A GENERAL SMOOTHING INEQUALITY
FOR DISORDERED POLYMERS

FRANCESCO CARAVENNA AND FRANK DEN HOLLANDER

ABSTRACT. This note sharpens the smoothing inequality of Giacomin and Toninelli [7], [8]
for disordered polymers. This inequality is shown to be valid for any disorder distribution
with locally finite exponential moments, and to provide an asymptotically sharp constant
for weak disorder. A key tool in the proof is an estimate that compares the effect on the
free energy of tilting, respectively, shifting the disorder distribution. This estimate holds
in large generality (way beyond disordered polymers) and is of independent interest.

1. INTRODUCTION AND MAIN RESULTS

Understanding the effect of disorder on phase transitions is a key topic in statistical
physics. In a celebrated paper, Harris [9] proposed a criterion that predicts whether or not
the addition of an arbitrarily small amount of quenched disorder is able to modify the critical
behavior of a system close to a phase transition. The rigorous justification of this criterion
for a class of pinning models has been an active direction of research in the mathematical
literature (see Giacomin [6] for an overview). One of the key tools in this program is the
smoothing inequality of Giacomin and Toninelli [7], [8]. It is the purpose of this note to
generalize and sharpen this inequality.

Section [1.1] provides motivation, Section states the necessary model assumptions,
Section defines the free energy, Section states our main theorems, while Section [1.5
discusses the context of these theorems. Proofs are given in Sections 2H4

1.1. Motivation. We begin by describing a class of models that motivates our main results
in Section We use the notation N := {1,2,...} and Ny := NU {0}.

Consider a recurrent Markov chain S := (S,)nen, on a countable set E, starting at
a distinguished point denoted by 0, defined on a probability space (€2, F,P), and let
71 :=inf{n € N: S, = 0} be its first return time to 0. The key assumption is that for some
a € [0,00),

P(m >n)=n"oToW), n — oo. (1.1)

The case of a transient Markov chain, i.e., P(71 = o0) > 0, can be included as well, and
requires that holds conditionally on {r; < co}.

Given an R-valued sequence w := (wp)nen (the disorder sequence), a function ¢: E — R
(the potential), and parameters N € N, 8 >0, h € R (the system size, the disorder strength
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and the disorder shift), we define the partition function
W, Nf Wn n
2%, = E [eXam (run)e(s )1{sN:0}] e [0, o), (1.2)

i.e., at each time n the Markov chain gets an exponential reward or penalty proportional
to h + Bwy,, modulated by a factor ¢(S,). The sequence w is to be thought of as a typical
realization of a random process. Note that

e the choice () := 1py(z) corresponds to the pinning model (see Giacomin [5], [6],
den Hollander [10]);

e when E =7 and S is nearest-neighbor with symmetric excursions out of 0, the choice
@(7) := 10,0 (%) corresponds to the copolymer model (see [3], [10]);E|

Thus, the modulating potential ¢ allows us to interpolate between different classes of models.
The model where S is simple random walk on Z? and o(z) ~ |z|~ as |z| — oo for some
¥ € (0,00) is currently under investigation (Caravenna and den Hollander [4]).

1.2. Assumptions. Although our main focus will be on the model in (|1.2), we list the
assumptions that we actually need. We start with the disorder.

Assumption 1.1 (The disorder). The disorder w = (wp)neN s an i.i.d. sequence of R-valued
random variables, defined on a probability space (', F',P), such that

Jitp € (0,00):  M(t) :=E[e"] <00 V |t| < to, (1.3)
Elw,] =0, Var(w,)=1.

The crucial assumption is that the disorder distribution has locally finite exponential
moments. The choice of zero mean and unit variance is a convenient normalization only

(since we can play with the parameters 8 and h).
For 0 € (—to,tp), we denote by Ps the tilted law under which w = (wyp )pen is i.i.d. with

marginal distribution

Ps(w; € dz) := 22 108MO) p(y) € dz). (1.4)
Next we state our assumptions on the partition function Zy , g5 we will be able to handle,
defined for N € N, 3 > 0, h € R and P-a.e. w € RY (keeping in mind as a special case).

Assumption 1.2 (The partition function [I]). Zn g is a measurable function defined on
N x RN x [0, 00) x R, taking values in [0,00) and satisfying the following conditions:
(1) Znwp,h ts a function of N and of (h + Pwn)i<n<n-
(2) ZNyMw,ph = ZNwph ZroNw g for all N, M € N, where 9 is the left-shift acting on
w, i.e., (WNW)y == wnypn for N €N,
(3) There exists a v € (0,00) such that, for N in a subsequence of N,
cp.h(w)

ZN,w,B,h > with Eg[log C@h(w)] >-—-00 Ve (—to,to). (1.5)

