GAUSSIAN LIMITS FOR SUBCRITICAL CHAOS

FRANCESCO CARAVENNA, FRANCESCA COTTINI

ABSTRACT. We present a simple criterion, only based on second moment assumptions, for
the convergence of polynomial or Wiener chaos to a Gaussian limit. We exploit this cri-
terion to obtain new Gaussian asymptotics for the partition functions of two-dimensional
directed polymers in the sub-critical regime, including a singular product between the
partition function and the disorder. These results can also be applied to the KPZ and
Stochastic Heat Equation. As a tool of independent interest, we derive an explicit chaos
expansion which sharply approximates the logarithm of the partition function.

1. Introduction

In this paper we investigate the convergence to a Gaussian limit for random variables
that have the structure of a polynomial chaos, that is a multi-linear polynomial of inde-
pendent random variables, or alternatively of a Wiener chaos, that is a sum of multiple
Wiener integrals with respect to a Gaussian random measure. Our main motivation is the
study of directed polymers in random environment, whose partition function provides a
discretization of the solution of the multiplicative Stochastic Heat Equation (SHE), while
its logarithm corresponds to the solution of the KPZ equation. Many convergence results to
Gaussian limits have been obtained in recent years for directed polymers and for SHE and
KPZ (see the discussion in Section [3) based on polynomial chaos or Wiener chaos, often
exploiting the Fourth Moment Theorem and variations thereof. Our purpose is to present
a general approach which makes it possible to recover these results in a simpler and unified
way and, furthermore, to obtain novel results. Let us give an overview of the paper.

In Section [2] we state our first main result: a general criterion for the convergence of
polynomial chaos or Wiener chaos to a Gaussian limit only based on second moment as-
sumptions, see Theorems[2.1]and Besides the fact that we do not require higher moment
bounds, we can work directly with a superposition of chaos of different orders, with no need
of treating them individually as in the Fourth Moment Theorem. Our criterion gives con-
ditions that are sufficient, not necessary, but its simplicity makes it potentially suitable to
many different contexts.

In Section |3| we study the partition function Z]B\, of two-dimensional directed polymers
in random environment. In the limit N — oo, and for a suitable tuning of the inverse
temperature § = Sy (in the so-called sub-critical regime), the partition function exhibits
Edwards-Wilkinson fluctuations [CSZ17b], i.e., it converges to a log-correlated Gaussian
field when averaged over the starting point. An analogous result was obtained in [CSZ20)]
for the logarithm of the partition function. Our criterion from Section [2| besides providing
alternative and more elementary proofs of Edwards-Wilkinson fluctuations, gives a natural
framework to obtain new Gaussian asymptotics. We give two main illustrations.
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e We prove that a singular product between the partition function and the underlying
disorder has a non-trivial Gaussian limit, see Theorem [3.4] This result sheds light
on the mechanism which produces Edwards-Wilkinson fluctuations, explaining the
source of the non-trivial factor which arises in the limiting equation.

e For the partition function Z]’[\B, with a fixed starting point, we obtain an explicit chaos
expansion X]‘%,‘)m which sharply approximates log Z g , see Theorem ﬁ; then we prove
that X]({,"m, hence log Zﬁ, too, is asymptotically Gaussian, see Theorem We thus
recover the main result in [CSZ17b] with a simpler and more conceptual proof.

These results can also be formulated in the continuum setting of the SHE and KPZ equa-
tion. We refer to Subsection [3.5] for a discussion and further perspectives.

The following Sections [@H7] contain the proofs of our main results, while some technical
lemmas have been deferred to Appendix [A]

2. Gaussian limits for polynomial and Wiener chaos

Our general convergence results can be phrased in a discrete setting (polynomial chaos)
and in a continuum one (Wiener chaos). We start with the former, which is more elementary.

2.1. Polynomial chaos. Let T be a countable set. For each N € N, we consider a family
N = (n]V)ser of independent random variables, not necessarily identically distributed, with
zero mean and unit variance:

Elnf1=0,  E[m")*=1. (2.1)

We further require the uniform integrability of the squares:
I E[ N2q ] —0, 2.2
fim - sup 76 " Ly 1y (2.2)

which follows from (2.1]) if the 5;¥’s have the same distribution. In general, a sufficient easy
condition for (2.2) is that supy , E[|n}'|[F] < oo for some p > 2.

We consider a sequence of random variables (Xy)nen that are polynomial chaos, i.e.
multi-linear polynomials in the 7}¥’s. More precisely, we assume that

Xy = Y ax(A)nV(a),  with V)= ]nd, (2.3)
AcT te A

where gy (-) are real coefficients and the sum ranges over finite nonempty subsets A < T
(i.e. gn(A) # 0 only if 0 < |A] < 0). We can split the sum according to the cardinality &k
of the subset A: if we write A = {t1,...,t;} for distinct points ¢; € T, we can rewrite (12.3])
as

0 k
Xnv=> > av({tr,....te) []nf) - (2.4)
i=1

k=1 {t1,...,t5}cT
t;#t; Vi#]

We assume that Y. 4 1 gy (A)? < 0, so that X is a well-defined random variable with
E[Xn] =0,  E[XX]= )] av(4), (2.5)
AcT
because (n™V(A))act are centered and orthogonal random variables in L2.

Our goal is to prove convergence in distribution of Xy toward a Gaussian random vari-
able. This can be achieved via the celebrated Fourth Moment Theorem, formulated in our
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context in [NPRI0] and slightly extended in [CSZ17bl Theorem 4.2]; see also the previous
works [NuaPec05l, [deJ90, [deJ87, Rot79] and the book [NouPecl2]. The Fourth Moment
Theorem deals with a sequence X of polynomial chaos in a fized order chaos (i.e. a single
term k in (2.4)) and it requires to compute the second and fourth moments of Xn.

Our first main result gives sufficient conditions for convergence to a Gaussian limit
only based on second moment assumptions on Xy, which can be directly applied to a
superposition of chaos of different orders. Let us introduce the shorthand

ox(B):= > qn(4)?  for BcT, (2.6)
AcB

which gives the contribution to the second moment of X of the subsets of B (recall (2.5])).
We can formulate our conditions as follows.

