DIAMETER IN ULTRA-SMALL SCALE-FREE RANDOM GRAPHS

FRANCESCO CARAVENNA! ALESSANDRO GARAVAGLIA?, AND REMCO VAN DER HOFSTAD?

ABSTRACT. It is well known that many random graphs with infinite variance degrees are ultra-
small. More precisely, for configuration models and preferential attachment models where the

proportion of vertices of degree at least k is approximately k=Y with 7 € (2,3), typical dis-

2loglogn 4loglogn
1
Tog(r—2)] 204 Trogir =2

respectively. In this paper, we investigate the behavior of the diameter in such models. We
show that the diameter is of order loglogn precisely when the minimal forward degree dgyq of
vertices is at least 2. We identify the exact constant, which equals that of the typical distances
plus 2/ log dgwa. Interestingly, the proof for both models follows identical steps, even though the
models are quite different in nature.

tances between pairs of vertices in a graph of size n are asymptotic to

1. INTRODUCTION AND RESULTS

In this paper, we study the diameter of two different random graph models: the configuration
model and the preferential attachment model, when these two models have a power-law degree
distribution with exponent 7 € (2, 3), so that the degrees have finite mean but infinite variance. In
this first section, we give a brief introduction to the models, stating the main technical conditions
required as well as the two main results proved in the paper.

Throughout the paper, we write “with high probability” to mean “with probability 1 —o(1) as
n — oo, or as t — oo”, where n and t denote the number of vertices in the configuration model
and in the preferential attachment model, respectively.

1.1. Configuration model and main result. The configuration model CM,, is a random graph
with vertex set [n] := {1,2,...,n} and with prescribed degrees. Let d = (di,ds,...,d,) be a
given degree sequence, i.e., a sequence of n positive integers with total degree

1€[n]

assumed to be even. The configuration model (CM) on n vertices with degree sequence d is con-
structed as follows: Start with n vertices and d; half-edges adjacent to vertex i € [n]. Randomly
choose pairs of half-edges and match the chosen pairs together to form edges. Although self-loops
may occur, these become rare as n — oo (see e.g. [Bol01, Theorem 2.16], [Jan09]). We denote
the resulting multi-graph on [n] by CM,,, with corresponding edge set &,. We often omit the
dependence on the degree sequence d, and write CM,, for CM,,(d).

Regularity of vertex degrees. Let us now describe our regularity assumptions. For each n € N
we have a degree sequence d™ = (d(l"), cees §{”). To lighten notation, we omit the superscript
(n) and write d instead of d™ or (d™),en and d; instead of d\". Let (pi)ren be a probability
mass function on N. We introduce the empirical degree distribution of the graph as

o1
py) = - > Mgy (1.2)

1€[n]
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We can define now the degree reqularity conditions:

Condition 1.1 (Degree regularity conditions). Let CM,, be a configuration model, then we say
that d satisfies the degrees regularity conditions (a), (b), with respect to (pr)ken if:

(a) for every k € N, as n — oo

pg’) — Pk (1.3)
(b) > kpr < 00, and as n — oo
Z kplY — Z kpy. (1.4)
keN keN

As notation, we write that d satisfies the d.r.c. (a), (b).

Let Fg,, be the distribution function of (p}vm)keN, that is, for k € N,

1
Fan(k) = o Z Lyg,<ky- (1.5)
i€[n]
We suppose that d satisfies the d.r.c. (a) and (b) with respect to some probability mass function
(pk)ken, corresponding to a distribution function F'.

Condition 1.2 (Polynomial distribution condition). We say that d satisfies the polynomial dis-
tribution condition with exponent T € (2,3) if for all § > 0 there exist o = a(6) > 3, c1(8) > 0
and c2(6) > 0 such that, for every n € N, the lower bound

1— Fypn(z) > cpa™ (710 (1.6)
holds for all x < n®, and the upper bound
1—Fgn(x) < cox~(T7179) (1.7)

holds for all x > 1.

There are two examples that explain Condition 1.2. Consider the case of i.i.d. degrees with
P(D; > z) = cx~ (7=, then the degree sequence satisfies Condition 1.2 a.s. A second case is
when the number of vertices of degree k is ny, = [nF(k)] — [nF(k—1)], and 1 — F(z) = cz~ ("1,
Condition 1.2 allows for more flexible degree sequences than just these examples.

If we fix § < min{e, T%H(s}, the lower bound (1.6) ensures that the number of vertices of
degree higher than 2 = n? is at least n*~#(7=1+9) which diverges as a positive power of n. If we
take g > %, these vertices with high probability form a complete graph. This will be essential for

proving our main results. The precise value of § is irrelevant in the sequel of this paper.

For an asymptotic degree distribution with asymptotic probability mass function (pg)ren, we
say that
dmin = min {k € N: p;, > 0} (1.8)
is the minimal degree of the probability given by (pr)ren. With these technical requests, we can
state the main result for the configuration model:

Theorem 1.3 (Diameter of CM,, for 7 € (2,3)). Let d be a sequence satisfying Condition 1.1
with asymptotic degree distribution (px)r with dymin > 3. Suppose that d satisfies Condition 1.2
with 7 € (2,3) and d; > dwyin for all i € [n]. Then
diam(CM,,) p 2 L2
loglogn n—oo log(dmin —1)  |log(r —2)|’

(1.9)
where % denotes convergence in probability as n — 0.
n oo

In fact, the result turns out to be false when p; +ps > 0, as shown by Fernholz and Ramachan-
dran [FRO7] (see also [HHZ07b]), since then there are long strings of vertices with low degrees
that are of logarithmic length.
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1.2. Preferential attachment model and main result. The configuration model presented
in the previous section is a static model, because the size n € N of the graph was fixed.

The preferential attachment model instead is a dynamic model, because, in this model, vertices
are added sequentially with a number of edges connected to them. These edges are attached to
a receiving vertex with a probability proportional to the degree of the receiving vertex at that
time plus a constant, thus favoring vertices with high degrees.

The idea of the preferential attachment model is simple, and we start by defining it informally.
We start with a single vertex with a self loop, which is the graph at time 1. At every time t > 2,
we add a vertex to the graph. This new vertex has an edge incident to it, and we attach this edge
to a random vertex already present in the graph, with probability proportional to the degree of
the receiving vertex plus a constant ¢, which means that vertices with large degrees are favored.
Clearly, at each time t we have a graph of size t with exactly t edges.

We can modify this model by changing the number of edges incident to each new vertex we
add. If we start at time 1 with a single vertex with m € N self loops, and at every time ¢t > 2 we
add a single vertex with m edges, then at time ¢ we have a graph of size t but with mt edges, that
we call PAy(m,d). When no confusion can arise, we omit the arguments (m,d) and abbreviate
PA; = PA(m, ). We now give the explicit expression for the attachment probabilities.

Definition 1.4 (Preferential attachment model). Fiz m € N, 6§ € (—m,00). Denote by {t ER v}
the event that the j-th edge of vertex t € N is attached to vertex v € [t] (for 1 < j < m). The
preferential attachment model with parameters (m,d) is defined by the attachment probabilities

Dm_l(v) +1 +]5/m
Ct’j
Dy j_1(v)+96
Ct,j

forv=t,
]P(tim’PAt,j_l) - (1.10)

forv <t,

where PAy j_1 is the graph after the first j — 1 edges of vertex t have been attached, and corre-
spondingly Dy j_1(v) is the degree of vertex v. The normalizing constant ¢, ; in (1.10) is

cj=mit—-1)+G-1)]2+5/m)+1+6/m. (1.11)
We refer to Section 4.1 for more details and explanations on the construction of the model (in

particular, for the reason behind the factor jé/m in the first line of (1.10)).

Consider, as in (1.2), the empirical degree distribution of the graph, which we denote by Py (t),
where in this case the degrees are random variables. It is known from the literature ([BRSTO01],
[Hof17]) that, for every k > m, as t — oo,

P(t)—— pr, (1.12)

t—o0

where py, ~ ck™7, and 7 = 3+ §/m. We focus on the case 6 € (—m,0), so that PA; has a
power-law degree sequence with power-law exponent 7 € (2, 3).
For the preferential attachment model, our main result is the following:

Theorem 1.5 (Diameter of the preferential attachment model). Let (PA;)i>1 be a preferential
attachment model with m > 2 and 6 € (—m,0). Then

diam(PA) » 2 4
loglogt t—oo logm  |log(r —2)|

: (1.13)

where T =34 0/m € (2,3).
In the proof of Theorem 1.5 we are also able to identify the typical distances in PA;:

Theorem 1.6 (Typical distance in the preferential attachment model). Let Vi and V{ be two
independent uniform random vertices in [t]. Denote the distance between Vi and Vi in PA; by

H;. Then
H; P 4

loglogt = |log(T —2)|

(1.14)
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Theorems 1.5-1.6 prove [HHZ07b, Conjecture 1.8].

1.3. Structure of the paper and heuristics. The proofs of our main results on the diameter
in Theorems 1.3 and 1.5 have a surprisingly similar structure. We present a detailed outline in
Section 2 below, where we split the proof into a lower bound (Section 2.1) and an upper bound
(Section 2.2) on the diameter. Each of these bounds is then divided into 3 statements, that
hold for each model. In Sections 3 and 4 we prove the lower bound for the configuration model
and for the preferential attachment model, respectively, while in Sections 5 and 6 we prove the
corresponding upper bounds. In [CGH16, Appendix|, some proofs of technical results that are
minor modifications of proofs in the literature are presented in detail.

Even though the configuration and preferential attachment models are quite different in na-
ture, they are locally similar, because for both models the attachment probabilities are roughly
proportional to the degrees. The core of our proof is a combination of conditioning arguments
(which are particuarly subtle for the preferential attachment model), that allow to combine local
estimates in order to derive bounds on global quantities, such as the diamter.

Let us give a heuristic explanation of the proof (see Figure 1.1 for a graphical representation).
For a quantititative outline, we refer to Section 2. We write PA,, instead of PA; to simplify
the exposition, and denote by dgyq the minimal forward degree, that is dgyq = dmin — 1 for the
configuration model and dg,q = m for the preferential attachment model.

e For the lower bound on the diamter, we prove that there are so-called minimally-connected
vertices. These vertices are quite special, in that their neighborhoods up to distance
k. ~loglogn/logdsyq are trees with the minimal possible degree, given by dgyq + 1. This
explains the first term in the right hand sides of (1.9) and (1.13).

Pairs of minimally-connected vertices are good candidates for achieving the maximal
possible distance, i.e., the diameter. In fact, the boundaries of their tree-like neighbor-
hoods turn out to be at distance equal to the typical distance 2k, between vertices in
the graph, that is 2k, & 2cqis loglogn/|log(T — 2)|, where cqis; = 1 for the configuration
model and cgisy = 2 for the preferential attachment model. This leads to the second term
in the right hand sides of (1.9) and (1.13).

In the proof, we split the possible paths between the boundaries of two minimally
connected vertices into bad paths, which are too short, and typical paths, which have the
right number of edges in them, and then show that the contribution due to bad paths
vanishes. The degrees along the path determine whether a path is bad or typical.

The strategy for the lower bound is depicted in the bottom part of Figure 1.1.

e For the upper bound on the diamter, we perform a lazy-exploration from every vertex
in the graph and realize that the neighborhood up to a distance k", which is roughly
the same as k,, contains at least as many vertices as the tree-like neighborhood of a
minimally-connected vertex. All possible other vertices in this neighborhood are ignored.

We then show that the vertices at the boundary of these lazy neighborhoods are with
high probability quickly connected to the core, that is by a path of h,, = o(loglog n) steps.
By core we mean the set of all vertices with large degrees, which is known to be highly
connected, with a diameter close to 2k, similar to the typical distances (see [HHZ0T7b]
for the configuration model and [DHH10] for the preferential attachment model).

The proof strategy for the upper bound is depicted in the top part of Figure 1.1.

1.4. Links to the literature and comments. This paper studies the diameter in CM,, and
PA; when the degree power-law exponent 7 satisfies 7 € (2,3), which means the degrees have
finite mean but infinite variance. Both in (1.9) and (1.13), the explicit constant is the sum of two
terms, one depending on 7, and the other depending on the minimal forward degree (see (2.2)),
which is dpin — 1 for CM,, and m for PA;. We remark that the term depending on 7 is related to
the typical distances, while the other is related to the periphery of the graph.

There are several other works that have already studied typical distances and diameters of
such models. Van der Hofstad, Hooghiemstra and Znamenski [HHZ07a] analyze typical distances
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FicURE 1.1. Structure of the proof in a picture

in CM,, for 7 € (2,3), while Van der Hofstad, Hooghiemstra and Van Mieghem [HHVMO05] study
7 > 3. They prove that for 7 € (2,3) typical distances are of order loglogn, while for 7 > 3
is of order logn, and it presents the explicit constants of asymptotic growth. Van der Hofstad,
Hooghiemstra and Znamensky [HHZ07b] shows for 7 > 2 and when vertices of degree 1 or 2 are
present, that with high probability the diameter of CM,, is bounded from below by a constant
times logn, while when 7 € (2,3) and the minimal degree is 3, the diameter is bounded from
above by a constant times loglogn. In [HK17], Van der Hofstad and Komjdthy investigate
typical distances for configuration models and 7 € (2, 3) in great generality, extending the results
in [HHZO07b] beyond the setting of i.i.d. degrees. Interestingly, they also investigate the effect of
truncating the degrees at n®» for values of 8, — 0. It would be of ineterest to also extend our
diameter results to this setting.

We significantly improve upon the result in [HHZ07b] for 7 € (2,3). We do make use of similar
ideas in our proof of the upper bound on the diameter. Indeed, we again define a core consisting
of vertices with high degrees, and use the fact that the diameter of this core can be computed
exactly (for a definition of the core, see (2.8)). The novelty of our current approach is that we
quantify precisely how far the further vertex is from this core in the configuration model. It is a
pair of such remote vertices that realizes the graph diameter.

Fernholz and Ramachandran [FRO7] prove that the diameter of CM,, is equal to an explicit
constant times logn plus o(logn) when 7 € (2,3) but there are vertices of degree 1 or 2 present
in the graph, by studying the longest paths in the configuration model that are not part of
the 2-core (which is the part of the graph for which all vertices have degree at least 2). Since
our minimal degree is at least 3, the 2-core is whp the entire graph, and thus this logarithmic
phase vanishes. Dereich, Ménch and Morters [DMM12] prove that typical distances in PA; are
asymptotically equal to an explicit constant times loglogt, using path counting techniques. We
use such path counting techniques as well, now for the lower bound on the diameters. Van der
Hofstad [Hof18+] studies the diameter of PA; when m = 1, and proves that the diameter still
has logarithmic growth. Dommers, van der Hofstad and Hooghiemstra [DHH10] prove an upper
bound on the diameter of PA;, but the explicit constant is not sharp.

Again, we significantly improve upon that result. Our proof uses ideas from [DHH10], in the
sense that we again rely on an appropriately chosen core for the preferential attachment model,
but our upper bound now quantifies precisely how the further vertex is from this core, as for the
configuration model, but now applied to the much harder preferential attachment model.
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CM,, and PA; are two different models, in the sense that CM,, is a static model while PA; is
a dynamic model. It is interesting to notice that the main strategy to prove Theorems 1.3 and
1.5 is the same. In fact, all the statements formulated in Section 2 are general and hold for both
models. Also the explicit constants appearing in (1.9) and (1.13) are highly similar, which reflects
the same structure of the proofs. The differences consist in a factor 2 in the terms containing 7
and in the presence of d;, — 1 and m in the remaining term. The factor 2 can be understood
by noting that in CM,, pairs of vertices with high degree are likely to be at distance 1, while in
PA; they are at distance 2. The difference in dpi, — 1 and m is due to the fact that dyy, — 1 and
m play the same role in the two models, i.e., they are the minimal forward degree (or “number
of children”) of a vertex that is part of a tree contained in the graph. We refer to Section 2 for
more details.

While the structures of the proofs for both models are identical, the details of the various steps
are significantly different. Pairings in the configuration model are uniform, making explicit com-
putations easy, even when already many edges have been paired. In the preferential attachment
model, on the other hand, the edge statuses are highly dependent, so that we have ro rely on
delicate conditoning arguments. These conditioning arguments are arguably the most significant
innovation in this paper. This is formalized in the notion of factorizable events in Definition 4.4.

Typical distances and diameters have been studied for other random graphs models as well,
showing loglog behavior. Bloznelis [Blo09] investigates the typical distance in power-law inter-
section random graphs, where such distance, conditioning on being finite, is of order loglogn,
while results on diameter are missing. Chung and Lu [CL02, CLO1] present results respectively
for random graphs with given expected degrees and Erdds and Rényi random graphs G(n,p), see
also van den Esker, the last author and Hooghiemstra [EHHO8] for the rank-1 setting. The setting
of the configuration model with finite-variance degrees is studied in [FR07]. In [CL02], they prove
that for the power-law regime with exponent 7 € (2,3), the diameter is ©(logn), while typical
distances are of order loglogn. This can be understood from the existence of a positive propor-
tion of vertices with degree 2, creating long, but thin, paths. In [CLO1], the authors investigate
the different behavior of the diameter according to the parameter p.