Remark 1.3. Note that properties and are satisfied for the model in . For
property to be satisfied as well, we need to make additional assumptions on ¢ and/or
S. For instance, for the pinning model property holds with v = (1 + «) + &, for any
fixed € > 0 (and for a suitable choice of cgp(w) = 3, (w)), which follows from after

fThe standard copolymer model is actually defined through a bond interaction: ((S,) is replaced by
©(Sn-1,51) = L(—c0,0/(3[Sn—1 + Sn]), and (B, h) by (—2X, —2Ah). This can be still cast in the framework
of (1.2) by picking E = Z?, taking the pair process (S,,—1,S») as the Markov chain, and (0,0) as 0.
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restricting the expectation in (1.2)) to the event {r; = N}. Alternatively, when E = 72, if o
vanishes in a half-space and S is symmetric (as for the copolymer model), property (1.5
with v = (1 + «) + € again follows from (|1.1)).

As a matter of fact, properties and are rather mild: they are satisfied for many
(1 + d)-dimensional directed models (possibly after a minor modification of the partition
function that does not change the free energy defined below). In contrast, property is a
more severe restriction. Roughly speaking, it says that the disorder can be avoided at a cost
that is only polynomial in the system size.

1.3. Free energy. If Assumptions and are satisfied, then we can define the free
energy

1
F(B, h;d) := lim sup NEg[log ZNwp ] (1.6)

N—oo

for 8> 0, h € R, § € (—to,to) when w is chosen according to Pj.

Remark 1.4. (a) In the general framework of Assumption , it may happen that
F(8,h;d) = oo for some values of the parameters. However, for the model in (1.2]) we
have F(3, h; ) < oo as soon as ¢ is bounded (see below).

(b) By the super-additivity property in Assumption the lim sup in may be
replaced by sup, or by lim restricted to those values of N for which Es [log Z N,w’g,h} > —00,
which by properties f form a sub-lattice TN. By Kingman’s super-additive ergodic
theorem, we may also remove the expectation Es in , because the limit as N — oo,
N € TN, exists and is constant Ps-a.s.

A direct consequence of is the inequality F(/3,h;0) > 0, which is a crucial feature of
the class of models we consider. In many interesting cases, like for pinning and copolymer
models, the free energy is zero in some closed region of the parameter space and strictly
positive in its complement, with both regions having a non-empty interior. When this
happens, the free energy is not an analytic function and the model is said to undergo a
phase transition. It is then of physical and mathematical interest to study the regularity of
the free energy close to the critical curve separating the two regions.

More concretely, consider the case when h +— Zn, g is monotone (like for the model
in when ¢ has a sign), say non-decreasing, so that h — F(3, h;d) is non-decreasing
as well. Then for every 8 > 0 there exists a critical value h.(f8) € R U {£oo} such that
F(B,h;0) = 0 for h < he(B) and F(5,h;0) > 0 for b > h.(5) (we consider § = 0 for
simplicity). If h +— F(5, h;0) is continuous as well (as is typically the case by convexity, like
for the model in (1.2))), then F(53, h(5);0) = 0 and it is interesting to understand how the
free energy vanishes as h | h.(). For homogeneous pinning models, i.e., when 5 = 0, it is
known that

F(0, he(0) + ;0) = gmax{a:+e@ 4 | . (1.7)

(See [5, Theorem 2.1] for more precise estimates.) On the other hand, as soon as disorder is
present, i.e., when 8 > 0, it was shown by Giacomin and Toninelli [7], [§] that, under some
mild restrictions on the disorder distribution,

Jee (0,00):  0<F(B,he(B) +10) < %t? (1.8)

Comparing ([1.7)) and (1.8)), we see that when o > % the addition of disorder has a smoothing

effect on the way in which the free energy vanishes at the critical line.
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1.4. Main results. The goal of this note is to generalize and sharpen (1.8), namely, to
show that no assumption on the disorder distribution other than is required, and to
provide estimates on the constant ¢ that are optimal in some sense (see below). We will stay
in the general framework of Assumption [I.2] with no mention of “critical lines”.

e Tilting. First we prove a smoothing inequality for F(8,h;d) with respect to the tilt
parameter 0 rather than the shift parameter h. Although both tilting and shifting are
natural ways to control the disorder bias, the latter is often preferred in the literature
because the free energy typically is a convex function of the shift parameter h (like for the
model in ([1.2))). However, for the purpose of the smoothing inequality the tilt parameter §
turns out to be more natural.