(1) Limiting second moment:

. 2 _ 2 _ 2
i, oH(T) = i 3 ax(4) = o€ (0.0, (2.7)

i.e. the second moment of X converges to a finite limit.
(2) Subcriticality:

lim limsup gn(A)? =0, 2.8
dm w3 (4 (28)
|A|>K

i.e. the contribution of high order chaos to the second moment of Xy is negligible.
(3) Spectral localization: for any M, N € N we can find M disjoint subsets (“bozes”):
By,...,By; T with BZ’GBJ‘ZQ for i # j,
(where B; = BEN’M) may depend on N, M) such that the following conditions hold

(recall (2.6)):

M
- . 2 M@y _ 2
Jim - Jim ; oX(Bi) = o*, (2.9)
lim limsup { max G?V(Bi)} =0, (2.10)
M- N i=1,...,

i.e. the main contribution to the second moment of X comes from subsets contained
in one of the boxes By, ...,Bys, whose individual contribution is uniformly small.

Note that conditions , , are second moment assumptions. The name “subcritical-
ity” for condition is inspired by directed polymers, that we discuss in Section |3 and
more generally by marginally relevant disordered systems, see [CSZ17al, which undergo a
phase transition at a critical point determined precisely by the failure of condition ([2.8)).

We can now state our first main result.

Theorem 2.1 (Gaussian limits for polynomial chaos). Let Xy be a polynomial chaos

as in (2.3), with coefficients qn(-) satisfying the assumptions , , (see (2.7)—(2.10)) ),
with respect to independent random variables ™ = (n])ier which satisfy 2.1) and (2.2).
Then as N — oo we have the convergence in distribution

Xy -5 N(0,0?). (2.11)

The proof is given in Section [4 and comes in two steps:
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o first we approximate Xy in L? by a sum Zf‘i 1 Xn,i of independent random variables,
for a suitable M = My — oo;

e then we show that the random variables (Xn;)1<i<n, satisfy the assumption of the
Central Limit Theorem for triangular arrays, which eventually yields (2.11)).

We will also replace the random variables (7)) by a family of random variables with
bounded moments of some order p > 2 (e.g. by Gaussians) to exploit the hypercontractivity
of polynomial chaos, see [MOOI0]. The justification of this replacement will be given at
the end of the proof exploiting a suitable Lindeberg principle, see [MOO10, [CSZ17al.

Remark 2.2. When the polynomial chaos Xn belongs to a fixed order chaos, the conditions
of the Fourth Moment Theorem are known to be optimal, i.e. necessary and sufficient for
the asymptotic Gaussianity of Xn. It would be interesting to investigate how far from
optimality are our conditions f in this setting. A direct comparison between our
conditions and the Fourth Moment Theorem is not straightforward, due to the freedom in

the choice of the bozes B; in (2.9)-(2.10)).

2.2. Wiener chaos. Theorem [2.1| has a direct translation for Wiener chaos. Let (E, &, p)
be a Polish (complete separable metric) space, endowed with its Borel o-field £ and with a
non-atomic measure p. Let £ = {A e £: p(A) < w0} be the class of measurable sets with
finite measure. By Gaussian random measure on (E,E, ) we mean a centered Gaussian
process W = (W(A)) acex with Cov[W (A), W (B)] = u(AnB), defined on some probability
space (€2, A,P). We often use the informal notation W (dx). The most important example
is given by white noise, which corresponds to E = R? with 1 = Lebesgue measure.

We fix a Gaussian random measure W (dx) on (E, &, ). For every k € N and every real
function f e L2(E*, u®*), by [Tto51, NouPecI2] we can define the stochastic integral

WO = | f@e w0 W(dey) - W(day)

which is a centered random variable in L?(2) (non Gaussian as soon as k > 1 and f # 0).
For symmetric functions f e L?(E*, u®*) and g € LQ(E’“/, ,U,®k/) we have the Ito isometry:

E[W(f) WE ()] = Ty KUCF, 92 poomy

(2.12)
= Lyppry k! JEk flxy, ..o xk) gz, ..o xp) p(day) - - - p(dag) -

In this “continuum setting”, in analogy with the discrete polynomial chaos (2.4), we
consider a sequence (Xy)nen of Wiener chaos with respect to W (dx), that is

o0
Ty= Y f (o) W) W) (2.13)
k=1vE
where gy is a symmetric L? function defined on | ;. (E¥, £, u®¥). Then, by ([2.12),
a0 e}
E[Xn] =0, E[X3]=) & lan |72 ry = DUk fEk n (@1, z)? p(dar) - - p(day) .
k=1 k=1

(2.14)

Remark 2.3. Every centered random variable in L?(SY), which is measurable with respect
to the o-algebra generated by W, admits an expansion like (2.13)).
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Remark 2.4. The factor k! in (2.14]) is due to the fact that Gn in (2.13) is a symmetric
function of the ordered variables x1, ..., xy, whereas qn in (2.4) is a function of unordered

variables (i.e. subsets) {t1,...,tx}. To formally match (2.4))-(2.5) with (2.13))-(2.14), we
should identify qn with k!'qn and X ¢, 4 cp I, ny with 3§ W(day) - - W (day).

Mimicking (2.6)), we set

a0
53:(B) := Z k! JBk qn(x1, ... xp)? p(dey) - - - p(day) for measurable B c E, (2.15)
k=1

which gives the contribution to the second moment of Xy of subsets in B, see (2.14). We
can now formulate our conditions in the continuum setting.

(1) Limiting second moment:

N—

o0
lim 6%(E) = dim Yk an 3y = o€ (0,), (2.16)
k=1

i.e. the second moment of X converges to a finite limit.
(2) Subcriticality:

lim limsup El|gn? =0, 2.17
A limsu k;{ lGn 172 v (2.17)

i.e. the contribution of high order chaos to the second moment of Xy is negligible.
(3) Spectral localization: for any M, N € N we can find M disjoint subsets (“bozes”):
By,...,Byy c E with B,nB; = fori#j

(where B; = IB%Z(N’M) may depend on N, M) such that, recalling (2.15)),

M
li li 53 (B;) = o 2.1
i, i, 2, ok (B) = % (2.8
lim i { 52 (B } ~0, 2.19
Mlinoo Nl—r>noo i:?é.),(MaN( Z> ( )

i.e. the main contribution to the second moment of X N comes from subsets contained
in one of the M boxes By, ..., By, whose individual contribution is uniformly small.