An interesting open problem is the study of fluctuations of the diameters in CM,, and PA;
around the asymptotic mean, i.e., the study of the difference between the diameter of the graph
and the asymptotic behavior (for these two models, the difference between the diameter and the
right multiple of loglogn). In [HHZ07a], the authors prove that in graphs with i.i.d. power-
law degrees with 7 € (2,3), the difference A,, between the typical distance and the asymptotic
behavior 2loglogn/|log(7 —2)| does not converge in distribution, even though it is tight (i.e., for
every € > 0 there is M < oo such that P(|A,| < M) > 1 — € for all n € N). These results have
been significantly improved in [HK17].

In the literature results on fluctuations for the diameter of random graph models are rare.
Bollobds in [Bol81], and, later, Riordan and Wormald in [RW10] give precise estimates on the
diameter of the Erdos-Renyi random graph. It would be of interest to investigate whether the
diameter has tight fluctuations around cloglogn for the appropriate c.

2. GENERAL STRUCTURE OF THE PROOFS

We split the proof of Theorems 1.3 and 1.5 into a lower and an upper bound. Remarkably,
the strategy is the same for both models despite the inherent difference in the models. In this
section we explain the strategy in detail, formulating general statements that will be proved for
each model separately in the next sections.

Throughout this section, we assume that the assumptions of Theorems 1.3 and 1.5 are satisfied
and, to keep unified notation, we denote the size of the preferential attachment model by n € N,
instead of the more usual ¢ € N.

Throughout the paper, we treat real numbers as integers when we consider graph distances.
By this, we mean that we round real numbers to the closest integer. To keep the notation light
and make the paper easier to read, we omit the rounding operation.
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2.1. Lower bound. We start with the structure of the proof of the lower bound in (1.9) and
(1.13). The key notion is that of a minimally-k-connected vertex, defined as a vertex whose
k-neighborhood (i.e., the neighborhood up to distance k) is essentially a regular tree with the
smallest possible degree, equal to dy,;, for the configuration model and to m+1 for the preferential
attachment model. Due to technical reasons, the precise definition of minimally-k-connected
vertex is slightly different for the two models (see Definitions 3.2 and 4.2).

Henceforth we fix € > 0 and define, for n € N,

_ loglogn
k, =(1—-¢)———, 2.1
(1€l <(droa) (2.1)
where dgyq denotes the forward degree, or “number of children”:
dmin — 1 for CM,,;
dtwd = 2.2
fwd { for PA,,. (2:2)

Our first goal is to prove that the number of minimally-£, -connected vertices is large enough, as
formulated in the following statement:

Statement 2.1 (Moments of M, - ) Denote by M, - the number of minimally-k, -connected
vertices in the graph (either CM,, or PA,, ). Then, as n — oo,

2
B[] oo var () =o (3 [3,]7). (2.3
where Var(X) := E[X?] — E[X]? denotes the variance of the random variable X .

The proof for the preferential attachment model makes use of conditioning arguments. Indeed,
we describe as much information as necessary to be able to bound probabilities that vertices are
minimally-k connected. Particularly in the variance estimate, these arguments are quite delicate,
and crucial for our purposes.

The bounds in (2.3) show that M k;L 0o as n — oo. This will imply that there is a pair
of minimally-k,, -connected vertices with disjoint k, -neighborhoods,’ hence the diameter of the
graph is at least 2k, , which explains the first term in (1.9) and (1.13). Our next aim is to prove

that these minimally connected trees are typically at distance 2cgist loglogn/|log(T — 2)|, where
caist = 1 for the configuration model and cgi¢ = 2 for the preferential attachment model.

For this, let us now define
. cdist log logn

fop = (1 — ) -dist 26 26 7 2.4
0= iog(r —2)] (24)
where
1 for CM,;
ist — 2.5
Cdist {2 for PA,,. (25)

The difference in the definition of cgis; is due to fact that in CM,, vertices with high degree are
likely at distance 1, while in PA,, are at distance 2. We explain the origin of this effect in more
detail in the proofs.

It turns out that the distance between the k, -neighborhoods of two minimally-k;, -connected
vertices is at least 2k,. More precisely, we have the following statement:

Statement 2.2 (Distance between neighborhoods). Let W' and W3 be two random vertices
chosen independently and uniformly among the minimally-k,, -connected ones. Denoting by H,, the
distance between the k, -neighborhoods of W{* and W3', we have H,, > 2k, with high probability.

1A justification for this fact is provided by the following Statement 2.2 (the randomly chosen vertices W1* and
W3 have disjoint k,, -neighborhoods, because H,, > 0 with high probability). For a more direct justification, see
Remark 3.6 for the configuration model and Remark 4.7 for the preferential attachment model.
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It follows immediately from Statement 2.2 that the distance between the vertices Wi" and W3
is at least 2k, + 2k,, with high probability. This proves the lower bound in (1.9) and (1.13).

It is known from the literature that 2k, see (2.4), represents the typical distance between two
vertices chosen independently and uniformly in the graph. In order to prove Statement 2.2, we
collapse the k, -neighborhoods of W{* and W3 into single vertices and show that their distance is
roughly equal to the typical distance 2k,. This is a delicate point, because the collapsed vertices
have a relatively large degree and thus could be closer than the typical distance. The crucial
point why they are not closer is that the degree of the boundary only grows polylogarithmically.
The required justification is provided by the next statement:

Statement 2.3 (Bound on distances). Let us introduce the set

{ven]: dy<logn} for CMy;
Vo = (2.6)
{ven]: v> m} for PA,.

Then, denoting the distance in the graph of size n by dist,,,
- 1
P (dist,(a,b) < 2k,) = — . 2.
ar,?g\)/(n (dist(a,b) < 2k,) = O <(logn)2> (2.7)

The proof of Statement 2.3 is based on path counting techniques. These are different for the
two models, but the idea is the same: We split the possible paths between the vertices a and b
into two sets, called good paths and bad paths. Here good means that the degrees of vertices along
the path increase, but not too much. We then separately and directly estimate the contribution
of each set. The details are described in the proof.

2.2. Upper bound. We now describe the structure of the proof for the upper bound, which is
based on two key concepts: the core of the graph and the k-exploration graph of a vertex.

We start by introducing some notation. First of all, fix a constant o € (1/(3 — 7),00). We
define Core,, as the set of vertices in the graph of size n with degree larger than (logn)?. More
precisely, denoting by Dy(v) = Dy, (v) the degree of vertex v in the preferential attachment
model after time ¢, i.e. in the graph PA; (see the discussion after (1.10)), we let

Core. - {{UE [n]: dy > (logn)°} for CM,;

{v e n]: Dy,(v) > (logn)?} for PA,. (2:8)

The fact that we evaluate the degrees at time n/2 for the PAM is quite crucial in the proof of
Statement 2.4 below. In Section 6, we also give bounds on D,(n) for v € Core,, as well as for
v ¢ Corey, that show that the degrees cannot grow too much between time n/2 and n. The
first statement, that we formulate for completeness, upper bounds the diameter of Core,, and is
already known from the literature for both models:

Statement 2.4. Define cgist as in (2.5). Then, for every e > 0, with high probability

diam(Corey,) 2Cdist

S et o)

2.
loglogn (2.9)

Statement 2.4 for CM,, is [HHZ07b, Proposition 3.1], for PA,, it is [DHH10, Theorem 3.1].

Next we bound the distance between a vertex and Core,,. We define the k-exploration graph of
a vertex v as a suitable subgraph of its k-neighborhood, built as follows: We consider the usual
exploration process starting at v, but instead of exploring all the edges incident to a vertex, we
only explore a fized number of them, namely dgyq defined in (2.2). (The choice of which edges to
explore is a natural one, and it will be explained in more detail in the proofs.)

We stress that it is possible to explore vertices that have already been explored, leading to
what we call a collision. If there are no collisions, then the k-exploration graph is a tree. In
presence of collisions, the k-exploration graph is not a tree, and it is clear that every collision
reduces the number of vertices in the k-exploration graph.
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Henceforth we fix € > 0 and, in analogy with (2.1), we define, for n € N,
loglogn

+_
b= +e) log(dwa)

(2.10)
Our second statement for the upper bound shows that the k" -exploration graph of every vertex
in the graph either intersects Core,, or it has a bounded number of collisions:

Statement 2.5 (Bound on collisions). There is a constant ¢ < 0o such that, with high probability,
the k" -exploration graph of every vertex in the graph has at most c collisions before hitting Core,.
As a consequence, for some constant s > 0, the k" -exploration graph of every vertex in the graph
either intersects Corey, or its boundary has cardinality at least

S(dfwd)k;t — (log n)1+€+o(1)' (2'11)

With a bounded number of collisions, the k;-exploration graph is not far from being a tree,
which explains the lower bound (2.11) on the cardinality of its boundary. Having enough vertices
on its boundary, the k' -exploration is likely to be connected to Core,, fast, which for our purpose
means in o(loglogn) steps. This is the content of our last statement:

Statement 2.6. There are constants B,C < oo such that, with high probability, the k-
exploration graph of every vertex in the graph is at distance at most h, = [Blogloglogn + C']
from Core,,.

The proof for this is novel. For example, for the configuration model, we grow the k" + h,
neighborhood of a vertex, and then show that there are so many half-edges at its boundary that
it is very likely to connect immediately to the core. The proof for the preferential attachment
model is slightly different, but the conclusion is the same. This shows that the vertex is indeed
at most at distance k; + h, away from the core.

In conclusion, with high probability, the diameter of the graph is at most

(k.7 + hy) + diam(Core,,) + (k7 + hy),

which gives us the expressions in (1.9) and (1.13) and completes the proof of the upper bound.

3. LOWER BOUND FOR CONFIGURATION MODEL

In this section we prove Statements 2.1, 2.2 and 2.3 for the configuration model. By the
discussion in Section 2.1, this completes the proof of the lower bound in Theorem 1.3.

In our proof, it will be convenient to choose a particular order to pair the half-edges. This is
made precise in the following remark:

Remark 3.1 (Exchangeability in half-edge pairing). Given a sequence d = (d, ..., d,) such that
by, =di + ...+ dy is even, the configuration model CM,, can be built iteratively as follows:

> start with d; half-edges attached to each vertex i € [n] ={1,2,...,n};

> choose an arbitrary half-edge and pair it to a uniformly chosen half-edge;

> choose an arbitrary half-edge, among the ¢, — 2 that are still unpaired, and pair it to a
uniformly chosen half-edge; and so on.

The order in which the arbitrary half-edges are chosen does not matter in the above, by exchange-
ability (see also [Hof17, Chapter 7]).

3.1. Proof of Statement 2.1. With a slight abuse of notation (see (1.8)), in this section we set
dmin = min{dl, ey dn} .

Given a vertex v € [n] and k € N, we denote the set of vertices at distance at most k from v (in
the graph CM,,) by U<x(v) and we call it the k-neighborhood of v.
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Definition 3.2 (Minimally-k-connected vertex). For k € Ny, a vertex v € [n] is called minimally-
k-connected when all the vertices in U<y (v) have minimal degree, i.e.,

d; = dmin for alli € U<y(v),

and furthermore there are no self-loops, multiple edges or cycles in U<y(v). Equivalently, v is
minimally-k-connected when the graph U<y (v) is a reqular tree with degree dmin.

We denote the (random) set of minimally-k-connected vertices by My, C [n], and its cardinality
by My = | M|, i.e. My, denotes the number of minimally-k-connected vertices.

Remark 3.3 (The volume of the k-neighborhood of k-minimally connected vertices). For a
minimally-k-connected vertex v, since U<y (v) is a tree with degree dmin, the number of edges
inside U<y (v) equals (assuming din > 2)

dmin k if dmin = 2;

k
O S ARTHRUES S @)
I=1 dmin if dpin > 3.
dmin —2
Moreover, the number of vertices inside U<y (v) equals i, + 1. By (3.1), it is clear why dmin > 2,
or dmin > 3, is crucial. Indeed, this implies that the volume of neighborhoods of minimally-k-

connected vertices grows exponentially in k.

Remark 3.4 (Collapsing minimally-k connected trees). By Remarks 3.1 and 3.3, conditionally on
the event {v € My} that a given vertex v is minimally-k-connected, the random graph obtained
from CM,, by collapsing U<g(v) to a single vertex, called a, is still a configuration model with
n—iy vertices and with £,, replaced by ¢,, — 2ij, where the new vertex a has degree dpin(dmin — 1)’“.

Analogously, conditionally on the event {v € My, w € My, U<k(v) N U<y (w) = @} that two
given vertices v and w are minimally-£ and minimally-m-connected with disjoint neighborhoods,
collapsing U<y, (v) and U<, (w) to single vertices a and b yields again a configuration model with
n — iy — 1, vertices, where /¢, is replaced by ¢,, — 2i; — 2i,, and where the new vertices a and b
have degrees equal to duin(dmin — 1)* and duyin(dmin — 1)™, respectively.

We denote the number of vertices of degree k in the graph by ng, i.e.,

ne =Y Lygp)- (3.2)
1€[n]

We now study the first two moments of My, where we recall that the total degree ¢, is defined

by (1.1):

Proposition 3.5 (Moments of My). Let CM,, be a configuration model such that dpin > 2. Then,
for all k € N,
- dmin(ndmin B Z)

E[My] = : .
[ k] ndmm Pl gn _ 27/ + 1 ? (3 3)
where iy, is defined in (3.1). When, furthermore, £, > 4iy,
n — Fk

Before proving Proposition 3.5, let us complete the proof of Statement 2.1 subject to it. We are
working under the assumptions of Theorem 1.3, hence dni, > 3 and the degree sequence d satisfies

the degree regularity condition Condition 1.1, as well as the polynomial distribution condition
Condition 1.2 with exponent 7 € (2,3). Recalling (1.1)-(1.2), we can write ng_, = np and

dmin

by =1 hen k:p;:), so that, as n — oo,

N, =N Pd,;, (1 +0(1)), ly=np(l+o(1)), with Pdpiy >0, = Z kpy < o0.
keN
(3.5)
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Recalling the definition (2.1) of k;; and (3.1), for k =k,

. o ) (dmin - 1)k; -1 o dmin 1—¢ . o 2(1—¢)
ij= = dmin PR ™ _2(logn) (1+0(1)), hence  iy,- = O((logn) ).
min min (3.6)

Bounding E[M}] < n, it follows by (3.4) that

Var[M, -] < E[M, -] (O(ik;) + O(i%;)) < nO((logn)*'=9) = nltoll), (3.7)
On the other hand, applying (3.3), for some ¢ € (0,1) one has

E[M, | > npa,,, (dmmpdmm + o(l)> tn > npa,.. clogn)'t == _ 1—o(1) (3.8)

n [

Relations (3.7) and (3.8) show that (2.3) holds, completing the proof of Statement 2.1. O

Remark 3.6 (Disjoint neighborhoods). Let us show that, with high probability, there are vertices
v,w € M, - with U_; - (v)NU_, - (w) = @. We proceed by contradiction: fix v € M, - and assume
that, for every vertex w € M, one has U_; - (v) NU_; - (w) # @. Then, for any w € M, - there
must exist a self-avoiding path from v to w_of length < 2k,; which only visits vertices with degree
dmin (vecall that U, —(v) and Uy - (w) are regular trees). However, for fixed v, the number of
such paths is O((dmin — 1)%*) = O((logn)?(1=9)), see (2.1), while by Statement 2.1 the number
of vertices w € M, - is much larger, since M, ~ E[M, -] = n'=°M see (3.8).

Proof of Proposition 3.5. To prove (3.3) we write
M, = > Lpemy (3.9)
vE[n]: dy=dmin
and since every vertex in the sum has the same probability of being minimally-k-connected,
E [Mk] =Nnyq P(U € ./\/lk) (310)

A vertex v with d, = dmin is in My, when all the half-edges in U<y (v) are paired to half-edges
incident to distinct vertices having minimal degree, without generating cycles. By Remark 3.1,
we can start pairing a half-edge incident to v to a half-edge incident to another vertex of degree
dmin. Since there are ng_. — 1 such vertices, this event has probability

min

dmin(ndmin - 1)
b, —1

We iterate this procedure, and suppose that we have already successfully paired (i — 1) couples
of half-edges; then the next half-edge can be paired to a distinct vertex of degree dpi, with
probability

dmin(ndmin - Z) - Amin (ndmin - Z)

b —2(0—1) =1 £, —2i+1
Indeed, every time that we use a half-edge of a vertex of degree d,i,,, we cannot use its remaining
half-edges, and every step we make reduces the total number of possible half-edges by two. By
(3.1), exactly ix couples of half-edges need to be paired for v to be minimally-k-connected, so
that

(3.11)

(v € Mk mln H mln ndmln Z) ° (3']‘2)

E[M}] = ng T

min

which proves (3.3). If ng, . < i the right hand side vanlshes in agreement with the fact that
there cannot be any minimally-k-connected vertex in this case (recall (3.1)).

