LOCAL LARGE DEVIATIONS
AND THE STRONG RENEWAL THEOREM

FRANCESCO CARAVENNA AND RON DONEY

ABSTRACT. We establish two different, but related results for random walks in the domain
of attraction of a stable law of index a. The first result is a local large deviation upper
bound, valid for a € (0,1) U (1,2), which improves on the classical Gnedenko and Stone
local limit theorems. The second result, valid for a € (0,1), is the derivation of necessary
and sufficient conditions for the random walk to satisfy the strong renewal theorem (SRT).
This solves a long-standing problem, which dates back to the 1962 paper of Garsia and
Lamperti [GL62] for renewal processes (i.e. random walks with non-negative increments),
and to the 1968 paper of Williamson [Wil6§| for general random walks.

1. INTRODUCTION AND RESULTS

This paper contains new results about asymptotically stable random walks. We first
present a local large deviation estimate which improves the error term in the classical local
limit theorems, without making any further assumptions (see Theorem . Then we exploit
this bound to solve a long-standing problem, namely we establish necessary and sufficient
conditions for the validity of the strong renewal theorem (SRT), both for renewal processes
(Theorem and for general random walks (Theorem . The corresponding result for
Lévy processes is also presented (see Theorem .

This paper supersedes the individual preprints [Carl5] and [Donl5].
Notation. We set N = {1,2,3,...} and Ny = N U {0}. We denote by RV () the class of
regularly varying functions with index 7, namely f € RV (y) if and only if f(x) = 27¢(x)
for some slowly varying function ¢ € RV (0), see [BGT89]. Given f, g : [0,00) — (0,00) we
write f ~ g to mean lims_,~ f(s)/g(s) =1, and f < g to mean lim,_,~ f(s)/g(s) = 0.

1.1. Local large deviations. Let (X;);cy be i.i.d. real-valued random variables, with law
F.Let 50:=0, 5, := X1 +...+ X, be the associated random walk and

M, = max{X1, Xo,..., Xn}. (1.1)

We assume that the law F' is in the domain of attraction of a strictly stable law with
index o € (0,1) U (1,2), that is, with F(x) := F((z,00)) and F(z) := F((—o0, x]),
q

= p
F(x) o A0 and F(—- o ) for some A € RV(a). (1.2)
More explicitly, if we write A(x) = x%/L(z), with L(-) slowly varying,

P(X>z) ~ p and P(X < —x)
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2 FRANCESCO CARAVENNA AND RON DONEY

We assume that p > 0 and ¢ > 0 (when ¢ = 0, the second relation in (1.2)) should be
understood as F'(—z) = o(1/A(x))). For a > 1, we further assume that E[X] = 0.

Without loss of generality, we may assume that A € RV («) is continuous and strictly
increasing. If we introduce the norming sequence a,, € RV (1/«) defined by

an == A71(n), neN, (1.3)

then S,,/a, converges in law to a random variable Y with a stable law of index « and

positivity parameter p =P(Y >0) =14+ L arctan(E-T tan %) > 0 (because p > 0).

Our first main result is a local large deviation estimate for S,,, constrained on M,,.

Theorem 1.1 (Local Large Deviations). Let F' satisfy (1.2)) with o € (0,1) U (1,2) and
p >0, and E[X] =0 if a > 1. Fiz a bounded measurable J C R. Given v € (0,00), there is
Co = Co(7,J) < 0o such that, for alln € N and = > 0, the following relation holds:

L/ on A
< < — | — .
P(S, € z + J, Mn_’YCL‘)_Coan <A(x)> , (1.4)

where [z] :=min{n € N: n >z} is the upper integer part of x. More explicitly:

1 n \"
) P(S, M, < vyx) < Co— : 1.
VkeN, Vyelg 1) (Spex+J, 773:)7000% e (1.5)
Moreover, for some C}, = C{(J) < oo,

1
P(Snésc—kJ)SC(’)a—A(x).

(1.6)

The non-local version of , where S, € x 4+ J is replaced by S,, > z, is known as a
Fuk-Nagaev inequality [Nag79]. This is the starting point of our proof of Theorem see
Section We prove through direct path estimates, combined with local limit theorems.
Relation is obtained as a simple corollary of with v = 1.

A heuristic explanation of goes as follows: for large z, if S,, € x + J, it is likely that
a single step X; takes a value y comparable to x. Since P(X; > cz) ~ 1/A(z) by (1.2)), and
since there are n available steps, we get the factor n/A(z) in (L.6). The extra factor 1/ay
comes from Gnedenko and Stone local limit theorems.

A similar argument sheds light on -. Under the constraint M, < vz, with v €

[%, ﬁ), the most likely way to have S, € x + J is that exactly k steps X;,,...,X;, take

values comparable to x/k, and this yields the factor (n/A(z))* in (I.5).

Remark 1.2. The classical Gnedenko and Stone local limit theorems only give the weak
bound P(S,, € x + J) = 0(&) as x/a, — 00. The inequality (1.6]) improves quantitatively
on this bound, with no further assumptions besides (|1.2]).

The Cauchy case a = 1 is left out from our analysis, because of the extra care needed to
handle the centering issues. However, an analogue of Theorem holds also in this case, as
shown by Q. Berger in the recent paper [Berl7].

Finally, it is worth stressing that the estimate is essentially optimal, under the mere
assumption (1.2]). However, if one makes extra local requirements on the step distribution,
such as e.g. below, one can correspondingly sharpen along the same line of proof,
see [Berl7, Theorem 2.4] (which is valid for any a € (0, 2)).
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1.2. The strong renewal theorem. Henceforth we assume that a € (0,1). We say that
F is arithmetic if it is supported by hZ for some h > 0, in which case the maximal value of
h > 0 with this property is called the arithmetic span of F. It is convenient to set

arithmetic span of F' (if F' is arithmetic) (1.7)

I =(-h,0] where h:= I . .
any fixed number > 0 (if F' is non-arithmetic) .

The renewal measure U(-) associated to F' is the measure on R defined by

U(dz) := Y F*(dz) = Y P(S, € dx). (1.8)

n>0 n>0
It is well known (see [BGT89, Eq. (8.6.1)-(8.6.3)] and |Chil5, Appendix]) that (1.2]) implies

C
U0,2]) ~ —A(@@), with C=Cla,p) =aB[Y ™ Tyag)  (19)
T—00
(recall that Y denotes a random variable with the limiting stable law). In the special case
when p =1 and ¢ = 0 in (.2) (so that p = 1) one has C = 1 sin(wa).
It is natural to wonder whether the local version of (1.9) holds, namely
A
U@x+1)=U((x —h,z]) ~ Chﬂ. (SRT)

T—00 €T
For a more usual formulation, we can write A(x) = 2%/L(z) with L(-) slowly varying:

1
This relation, called strong renewal theorem (SRTJ), is known to follow from ([1.2) when
o > %, see [GL62, Wil68| [Eri70, Eri71]. However, when a < % there are examples of F'

satisfying (1.2) but not (SRTJ). The reason is that small values of n in (1.8) can give an
anomalous contribution to the renewal measure (see Subsection for more details).

In order for the SRT to hold, when a < %, extra assumptions are needed. Sufficient
conditions have been derived along the years [Wil68, [Don97, [VT13] [Chil5l [Chil3], but
none of these is necessary. In this paper we settle this problem, determining necessary and
sufficient conditions for the SRT: see Theorem for renewal processes and Theorem [1.12
for random walks. We also obtain very explicit and sharp sufficient conditions, which refine
those in the literature, see Propositions and

Besides its intrinsic interest, the SRT for heavy tailed renewal processes has played and
is still playing a key role in a variety of contexts. Our results are already referred to in
several papers, from classical renewal theory [Chil8, Kev17, [Koll17] to random walks and
large deviations [Berl7, Berl8, [DSW18, [DW18, [Uchl§|, from dynamical systems [DNI17,
DNI18, IMT17] to interacting particle systems [FEMMV18]. The SRT has also played a key
role in applications, e.g. in pinning and related models of statistical mechanics, see [GiaQ7,
Hol09) [Giall]. We also point out that, as a future direction of research, our results are likely
to lead to an ultimate version of the key renewal theorem, in the context of random walks
with infinite mean (see [Eri70, [AA87] for partial versions).

Let us proceed with our results. For £ > 0 and = € R we set

_ A(l=)"

bi(x) = VI

(1.10)
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Note that by (z) = A(z)/z = (L(z)z'~*)~! for z > 1 is precisely the rate in the right hand
side of (SRT)). In the sequel, we will often need to require that some quantity J(d; x) is much
smaller than by (x), when x — oo followed by 6 — 0. This leads to the following

Definition 1.3. Throughout the paper we write “J(0;z) is a.n.” to mean that a function
J(6;x) is asymptotically negligible with respect to by, in the following precise sense:

L J(@byx) . J(0;x)
lim limsup = lim lim sup =
0—=0 z—toco bl(x) 0—=0 z—+co A(x)/x

(1.11)

We are ready to state our necessary and sufficient conditions for the SRT. We start with
the case of renewal processes, which is simpler.

1.3. The renewal process case. Assume that F' is a law on [0, c0) such that

— 1
F(x) s A for some A € RV (a), (1.12)

which is a special case of (1.2) with p=1, ¢ =0. For § > 0 and x > 0 we set

)2
I (6;) == /1< s F(:v—dz)bg(z):/1< . F(z —dz) A(z) .

z
The following is our main result for renewal processes.

(1.13)

Theorem 1.4 (SRT for Renewal Processes). Let F' be a probability on [0,00) satisfying
(1.12)) with o € (0,1). Define I = (—h,0] with h > 0 as in ([L.7)).

o Ifa> %, the SRT holds with no extra assumption on F'.
o Ifa< %, the SRT holds if and only if I (8;x) is a.n. (see Definition .

Let us spell out the condition “I; (§;2) is a.n.” explicitly in terms of F, by (L.11))-(L.13):
_ 1
“If (6;z) is a.n.” = lim limsup z F(x) / F(z —dz) —= =0
=0 z—o0 1<2<8x ZF(Z)2

This can be checked in concrete examples, if one has enough control on F(-). We will soon
deduce more explicit sufficient conditions, see Proposition which are almost optimal.

)

Interestingly, in the “boundary” case a = %, we can characterize the class of A(-)’s for

which the SRT holds with no extra assumption on F besides (I.12)) (like for a > 1).

Theorem 1.5 (SRT for Renewal Processes with a = 3). Let F be a probability on [0, o)
satisfying (L12) with « = 3 (so that A(z)/\/x is a slowly varying function). If
A A
sup (5) = O <($)> , (1.14)
1<s<z S xT—00 \/5

then the SRT holds with no extra assumption on F. (This includes the case A(x) ~ c\/x.)
If condition (1.14)) fails, there are examples of F' for which the SRT fails.

The proof of Theorem is based on direct probabilistic arguments and is remarkably
compact (~ 6 pages). We start in Section || recalling a reformulation of the SRT, which
can be paraphrased as follows: the contribution of “small n” to the renewal measure
is asymptotically negligible (see Subsection . In Section [4] we also derive two key bounds
on the contribution of “big jumps”, see Lemmas and We complete the proof of
Theorem in Subsection (necessity) and in Section [f] (sufficiency).
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1.4. Sufficient conditions for renewal processes. For a probability F' on [0, 00) which
satisfies ((1.12)), a sufficient condition for the SRT is that for some xg,C' < oo one has

C
> .
T A®@) YV > xg, (1.15)

Flx+1) <

as proved by Doney [Don97] in the arithmetic case (extending previous results of Williamson
[Wil68]), and by Vatutin and Topchii [VT13] in the non-arithmetic case.

Interestingly, if one only looks at the growth of the “local” probabilities F'(z + I), no
sharper condition than (1.15)) can ensure that the SRT holds, as the following result shows.
Proposition 1.6. Fiz A € RV(a) with a € (0,3), and let ¢ : (0,00) — (0,00) be an
arbitrary non-decreasing function with lim,_,~ ((x) = co. Then there exists a probability F
on [0,00) which satisfies (1.12)), such that F(z+ 1) = O(xﬁfx))), for which the SRT fails.

Intuitively, when condition (1.15)) is not satisfied, in order for the SRT to hold, the points
x for which F(x+1) > ﬁ(‘r) must not be “too cluttered”. We can make this loose statement

precise by looking at the probabilities F'((z —y,z|) = F(z) — F(x — y). The following result
provides very explicit conditions on F'(-) for the SRT.

Proposition 1.7. Let F' be a probability on [0,00) satisfying (1.12) with « € (0, %]
o A sufficient condition for the SRT is that for some v > 1 —2a and xg, C < oo one has

C ry\”
F((z —y,z]) < @) (5) Yo > x9, Vye [1,%;@. (1.16)

o A necessary condition for the SRT is that for every v < 1 — 2« there are xg,C < o0

such that (1.16)) holds.

Remark 1.8. The sufficient condition (1.16)) is a generalization of (1.15)). Indeed, (1.15)
yields F((x —y,z]) < Zgi@ Flx—hj+1)<(f+2) %{x) for some C’, hence when y > 1
condition (L.16)) holds with v =1 and C = (3 +2)C’ (recall that h > 0 is fized, see (L.7)).

Remark 1.9. Other sufficient conditions for the SRT, which generalize and sharpen (1.15)),
were given by Chi in [Chil5l [Chil3]. These can be deduced from Theorem .

Remark 1.10. Conditions similar to (1.16)), in a different context, appear in [CSZ16].

We point out that if F' satisfies (1.12)), then (1.16)) holds with v = 0. However, with no
extra assumption, one cannot hope to improve this estimate, as Lemma below shows.

To see how condition (1.16]) appears, let us introduce the following variant of (1.13)):

oz —z,x ox T — 2, z
I (5;2) ::/1 F((:UZ’])bg(z)dz: : F( . ) A(z)2 dz. (1.17)

Our next result shows that one can look at I,"(8;x) instead of I;F(5;z).
Proposition 1.11. Let F be a probability on [0,00) satisfying (1.12) with « € (0, %]
o If f{"(d; ) is a.n., then also I} (8;x) is a.n., hence the SRT holds.

o When a < %, the converse is also true: ff(&; z) is a.n. if and only if I (6;z) is a.n..



6 FRANCESCO CARAVENNA AND RON DONEY

1.5. The general random walk case. We now turn to the general random walk case,
which is more challenging. We assume that F' is a probability on R which satisfies with
€ (0,1), p > 0 and ¢ > 0. Note that the associated random walk is transient, because
an € RV (1/a) and then ) P(S, € (0,1]) <> ey % < o0 (see below).
Let us generalize as follows: for § > 0 and = > 0 we set:

L(6;x) ::/ F(z +dy)ba(y) . (1.18)
ly|<dz
For k € N with k > 2, we introduce a further parameter n € (0,1) and we set
RGma)i= [ Favdnw) [ [ P i) bealn).
ly1|<oz ly;1<nlyj—1] for 2<j<k (1.19)
where Py (dyz, ..., dyk) = F(—y1 + dy2) F(—y2 + dys) - - F(—yk—1 + dy) -
Note that Py, (dya,...,dyy) is the law of (Sa,...,Sk) conditionally on S; = y1, hence
Ie(8,m; %) = E [brg1(Sk) Ly, <), o] for 2<j <k} sy <o} | So = =] - (1.20)

The same formula holds also for k =1 (where the first indicator function equals 1).
Let us define

(0 ifae(3,1)
. 1 ifae(3, 3]
Ko 1= {J —1={2 ifae(s 3] , (1.21)
«
(m 1fa€(m+2,mil]

We are going to see that, when 1/a ¢ N, necessary and sufficient conditions for the SRT
involve the a.n. of Ix(d,m;x) for k = ko. The case 1/a € N is slightly more involved. We
need to introduce a suitable modification of ([1.10]), namely

- - |2l
be(z, ) = br(|z], |z|) ::/ bk—(t)dt, (1.22)

where the integral vanishes if || > |z|. We then define I,(d;x) and I (J,7; ) in analogy
with (L.I8) and (LT.19), replacing ba(y) by ba(dz,y) and bei1(yk) by brs1(Ya—1, Un):

L(6;x) = / F(x + dy) by(0z,y), (1.23)
ly|<dz
and for k£ > 2:
(6, m; ) = / (z +dy1) / / Py, (dya, - -, dyi) berr (ye—1,96) - (1.24)
ly1|<éx lyil<nly;—1| for 2<5<k
Note that, by Fubini’s theorem, we can equivalently rewrite (1.23)) as follows:
dx
~ F —1 t
1(6;2) = / (@=twtt) ) oar, (1.25)
0 tv1

which is a natural random walk generalization of ((1.17]).