We can finally state the version of Theorem for Wiener chaos. We omit the proof
because it follows very closely that of Theorem [2.1] given in Section [4

Theorem 2.5 (Gaussian limits for Wiener chaos). Let Xy be a Wiener chaos as in

(2.13), with coefficients Gn(-) satisfying the assumptions , , (see (2.16)—(2.19) ),
with respect to a Gaussian random measure W (dx) on a Polish measure space (E, &, ).
Then as N — o we have the convergence in distribution

Xn -5 N(0,0%). (2.20)

3. Applications to directed polymers

We now present applications of our convergence results in Section 2]to directed polymers
in random environment on Z2.
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3.1. Directed polymers and stochastic PDEs. Let S = (S,),>0 be the simple sym-
metric random walk on Z?, whose law we denote by P. Let w = (w(n, @)),enzez2 be a
family of i.i.d. random variables, independent of S, with law P and such that

Elw(n,z)] =0, E[w(n,z)?] =1, AB) :=logE[e®")] <0 VB>0. (3.1)

Intuitively, trajectories of the random walk S represent polymer configurations, while con-
figurations w describe the disorder, which plays the role of a random environment. Given

a scale parameter N € N, a starting time-space point (m,z) € {0,..., N} x 7Z? and an
interaction strength 5 > 0, the partition function of the directed polymer model is
Z8(m, z) = E[eZLmH(Bw(n,Sn)—A(ﬁ)) ‘ S, = z] _ (3.2)

Directed polymers were originally introduced as an effective interface model in the frame-
work of the Ising model with impurities, but over the years they have become an object
of independent study and a prototype of a disorder system which is amenable to detailed
rigorous investigation. We refer to the monograph by Comets [Com17] for a recent account.

A source of interest for directed polymers is their link with the multiplicative Stochastic
Heat Equation (SHE), which is the stochastic PDE formally written as follows:

duult,z) — %Axu(t,:v) +BW(t2) ult, ), (3.3)

where 8 > 0 tunes the interaction strength and W (t, z) denotes white noise on (0, ) x R2.
In one space dimension d = 1, this equation admits a rigorous integral formulation by
the classical Ito-Walsh integration. In higher dimensions d > 2, this approach fails due
to strong irregularity of white noise and no obvious meaning can be given to its solution
u(t, x).
By the Markov property of simple random walk, the diffusively rescaled partition func-
tion
Un(t, @) := Z3(INt], |V N]) (34)

solves a discretized version of (with J¢ and %Am replaced by —d; and %Ax, see

below). This explains the interest for the convergence as N — oo of Un(t, ), possibly for

suitable § = (B, since it provides an approximation of the ill-defined SHE solution u(t, x).
It is also very interesting to look at the logarithm of the partition function

log Z3 (IN], |V Nx])
because it provides an approximation for the solution h(¢,z) = logu(t,z) of the Kardar-
Parisi-Zhang equation (KPZ), which is the stochastic PDE formally given by
1 1 .
oh(t2) = LALh(tx) + SIVoh(t ) + AW (L) <~ 07 (35)

13

where the last term “—o0” indicates a form of renormalization.

Remark 3.1 (Edwards-Wilkinson equation). The Stochastic Heat Equation (3.3)) is
singular due to the multiplicative noise term Wu. The additive version of this equation,
known as the Edwards-Wilkinson equation, is well-posed and reads as follows:

dw(t, x) = %Amv(t,x) +eW(t ), (3.6)

where s > 0 and ¢ € R are given parameters. Starting from v(0,-) = 0, the solution
v = v is a random distribution (i.e. generalized function) which is Gaussian with
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explicit covariance, see [CSZ20, Remark 1.5]. More precisely, if we denote by <U(S’C),w> the
pairing between the distribution v59) and a test function ¥, which formally corresponds to

W), 5 f V5O (8, 2) (¢, z) dt da, (3.7)
RQ
then (v 4 for ¢ e CP([0,0) x R?) is a centered Gaussian process with
Cov [(v(s’c), by, <v(s’c),z//>] = J W(t, x) Kt(‘z’,c) (x,2") ' (¢, 2") dt do dt’ da’ | (3.8)
([0,00) xR2)2 ’
where the covariance kernel is given by
2 ps(trt)) 2
(s,¢) n._ 3¢ o _ e
Ky (w,a') > gu(z —2') du, where gy (y) : S (3.9)
3.2. Edwards-Wilkinson fluctuations. Let us define
11
up = Y, P(Sp = 2)? =P(San = 0) ~ = =, (3.10)
2€72 T
N N 1
Ry = Z Z P(S, = 2)? = Z Uy, ~ ;logN, (3.11)
n=1 ze72 n=1

where the asymptotic relations (respectively as n — o0 and as N — o) follow by the local
central limit theorem (see (|A.14) below). Henceforth we are going to fix 8 = Sy given by

P BV
VRN VlogN
also known as the sub-critical regime. This ensures that the partition function Z]BVN has
a bounded second moment as N — oo, see [CSZI7bh]. It was recently shown in [LZ21+]
CZ21+]| that in fact all moments of Z]%N are bounded in this regime.
We look at the fluctuations of the diffusively rescaled partition function, encoded by

Vi (t, 2) :=5V(Z£N([th,[\/ﬁxj)—l) for (t,2)¢e[0,1] x R2. (3.13)

with G e (0,1), (3.12)

It was shown in [CSZI17b, Theorem 2.13| that Z]%N exhibits Edwards- Wilkinson fluctu-
ations, because Vi (t,z) converges as N — oo to a solution of the Edwards-Wilkinson

equation (3.6

Vn(t, x) N o(t,x) = v(%’cé)(l —t,x) where ¢z = /1132, (3.14)

where “—=” denotes convergence in law as a random distm’bution for ¢ € C.([0,1] x R?)
Vo, ) = f V() vty dede L 0. (3.15)
RxR

The convergence (3.14])) was proved in [CSZ17b| using the Fourth Moment Theorem, based
on a polynomial chaos expansion of the partition function, see (3.30) below. Remarkably,

By the Cramér-Wold device [Bil95, Theorem 29.4], relation (3.15) implies convergence of all finite-
dimensional distributions of the random field ((Vx, %))y toward (0, v).
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our Theorem allows for an alternative and more elementary proof of (3.14), based on
second moments calculations. The details will be presented in [Cot23].

l ; b _ (%7CA) _ ;
Remark 3.2. The factor 5 in the parameters of 0(t,x) = v'2""% (1 —t,x), see (3.14)), is

due to the fact that E[SY),S@] = %]lizj fori,j € {1,2}. In view of (3.6)), note that ©
satisfies

_ai(tz) — iAmﬁ(t,x) + e Wita). (3.16)

Edwards-Wilkinson fluctuations also hold for the logarithm of the partition function,
suitably centered and rescaled as in (3.13)):

Hy(t,z) = Biv<bg Z(INt], |V Nz]) — E[log Z5N (|Nt], [\/ij)]) . (3.17)

Indeed, it was shown in [CSZ20, Theorem 1.6] that a precise analogue of (3.14)) holds:

Hy(t,z) = o(t,z) = o2 (1 — t,2). (3.18)

This convergence was in fact deduced in [CSZ20] from by means of a highly non
trivial linearization procedure. The alternative and more elementary proof of based
on our Theorem can then be transferred to yield a proof of as well. We refrain
from giving the details, which will be presented in [Cot23].