To prove (3.4), we notice that
E[M?] = > P(v, w € My,). (3.13)

CRIS [TL} ¢ dy=dw=dmin
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We distinguish different cases: the k-neighborhoods of v and w might be disjoint or they may
overlap, in which case w can be included in U<k (v) or not. Introducing the events

Avw = {U<k(v) N U<p(w) # 3}, Byw ={w € U<k(v)}, (3.14)
we can write the right hand side of (3.13) as

Y [P(v,we My, A5 ,) + P (v,w € My, Ay, Bow) + P (0,0 € My, Ay, B ) ] (3.15)
v,wen]
dv:dw:dmin

Let us look at the first term in (3.15). By Remarks 3.3 and 3.4, conditionally on {v € My}, the

probability of {w € My, A&w} equals the probability that w is minimally-k-connected in a new

configuration model, with ¢,, replaced by ¢, — 2i; and with the number of vertices with minimal
degree reduced from ng_. to ng . — (i + 1). Then, by the previous analysis (see (3.12)),

dmin(ng, . —1— i — 1)
P € AS L) = o0 Cmin P(ve : 3.16

By direct computation, the ratio in the right hand side of (3.16) is always maximized for i = 0
(provided ¢, > 2ng4_ . — 3, which is satisfied since ¢,, > dminng,,, > 3n4,, by assumption).
Therefore, setting i, = 0 in the ratio and recalling (3.12), we get the upper bound

min
s dmin(ndmin — Z)

_ 2
6 — 92+ 1 Plve M) =P (v e Mg)". (3.17)

P (v,w € My, Af,,w) <

i=1

Since there are at most nflmin pairs of vertices of degree dp;n, it follows from (3.17) that

> Pv,we My, AS,) <nd P(ve My;)? =E[M]?, (3.18)
v,wen]
dy=duw=dmin
which explains the first term in (3.4).
For the second term in (3.15), v and w are minimally-k-connected with overlapping neighbor-
hoods, and w € U< (v). Since {v,w € My} N Ay N Byw C {v € My} N By, we can bound

3 P(v,weMk,Av,w,Bv,w)gE[ Yo lpemy Y ]1BW}, (3.19)

v,weE[n] vE€[n]: dy=dmin wE[n]: dyw=dmin
dy=dy :dmin

and note that >, ¢, 18, ., = |U<k(v)| = ix + 1, by Remark 3.3. Therefore

> P(v,w € My, Ay, Bow) < E[My] (ix + 1), (3.20)
v,wWE[n]
dy=dw=dmin
which explains the second term in (3.4).

For the third term in (3.15), v and w are minimally-k-connected vertices with overlapping
neighborhoods, but w & U< (v). This means that dist(v, w) =1+ 1 for some [ € {k,...,2k — 1},
so that U<x(v) N U<g—x(w) = @ and, moreover, a half-edge on the boundary of Uc(_p)(w) is
paired to a half-edge on the boundary of U< (v), an event that we call F;, 4. Therefore

2k—1
{we Mg}n Ay N Bg,w - U {we Mi_g}n {ng(v) N Ugl,k(w) =g}n Fyowi k- (3.21)
I=k
and we stress that in the right hand side w is only minimally-(I — k)-connected (in case | = k this
just means that d,, = dpin). Then
2k—1

P (Ua w e Mk7 A’U,un Bic),w) S Z E [H{UEMk’weMl—k:ng(U)ngl—k(w)zg}]va,w;l,k] . (322)
=k
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By Remark 3.4, conditionally on {v € My, w € M;_j, U<k(v) NU<i—i(w) = @}, we can collapse
U<k(v) and U<;_(w) to single vertices a and b with degrees respectively dpin(dmin — 1)* and
min (dmin — l)l*k, getting a new configuration model with ¢,, replaced by ¢,, —2ip, —24;_;. Bounding
the probability that a half-edge of a is paired to a half-edge of b, we get
]P)<Fv,w;l,k ‘ v E Mp,we M_, ng(v) N Ugl,k(’w) = @)
< dmin(dmin - 1)kdmin(dmin - 1)l_k < drgnm(dmin - 1)l (323)

- by — 24, — 24—, — 1 - by, — 4y,

because [ < 2k — 1 and, consequently, 4 < ix_1 < ix — 1. Plugging (3.23) into (3.22), and then
forgetting the event {w € M;_y, U<x(v) N U<—x(w) = @}, leads to

2k— 1 . 1)1
Z P (’U,w € Mka Av,un = ( mlrz mlzz ) Z ]P)(U € Mk)
— Al
0 ti o il (3.24)
dmin(dmin - 1) .
< — o _E[M
R AL [Mi],

where we have used the definition (3.1) of iox_1. Since (dmin — 1)iok—1 < i2k, again by (3.1), we
have obtained the third term in (3.4). O

3.2. Proof of Statement 2.2. We recall that W{* and W3' are two independent random vertices
chosen uniformly in M, - (the set of minimally-k, -connected vertices), assuming that M v 9
(which, as we have shown, occurs with high probability). Our goal is to show that

TL]I_}II;O P(E,) =0, (3.25)
where we set
B, = {dist(USk;(W{l), Uy (WE)) < 21‘cn} = {dist(W], W) < 2k + 2k} - (3.26)
We know from Statement 2.1 that as n — oo
p(ar < tepr 1) <e (v —Epr s tepr 1) < VM) g (5
kn = 9 kol ) = n En 2 kol )] = %E[Mk_]Q B ) ’

Therefore,
P(E,) = P (Eq N {M,- > SE[M,_]}) +o(1)

= E[ > ]1{W1":v17W2"=1)2}]l{dist(v1,v2)§2k;+2l_cn}]l{Mk;>%E[Mk;]}} +0(1)

v1,v2€[n]

ﬂ{vle/\/l — M _}

kn kn 3.28
S E[ Z M2 ]l{dist(vl,v2)§2kﬁ+21_cn}]l{Mk,>%E[Mk,}}} + 0(1) ( )

vl:“QG[ } k; n n

P <’L)1,’L)2 € M, -, dist(vy,v2) < 2k, + 21%)
< - +o(1).
1 2
v1,v2€[n] 4E[Mk;]

In analogy with (3.14), we introduce the event

Ay oy 1= {ng; (v1) NU - (v2) # o},

and show that it gives a negligible contribution. Recalling the proof of Proposition 3.5, in par-
ticular (3.20) and (3.24), the sum restricted to A, ,, leads precisely to the second term in the
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right hand side of (3.4):

. . dminn :
Z P (vl,vz eM,, AUhUQ) E[M, -] <(Zk; 1) + gy zn4j:_m>
< n
1 = 1
v1,v2€[n] ZE[M[QP ZE[M]?;]Q (3.29)
~ O(iy=) +Olig,-)  O((logn)?) o(1)
B E[M, -] T opleo(h) T ’

k

S

where we have used (3.6) and (3.8) (see also (3.5)).
We can thus focus on the event A7 ,, = {U_,-(v1) NU_;-(v2) = @}. By Remark 3.4,

V1,02

P (dist(vl,vg) < 2y + 2hy | V1,02 € M, A ) = P (dist(a, b) < 2k») , (3.30)

V1,02

where PP is the law of the new configuration model which results from collapsing the neighborhoods
U,y (v1) and Uy - (v2) to single vertices a and b, with degrees dmin (dmin — 1)Fn = O(logn) (recall
(2.1)-(2.2)). The degree sequence d of this new configuration model is a slight modification of
the original degree sequence d: two new vertices of degree O(logn) have been added, while

~

2(1),- +1) = O(logn) vertices with degree dmin have been removed (recall (3.6)). Consequently d
still satisfies the assumptions of Theorem 1.3, hence Statement 2.3 (to be proved in Section 3.3)
holds for P and we obtain
P (dist(a,b) < 2ky) = o(1). (3.31)
We are ready to conclude the proof of Statement 2.2. By (3.28)-(3.29)-(3.30),

P (’1)1,’1)2 eM,-, dist(v1, v2) < 2k, + 2k, Agm)
1E[M,-]?

v1,v2€([n] n
P (Ul,UQ € Mk;)
B[, P

P(En) =

+o(1)

<P (dist(a, b) < 2/_%) Z

v1,U2€[n]
E[(M,-)?]
B[, ]

+o(1)

=P (dist(a, b) < 2k,) +o(1).
Observe that E[(Mk;)Q] = JE[M/,C;]2 + Var(M, - ) = O(E[Mk;]Q), by the second relation in (2.3).
Applying (3.31), it follows that P(E,) = o(1), completing the proof of Statement 2.2. O

3.3. Proof of Statement 2.3. In this section, we give a self-contained proof of Statement 2.3
for CM,,, as used in the proof of Statement 2.2.

Given two vertices a, b € [n], let Pg(a,b) be the set of all self-avoiding paths of length &k from a
to b, i.e. of all sequences (g, 71, ..., ) € [n]**! with 79 = a, 7, = b and such that (m;_1,7;) is
an edge in the graph, for all i = 1,..., k. Analogously, let Py(a) = Upe[nPr(a,b) denote the set
of all paths of length k starting at a.

Let us fix an arbitrary increasing sequence (g;)ien, (that will be specified later). Define, for
a,b € R, a Ab:= min{a,b}. We say that a path m € Py(a,b) is good when dr, < g; A gx—; for
every I =0,...,k, and bad otherwise. In other words, a path is good when the degrees along the
path do not increase too much from 7 to 7/, and similarly they do not increase too much in
the backward direction, from 7y to my/o.

For k € Ny, we introduce the event

Ek(a,b) = {3r € Pi(a,b) : mis a good path}. (3.32)
To deal with bad paths, we define
Fila) ={37m € Prla): dr, > gr but dn, <g; Vi <k—1}. (3.33)
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If distcy, (@, b) < 2k, then there must be a path in Py (a,b) for some k < k, and this path might
be good or bad. This leads to the simple bound

k
P(dista, (a,b) < 2k) < ZIF’ (Ex(a,b)) Z )) + P(Fr(b))] . (3.34)
We give explicit estimates for the two sums in the rlght hand side. We introduce the size-biased
distribution function F); associated to the degree sequence d = (dy,...,d,) by
1
== dylyy,<y. (3.35)

If we choose uniformly one of the ¢, half-edges in the graph, and call D} the degree of the vertex
incident to this half-edge, then F}'(t) = P(D} <t). We also define the truncated mean

v(t) = E[(D, — Dips<py] = Z dy(dy — 1)1(g,<}- (3.36)

UE[n
Now we are ready to bound (3.34).

Proposition 3.7 (Path counting for configuration model). Fiz d = (di,...,d,) (such that £, =
dy+...+dy is even) and an increasing sequence (g1)ien,- For all distinct vertices a,b € [n] with
de < go, dp < go, and for all k € N,

—k k-1

dody ([ 2k
P (distem, (a,b) < 2k) <= b Z (1 — ) H Un (g1 N gh—1)
=1 =1

n n

_k k—1
<1 _ j"f) (1= F2(g) [] val)-

=1

(3.37)

hE

+ (dg + dp)

k=1

Proof. Fix an arbitrary sequence of vertices 7 = (7;)o<i<k € [n]¥1. The probability that vertex
7o is connected to 7 is at most

rodr,
bp—1"7
because there are dr,d,, ordered couples of half-edges, each of which can be paired with prob-
ability 1/(¢,, — 1) (recall Remark 3.1), and we use the union bound. By similar arguments,
conditionally on a specific half-edge incident to my being paired to a specific half-edge incident to
71, the probability that another half-edge incident to m; is paired to a half-edge incident to ms is
by the union bound bounded from above by
(dﬂ'l B 1)dﬂ’2
by —3
Iterating the argument, the probability that « is a path in CM,, is at most
dﬂodm (dm - 1)d7r2 (dﬁz - l)dm (dﬂk—l B 1)d7Tk
by—1 £, —3 Ly, —5 by —(2k—1) "
Let us now fix a,b € [n] with a # b. Recalling (3.32)-(3.36), choosing mp = a, m; = b and
summing (3.38) over all vertices 7y, ..., m,_1 satisfying dr, < g; A gx—; yields

k—1
P(Ex(a,b)) < dady {25 — LY (H L valgi A gk_a) . (3.30)
=1

(3.38)

(6, — I

Bounding (¢, — 2k — D)1/ (¢, — D! < (¢, — 2k)7* yields the first term in the right hand side of
(3.37). The bound for P(F(a)) is similar. Recalling (3.33)-(3.35), choosing my = a and summing
(3.38) over vertices 1y, ..., my_1, T such that dr, < g; for i < k — 1 while dr, > g gives

]P)(]:k(a)) < da(gf_l (H by vy gz ) (1 - F;:(gk))}7 (3'40)
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and the same holds for P(F(b)). Plugging (3.39) and (3.40) into (3.34) proves (3.37). O
In order to exploit (3.37), we need estimates on F¥ and v, provided by the next lemma:

Lemma 3.8 (Tail and truncated mean bounds for D}). Assume that Condition 1.2 holds. Fix
n > 0, then there exist two constants C1 = C1(n) and Co = Ca(n) such that, for every x >0,

1—-Fy(z) < Chra= (=27 vn(z) < Coz BT+, (3.41)

Proof. For every x > 0 and t > 0 we can see that
- Fy(w Z dvlig,>a) = *[ > d ]]'{dv>$}i| 0 TE [Dulp,>0)] (3.42)

ve[n vE(n]

where we recall that D, is the degree of a uniformly chosen vertex. This means that

; gD, Lip,>ay] = ZIP’ (Dulyp, sy > j) = ZJP’ (D, > j, Dy, > )
" J 0 ] 0
n = . = .
ZZ% D">]vx):E.70(1_Fd’”0vx>)
- o (3.43)
n .
=7 [az(l — Fan(z)) + Z (1- Fd,n(]))}
N [ mr=2mm) | G (-1 )} ~(7-2-n)
ggnC{a: ”+Z] V< Crz v,
j=z
where we have used Condition 1.2 in the second last step (recall that 2 < 7 < 3).
For v,,, we can instead write
1
va(e) = 5 3 dulds = Vg, = - [ 3 dulds = Dlga, )
ve[n] v€[n] (3.44)
n n 9
- EE [Dn(Dy — D)yp,<py] < EIE (D p,<at]
where D,, is again the degree of a uniformly chosen vertex. The claim now follows from
n ) n > . .
7 EDip,<ey] = - > (25 + VP (Dulyp,<0) > J)
n 00 n z—1
=7 . Z 2j + 1)P(Dy, > j, Dy, < 2) < 7 Z(Qj + 1P (D, >j)  (3.45)
n r—1 n z—1 n
72 2+ DL = Faa(] < - > CJ < 5 Cor 0
Jj=0 7=0
We are finally ready to complete the proof of Statement 2.3:
Proof of Statement 2.3. As in (2.4), we take
- log logn
kp=(1—-¢)—2=2—— | 3.46
0 log(r—2) (340
and our goal is to show that, as n — oo,
max P (distew, (a,b) < 2k,) — 0. (3.47)

a,b€[n]: dg,dp<logn
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We stress that 7 € (2,3) and € > 0 are fixed. Then we choose 1 > 0 so small that
|log(T — 2 — 2n)| < 1—¢/2
|log|log(t —2)] = 1—¢

<12 and (3.48)

We use the inequality (3.37) given by Proposition 3.7, with the following choice of (gx)ken,:

-— (1 loglogn.
g = (g0)"" ., where %0 = 01g & 7 (3.49)
Let us focus on the first term in the right hand side of (3.37), that is
2k —k k-1
dody, 2k
En Z <1 - En) H Vn(gl A gh_l) . (350)
k=1 =1

Since £, = pn(1 + o(1)) by (3.5), for k < 2k,, we have
—k 7.\ —2kn 7.2 2
(1-?’“) g<1—4§"> :1+O(I;"):1+O<(k)gbgm):1+o(1). (3.51)

n n n n

Then observe that, by Lemma 3.8 and (3.49), for k < 2k,

k/2 k/2
/ / o

k-1
[Tl n o) = TTwma® < €37 [T = G (go) o 2
=1

-1 i) (3.52)

< O (go)2B-THMCP

with C' = 1%' Note that C’;“” = O((logn)€) for some c € (0,00), see (3.46), while by (3.48)

[log(r—2—2n)|

loglogn ) _ (logn)(l_a)w < (logn)(lfs/m, (3.53)

| log(T —2)))
hence the right hand side of (3.52) is n°™) (since go = (logn)°81°8™). Then, for d,,d, < logn,

P = exp(|log(r—2-2n)|(1-2)

2 2
(3.50) < (lo§ n) (2ky) (1 + 0(1)) no() — O<(1(%nn) (loglogn) n°(1)> =o(1).
It remains to look at the second sum in (3.37):
kn o —k k—1
ot (1-55) 0= Fila) [ o (3.51)
k=1 " =1

By Lemma 3.8 ,we can bound 1 — F*(g;) < C1(gx)~"~2~". By (3.51) and Cf" = O((logn)®) for
some c € (0,00), see (3.46), bounding the product in (3.54) like we did in (3.52) yields
kn
O((logn)°) (dq + dy) > (g1e) "2 (go) B=HmEP (3.55)
k=1
where p = 1/(1 —2 —2n) and C' = ;E;. By (3.49)

__P (3_, k—1 p(r—9— P _(3_r
(gr) "2 (go) T CTTIPT < (ggy) P2 (g ) o BT, (3.56)
where
T—2-1n P 3—T+n
2 =—""T 5 d —2(3- =210 .
(T n) 7_727277> , an p71(3 T+m) 377_+277< (3.57)

This means that, setting D := p(t —2 —n) — 253 =74 n) > 0, by (3.49),

kn

(3.55) = O((logn)°) (da + db) Y _(g0) 7"
k=1

da + db
(QO)D '

k—1

< O((logn)°)

(3.58)
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Since go = (logn)'°81°8™ while d,, dy, < logn, the right hand side of (3.58) is o(1). O

4. LOWER BOUND FOR PREFERENTIAL ATTACHMENT MODEL

In this section we prove Statements 2.1, 2.2 and 2.3 for the preferential attachment model. By
the discussion in Section 2.1, this completes the proof of the lower bound in Theorem 1.5.

