . , h, Dwi(t) ≥ gi and
wi−1 is connected to wi. For this, we define, for i = 1, . . . , h− 1,

Hi =
{
u ∈ [t] : Du(t/2) ≥ gi

}
⊆ [t/2], (6.42)

so that we aim for wi ∈ Hi.

We define the vertices recursively, and start with w0 = x1. Then, we consider t-connectors
between w0 and H1, and denote by w1 the vertex in H1 with minimal degree among the ones that
are connected to w0 by a t-connector. Recursively, consider t-connectors between wi and Hi+1,
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and denote by wi+1 the vertex in Hi+1 with minimal degree among the ones that are connected
to wi by a t-connector. Recall (5.18) to see that ght ≥ (log t)σ, where ht is defined in (6.33). The
distance between w0 and Coret is at most 2ht = 2dB log log log t + Ce. If we denote the event
that there exists a t connector between wi−1 and Hi by {wi−1 ∼ Hi}, then we will bound from
below

P(Sx1 | PAt/2) ≥ E
[ ht∏
i=1

1{wi−1∼Hi} | PAt/2

]
. (6.43)

In Lemma 6.11, the bound on the probability that a vertex j ∈ [t] \ [t/2] is a t-connector between
two subsets of [t] is independent of the fact that the other vertices are t-connectors or not. This
means that, with Fi the σ-field generated by the path formed by w0, . . . , wi and their respective
t-connectors,

E
[
1{wi−1∼Hi} | PAt/2,Fi−1

]
≥ 1− e−µDwi−1 (t/2)DHi (t/2)/t, (6.44)

where DHi(t) =
∑

u∈Hi Du(t/2). This means that

E
[ ht∏
i=1

1{wi−1∼Hi} | PAt/2

]
≥

ht∏
i=1

(
1− e−µDwi−1 (t/2)DHi (t/2)/t

)
. (6.45)

We have to bound every term in the product. Using Lemma 6.13, for i = 1,

1− e−µDw0 (t/2)DH1
(t/2)/t ≥ 1− e−µDw0 (t/2)g1P≥g1 (t/2), (6.46)

while, for i = 2, . . . , h− 1

1− e−µDwi−1 (t/2)DHi (t/2)/t ≥ 1− e−µgi−1giP≥gi (t/2). (6.47)

Applying (6.37) and recalling (5.25)–(5.26), the result is

P(Sx1 | PAt) ≥
(

1− e−µDw0 (t/2)g1P≥g1 (t/2)
) ht∏
i=2

(
1− e−µgi−1giP≥gi (t/2)

)
≥
(

1− e−µmg1P≥g1 (t/2)
) ∞∏
i=2

(
1− e−c̃ (gi)

ξ
)
,

(6.48)

for some constant c̃. Since ht = dB log log log t+ Ce, and

P≥g1(t/2)→
∑
k≥g1

pk > 0 (6.49)

with high probability as t→∞, we can find a constant η such that(
1− e−ηmg1P≥g1 (t/2)

) ht∏
i=2

(
1− e−c̃ (gi)

ξ
)
> η > 0, (6.50)

which proves (6.34).
To prove (6.35), we observe that all the lower bounds that we have used on the probability of

existence of t-connectors only depend on the existence of sufficiently many potential t-connectors.
Thus, it suffices to prove that, on the event Scx1

∩ · · · ∩Scxj−1
, we have not used too many vertices

as t-connectors. On this event, we have used at most ht · (j − 1) vertices as t-connectors, which
is o(t). Thus, this means that, when we bound the probability of Sxj , we still have t− ht · (j− 1)

possible t-connectors, where j is at most (log t)1+ε. Thus, with the same notation as before,

E
[
1{wi−1∼Hi} | PAt/2, S

c
x1
, . . . , Scxj−1

]
≥ 1− e−µDwi−1 (t/2)DHi (t/2)/t, (6.51)

so that we can proceed as we did for Sx1 . We omit further details. �

We are now ready to identify the distance between the vertices outside the core and the core:
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Proposition 6.14 (Distance between periphery and Coret). Let (PAt)t≥1 be a preferential at-
tachment model with m ≥ 2 and δ ∈ (−m, 0). Then, with high probability and for all v ∈ [t]\Coret,

distPAt(v,Coret) ≤ k+
t + 2ht. (6.52)

Proof. We start by analyzing v ∈ [t/2]. By Lemma 6.3, with high probability there exists a ∈ (0, 1]
such that [ta] ⊆ Coret. Consider l > 1/a, and fix a vertex v ∈ [t/2]. Then, by Lemma 6.5 and
with high probability, the k+

t -exploration graph starting from v has at most l collisions before
hitting Coret. By Lemma 6.6 and with high probability, the number of vertices on the boundary
of the k+

t -exploration graph is at least N = s(m, l)(log t)1+ε. It remains to bound the probability
that none of the N vertices on the boundary is a success, meaning that it does not reach Coret
in at most 2ht = 2dB log log t+ Ce steps.

By Lemma 6.9,

P(Scx1
∩ · · · ∩ ScxN | PAt/2) ≤ (1− η)N = o(1/t), (6.53)

thanks to the bound N ≥ s(m, l)(log t)1+ε. This means that the probability that there exists a
vertex v ∈ [t/2] such that its k+

n -exploration graph is at distance more than A log log log t from
Coret is o(1). This proves the statement for all v ∈ [t/2].

Next, consider a vertex v ∈ [t] \ [t/2]. Lemma 6.5 implies that the probability that there exists
a vertex v ∈ [t] \ [t/2] such that its k+

t -exploration graph contains more than one collision before
hitting Coret∪[t/2] is o(1). As before, the number of vertices on the boundary of a k+

t -exploration

graph starting at v ∈ [t] \ [t/2] is at least N ≥ s(m, 1)mk+
n = s(m, 1)(log t)1+ε. We denote these

vertices by x1, . . . , xN . We aim to show that, with high probability,

∆N =

N∑
i=1

1(xi∈[t/2]) ≥ N/4. (6.54)

For every i = 1, . . . , N , there exists a unique vertex yi such that yi is in the k+
t -exploration graph

and it is attached to xi. Obviously, if yi ∈ [t/2] then also xi ∈ [t/2], since xi has to be older than
yi. If yi 6∈ [t/2], then

P (xi ∈ [t/2] | PAyi−1) = P (yi → [t/2] | PAyi−1) ≥ 1

2
, (6.55)

and this bound does not depend on the attaching of the edges of the other vertices {yj : j 6= i}.
This means that we obtain the stochastic domination

∆N ≥
N∑
i=1

1(xi∈[t/2]) � Bin
(
N,

1

2

)
, (6.56)

where we write that X � Y when the random variable X is stochastically larger than Y . By
concentration properties of the binomial, Bin

(
N, 1

2

)
≥ N/4 with probability at least

1− e−N/4 = 1− e−s(m,1)(log t)1+ε/4 = 1− o(1/t). (6.57)

Thus, the probability that none of the vertices on the boundary intersected with [t/2] is a success
is bounded by

P
(
Scx1
∩ · · · ∩ Scx∆N

| PAt/2

)
≤ (1− η)N/4 + o(1/t) = o(1/t). (6.58)

We conclude that the probability that there exists a vertex in [t] \ [t/2] such that it is at distance
more than k+

t + 2ht from Coret is o(1). �

This completes the proof of Statement 2.6, and thus of Theorem 1.5. �
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