We can now state our main result for random walks.
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Theorem 1.12 (SRT for Random Walks). Let F' be a probability on R satisfying (1.12)
with o € (0,1) and with p,q > 0. Define I = (—h,0] with h > 0 as in (1.7).

o Ifa> %, the SRT holds with no extra assumption on F.
o Ifa< % and i ¢ N, we distinguish two cases:
- if a € (3,3), i.e. ko =1, the SRT holds if and only if I1(6;z) is a.n..
-ifa € (%—‘1-27 k%rl) for some k = ko > 2, the SRT holds if and only if I, (5,n;x)
is a.n., for every fized n € (0,1).
o Ifa< % and é € N, the same statement holds if we replace Iy, by I, namely:
-ifa= %, i.e. ko =1, the SRT holds if and only if I,(8;x) is a.n..

-ifa= k%rl, for some k = ko > 2, the SRT holds if and only if fﬁa(é,n;m) is
a.n., for every fized n € (0,1).

We stress that the conditions that Ij, and Iy, are a.n. can be spelled out in terms of F.
Indeed, in the definitions (1.18)-(1.24)) of Iy and Iy, we can replace bi(y) by the equivalent
expression 1/{(Jy| vV 1) F(y)*}, which depends only on F. Moreover, the condition that a

quantity J(J;x) is a.n. can be rephrased using only F (see (1.11]), (1.2))):
“J(d;x) is a.n.” = %iné limsup x F(x) J(§;2) =0.
H

T—r0o0

In Appendix [A| we show some relations between the quantities I, and Ij,. These lead to
the following clarifying remarks.

Remark 1.13. The condition “f,.;a is a.n.” is stronger than “I., is a.n.”, but for = ¢ N
they are equivalent (see Lemma . As a consequence, we can rephrase Theorem m
a more compact way as follows:

with no extra assumption for a > %
The SRT holds: { iff I,(6;x) is a.n. for i <a<i (1.26)
iff I, (6,m;2) is a.n. for everyn € (0,1) for a < %

When o < %, our proof actually shows that if fma(é,n;x) is a.n. for some n > 1 — 1%,
then (the SRT holds and consequently) it is a.n. for every n € (0,1). It is not clear whether

the a.n. of 1:,{&((5,77;:3) for some n <1 — 1% also implies its a.n. for any n € (0,1).

Remark 1.14. Ifé ¢ N, the condition “I, (6,m;x) is a.n.” is equivalent to the seemingly
stronger one “Iy(6,m;x) is a.n. for all k € N7 (see Lemma [4.9). Similarly, the condition
“I.,(6,m;2) is a.n.” is equivalent to “Ix(6,m;x) is a.n. for all k € N” (see Lemma .

Remark 1.15. In Theorem we require q¢ > 0 (that is the positivity index p is strictly
less than one), but a large part of it actually extends to ¢ = 0. More precisely, when ¢ =0,
our proof shows that if o > % the SRT holds with no extra assumption on F, while if o < %
the a.n. of I, (if L ¢N) or I, (if L € N) are sufficient conditions for the SRT. However,

when g = 0, we do not expect the a.n. of I, or INM to be necessary, in general.

1.6. Sufficient conditions for random walks. Necessary and sufficient conditions for
the SRT in the random walk case involve the a.n. of Iy for a suitable k = ko € N. Unlike
the renewal process case, this cannot be reduced to the a.n. of just I;.
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Proposition 1.16. For any « € (0, %), there is a probability F' on R which satisfies (1.12]),
such that I, (8;x) is a.n. but Is(8,n;x) is not a.n., for any n € (0,1) (hence the SRT fails).

Let us now give simpler sufficient conditions which ensure the a.n. of I,. Note that the
condition that I;(d; x) is a.n. only involves the right tail of F' (see Definition|1.3). To express
conditions on the left tail of F', we define

ox —r—t —x
f;*(a;x);:/o F( o )y at (1.27)

which is nothing but I;(6; z) in (L.25) applied to the reflected probability F*(A) := F(—A).

Proposition 1.17. Let F' be a probability on R satisfying (1.12)) with o € (0, %] and p > 0,

q > 0. If both I,(6;x) and I;(8;x) are a.n., then the SRT holds.

In particular, a sufficient condition for the SRT is that there exists v > 1 — 2« such that
relation holds both for F' and for F* (i.e., both as x — +00 and as © — —o0).

In particular, the SRT holds when the classical condition holds both for F' and F*.

1.7. Lévy processes. Let X = (X;):>0 be a Lévy process with Lévy measure II, Brownian
coefficient 02 and linear term p in its Lévy-Khintchine representation, that is

log E[e?®X1] = i — 92 + / (%" — 1 — i0x1 |4)<1y) T(dz) . (1.28)
2 R\{0} -

Whenever X is transient, we can define its potential or renewal measure by
oo
G(dx) = / P(X; € dz)dt.
0

We assume that X is asymptotically stable: more precisely, there is a norming function
a(t) such that X;/a(t) converges in law as t — oo to a random variable Y with a stable law
of index « € (0,1) and positivity parameter p > 0. In this case

1 1

Az) = i) = ({50 € RV(a) as r — 400,

and we can take a(-) = A71(-). Under these assumptions, the renewal theorem holds,
just replacing U([0, z]) by G(]0, z]). It is natural to wonder whether the corresponding local
version holds as well, in which case we say that X satisfies the SRT.

Our next result shows that this question can be reduced to the validity of the SRT for a
random walk whose step distribution F' only depends on the Lévy measure II, namely:

F(dz) == ¢ IR\ (=1,1)) o (1.29)
0 for |x] <1
Theorem 1.18 (SRT for Lévy Processes). Let X be any Lévy process that is in the domain

of attraction of a stable law of index o € (0,1) and positivity parameter p > 0 as t — oo.
Suppose also that its Lévy measure is non-arithmetic. Then X satisfies the SRT, i.e.

lim e I(z) G((x — h,z]) = ha BY " 1iysqy] Vh >0, (1.30)

if and only if the random walk with step distribution F defined in (1.29)) satisfies the SRT.
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As a consequence, the necessary and sufficient conditions for the SRT in Theorems
and[1.12|can be applied to the Lévy process X. We recall that these conditions can be spelled
out in terms of the probability F' alone (see the comments after Theorems and .
Then, for a Lévy process X, we have necessary and sufficient conditions for the SRT that
can be spelled out explicitly in terms of the Lévy measure 11, through F' defined in .

The proof of Theorem [[.I8] given in Section [J] is obtained comparing the Lévy process
X with a compound Poisson process with step distribution F'.

Remark 1.19. [t is known, see [Ber96, Proof of Theorem 21 on page 38|, that the potential
measure G(dz) of any Lévy process X coincides for x # 0 with the renewal measure of a
random walk (Sp)n>o0 with step distribution P(Sy € dz) := [° e " P(X; € dz)dt. It is also
easy to see that X is in the domain of attraction of a stable law of index o € (0,1) and
positivity parameter p > 0, with norming function a(t), if and only if the random walk S is
in the domain of attraction of a the same stable law with norming function a(n).

So, if we write down necessary and sufficient conditions for S to verify the SRT, these
will be necessary and sufficient conditions for X to verify the SRT. However this approach is
unsatisfactory, because one would like conditions expressed in terms of the characteristics of
X, i.e. the quantities I1, 02, 1 appearing in the Lévy-Khintchine representation (1.28), and
the technical problem of expressing our necessary and sufficient conditions for S to satisfy
the SRT in terms of these characteristics seems quite challenging.

1.8. Structure of the paper. The paper is organized as follows.
e In Section [2] we recall some standard results.
e In Section [3] we prove Theorem
e Sections are devoted to the proofs of Theorems [I.4] and
- In Section [f] we reformulate the SRT and we give two key bounds.
- In Section [5] we prove the necessity part for both Theorems [1.4] and
- In Section [6] we prove the sufficiency part of Theorem

- The sufficiency part of Theorem is proved in Section E for the case a > %
The case o < % is treated in Section @ and is much more technical.

e In Section [0 we prove “soft” results, such as Theorem [I.5] Propositions
and Theorem [I.18], which are corollaries of our main results.

e In Section [I0] we prove Propositions [I.6] and [I.16], which provide counter-examples.

e In Appendix [A] we prove some technical results.

2. SETUP

2.1. Notation. We recall that f(s) < g(s) or f < g means f(s) = O(g(s)), i.e. for a
suitable constant C' < oo one has f(s) < Cg(s) for all s in the range under consideration.
The constant C' may depend on the probability F' (in particular, on «) and on h. When
some extra parameter € enters the constant C' = C¢, we write f(s) <. g(s). If both f < g
and g < f, we write f ~ g. We recall that f(s) ~ g(s) means lim,_,~ f(s)/g(s) = 1.
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2.2. Regular variation. Without loss of generality [BGT89, §1.3.2], we can assume that
A :]0,00) — (0,00) is differentiable, strictly increasing and such that
A(s)

Al(s) ~ a——, as s — 00. (2.1)

We fix A(0) := 1 and A(1) := 1, so that both A and A~! map [1,00) onto itself. We also
write a, = A~ (u) for all u € [%, o0), in agreement with ([1.3).

We observe that, by Potter’s bounds, for every ¢ > 0 one has

A
Pt < A((ps)) Se p”C, Vp € (0,1], s € [1,00) such that ps>1. (2.2)
s
More precisely, part (i) of [BGT89, Theorem 1.5.6] shows that relation (2.2)) holds for ps > .,
for a suitable Z. < oo; the extension to 1 < ps < . follows as in part (ii) of the same theorem,
because A(y) is bounded away from zero and infinity for y € [1, Z].
We also recall Karamata’s Theorem [BGT89, Propositions 1.5.8 and 1.5.10]:

: . 1
if fe RV(¢) with ¢ > —1: Sgtf(s) ds ~ ;f(n) i~ ﬁtf(lt), (2.3)
tfeRV(Qwith (<1t [ fla)ds ; i) ~ C;llt 0. (24

2.3. Local limit theorems. We call a probability F' on R lattice if it is supported by vZ+a
for some v > 0 and 0 < a < v, and the maximal value of v > 0 with this property is called
the lattice span of F. If F is arithmetic (i.e. supported by hZ), then it is also lattice, but
the spans might differ (for instance, F({—1}) = F({+1}) = 1 has arithmetic span h = 1
and lattice span v = 2). A lattice distribution is not necessarily arithmeticﬂ

Recall that, under , S /ay converges in distribution as n — oo toward a stable law,
whose density we denote by ¢ (the norming sequence a,, is defined in (|1.3)). If we set

J = (—0,0] with Y lattice span of F (1f F ?s lattice) o (2.5)
any fixed number > 0 (if F' is non-lattice)
Gnedenko’s and Stone’s local limit theorems [BGT89, Theorems 8.4.1 and 8.4.2] yield
lim sup anP(Sn€x+J)—v¢<$>‘:0. (2.6)
n—o0 x€R n
Since sup, g ¢(2) < 00, we obtain the useful estimate
1
supP(S, € (x —w,z]) Sw — (2.7)
TER an

which, plainly, holds for any fixed w > 0 (not necessarily the lattice span of F').

3. PROOF oF THEOREM [L.1]

We prove (1.4, equivalently (1.5, by steps. Without loss of generality, we assume that
J C [0,00) (it suffices to redefine x + 2’ := x + minJ and J +— J' := J — min J).

I F s lattice, say supported by vZ + a where v is the lattice span and a € [0,v), then F is arithmetic if
and only if a/v € Q, in which case its arithmetic span equals h = v/m for some m € N.
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Step 1. Our starting point is an integrated version of ([1.4)):

1/y
n
Vy € (0,00) : P(Sp >z, M, <vzx) <y <A($>> . (3.1)
This is a Fuk-Nagaev inequality, which follows from [Nag79, Theorems 1.1 and 1.2] (see
[Berl7, Theorem 5.1] for a more transparent statement). Let us be more precise.

e Case a € (0,1). We apply equation (1.1) from [Nag79, Theorem 1.1] (neglecting the
first term in the right hand side, which is the contribution of M, > y): for every
y € (0,2] and t € (0,1], if we define A(t;0,y) :=n [ u’ F(du), we have

e \V_ ([ At0,y)\
P(SanUanSy)Sl%:(Hwtl) §<6$ytl> .

A(t;0,)
We fix ¢t € (1], so that A(t;0,y) < n []tz'"' F(z)dz < ny'/A(y), thanks to (1.2
and ([2.3). Taking y = vz, since A(y) 2, A(x), we obtain (3.1]).
e Case a € (1,2). We apply equation (1.3) from [Nag79, Theorem 1.2]: for y € (0, z] and
t € [1,2], setting A(t; —y,y) := nffy |ul F(du) and pu(—y,y) == nffqu(du),

x

ev

o Ifu(;y,y)+A(tﬁty*y) :
Tyt~ y

(1 - A(t;fy,y)>

We drop the term A(t,—y — y)/y* > 0 from the exponent and get an upper bound.

Next we fix t € (o, 2], so that A(t; —y,y) < ny'/A(y) as before, hence

r(=y,y)

P(Sh > @, My < y) < ¢ < () (1AW
( Aw) z—p(—y,y) A(y) Yy n
1+ ﬁ—y ) Y

n

If we fix y = vz, the first term in the right hand side matches with (3.1]). It remains
to show that the second term is bounded. Since we assume that F' has zero mean, we

can write |u(—y,y)| = ]—nfMZqu(du)\ < ny/A(y), by (1.2)) and (2.4)), therefore for
y = vy the second term is < (1 + %)”/A(y) < exp(%). This proves (3.1)).
Step 2. Next we deduce from (3.1)) the following relation
P(S oy <ty < L ()
n ] n S 9 - 5 32

which is rougher than (T.4), due to the factor 3 and to the exponent 1/v instead of [1/7].
Define Xz = Xpq1-i, for 1 <4 < mn, and let (S'k = Xl +...+ Xk = Sp — Sn—k)1<k<n be
the corresponding random walk, which has the same law as (Sg)i1<k<pn. Then
P(Sy €2+, S| < & My < 3y2) =P(S, € 2+ J, Sjpjo) < &, M, < 37y2)
= P(Sn €x+J, Sp— S[n/2'| < %7 M, < %Vx)
< P(Sn cx+J, S[n/ﬂ > %7 M, < %’71‘)7

where the second equality holds because S, =S, and M, = M,,, while for the inequality
note that S, > z (by J C [0,00)). To lighten notation, henceforth we assume that n is even
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(the odd case is analogous). It follows from the previous inequality that
P(Sp € x+J, My < 5v2) <2P(Sp € x+ J, Sppp > 5, My, < 1)

< 2/ P(Sn/g € dz, Mn/g 2’}’%) P(Sn/g cEr—z+ J)
z>

NIE

R ety e L\
> = < s —
~ )2 ( n/2 Z g%, Mp/2 > Q’WE) ~ a, <A(l’)> ’

where we have used (2.7]) and (3.1)).

Step 3. Next we prove relation ((1.6)), i.e. we show that

1 n
P < — . .
(Sn€w+J)Nan A() (3.3)
This is easy: if we fix € = % by ( . we can write
P(S,€ex+ J, M, >ex)<nP(S,cx+J, X1 >¢€x)
— 1 n (3.4)
=n F(dy)P(Sp—1€ex—y+J) S Flex) Se — .
y>ex ( y) ( o Y ) Gp—1 ( ) ‘ QA A(:U)
Applying (3.2) with v = 1, we see that (3.3 holds.
Step 4. Finally we prove . The case k = 1, that is v € [ 00), follows by (B.3).