We recall that, given m € N and 6 € (—m, o0), the preferential attachment model PA; is a
random graph with vertex set [t] = {1,2,...,t}, where each vertex w has m outgoing edges,
which are attached to vertices v € [w] with probabilities given in (1.10). In the next subsection
we give a more detailed construction using random variables. This equivalent reformulation will
be used in a few places, when we need to describe carefully some complicated events. However,
for most of the exposition we will stick to the intuitive description given in Section 1.2.

4.1. Alternative construction of the preferential attachment model. We introduce ran-
dom variables &, ; to represent the vertex to which the j-th edge of vertex w is attached, i.e.
Ewj =" = wS . (4.1)

The graph PA; is a deterministic function of these random variables: two vertices v, w € [t] with
v < w are connected in PA; if and only if &, ; = v for some j € [m]. In particular, the degree of
a vertex v after the k-th edge of vertex t has been attached, denoted by Dy i (v), is

Dt,k(v) = Z (]l{fs,iiv} + ]]-{s:v}) ’ (42)
(s,0)<(t,k)
where we use the natural order relation

(s,4) < (t,4) = s<t or s=t i<j.

Defining the preferential attachment model amounts to giving a joint law for the sequence
§ = (&w,j) (w,j)eNx[m)- In agreement with (1.10), we set & ; = 1 for all j € [m], and for ¢ > 2
Dyj1(v) + 1+ jd/m
Ct,j

Ct7]

if v =1t

P (& =v|é<j-n) = (4.3)

if v < ¢,

where €<, ;1) is a shorthand for the vector (§s:)(s,i)<(t,i—1) (and we agree that (¢,0) := (t—1,m)).
The normalizing constant ¢; ; in (4.3) is indeed given by (1.11), because by (4.2),

Y Dyaw)= Y (D) =2((t-m+(j-1)).

velt] (s,9)<(t,j—1)

The factor jd/m in the first line of (4.3) is commonly used in the literature (instead of the
possibly more natural §). The reason is that, with such a definition, the graph PA;(m,d) can be
obtained from the special case m = 1, where every vertex has only one outgoing edge: one first
generates the random graph PA,,;(1,d/m), whose vertex set is [mt], and then collapses the block
of vertices [m(i — 1) + 1,mi) into a single vertex i € [t] (see also [Hof17, Chapter §]).

Remark 4.1. It is clear from the construction that PA; is a labeled directed graph, because any
edge connecting sites v, w, say with v < w, carries a label j € [m] and a direction, from the newer
vertex w to the older one v (see (4.1)). Even though our final result, the asymptotic behavior of
the diameter, only depends on the underlying undirected graph, it will be convenient to exploit
the labeled directed structure of the graph in the proofs.
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4.2. Proof of Statement 2.1. We denote by U<y (v) the k-neighborhood in PA; of a vertex
v € [t], i.e. the set of vertices at distance at most k from v, viewed as a labeled directed subgraph
(see Remark 4.1). We denote by Dy(v) = Dy m(v) the degree of vertex v after time ¢, i.e. in the
graph PA; (recall (4.2)).

We define the notion of minimally-k-connected vertex in analogy with the configuration model
(see Definition 3.2), up to minor technical restrictions made for later convenience.

Definition 4.2 (Minimally-k-connected vertex). For k € Ny, a vertex v € [t] \ [t/2] is called
minimally-k-connected when Di(v) = m, all the other vertices i € U<y(v) are in [t/2] \ [t/4] and
have degree Dy (i) = m + 1, and there are no self-loops, multiple edges or cycles in U<y (v). The
graph U<y (v) is thus a tree with degree m + 1, except for the root v which has degree m.

We denote the (random) set of minimally-k-connected vertices by My C [t] \ [t/2], and its
cardinality by My, = | M.

For the construction of a minimally-k-connected neighborhood in the preferential attachment
model we remind that the vertices are added to the graph at different times, so that the vertex
degrees change while the graph grows. The relevant degree for Definition 4.2 is the one at the
final time ¢. To build a minimally—k—connected neighborhood we need

k-l—i—Zm i (4.4)

many vertices. The center v of the nelghborhood is the youngest vertex in U<j(v), and it has
degree m, while all the other vertices have degree m + 1.

Our first goal is to evaluate the probability P(v € My) that a given vertex v € [t] \ [t/2] is
minimally-k-connected. The analogous question for the configuration model could be answered
quite easily in Proposition 3.5, because the configuration model can be built exploring its vertices
in an arbitrary order, in particular starting from v, see Remark 3.1. This is no longer true for the
preferential attachment model, whose vertices have an order, the chronological one, along which
the conditional probabilities take the explicit form (1.10) or (4.3). This is why the proofs for the
preferential attachment model are harder than for the configuration model.

As it will be clear in a moment, to get explicit formulas it is convenient to evaluate the
probability P(v € My, U<x(v) = H), where H is a fixed labeled directed subgraph, i.e. it comes
with the specification of which edges are attached to which vertices. To avoid trivialities, we
restrict to those H for which the probability does not vanish, i.e. which satisfy the constraints in
Definition 4.2, and we call them admissible.

Let us denote by H° := H \ 0H the set of vertices in H that are not on the boundary (i.e.
they are at distance at most k — 1 from v). With this notation, we have the following result:

Lemma 4.3. Let {PA;}en be a preferential attachment model. For any vertex v € [t]\ [t/2] and
any directed labeled graph H which is admissible,

P (v € My, Uei(v) = H) = Ly(H) Lo(H) , (4.5)
where
Li(H) = m+o (4.6)
ucHe j=1 w.J
L) = I ] [ W+ Ok = 1], (4.7)
ugHe j=1 ]

and Dy_1(H) =3 c g Du—1,m(w) is the total degree of H before vertex u is added to the graph,
and the normalization constant c, j is defined in (1.11).

Proof. We recall that {a N b} denotes the event that the i-th edge of a is attached to b (see
(4.1)). Since H is an admissible labeled directed subgraph, for all u € H° and j € [m], the j-th
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edge of u is connected to a vertex in H, that we denote by Gf(u) We can then write

{ve My, Usylv) = H} = ( ) ﬁ{uéef(u)})m( N ﬁ{uféﬂ}), (4.8)

ueHe? j=1 ugHe j=1

where of course {u 7j4> H} = Uygniu 2 w}. The first term in (4.8) is exactly the event that
the edges present in H are connected in PA; as they should be. The second term is the event
that the vertices u ¢ H® are not attached to H, so that U<y(v) = H. Notice that in (4.8) every
vertex and every edge of the graph appears. For a vertex u € H®, by (1.10)

]P’(u 268 (u) | PAuJ,l) _mio (4.9)

Cu 7j

because the vertex GJH (u) has degree precisely m (when u is not already present in the graph).
For u ¢ H?, we have to evaluate the probability that its edges do no attach to H, which is

Dy_1(H)+|HN[u-— 1]\5'

Cu 7j

J
P(u % H | PAu_l,j_l) —1- (4.10)
Using conditional expectation iteratively, we obtain (4.9) or (4.10) for every edge in the graph,
depending on whether the edge is part of H or not. This proves (4.6) and (4.7). O

The event {v € My, U<i(v) = H} is an example of a class of events, called factorizable, that
will be used throughout this section and Section 6. For this reason we define it precisely.

It is convenient to use the random variable §, ;, introduced in Section 4.1, to denote the
vertex to which the j-th edge of vertex w is attached (see (4.1)). Any event A for PA; can be
characterized iteratively, specifying a set A, ; C [s] of values for &, for all (s,i) < (t,m):

A= m {gs,i € As,i} .

(s,9)<(t,;m)

Of course, the set A, ; is allowed to depend on the “past”, i.e. A;; = Ag; (§§(87i,1)), or equivalently
As,i = As,i (PAsﬂ',l). Let us set Ag(s,i) = m(u,j)ﬁ(s,z‘) Au’j.

Definition 4.4 (Factorizable events). An event A for PA; is called factorizable when the condi-
tional probabilities of the events {&s; € Ag;}, given the past, are deterministic. More precisely,
for any (s,i) there is a (non-random) ps; € [0, 1] such that

P (5871' € As; \5§(s,z'—1)) = Ds,i (4.11)

on the event < (s ;1) € A<(si—1)- As a consequence, the chain rule for probabilities yields

PA) = [] pei-
(s,1)<(t,;m)
Remark 4.5. Relations (4.9) and (4.10) show that A = {v € My, U<k(v) = H} is a factorizable
event. In fact, Ag; is either the single vertex 07 (s) (if s € H°) or the set [s — 1]\ H (if s ¢ H°).
In both cases, the set As; C [s — 1] has a fized total degree and a fived cardinality, hence the
conditional probabilities (4.11) are specified in a deterministic way (recall (4.3)).

Note that the event {v € My} is not factorizable. This is the reason for specifying the
realization of the k-neighborhood U<y (v) = H.

Henceforth we fix ¢ > 0. We recall that k, was defined in (2.1). Using the more customary ¢
instead of n, we have

_ loglogt
k, =(1-— . 4.12
r =0 am (4.12)
We recall that M- = M kt_| denotes the number of minimally-k; -connected vertices in PA; (see

Definition 4.2). We can now prove half of Statement 2.1 for the preferential attachment model,
more precisely the first relation in equation (2.3).
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Proposition 4.6 (First moment of Mkt_)' Let (PAy)i>1 be a preferential attachment model, with
m > 2 and § € (—m,0). Then, for k; as in (4.12), ast — oo,

E[Mk;] — 00. (4.13)
Proof. Similarly to the proof of (3.3), we write
EMy= Y PeMp)= > Y P(ve My, Ui(v) = H), (4.14)
vet\[#(2] velt\[t/2] HE[\[t/4]

where the sum is implicitly restricted to admissible H (i.e., to H that are possible realizations of
U<k (v)).

Since we will use (4.5), we need a lower bound on (4.6) and (4.7). Recalling (1.11), it is easy
to show, since the number of vertices in H° equals i, — m* =i,_;, and u < v for u € H®,

m+0 Mik—1
Li(H) >
W(H) 2 [v(2m+5) +1 —l—5/m]
Note that for uw < t/4 all the factors in the product in (4.7) equal 1, because H C [t] \ [t/4].
Restricting to u > t/4 and bounding D, _1(H) + |H N [u — 1]|6 < (m + 1+ )i, we get

Ly(H) > [1 _ M]

Let us write H = {v} U H' where H’ is a subset of [t/2]\ [t/4] with |H'| = i, — 1. Clearly, for
any such subset there is at least one way to order the vertices to generate an admissible H. The
number of possible subsets in [t/2] \ [t/4] is at least ( b4 1). Then, we obtain

VAN <_t/4 > [ ( mt ]mik_l [1—(m+1+5)i’“rmt/4. (4.17)

(4.15)

(4.16)

_ t
veltht/2) " 1/ Lo@m+0) +1+d/m 1(2m+9)
Recalling that
t/4 tik

since mip_1 < i, we obtain

t i [ m+6 g | (m 14 8)i Smt/4
(

BV 2 S @G llem T 0 s 15 0/m L2m + 0)

(4.19)

Choosing k = k; as in (4.12) and bounding 1 — z > =2 for x small, as well as m + 1 < 2m, we
obtain

2 4 ik_! Ct t (C/) 2Zk—

t

the - 1 t
E[Mk | > = 7t ( m )Zkf exp (—BCmik_) > exp (—3cmikt_) ,  (4.20)

where C' is a constant and C’ = 4C'/m. Recalling that iy is given by (4.4), and k; by (4.12),
hence Iy = e I mFe (14 0(1)) < 2(logt)'~¢, hence

Zkt_' < L2(logt)1—5J! < [2(10gt)1—6] 2(logt)t = — tO(l)’ (421)

and also (C”eg’cm)z’“; = t°(), This implies that E[M}] — oo, as required. O

Remark 4.7 (Disjoint neighborhoods for minimally k-connected pairs). We observe that, on the
event {v,w € My} with v # w, necessarily

ng(v) N ng(w) =,

because if a vertex x is in U<y (v) NU<g(w) and x # v, w, this means that D, (t) = m+ 2, because
in addition to its original m outgoing edges, vertex x has one incident edge from a younger vertex
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in U<g(v) and one incident edge from a younger vertex in U<y(u), which gives a contradiction.
Similar arguments apply when x = v or z = w.

We use the previous remark to prove the second relation in Statement 2.1 for the preferential
attachment model.

Proposition 4.8 (Second moment of Mkt_)' Let (PAy)i>1 be a preferential attachment model,
with m > 2 and 0 € (—m,0). Then, for k € N,

E[M{] < exp (32mij, /t) E[Mj]* + E[My)]. (4.22)
Consequently, for k =k, asin (4.12), ast — oo,
]E[let_] < (1+o(1))]E[Mkt_]2. (4.23)
Proof. We write
E[M]= Y PlweMy)=)Y P,weMy)+EM] (4.24)
vwelt)\[t/2] vw

By Remark 4.7, for v # w we can write
P(v,w € My) = Z P(v,w € My, U<p(v) = Hy,U<i(w) = Hy) (4.25)
HyNHyp=2

The crucial observation is that the event {v,w € My, U<x(v) = Hy, U<i(w) = Hy,} is factor-
izable (recall Definition 4.4 and Remark 4.5). More precisely, in analogy with (4.6) and (4.7):

]P)(U,’LU S ./\/lk, ng(v) = Hv, ng(w) = Hw> = Ll(Hv,Hw)LQ(Hv,Hw), (426)
where now

ik )

Li(H, H,) = | R (4.27)
y— Cxu?

z€EHJUHY, j=1

o D,_1(H, U H, H,UH, —1]|6

Lo(Hy, Hy) = I1 [1— 1, U HL( b )0z 1] (4.28)
. x,]

To prove (4.26), notice that in (4.27) and (4.28) every edge and every vertex of the graph appear.
Further, (4.27) is the probability of the event {U<y(v) = H,, U<y(w) = H,,}, while (4.28) is the
probability that all vertices not in the two neighborhoods do not attach to the two trees.

A look at (4.6) shows that Li(H,, H,) = Li(H,)L1(Hy). We now show that analogous
factorization holds approximately also for Ly. Since, for every a,b € [0,1], with a +b < 1, it is
true that 1 — (a+b) < (1 —a)(1 —b), we can bound

[1 _ Dyi(Hy U Hy) + |(Hy U Hy) N [z = 1”5]

Cx,j

(4.29)

<y D, 1(Hy,)+ |HyN [z —1]|d L Dy_1(Hy) + |Hy N[z —1]]0
B Ca,j Caj '
When we plug (4.29) into (4.28), we obtain Lo(H,)Lo(H,,) (recall (4.7)) times the following terms:
—-1 -1
H [1 _ Dya(Hy) + [HyN [z — 1]|5] [1 Dy (Hw) + |Ho N [z — 1]|5]
cHS

Cg.j Ca,j

€ HY, T
(4.30)
We can bound D,_1(H,) + |Hy, N[z — 1]|0 < Dy_1(Hy) < (m + 1)ig (recall that 6 < 0) and

analogously for H,,. The square brackets in (4.30) equal 1 for = < ¢/4 (since H,, H,, C [t] \ [t/4]
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by construction), and for z > ¢/4 we have ¢, ; > £(2m+6) > 2t by (1.11) and 6 > —m. We can
thus write

Lo(H,, Hy) < Lo(H,) Lo(Hy) H H [1 B (m;:tl)lk]_
e ! (4.31)
< Ly(H,) Lo(H.y) exp (2(2¢k)n1<n%;:202k>'

where we have used the bound 1 — z > e~ 2% for small z > 0. Since m + 1 < 2m, we obtain
S Y. Pw,we My, Usik(v) = Hy, Ugi(w) = Hw)]
v#Ew LH,NHy=9 4.39
S S L)L) S S LH) L) 452

< exp (32mij /t)
ve[t \[t/2] H, wel\[t/2] Huw
= exp (32mi /t) E
Substituting (4.32) in (4.24) completes the proof of (4.22).
Finally, for k =k, as in (4.12) we have I < 2(logt)!=¢ (recall that iy, is given by (4.4)). We
have already shown in Proposition 4.6 that E[M kt_] — 00, hence (4.23) follows. O

Together, Propositions 4.6 and 4.8 prove Statement 2.1. This means, as for the conﬁguration
model, since Var(le_) = O(E[Mk;P), that M, - /E[Mk;]L 1, so in particular M, - — .
t t— o0

t t— oo

O
4.3. Proof of Statement 2.3. Fix ¢ > 0 and define, as in (2.4),
- 2loglogt
kk=(1—-¢)——————. 4.
= Miogr )] 439

Statement 2.3 follows from the following result on distances between not too early vertices:

Proposition 4.9 (Lower bound on distances). Let (PA;)i>1 be a preferential attachment model,
with m > 2 and 6 € (—m,0). Then, there exists a constant p > 0 such that

. . p
P (dist <2k) < ——. 4.34
Mrzla(zlnwgt)2 (distpa, (z,y) < 2k;) < Tog 1)? (4.34)
og

Inequality (4.34) is an adaptation of a result proved in [DMM12, Section 4.1]. Consequently
we just give a sketch of the proof (the complete proof can be found in [CGH16, Appendix A).
Let us denote by u <> v the event that vertices u, v are neighbors in PA;, that is

{u(—)v}zG({u#v}U{v#u})

J=1

(As a matter of fact, {v EA u} is only possible if v > u, while {u EN v} is only possibly if v < u.)
Given a sequence 7 = (7o, 71, ..., T) € [t]¥T! of distinct vertices, we denote by {7 C PA;} the
event that 7 is a path in PA;, that is

{wQPAt}:{7T0<—>7T1<—>772---<—>7rk}:ﬂ{m,l Tt

The proof of Proposition 4.9 requires the following bound on the probability of connection
between two vertices from [DHH10, Lemma 2.2]: for v = m/(2m + §) € (3,1), there exists
¢ € (0,00) such that, for all vertices u,v € [t].