Remark 3.3. A simultaneous and independent proof of was given in [G20] for
small B > 0 in a closely related context, namely for the KPZ equation where the noise
W (t,z) is reqularized by mollification (rather than by discretization, as we consider here).
Previously, the existence of non-trivial subsequential limits had been shown in [CD20]. We

refer to [DG20+, NN21+4] for some recent extensions and generalizations.

In this paper, we exploit Theorem to prove two new Gaussian convergence results
related to the partition function, that we now describe.

3.3. Main result I (singular product). The diffusively rescaled partition function
Un(t,z) in approximates the solution of the Stochastic Heat Equation with
multiplicative noise. It is not clear a priori why the fluctuations of Un(t, z), encoded by
Vn(t,z) in (3.13)), converge to o(t,z) which solves the Stochastic Heat Equation with ad-

ditive noise, see ([3.16]), with an intensity ¢ which ezplodes as 3 1 1. We now present a

result which sheds light on the mechanism which leads to (3.16)).
Let us introduce a modified disorder ny = (7N (M, 2))men zez2, recalling (3.1)):

Brnw(m,z)=A(Bn) _ 1
nn(m, z) := ¢ where 0% = AINZNGN) 1 52 (3.19)
ON N—0

We denote by Wy (t,z), for t > 0, x € R?, the diffusively rescaled version of ny:
Wy (t,z) := Ny (|Nt], |VNz|) . (3.20)

For any N € N, the modified disorder nn = (95 (M, 2))men zez2 is 1.i.d. with E[ny(m, 2)] = 0
and E[ny(m, 2)?] = 1, see (3.1)), and higher moments of 7y are uniformly bounded (see
|CSZ174, eq. (6.7)]). It follows that Wi converges in law to the white noise:

Wit z) = W(t, ), (3.21)
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that is (Wi, ) % (W, ) ~ N(0, [¢]2,) as N — oo, for ¢ € C2([0,1] x R2).
We now consider the product between Wy and Un(t,z) — 1, i.e. the centered and diffu-
sively rescaled partition function Z]%N (INt],|VNz|) — 1, see (3.4):

En(t,z) = Wn(t,z) (Un(t,z) — 1)
— By Wi (t, ) Vi (t,z),

where we recall that Vi (t,z) = S5 (Un(t,z) — 1) is defined in (3.13).
We know that Vi L. % and Wy 2o Woas N — o0, see (3.15) and (3.21). Since

BN — 0, one could expect that =y N 0, but this turns out to be false. The point is that
Vn and Wiy only converge as random distributions, and the product of distributions is not
a continuous operation (it is generally not even defined). The following result shows that
Zn has in fact a non-trivial limit as N — co. We prove it in Section [5| as an application of
our Theorem 2.1

(3.22)

Theorem 3.4 (White noise from singular product). Let § = By be fized as in (3.12)),
and set Cg = (1-— ,82)_1/2. As N — o0, we have the joint convergence in law:

. —_ ’D . .
(W, En) = (W, JE - 1W/>,
where W and W' denote two independent white noises on [0,1] x R2. More precisely, for
any 1 € CL([0,1] x R?), the following joint convergence in distribution holds:

. 1 0
(W, ), (Ens 1)) =5 N(O, [9]3 %)  where X = <o ¢~ ) :

We can finally give a heuristic explanation for equation (3.16). One can check that
Z]BVN (m, z) in (3.2)) solves the following difference equation, for m < N and z € Z?:

1 1
Z]%N (m—1,z) — Z]@N(m, z) = ZAZQZJ%N(m,z) + on 1 Z nn(m, 2') ZﬁN(m,z’) , (3.23)
where 2z’ ~ z means 2’ € {z+ (1,0), 2+ (0,1)} and Azzf(2) := >, _.{f(2) — f(2)} denotes
the lattice Laplacian (we recall that on and ny(m, z) are defined in (3.19)).

By (3.13) and (3:20)), we can rewrite (3.23) as follows, for (¢, z) € ((0,1]n %) x (Rzm%):

1 1 :
— oM UN(t, ) = ANVUN(t2) + on 7 3] Wi(t.2') Un(t.2'), (3.24)
N

'~z

where 2/ X 2 means 2’ € {z+ (ﬁ, 0),z + (0, \/iﬁ)} and we define the rescaled operators

oM f(t,) = N{f(t,x) — f(t - &,2)},
AN f(tx) =N > {f(t.2) - f(t,x)}.

'~z

Note that (3.24]) is a discretization of the (time reversed) Stochastic Heat Equation (3.3]),
with the factor % instead of % (see Remark and with on ~ Sy in place of 5.
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We now consider Vi (t,z) = S5 (Un(t,x) — 1), see ([3.14). By (3.24) we obtain

— oMV (t,x) = %N W (t, m)+;§i ZN] {Ww(t,x’)ww W (t,2) VN(M’)}- (3.25)

'~z

The last term By Wy (t,2') Va(t,2) is nothing but Ex(¢,2') in (3.22), which formally
vanishes as N — oo but actually converges to an independent white noise , /c?_} —1W'(t, z),

by Theorem (note that 2’ Ny implies |2/ — x| = 1/v/N — 0). If we assume that Vi (¢, z)
converges to a limit 0(¢, z), by taking the formal limit of (3.25)) we finally obtain

_oi(t @) = iAxﬁ(t,m) P W)+ T (). (3.26)

Note that this is equivalent to (3.16)), because W (¢, ) + /C% —1W'(t,z) 4 s Wi(t,z).

In conclusion, Theorem provides an intuitive explanation why the random field (¢, x)

to which Vy(t,x) converges should satisfy the equation , or more precisely .
The factor ¢ in arises from the singular product En(t,z) = B W (t, z) Vi (L, z)
which gives rise to an independent white noise, by Theorem

This result is the first step toward a “robust analysis” of the two-dimensional SHE ,
which would allow for a rigorous derivation of from .