Inductively, we fix k € N and we prove that . holds for v € [ T k) assuming that it
holds for v € [f k%) Let us fix € := (k+1) By (3.2] . where we choose v = 2¢) we get

1 n \VC) N
<er) < — . ,
pis, s < e ()" L ()

Gn

It remains to consider

P(Sp,ex+J, ex < M, <~yzx) <nP(S,cxz+J, X1 >ex,M, <~vz)

/ Y P(Sn—1 €x—y+J, My_1 <~x)

| /\

/\

nF(ex) sup P(S,_1€z+J, M, 1 <~vzx).
z2(1=7)z

Observe that, for z > (1 — v)z, we can bound

P(Sp—1 €2+ J, My <yx) <P(Sh1 € 2+ J, My <9/2), with ~:= %
-7
The key observation is that 7/ € [,1€, kl 1), since 7y € [k T k) By our inductive assumption,

relation ) holds for v/, so P(S—1 € 2+ J, My_1 <7'2) <y - (AL) and we get

~7 an VA(z)

B 1 n k 1 n k+1

which completes the proof. I
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4. STRATEGY AND KEY BOUNDS FOR THEOREMS [[.4] AND [[L12]

4.1. Reformulation of the SRT. It turns out that proving the SRT amounts to showing
that small values of n give a negligible contribution to the renewal measure. More precisely,
if F'is a probability on R satisfying (|1.2)), it is known that (SRT]) holds if and only if

T(5z):= » PSpex+I) isan, (4.1)
1<n<A(éx)

see [Child, Appendix| or Remark below.
Applying Theorem it is easy to show that (4.1) always holds for o > % Since n/ay,
is regularly varying with index 1 — 1/a > —1, by ((1.6)) and ({2.3))

1 n 1 A(6x)? 90—1A(x)
E P(Sy I) < g — < ~ 520 ’

n " A(r) dx a0 x
1<n<A(éz)

from which (4.1)) follows, since 2a — 1 > 0. We have just proved Theorems (md for
o > % In the next sections, we will focus on the case o < %

Remark 4.1. It is easy to see how (4.1)) arises. For fized 6 > 0, by (L.8) we can write

Uz + 1) > > P(S,cx+1). (4.2)
A(éz)<n§A(%$)

Since P(S, € x + 1) ~ % ?(;=) by (2.6) (where we take h = v for simplicity), a Riemann
sum approzimation yields (see [Chil5, Lemma 3.4])

=

A
> P(S,€x+1)~h (z) C(6),  with C(6)= a/5 227 2(1)dz.
x
A(6z)<n<A(Lz) J
Since limg_,g C(6) = C, proving (SRT|) amounts to controlling the ranges excluded from

[@2), i.e. {n < A(0z)} and {n > A(32)}. The latter gives a negligible contribution by
P(S, €ex+1) < C/ay (recall (2.7))), while the former is controlled precisely by (4.1).

4.2. Key bounds. The next two lemmas estimate the contribution of the maximum M,,,
see (1.1]), to the probability P(S,, €  + I). Recall that k, is defined in (1.21)).

We first consider the case when there is a “big jump”, i.e. M,, > vz for some v > 0.
Lemma 4.2 (Big jumps). Let F satisfy (1.2)) for some A € RV («), with o € (0,1). There
is 1 = 1q > 0 such that for all § € (0,1], v € (0,1) and z € [0,00) the following holds:

V> Kq Z nt {Sup P(S,€z+1, M, > 'yx)} St 0" bpgr () (4.3)
1<n<A(dz) z€R
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Proof. For 0z < 1 the left hand side of (4.3) vanishes, because A(dz) < A(1) = 1. Then we
can assume that dx > 1, hence x > 1. Recalling (2.7, we can write

P(S,€z+1, My >~z) <nP(S,€z+1, X; > yzx)

:n/ P(X edw) P(Sp-1 € z—w+1)
w>yx

(4.4)
<nP (X >~x) {supP(Sp-1 €y+1)
yeR
< n 1o n 1
~ A(vz) ap 7 Alx) an’
therefore
1 /41
Z nt supP (Sp, € 2+ 1, My, > vx) ¢ Sy Z =
z€R A(x) an
1<n<A(5x) 1<n<A(0w) (4.5)
< 1 A(ox)t+?
~t A(x) oz 7

by (2-3), because n‘™!/a, is regularly varying with index (€ + 1) — 2 > (ko +1) — 1 =

HJ — é > —1. Let us introduce a parameter b = b, € (0, 1), depending only on «, that will

o
be fixed in a moment. Since we assume that dz > 1, we can apply the upper bound in ({2.2)
with € = (1 — b)a and p = §, that is A(0z) < §**A(x), which shows that (4.5)) is

< gha(tr2)-1 Afz) ! < ghalrat?)-1 Afz) !

T T

because 6 < 1 and ¢ > Kk, by assumption. Since a(kq+2) > 1 (because ko +2 = Léj +1 > é),
we can choose b = b, < 1 so that the exponent of § is strictly positive (e.g. by = {a(kq +
2)}~1/2). This completes the proof. i

)

We next consider the case of “no big jump”, i.e. M,, < vyx. The proof exploits in an
essential way the large deviation estimate provided by Theorem

Lemma 4.3 (No big jump). Let F satisfy (L.2)) with o € (0,1). For any v € (0, 1%5) there
is 0 = 0o > 0 such that for all § € (0,1] and x € [0,00) the following holds:

VE>0: > 0P (Spex+I, My <vx) Spp 8 bppa(z). (4.6)
1<n<A(6z)

Proof. As in the proof of Lemma we can assume that > 1 and dx > 1 (since otherwise

the left hand side of (4.6 vanishes). By (1.4))

1 Z ntts 1 A(éx)u%ﬂ

Z n'P (S, €x+1I, M, <~x) < ,
an 0T

1 1
1<n<A(62) A(®)7 1<p<a(sz) A(x)~

1
where we applied ([2.3)), because the sequence n'ts /ay, is regularly varying with index ¢ +
% — é > ITTQ — é = —1. By the upper bound in (2.2)), since £ > 0 and 6 < 1 we get

A((Sx)ﬁ%ﬂ <. 5(afe)(z+§+1)A(x)e+§+1 < 5(0176)(5“)14(3?)”%“.

Since v < 1%, we can choose € = €4, > 0 small enough so that (o — e)(% +1)>1. 1
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5. PROOF OF THEOREMS [L.4] AND [[. T2} NECESSITY

In this section we assume , which is equivalent to the strong renewal theorem (SRT}),
and we deduce the necessary Condltlons in Theorems [1.4] and [1.12] We can actually assume
(4.1) with I = (—h,0] replaced by any fized bounded mtemal J. Indeed, if J = (—v,0] (for

simplicity), we can bound P(S E z+J) < ZLU/h P(S, € v+ I), with zy :== 2 — Eh.
Note that, since we assume , the following holds:

for any fixed k € N: P(Spex+J) = o(bi(z)). (5.1)

T—00

5.1. Necessity for Theorem Let us fix a probability F' on [0,00) satisfying (1.12))
with o € (0,1). We assume ([4.1]) and we deduce that I (5;z) is a.n. (recall (1.13)).

We need some preparation. Let us define the compact interval

By ([2.6)), since inf,cx ¢(2) > 0, there are n; € N and ¢, ¢2 € (0,00) such that

Vi > n inf  P(Spez+J)> L (5.3)
z€R: z/an€K an
Vn e N: supP(SnEz—i—J)Sc—Q. (5.4)
z€R Qn

Then, since F((—o0, —z] U [x,00)) S 1/A(z), we can fix C' € (0,00) such that
1
VneN:  F((—oo0,~Cap]U[Cap,00)) < —- = (5.5)

~ 2 n

(Of course, we could just take F'([Cay, 00)), since F((—00,0)) = 0, but this estimate will be
useful later for random walks.) We also claim that

1
Yn > n : inf  P(S, €2+ J, max{|X1],...,|Xn|} < Can) > 2L —.  (5.6)
z€R: z/aneK 2 an

This follows because P(S,, € z 4+ J) > ¢1/ay, by (5.3)), and applying (5.4)), (5.5) we get

P(S, € z+J, 31 <j <n with |X;| > Cay,)
TLF((—OO, _Can] U [Cana OO)) C2 < C1

<n / F(dy) P(Sn_r € 2 —y+ J) <

an, = 2a,
ly|>Can
We can now start the proof. The events B; := {X; > Cap, maxjeqy . n1p\fi} Xj < Can}
are disjoint for ¢ = 1,...,n, hence for n > n1 we can write

P(Sn+1 cx+ J)
>n+1)P(Spy1 € v+ J, max{Xy,..., X,,} < Cap, Xpny1 > Cay)

Zn/ P(Xp41 €x—dz)P (S, € 2+ J, max{Xy,..., X} <Ca,) (5.7)
{z<z—Can}

cl n
> F(r—dz) — — 1., ,
B /{z<x Can} ( ) 2 ap {z/anek}
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where the last inequality holds by ([5.6). We are going to choose n < A(dz), in particular
z—Ca, >xz—Céx > %x for § > 0 small enough. Restricting the integral, we get

> P(Saprcx+J) Z/ F(x —dz) ( > aﬂ ]l{z/aneK}> :

é
n1<n<A(éx) {37} n1<n<A(dx) "

Note that z/a, € K means 1a, < z < a,, that is A(z) < n < A(2z), so in the range of
integration we have A(2z) < A(dz). If we further restrict the integration on z > a,,, we also
have A(z) > nj. This leads to the following lower bound:

Y Mz Y 2220 a0 -1) 2

n an, 2z
n1<n<A(dx) A(z)<n<A(2z)

A(2)?

= bQ(Z) s

where the last inequality holds for z > a,, large (just take n; large enough). Then

Z P(Spt1€x+J) 2 / F (x —dz) ba(2)

n<n<A(5z) {an, <2<ga}
> I (5:2) = CF(lz — any, 2 — 1),
where €' := SUD|;|<a,, ba(z) < oo. The left hand side is a.n. by (4.1]), hence the right hand
side is a.n. too. Since F([x — an,,z]) is a.n. by (5.1)), it follows that I (5;z) is a.n.. W

5.2. Necessity for Theorem [1.12. Let F' be a probability on R satisfying with
a € (0,1) and p,q > 0. We assume (4.1)), which is equivalent to the , and we deduce
that .fl(é; x) is a.n. and, for any k£ > 2, that fk(é, n; x) is also a.n., for every fixed n € (0,1).
This completes the proof of the necessity part in Theorem (see Remarks 1.14]).

Remark 5.1. For |x| > 1 and |z| > |z| we can rewrite (1.22)) as
- || All2D) (AL 1 A(lz]) - gk—1
bp(z,x) = / bk—(t)dt = / Ok — (5)) T ds =~ / %ds,
o] 0 Agzpy  ATHs)  A(AN(s)) A(zl) A7H(s)
by and (1.10) (we recall that =~ means both < and 2). Recalling also (1.3), we obtain

B k-1
bp(z, ) ~ Z

A(lz)) <n<A(]2])
Since we assume that p,q > 0 in , the density ¢(-) of the limiting Lévy process is
strictly positive on the whole real line. In particular, instead of , we can define
K :=[-1,1], (5.9)
and relations ((5.3]), , , still hold, where n; € N is fixed (it depends on F).

Let us show that I;(d;x) is a.n.. This is similar to the case of renewal processes in Sub-
section In fact, relation (5.7)) with X; replaced by |X;| and z replaced by —y gives

(5.8)

an

n

PSaca+ Nz [ Fatdy) Lo (5.10)
|lz+y|>Can n
because K = [—1, 1]. Note that for n < A(dx) we have a,, < 0x < z — Ca,, for 6 > 0 small,
hence we can ignore the restriction |z + y| > Cay,. Next we write, by (5.8)),

A(dz) A(dz)
n n ~
> o Lwiseny = Lipisany D o 2 Lyison b2(62: [yl V any)

n=ni " n=A(y)Vni
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For |y| < an,, 52(5x1|y] Vap,) = 52((53!:~7 an, ) differs from by (dz, |y|) at most by the constant
C =3 <n, ars 80 ba(6z, [y V an,) > ba(d, |y|) — C' 1y <Ky, with K := ap,. This yields

Z P(Spy1€x4+J) 2 L(6;2) —CF(z — K,z + K]).
1<n<A(dz)

Since we assume that (4.1) holds, and we have F([z — K,z + K]) = o(b1(x)) as z — oo, as
we already observed in (5.1)), it follows that I;(d; x) is a.n..

Next we fix k > 2 and n € (0,1) and we generalize the previous arguments in order to
show that Iy (0,m;x) is a.n., see (1.24). Inductively, we assume that we already know that

I, (0; x), fg(é, n;x), ..., Ix—1(0,m; ) are a.n.. Suppose that z1,- - -z, € R satisfy
i > - — <
min 2] > Can, (21 4.+ z) — 2l <an,

and set yg := = — (21 + ...+ 2x). Then, for n > n;, we can write

PE1<ji <jo<---<jr <nwith X;, €dz,..., Xj, €dz, and Syqp € v+ 1)
> <n2¢_k)P(Xr€dzr Visr<k, Xj¢{da, - da} Vh<j<ntk, Sppp € +1)
>n*P(X, €dz., V1 <r<k)P(X;| <Can, V1<j<n, S, €ys+1)
ZZ}CP(XTEdZT, Vi<r<k),

having used (5.6)) in the last inequality. It follows that for n > n; we have the the bound

k
P(Sn+k€w+l)2nP<min |1 Xr| > Cap, |(X14...4+Xk) —2| < an>

an  \1<r<k
nk

= 7P71. min |Sfr - Sr—l’ 2 Caru |S]€| S Qn ’
Qnp, 1<r<k

where P_, denotes the law of the random walk S, := —z + (X; + ...+ X,), » > 1, which
starts from Sy := —x.
If we fix n € (0,1), and define 77 := 1 — 1), we can write

{ min |[S, — S,_1| > Can} D {\Sr = S,—1| > 7|Sr—1] and |S,_1| > Cap V1<r< k} )
1<r<k 7

For r = 1, |S,—1] > %an reduces to x > %an, which holds automatically, since we take
n < A(dz) with 6 > 0 small, while |S, — S,_1| > 7|S,_1| becomes |S; + z| > 7z, which
is implied by |S1| < %5:5, for 6 > 0 small. For r > 2, |S, — S,_1| > 7|S,_1| is implied by
|Sy| < n|Sp—1|, since 7 =1 —n. Thus

min |S, — S,_1| > Can p 2 {151 < Eox, |S:| <n|Sr—1|, V2 <7<k, [Sp1|> %a,},
n n

1<r<k
where the last term is justified because |Sy_;| = ming<,<x_1 [S;—1| on the event. Thus

k
"1

P(Spypr€x+1) 2 E, [l{sl|<§5;¢, 1S |<nlSr—1], V2<r<k} ( {A(|Sk)§n§A(g.|Sk1|)}>] :

Qn
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Let us now sum over ny < n < A(dz). Note that A(Z|Sk_1]) < A(Z|S1]) < A(6z), hence

> P(Sppr€x+])
n1<n<A(dz) (5.11)

R Boa []l{lsns%éw, 15, 1S v2zrhy Vit (11 |5 v“”l)} ’

where we recall that l~)k+1 is given by (/5.8). The right hand side can be rewritten as

/ F(x + dy1) Py, (dya, - - ., dyg) b1 (elyp—1], [ya| V €)
ly1| <oz (5.12)
lyr|<n|yr—1] for all 2<r<k
where 5':%6, e=2L, c=ap,.

This is like 1}(5’,77; x), see ([1.24)), except that Ekﬂ(yk,l, Yr) = l;k+1(]yk,1|, lyk]) in (1.24)) is
replaced by byi1(€lyg—1], lyx| V c). We now show that this is immaterial. More precisely, by

@) and (5.11)), we know that (5.12) is a.n.. We now deduce that Ij,(d,7; ) is a.n..

nk+l

. 7 . 7 A
Since br11(|yg—1], lyx|) differs from by (|lyg—1], |yx| V ¢) at most by C := anl) o see

5.8), we can bound bt (=11, lwr]) < brs1 ([Yr—1l, lyx| Ve) +C 1)y, <cy- Plugging this into
1.24), we see that the contribution of 1y}, <.} is a.n., because it is at most

T—00

/F($+dy1)/k Bu(dyz, o dye) Ly <) = P(Sk € [z — ezt ) = olbi(2)),
R Rr=

by . Then in we can safely replace~bk+1(yk_1, yi) by bk+1gyk—1|, lyk| V c).

Finally, we write by1([ye—1, |kl V ¢) = b1 ([yr—1], €lyr—1]) + brgr (elyp—1l, x| V ).
Note that the contribution of the second term to Ij(d,7;z) in (1.24) is a.n., because we
already know that is a.n.. For the first term, observe that

Alyr—1D) k+1

3 n" _ A(lyk-1)

b (el eyl S D0 TS =g
n=A(clyg_1]) -

Se biet1(Yk—1)

hence

/ F(—ygp—1 + dyr) b1 ([yr—1] €lyr—11) Se brr1(Wp—1) F(—(1 —n)yk—1]) Sy bx(ys-1),
lyrl<nlyr—1]

so the contribution to Iy, (d,7; z) in (T.24)) is Sen Li—1(0,1; ). We know that I,_1 is a.n., by
our inductive assumption, and this implies that I_; is a.n. too, by the inequalities (A.3)
and (A.5)) in the Appendix (see (A.7)-(A.8) for their proof). We are done. 1

6. PROOF OF THEOREM [L.4} SUFFICIENCY

In this section we prove the sufficiency part of Theorem |1.4; we assume that I fr (6;x) is
a.n. and we deduce (4.1]), which is equivalent to the SRT. Let us set

TySa):= Y n'P(Spca+]). (6.1)
1<n<A(dz)

We actually prove the following result.
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Theorem 6.1. Let F be a probability on [0,00) satisfying (1.12)) with o € (0,1). Assume
that I (8;2) is a.n.. Then for every £ € Ny:

- Ty(0; )
lim lim sup
=0 z—oo /+1 (x)

In particular, setting £ = 0, relation (4.1)) holds.