P(u v) < cuVo) L unv). (4.35)
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From [DHH10, Corollary 2.3] we know, for any sequence 7 = (g, 71, ..., 7T) € [t]*T! of distinct
vertices,
k—1 Cm
P(m C PAy) < p(mo, m1,...,7g) := , 4.36
( ) Sl ) iH) (75 A1)V (73 V migr) 17 (436)

where C'is an absolute constant. The history of (4.36) is that it was first proved by Bollobds and
Riordan [BR04] for 6 = 0 (so that v = 1 — = 1/2), and the argument was extended to all ¢ in
[DHH10, Corollary 2.3].

Remark 4.10. Proposition 4.9 holds for every random graphs that satisfies (4.36).

We proceed in a similar way as in Section 3.3. Given two vertices z,y € [t], we consider paths
m = (7o, T, ..., ) between x = mp and y = 1. We fix a decreasing sequence of numbers (g;)ien,
that serve as truncation values for the age of vertices along the path (rather than the degrees
as for the configuration model). We say that a path 7w is good when m > g; A gi_; for every
I =0,...,k, and bad otherwise. In other words, a path is good when the age of vertices does not
decrease too much from 7o to 72 and, backwards, from 7 to 7 /5. Intuitively, this also means
that their degrees do not grow too fast. This means that
2k ky
P(distpa, (z,y) < 2k;) < ZIP (Ex(z,m) + Y [P(Fr(z) + P(Fe(w)] (4.37)
k=1

where & (x,y) is the event of there being a good path of length k, as in (3.32), while Fj(z) is the
event of there being a path 7 with m; > ¢; for i <k — 1 but 7, < gi, in analogy with (3.33).
Recalling the definition of p(mg, 71,..., ) in (4.36), we define for [ € N,

t t t
fl’t(a?,w) :]l{ngo} Z Z Z p(az,m,...,m,l,w), (438)

T1=9g1 T2=g2 T —1=91—-1

setting fo (7, w) = Liz>g) and fi14(z, w) = Liz>g40yp(2, w). From (4.37) we then obtain

2k t
P(distpa, (z,y) < 2k;) < Z Z fle2) (2 0) friy216 (Y, 1)
k=11=g1x/2 . (4.39)
ke gr—1 ki gr—1
AN fea@m D+ D> fraly, )
k=1 I=1 k=1 [=1

This is the starting point of the proof of Proposition 4.9.
We will show in [CGH16, Appendix A| that the following recursive bound holds

fk’t(:(}, l) <aoapl™7 + 1{l>gk,1}ﬁkl7_la (4.40)

for suitable sequences (o)ken, (Bk)ken and (gx)ren (see [CGH16, Definition A.2]). We will
prove recursive bounds on these sequences that guarantee that the sums in (4.39) satisfy the
required bounds. We omit further details at this point, and refer the interested reader to [CGH16,
Appendix A].

4.4. Proof of Statement 2.2. Consider now two independent random vertices W{ and W4 that
are uniformly distributed in the set of minimally-£; -connected vertices M Ky We set

E, = {dist(USkt_(Wf), U, (W) < 2/‘%} = {dist(W}, W) < 2k + 2k} (4.41)
and, in analogy with Section 3.2, our goal is to show that

lim P(E,) = 0. (4.42)
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We know from Statement 2.1 that, as t — oo,

P(M,- < 1IE[M || <P(|M, - —E[M, ]| > 1JE[M 1) < Var(Mk;) (1) (4.43)
ke =9 ke 1) = ¢ ke 2 ked ) = 1E[M, ]2 - '
We also define the event
B; = {me[u]th(v) < \/i} (4.44)
VEL

and note that it is known (see [Hof17, Theorem 8.13]) that lim;_ o P(B;) = 1. Therefore,
P(E;) = P (Et N {M,- > JE[M,-]} Bt> +o(1)

= E[ Z ]l{szvl,Wgzvz}]l{dist(vl,vg)§2k;+21_ct}]l{Mkt_>%E[Mkt_}}]13t] +o(1)

v1,02€[t]

1 {v1 eMk; U2 e/\/tk; }

= E[ Z M2 ]l{dist(vl,vg)glk:t_+2]7ct}]l{Mk,>%E[Mk7]}]lBt:| +o(1)
v1,v2€[E]\[¢/2] kg t t
P (m,m € M-, dist(v1,v9) < 2k; + 2k;, Bt>
= Z 1 +o(1).
1E[M, ]2
v1,v2€E[t]\[t/2] 4 ky
(4.45)
The contribution of the terms with vy = vy is negligible, since it gives
e F (Ul < Mk{) 4 O
= =0 ,
TE[M, -2 E[M, -]

t

because E[Mk;] — o0 by Proposition 4.6. Henceforth we restrict the sum in (4.45) to vy # ve.
Summing over the realizations H; and H» of the random neighborhoods U_ - (v1) and U_ ke (v2),
and over paths 7 from an arbitrary vertex x € 9H; to an arbitrary vertex y € 0Hs, we obtain

4
PE) < g1 > > > >

t v1,v3}1€£1)\2[t/2] Hy, HaC[t\[t/4] x€dH1,ycOH>2 ﬁ]‘gﬁ (4.46)

P (ngt_ (v1) = Hi, Uz (v2) = Ha, m C PA,, Bt> + o(1).

The next proposition, proved below, decouples the probability appearing in the last expression:

Proposition 4.11. There is a constant q € (1,00) such that, for all vi,ve, Hi, Hy and ,
P (ngt_ (v1) = Hi, Uz (va) = Ha, m C PA,, Bt)

(4.47)
< qP (U (v1) = Hy, Uy (v2) = Hp ) P (x C PA,).

The proof of Proposition 4.11 reveals that we can take ¢ = 2 for ¢ sufficiently large. Using
(4.47) in (4.46), we obtain

4
P(E;) < IEJ[Miq]2 2 Y PUzk(vr) = Hi, Usk(v2) = Ha)
ki d vy v€elt\[t/2] Hy, HaC[t]\[t/4]

(4.48)
x{ > > P(wgPAt)}.

x€OH,y€dHy T T7Y
‘7T|S2kt

If we bound P (7 C PA;) < p(r) in (4.48), as in (4.36), the sum over m can be rewritten as the
right hand side of (4.39) (recall (4.37)-(4.38)). We can thus apply Proposition 4.9 —because the
proof of Proposition 4.9 really gives a bound on (4.39)— concluding that the sum over = is at
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most p/(logt)2, where the constant p is defined in Proposition 4.9. Since |[0H;| = [0Hs| = mF =
(logt)'=¢ (recall (4.12)), we finally obtain

4q  p(logt)(1=e) ) 4pq
P(E;) < EM:_|= (1 1 4.49
where the last step uses Proposition 4.8. This completes the proof that P(E;) = o(1). O

Proof of Proposition 4.11. We recall that Hy C [t]\[t/4] is a labeled directed subgraph containing
v1, such that it is an admissible realization of the neighborhood U <k (v1) of the minimally-k, -
connected vertex vy (recall Definition 4.2); in particular, Hy \ {v1} C [t/2] \ [t/4]. We also recall
that, for all w € HY := H; \ 0H; and j € [m], the j-th edge of u is connected to a well specified
vertex in Hy, denoted by Hfl (u). Analogous considerations apply to Hs.

We have to bound the probability

P (ng; (1) = Hy, Uy (v2) = Ha, m C PA,, Bt) : (4.50)

where m = (mg, my,...,m) € [t]FH! is a given sequence of vertices with mo € OH; and 7 € OHo.
The event in (4.50) is not factorizable, because the degrees of the vertices in the path 7 are not
specified, hence it is not easy to evaluate its probability. To get a factorizable event, we need to
give more information. For a vertex v € [t], define its incoming neighborhood N (v) by

N@) = {(u,§) € [t] x [m] + u-v}. (4.51)

The key observation is that the knowledge of N'(v) determines the degree Dg(v) at any time s <t
(for instance, at time ¢ we simply have D;(v) = [N (v)| + m).

We are going to fix the incoming neghborhoods N (m) = Ky, ..., N(m—1) = Kj_1 of all
vertices in the path 7, except the extreme ones my and 7 (note that A (m) and N () reduce to
single points in H{ and HY, respectively, because my € 0H; and 7, € 0Hz). We emphasize that
such incoming neighborhoods allow us to determine whether m = (7, ..., 7) is a path in PA;.
Recalling the definition of the event By in (4.44), we restrict to

K| <Vt forielk—1], (4.52)

and simply drop B; from (4.50). We will then prove the following relation: for all vy, ve, Hy, Ho,
m = (mo,...,mk), and for all Ky,..., K satisfying (4.52), we have

P (U (v1) = Hi, Ugy (v2) = Ha, {N(m1) = K, oo, Ni(mp1) = K1 })
(4.53)
< qP (U (v1) = Hi, Ugy(v2) = Hy ) P(N(m1) = K3, - N (1) = Kjr)

Our goal (4.47) follows by summing this relation over all Ki,..., K1 for which 7 C PA,.
The first line of (4.53) is the probability of a factorizable event. In fact, setting for short

R := (H{ x[m]) U (H§ x[m]) U Ky U ... U K1,
the event in the first line of (4.53) is the intersection of the following four events (see (4.8)):

k—

N N{u Lo ()}, M (w62 (u)}, N {udm,

ueH? j=1 ueHg j=1 i=1 (u,j)€K;

N {ufé(Hlquuﬁ)},

(w,g)€lt]x[m]\ R
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where we set 7° := 7\ {mo, 7} = (71,...,7k—1). Generalizing (4.9)-(4.10), we can rewrite the
first line of (4.53) as follows, recalling (1.10):

P <U§k;(vl) - Hl, U<k—(7)2) = HQ, {N(Trl) = Kl, e ,N(Wk_l) = Kk_1}>

:{Hﬁmnté}{nnwzjé}{n 1 ujlm+5} -

weH? j=1 weHg j=1 i=1 (u,j)eK; J

{ 10 <1_Du7j1(H1UH2U7T°)+|(H1UH2U7T°)O[U—1]|5>}‘
(u,)

wi)elt]x[m] \ R Cu,j

We stress that D, j—1(m;) is non-random, because it is determined by K;. Analogous considera-
tions apply to D, j—1(Hy U Ha Un°). We have thus obtained a factorizable event.
Next we evaluate the second line of (4.53). Looking back at (4.26)-(4.28), we have

P<U§k{(vl):H1’ Ugyr (v2) = ) { 11 Hm+5}{ ’m+5}
ucHg j=1 J

Cu,j
ueHY j=1 ?
(4.55)
{ 1 <1_Du,j_l(H1UH2)+|(H1UHg)ﬂ[u—l]\(S)}.
(u )€l x[m] \ (HPUHZ)x[m] Cud
On the other hand,
D,, ™)+ 0
P(N(ﬂ'l):Kl,...,N(ﬂ'k_l) Kk 1 {H H ]1}
7 u u’]

Hlw)eks (4.56)

(1 Dy () : rw N [u— 1”5) }

Using the bound (1 — (a 4+ b)) < (1 —a)(1 — b) in the second line of (4.54), and comparing with
(4.55)-(4.56), we only need to take into account the missing terms in the product in the last lines.
This shows that relation (4.53) holds if one sets ¢ = Cy Co therein, where

1
c, ::{ H <1_Du,j_l(HlUH2)+|(H1UH2)O[U—1]5)} 7
(w.g)

o
w,j)EKL U... U Kj_q U

—1
s ::{ I1 (1_Dw‘—1(7f >+C!7f ﬂ[u—l]\é)}
(u,g)€( o

€(HOUHZ) X [m]

{ (u.j)Eft]x[m] \ K1U..UKp_1

To complete the proof, it is enough to give uniform upper bounds on C and Cs, that does not
depend on Hy, Hy, m. We start with Cj. In the product we may assume u > t/4, because the
terms with u < t/4 are identically one, since Hi, Hy C [t] \ [t/4]. Moreover, for u > t/4 we have
Cuj > t(2m +6)/4 > mt/4 by (1.11) and 6 > —m. Since D, j_1(H1 U Ha) < 2(m + 1)ij, using
1 —x > e 2* for x small and recalling that § < 0, it follows that

2 1)1 (m+1) .
01—1 > H <1 _ W) > e—s t,Il |K[k71]‘lk, (4.57)
4

(u,j)EK1 U ... U K1

where Ky = K; U ... U Kj_1. Since iy is given by (4.4), for k = k; as in (4.12) we have
ik = (1 +0(1)) < 2(logt)!~¢. Recalling also (4.52) and bounding m + 1 < 2m, we obtain

C < es(TJD'K““’”‘i’“ < ol6kin/vVE _ O(logt/VE) _ +o(1).
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For Oy, since Dy, j—1(7°) < Dy(7°) = |K_y| < kv, again by (4.52), we get
kvt _8 k |goype
C2—1 > H <1 . \[) > m \/\H UHS|m > e—lGlmk/\f B 0(1) ) (4.58)
(u.g)e(HYUHZ) X [m]

It follows that C'1C5 is bounded from above by some constant ¢q. This completes the proof. [

4.5. Proof of Theorem 1.6. Dereich, Ménch and Mérters [DMM12] have already proved the
upper bound. For the lower bound we use Proposition 4.9. In fact, for k; as in (4.33),

P(Hy <2k) = > P (Vi=uv1,Va=uvydist(vy,v2) < 2k). (4.59)
v1,v2€[t]

If v1 and vy are both larger or equal than gy = [m}, then we can apply Proposition 4.9. The
probability that Vi < gg or Vo < g is

P{V1 <go}U{Va <go}) <290/t =o0(1), (4.60)

hence we get

L Y P(dist(vr,v2) < 2k) + (1) < (t-90)° » o(1) = o(1)
t2 T - t2 (logt)? ’
v1,02€[t]\[g0]

and this completes the proof of Theorem 1.6. 0

5. UPPER BOUND FOR CONFIGURATION MODEL

In this section we prove Statements 2.5 and 2.6 for the configuration model. By the discussion
in Section 2.2, this completes the proof of the upper bound in Theorem 1.3, because the proof of
Statement 2.4 is already known in the literature, as explained below Statement 2.4.

Throughout this section, the assumptions of Theorem 1.3 apply. In particular, we work on a
configuration model CM,,, with 7 € (2,3) and dp,in > 3.

5.1. Proof of Statement 2.5. We first recall what Core,, is, and define the k-exploration graph.
Recall from (2.8) that, for CM,,, Core,, is defined as

Core,, = {i € [n] such that d; > (logn)?},

where ¢ > 1/(3 — 7). Since the degrees d; are fixed in the configuration model, Core,, is a
deterministic subset.
For any v € [n], we recall that U<, (v) C [n] denotes the subgraph of CM,, consisting of the

vertices at distance at most k from v. We next consider the k-exploration graph ng(v) as a
modification of U<y (v), where we only explore dpin half-edges of the starting vertex v, and only
dmin — 1 for the following vertices:

Definition 5.1 (k-exploration graph in CM,,). The k-exploration graph of a vertex v is the
subgraph U<g(v) built iteratively as follows:

> Starting from 17<0( ) = {v}, we consider the first dyin half-edges of v and we paz’r them,
one by one, to a uniformly chosen unpaired half-edge (see Remark 3.1), to obtain U<1( ).

> Assume that we have built U<g( ), for £ > 1, and set U—y(v) := U<g( )\U< ¢—1)(v). For
each vertex in U ¢(v), we consider the first dyin — 1 unpaired half- edges and we pair them,
one by one, to a uniformly chosen unpaired half-edge, to obtain U<(g+1 (v). (Note that,

by construction, each vertex in U: (v) has at least one already paired half-edge.)