Theorem 1.5 (Smoothing inequality with respect to a disorder tilt). Subject to Assump-
tions cmd if F(B,h;0) =0 for some 8 >0 and h € R, then for all § € (—tg,to),

0 < F(B, :0) < %Bg 52 (1.9)
where the constants to and v are defined in (1.3)) and (1.5)), while
2 log M(6
B;s = 5 (logM)'(8) — ogd() € (0,00) satisfies %irr(l) Bs =1. (1.10)
—

Remark 1.6. For pinning and copolymer models satisfying (1.1)), we can set v =1+ « in
(1.9), by Remark

Theorem is proved in Section [2] through a direct translation of the argument developed
in Giacomin and Toninelli [8]. The proof is based on the concept of rare stretch strategy,
which has been a crucial tool in the study of disordered polymer models since the papers by
Monthus [I1], Bodineau and Giacomin [3].

e Shifting. Next we consider the effect of a disorder shift. In the Gaussian case, i.e., when
P(w; € -) = N(0, 1), tilting is the same as shifting: in fact Ps(w; € -) = N(4,1) and so wy,
under Py is distributed like w,, + § under P. Recalling property , we then get

F(B,h38) = E(8, h + 35;0) (1.11)
and, since M(4) = 652/2, it follows from ([T.9)) that if F(j3, h;0) = 0 with 3 > 0, then
ogF(B,BH;o)ngth? VteR. (1.12)

This is precisely the smoothing inequality with respect to a disorder shift in (1.8)), with an
explicit constant (see also Giacomin [5, Theorem 5.6 and Remark 5.7]).

For a general disorder distribution tilting is different from shifting. However, we may still
hope that holds approximately. This is what was shown in Giacomin and Toninelli [7],
under additional restrictions on the disorder distribution and with non-optimal constants.
The main result of this note, Theorem below, shows that the effects on the free energy of
tilting or shifting the disorder distribution are asymptotically equivalent, in large generality
and with asymptotically optimal constants in the weak interaction limit. Since this result is
unrelated to Theorem and is of independent interest, we formulate it for a very general
class of statistical physics models, way beyond disordered polymer models.

Assumption 1.7 (The partition function [II]). The partition function is defined as

ZNwpp = En |eXnma(HBenon] (1.13)
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where, for fited N € N, (0;)1<i<n are R-valued measurable functions, defined on a finite
measure space (n, Fn,Pn), that are uniformly bounded, have a sign, say

350 >0: Py ({0<0;<s0,VI<i<N})=0 VNEN, (1.14)
and satisfy —oo < limsupy_, o, + log Py (Qy) < oo.

We emphasize that the o;’s need not be independent, nor exchangeable. A more detailed
discussion on Assumption is given below.
We can now state the approximate version of (1.11)). The free energy F(f, h;d) is again

defined by (1.6]).
Theorem 1.8 (Asymptotic equivalence of tilting and shifting). Subject to Assumptions

(md and with gg := min{%, 2'5700} (where sg,to are defined in (1.14) and (1.3)), for all

B €10,e0) and § € (—eg,e) there exist 0 < Chs < CE,& < oo such that
Vie[0,e0):  F(B,h+C5;86,0) <F(B,h;6) < F(B,h+ Cfg6;0), (1.15)
while for 0 € (—ep,0] the same relation holds with Cgﬁ and C’Eé interchanged. Moreover,

(8,0) — C,Bié is continuous with Cgfo =1, and hence

li Ct =1. 1.16
BHH(00) S (1.16)

Furthermore, 6 — C’E(S 0 1is strictly increasing.
The proof of Theorem [I.8]is given in Section [3] The general strategy consists in showing that

the derivatives of F(3, h; ) with respect to § and h are comparable. Compared to Giacomin
and Toninelli [7], several estimates need to be sharpened considerably.

e Smoothing. Combining Theorems [I.5] and [I.8 we finally obtain our smoothing inequality
with respect to a shift, with explicit control on the constant.

Theorem 1.9 (Smoothing inequality with respect to a disorder shift). Subject to Assump-

tions and there is an e, > 0 with the following property: if F(B,h;0) =0 for
some (3 € (0,¢() and h € R, then for t € (—pe(), Pep),

37 g T oAl g2
where (B,0) — Ags is continuous from (0,&() x (—ep, ) to (0,00), and is such that
lim  Ags = 1. 1.18
(3.5)-00)" (19

1.5. Discussion. We comment on the results obtained in Section [[.4]

1. The version of the smoothing inequality in Theorem [I.9} with the precision on the constant,
is picked up and used in Berger, Caravenna, Poisat, Sun and Zygouras [2] to obtain the

sharp asymptotics of the critical curve 8+ h.(f) for pinning and copolymer models in the
weak disorder regime 3 | 0, for the case a € (1,00) (recall (1.1])).

2. The smoothing inequality in (1.17)), at the level of generality at which it is stated, is
optimal in the following sense.

e We cannot hope for an exponent strictly larger than 2 in the right-hand side of 7
because pinning models with P(r; = n) ~ (logn)/n3/? are in the “irrelevant disorder
regime”, and it is known that F(3, he(8) + t;0) ~ F(0, he(0) + t;0) = t>+°M) as ¢ | 0
for fixed § > 0 small enough (see Alexander [I, Theorem 1.2]).
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e We cannot hope for an asymptotically smaller constant, i.e., limg 50,0y 4,6 < 1,
because the proof in Berger, Caravenna, Poisat, Sun and Zygouras [2] would yield a
contradiction (the lower bound would be strictly larger than the upper bound).