The proof exploits the general bounds provided by Lemmas and together with
the next Lemma, which is specialized to renewal processes.

Lemma 6.2. If F' is a probability on [0,00) which satisfies (1.12) with « € (0,1), there are
C,c € (0,00) such that for alln € Ny and z € [0, 00)

=0. (6.2)

P(S,€z+1) < ag e A | (6.3)

Proof. Assume that n is even (the odd case is analogous). By (2.7)), we get

1
P(SnEZ-l-I):/ P(Sz €dy) P(Sy € z—y+1) S —P(Sz < 2)

y€0,2] 2 an

V3

— < <

Y

1
SP(maxXiﬁz

an 1<i<2

) (1-P(X >2z))% e 3PE>2)  ~cai

an an an

provided ¢ > 0 is chosen such that P(X > z) > 2¢/A(z) for all z > 0. This is possible by
(1.12) and because z — A(z) is increasing and continuous, with A(0) > 0 (see §2.2)). 1

Remark 6.3. Since A(:) is increasing, it follows by (6.3) that for any & >0 and { € N

Z n
sup { Z n‘P(S, € z + I)} S Car,s with Czy = Z T At < 0. (6.4)
=€0.2] L en neN 47

Before proving Theorem [6.1] we state some easy consequences of “I f (0;x) is a.n.”.

e First we show that, for any bounded interval J C R,
I (6;7) is an. = Fz+J) = o(bh(z)). (6.5)

T—00

It is convenient to write J = [-1—b, —1—a], for a,b € R with a < b. Restricting (1.13)
toz€ —a—J=[1,1+(b—a)] weget I;(0;z) > F(x+a+J) infe_q sba(2) 2
F(z+a+J), soif I; (6; z) is a.n. then F(z +a+ J) = o(b1(z)), hence (6.5) follows.

e Next we improve (6.5)) as follows:
I (8;2) is an. = for every fixed (e N: P(S;ex+J) = o(bi(z)). (6.6)

T—00

To see this, we write J = [a,b] and we note that on the event {S; € z + J} we must
have My > (x —a)/l, hence Sy — My < x4+ b— 5% < — (7 —2b). Then

P(Spex+J)</t P(Sp1€x—dz)P(X1 €2+ J) <Ll sup F(z+J), (6.7)

2>%—2b z2>%5-2b

and, by (6.5)), as 2 — oo the right hand side is o(b1(7 — 2b)) = o(b1 (7)), for fixed .



20 FRANCESCO CARAVENNA AND RON DONEY

e Finally, we observe that for any fixed v > 0
I (8;2) isan. = forevery fixedye (0,1): I/ (1—~;z) = O(bi(z)). (6.8)
First we fix > 0 small enough so that I, (6;2) = O(b1(x)) (recall Definition .
Then we consider the contribution to I} (1 — v, ) from z > §, see (1.13)), which is

A(z)? —
F(zxr—dz < 2 Flyx) < s — bi(2).
/5x<z<(1fy)x ( ) z = oz (v )N%J 1(2)

Proof of Theorem [6.1 We fix, once and for all, v € (0, 12=), and we decompose

Ty(6;x) = Z n'P(S, € x + I, M,, > ~zx)
1<n<A(z)
+ > n'P(Spex+l, M, <z).
1<n<A(dz)
Then it follows by Lemma and Lemma [4.3| that (6.2]) holds for every ¢ > k.

It remains to prove that (6.2)) holds for ¢ < k,. We proceed by backward induction: we
fix £ €{0,1,...,kq — 1} and, assuming that

lim lim sup M
0—=0 z—oo bg+2($)

we deduce (6.2]). We need to estimate Ty(d; ) and we split it in some pieces.
We start by writing

=0, (6.9)

P(S,ex+1)=P(Sp,ex+1, My, <~vzx)+P(S,€x+1, My >~x),

and note that the contribution of the first term in the right hand side is negligible for (6.2)),
by Lemma [£.3] Next we bound

P(S,ex+1, My >~x) <nP(S,ex+1, X1 >yx)

:n/ Flz—d2)P(Spr€2+1) . (6.10)
0<z<(1—v)x

Looking back at (6.1), we may restrict the sum to n > 2, because the contribution of the

term n = 1 is negligible for (6.2)), since F(x + I) = o(b1(z)) = o(bey1(x)) by (6.5). As a
consequence, it remains to prove that (6.2]) holds with T;(0; ) replaced by

Ty(0; %) := Z nttl Flx—dz)P(Sp—1€2+1).
0<
2<n<A(5z) <2<(1-7)z

We can bound nf*! < (n— 1)”1, since n > 2, and rename n — 1 as n, to get

fg(é; x) g/

1<z<(1—y)x

F(x — dz){ Z nttP (S, € 24 1) } + o(bey1(x)), (6.11)

1<n<A(dz)—1

where we have restricted the integral to z > 1, because the contribution of z € [0,1) can be

estimated as o(by(z)) = o(bg11(z)), thanks to (6.4) and (6.5]).
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Let us fix € € (0,1) and consider the contribution to the sum in (6.11) given by n > A(ez).
Applying Lemma [6.2] since a,, > €z 2, z, we get

> aPSexens Y °

A(ez)<n<A(dz) A(ez)<n<A(dx) Gn

A(Z)f+2 1 n {41 Ceon
P G2 3 e
~ P {z<gz} A(Z) = A(Z) e

The bracket is a Riemann sum which converges to [;° ¢! e~ dt < oo as z — oo, hence it
is uniformly bounded for z € [0, 00). The contribution of n > A(ez) to (6.11]) is then

< g AR SN TS < 0 1+(8.
<. S F(z —dz) SA(Ex) I (e,x) Se A(x)" I} (e,x).
1<z<Zx <

+1

PEO)

(6.12)

This is negligible for (6.2), for any fixed € > 0, by the assumption that I; is a.n..
Finally, the contribution of n < A(ez) to the integral in (6.11)) is, by (6.1)),

/ Fla — dz) Tysa(e: 2) (6.13)
1<z<(1—)x

By the inductive assumption , for every 1 > 0 we can choose € > 0 and T. < oo so that
To+1(€;2) < nbpya(z) for z > z.. Then the integral in (6.13)) restricted to z > z. is

< | Fla —d2) bisa(2) < nA@) I (1 - 7,2) S nA(2) b (@) = nbes (2),
Te<z<(l—v)x
where we have applied . If we let © — oo and then n — 0, this is negligible for (6.2)).
Finally, by (6.4) and (6.5)), the integral in (6.13) restricted to z < T, is, as * — oo

< Ciop1 F((# — @, x — 1]) = o(b1(2)) = o(be41(2)) -
This completes the proof. 1

7. PROOF OF THEOREM [1.12} SUFFICIENCY IN CASE o € (3, 1]

Let F' be a probability on R that satisfies (1.2) with p,q > 0 and « € %, 1, ie. ko = 1.

We assume that I1(d;x) is a.n. (hence also I1(8;x) is an., recall Remark [1.13), and we
deduce (4.1]), which is equivalent to the SRT. This proves the sufficiency in Theorem m

Let us set

Zy := My, = max{X1,..., Xn}. (7.1)
We fix v € (0, 1%;) and define the events
BV ={z1 <ya}, B ={Z1- s <an}, )
Efg) ={Z1 >z, |Z1 — x| > ap} '
By Lemma with ¢ = 0, we already know that (with no extra assumptions on F')
Z P(S, €z + 1, Egl)) is always a.n.. (7.3)

1<n<A(dz)
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Next we look at E?). Note that by (2.7)

P(Spea+1, EP) < P(Spex+1,|Xi — 2| < an)
=1 (7.4)

—o [ FerapPser-nst [ Rty
ly|<an ly|<an

Qn
Using the fact that n/a, is regularly varying and recalling (/5.8]), we obtain
S PSnex+I, BY) g/ Flzt+dy) Y =
n

tsnsAln) vi=oe Al <n<aen) (7.5)
fj/ F(x—i-dy)i)g(ém,y) :fl(é;m).
ly| <oz

Recalling ((1.23]), we have shown that
I(6;z) is a.n. = Z P(S, ez +1, E%Q)) is a.n. . (7.6)
1<n<A(éz)

(The reverse implication also holds, as shown in Section [f])
We finally turn to E%S). Arguing as in ([7.4]) and setting 7 := 1 — 7, we have by (|1.6]

PS, ca+ 1B S [ Fla+dy) P(S1 €1~ )
ly|>an, y>—7z

n2 / 1
S — F(z +dy) —,
an Jly|>an, y>—75a Ay)

hence, recalling (1.10)), we get

1
S P(Sneax+I, EY) 5/ F(z 4 dy) —— =
1<n<A(6z) y>—7e ) 1<n<AGzAly])

1
< F(x+dy) ——=b3(0x A |y|),
| P g estea )

where the last inequality holds for o > %, thanks to (2.3, because n?/a,, is regularly varying
with index 2 — 1/a > —1. For fixed &y > 0, the right hand side can be estimated by

F(x+dy)
F(rx+dy)b b3(0x _
/?ﬂﬁ&)r ( * y) 2(3/) * 3( )/y>—'yz,|y|>60r A(y) (77)

bs(dz) bs(dz)

F < 11 (do; _—
A((SOJ:) ((’y.’L’,OO)) ~ 1( 0,.’17) + A((SOZU) A(:U)
By the a.n. of I, given € > 0, we can fix dg > 0 small so that I;(dp;z) < eby(x) for large x.
Then we can fix § > 0 small (depending on dp) so that the second term in the right hand
side of (7.7) is also < eby(z) for large x, because bg(dx) ~ §>* ! b3(x) and o > 1. Thus

S Ii(6os ) +

1
Z P(S, € x+1, E§3)) isan. ifa> 3 and I (d;z) is a.n.. (7.8)
1<n<A(éz)

Relations (7.3)), (7.6, (7.8)) prove the sufficiency part in Theorem when ko, = 1.
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. 1
8. PROOF OF THEOREM [1.12} SUFFICIENCY IN CASE a < %

Let F' be a probability on R that satisfies (1.2) with p,¢ > 0 and « € (0, % In this section,

we assume that fﬁa (0,m;x) is a.n. and we deduce (4.1)), which is equivalent to the SRT. By
Remark this proves the sufficiency part in Theorem [1.12] in case rq > 2.
We stress that our assumption that I, (d,n; x) is a.n. ensures that 1,.(0,n; x) and I,.(6,n; x)

are a.n. for every r € N, by Remark (see Lemmas A3)).

Throughout this section we fix v € (0, 125), we choose n = 7 := 1 — v and we drop it
from notations. In particular, we write I} (d; ) instead of Ix(d,n;z).

8.1. Preparation. We will prove that T(8;2) = > i<,<a(55) P(Sn € 4+ 1) is amn. by
direct path arguments, see Subsection [8.2] This will lead us to consider explicit quantities
Ju(6; %), Ji(6;x) that generalize I;,(0;x), I;(0;2). For clarity, in this subsection we define
such quantities and show that they are a.n..

We recall that I;(d; x) is defined in (1.18]), (1.19)). Let us rewrite it as follows:
L) = [ Pl dm) o). (5.1
ly1]<d

bg(yl) ifk=1

where we set  gi(y1) := (8.2)

/ Pyl (dy27 oo 7dyk) bk+1(yk) if k > 2 ’
Qe (y1)

Qi(y1) = {(y2,. .- y) € RF1 |y < Alyj-a| for2 < j < k}, (8.3)

and we recall that Py, (dys,...,dyx) := F(—y1 + dy2) F(—y2 + dy3) - - - F(—yk—1 + dys).

We define Ji(d;z) by extending the integral in (8.2]) to a larger subset O(y1) 2 Qk(y1).
We introduce the shortcut

—oo,yy] ify>0
0y) = (—00, 7] ify=0 (8.4)
[y, +o0) ify <0
and note the important fact that (since 0 <7 < 1)
1
F(—y+dz) = O(> as |y| = oo. (8.5)
/e(y) A(lyl)
Then, recalling that ¥ = 1 — v, we set for kK > 2 and y; € R
Or(y1) = {(yg, ceyYk) € RFL . yj € 0(yj—1) for2 < j < k:} (8.6)
We then define
WGa)i= [ Plasdn)h), (87)
ly|<dz
where hy(y1) is nothing but gx(y1), see (8.2)), with Q(y1) replaced by O (y1):
b2(y1) ifk=1
hi(y1) == (8.8)

/ Py (dyo, ..., dy) bera ()  ifk>2
Ok(y1)
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It will be useful to consider a slight generalization of h(y;): for any non-negative, even
function f: R — [0,00) we define

bi(y1) f(y1) ifk=1
[ Pulime d) el ) itk
Ok (y1)

and note that hk(yl, A) = hk(yl).
The next proposition shows that Ji(d;z) is a.n. and provides a useful auxiliary estimate.
Its proof is quite tedious and is deferred to Subsection

Proposition 8.1. Fiz £ € N and o € (0,%). If ¢ > 2, assume that I;(6;x) is a.n. for

hk(yl,f) = (89)

j=1,...,0—1.
(1) Fiz any f € RV(B) with 0 < f <1 —La. Then for all 0 < 0y < k < 1
T
/ F(xz+dy) he(y, ) Seokq.e /() (Vz >0). (8.10)
ly|>doz, y>—kKx zV1

(2) Assume that I;(;x) is a.n. too and, moreover, o < 64%1' Then
Jo(9;x) is a.n. (8.11)

We finally define Jo(8; x) := I5(; z) and, for k > 3,
Jp(052) = / F(z 4 dy1) hi(y1) (8.12)
ly1]<o
where we set (recall that b(x, z) is defined in (1.22)), or equivalently (5.8)):

Py(dyz, -+, dys) b1 (Yr—1, Yk) - (8.13)

hi(y1) = /
Ok —1(y1) M lyr|<Alyr—11}

The next result shows that Ji(d; x) is a.n.. Its proof is also deferred to Subsection

Proposition 8.2. Fir £ e N with£>2 and 0 < a < H%' Assume that 1;(6;x) and fj(é;x)

are a.n. for j=1,...,¢. Then also jg(é; x) s a.n..

8.2. Proof of Sufficiency for Theorem Throughout the proof we fix a € (0, %]
and k = ko = [1/a) — 1, see (1.21]). We stress that & > 2 and k%ﬂ <a< k%rl Our goal is

to prove ({4.1]).
We generalize (7.1]), defining two sequences Z1, Zs, ... Z and Y7,Ys,..., Y} as follows:

Z1 = max{X1,...,Xpn}, Yi=21—x,
and for r € {2,...,k}

max {{X;,1 <j<n}\{Z;,1<j<r—-1}} ifY, 1 <0, (514)
T lmin{{X;, 1< <ni\{Z, 1< i<r—1}} ifY, 4 >0 '
Y, = ZZZ- —z (8.15)
=1

Intuitively, Z, is the largest available step towards x from Z1 + ...+ Z,_1.
In fact, we may assume that the following holds:

Z,>0 ifY,_1 <0, while Z,<0 ifY,;>0, (8.16)
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because, as we now show, the event that fails to be true is negligible. This event
occurs if, for some r < k, either Y,_; <0 and {X;,1 < j <n}\{Z;,1 <j <r—1} contains
no positive terms or Y;._; > 0 and this set contains no negative terms. Call &, , such event
and recall that I = (—h,0]. We first observe that P(&,,, Sp, € x + 1, Y,—1 ¢ I) = 0 for all
n>r (if Y,_; > 0 then S, —2z > Y,_1 > 0 on the event &, ,, and similarly if Y,_; < —h
then S, —z <Y,_; < —h). Next we observe that

P(gn,ru }/7“—1 € I) < (1" ﬁ 1>P(Sr—1 € -73+Iu XT‘aXT-‘rl?"‘ 7Xn < O)

<n L UPS,_ ex+ 1),
with ¢ = P(X; <0) < 1. If we set K, := 5.2 n" 1= < o0, we can write, by ,

n=r

Y Pllnr Sn€x+1) <Y Py, Vo1 €1) <K, P(Sp 1 €x+1) =_o(bi(x)),

so the contribution of &, , to (4.1)) is negligible. Henceforth we will assume that (8.16)) holds.
We cover the probability space Q2 C E{l) U EP) U E%g), where we recall from ([7.2) that
EY ={z <2}, E® ={wi|<a.}, EY={Z >z, [Vi|>a.}.
The argument to show that 3y, 45, P(Sn € = + I,E%l) U EP) is a.n. presented in
Section [7] is still valid, see ([7.3)) and ([7.6)), so it remains to focus on E%g).
We introduce the constants C, = ()"~! and then the events E,(«l), E§2), E,E?’) for r > 2 by
3 3
EW =BY {1z <AVeal},  E@ =EX 0 {V,| < Cran},  (817)
E®) = BP0 {12, > AlYoal, Yl > Cran}.