Definition 5.2 (Collision). In the process of building the k-exploration graph ﬁgk(v), we say
that there is a collision when a half-edge is paired to a vertex already included in the k-exploration
graph.
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We now prove Statement 2.5. Let us fix € > 0 and set
loglogn
log(dmin — 1)
Proposition 5.3 (At most one collision). Under the assumption of Theorem 1.3, the following

holds with high probability: the k) -exploration graph of every wertex either intersects Core,, or
it has at most one collision.

kP =(1+e¢) (5.1)

Proof. Let us fix a vertex v € [n]. We are going to estimate the probability
an(v) := P(there are at least 2 collisions in (7<ki (v) and [7<ki{ (v) N Core,, = Q) .

If we show that sup,c(,) gn(v) = o(1/n), then it follows that >, cp, gn(v) = o(1), completing the
proof.

Starting from the vertex v, we pair successively one half-edge after the other, as described in
Definition 5.1 (recall also Remark 3.1). In order to build U. <+ (v), we need to make a number of
pairings, denoted by N, which is random, because collisions may occur. In fact, when there are
no collisions, N is deterministic and takes its maximal value given by it in (3.1), therefore

. d i k)+
N <y < ﬁ(dmm —1)f <3 (logn)'*e. (5.2)
Introducing the event C; := “there is a collision when pairing the i-th half-edge”, we can write

qn(v) < E Z ]l{ci, cy, ff<k+ (v)NCore, =2}
1<i<j<N - (5.3)

= Z P(Ci, Cj, j <N, ﬁ<ki(v)ﬂCoren:®).
1<i<j<3(logn)i+e -
Let Ey be the event that the first ¢ half-edges are paired to vertices with degree < (logn)”
(i.e., the graph obtained after pairing the first ¢ half-edges is disjoint from Core,,). Then
]P)(CZ‘, Cj, j < N, ﬁgk,f(”) N Core,, = @) < ]P)(C,‘, Cj, Ej_l) (5 1)
=P(E;_1)P(C; | Ei_1)P(C; | Cy, Ej—1) . '

On the event E;_ 1, before pairing the i-th half-edge, the graph is composed by at most ¢ — 1
vertices, each with degree at most (logn)?, hence, for i < 3(logn)!*¢,

(i — 1)(logn)? < 3(logn)*(logn)” < (logn)o+i+e
c
by —2i+1 = 4, —6(ogn)lte — n ’
for some ¢ € (0, 00), thanks to £, = nu(l + o(1)) (recall (3.5)). The same arguments show that

P(C; | Ei—1) <

logn o+1+¢
P(C]‘CZ, Ej_l) S C( & T)L .
Looking back at (5.3)-(5.4), we obtain
1 2(o+1+¢) 1 20+4(1+¢) 1
sup qn(v) < Z 2 % <9¢? ( ogn)n2 = 0<> )
ve€[n] 1<i<j<3(logn)l+e n "
which completes the proof. O

Corollary 5.4 (Large boundaries). Under the assumptions of Theorem 1.3 and on the event
Ugpr (v) N Core,, = &, with high probability, the boundary U:ki(v) of the k" -exploration graph

of any vertex v € [n] contains at least (dmin — 2)(dmin — l)k’J{*1 > L(logn)'*e vertices, each one
with at least two unpaired half-edges.
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Proof. By Proposition 5.3, with high probability, every k;-exploration graph has at most one
collision before hitting Core,,. The worst case is when the collision happens immediately, i.e.
a half-edge incident to v is paired to another half-edge incident to v: in this case, removing
both half-edges, the k;-exploration graph becomes a tree with (dmin — 2)(dmin — 1)”“;1r ~1 vertices
on its boundary, each of which has at least (dpin — 1) > 2 yet unpaired half-edges. Since
(dinin — 2)/(diin — 1) > 3 for dmin > 3, and moreover (dmin — 1) = (logn)'*¢ by (5.1), we
obtain the claimed bound.

If the collision happens at a later stage, i.e. for a half-edge incident to a vertex different from
the starting vertex v, then we just remove the branch from v to that vertex, getting a tree with
(dmin — 1) (dmin — 1)’“; —! vertices on its boundary. The conclusion follows. O

Together, Proposition 5.3 and Corollary 5.4 prove Statement 2.5. O

5.2. Proof of Statement 2.6. Consider the k' -exploration graph U= (7< )+ (v) of a fixed vertex

v € [n], as in Definition 5.1, and let z1,...,xy be the (random) vertices on its boundary. We
stress that, by Corollary 5.4, with high probability N > %(log n)'*e. Set
hn, = [Blogloglogn + C7, (5.5)

where B, C are fixed constants, to be determined later on.
Henceforth we fix a realization H of U = U_,+(v) and we work conditionally on the event

{ﬁ = H}. By Remark 3.1, we can complete the construction of the configuration model CM,, by
pairing uniformly all the yet unpaired half-edges. We do this as follows: for each vertex x1,...,xn
on the boundary of U , we explore its neighborhood, looking for fresh vertices with higher and
higher degree, up to distance h,, (we call a vertex fresh if it is connected to the graph for the first
time, hence it only has one paired half-edge). We now describe this procedure in detail:

Definition 5.5 (Exploration procedure). Let x1,...,xyx denote the vertices on the boundary of
a k;f-exploration graph U = U<k,f (v). We start the exploration procedure from xi.

> Step 1. We set v(()” = x1 and we pair oll its unpaired half-edges. Among the fresh vertices
to which v(()l) has been connected, we call v1 the one with maximal degree.

> When there are no fresh vertices at some step, the procedure for x1 stops.

> Step 2. Assuming we have built vil), we pair all its unpaired half-edges: among the fresh
connected vertices, we denote by vél) the vertex with maximal degree.

> We continue in this way for (at most) hy, steps, defining vj(»l) for0 < j < hy, (recall (5.5)).

After finishing the procedure for x1, we perform the same procedure for xa,x3,...,xN, defining
the vertices vé”,vi”, e ,1);;1 starting from v((;) = ;.
Definition 5.6 (Success). Let z1,...,zy be the vertices on the boundary of a k| -exploration

graph U= ﬁ<ki (v). We define the event Sy, == “r; is a success” by

Se = {{vy’ v, ... ,vﬁfi} N Core, # &} = {dv(” > (logn)? for some 0 < j < hy}.
i

Here is the key result, proved below:

Proposition 5.7 (Hitting the core quickly). There exists a constant n > 0 such that, for every
n € N and for every realization H of U,
P(S,, |U=H) >n, (5.6)
and, for eachi=2,...,N,
P(S,, |[U=H,S ,...,5 ) >n (5.7)

This directly leads to the proof of Statement 2.6, as the following corollary shows:
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Corollary 5.8 (Distance between periphery and Core,). Under the hypotheses of Theorem 1.3,
with high probability, the distance of every vertex in the graph from Core, is at most

loglogn
log(dnﬁn —-1)
Proof. By Corollary 5.4, with high probabﬂlty, every vertex v € [n] either is at distance at most

(1+¢) + o (loglogn). (5.8)

k" from Core,, or has a k; -exploration graph U= U< )+ (v) with at least N > 1 (log n)'+¢ vertices

on its boundary. It suffices to consider the latter case. Conditionally on U=H , the probability
that none of these vertices is a success can be bounded by Proposition 5.7:

N
P(S§1H-~~0S§N]U:H):P(Sgl}U:H)HIP’(S;j]U:H SE S5

s (5.9)
<@—nN < (1 —n)z0En™ = o(1/n).

This is uniform over H, hence the probability that no vertex is a success, without conditioning,
is still o(1/n). It follows that, with high probability, every v € [n] has at least one successful
vertex on the boundary of its k; -exploration graph. This means that the distance of every vertex
v € [n] from Core,, is at most k;" + h, = k" + o(loglogn), by (5.5). Recalling (5.1), we have
completed the proof of Corollary 5.8 and thus of Statement 2.6. O

To prove Proposition 5.7, we need the following technical (but simple) result:

Lemma 5.9 (High-degree fresh vertices). Consider the process of building a configuration model
CM,, as described in Remark 3.1. Let G; be the random graph obtained after | pairings of half-
edges and let V; be the random vertex incident to the half-edge to which the [-th half-edge is paired.
For alll,n € N and z € [0,00) such that

1 < (1= Fan(2)), (5.10)

<M
— 4
the following holds:

n

2,
In particular, when Conditions 1.1 and 1.2 hold, for every ¢ > 0 there are ¢ > 0, ng < 0o such
that

P(dv,, >z, Vis1 €G|G) = 2[1 — Fan(2))] (5.11)

Vn>ng, 0<z<n/3, 1<pl/3, P(dv,, >z, Vi41 €G|G) > (5.12)

C
2T—24C "

Proof. By definition of CM,,, the (I 4+ 1)-st half-edge is paired to a uniformly chosen half-edge
among the ¢, — 2] — 1 that are not yet paired. Consequently

1
P(dv,, >z, Vi1 €G1|G) = a1 Z dylig, >z (5.13)
vgG,

Since |G| < 21 < 5(1 — Fgu(2)) by (5.10), we obtain

1
0 —2—1 %g: dolig,>zy = 5= ‘. ( (1= Fan(2)) - |gl|) > 2(1- Fd,n(z))%a (5.14)
vEY|

which proves (5.11).

Assuming Conditions 1.1 and 1.2, we have ¢, = un(1 + o(1)), with u € (0,00), see (3.5), and
there are ¢; > 0 and a > 1/2 such that 1 — Fg,,(2) > ¢1 2= ~Y for 0 < 2 < n®. Consequently,
for 0 < z < n'/3 the right hand side of (5.10) is at least 2 17 Note that (7 —1)/3 <2/3
(because 7 < 3), hence we can choose ng so that % (T s > n 1/3 for all n > ng. This directly
leads to (5.12). O

With Lemma 5.9 in hand, we are able to prove Proposition 5.7:
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Proof of Proposition 5.7. We fix v € [n] and a realization H of U = (7<er{ (v). We abbreviate

P*(-):=P(-|U = H). (5.15)
The vertices on the boundary of U are denoted by z1,...,zy. We start proving (5.6), hence we
focus on z; and we define v(()”, vil), .. v,(:) as in Definition 5.5, with vé)l) =2x.
We first fix some parameters. Slnce 2 < 1 < 3, we can choose (,v > 0 small enough so that
E:=1-¢e"(1—2+4+¢()>0. (5.16)
Next we define a sequence (ge)sen, that grows doubly exponentially fast:
g0 =2 = exp ((log2) exp(v0)) . (5.17)

Then we fix B = 1/v and C = log(c/log2) in (5.5), where o is the same constant as in Core,,
see (2.8). With these choices, we have

[logloglog n]
— %¢ > 7 loglogn __

Jh,, (logn)?, while Gh,—1 < (logn)?. (5.18)
Roughly speaking, the idea is to show that, with positive probability, one has dv§1) > g;. As
a consequence, d oD > gpn, > (logn)?, that is v(l) belongs to Core,, and x; is a success. The
situation is actually more involved, since we can only show that d (1) > g; before reaching Core,,.
Let us make the above intuition precise. Recalling (5.15), let us set
H =0, Hy:=H, Hy=HU{o\", ... .0} for1<k<h,

Then we introduce the events

l 4
Ty := U {dvl(cl) > (logn)a}, Wy = m {dv](:) > 0k, Uk) ¢ Hy_ 1} (5.19)

(1) (1)
(1)

In words, the event T means that one of the vertices v has already reached Core,,

while the event W, means that the degrees of vertices v <1> grow at least like gg,...,g¢
and, furthermore, each vy is a fresh vertex (this is actually already implied by Definition 5.5,
otherwise vy, would not even be defined). We finally set

Ey =Wy, Ej::Tj_lLJWj for 1<j<h,.
Note that T}, coincides with S5, = “x1 is a success”. Also note that W}, C {dv(l) > (logn)?},
hn
because d ) > gn, > (logn)? by (5.18), hence
hn

Ehn = Thn—l U Whn - Thn—l U {dvg) > (10g n)U} = Thn = le

Consequently, if we prove that P*(Ep, ) > n, then our goal P*(S,,) > n follows (recall (5.6)).

The reason for working with the events E; is that their probabilities can be controlled by an
induction argument. Recalling (5.15), we can write

B*(Eja1) = B*(Ty) + B* (T3 N Wyi)

=P(T) +B(d,0) > g1, vy & Hy (0 =mnTenw)Pranw,). 020
The key point is the following estimate on the conditional probability, proved below:
P(dvﬁl > gjt+1, vﬁl ¢ H; ’ {(7 =H}NTjN Wj) > 1—¢j, where ¢; := e_c(gﬂ')&ﬂ,
(5.21)

with £ > 0 is defined in (5.16) and ¢ > 0 is the constant appearing in relation (5.12). This yields
P (Bj) 2 B(T) + (1 ) P(ZENW)) = (1- ) (B (T) + BH(IF N W)
= (1 —g))P (T3 UW;) > (1 —&;)P(Tj—1 UWj)
= (1—¢j)P*(Ej),
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which leads us to
P*(Ep,) > P*(Ey) H 1—¢;) > P*(Ey) H (1-¢j) =

Since ) ;50¢; < oo and g; < 1 for every j > 0, by (5.21) and (5.17), the infinite product is
strictly positive. Also note that P*(Ep) = P*(d 1) > 2) = 1, because go = 2 and d (1) > dmin > 3.
0 0

Then n > 0, as required.
It remains to prove (5.21). To lighten notation, we rewrite the left hand side of (5.21) as

qj+1 = P(d“(:-)l > Gj+1, U;-l_ﬁ_l & H; | Dj) , where D; := {ﬁ = H} N ch NW;. (5.22)
J

Note that, on the event D; C W;, vertex vél) is fresh (i.e., it is connected to the graph for the first

time), hence it has m = dvg) — 1 unpaired half-edges. These are paired uniformly, connecting vé-l)

J
to (not necessarily distinct) vertices w™®, ... w ™). Let us introduce for 1 < ¢ < m the event
4
Cy:= ﬂ {dw(k) > gj+1, w® ¢ Hj}c. (5.23)
k=1

y Definition 5.5, vﬁ)l is the fresh vertex with maximal degree among them, hence
{dv§-1+>1 > 9541 ]+1 ¢ Hj } =Cm

Since m = d o —1>g;—1onW;C Dj, the left hand side of (5.21) can be estimated by
j

g;—1
i1 =1=P(Cn|D;) = 1= [] P(Ck|D; N Chy)
k=1
g1 (5.24)
=1- H (I—P(dw(k) > gj+1 w® ¢ H ‘D NCy 1))
k=1

We claim that we can apply relation (5.12) from Lemma 5.9 to each of the probabilities in the
last line of (5.24). To justify this claim, we need to look at the conditioning event D; N Cy_1,
recalling (5.23), (5.22) and (5.19). In order to produce it, we have to do the following:

> First we build the k;-exploration graph U <k (v) = H, which requires to pair at most

O((dmin — 1)F%) = O((log n)1+¢) half-edges (recall Definition 5.1);
> Next, starting from the boundary vertex x1, we generate the fresh vertices v( o J(l)
all outside Core,,, because we are on the event T, and this requires to pair a number of
half-edges which is at most (logn)?j < (log n)"hn = O((logn)°+1);
> Finally, in order to generate w™, ..., w*~Y we pair exactly k — 1 half-edges, and note
that k —1<g; —1 < gpn, —1 = 0O((logn)?) (always because v; ¢ Core,).
It follows that the conditioning event D; N C}_; is in the o-algebra generated by G; for [ <
O((logn)'*o+%) (we use the notation of Lemma 5.9). In particular, I < n'/3. Also note that
2= gj+1 < gn, = O((logn)?), see (5.18), hence also z < n'/3. Applying (5.12), we get

C 951 gj—l
w1 (- i) 21 e (- i) )

C gj
>1— S
= e < 2 <gj+1>f2+<>
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because 1 —x < e % and n — 1 > n/2 for all n > 2 (note that g; > go = 2). Since gj+1 = (g;)°,
by (5.17), we finally arrive at

¢j+1 > 1 —exp < - g (gj)l_ev(T_HC)) =1—e @2, (5.26)

which is precisely (5.21). This completes the proof of (5.6).
In order to prove (5.7), we proceed in the same way: for any fixed 2 < i < N, we start from the
modification of (5.15) given by P*(-) :=P(-|U = H, 5%

%15 -5 Sg, ) and we follow the same
proof, working with the vertices v(li), ceey U](Z:l instead of vf), ces ,v}(;) (recall Definition 5.5). We

leave the details to the reader. O

6. UPPER BOUND FOR PREFERENTIAL ATTACHMENT MODEL

In this section we prove Statements 2.5 and 2.6 for the preferential attachment model. By the
discussion in Section 2.2, this completes the proof of the upper bound in Theorem 1.5, because
the proof of Statement 2.4 is already known in the literature, as explained below Statement 2.4.

6.1. Proof of Statement 2.5. Recall the definition of Core; in (2.8). It is crucial that in Corey,
we let Dy /z(v) be large. We again continue to define what a k-exploration graph and its collisions
are, but this time for the preferential attachment model:

Definition 6.1 (k-exploration graph). Let (PA:);>1 be a preferential attachment model. For
v € [t], we call the k-exploration graph of v to be the subgraph of PA;, where we consider the
m edges originally incident to v, and the m edges originally incident to any other vertex that is
connected to v in this procedure, up to distance k from v.