Of course, for specific models the inequality (1.17) can sometimes be strengthened. For
instance, pinning models satisfying (L.I)) with a € (0, 3) are such that F(3, he(3) + t;0) ~
F(0, he(0) +t;0) = t1/oFto() as ¢ | 0 (see (T.7)), again by Alexander [I, Theorem 1.2].

3. Compared with Assumption Assumption [I.7] prescribes a specific form for the partition
function Zn, g4 and therefore is more restrictive. On the other hand, in view of the minor
constraints put on the o;’s, is so general that the absence of any restrictive conditions
like or makes Assumption effectively much weaker than Assumption For
instance, since is a special case of (L.13), with Py(-) = P(- N {Sy = 0}) (which,
incidentally, explains why Py is allowed to be a finite measure, and not necessarily a
probability), the model in satisfies Assumption as soon as the function ¢ is
bounded and has a sign, without the need for any requirement like (1.1)).

We emphasize that many other (also non-directed) disordered models fall into Assump-
tion For instance, for L € Nset Ay := {—L,...,+L} N :=|Ar| = 2L+ 1)%, Qy :=
{—1,+1}* and let (1;)ien, be the coordinate projections on Qp. If Py is the standard
Ising Gibbs measure on Qy, defined by Py ({n;i}ica,) == (1/Zn) exp[J Zi,jeAL,h’—j\:l ninjl,
then the random variables o; := %(1; + 1) satisfy Assumption .

4. Tt follows easily from ([1.6) and (1.13) that (with obvious notation)
Flon+c)nen (/Ba h; 5) = F(Un)neN(ﬁa h; 5) + (Bm5 + h)C (119)

Therefore, when the ¢,’s are uniformly bounded but not necessarily non-negative, we can
first perform a uniform translation to transform them into non-negative random variables,
next apply , and finally use to come back to the original o,,’s.

Still, the non-negativity assumption on the o,’s in cannot be dropped from
Theorem In fact, if F(B, h; §) is differentiable in h and §, then implies that

OF OF
Vh e R: %(5@0) = [1+0(1)]B%(B,h;0), B10. (1.20)

This relation, which is a necessary condition for when the free energy is differentiable,
may be violated when the o,,’s take both signs. For instance, let (op,)nen under Py := P be
iid. with P(o, = —1) = P(0,, = +1) = 3, and let the marginal distribution of the disorder
be P(w, = —a~!) = a?/(a® + 1), P(w, = a) = 1/(a® + 1) with a > 0 (note that E(w;) =0
and Var(w;) = 1, so that is satisfied). The free energy is easily computed:

¢ cosh(h + aB) + a2e™* "9 cosh(h — a1 B)

F(B, h;d) = Es[cosh(h + fwi)] = TR ——F (1.21)
In particular,
OF . sinh(aB) +a?sinh(—a"1B)  a?—1 4 3
%(57070) - ].—|—CL2 - 6a B _’_O(ﬁ )7 (122)
OF ~+acosh(aB) —acosh(—a'B)  a®—1 9
%(B,0,0) - 1 +a2 - %2, B + O(ﬁ )7 (1'23)

and hence (1.20)) does not hold for a # 1 (the left-hand side is =~ 32, while the right-hand
side is ~ #*). Intuitively, such a discrepancy arises for values of h at which %(0, h;0) =0,

which means that the average EN,w,O,h(% ZnN:1 oy) tends to zero as N — oo, where Py, g1
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is the Gibbs law associated to the partition function Zn, g (see (3.2) below). When the
oy,’s are non-negative, their individual variances under Py, 0, must be small, but this is
no longer true When the o,’s can also take negative Values This is why one might have

(B h;0) > ,6’ =(B, h; 0) for 3> 0 small (compare (3.18) with (3.21)-(3.22) below).

2. SMOOTHING WITH RESPECT TO A TILT: PROOF OF THEOREM [L.5]

2.1. The (G,C)-rare stretch strategy. Fix >0 and h € R. For £ € N, let A, C R’ be
a subset of “disorder stretches” such that there exist constants G € [0,00) and C € [0, 00)
with the following properties, along a diverging sequence of ¢ € N:

° %Iog Zywpn =G forall w=wqyq = (wi,...,we) € Ay (recall Assumption );
o +logP(A4,) > —C.
The notation (G, C) stands for gain versus cost. Recall that v is the exponent in ([1.5]).
Lemma 2.1. The following implication holds:
G—vC >0 = ¥F(B,h0)>0. (2.1)

Proof. Fix ¢ € N large enough so that the above conditions hold, and for w € RN denote by
T)(w), Ta(w), ... the distances between the endpoints of the stretches in Ay:

Ti(w) ==inf {N € IN: wiy_pn] € Ae},  Thyr(w) i= Ty (01O FT) (). (2.2)
Note that {7} }ren is i.i.d. with marginal law given by ¢ GEO(PP(Ay)). In particular,
E(T)) = £/P(Ay) < L€ (2.3)

Henceforth we suppress the subscripts 3, h. Since (19(T1+'“+Ti)_zw)(07g} € A, by construction,
applying properties - in Assumption and the definition of G, we get

k Ty +..+T;
Z > Z Jkae T 8V A
T+. . 4+Thw = 9Tt +Ti—1) , Zg (Tt +T) =ty ’

(2.4)
where we set Zj := 1 for convenience. Recalling (1.6) and Remark for P-a.e. w we can
write, by the strong law of large numbers and Jensen’s inequality,

1
F(B,h;:0) = llm ———— log Z
(B,h;0) Jm T ... 4T, OZ 2T\ 4. +Tpw,8,h

E(Tll(w{w + E[log cg.n(w)] — v Eflog(T1)] }
(2.5)
= E(Tll( {¢G + Ellog ¢z p(w)] — v log E(T}) }

> eC@{(g _ ")/C) + [log Cj’h( )] . 710?6}7

v

where for the last inequality we use that the term between braces is strictly positive for £
large enough when G — ~C > 0. This proves (2.1)). O
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2.2. Proof of Theorem We use Lemma . Fix 8 >0, h € R, § € (—tp,t9) and
€ > 0, and define the set of good atypical stretches as

1
Ay = {(wl, cowyp) € RE: 7 log Z¢ . 5,n > F(B, h; ) — 5}, (2.6)

so that G = F(3, h;d) — € by construction. It remains to determine C, for which we need to
estimate the probability of P(Ay) from below.

By the definition (1.6) of F(f,h;d) together with Kingman’s super-additive ergodic
theorem (see Remark , the event Ay is typical for Py:

Jim P(Ag) = 1. (2.7)

Denoting by P§ (resp. Pf) the restriction of Ps (resp. P) on o(wi,...,w;), we have, by
Jensen’s inequality and (|1.4]),

Clog %5

]P’(.Ag) = IP’(;(Ag) E5 <e 08 e

£
dPs

Az) > Ps(Ar) s (108 G 40)

4
= Ps(Ar) o FlAp s [(108 55¢) 14,] (2.8)

=Ps(Ag) e ry B [ (555 —og M(9)) 14, ]

Recalling (1.4) and Assumption we abbreviate
ms = Es(w1) = (logM)'(§) = 6 + o(6), 5 — 0. (2.9)
By the strong law of large numbers, it follows from (2.7))-(2.8) that for every ¢ > 0 we have,

for £ large enough,

%log}P’(Ag) > —[6ms —logM(0)] — e =: —C, (2.10)
We can conclude. We know from that F(5, h;0) > 0 when
G —~C =F(B,h;6) — y[d ms — log M(8)] — 2 > 0. (2.11)
If F(B, h;0) = 0, as in the assumptions of Theorem it follows that G —yC <0, i.e.,
F(B,h;6) < v[0ms —logM(8)] +2¢, V& € (—to, o). (2.12)
Since this equality holds for every € > 0, it must hold also for € = 0, proving . O

3. ASYMPTOTIC EQUIVALENCE OF TILTING AND SHIFTING: PROOF OF THEOREM

Throughout this section, we work under Assumptions and [L.7]

3.1. Notation. Denote the empirical average of the variables o;’s by

1 N
TN = Nz;ai. (3.1)
1=

The finite-volume Gibbs measure associated with the partition function in ((1.13) is the
probability on Qy defined, for N € N, w € RN, 3 >0 and h € R, by

1 N
ZNw,Bh t

where Zn 55 :=En {erzl(h—kﬁwn)o—n] ]

PN,w,B,h( ’ ) : (3 2)
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Let us spell out the definition (|1.6|) of the free energy, recalling (|1.4]):

1
F(B, h;0) :=limsup Fy(f, h;d) := limsup NIE(g[log ZN,w,B,h]

- Lot SN Swn—log M(6)] '
= lim sup —E[e n=1100n =108 log ZN,w,ﬂvh]'
N—oo
Note that, by (1.14),
N N N
> (h+ Buwn)o Z |B] + Blwn|) lon| < s0 D (Ih] + Blwnl), (3.4)
n=1 n=1 n=1

so that |[F(83,k;6)| < so(|h| + BEs(Jw1])) + [limsupy_,e 4 10g Pn ()| < co. (This is the
only point where we use our assumption that Py () is not superexponential in N.)

3.2. Preparation. Before proving Theorem we need some preparation. Recalling (3.1)),
we define for [a,b] C R with a < b a restricted version of the partition function and the free
energy, in which the empirical average @ is constrained to lie in [a, b]:

a,b N_ wn)om
Zz[v,w]ﬁ,h =By {ez"‘l(hw ) 1{aNe[a,b]}},
(3.5)

pla:0] (B, h;d) := lim sup F%’b] (B, h;9) := limsup %E(g [log Z][\L;:ﬂ@h].