3.4. Main result IT (log-normality). So far we have discussed the distribution of the
partition function Z]’[{]N (m, z), suitably rescaled, as a random field, i.e. averaging over the

starting point (m, z). We now look at the distribution of Z]’%N (m, z) for a fized starting
point: we fix (m, z) = (0,0) by stationarity and we set

Z0N = ZRN(0,0). (3.27)

It was shown in [CSZ17bl Theorem 2.8] that Z]%N is asymptotically log-normal:

log Z”BN <, N(- fa 02) where 0'2 = logc = log (3.28)

BB 1—- 62 '

The original proof of this result, based on the Fourth Moment Theorem, is long and
technical. Our goal is to provide a less technical and more insightful proof, based on second
moment computation, exploiting our Theorem The problem is that, unlike for ZPN , We

do not have a polynomial chaos expansion for log Z]%N , which is essential for Theorem
We solve this problem by first proving a result of independent interest, which shows that
log Z]ﬂ\,N is sharply approximated in L? by an explicit polynomial chaos expansion X]‘%,(’m.

We need some setup. We recall that the modified disorder (nn(n, )),en zez2 Was defined
in (3.19). We also introduce the transition kernel of the simple random walk:

gn(z) :=P(S, = x| Sy =0) (3.29)
and we recall the polynomial chaos expansion of the partition function [CSZ17a]:

28 (m,2) =1+ Y (on)" > anz i (T8 = @) v (na, 20) - (3 30

k=1 m=ng<ni<..<np<N 1=1
T0i=2, T1,...,x,EL2
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We define a new polynomial chaos expansion X dom " ohtained from the centered partition

function Z]ﬁVN —1= Zﬁ,N (0,0) — 1 imposing the constraint that all increments n; —n;—y for
i = 2 are dominated by the first time ny:

0

Xdom = Z(O’N)k Z HQTLZ ni_ 1 — Tj— 1)77N(ni7$i)'

k=1 O=npg<ni<..<np<N: (331)
max{ng—n1,ng—ng,...,nk—nk_1}<n1
20:=0, 21,...,x,€Z>

Our key approximation result shows that X]‘%?m is a sharp approximation of log Z]BVN . The
reason why this approximation is possible will be clear in the proof, but one can already
give a look at equation ((6.3)), which shows that a natural approximation of Z]%N has a
product structure, where (a restricted version of) X]C\lfom appears.

Theorem 3.5 (Polynomial chaos for log Z ) Set 8= By as in (3.12)). Then
) 8 d X _
Jim - log Z* — { X — 3 ™)1} . = 0. (3.32)

We then show, by our general Theorem [2.1} that X dom s asymptotically Gaussian.
Theorem 3.6 (Asymptotic Gaussianity of Xi°™). Set 8 = By as in (3.12)). Then

lim E[(XF")] =of =log 2y and X" -5 N(0,03). (3.33)

We prove Theorems 3.5} - bland [3.6) m in Sections |§| and [7] I Note that relations (3.32] and -
together provide a strengthening of the asymptotic log-normality of Z NN , see .

3.5. Conclusions and perspectives. We discussed several convergences to a Gaussian
limit for directed polymers: the Edwards-Wilkinson fluctuations and (| -, the
singular product in Theorem [3:4] and the asymptotic log—normahty in Theorem [3.6] We
stress that these results hold in the sub-critical regime with B < Bc = 1, while they
break down in the critical regime B = 1 (note that cp— O and 05— 00 as ﬂ T1).

It would be interesting to understand whether these results can be suitably extended to
a “nearly critical regime i.e. When one takes B = B ~ 1 1 slowly enough, strictly below the
critical window B = 1 + O( +) studied in [BCI8, [GQT21], [CSZ19b, [CSZ21+]. We plan
to investigate this issue in future work, building on the new proofs that we presented in
this paper, which are more robust and suitable for generalization.

Another direction of research is about higher dimensions d > 3. The Edwards-Wilkinson
fluctuations and have been proved for d > 3 in the so-called “L? regime” in
[LZ20+] and [CNN20+], sharpening previous work from [MUIS|IGRZ18, [CCM20, DGRZ20I;
see also [CCM21+] for related recent results. It would be interesting to apply the approach
of our paper in this higher dimensional context, to check whether it is possible to go slightly
beyond the “L? regime” (cf. the “nearly critical regime” mentioned above for d = 2).

Finally, we point out that many of the cited works focus on the “continuum setting”
of the SHE and KPZ equation where the noise W(t,x) is mollified (see also
Remark . Our results of this section are formulated in the discrete setting of directed
polymers, which correspond to the stochastic PDEs and where the noise W(t, x)
is discretized rather than mollified, but we stress that our approach can also be applied to
the continuum setting with mollification, using Theorem [2.5] instead of Theorem
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4. Proofs of Theorem [2.1]

As a preliminary step to prove Theorem we replace the random variables (nL{V )teT
in the definition of XN by independent standard Gaussians. We will show in Sub-
section that such a replacement does not affect the asymptotic distribution of Xy as
N — oo.

We therefore assume that ;Y ~ A(0, 1). We then exploit the hypercontractivity of polyno-
mial chaos, which allows us to bound moments of order p > 2 in terms of second moments,
see [MOOI10, Section 3.2] and [Jan97, Theorem 5.1]:

P

e (So-vHaw?)’

AcT

>, av(A)n"(4)

Vp > 2: E[
AcT

Remark 4.1. The choice of a Gaussian distribution for the 0} ’s is not fundamental here:
hypercontractivity of polynomial chaos holds for arbitrary distributions of the nY’s with
uniformly bounded moments: if sup ; E[|nN[P] < oo for some p > p, then

?

or a suitable C) < o0 with lim, o C, = 1: see |[CSZ20, Theorem B.1].
P pl2 “p

2
2

p] < ( > qN(A)Q) : (4.2)

AcCT

S an(4) Y (4)

AcT

4.1. Preparation. We consider a sequence of polynomial chaos Xy, with coeflicients

gn(+) as in (2.3)), which satisfy assumptions , , , see the equations (2.7))-(2.10)). We

now build two suitable diverging sequences of integers My — o0, Ky — o0.

e We fix My — oo slowly enough so that assumption still holds with M = My.
(N),

i

More explicitly, for every N € N we can find disjoint subsets (“boxes”) B; = B
By,..., By

N

such that the following versions of (12.9)-(2.10) hold:

cT with B;nBj=¢ fori#j,

lim oX(B;) = o2 and lim { max JIQV(]BEZ-)} =0. (4.3)

N—oo 4 N—o0 i=1,....Mn

e By the second relation in (4.3)), we can fix Ky — oo slowly enough so that

li Ky 2(B;) = 0. 4.4
im 8 .{naﬁajv(z) 0 (4.4)

N— i=1,..., N

The reason for this specific choice will be clear later, see the discussion after (4.14)).
Note that by our assumption , see (2.8)), for any K — oo we have