Definition 6.2 (Collision). Let (PAt)t>1 be a preferential attachment model with m > 2, and let
v be a vertex. We say that we have a collision in the k-exploration graph of v when one of the
m edges of a vertex in the k-exploration graph of v is connected to a vertex that is already in the
k-exploration graph of v.

Now we want to show that every k-exploration graph has at most a finite number of collisions
before hitting the Core;, as we did for the configuration model. The first step is to use [DHH10,
Lemma 3.9]:

Lemma 6.3 (Early vertices have large degree). Fiz m > 1. There exists a > 0 such that
P(xréitnDt(i) > (logt)") 1 (6.1)
i<ta
for some o > 1/(3 — 7). As consequence, [t*] C Core; with high probability.

In agreement with (2.10) (see also (4.12)), we set
loglogt

kM= (1+e¢) (6.2)

logm
We want to prove that the exploration graph U <k (v) has at most a finite number of collisions

before hitting Core;, similarly to the case of CM,,, now for PA;. As it is possible to see from (2.8),
Core; C [t/2], i.e., is a subset defined in PA; when the graph has size ¢/2. As a consequence,
we do not know the degree of vertices in [t/2] when the graph has size t. However, in [DHH10,
Appendix A.4] the authors prove that at time ¢ all the vertices t/2 + 1, ...t have degree smaller
than (logt)?.

We continue by giving a bound on the degree of vertices that are not in Core;. For vertices
i € [t/2] \ Core; we know that Dy /o(i) < (logt)?, see (2.8), but in principle their degree Dy(i)
at time ¢ could be quite high. We need to prove that this happens with very small probability.
Precisely, we prove that, for some B > 0,

P <i€[t;n2]z\1)éoret Dy(i) > (1+ B)(log t)“) =o0(1). (6.3)
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This inequality implies that when a degree is at most (logt¢)? at time ¢/2, then it is unlikely to
grow by B(logt)? between time t/2 and ¢. This provides a bound on the cardinality of incoming
neighborhoods that we can use in the definition of the exploration processes that we will rely on,
in order to avoid Core;. We prove (6.3) in the following lemma that is an adaptation of the proof
of [DHH10, Lemma A.4]. Its proof is deferred to [CGH16, Appendix B]:

Lemma 6.4 (Old vertex not in Core;). There exists B € (0,00) such that, for every i € [t/2],
P (Dy(i) > (14 B)(logt)? | Dyso(i) < (logt)”) = o(1/1). (6.4)

We can now get to the core of the proof of Statement 2.5, that is we show that there are few
collisions before reaching Core;:

Lemma 6.5 (Few collisions before hitting the core). Let (PA;)i>1 be a preferential attachment
model, with m > 2 and § € (—m,0). Fiz a € (0,1) and | € N such that | > 1/a. With k" as in
(6.2), the probability that there exists a vertex v € [t] such that its k; -exploration graph has at
least 1 collisions before hitting Core; U [t] is o(1).

Next we give a lower bound on the number of vertices on the boundary of a k; -exploration
graph. First of all, for any fixed a € (0, 1), we notice that the probability of existence of a vertex
in [t] \ [t%], that has only self loops is o(1). Indeed, the probability that a vertex s has only
self-loops is O(<). Thus, the probability that there exists a vertex in [t] \ [t%] that has only
self-loops is bounded above by

5 0() = 0™ = o), (65)

s>t

since we assume that m > 2. We can thus assume that no vertex in [¢] \ [¢t?] has only self-loops.
This leads us formulate the following Lemma, whose proof is also deferred to [CGH16, Appendix
BJ.

Lemma 6.6 (Lower bound on boundary vertices). Let (PA;);>1 be a preferential attachment
model, with m > 2 and 6 € (—m,0). For a € (0,1), consider a vertex v € [t] \ (Core; U [t%]) and
its k-exploration graph. If there are at most 1 collisions in the k-exploration graph, and no vertex
in [t] \ [t?] has only self loops, then there exists a constant s = s(m,l) > 0 such that the number
of vertices in the boundary of the k-exploration graph is at least s(m,)mF.

Together, Lemmas 6.3, 6.5 and 6.6 complete the proof of Statement 2.5.

The rest of this section is devoted to the proof of Lemma 6.5. We first need to introduce
some notation, in order to be able to express the probability of collisions. We do this in the next
subsection.

6.1.1. Ulam-Harris notation for trees. Define

k
Wg = [m]é, ng = U Wg,
=0

where Wy := &. We use W<, as a universal set to label any regular tree of depth %, where each
vertex has m children. This is sometimes called the Ulam-Harris notation for trees.

Given y € Wy and z € W,,, we denote by (y, z) € Wyi,, the concatenation of y and z. Given
x,y € W<y, we write y = x if y is a descendant of x, that is y = (z, ) for some z € Wy,

Given a finite number of points z1,..., 2, € Wy, abbreviate Z,, = (z1,..., 2n), and define
Wf,;”) to be the tree obtained from W<}, by cutting the branches starting from any of the z;’s
(including the z;’s themselves):

ngi“) ={re€Wep: a2, .o, 7 2m) (6.6)
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Remark 6.7 (Total order). The set W<, comes with a natural total order relation, called shortlex
order, in which shorter words precede longer ones, and words with equal length are ordered
lexicographically. More precisely, given x € Wy and y € W,,, we say that x precedes y if either
{ <m,orif{ =mand z; <y; forall 1 <i </ We stress that this is a total order relation, unlike
the descendant relation > which is only a partial order. (Of course, if y = x, then x precedes y,
but not vice versa).

6.1.2. Collisions. We recall that, given z € [t] and j € [m], the j-th half-edge starting from vertex
z in PA; is attached to a random vertex, denoted by &, ;. We can use the set W<, to label the

exploration graph ﬁgk(v), as follows:
US/C(U) = {‘/Z}ZGWSIC ) (67)

where Vz = v and, iteratively, V., = &y, ; for z = (z, j) with 2 € W<j,_; and j € [m].
The first vertex generating a collision is Vz,, where the random index Z; € W<y, is given by

Z1 := min {z € Wep + V, =V, for some y which precedes z} ,

where “min” refers to the total order relation on W<}, as defined in Remark 6.7.

Now comes a tedious observation. Since Vz, = V), for some y which precedes Z1, by definition
of Z1, then all descendants of Z; will coincide with the corresponding descendants of y, that is
Vizir) = Vi, for all . In order not to over count collisions, in defining the second collision

index Zs, we avoid exploring the descendants of index Z1, that is we only look at indices in Wfkl),
see (6.6). The second vertex representing a (true) collision is then Vz,, where we define

Z9 := min {z € Wfkl): z follows Z1, ie., V., =V, for some y which precedes z} ,
Iteratively, we define
Zi+1 := min {z € Wg;) : z follows Z;, i.e., V, =V, for some y which precedes z} ,

so that Vz, is the i-th vertex that represents a collision. The procedure stops when there are no
more collisions. Denoting by C the (random) number of collisions, we have a family

2y, Zas .oy Lo

of random elements of W<y, such that (Vz,)1<i<c are the vertices generating the collisions.

6.1.3. Proof of Lemma 6.5. Recalling (6.7) and (6.6), given arbitrarily z1, ..., 2 € W<y, we define

r7(z) _ .
< (v) = {Vz}zewg) , (6.8)
that is, we consider a subset of the full exploration graph ﬁgk (v), consisting of vertices V, whose
indexes z € W<y, are not descendants of 21, ..., 2. The basic observation is that
ﬁgk(v) = ﬁf}g(v) ontheevent {C=1, Z1=2,...,21=2z}. (6.9)
In words, this means that to recover the full exploration graph ﬁgk(v), it is irrelevant to look at
vertices V., for z that is a descendant of a collision index z1, ..., 2.
We will bound the probability that there are [ collisions before reaching Core; U [t?], occurring
at specified indices z1,...,2 € W<y, for k = k" as in (6.2), as follows:
P(C=1, Z1=z,...,% =z, Ug(v) N (Core, UtY]) = @) < a(t), (6.10)

where, for the constant B given by Lemma 6.4, we define
4(1 B) (log t o+1+¢
alt) = (1+ B) (logt) '

m te
Summing (6.10) over z1,...,2 € W<y we get

P(C =1, Ucp(v) N (Core, U [t)) = @) < a(t)! W'

(6.11)
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Since, for k = k; as in (6.2), we can bound
mktl 1
—1
the probability of having at least I collisions, before reaching Core; U [t?], is O(a(t)!(logt)?) =
o(1/t), because [ > 1/a by assumption. This completes the proof of Lemma 6.5. It only remains
to show that (6.10) holds true.
6.1.4. Proof of (6.10): case | = 1. We start proving (6.10) for one collision. By (6.9), we can
replace ﬁgk(v) by ﬁizkl)(v) in the left hand side of (6.10), i.e., we have to prove that

PC=1, Z1 =2z, US)(v) N (Core, U[t]) = @) < aft). (6.13)

Wep| = <2mF <2 (logt)'*e, (6.12)

Since v, k and z; are fixed, let us abbreviate, and recalling (6.8),
W= Wg,i)(v), U:= ﬁizkl)(v) = {Vz}zeW‘ (6.14)
Note that V;, is the only collision precisely when U is a tree and V. € U. Then (6.13) becomes
P(U is a tree, Vi, € U, U N (Core, U [tY]) = @) < at). (6.15)

We will actually prove a stronger statement: for any fixed deterministic labeled directed tree
H C [t] and for any y € H,

~ a(t) N
PU=H,V, =y, HN(Core, U[t"]) = @) < WI@(U:H, V., ¢H). (6.16)
This yields (6.15) by summing over y € H —note that |H| < [W<i| < 2(logt)!™ by (6.12)—
and then summing over all possible realizations of H.

It remains to prove (6.16). We again use the notion of a factorizable event, as in the proof
of the lower bound. Since the events in (6.16) are not factorizable, we will specify the incoming
neighborhood N (y) (recall (4.51)) of all y € H. More precisely, by labeling the vertices of H, see
(6.14), as

H = {vs}sew and Yy =z, for some s€W, (6.17)
we can consider the events {N(vs) = N, } where N, are (deterministic) disjoint subsets of
[t] x [m]. We say that the subsets (IV,,)sew are compatible with the tree H when (v, j) € Ny,
whenever s = (¢, j) with s,s' € W, j € [m]. Then we can write

{U=H}= U {N(vs) = N,, forevery se€ W}. (6.18)
compatible (Nyg)sew

Since the degree of vertex vs equals Di(vs) = m+|N,,|, we can ensure that H N (Core;U[t?]) = @
by restricting the union in (6.18) to those N,, satisfying the constraints

vg > t¢ and |Ny,| < (14 B)(logt)? —m, VseW. (6.19)

Finally, if we write

z1 = (z,)) for some zeW, je€[m], (6.20)
then, since V3, = £y, j, the event {V,, = vz} amounts to require that?
(vz,J) € No, - (6.21)

Let us summarize where we now stand: When we fix a family of (N,,)sew that is compatible
and satisfies the constraints (6.19) and (6.21), in order to prove (6.16) it is enough to show that
P(N(vs) = Ny, for every s € W)
(6.22)

- mP<N (vs) = Ny, for every s € W\ {s}, N(vs) = Nu \ {(v,4)}).

2Inciden‘cally, we observe that the constraint (6.21) is not included in the requirement that (N, )sew are compatible,
because z1 = (z,7) € W by definition (6.14) of W.
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Let us set
N:= ] Ny, C[t] x [m]. (6.23)
SEW

The probability on the left-hand side of (6.22) can be factorized, using conditional expectations
and the tower property, as a product of two kinds of terms:

> For every edge (u,r) € N —say (u,r) € N,,, with s € W— we have the term
Du,r—l(vs) +46

6.24
Cu,r ( )
corresponding to the fact that the edge needs to be connected to vg;
> On the other hand, for every edge (u,r) & N, we have the term
Dyr—1(H HnNlu—1]|6

Cu,r
corresponding to the fact that the edge may not connect to any vertex in H.

(We emphasize that all the degrees D..(-) appearing in (6.24) and (6.25) are deterministic,
since they are fully determined by the realizations of the incoming neighborhoods (N, )sew.)
We can obtain the right-hand side in (6.22) by replacing some terms in the product.

> Among the edges (u,r) € N, whose contribution is (6.24), we have the one that creates
the collision, namely (v, 7). If we want this edge to be connected outside H, as in the
right-hand side in (6.22), we need to divide the left hand side of (6.22) by

(sz,jl(vs) + 5) (1 Dy (H) + [HN o, - 1]I5> -

C’Uz 7j

6.26
- (6.26)
We also have to replace some other terms corresponding to edges (u,r) € N,., because the
degree of vertex vg is decreased by one after connecting (v, j) outside H. More precisely,
for every edge (u,r) € N,, that is younger than (v, j), that is (u,r) > (vg,J), we can
reduce the degree of vz by one by dividing the left-hand side of (6.22) by

H Du’rfl(vg) + 1) . Dt('l)§> + )
Dyyr—1(vs) —1+6 Dy, jo1(vs)+0°

(6.27)
(U,T‘)ENUE, (U,T)>(’Uz,j)

Finally, the contribution of the edges (u,r) € N,, for s # § is unchanged.
> For every edge (u,r) € N, the probability that such edge is not attached to H, after we
reconnect the edge (v, ), becomes larger, since the degree of H is reduced by one.

It follows that the inequality (6.22) holds with a(t)/(2(logt)!¢) replaced by 3, defined by
§= <Duz,j1<vs> + 5) <1 Dy (H) + |H O [, — 1”5)_1 Dilvs) + 4
sz’jfl(l)g) +6
. B -1
_ <Dt(v§) + 6> (1 Dy, j-1(H) + |HN vy 1]]5) (6.28)

C'U:c 3J

Cuyz,j Cug,j

C'U:c J

S (Dt(’l)s)> (1 _ DUxaj_l(H))l —. IBI7
CU;uj CUJHj
because § < 0. We only need to show that 8’ < a(t)/(2(logt)' ).
Since ¢, ; > m(v — 1), the first relation in (6.19) yields
Cvz,j Z te.

Hence, since Dy(vs) < (1 + B)(logt)? by the second relation in (6.19), we can bound

<Dt(v8)> _ (L+ B)(logt)”

- mte

Cva: J
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Likewise, since Dy(H) < |H|(1 + B)(logt)?, for k = k;” we get, by (6.12),
) -1 1+e A
<1 B sz,]—l(H)) < (1 _ 2(logt)*=(1 4 B)(logt) ) <9

ta =

C'Uz J

where the last inequality holds for ¢ large enough. Recalling (6.11),

g
g < 2(1 + B)(logt) _ a(t) .
mto 2(log t)1+e
This completes the proof of (6.22), and hence of (6.10), in the case where [ = 1. O

6.1.5. Proof of (6.10): general case | > 2. The proof for the general case is very similar to that
for I = 1, so we only highlight the (minor) changes.

In analogy with (6.13), we can replace ﬁgk(v) by ﬁ(;,i:)(v) in the left-hand side of (6.10), thanks
0 (6.9). Then, as in (6.14), we write

We=W (), U=U0)={V}_, (6.29)

The extension of (6.16) becomes that for any fixed deterministic labeled directed tree H C [t]
and for all y1,...,y € H,

PU=H, V., =y, Vi =y, HN(Core; U [tY)) = @)
! 6.30)
() 5 <
§<2<10gt)1+5> P(U:Ha‘/21¢H7V22€H7"-7‘[ZZ¢H)-
As in (6.17), we can write
H = {vs}sew and Y1 =5, ..., Yl =Us for some 51, ..., §E€W.

To obtaint a factorizable event, we must specify the incoming neighborhoods N,,, = N,, for all
s € W, which must be compatible with H and satisfy the constraint (6.19). If we write

21 =(x1,51), -y 21 = (21, 01), for some z1,...,20 €W, jJ1,...,5 € [m],
then we also impose the constraint that obviously generalizes (6.21), namely
(Vz1551) € Nug, 5 -+ s (Vay, 1) € Nog, -
The analogue of (6.22) then becomes

P(N(vs) = Ny, for every s € W)
< _a®) l P(N (vs) = Ny, for every s € W\ {5 51} (6.31)
> 2(10gt>1+8 s Vs IEREREIS L
N(vs;) = Nug, \ {(va,, ji)} for every i =1,.. L)
When we define N as in (6.23), the probability in the left-hand side of (6.31) can be factorized
in a product of terms of two different types, which are given precisely by (6.24) and (6.25). In

order to obtain the probability in the right-hand side of (6.31), we have to divide the left-hand
side by a product of factors analogous to (6.26) and (6.27). More precisely, (6.26) becomes

l —1
Dy, j_1(vs,) +6 Dy, i1(H) +|H N [vg, — 1]|6
H Va;,Ji 1( 51) 1— Vz ;] 1( ) ’ [ x ” ’ (6.32)
=1 Cvz,.ji Cug, ,ji

while (6.27) becomes

ﬁ Dy(vs;) + 6
=1 DU%’]z 1(U31) + 6 .
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We define 3 accordingly, namely we take the product for i = 1,...,[ of (6.28) with x, j, § replaced
respectively by z;, j;, §;. Then it is easy to show that

l
a(t
/8 S il-i— )
2(logt)t+e
arguing as in the case [ = 1. This completes the proof of (6.31). O

6.2. Proof of Statement 2.6. The next step is to prove that the boundaries of the kj—
exploration graphs are at most at distance

hy = [Blogloglogt + C'| (6.33)
from Core;, where B, (' are constants to be chosen later on. Similarly to the proof in Section
5.2, we consider a k; -exploration graph, and we enumerate the vertices on the boundary as
ri,...,TN, where N > s(m,l)mkj from Lemma 6.6 and [ is chosen as in Lemma 6.5. We next
define what it means to have a success:

Definition 6.8 (Success). Consider the vertices x1,...,xxn on the boundary of a k; -exploration
graph. We say that x; is a success when the distance between x; and Core; is at most 2hy.