Note that we can decompose (recall that k = &, is fixed)

k k
EO c|JED U (JE® U ED.
r=1 r=1

We will show that >, < 4(5,) P(Sn € +I) is a.n. by estimating the contributions of gV

and E£2), for 2 < r <k, and finally the contribution of E,(:’). Let us note that
agk%_l<%, forr=2,...,k, (8.18)

which allows us to apply equation (8.11) from Proposition for £ = r — 1 (but not for
¢ = r, unlike Proposition .
Remark 8.3. We can rewrite Eég) more explicitly as follows:

EP) = {21 > vz, |Zi| > Vi for 2< i < €} 0 {|Yi] > Cian, for 1 <i< ().
Recalling the definition of ©k(+), we claim that Ef’ can also be rewritten as

EY) = (V1 > -7z, (Ya,....Ye) € 0.V} N {|Yi| > Cia,, for1<i< ).  (8.19)

To prove the claim, we show that |Z;| > ~v|Y;—1] is equivalent to Y; € 0(Y;—1), for 2 <i <k,
with 0(-) defined in . We recall that Z; = Y; — Y;_1, see . If Y;_ 1 > 0, then
Z; <0 by , hence |Z;| > ~|Yi—1| becomes Y;—1 — Y; > ~Y;_1, which is precisely
Y; € (—o0, —7Y;—1) = 0(Yi—1). Similar arguments apply if Y;—1 <0, in which case Z; > 0.
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Estimate of Eﬁl). We fix r € {2,..., k}. By exchangeability,
P(S,€x+1, BN <n" 'P((Z1,... Zro1) = (X1,..., Xom1), Sn €+ I, ED) . (8.20)

Conditionally on (Xi,...,X,—1) = (21,...,2r—1), we have S, = (z1+ ...+ 2,_1) —i—S;l_(T_l),
where we set ) := X{ +... 4+ X with X7 := X(,_1);;. Motivated by (8.15)), if we set

yi=(z1+...+2z)—= fori=1,...,r—1,
then we can write {S, € « + I} = {5’ 1) € ~Yr- 1+I} Assume first that y,—1 <0, so

n— (7"
Zr = M;L_(r 1) = =max{X/,1 <i<n-—(r—1)}. By (8.17) and ( , we need to evaluate
P(*S’;z—(r—l) € —yr—1+1, |MT/L_(T_1)| <7 |yr—1|> . (8.21)
Since this probability is increasing in «y, applying (1.4), we get the bound
1 n d 1
< — <> , forall d<-—. (8.22)
Qp, A(‘yr—l‘) Y

In case yr—1 > 0, relation (8.21I)) holds with M; replaced by (), ,’C)* = minlgigk X!. Applying
(1.4) to the reﬂected walk (S")* = =5’ we see that the bound ( still holds. Then, by

(8.20]) and Y = 1 N{|Z;| < ~|Y;r—1|}, using ) for E,E 1, we have the key bound
1) nr+d71
P(S,ex+1,E) S / F(x+dy) Py, (dyo, - -+ ,dy,—1) ——————, (8.23
( ) ( ) y1( ) a A(‘yr—l‘)d ( )
y1>-—yx,
(Y2,5-yr—1)€0r—1(y1),
Yr—1>0n

where we set
gj = min{C; |y, 1 <i<j}, forj>1. (8.24)
(For r = 2 the integral in (8.23)) is only over y;, so the restriction (y2,...,yr—1) € Or_1(y1)
and the term Py, (dya,- - ,dy,— 1) should be ignored. )
Henceforth we fix d € ( ~—r, = —r+1). Since v < 72 by assumption, and r > 2, we have
% > —12> é —r+1>d, hence the constraint d § ~ is satisfied. The sequence n’”+d 1/ an
is regularly varying with exponent (d +r — 1) — é > —1, hence by ([2.3)
r+d—1 A r+d
Z ! S (w) = b7"+d(w) > Vw >0,
Qy, wA 1
1<n<A(w)
where we recall that by (-) was defined in (1.10)). Since the integral in (8.23)) is restricted to
n < A(gr—1), we see that

> P(Speax+I, EW)

1<n<A(dz)

bryd(Gr—1 A oz 8.25
S / F(z +dy1) Py, (dy, -+ ,dyr-1) 71?@ LN ). (25

y1>—9%
(Y25-Yr—1)€Or—1(y1)
We split the integral in two terms, corresponding to |yi| < doz and |y1| > dpz. Given € > 0,
we first show that for §gp > 0 small enough the first term is < eb;(x), for large z. We then
show that for ¢ > 0 small enough (depending on dy) the second term is also < eb(x), for

large x. Altogether, this proves that (8.25) is a.n. and completes the estimate of E,El).
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e First term. Since yr—1 < |yr—1|/Cr—1, see (8.24), and since b, 4(-) is asymptotically
increasing (because r + d > é), we have

briq(Jr—1 N 0T) < bria(lyr—1l)
Allyr—1Dd ™~ A(lyr-a])?

hence the contribution of |y;| < dpz to the integral in (8.25) is bounded by

= b (|yr—1l)

/ Fla+dyn) Py, (dys, -+ dyr—1) by (Jyer]) = Jo—1(50:2)

ly1|<dox
(Y25e-syr—1)€EOr_1(y1)

see (8.7)) for the definition of J. By Proposition with £ = r — 1 (recall (8.18))), we
can fix dp > 0 small enough so that for large x we have J,_1(do, z) < ebi(x).

e Second term. If we define fi(y) := 1/by4q—1(y), then by we can write

1
/ Py1(dy27"' 7dyr71)m:hr—1(y1,f1), Yy € R.
(Y2,-Yr—1)€Or—1(y1)

As a consequence, the contribution of |y;| > dpx to the integral in (8.25)) is at most

bT+d(5az) / F(J} + dyl) hr_l(yl, fl) . (826)

ly1|>d0z, y1>—7a

Note that fi(-) € RV(8) with 3 =1— (r +d — 1)a. Our choice of d implies that 1 <
r4+d< é+1, hence 0 < 8 < a. Since a < %, see We also have a < 1—(r—1)a,
which yields 0 < 8 < 1 — (r — 1)a. By Proposition with f = fi and £ = r — 1,
the expression in is Soo,yr Or4a(0) %z) < A(%. Then we can fix 4 > 0 small
(depending on dp) so that it is < eby(z) for large x.

Estimate of Eﬁz). Always for r € {2,...,k}, in analogy with (8.20]), we have
P(S,€x+1, B?)<n"P((Z1,...2,) = (X1,...,X;), Sp €z + I, EP)

<n"P((Z1,...2,) = (X1,...,X,), E? <su PSn_T€z+I>
<n"P((Z )= (X3 ) ) Sup ( ) (8.27)
ST P((Z,... 7)) = (X4,..., X,), BD),

~

an,

where we have applied (2.7)). Since E® = E1(~3—)1 N{|Y:] < Cran}, by (8.19) and (8.24) we
obtain

n'f'
P(S, cx+1, E?) < / F(x+ dy) Py, (dyz, -+ dyr) —. @28)
n .
Y1>—72, (Y2,-Yr—1)€Or—1(y1),
Yr—1>0n, |yr‘<cran
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Recalling (8.24) and (5.8, we can write

A(51}/\ﬂ7«_1) nr

S P(S,extl ED)S / Flat+dy) Py dy) Y
1<n<A(Sx) >z, n=A(C7 |yr|)
(Y2, yr—1)€O-—1(y1)
‘yr|§7‘yr—1|
_ / Fo+ dy) Py (dya, o) bt (52 A o, CoMunl) s (8.29)
Y1>—7,
(Y2, Yr—1)E€EOr_1(y1)
lyr| <Flyr—1]

where we made explicit the restriction |y,| < 7|y,—1| in the domain of integration, because
for |y,| > 7|yr—1] the integrand vanishes (since g,_1 < Cr__ll\yr_l\ and C, =7 1).

We split the integral in two terms, i.e. |y1| < doz and |y1| > doz. First we show
that, given any e > 0, the first term is < e by (x) for §p > 0 small and x large. Then we show
that the second term is < eb;(z) for § > 0 small (depending on ¢y) and z large.

e First term. Recalling (8.24), (5.8)) and the definition C; = 7°~!, we can bound
BT-H((;*T A gr—lv Cgl‘yr‘) < [;T+1(Cr*_—11|y7“—1|ﬂ Cr_—llﬁil‘yr‘) ~ BT-I-l(’yr—l‘vWil’yrD
< brr1([yr—1l; lyrl) 5

where the last inequality holds because ~~1 > 1. For |y1| < dpz, when we plug this
into (8.29) we obtain J,(do; ), see (8.12)) and (8.13). By Proposition with £ = r,
we can fix Jp > 0 small enough so that J.(dp;x) < eby(z) for large x.

o Second term. Next we deal with |y1| > Jpz. Note that a(r +1) < a(k + 1) < 1, see
(8.18). We fix any ¢ € (0,1), so that a(r +1 — ) < 1. By (5.8) we can bound

~ - o nr_w
bt (52 A G0, ) S AG)Y Y e S AW b)),

n>A(Cy yr|)

where the last inequality holds by (2.4) (note that n"~%/a,, is regularly varying with
index r — ¢ — L < —1). If we set fo(y) := A(y)' Y, the contribution of |y;| > doz is

< A(0z)Y / F(z 4 dy1) he(y1, fo).
y1>—72,|y1|>d0x

Note that fo(y) := A(y)'~% € RV(B), with 8 = a(1 — ), hence 0 < 8 < 1 — ra by
our choice of ¥. We can apply point in Proposition with ¢ = r, to get

< v @)y Al®) oy
< A(dx) xle_moé V1 b1 (x),

which is a.n..

Estimate of E,(:)). Finally, recalling (8.19)), (8.24) and applying (1.6)), we can write

P(S, €x+1, B SnFP((Z1,... Z) = (X1,..., X)), Sp € x + 1, B
nk+1

S / F(.:U—i‘dyl)Pyl(dyQ, ,dyk) aT(yk_)

Yy1>-—7z,
(Y2, ) €Ok (Y1),
ykzan
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Note that n*+1/a, € RV(¢) with ( = k+ 1 — é > —1, by k = kq. Therefore, by (12.3)),

bry2(0T A Jg)

Ay 830

S PSnea+LEY) S / F(z +dy) Py, (dys, -+, dyg)

1<n<A(éz) 1>,

(y2,-,yK) €Ok (Y1)
We split the integral in two terms |y1| < dpz and |y1| > doz. We recall that k+2 <a< k+1

e First term. We focus on |y;1| < dpx and distinguish two cases. First we consider |yx| <
Yye-1]. By (k+1) =1 > —1 and §r <p min{|ye—1], [yx|}, see (8:24), we get

A(6xAGr) k1 Allyg—11) nk Allyk—11) nk

b ox Agg) < <A < A s

kr2(0x A Gg) < 2:1 PR (Y) 2:1 a0 (y) %: Jan
n= n= n=A(|Yx

< Ayr) b1 (Yr—1, Yr) »

Where the third inequality holds for |yk| g V\yk_1|, and for the last inequality we recall
. When we plug this bound into , with the integral restricted to |y1| < dox

and lyi| < F|yr—1], we obtain J,.(Jo; x), see - . By Pl"OpOSlthIlWlth L=,
we can fix dp > 0 small enough so that Jr(60;z) < ebl( ).

Next we consider |yx| > 7|yr—1|, hence we can bound A(yx) 2 A(yk—1). Since byyo
is asymptotically increasing (it is regularly varying with index (k + 2)a — 1 > 0),
we can also bound bgio2(dz A Ur)/A(yk) S bkro(Yr—-1)/A(Yk—1) = bg+1(yr—1). When
we plug this into , the integrand does not depend on y; anymore, so we can
integrate over y to get fykeﬁ(yk_l) F(—yp—1+dyi) Sy 1/A(yk—1), which multiplied by
brt1(yr—1) gives bg(yr—1). Then the contribution of |y1| < doz and |yx| > F|yr—1] to
(8.30) is bounded by Ji_1(dg; z), see (8.7]), which is a.n. by Proposition

o Second term. To deal with {|y1| > doz}, we fix v € (0,1) sufficiently close to 1, so
that (k+1+v)a —1 > 0 (we recall that o > k%ﬂ), which ensures that bgiq4,(-) is
asymptotically increasing. Then we can bound

brt2(0x A gk) brt140(02) Ayr) ™ _ bry14(02)
Alye) ™ A(yk) Alyr)”
where we set f3(y) := 1/br1,(y). Note that a(k +v) < 1 (by a < k+1) hence f3 €

RV (B) with f =1— a(k+v) satisfies 0 < § < 1 — ak, i.e. the assumption of point (] .
in Proposition [8.1) with £ = k. The contribution of {|y1| > dpx} is then

f3(z)
V1

= bpg140(02) b (yr) f3(ur)

N bk+1+u(51’)/ F(x+dy1) hi(y1, f3) S brsi40(02)

y1>—7z,|y1|>d0x

~ bgr14(67) (k+1+v)a—1
Ay 25’ bil@)

which is a.n. and completes the proof.

8.3. Technical proofs. In this subsection we are going to prove Propositions and
We first need two preliminary results, stated in the next Propositions and

First an elementary observation. Recall that g,(y) is defined in (8.2)). We claim that

Vr>2,VyeR:  g.(y) < Ay) F(—y+dz)gr1(z2). (8.31)
EE
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The case r = 2 follows immediately from (8.2)-(8.3) and (1.10]) (recall that A is increasing).
Similarly, for » > 3, we simply observe that |y,| < |y| for (yo,...,y,) € Q(y), hence

9r(y) =/ F(y+dy2)/ Py, (dys, -+, dy;) bry1(yr)
ly2| <Ayl Qr—1(y2)
< A(|y|) / F(*y + dyQ) / Py2 (dy?n T adyr) br(yr) (8.32)
[y2| <Ayl Qr—1(y2)

:A(|y|)/  F(-y+dy2) gr—1(y2) .
ly2| <71yl

We are ready for our first preliminary result. If I,.(9; ) is a.n., then for § > 0 small we
have I,,(8;z) < by(z) for all z > 0 (recall Definition [1.3). We now show that the same bound
holds when the integral in (8.1]) is enlarged to {y; > —kx}, for any fixed k < 1.

Proposition 8.4. Fiz r € N and « € (0, %) Assume that 1;(6;x) is a.n. for j =1,...,7.
Then for any 0 < k < 1

[ et ae) S bl vezo. (3.33)
Y>—Kx

Proof. The case r = 1 is easy: since by € RV (2a — 1) and 2« — 1 < 0, for any fixed dp > 0

/|y>50x,y>m F(z +dy) ba(y) < ( sup bz(y)> F((1=K)z) Ssoun ljj((i)) = by(z). (8.34)

ly|>dox

On the other hand, the contribution to the integral of |y| < dox gives I1(dp;x) which is
< by(z) for §p > 0 small enough, as we already observed, because I1(J; x) is a.n..

Next we fix r > 2. By induction, we can assume that holds with r replaced by
1,2,...,r — 1 and our goal is to prove it for r.

Assume first that y < 0, say y = —t with ¢ > 0. By and the inductive hypothesis
for r — 1 (since t > 0), we get

o(~1) < At) [ P A2)000(2) S AOD(D = blt) = 1)
z|<At

When we plug this bound into (8.33]) restricted to y < 0, we get

/ Fla —dt) g (—1) Sy / F(x — dt) g1(t) S ().,
0<t<kz

0<t<kz

where the last inequality holds by the inductive hypothesis for r = 1.