. 2

i > an(A4)* =0. (4.5)
AcT
|A‘>KN

Remark 4.2. [t is standard to deduce (4.3) from (2.9)-(2.10). Indeed, given any real
sequence an v which admits the limits

lim limsup aypy = lim liminf aypy = o
M—o0 Ni,oop ’ M—ox N-—>w© ’ ’
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we can always choose M = My — oo slowly enough so that limy_ an vy = o, as one
can check directly. Then, to obtain (4.3)) from (2.9))-(2.10), it suffices to consider

an = Z U]2V (BZ(N,M)) , resp. an.M = i—r{}a},(M 012\/ (B(N M))

We next proceed with the actual proof of Theorem We follow the two steps outlined
after the statement of Theorem 2.1

e first we approximate the polynomial chaos Xy in (2.3)) by a sum of suitable inde-
pendent random variables, see Subsection [£.2}

e then we apply the Feller-Lindeberg CLT to obtain the asymptotic Gaussianity (2.11)),
see Subsection

2. Approximation of Xy. We recall the notation ™V (A) := [,c4 ", see (2.3). We
define a triangular array of random variables (Xy ;)i=1,... vy by setting

Xnii= ), an(A)nN(A)  fori=1,..., My, (4.6)
|AI<Kn

where we recall that My — o0 and Ky — o have been fixed so that (4.3))-(4.5)) hold.
We now show that the sum Zf\i Y X, is a good approximation of Xy.

Lemma 4.3. The following holds:
My

XN — Z XN
i=1

lim
N—o0

= 0. (4.7)

L2

Proof. Let us define a modification of the random variables Xy ; in (4.6|), where we simply
remove the constraint |A| < Ky

Xni= D) an(A)n™(A)  fori=1,...,My.

ACBi
We are going to show that
My My My
dim | Xy — Z;XNJ B =0 and  lim ZXN,L» -~ ZXNJ» B =0. (48)
7

The first relation is a direct consequence of our assumptlons and ( . Indeed, since
the boxes B; are disjoint, the random variable 2 N X N, is the polynomlal chaos where we
only sum over subsets A ¢ U B;, hence the dlfference Xy — 21:1 X N, is orthogonal in
L? to Z N X ~,i- As a consequence, recalling also , we can write

2 My My
Xy — > Xn, > XN,i = Yl an(A)? = ) ox(By),
i=1 12 i=1 12 AcT i=1
hence the first relation in follows by ([2.7)) and the ﬁrst relation in
The second relation in 1.' follows by our assumptlon , see . because
2

My 9
= [Xwlz ~

Z D an(A)? < D an(A)?

i=1 AcB; AcCT
|A|>KN |Al>KN

N
- XX
i=1
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This completes the proof. O

4.3. Asymptotic Gaussianity of Xy. In view of Lemma to prove ([2.11)) it remains
to prove the convergence in distribution

ZXM N——» N(0,0%). (4.9)

—m0
Note that (Xn;)i=1,. My are independent random variables with zero mean and finite

variance, see (|4.6)), because the boxes B; — T are disjoint. By the Central Limit Theorem for
triangular arrays [Bil95, Theorem 27.2], it suffices to check the convergence of the variance:

My 2
NhinooEK 2 XNJ-> ] =02, (4.10)

and the Lindeberg condition:

My
. 2
Ve>0: ]\}I_I,noo ; E[(XN:i) ]l{|XN,¢|>5}] = 0. (4.11)

Relation ([4.10]) follows by Lemma[4.3] see (4.7)), and our assumption (1], see (2.7)). Next
we are going to prove the following Lyapunov condition:

for some p > 2 : hm Z [’XNZ ] =0, (4.12)
N—w0

which implies Lindeberg’s condition (4.11)) since

‘XNZ‘

Bl (o) o] < 2| < BT

|XN Z|>E}] 6p-2

To obtain (4.12)), we apply the hypercontractivity bound (4.1]) to Xy ;, see (4.6)), to get

2
B[l X" < Y p-DMan(4)? < (-1 ok(B)), (4.13)
|[AI<KKN

where we recall that 0% (B;) = Y. 4.p, ¢v(A)?. Then we can write, for any p > 2,

& 1—% My 2
2 #lpon] < (L Elbost]) " el
) - L (4.14)
< {(pl)pKN (,_max oX(®, ))”} T
i=1

If we fix p = 3, the term in brackets Vanlshes as N — o0 by our choice (4.4)) of K. The last
sum converges to o2 as N — o0, see , hence it is uniformly bounded. This completes

the proof of (4.12)).
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4.4. Switching to Gaussian random variables. We finally complete the proof of The-
orem by justifying the preliminary step: we show that replacing the random variables
(nY)ter in by standard Gaussians does not change the asymptotic distribution of Xy .
More precisely, if (1)t are independent N (0,1) and we set

Xy =2, an(A)a(4),  with  9(A):=] [, (4.15)
AcT teA

it suffices to show that for every bounded and smooth f: R — R we have

dim [ E[f(Xn)] - E[f(Xn)]]| = 0. (4.16)

Indeed, since X LA N(0,02) by the first part of the proof, (4.16]) implies X LA N(0,02).
We exploit the Lindeberg principle [CSZ17a, Theorem 2.6], which generalizes [MOO10],
to show that E[f(Xy)] is close to E[f(Xy)]. Let us fix f : R — R of class C® with

Cy o= max{[[ [, [ /" loos [ /" o0} < o0 (4.17)

For L > 0, denote by m3 % the second moment tail of the random variables n}¥ and 7;:
m3% = sup max{E Ni21 , E[|9)?1,, } 4.18
2 o e PLyn s ] Bl 11,5 L] (4.18)

Let C XSK C X3K be the second moments of Xy truncated to chaos of order < K and > K:

Cysr 1= D1 an(A), Cyzr = D an(4)%. (4.19)
AcCT AcT
|Al<K |A|>K

Finally, define the influence of the variable t € T on Xy byﬂ

Infy[Xn] := >, qn(4). (4.20)
=

By [CSZIT7a, Theorem 2.6], for any L > 0 such that m3 1 < i and for every K € N we have
E[f(Xn)] —E[f(Xn)]| < Cf {2, [Cxzx + 16K? Cysx my*
+ 705+ CX]%K L3 max /Tnfy[ X ] } .