The next lemma is similar to Lemma 5.7 (but only deals with vertices in [t/2]):

Lemma 6.9 (Probability of success). Let (PAt)t>1 be a preferential attachment model, with
m > 2 and § € (—m,0). Consider v € [t/2] \ Core; and its k; -exploration graph. Then there
ezists a constant n > 0 such that

P (Sz, | PAy2) >, (6.34)

and for all j =2,..., N,
P (Suy | PA, 85,0088, ) 20 (6.35)
The aim is to define a sequence of vertices wy, . . . , wp, that connects a vertex x; on the boundary

with Core;. In order to do this, we need some preliminar results. We start with the crucial
definition of a t-connector:

Definition 6.10 (t-connector). Let (PAt)i>1 be a preferential attachment model, with m > 2.
Consider two subsets A,B C [t/2], with AN B = &. We say that a vertex j € [t] \ [t/2] is a
t-connector for A and B if at least one of the edges incident to j is attached to a verter in A and
at least one is attached to a vertex in B.

The notion of t-connector is useful, because, unlike in the configuration model, in the prefer-
ential attachment model typically two high-degree vertices are not directly connected. From the
definition of the preferential attachment model, it is clear that the older vertices have with high
probability large degree, and the younger vertices have lower degree. When we add a new vertex,
this is typically attached to vertices with large degrees. This means that, with high probability,
two vertices with high degree can be connected by a young vertex, which is the t-connector.

A further important reason for the usefulness of t-connectors is that we have effectively de-
coupled the preferential attachment model at time ¢/2 and what happens in between times ¢/2
and t. When the sets A and B are appropriately chosen, then each vertex will be a t-connector
with reasonable probability, and the events that distinct vertices are t-connectors are close to
being independent. Thus, we can use comparisons to binomial random variables to investigate
the existence of t-connectors. In order to make this work, we need to identify the structure of
PA;/» and show that it has sufficiently many vertices of large degree, and we need to show that
t-connectors are likely to exist. We start with the latter.

In more detail, we will use t-connectors to generate the sequence of vertices wi, ..., wy between
the boundary of a k; -exploration graph and the Core;, in the sense that we use a t-connector to
link the vertex w; to the vertex w;11. (This is why we define a vertex z; to be a success if its
distance from Core; is at most 2h;, instead of hy.) We rely on a result implying the existence of
t-connectors between sets of high total degree:
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Lemma 6.11 (Existence of t-connectors). Let (PA;)i>1 be a preferential attachment model, with
m > 2 and 0 € (—m,0). There exists a constant u > 0 such that, for every A C [t/2], and
i [t/2\ A,

P(ﬂj € [t]\ [t/2]: j is a t-connector for i and A | PAt/Q) < exp <_MDA(t/2t)Di(t/2)> , (6.36)

where DA(t/2) =3 ,c 1 Do(t/2) is the total degree of A at time t/2.
Proof. The proof of this lemma is present in the proof of [DHH10, Proposition 3.2]. O

Remark 6.12. Notice that this bound depends on the fact that the number of possible ¢-
connectors is of order t.

A last preliminary result that we need is a technical one, which plays the role of Lemma 5.9 for
the configuration model and shows that at time t/2 there are sufficiently many vertices of high
degree, uniformly over a wide range of what ‘large’ could mean:

Lemma 6.13 (Tail of degree distribution). Let (PA¢)¢>1 be a preferential attachment model, with
m > 2 and 6 € (—m,0). Then, for all { > 0 there exists a constant ¢ = ¢(() such that, for all
1 <z < (logt)?, for any q > 0, and uniformly in t,

1 o
Pealt) = 3 Y Lpyysay = ca” T (6.37)
vE(t]

Proof. The degree distribution sequence (pg)ren in (1.12) satisfies a power law with exponent
€ (2,3). As a consequence, for all ¢ > 0 there exists a constant ¢ = ¢(¢) such that

Poe =Y pp > a7, (6.38)
k>x

We now use a concentration result on the empirical degree distribution (for details, see [Hof17,
Theorem 8.2]), which assures us that there exists a second constant C' > 0 such that, with high

probability, for every x € N,
log
t
Fix now ¢ > 0, then from this last bound we can immediately write, for a suitable constant ¢ as

n (6.38),

|P>e — p>a| < C (6.39)

1 i
Psy > psy—C Otg > g~ (140 _ ¢ Tt > ga:_(T_HO, (6.40)
if and only if
logt _ | (p-G-1+0)
C . 0 (:U ) . (6.41)

This is clearly true for x < (logt)?, for any positive gq. Taking ¢ = ¢/2 completes the proof. [
With the above tools, we are now ready to complete the proof of Lemma 6.9:
Proof of Lemma 6.9. As in the proof of Proposition 5.7, we define the super-exponentially grow-

ing sequence gy as in (5.17), where 7 > 0 is chosen small enough, as well as ¢ > 0, so that (5.16)
holds. The constants B and C' in the definition (6.33) of h; are fixed as prescribed below (5.17).

We will define a sequence of vertices wo, ..., wy, such that, for i = 1,...,h, Dy, (t) > g; and
w;_1 is connected to w;. For this, we define, for i =1,...,h —1,
H; = {u € [t]: Du(t/2) > gi} C [t/2], (6.42)

so that we aim for w; € H;.

We define the vertices recursively, and start with wy = x1. Then, we consider t-connectors
between wg and Hi, and denote by w; the vertex in H; with minimal degree among the ones that
are connected to wg by a t-connector. Recursively, consider ¢-connectors between w; and H;q,
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and denote by w; 1 the vertex in H;y; with minimal degree among the ones that are connected
to w; by a t-connector. Recall (5.18) to see that g, > (logt)?, where h; is defined in (6.33). The
distance between wy and Core; is at most 2h; = 2[Blogloglogt + C'. If we denote the event
that there exists a ¢ connector between w;_; and H; by {w;—1 ~ H;}, then we will bound from
below

ht
P(Ss, | PAy) = B[ [T U sy | PAs|. (6.43)
=1

In Lemma 6.11, the bound on the probability that a vertex j € [t]\ [t/2] is a t-connector between
two subsets of [t] is independent of the fact that the other vertices are ¢t-connectors or not. This
means that, with F; the o-field generated by the path formed by wy, ..., w; and their respective
t-connectors,

E{]l{wi_wm} | PAt/%Eq} > 1 — e #Pwina (t/DDu, (t/2)/t, (6.44)
where Dy, (t) = >, cp, Du(t/2). This means that
ht ht
E[H L~y ‘ PAt/?} > H (1 - eiquFl(tﬂ)DHi(tm)/t)- (6.45)
i=1 1=1

We have to bound every term in the product. Using Lemma 6.13, for ¢ = 1,

1 — e HPuo(t/2)Du, (t/2)/t > 1 _ o=#Duwo (t/2)91 P24, (1/2) (6.46)

while, for i =2,...,h—1

1 — e HDw;_1(t/2)Dm, (t/2)/t >1— e HIi-19iP>g,(t/2) (6.47)

Applying (6.37) and recalling (5.25)—(5.26), the result is

ht
P(S,, | PA,) > (1 _ o—1Dug(t/2)91Psg, (t/2>> I1 (1 _ e—ugiflgingia/m)
o =2 (6.48)
> (1 — e Hmg1P2g, (8/2) H 1— e ee))
| ) 1)
for some constant ¢. Since hy = [Blogloglogt + C'|, and
Pog (t/2) = > pr>0 (6.49)

k>g1

with high probability as t — oo, we can find a constant 7 such that

h
<1 _ o MMg1Pxg, (t/2)) 1_1 (1 _ e € (gi)é) >n>0, (6.50)
i=2
which proves (6.34).

To prove (6.35), we observe that all the lower bounds that we have used on the probability of
existence of t-connectors only depend on the existence of sufficiently many potential ¢-connectors.
Thus, it suffices to prove that, on the event Sg N---N S;’F ,» we have not used too many vertices
as t-connectors. On this event, we have used at most h; - (j — 1) vertices as t-connectors, which
is o(t). Thus, this means that, when we bound the probability of S, we still have ¢ —hy - (j — 1)
possible t-connectors, where j is at most (logt)!*¢. Thus, with the same notation as before,

E[]l{wi,wm} | PAys, S5, 85 | =1~ e HDui 1 (/D (/)] (6.51)
so that we can proceed as we did for S;,. We omit further details. O

We are now ready to identify the distance between the vertices outside the core and the core:
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Proposition 6.14 (Distance between periphery and Core;). Let (PA:)i>1 be a preferential at-
tachment model withm > 2 and 6 € (—m,0). Then, with high probability and for allv € [t]\Core;,

distpa, (v, Corey) < ki + 2h;. (6.52)

Proof. We start by analyzing v € [t/2]. By Lemma 6.3, with high probability there exists a € (0, 1]
such that [t*] C Core;. Consider | > 1/a, and fix a vertex v € [t/2]. Then, by Lemma 6.5 and
with high probability, the k; -exploration graph starting from v has at most [ collisions before
hitting Core;. By Lemma 6.6 and with high probability, the number of vertices on the boundary
of the k; -exploration graph is at least N = s(m,[)(logt)'*¢. It remains to bound the probability
that none of the IV vertices on the boundary is a success, meaning that it does not reach Core;
in at most 2h; = 2[Bloglogt 4+ C'] steps.
By Lemma 6.9,

PSS, NN S5, | PAyj) < (1—n)N =o(1/t), (6.53)

thanks to the bound N > s(m,[)(logt)!™¢. This means that the probability that there exists a
vertex v € [t/2] such that its kI -exploration graph is at distance more than Alogloglogt from
Core; is o(1). This proves the statement for all v € [t/2].

Next, consider a vertex v € [t]\ [¢/2]. Lemma 6.5 implies that the probability that there exists
a vertex v € [t] \ [t/2] such that its k; -exploration graph contains more than one collision before
hitting Core;U[t/2] is o(1). As before, the number of vertices on the boundary of a k;-exploration
graph starting at v € [¢] \ [t/2] is at least N > s(m, l)mk’tr = s(m, 1)(logt)**¢. We denote these
vertices by x1,...,xy. We aim to show that, with high probability,

N
Ay =Y Lepsa = N/4 (6.54)
i=1
For every ¢ = 1,..., N, there exists a unique vertex y; such that y; is in the kj -exploration graph

and it is attached to x;. Obviously, if y; € [t/2] then also z; € [t/2], since x; has to be older than
yi. T i  [t/2], then

P (a1 € [1/2] | PAy, 1) = P (i = [1/2) | PA, 1) > 5, (6.55)

and this bound does not depend on the attaching of the edges of the other vertices {y;: j # i}.
This means that we obtain the stochastic domination

N
. 1
Ay > Z ]l(xie[t/Q]) = BIH(N, 5)7 (656)
=1

where we write that X > Y when the random variable X is stochastically larger than Y. By
concentration properties of the binomial, Bin(N , %) > N/4 with probability at least

1 — e N/ g _gms(mDogt) */4 _ 1 _ 51 jpy. (6.57)

Thus, the probability that none of the vertices on the boundary intersected with [t/2] is a success
is bounded by

P(Sg, N---NSg, | PAys) < (1 N+ o(1/t) = o(1/t). (6.58)

We conclude that the probability that there exists a vertex in [¢] \ [¢/2] such that it is at distance
more than k; + 2h; from Core; is o(1). O

This completes the proof of Statement 2.6, and thus of Theorem 1.5. O



44

CARAVENNA, GARAVAGLIA, AND VAN DER HOFSTAD

ACKNOWLEDGEMENTS

We thank the referees for their detailed comments, which improved the paper considerably.

The work of FC was partially supported by the ERC Advanced Grant 267356 VARIS and by the
PRIN 20155PAWZB “Large Scale Random Structures”. The work of AG was partially supported
by University of Milano Bicocca through an EXTRA scholarship that sponsored his visit to
Eindhoven University of Technology to complete his master project in March-May 2014. The work
of AG and RvdH is supported by the Netherlands Organisation for Scientific Research (NWO)
through the Gravitation NETWORKS grant 024.002.003. The work of RvdH is also supported by
NWO through VICI grant 639.033.806.

[Blo09]
[Bol01]
[Bol81]
[BRO4]
[BRSTO1]
[CGH16]
[CLO1]
[CLO02]
[DHH10]
[DMM12]
[EHHOS]
[FROT7]
[Hof17]

[Hof18+]
[HHVMO5]

[HHZ07a]
[HHZOTb]
[HK17]
[Jan09]

[RW10]

REFERENCES

Mindaugas Bloznelis. A note on loglog distances in a power law random intersection graph. Preprint
arXiv.org:0911.5127 [math.PR], 2009.

Béla Bollobas. Random graphs, volume 73 of Cambridge Studies in Advanced Mathematics. Cambridge
University Press, Cambridge, second edition, 2001.

Béla Bollobds. The diameter of random graphs. Transactions of the American Mathematical Society,
267(1):41-52, 1981.

Béla Bollobés and Oliver Riordan. The diameter of a scale-free random graph. Combinatorica, 24(1):5—
34, 2004.

Béla Bollobéas, Oliver Riordan, Joel Spencer, and Gabor Tusnddy. The degree sequence of a scale-free
random graph process. Random Structures Algorithms, 18(3):279-290, 2001.

Francesco Caravenna, Alessandro Garavaglia and Remco van der Hofstad. Diameter in ultra-small
scale-free random graphs: Extended version. arXiv.org: 1605.02714 [math.PR}], 2016.

Fan Chung and Linyuan Lu. The diameter of sparse random graphs. Advances in Applied Mathematics,
26(4):257 — 279, 2001.

Fan Chung and Linyuan Lu. The average distances in random graphs with given expected degrees.
Internet Mathematics, 1:15879-15882, 2002.

Sander Dommers, Remco van der Hofstad, and Gerard Hooghiemstra. Diameters in preferential at-
tachment models. J. Stat. Phys., 139(1):72-107, 2010.

Steffen Dereich, Christian Monch, and Peter Morters. Typical distances in ultrasmall random networks.
Adv. in Appl. Probab., 44(2):583-601, 2012.

Henri van den Esker, Remco van der Hofstad, and Gerard Hooghiemstra. Universality for the distance
in finite variance random graphs. Journal of Statistical Physics, 133(1):169-202, Oct 2008.

Daniel Fernholz and Vijaya Ramachandran. The diameter of sparse random graphs. Random Structures
Algorithms, 31(4):482-516, 2007.

Remco van der Hofstad. Random Graphs and Complex Networks, Volume 1. Cambridge Series in Sta-
tistical and Probabilistic Mathematics. Cambridge University Press, 2017.

Remco van der Hofstad. Random graphs and complex networks, Volume 2. 2018+4. Book in preparation.
Remco van der Hofstad, Gerard Hooghiemstra, and Piet Van Mieghem. Distances in random graphs
with finite variance degrees. Random Structures Algorithms, 27(1):76-123, 2005.

Remco van der Hofstad, Gerard Hooghiemstra, and Dmitri Znamenski. Distances in random graphs
with finite mean and infinite variance degrees. Electron. J. Probab., 12:no. 25, 703766, 2007.

Remco van der Hofstad, Gerard Hooghiemstra, and Dmitri Znamenski. A phase transition for the
diameter of the configuration model. Internet Math., 4(1):113-128, 2007.

Remco van der Hofstad and Julia Komjathy. When is a scale-free graph ultra-small? Journal of
Statistical Physics, Sep 2017.

Svante Janson. The probability that a random multigraph is simple. Combin. Probab. Comput., 18(1-
2):205-225, 2009.

Oliver Riordan and Nick Wormald. The diameter of sparse random graphs. Combinatorics, Probability
and Computing, 19(5-6):835-926, 2010.



	1. Introduction and results
	1.1. Configuration model and main result
	1.2. Preferential attachment model and main result
	1.3. Structure of the paper and heuristics
	1.4. Links to the literature and comments

	2. General structure of the proofs
	2.1. Lower bound
	2.2. Upper bound

	3. Lower bound for configuration model
	3.1. Proof of Statement 2.1
	3.2. Proof of Statement 2.2
	3.3. Proof of Statement 2.3

	4. Lower bound for preferential attachment model
	4.1. Alternative construction of the preferential attachment model
	4.2. Proof of Statement 2.1
	4.3. Proof of Statement 2.3
	4.4. Proof of Statement 2.2
	4.5. Proof of Theorem 1.6

	5. Upper bound for configuration model
	5.1. Proof of Statement 2.5
	5.2. Proof of Statement 2.6

	6. Upper bound for Preferential attachment model
	6.1. Proof of Statement 2.5
	6.2. Proof of Statement 2.6

	Acknowledgements
	References