It remains to look at the contribution of ¥ > 0 in . By , the contribution of
{0 <y < &z} to is bounded by I,(d1,z) which is a.n. by assumption, hence it is
< bi(x) provided d; > 0 is small enough. It remains to focus on {y > d;x}.
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We need a simple observation; let I = (aj, as) where 0 < a; < ag < oo and, for v € (0,1),
put I' = (yai, (2 — ¥)az). Then for all non-negative functions f,g: R — [0, 0)

/ F(z +dy) £ () / Floy +d2) g(2)
yexl

|2|<7y

- / F(z+dy) f(y) / F(—dw) g(y —w)
yexl T<w<(2=y)y (8.35)

<[ ree [ FE ) ) e

- [ e | F(z+w+dv) f(w+v) g(v),
wexl’ —mwlv<yaw

where vy =1— (2—7) tand yo =1 - 1.
Applying (8.31)) together with (8.35]), the contribution of {y > d;x} to (8.33)) is

o0 o0

F(x +dy) A(y) /w F(~y+dz) gr—1(2)

Y

Flz +dy) g:(4) < /

5133 5133

[oe] 2w
- / F(—dw) / F(a 4w+ dv) A(v + w) gr—1(v)
v

o —y1w

S [ Feawaw [T Fetwtdga).
o1 1 (z+w)

Applying (8.33)) for » — 1, and the fact that by(-) is asymptotically decreasing, we obtain

[e.e]

/;o F(z+dy) g-(y) < /00 F(—dw) A(w) b1 (z + w) < / F(—dw) by(z + w)

1T Yo1z yo1x

Sbala) [ T F(—dw) S50 ba(2) .
Y

o1z

We now introduce a generalization g (y, f) of gr(y) (in the same way as hi(y, f) generalizes
hi(y), see (8-8)-(8.9)). For any non-negative, even function f : R — [0,00) we denote by
gk (y1, f) what we get by replacing bei1(yk) by br(yr)f(yr) in (8.2), that is

bi(y1) f(y1) if k=1

. . (8.36)
/ Py (dy2, ..., dyr) br(yx) f(yr) ifk>2
Qr(y1)

gy, f) ==

In particular, gi(y) is gx(y, 4).
We are going to assume that f(|-|) € RV(fB) for some § > 0, so f is asymptotically
increasing and f(w) < f(y) for |w| < |y|. Then, in analogy with (8.31]), we claim that

V22, WeR: gy f) < fy) /| _ FCvrdga). s
2[<Aly
The case r = 2 follows immediately by ({8.36]), while for » > 3 we can argue as in (8.32),

replacing b,+1(yy) by by(yr, f) and bounding f(y,) < f(y), since |y, | < |y| on Q,(y).
We now state our second preliminary result, which is in the same spirit as Proposition 8.4
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Proposition 8.5. Fiz r € N and a € (0,%). If r > 2, assume that I;(8;z) is a.n. for
j=1,...,r—=1. Fizany f € RV(B) with0 < <1 —a. Then for all0 < §y < k < 1

x
/ F(xz+dy) g-(y, ) S0k, f(z) Yo >0. (8.38)
ly|>dox, y>—kKz V1

Proof. Since ¢1(-, f) = b1(-) f(:) € RV (a+ 8 — 1) is asymptotically decreasing, we have

/ Flx+ dy) a1(y, ) <a, (@) f (@) / Pz + dy)
ly|>dox, y>—krz

Y>—Rx
- b@f@) _ f@)
~T A xV1’

which proves if » = 1. Henceforth we assume that r > 2 and proceed by induction.
Note that we can apply Proposition with r replaced by r — 1 (since here we assume that
Ij(0;x) isan. for j=1,...,r —1).

Assume first that y < 0, say y = —t with ¢ > 0. Then by we can bound

gr(=t, f) < f(t)/ F(t+dz) gr-1(2) Sy f() bi(2), (8.39)

|z|<7t

where for the last inequality we apply Proposition [8.4] for » — 1 (since ¢ > 0). Since f(-)b1(-)
is asymptotically decreasing, the contribution of y < 0 to (8.38]) is then estimated by

| Fe-aatan sy fone [ Fe-a s LR S

dor<t<kT A(Z‘) zV1 '
It remains to control the contribution to (8.38) of y > 0. By (8.37) and (8.35)
o0 00 Yy
[ raraawns [CFerafo) [ Feydga)
Soz dox 7y
00 Yow
< / F(—dw) / F(z+w+dv) f(w+v) gr—1(v) (8.40)
6oz —Mw
S [ Peawsw) [T Pt doga).
~ydox —y1(z4w)

Applying again Proposition [8.4] for » — 1 we get, since f(-)b1(-) is asymptotically decreasing,

/5 TPt dy) g, ) Seme | F(—dw) £+ w) bz 4+ w)

0T Yéox
SI@nG) [ P 5. 17

We are finally ready to prove Propositions [8.1] and
Proof of Proposition[8.1. We write r in place of ¢. We assume that [;(d; ) is a.n. for j =

1,...,7 =1 (if r > 2). Moreover, for point we also assume that I,.(J; z) is a.n..
Recall the definitions of hx(y, f), gx(y, f), see , (8.36)). We claim that
Veven f€ RV(B) withO < <l—ra:  h(y,f) Syr D 0w, f). (8.41)
j=1

Then relation (8.10) follows immediately by Proposition This proves point .
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For point . we note that for a < % we can plug f = A in (8.41)), because 6 =
o Satlsﬁes B < 1 —ra. This gives hy(y) < Z; 1 95(y), which plugged into shows
that J.(0:2) Sy D25y In(: ac) Since in point (2)) we assume that I;(6;z) for j = 1
(1nclud1ng j= r) relatlon follows and completes the proof.

It remains to prove 1) This holds for » = 1, since hy(y, f) = ¢1(y, f). Henceforth we
fix r > 2 and we proceed by induction.

Let us first show that

Vr'=1,....,r—1, Veven ffe RV(f) with0< g <1—-7r'a,

r'+1 (8.42)
Yy < 0: /> *HF( y+dz) h, N’*/ZglyvA
zZZ=Y

+

where we stress that y < 0. By the inductive assumption, we can apply (8.41)) with r replaced
by ' (since r’ < r —1) and f replaced by f’, hence

/ - F(—y+d2) ho(z f) S0 ) / F(—y+dz)g;(2 f').

j=1 227yl
We now split the domain of integration in the two subsets [—7|y|,¥|y|] and (F|y|,o0). The
first subset gives fIZ\SWIy\ F(—y+dz)gij(z f") = gj+1(y, fj), by (8.36)). For the second subset
we can apply Proposition (since —y > 0), getting

R 7 DA ) R
[ Py ) 5 [ = il =0 5),

where we recall that A(-) and f’(-) are even functions. This completes the proof of (8.42)).
We are ready to prove (8.41)). Let us first consider the case y < 0. By we can write

ho(y, f) = / F(—y + dya) hy—1(y2, AS).
y2>—7|y|

We can now apply (8.42) with 7/ := r—1 and f’ = Af (because f' € RV (f') with 5/ = a+f
which satisfies 0 < 8’ < 1 — r’«). This proves when y < 0.

Next we consider the case y > 0. If we restrict the domain of integration 0,(y) in . ) to
y2 > 0,y3 > 0,...,y, > 0, then the domain becomes {0 < y; < 7Fy;_; for 2 < j < r} which
is included in QT(y), see (8.3). The corresponding contribution to h,(y, f) is then bounded
from above by g, (y, f), see (8.36). This proves (8.41) when yo > 0,y3 > 0,...,y, > 0.

It remains to estimate h,(y, f) for y > 0, when some of the coordinates y2,ys, ..., ¥y, in
the integral in are negative. Let us define H := min{j € {2,...,7}: y; < 0}.
In the extreme case H = r, the corresponding contribution to h,(y, f) is, for r > 3,

Yy VYr—2 0
/ / / Py(dy2,~- ,dyr) br(yr)f(yr)
y2=0 Yr—1=0 r=—"Yr—1
Yy YYr—2 YYr— 1
+/ ... / / dyQ, . ,dyr) br(yr)f(yr) .
y2=0 Yr—1=0 Jy,r=

If r = 2, one should ignore the first 1ntegrals, that is we have

(8.43)

0 Y
/ F(—y + dy2) ba(y) () + / F(—y + dys) ba(ys) (1) - (8.44)
Yy

2=—7Y Y2=—00
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The first integral in is bounded by gT(y f), because the domain of integration
for (ya2,...,yr) is 1ncluded in Q (recall (§ and ( . For the second integral, we
note that b.(-)f(-) € RV(ra —1 —|— ﬂ) is asymptotlcally decreasing, since ra — 1+ 3 < 0 by
assumption, hence we can bound b, (yr)f(yr) S br(yr—1)f(yr—1). Since Py(dyz,--- ,dy,) =
Py(dya, - -+ ,dyr—1)F(—=yr—1 + dy,), when we integrate over y, € (—oo, —7Jy,—1] we get a
factor <y 1/A(yr—1). Overall, for r > 3 we can bound by

Y 7%2 1
d s 7T 7d r— br r— r—
T R ) e b))
Sgr(y7f)+gr—l(y)f)a

and the same bound holds also for » = 2. This proves (8.41)) when H = r.
Finally, if H = j € {2,...,r — 1}, the contribution to h,(y, f) is (recall again (8.9))

YY YYj—2 )
/ / Py(dys,--- 7dyj)/ F(—y; + dyj+1) hr—j(yj1, A7 f)
Y2= Yj=—00

yj—1=0 Yj+1>—71y;]

/ /yw] 2/y Py(dyz, -+, dy;) gi(y;, A7), (8.45)

where we have applied (8.42) with ' = r — j and f’ = AJf (note that f' € RV (8') with
B' = ja+ B3, which satisfies 0 < 8’ < 1—7"a). We split the integral over y; in the two subsets
[_ﬁyj—lao] and (—OO, _Wyj—l]'
e On the first subset, we can enlarge the domain of integration to (yo,...,y;) € ©;(y),
see (8.3]), hence the corresponding contribution to (8.45)) is

r— j—i—l

r—j+1 '
3 / Py(dya, - dy;) gi(yj, A1)
i1 7 (W2,95)€925(y)
r—j+1
= Z / Py(dyz, -+, dyjti-1) bjri-1(Yjti-1) f(Yj+i-1)
o Yjti—1)EQj+i—1(y)
r— j+1

= > g1y ),
=1

by (8.36)). This proves (8.42)) for the first subset.

e On the second subset, we first consider a fixed i > 2: renaming y; = —z, we can write
YYji—1 1
[ P gt A7) (8.46)
yj=—00
00 -
— [ Py —do) [ Py dugbis AT
2=y -1 Q;(2)

— /:o F(—yj_1 — dz)/ F(z + dyj+1)

=YYj—1 lyi+1|<7z

/ Py (Ayjre, - dyjvi)bivj—1(yjri) f(yjri) - (8.47)
Qi—1(yj+1
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We next write b;yj_1(-) f(- )

, = {A771(-)f(-)}bi(") and then bound A7~ (y; i) f (yj4+i) <
AI7Y(2) f(2), because ATL()f(")

is asymptotically increasing, to get

Sy /Oo F(—yj1— dZ)A(Z)j_lf(Z)/ F(z + dyjs1) gi-1(yj+1)

=YYj—1 ij+1|SWZ
Sy /  F(=yj = d2) ARV T (2) bi(2) Sy bj-a(yi-) f(yi-1) s
2=y;—1

where we used (8.33) and the fact that by(2)f(z)A7~!(2) is regularly varying with
index ja+ 8 — 1 < 0 and so is asymptotically decreasing. This shows that

YYj—1 .
/ F(—yj—1 + dyj) gi(yj, A7) Sy bjo1(yi—1) Fyi-1) s
yj=—00

and the same bound holds also for i = 1 (since g1(z, A1 f) = by(2)f(2) AT 1(2), we
can directly apply - Thus the contribution of y; < —7y;_1 to (8.45)) is

r— j-‘r].

'Yy] 2
/ / Py(dya, -+ ,dyj—1) bj—1(yj-1) f(yj-1)
Y2= Yj—

r— j+1

Z / Py(dyz, -+ dyj—1) bj—1(y;—1) f (yj-1) = (r = j + 1)gj-1(y)-
This completes the proof of (8.42)).

Proof of Proposition . We write r in place of £. We assume that fj(é; x) and I;(d;z) are
an. for j=1,...,r, withr > 2 and o < and we need to show that J,.(d;z) is a.n..

+1=
We first give a bas1c estimate: from (5.8), (2.4) and (L.10), for any A € (0,7) we have
7 A7 o mY A
bri1(y,2) < AW brr1-a(y,2) < Aly)* D —— SAWY) brri-a(2). (8.48)
m=A(z) m

Let us prove that J,.(0; z) is a.n.. For a < ﬁ we can simply apply Proposition H with
¢ = r, because J,(6; z) < J.(8; ). Indeed, by (5.8),

_ n’ A r+1
br+1(Yr—1,9r) S Z — 3 M = br1(yr) ,
an lyr| V1
nzA(|yrD
because n" /a,, is regularly Varying with index r — 1/a < —1.
Henceforth we fix o = ﬁ For r = 2 there is nothing to prove, since Jo(0; x) = 12(5 x).

We now fix » > 3. If we consider the contribution to the integrals in of
y1 > 0,92 >0,...,y.—1 > 0, the domain of integration, see , reduces to

{0<y; <0z} N{0 <y <Fyiq for 2<i <r -1} 0 {lye| <Ayr-1}-

This contribution is bounded by fr(é; x), see (1.24), which is a.n. by assumption.

Next we consider the contribution to (8.12)-(8.13) coming from yi,...,y,—1 such that
y; < 0 for some 1 < ¢ < r — 1. Let us define H = max{j € {1,...,r — 1} : y; < 0}. If
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H =r — 1, the bound (8.48) with A = r — 1 and the fact that y,_; < 0 show that

/ F(_yr—l + dyr) gr—i-l (yr—l,yr)
lyr|<7yr—1l

S A(yT—l)r_l/ F(_yr—l + dyr) bQ(yT) 5 A(yr—l)r_lbl(yr—l) = br(yr—l)a

‘yrlgi‘yr—l‘

where the second inequality comes from Proposition Plugging this bound into , we
see that the contribution to h,(y) is at most h,_1(y) (recall (8-8)), hence the contribution to
J.(8;x) is at most J._1(8;z) (recall (8-7)), which is a.n. by Proposition [8.1] with £ =r — 1.

We finally consider the contribution of H = r — j with j > 2. This means that Yr—j <0,
while y,_j11 > 0,...,y.—1 > 0, and the range of integration in is a subset of

Or—j(y1) N {yr—j < 0} N {yr—js1 = 0} N {lyr—jr1rel < Flyr—jyel, € =1,---5—1}.

We split this into the two subsets {0 < y,—j11 < Flyr—;|} and {yr—j+1 > F|yr—j|}-

On the first subset {0 < y,—j11 < J|y,—;|}, we bound et (Yr—1,9r) < AYr—1)""7bjs1(yr),

~

by (8.48) with A = r —j, and then A(y,—1) < A(yr—;). Recalling the definition (8.2) of g;(-),
we see that this part of the integral with respect to y,—jy1,--- , ¥y, is
< Alyr—j)"™ / F(lyr—jl + dyr—j+1) 95 (yr—j+1)

0<yr—j+1<F|yr—41

< Alyp_j) / Fllyrj| + d2) g5(2)
szﬂyrfﬂ
5 A(yr—j)rij b1 (yr—j) = br—j+1(?/r—j) )

where the last inequality follows by Proposition The contribution to (8.13)) is

<

~

/ Py(dyz, ..., dyr—;) br—jr1(yr—;) < he—j(y1) (8.49)
Grfj (yl)m{yrfj <0}

hence the contribution to J,.(8;2) is < J.—;(8;z), which is a.n. by Proposition

On the second subset {y,—j+1 > F|yr—;|}, we bound byt (yr—1,9r) < A(yr—1)" 10 (yr),
by (8.48)) with A =r —j + 1, and then A(y,—1) S A(yr—j+1), getting

< / Fllgrj| + A1) Algr—se)" ! / Pty + dyryo2) 911 (gr—ss2)

Yr— 41> |Yr—j| [yr—j+2|<FYr—j+1

= / F(lyr—j] + dy) A(y) 7+ /F(—y+dz)9j—1<2),

Y Y|y |2|<7y
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where we have set y = y,_;41 and z = y,_;4o for short. Applying (8.35)), where we recall
that vy =1 — (2 —7) ! and 72 = y~! — 1, we get
s [ Pedw [ FQuel e do Aw oy T g )
w2y Yr— ;| —v1w<v<yow
S [ Feawawr [ Bl e o) gt
w2y|yr—| vZ2=y1(|yr—;|+w)
S [ P A ]+ o),
wZ’W\yrfﬂ

by Proposition [8.4] with » = j — 1. Finally, this is easily bounded by

/ F(=dw) br—jt2(|yr—5| + ) S F(=37yr—51) or—jr2(lyr—51) S br—jra(lyr—0)
w>7Y|yr—j|
because b,_j12(-) € RV(a(r —j + 2) — 1) is asymptotically decreasing, since j > 2 and

a = ﬁ Arguing as in (8.49), we see that the contribution to J,.(d;x) is < Jr—js1(d; ),

which is a.n. by Proposition This completes the proof. §

9. SOFT RESULTS
In this section we prove Theorem Propositions and Theorem [1.18

which are corollaries of our main results.