N—o0 N—oo

The corresponding restricted Gibbs measure is the probability defined by (recall (3.2))

N
En [eZn=1<h+ﬁ‘“n)"" Lionelany 1 }}

Pl 1 () = Prwsn(-[on € [a,b]) = (3.6)

[a,]
Zlgf w,B,h

Note that Zn g4 = Z][\(;:i(?]ﬁ,hv by . Furthermore, Z][\ffj],ﬂ,h < Z][\C]’i]ﬁ’h when [a, b] C
[c, d]. Therefore
Flot(8, h; 0) < Fled(8, hy6) < F(B,hy6),  [a,b] C[c,d]. (3.7)
In particular, for x € R we may define
F{#H (3, h; 6) = Tim Flanbal (8 h: 8) € [—o00, +00), (3.8)
where a,, T x and b, | = are arbitrary strictly monotone sequences (it is easily seen that the

limit does not depend on the choice of these sequences).

Note that F{#}(83, h; §) = —oo when z ¢ [0, s0], by (T.14). The following result is standard:
F(B,h;6) = sup FUH(B, 1;6). (3.9)

z€[0,s0]

In fact, by B.7) Fl*?(3, h;6) < F(B, h;d) for every [a,b] C R, hence by . (B, h;0) >
Fl=} (8, h; 6) for every x € R. It follows that the inequality > holds in . For the reverse
inequality, note that if a < b < ¢, then [a, ] C [a,b] U [b, ] and so

a,c a,b b,c a,b b,c
23 on < 2N o+ 2N g <2 max {200, 200 ) (3.10)
Recalling (3.5]), we see that
Flad(8, h; §) < maX{F[a’b] (8, h; 5), FO9 (3, h; 5)}. (3.11)
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Since F(5, h;d) = Fl0:s0] (B, h; ), we can build a sequence of closed intervals (I,,)nen,, where
Iy = [0,s0] and where I,,4; is either the first half or the second half of I,,, such that
rln (B, h;0) < FIn+1(B, h;0) for all n € N. In particular,

F(B,h;8) < lim £ (8,53 0). (3.12)

By compactness, there exists an T € [0,so] such that I,, | {Z}, i.e., N,enIn = {Z}. If
I, = [an, by], then we set J,, := [a, — %, by, + %], so that we still have J,, | {T}, and T lies in
the interior of each J,,. Since F» (B, h; §) < F/n(B, h; §), recalling we obtain
F(3,h;6) < lim F"(B,h;0) < lim F/(8,h;8) = ¥ (B, h;6) < sup FH(B, h;6),
n—oQ n—oo me[O“SO}
(3.13)
and the proof of is complete.

3.3. Proof of Theorem By (3.9), it suffices to show that (1.15) is satisfied with r{#}
instead of F, for every fixed x € [0, sg]. It is of course important that the constants C’Bi 5 do
not depend on z.

1. First we consider the case x = 0. We claim that

1

F{O}(ﬂ, h;6) = lim (hmsup —logPn(0<Tny < 5)) (3.14)
el0 N—oo IV

Since the right-hand side of (3.14) is a constant that does not depend on 8 > 0, § € (—to, to)

and h € R, (I.15) is trivially satisfied with F1°} instead of F, whatever the definition of CEE 5

is. To prove (3.14)) note that, by Cauchy-Schwarz,

N N N N
S Bundon) < 3| D20 fnl? | DIl < N0 VAN | 1 D0+ B
(3.15)
because 0 < 0, = |o,| < 59 by (1.14)). Recalling (B.5), for every N € N we get
L (] 1 B 1 &
’N 5[log ZN,w,B,h] N logPy(a <oy < b)‘ < s0 VbEs an_:l(h + Buwn)? 516
< 50 Vb /s [(h + Buor)?],

where we use Jensen. Note that the right-hand side is a finite constant. If |ay — by| < ¢ for
all N € N, then |limsupy ay — limsupy by| < ¢, and so

Flot(B, h; 6) — (lim sup % logPy(a <oy < b)) ’ < soVb \/IE5 [(h+ Bwi1)?].  (3.17)

N—o00
Taking [a,b] = [—¢, €] and letting € | 0, we get (3.14) from (3.8]) .