(4.21)

teT

It remains to show that the r.h.s. of this expression is small as N — o0, to prove (4.16]).
We fix any € > 0 and we argue as follows:

e by assumption (2.8)), we can choose K = K, such that limsupy_,,, C X3K < €
e by assumption (2.7)), for any K € N we can bound limsupy_,, CX]%K < o2
e by assumption (2.2), we can choose L = L, such that m; ™ < /(K2 o?);

e finally, we show below that

limsup max +/Inf;[Xy] = 0. (4.22)

Noo teT

TNote that we can write Inf; [Xn] =E[Var [Xn(m)|(n)seme]]-
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As a consequence, when we plug K = K. and L = L, in (4.21]) and we let N — o0, we get
lim sup [ELf(Xn)] —E[f(XN)]| < Cp{2Ve + 16¢},
—00

from which (4.16]) follows because € > 0 is arbitrary.

It only remains to prove . By assumption there are disjoint boxes B1,...,By, <
T, with My — o0, such that relation holds. In particular, recalling also and
, it follows that subsets A < T not contained in any of the boxes B; give a negligible
contribution:

Ay = > gn(A)? = o3(T) — ) 0% (B;) —— 0. (4.23)

ACT: ‘

AEB; Vi=1,..,My

Recall now the definition (4.20)) of Inf;[ X y]. Fix ¢t € T and a subset A < T which contains ¢,

i.e. A 3t. We distinguish two cases:

eift¢ B, foralli=1,..., My, then A >¢implies A & B; foralli =1,..., My, hence
by (4.23]) we can bound Inf;[X ]| < Ap;

e if t € B; for some (necessarily unique) j = 1,..., My, then A 3¢ implies that either
AcBj,or Ad B, foralli=1,..., My (we cannot have A c B, for some i # j),

hence by (2.6) and (4.23) we can bound Infy[Xn] < 0%/(B;) + An.
It follows that

Inf,[Xn] < 2(B;) + A
g IRV < ey ow ) A

hence (4.22)) follows by (4.3) and (4.23]). The proof of Theorem is complete. O

5. Proof of Theorem [3.4]
5.1. Preparation. We need to show that

(W, En) —= (W, JE- 1W’),

that is, for any fixed 1 € C*([0,1] x R?) we have

; = d 1 0
(W, 9), En,d)) == N(0,[¢7255)  where X5 = (0 C% 1) (B
By the Cramér-Wold device [Bil95, Theorem 29.4], it suffices to show that for all A, u € R

Xy i= p (W) + AGEw, 0y~ N (0,07 = [9l3a (12 + X (3= 1) ). (52)

To this purpose we are going to apply Theorem
Recall the definitions (3.20)) and (3.22)) of W and Zx (see also (3.13))), we can write

Xy = N J 0t 2) e (LN VN ]) {j o+ A(Z3 (N2, [V 2]) — 1) } i e

(0,1]xRR2

:% f b ) v (1t L)) e+ AZR (1t L)) — 1) } e
(0,N]xR2

(5.3)
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Let us define ¢, : N x Z? — R as the average of Tﬁ(ﬁ’ ﬁ) over cubes:

Py(n,2) = J (%, f) dt dz for (n,2)eNxZ*. (5.4)
(n—1,n]x{(z1—1,21] x (22—1,22]}

Recalling the polynomial chaos expansion (3.30)) of Z]%N (m, z), we can rewrite Xy as fol-
lows:

< Z > W (no, z0) nv(no, zo)

nO 1 zgez2

{,U + A Z (UN)k Z H Qnj—n;_ (T — w5 1)"7N("m%)}
k=1

no<ny<..<np<N j=1
T0, T, TR EL2

Renaming (ng,...,ng) as (ni,...,ng+1) and similarly (zo,...,zx) as (z1,...,2k+1), and
subsequently renaming k + 1 as k, we obtain the compact expression

. k
%Z - Z fN(nl)xly"'ankamk‘ H n]7$] (55)

O<ni<...<np<N
x1,..., €L

where we set
k

In(na,an, . ngar) = {plgory + AMpsey} Un(n,21) | [ anynyo (@5 — 25-1) . (5.6)
j=2

In conclusion, we can write Xy = >, 1 qn (A) 7V (A) as in (2.3)-(2.4), with the following
correspondences:

e the index set is T := N x Z?;

e the random variables 1Y = ny(m, 2), for t = (m, z) € T, are defined in (3.19): they
satisfy (2.1]) by construction, while they satisfy (2.2) because supy E[|nn(m, 2)|P] <
o for all p < o0 by (3.1)) (see [CSZITa, eq. (6.7)]);

e the kernel gy (A), for A := {t1,...,tx} = {(n1,21),..., (ng,xr)} < T, is
1

qn(A) = N (on)f ! (e, @1, @) Ljon, < <npeny -

By Theorem to prove Xy -5 N (0,0?) as in (5.2)), we check the following conditions.

(1) Limiting second moment: we need to prove that limy_,., E[X%] = o2

(2) Subcriticality: we need to show that

hm lim sup Z gn(A)? =0. (5.7)
K=0 N AcT
|A|>K

(3) Spectral localization: for any M, N € N we define the disjoint subsets

B, := (LAN, 4N] x 22 forj=1,...,M,
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and, recalling that 0% (B;) := ZAC]B qn(A)?, we need to show that

M
i im o2 (B;) = o2 d i { i 2153»}:0. .
a2y m, oNG) = ot ed i 3, e odBi)y = 0- (68

5.2. Proof of . We need to prove (5.7)). For K > 1 we can write, by (/5.5 — ,

Z an (A N2 Z Z n(ni, 1) anfn] zj—xj1)? (5.9)

AcT kE>K 0<n1<.A.<nk<N
|A|>K 3317---733kEZ2

We can enlarge the sums to 0 < m; := nj —n;_1 < N and change variables y; := z; —x,_1,
for j =2,...,k, to get the upper bound

k
> an(A N2Z Y O, a)? H{ > qmj(yj)2}

|£1|c’% k>K 0<n1<2N =2 \ O0<m;<N
> z1€Z 2
' vk (5.10)
2) 1 = 2| (o Rw)™
=N\ Nz Y, Un(n,m) 1— o2 Ru’
0<ni<N On N
x1€ZQ

where we used Yo_,,<n Dyez2 am(Y)* = Dgemen Um = Ry, see (3.10)-(3.11), and we
remark that 0% Ry < 1 for N large enough, because 0% ~ 3%/Rn, see (3.12)), and 8 < 1.
Then, by Riemann sum approximation, from (5.4)) we get

2 A2\ K
limsup Y g(4)’ <A2{f[07l]xR2w<t,m>2dtdx} & _ - R ys d & )52, (5.11)

N—w  pcT
|A|>K

from which (5.7)) follows.