9.1. Proof of Theorem Assume that condition ([1.14)) holds. By (1.10)) we can write
<

A(2)? _ A(x)?
sup ba(z) = sup (2) < (z) .
1<z<z 1<z<z ? z

For 0 < z < 1 we can also write ba(2) < A(1)? = bo(1) < A@’ once by (1.13)

x

(5 2 A(z)? x —dx,x]) ~ Ale)” : -
Il (5» )S T F([ 0 ’ ]) T—00 €T <A((1—5)$) A(x>>

A(x) 1 A(x)
RN ((1 — ) B 1) 550 = 009).

This shows that I;"(6;x) is a.n., hence the SRT holds by Theorem

Next we prove the second part of Theorem we assume that condition is not
satisfied, and we build a probability F for which the SRT fails. Since A € RV(%), we
can write A(z) = {(z)y/z where ( is slowly varying. By assumption, see (L.14), there is a
subsequence x, — oo such that sup;<,<, £(s) > £(x,), hence we can find 1 < s,, <z, for
which ¢(s,) > ¢(x,). We have necessarily s, = o(x,), because £(s)/{(z,) — 1 uniformly
for s € [exy,, x|, for any fixed € > 0, by the uniform convergence theorem of slowly varying
functions [BGT89, Theorem 1.2.1]. Summarizing:

Ty — 0O, Sp = o(xy) , €n 1= —0. (9.1)
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By Lemma below, there is a probability F' on (0, 00), which satisfies (1.12)), such that

F({zn}) =

A for infinitely many n € N. (9.2)

Since A(z) = ¢(x)+/x, recalling (1.13]), for infinitely many n € N we can write

A(sp)? en _ A(sn) 1 A(mn)  A(zn + sn)
o F{an}) 2 (s n)? o)~ Vox e om D amten

where the last inequality holds because €, — 0 and z,, + s, ~ Xy, see (9.1)). This shows that
I (;2) is not a.n., hence the SRT fails, by Theorem |

I (82 + sn) >

)

9.2. Proof of Proposition We claim that (|1.16]) is equivalent to the following relation:

F((z —y,z)) e O(A(lm) (Z)'y> for any y = y, > 1 with y = o(x) . (9.3)

It is clear that (|1.16) implies (9.3). On the other hand, if (1.16) fails, there are sequences
z, — 00, Cp — 00 and y, € [1, 52,] such that

1 Yn \7
F((2n — yn, zn]) > C (—) : 9.4
(T — Yn, Tn]) nA(a:n) “ (9.4)
By extractmg subsequences we may assume that 2 — p € [0, ] If p =0, then y,, = o(x,)

and (9.4) contradicts (9.3)). If p > 0, then ((9.4)) contradlcts (1.12]), because it yields
P y

F(32n) > F((2n — Y n)) > Cy p? +o(1)) >

1 (v 1
" A(an) A(52a)

We first prove that relation for every v < 1—2a is a necessary condition for the SRT.
We can assume that a < 3, because for o = % we have v < 0 and follows by . If
we restrict the integral to z € [0,y), where y = y, = o(z), for large x we can bound
I} (5;2) 2 ba(y) F((x — y,z]) because by(z) € RV (2a — 1) is asymptotically decreasing. If
the SRT holds, I3 (6; x) is a.n. by Theorem hence by (y) F((x — y,z]) = o(b1(z)), i.e.

F((x —y,z)) e 0<A(1x) Zg;) , for any y = y, > 1 with y, = o(z).

Since by € RV (2a — 1), it follows by Potter’s bounds ) that, for any given v < 1 — 2a,
we have Zigzg <y (£)7, hence (9.3) holds as claimed (even Wlth o(-) instead of O(+)).

We now turn to the sufficiency part. Let F' be a probability on [0, co) which satisfies ((1.12)),
with a € (0, %], such that relation (|1.16]) holds for some ’y >1-— 2a and zg, C' < 0o. We prove

that the SRT holds by showing that I (0; ) defined in is a.n., by Proposition m
Applying (|1 and recalling ([1.17]), for fixed ¢ € (0, ) and large x we get

C /M A(z)2 C' A(0x)?
Az)z7 )y
where C’ := C/(2a — 1 — ) and the first asymptotic equivalence holds by (2.3), because

zZ A(z)2/z~2_7 is regularly varying with index 2o — (2 — ) > —1 (since v > 1 — 2a). This
shows that I} (§;x) is a.n. and completes the proof of Proposition 1

C' §20-1+7 Az)

Tt+(5. ~ ~
L7 (02) < 22— e—oo A(x)zY (d2)177 @00 x
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9.3. Proof of Proposition _ By - we can write

B oz bolz
If_((s; :L‘) :/1 </R]l{ye[07z)} F(ac — dy)> 2i ) dz

e[, )

We recall that by, is defined in (1.10)). Assume that o < . Then the function z — by(2)/z is
regularly varying with index 2a — 2 < —1, hence by (2.4)), for y > 0 we can write

/gm ba(2) s < /oo ba(2) dz S ba(1Vy) <ba(y),
1 1

Vy z Vy z

(9.5)

because for 0 < y < 1 we have ba(y) > A(0)% > 0, see Recalling ([L.13), we have shown
that I, (0;2) < I} (6; 2) when a < % Then, if I;(6; ) is a.n., also I, (d; ) is a.n..

We now work for a < % Let us restrict the outer integral in to y € [0, %x), and the
inner integral to z € [1 Vy,2V 2y). For y > 1 we have

) [Wh(z) baly) B
| = dz—/y 22 4. > P20 gy = i),

vy z z 2y

while for 0 <y < 1 we can write 12vvy2y biz) dz = 12 bQT(Z) dz = C 2 by(y). Overall, it follows

from (9.5) that I, (5;x) > If“(%;:c). This completes the proof. &

9.4. Proof of Proposition Assume that both I (; z) and ff(é; x) are a.n., see ([1.25)
and (1.27)). We first show that, for any n € (0,1),

Vz€R, W EN: / F—z 4 dy) besr (2) <o bel2). (9.6)
yl<nlz|

Since bpy1(z,y) < A(2)ha(z,y) and by(z) = A(2)" by (z), see and (L.10), it is
enough to prove for £ = 1. Let us fix 0 < dp < 0. For |y| > dp|z| we can bound
ba(z,y) S ba(z,002) Ss, b2(2) and fdo\z|<\y|<n|z\ F(—z4+dy) Ssp,n 1/A(2). It remains to prove
- ) for £ = 1 and with 7 replaced by an arbitrary dp > 0. The left hand side of (9.6] equals
I1(n; ) for z > 0 and I} (n; —z) for z < 0 (recall (T.23} (L.23))), which are a.n. by assumption, hence
we can fix n = dg > 0 small enough so that the inequality . ) holds for |z| > zg, for a
suitable xy € (0,00). Finally, for |z| < x¢ both sides of are uniformly bounded away
from 0 and oo, hence the inequality still holds.
Observe that, for |z| < njw|, we can bound b,(2) <y Bg(% z) < by(w, 2), so (9-6) yields

Vz,w € R with |z| < njw|, V£ € N : / F(—z+dy) by1(2,9) Sp be(w, 2). (9.7)
lyl<nl2|

If we plug this inequality into (T.24), we see that Io(d,7;x) <n I,(6;x) and, similarly,
I(6,m52) Sy Ik—1(6,m;2) for any k > 3. Since I1(0;x) is a.n. by assumption, it follows
that Ii(d,n; x) is a.n. for any k > 2, hence the SRT holds by Theorem m

Finally, if relation ([1.16)) holds both for F’ and for F*, the same arguments as in the proof
of Proposition see §9.2) show that both I1(;z) and I}(8;z) are a.n.. 1
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9.5. Proof of Theorem Since Stone’s local limit theorem applies equally to Lévy
processes, see [BDI97, Proposition 2|, an argument similar to the random walk case (see

Subsection shows that the SRT ([1.30) holds if and only if f(é ;x) is a.n., where
. 5A(z)
T(6:2) = / P(X; € (2 — h,a])dt. 9.8)
0

Let Js := Xs — Xs_ be the jump of X at time s > 0. If we write
X = Xt(l) + Xt(g) , where Xt(l) = Z Js Lg =13

s<t
then XM and X are independent Lévy processes.
e The process X (V) is compound Poisson: we can write Xt(l) = Sn,,, where N = (Ny)i>0

is a standard Poisson process, S = (Sp)nen, is a random walk with step distribution
P(S; € dz) = F(dz) given in (1.29), and A =II(R\ (—1,1)) € (0, c0).

e The process Xt(2) can be written as Xt(2) = 0B + ut + M,;, where M is the martingale
formed from the compensated sum of jumps with modulus less than 1.

To complete the proof, we show that the SRT holds for the random walk S if and only if it
holds for X1 (step 1) if and only if it holds for X (step 2).

Step 1. Since Xt(l) = Sn,,, we have
()"

n!

Px(V e (@—ha])= Y e M TIPS, € (¢ h,a]).

neNy

Note that [; e‘”% dt = }P(Z, < 2), where Z, » denotes a random variable with a

Gamma(n, A) distribution. Then the quantity T\(é; x) = TX(l)((S; z) for X equals

Tt (65;) = % " P(Zux < 6A(x)) P(Sy € (x— hya]). 9.9)
n€Ng

For n < A6 A(z) we have P(Z,, y < §A(z)) > P(Z,» < %) — 3 asn — oo, by the central limit
theorem (recall that Z, \ ~ +(Y1 + ...+ Y,), where Y; are i.i.d. Exp(1) random variables).
Denoting by Ts(d; x) the quantity in (4.1)) for the random walk S, and restricting the sum

in ton < AA(x), we get
T (5:2) Z Ts(A6;2).

To prove a reverse inequality, we observe that for all z < %% we can write, for € > 0,

6€>\Z 6%6 n
P(Zyx < 2) < e Elem ] = (ton = (1 + > <en,
€ €

where the last inequality holds with ¢ = ¢ > 0, provided we fix ¢ > 0 small. Then, splitting
the sum in according to n < 2A\JA(z) and n > 2M\JA(z), we get

f){(1)((5; r) < Z P(S, € (x — h,x]) + Z e~ < Tg(2X8;2) + o—20AA(z)

n<2M5A(z) n>2\A(z)

> =

These inequalities show that fX(l) (6;x) is a.n. if and only if Ts(6; x) is a.n., that is, the SRT
holds for X if and only if it holds for S.
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Step 2. Assume that X = X + X and the SRT holds for X, that is fxm (0;x) is a.n..
Then, given £ > 0, there are g, x¢ such that, for all 0 < § < dg,

N 5A(y) A
oo TG = [ P e@-haa<e S o)
0
Let us now write

0A(x)
/ P(X; € (z—h,a], X? <z/2)dt
0

x/2 @) 0A(x) )
:/ P(X, Edz)/ P(X," €(x—2z—h,z—2z])dt.
0

—00

For z < z/2 we can write A(z) < cA(z/2), for any ¢ > 20‘ and for large z. Then the inner
x—

)
integral is bounded by fX(l) (cd; z) <e=—2 (‘T Z) <e A ) by (9.10)). This shows that

Aw).

0A(x)
/ P(X; € (x—ha], XP <z/2)dt < ¢ (9.11)
0

Note that X ?) has finite exponential moments, because its Lévy measure II(- N(—1,1)) is
compactly supported, hence E[e'X )|] < Ele X |+ E[e” ] < e for a suitable ¢ € (0,00).
This yields the exponential bound P(\Xt@)\ >a)<e® Ct, for all a > 0, hence

6A(x) @
/ P(X; € (z — h,z], X;” > x/2)dt
0
0A(x)
S / P(Xt(Q) > x/2) dt S e_x/Q €C§A($) = 0 <14(1')> .
0 T—00 T

Together with (9.11]), this shows that fx(é; x) is a.n., that is the SRT holds for X.
If the SRT holds for X, to show that it holds for X(1) we can repeat the previous arguments
switching X and X (no special feature of X1 was used in this step). i

10. COUNTEREXAMPLES

In this section we prove Propositions [I.6] and [I.16] We first develop some useful tools.

10.1. Preliminary tools. Let us describe a practical way to build counter-examples.

Remark 10.1. Let us fit A € RV («). Let Fy be a probability on (0,00) which satisfies

Fia) ~_ A(i;)’ Fu((x— hya]) = o(x;(x)) S Wh>0.  (10.1)

T—r00

(For instance, fix ng € N such that ¢; := Zn>n0 Ay < 1 and define Fi({no}) ==1—¢1,
Fi({n}) := #((ln) for n € N with n > ng.) Let Fy be a probability on (0,00) such that

Fx) = o< A(lx)> . (10.2)

If we define F := 5(Fy + F»), we obtain a new probability on (0, 00) which satisfies

F@) > 40

Flz+1) > %FQ(:E +1). (10.3)
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Next we state a useful result. To provide motivation, note that if F' satlsﬁes , then
necessarily F(x + I) = O(A(lx)) as  — oo (because F(x — h) ~ F(z) ~ Ve )) Interestlngly,

this bound can be approached as close as one wishes, in the following sense.

Lemma 10.2. Fix two arbitrary positive positive sequences x, — oo and €, — 0. For any
A € RV («a), with a € (0,1), there is a probability F' on (0,00) satisfying (1.12)) such that

F(le)) 2 47

Proof. Let us fix A € RV («). By Remark it is enough to build a probability F» on
(0, 00), supported on the sequence {xy, }nen, which satisfies (10.2) and

for infinitely many n € N. (10.4)

Fy({zn}) > 2% for infinitely many n € N. (10.5)
Then, if we define F := %(Fl + F3), the proof is completed (recall ((10.3])).

By assumption z, — oo and ¢, — 0, hence we can fix a subsequence (ny)ren such that

6nk-&-l 1 €ny,

A($nk+1) —2 A(xnk) ’

Vk eN. (10.6)

This ensures that ZkeN A( ) < 00 (the series converges geometrically) and we fix kg € N
so that D -y Ae"’“ . We now define Fj, supported on the set {z,, : k> ko}, by

(wnk)

~1
Fry({zn,}) =c2 A(;Zk) for k > ko, where ¢y <k>k A ) > 2.

In this way, (10.5)) is satisfied. It remains to check that (10.2)) holds. Given x € (0, 00), if we
set k :=min{k > ko : x,, >z}, we can write

n Eng 1 Eng
ZCQ =2 Al 2 R = 22 A ()

E>k k>k

where we used (10.6), and the last inequality holds because x,,; > z, by definition of k. Since
€, — 0 by assumption, and k — oo as x — 0o, the proof is completed. I

10.2. Proof of Proposition Let us fix A € RV () with a € (0, ). By Remark
it is enough to build a probability F» on (0, c0) which satisfies (10.2]) and moreover

¢(x)

zA(z)
where I;7(0; z; F2) denotes the quantity I;7(d;z) in (T.13)) with F' replaced by Fy. Once this
is done, we can set I := %(Fy + F») and the proof is completed (recall (10.3)).