2. Next we consider the case x € (0, sg]. Roughly speaking, the strategy of the proof is
to show that the derivatives of the free energy with respect to § and to h are comparable.
Unless otherwise specified, we work with generic values of the parameters in the admissible
range > 0, h € R and § € (—tg,tp). Henceforth we fix 0 < a < b < oo. Recalling
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and (3.6), we see that the derivative with respect to h of the (restricted) finite-volume free

energy pl2?) B, h;d) can be expressed as
N

0

a 0 a,
SN rle (B, h; ) = ]E(;[logZ][vﬂB’h] Es[E? , , [ow]]- (3.18)

Oh

3. The derivative with respect to d requires some further estimates. Recalling (3.2))-(43.3]),
we have

9 la,
S5 (8, ki ) NZEJ[ —mg) log Zi 2l . (3.19)

where mgs := Es(w,) = (log M)'(6) by (2.9). Subtracting a centering term with zero mean,
we get

0 a,b a,b a,b
S5E (8, ki 8) = ZIE(;[ ms) (log 232 5 108 232 s lnzms )|
(3.20)
1 wn 0 b]
N;Eé 5) /m(; (&un Nw,ﬁ h> wnydy]a
where we agree that ff( )= —[}(...) when a > b. Abbreviate
1 0 a,b a,b
falwy) =5 <6wlog Z}V#j@h) =En" o lonmylon], (3.21)
n Wn=Y

where the second equality follows easily from (3.5)) via (3.6]). Note that f,(w,y) depends on
the w;’s for ¢ # n, not on w,. Therefore (3.20) can be rewritten as

Wn,

ab] 6,h5 ZE(5|: ;
ms

a5 N prapredl SRRRLICAE) dy] (3.22)

4. We see from (3.21)) that if f,,(w,y) in (3.22]) were replaced by f,(w,wy), then we would
get E%g 5, plon]. If we could factorize the expectation over Es, then the right-hand side in

(3.22) would become =~ (3 Vars(w) Es [E%gﬁ w[on]]. Recalling (3.18), we see that this is
precisely what we want, because Vars(w;) &~ 1 for § small. In order to turn these arguments
into a proof, we need to estimate the dependence of f,(w,y) on y. To that end we note that

9 19 0.t 0.t
R w wn Z w = /6 Va,r w On
&unf n( ) = 55 3 N,w,B,h N ﬁh[ ] (3.23)
SBEEI\Z[iﬁh[ ] <s50f3 EN gh[o'n] —SO/Bfn(wawn)
because 0 < o, < sg, by . Therefore
O w20, L0 ) <o, (3.24)

dy

and integrating these relations we get

Jy

e—soﬁ(y—y/)_ fn(w’y/) S fn(w7y) S esoﬁ(y—y/)+ fn(wvy’) Vy,y/ (& R. (3.25)
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Introducing the function

e -1 |
ga) =4 = HzA0 (3.26)
1 if x =0,

taking ¢y’ = mg in (3.25)) and integrating over y, we easily obtain the bounds

9( = Bso(wn—ms)7) falw,mys)

1 Wn fn(W,y) dy < g(ﬁso(wn _ m§)+) fn(w, m§)~ (327)

IA

Wn = M§ Jms

5. Before inserting this estimate into , let us pause for a brief integrability interlude.
The random variable g(—/fBso(w, — mg)~) is bounded, so there is no integrability concern.
On the other hand, the random variable g(8sg(w, —mg)™") is unbounded and a little care is
required. Note that

g(Bso(wn —ms)T) < A+ Belsown (3.28)
for A, B > 0, and that Es(e!!) < oo for t + § € (—to, +to), by and . Therefore,
when we integrate g(8so(w, —mgs)™) (possibly times a polynomial of w;,) over Ps, to have a
finite outcome we need to ensure that Sso + 9 € (—tg, +to). This is simply achieved through
the restrictions 6 € (—eg,&0) and B € [0,&0), where g9 := min{%}, 2%00}, as in the statement
of Theorem We make these restrictions henceforth.

6. Let us now substitute the estimate (3.27)) into (3.22)). Since f,(w, ms) does not depend
on wy, the expectation over E;s factorizes and we obtain

N
Es | (w1 — m5)2 g( — Bso(wr — ma)_)} (]ff Z Es [fn(w, mg)})
n=1
< 265, 1:5) (3.29)

5 N
< s | (w1 —ms)? g(Bso(wr — ms)*) (N > Es| falw, m5>]> .
n=1

We next want to replace f,(w, mg) by fn(w,w,) = E%i B (o] (recall (3:21)). To this end,

we again apply (3.25)), this time with y = w,, and ¥’ = ms. Since f,,(w,ms) does not depend
on w,, we have

Es [esoﬁ(w1—m5)+} < Es [fn(w7m5)] = Es [6_50/8(‘*’1—7716)_} ' (3.30)
We can now introduce the constants
. Es [ (w1 —ms)? g(Bso(wr — ms)™)]
o Eg[es08@1—ms) ] ’
) - (3.31)
_ Es[(wi —ms)?g(— Bsolwr —ms)7)]
85T E; [esoBwi—ms) ] ’

and note that 0 < c5,; < Varg(wr) < C;?,a < oo for all § € (—ep,g0) and B € [0,ep),
because g(x) < 1 for z < 0 and g(z) > 1 for x > 0. We have already observed that



SMOOTHING INEQUALITY FOR DISORDERED POLYMERS 13

folw,wy) = EE(\lf:cl:],B,h [on] by (3:21), and so from (3.29)-(3.30) we obtain the following
estimate: for every 8 € [0,e9), h € R, § € (—ep,£0) and 0 < a < b < o0

0 la,
¢35 BES[EN 5[] < 55r (8, 1i0) < ¢ 5 BES[EY 5, [ow]]- (3.32)

Note the analogy with the expression in - for % la b] (B,h;9).

7. We are close to the final conclusion. Since by (3.6 we have a < E%ﬂ 8.h [EN] <b, it

follows from (3.32)) that, for every § € [0,eq)

CysBad <F¥(B,h;6) — Flo¥(8,h;0) < CF 5 86, (3.33)
where we set 5
1 + o
ot = 5/0 ¢, dd it 6 € (—eo,20) \ {0}, 530
Cho if § = 0.
Analogously to (3.33]), from (3.18)) we obtain, for every £ > 0,
a& < FlB h+&0) —Fl (B h;0) < bE. (3.35)

Choosing & = C;{,&gﬁé and £ = Cﬁié%ﬁé, respectively, and combining (3.33))-(3.35), we
finally get the following relation, which holds for all 3,0 € [0,e0), h € Rand 0 < a < b < oo:

Fl (3, b+ C 5 986;0) < FloPl(3, i 6) < vV (8, b + CF ;25;0). (3.36)

Next, fix any > 0 and n > 0. If a,, T  and b,, | =, then a, /b, > 1—n and b,/a, <1+n
for large n. Since h — Fl%! (B, h;§) is non-decreasing, by (3.18) and (T.14)), for n large
enough we have

Flon bl (8, h 4 Cf 5(1—1)86;0) < Flonbel(8, h; ) < FlonPnl (8 h 4 CF 5(141)B5;0). (3.37)
Recalling and , we can let n — oo to get that, for every x > 0,
FU (B, h + Cg5(1 = 1)B6;0) < v (B, b3 0) < PUH(8, b+ CFf (1 +1)B5;0).  (3.38)

This relation also holds for z = 0 because F{*} (B, h;9) is a constant, as we showed in (3.14]).
Taking the supremum over x € [0, sp], we have shown that, for all 5,4 € [0,20) and h € R,

F(8,h+C55(1=n)B6;0) <F(B,h;6) < F(B,h+ Cys(1+1)85;0). (3.39)

Since h > Flobl (B, h;9) is convex and finite, and hence continuous, we can let n | 0 to obtain

(1.15) for 6 € [0,&p).

8. The case 0 € (—¢0, 0] is analogous. The inequality in (3.33) is replaced by

CysBa(—0) < F*(B,h;0) — Fl*M(8,h;6) < CF,Bb(=0), (3.40)
while for £ < 0 becomes
a (=€) < P8, h;0) — FIY(8, 1 4 £0) < b(=€). (3.41)
Choosing & = C’+ bﬂ(s and £ = 6%55, respectively, we get
F (8, h+ CF 52865 0) < FlOP(8, b 6) < M (8,h + C5 45;0). (3.42)

It remains to let a 1z, b | x, followed by taking the supremum over x € [0, s¢].
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9. Finally, by (3.34), we have 0 < Cj 5 < CZ{(; < oo for all g € [0,e9) and 6 € (—eq,£0). By
dominated convergence, (3,9) — cjﬁ[ s are continuous on [0, g9) X (—&p,£p), and hence also

(8,0) — C’Eé is continuous. Since CSE,() = Var(w;) = 1, the proof is complete. O

4. SMOOTHING WITH RESPECT TO A SHIFT: PROOF OF THEOREM [L.9]

Equations (1 and (I.14) imply that i+ F(f3, h; 0) is non-decreasing. Since F(f3, h; 0) >
0 under Assumptlonl by (L5), ifF (B,h;0) =0, then F(B,h +t;0) = 0 for all ¢ <0, and

(1.17) is trivially satisfied. Henceforth we assume ¢ > 0.

Recalling the statement of Theorem we set Fg(d) := Cj ;6. This is a continuous and
strictly increasing function of §, with Fj5(0) = 0, and hence it maps the open interval (0, £o)
into (0, (), for some e, > 0. Applying the first inequality in ([1.15]) for ¢ € (0, Bey)), we can
write

F(B,h+t;0) = (B, h + BF5(F;'(§)):0) < F(B, hi F5 ' (5)). (4.1)

Applying (1.9)), we obtain

27 g 2,
h+1t0) < — Az 4.2
P 10) < 5 Ay (42)
where
. ( oy »”
It follows from (L.16) that limg 5)(0,0)(F5 1(6)/6) = 1. Since lims_,g Bs = 1, we obtain
lim(ﬁﬁ)_)((),o) Aﬁﬁ =1. O
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