By assumption ((+) is non-decreasing with lim,_,~ ((x) = co. Let us define x,, := 2", and
fix ngp € N large enough so that ((z,-1) > 1. Let us define

Fy(z+1) = O( ) , I (8; x5 Fy) is not a.n. (10.7)

Tn

1
§C($n_1)1+9 ’

Note that z, < %xn for n > ng (because ((x,—1) > 1), hence the intervals (z,, — z,, x,]| are
disjoint. We may also assume that z, > 1, possibly enlarging ng (if we decrease ((-) we get
a stronger statement, so we can replace ((x) by min{((x),logz}, so that z, — c0).

where 6 > 0 will be fixed later. (10.8)

Zp 1=
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We define a probability F5 supported on the set Un>n0( n — Zn,Tp], with a constant
density on each interval, as follows:

c C(l'nfl)

Fy(zy, —ds) = o A 1,2, (s) ds, Vn > ng, (10.9)

for a suitable ¢ € (0,00). We are going to show that F5 is a finite measure, so we can fix the
constant ¢ to make it a probability. Note that

C C(zn-1) o c
wp Alwn) " 2 A(g) ((20-1)

Since A(z,,) = A(2x,_1) ~ 2¥A(z,_1) as n — 0o, we may assume that A(z,) > 2%/2A(z,_;)
for all n > ng + 1 (possibly enlarging ng). Since ¢(2,-1)? > ((2,_2)%, we obtain

Fy((xn — zn,n]) =

FQ((xn - ZTuan S 270&/2F2<(xn—1 - Zn—laxn—l]) ’ vn Z no + 1.
It follows that, for every n > ny,
> B((@m = 2y @m]) < Fa(@n = 2zn,n]) D (272" = C Fa(wn — 2, wn)),
m>n m>n

where C':= (1 — 27%/2)~1 < co. This shows that Fy is indeed a finite measure.
For all large x € (0, 00), we have z,_; < x < z,, for a unique n > ng, hence

r) < Z Fy((mm — 2m, m]) < C Fa((wn — 2n, 7)) = 2A(xn)ccc(’xn1)9 . O<A(1$)> ’

m>n

so that (10.2)) holds. Similarly, for x,,—; < x < z, we can write, by (10.9),
() _ S
Tn A(zy) x A(x)

because both ((-) and A(-) are non-decreasing, hence the first relation in (10.7) holds. Finally,
for fixed § € (0, %), since z, < dx, for n large enough, we have by (2.3)

. . _ C(xN—l) A(Z)2 C(mn—1> 2
I (820 Fy) = cm /nggzn U1 dz o~ Cixn A A(zn)”.

Recalling ((10.8)), we can apply Potter’s bounds ({2.2)), since z, > 1, to get, for any € > 0,

Fy(z+1)=F((x —h,z]) <ch

- 2 A A(zyp)
+5oo . > ((zn-1) Alzn) _ 1-2(1+0)(a+e) (zn) n

I7 (05203 F2) Ze Tn A(xy) ((xy-1)20+0)(ate) C(#n-1) Tp, > Ty
where the last inequality holds provided we choose # > 0 and € > 0 small enough, depending
only on a, so that 1—2(146)(a+e€) > 0 (we recall that o < 1). This shows that Iy (8; zp,; F»)
is not a.n. and completes the proof. §

10.3. Proof of Proposition We fix a € (0, 1) and choose for simplicity A(z) := 2.
We are going to build a probablhty F on R which satisfies (1.2)) with p = ¢ = 1, such that
I,(d; x) is a.n. but I3(d,n; x) is not a.n., for any n € (0,1). It suffices to show that I;(d; z) is

a.n. but Iy(d,n; ) is not a.n., thanks to and -
In analogy with Remark we fix a probablhty F1, this time on the whole real line R,

which satisfies (1.2)) with p = ¢ = 3 and such that Fi((z — h,z]) = O(m) as r — +00
Then we define two probabilities Fy, F3 on (0,00) which both satisfy (10.2]), and we set

1
F = g(Fl—l-FQ-i-F;), (10.10)
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where F3(A) := F3(—A) is the reflection of F3 (so that it is a probability on (—o0,0)).
Clearly, (1.2)) holds for F' with p = ¢ = 1. It remains to build F5 and Fj.

We are going to define F5 so that
I, (; x; F») is a.n. (10.11)

(where I1(0; z; F») denotes the quantity in with F' replaced by F5). This implies that
Li(6;2) = [1(0;x; F) is a.n., because I1(d;x; F1) is clearly a.n., while F5 is supported on
(—00,0) and gives no contribution.

We fix a parameter p € (1 ,3a) We set B, j = [27 + 2k, 2" + 2F + %cp) for n € N with
n > 2 and for 1 < k < n — 1. Note that E, ; C [2" + 2k on 4 2k+1) are disjoint intervals,
and moreover UZ;% En ) C [27,27F1). We define F with a density, which is constant in each

interval E, ;, (for n > 2 and 1 <k <n — 1) and zero otherwise, given by
1
B(2" + 2% + dw) = ¢ 1 d .
5(2" 4+ 27 + dw) i) @ @)% 0,25) (w) w, (10.12)

where ¢ € (0,00) is a suitable normalizing constant and we set for short

l(n) :=1log(1+n). (10.13)
Note that
B c 1 2k c (2F)1—2a
Fy(Eny) = () @)1= @)% 2k — ) @) 2 (10.14)
hence
F 2n 2n+1 ZF 7121(2k)1—2a < C(2n>1*2a
) = 70 ><2n>1 o L ~ Un) 2

c 1
BUDICOREES 0<<2n>a> |
Note that F5([2"7,2"11)) decreases exponentially fast in n, hence for r € [2,2"*) we have

Fy(z) < E(TL) < Fy([27,271) = o(1/A(x)), which shows that is fulfilled. It remains
to check ( . We do this by showing that, for any ¢ < 4,

L(0; ;5 Fy) e o(bi(z)) = O(xll_a> . (10.15)

This is elementary but slightly technical, and it is shown below.

Finally, we define F3, We introduce the disjoint intervals Gy, := [2¥, 2% + ) for k > 2.
We let F3 have a density, constant on every Gy, (for k > 2) and zero otherw1se given by
d kP

2 4dz) = — ———1
3( + 2) E(k) (2k)1+a [07%

)(z) dz, (10.16)
where ¢ € (0,00) is a normalizing constant. Then

kP 2’<f d 1 1
@h)Fe (k) <2k>a‘0<<2k>a)'

d
(k)

Then for z € [2F,2F+1) we have Fy(x) < F3(2F) < F3([2F,2F1)) = 0(1/A( )) as x — o0,

hence (|10.2)) holds. Given 1 € (0, 1), fix ko = ko(n) large enough so that 5> < n for k > ko.

Fy([2,25"Y) = F3(Gy) =
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Then, recalling (1.19)) and ((10.10)), we can write

L6 2 F) > / F@" + dy) / Py +dz2)bs(2)
0<y<s2n

|z|<ny
1 |logy(62™) |
>y / 2”+2k+dw)/ F3(2% +w+dz) (1ve)* >t
9 2 . 0<w< 2 0<z< 2

Note that (1V z)3*~1 > (2]&,)30‘_1 (we recall that o < 3) and by (10.16)

K2k 11
(k) (2F) T+ 2k ~ Y(k) (2k)e

Since log,(62™) = n + log, d, recalling (10.14)), we can write for large n

VO < w < 2 B2 +w+0,2)) =

ke 1 1 [ okt 1 WL
I(6,m; 2™ F Fy( — > .
(02 ) 2 3 PEw) gy (i (%) 2w 2 i
k=ko k=Ko
Since we have fixed p < %, applying (2.3)) and recalling ((10.13]) we finally obtain

nl=3er ] 1
g(n)Q (Qn)l—oc

This shows that I2(d,n; x; F') is not a.n.. |

I(6,m; 2" F) 2

Proof of (10.15). We recall that I is supported on the intervals E,, ; := [2"+2F, 2”+2k+%)
with n > 2 and 1 <k<n-—1. Let usset E, :=J}Z| E,x C[27,2"1).

For large x > 0, we define n > 2 such that 2" < z < 2"+, For § € (0, %) and large x, the
interval (x — dx,z + dz) can intersect at most E,, and E,;+1 (because the rightmost point in

Ep_qis2nt42n=2 4 (2: 22),, %2” as n — 00). Consequently we can write
(62 Fy) = / Fo(z + dy) ba(y) < / Fy(d2) bo(z — 7). (10.17)
ly|<déz 2€E,UE, 11

For z € E,41 we have z € E,,1 1} for some 1 < k < n, in which case z > ontl 4 9k Since
r < 2" we have |z — x| = z — 2 > 2F which yields by(z —z) < ba(2F) = (2F)22~L. Recalling
(10.14)), we see that the contribution of E,; to (10.17)) is at most

(2k)1—2a 2k 2a-1 < 1
Zg 2n+1 kP (2%) ~ (n) 2n+1 lI-a Z ko (2n+1)l-a |7

since we chose p > 1. This is 0( L ) so it is negligible for

Then we look at the coptrlbutlon of Eﬁ to (| m Assume ﬁrst that 2" 42 < < 2ntL
Then we can write 2" + 28 < 2 < 2" + 281 for a unique & € {1,...,n—1}. For z € E,, we
have z € E,,, for some 1 < k <n — 1. We distinguish three cases.

o If k < k —1 (in particular, k& > 2), then

k-1 k
2(1?;—1)17) =2,

lz—a|=x—2> (2" +2F) — (2" +2F 1 4
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hence by(z —x) < b2(2]~“) = (2’5)2'1_1. By (10.14])), the contribution to (10.17)) is at most

ZF2(En,k) (2/2)2a—1 < W ky2a= 12 (2k)1=2a < W’

which is o= L), so it is negligible for (10.17).

eIfk>k+2 then |z —z|=2z—xz > (2”+2k)—(2”+2’;+1) > 2k — 2k=1 > 9k hence
ba(z —z) S b2(2k) (2F)22=1 and we get

— c =1 c
> BaBar) O S s D 5 S gy i
S Any @)1= &= 2ke ~ Un) (27)]

because p > 1, hence this contribution is also negligible for (10.15|).
o If k€ {k,k + 1}, then |z — z| < 242 — 2k — 3. 2% By (10.12), since the density of I}
1

is larger in E, ; than in E ;. ,, we see the contribution to ([10.17) is at most

C 1 / 200—1 1
= w VDT dw S —
) @) (@ S Y @)
which is negligible for ([10.15)).

Finally, the regime 2" < x < 2" + 2 is treated similarly. For z € E, , we dlstlngulsh
the cases k > 2 and k = 1. If we set k := = 0, the estimates in the two cases k > k+2 and
ke {k:, k+ 1} treated above apply with no change. I

APPENDIX A. SOME TECHNICAL RESULTS

Let us fix a probability F' on R which satisfies with a € (0, f] and with p,q > 0
The next Lemmas show some relations between the quantltles I;; and Ij; defined in ,

(1.19) and in ([1.23)), (1.24]), respectively. We recall that k., € N is defined in ([1.21]).
Lemma A.1. Fizn € (0,1). If I;,(5,m; ) is a.n. for k = kg, then it is a.n. for all k € N.

Lemma A.2. Assume é Z N and firn € (0,1). If I(0,m; ) is a.n. for k = Ky, then it is
a.n. for all k € N,

Lemma A.3. With no restriction on «, if I, (6,1;x) is a.n., then also L. (5,n;x) is a.n..
The reverse implication holds zfé Z N (but not necessarily zfi eN).

Proof of Lemma[A.2 Fix k € N with £k > 2 and n € (0,1). We are going to prove the
following relations:

ifk<l—1: IL_1(6,mz) <, Ik(éna), (A1)
ifk>2-1: IL(5mz) < Ik_l((s, n; ). (A.2)
Since we assume that 1 S €N, we have 1 —2 < i, < L — 1. If I, is a.n., it follows that also

Iy,—1, Ix,—2, ... are an by -, Whlle Iﬁa+1,f,@a+2, ... are a.n., by (A.2)).
It remains to prove (A72). For k < 1 — 1, the function by1(y), see (L.10), is regu-

larly varying with index (k + 1)a — 1 < 0, hence it is asymptotically decreasing: bounding
be+1(Yk) 2 k1 (Myr—1) for [ye| < nlyr—1] gives

/ F (ot + dyi) bt () 2 F(— (L = mlwit]) b (06-1) Zn beli1)
[y | <nlyr—1]
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which plugged into (1.19) shows that I}(6,7;x) Zy Ix—1(6,7; x), proving (A.1).
To prove (|A.2)), note that for a > k%rl the function bg41(y) is asymptotically increasing:
by a similar argument, we get I (0,1;x) <y Ix—1(6,m; ), that is (A.2). B

Proof of Lemma[A.3 We are going to prove the following inequalities between I; and I;:

Il( cx) < (0 x), (A.3)
ifa<i: L(6;2) S L(6;2). (A4)
For k € N with k > 2, we have the following relations between I pand I, Ip_q:
max {Ik_l(é,r]; , Ik (0,m; } Ik (6,m;2), (A.5)
ifk#1-1: L0, mz) < p max {I_1(8,n; ), Ik(é nx)}. (A.6)

Given these relatlons if I, is a.n., then also I, is a.n.: it suffices to apply (A.3)) and (A5
with k& = ko. When £ = é N the reverse 1mphcat10n also holds, because we can apply A4

if Ko =1 (note that a < 3, since 2 & N) or (A.6) if ko > 1.
It remains to prove (|A.3))-(A.6). By (5.8), for |y;€\ < N|yg—1| with n € (0,1) we can write

Allyxl/n) mk

= m” Alyx))*¥ _
b1 (Yk—1,Yk) > m:AZ('ykl) -~ > Tonl/m v 1 (Alwel/n) — Allyel)) Zn brri(ye) s (A7)

The same arguments show that for ly| < gx we have 52(5:1: y) > 52(2y,y 2 ba(y). Plugging

)2
these bounds into ( and ( proves and also Ij,(8,7; z) Zn 11:(0,m; ), which is
half of (A.5]). For the other half note that for ]yk| < nlyg—1]|, always by (5.8),

A(lyg—11)
mk

bt (k-1 0) 2 D

m=A(|yr—1)

A(nlyr—1])*
M AU Ay ]) — Al ) 2 )
am = |yr—1| V1 ( (Jye-11) (nlyk 1|)) Zn bkt1(yr—1)

hence
/ Pt + dy) Bt Wt 1) 2 bt (W) (=L = m)lgior]) 2 bi(er) . (AS)

lyr!<nlyr—1]

From (1.23) we get Iy(8,7; x) Zn Iy—1(0,m; ), which completes the proof of (A.5)).
Next we prove (A.4]) and (A.6]). We distinguish two cases.

o If £k < é — 1, the sequence mF¥/a,, is regularly varying with index k — é < —1. By

(2.4), we can write

brs1(Yh1,Yk) < = b1 (Yk)

i mj < A(lys)*

V1

which yields fk(é, ) Sy 1k(0,m; a:) For k = 1, we have proved (A.4)), since k < é -1
means precisely a < %, while for k > 2 we have proved half of (A.6]).

o Ifk > é—l, with k& > 2, the sequence m* /a,, is regularly varying with index k:—é > —1

and by (2.3]) we get

Mt Al )

Dht(Wh—1,96) < > —=

Nizbklyk—l
S Ty v o),

m=1
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and in analogy with (A.8) we get I (6,7;x) <, Ir—1(,m; ). Relation (A6) is proved.
The proof is completed. I

Proof of Lemma[A.1l Fix k € N with k > 2 and 1 € (0,1). In analogy with (A.1)-(A.2), we
are going to prove that

ifk<l-—1: I1(0,m;2) Sy Tn(8,m5 ) (A.9)
if k> é —1: jk(gﬂ%x) Sﬂ] jk71<5777;37)7 (AlO)
where k = 1 — 1 is included in (A.9) (unlike (AZI])). Since we assume that I, is a.n., and
since kg < é — 1, we can apply (A.9) iteratively to see that I —1, Ix, —2, ... are a.n..

Similarly, since ko +1 > 1 — 1, relation (A.10) shows that Iiot1, I 1o, ... are an..
It remains to prove (A.9))-(A.10). By (A.1) and (A.2)) we have

I (6,m; x) ifk<i-1

Iy (0,m;z) ifk>=—1

Let us fix k < 1 — 1 and assume first that k > 3. By (A.6) and (A-I1) (with k& — 1 in place
of k; note that k — 1 < é — 1), and then by (A.5)), we have

Tio1 Symax{Iy_o, In1} ~y Lo < max{ly_1, I} < I

If £ = 2, the assumption k < é — 1 means a < %, hence we can apply (A.4)) followed by

(A.5) to get I S L <max{li, I} S, I,. This completes the proof of (A.9).
Fix now k > 1 — 1 (note that k > 2, since o < 1). By (A.6) and (A.11)), we can write

1(3) Sy max{Ti—1(3), k(3)} Sy Ie1(3) -
If £ > 3, we apply (A.5) with £ — 1 in place of k, to get
Ii—1(3) < max{T—2($). Tm1(3)} Sy L1 ($) < Ti—1(9) -

%) <n T k—1(0), which is precisely (A.10). If £ = 2, we apply (A.3)) to see that
) < I1(6). This completes the proof of (A.10). &

max {I_1(6,m; 2), Ix(d,m;z) } =~y { (A.11)

Q=

This yields I;(
Iia(3) = L(3
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