5.3. Proof of and . We are going to show that for all M e Nand j€{1,..., M}

lim 0% (B;) = (1 + \3(c% — 1 J U(t, ) dtde. 5.12
Jm o) = (0 - X -0) vt (5.12)

Note that this proves and also (for j = M = 1) limy_x E[X3] = 02, see (5.2).
To compute 0% (B ) Z AcB, IN (A)? we first consider the contribution of sets A < B;

with |A] =1, that is A = {(nl,xl)}. Since fy(n1,21) = pby(ni,x1), see (5.6), we get

2 J—
wA? =15 Y Uyla)? S| () ded,
AcB;, |A]=1 I N<n <4 N (57 A7 xR
$1€Z2

by Riemann sum approximation. Note that this matches with the first term in (5.12)).
We next focus on sets A < B; with |A] > 1. Note that ZACE JAl>1 qn(A)? is given by

with K = 1 and with the sum restricted to AN <np < ... <ny < ﬁN. Then,
arguing as in , we obtain an analogue of

lim sup Z an(4)? < N2 { J .
(%

N=® 4B, A[>1 pyabd
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g2 _ 2
5 = 1, see (3.14)). To complete

the proof, it suffices to prove a matching lower bound, that is

.. 2 2
lgnjo%f Z QN(A) e {J‘(J 14

AcBj, |Al>1 M M

B2

bt )2 dtdx} . (5.13)

IxR2

Let us ﬁx H e N large, such that % < ﬁ Starting from the expression (|5.9) for K =1
and with ] IN<ni<...<n< N, we get a lower bound by the following restrictions:
l<k<H, W1N<n1<(%—%)N, 0<nj—njo1 <N Vi=2..k,

which ensure that ny < nj + 2522(71]- —nj_1) < (ﬁ — N+ HN < N as required.
Then, similarly to (5.10]), we get the following lower bound on Z AcB;, |A]>1 qN(A)Q:

)\2 H k
N2 (oR)* Z n(n1, 1) H{ Z qmj(yj)Q}

k=2 am< 777)]\/ =2 0<mJ<—2N
wreZ? 2 yyez? 2 i (5.14)
2 — on Bn/mz — (o By/g2)
={= > Dyl ap)? p N A/
N2 1-0%R 2
Hem<(L-4)N N SEN/H
LE1€ZQ
where we recall that Zksz gkl = % for |z| < 1. Since Ry g2 ~ Ry for fixed H € N,
we have shown that
A2 _ (A2\H
lim inf Z gn(A)? = N2 { f o Y(t, ) dt da:} %
N AcBj, |A|>1 (G i~ wIxR? 1=p
We can finally take the limit H — oo to see that ([5.13]) holds. O
y

6. Proof of Theorem [3.5]

The proof is organised in four parts: we give different approximations of the partition
function Z]%N and of its logarithm, which will lead us to the proof of our goal (3.32)). Let
us present a general overview of the strategy.

Part 1 (record times). Let us define a “constrained version” X doﬁ ) (z,2;2") of X$™ from
(3-31), where we fix (no, n1;ng) = (a,b;0') and (zo, 21; 2) = (2,2 2):

Xﬁ,‘?ﬁ’b;bq r,2;2) = Z M ap—a(z — z)nn (b, 2) x

X Z Z Hin—nl 1\ Li — Tj— l)nN(nlﬂxl)

b=mj<no<..<np_i1<np=:10' z1=z2,T=2", =2
max{ng—n1i,...,nE—ngp_1}<b 2,...,xp_1€Z>

(6.1)

(Note that if b = b’ only the terms k = 1 contributes to the sum — and we must have z = 2/,
otherwise the sum vanishes — while if b < &’ only the terms k > 2 give a contribution.)

We first show that the partition function Z ]%N in (3.30)) can be written as a concatenation
of products of X doﬁ; 4 (z, z; 2')’s corresponding to suitable record times, see Figure |1l The
next result is proved in subsection
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Lemma 6.1 (Record times). The following equalzty holds, with (b, z}) := (0,0):

o0
AT YD D N | B BT CIETE .

=1 0<bi<b)<...<bp<b),<N: z,2/e(Z?)¢ i=1
bi—b;71>bi_1V’L‘=2, ,f

where we use the shortcuts z = (z1,...,2¢) and 2’ = (21,...,2p).

Part 2 (coarse-graining and diffusive approximation). We fix a large parameter M € N and
we define an approximation Z; « ﬁ) of the partition function ZJBVN from (6.2)), as follows

(1) we set b;_; =0, z/_; = 0 in each X° Nb /_1’b..b<](2£,172z';2£);
(2) we impose that each pair b; < b, belongs to the same interval (N i , N M] for some
j=1,...,M, and we ignore the constraint b; — b,_; > b;_1.
(diff)

This yields the following definition of Z NM

Y ]xEno) ﬁ( XERG) . (63)

1<ji<...<jes<M i=1 j=1

dlff)

Zy =1+

s

where we set

X¥R0) = X Y XWRan0z2)  forj=1...M.  (64)
@

g 2
i z,2'€l

]
We prove that Z](\(,hﬁ]\} is close to Z ]%N in L? for N » M » 1, in the following sense.

Lemma 6.2 (Coarse-graining and diffusive approximation). The following holds:

lim sup hmsup HZﬁN Z(dlff)HL2 =0. (6.5)
N—

M—o0

The proof of this result is given in subsection [6.2] below.

Part 3 (log approzimation). The product form of Zy (dlﬁ) in is especially suitable to
take the logarithm. We thus prove a preliminary version of our goal , where we
replace log ZJ%N by log ZJ(\(,{iE[) (and convergence in L? by convergence in probability). To
this purpose, we define the event

M
AN = ﬂ {IX¥R ) < 3} (6.6)

which ensures that Zj(\ihff]\/[) > 0, see (6.3)).

Lemma 6.3 (log approximation). Recall X3™ from (3.31). For any e > 0 we have
lim limsup (’ log Z]\?IE {x8em — %E[(Xﬁ,om)Q]}\ > €, AN7M> =0, (6.7)

M—-w  Noop

THeuristically, these are good approximations because the main contribution to (6.2]) will be shown to
come from b, _; ~ N®i-1 and b; ~ N with a/,_, < as, hence b,_, < b;.
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0b1 b b b bs 3
Pt Hi H—+HH —H—tH—H >
bg*b/1>b1 bg*b/2>b2 f=3

FIGURE 1. An example of the variables b;, ] in (6.2)). These correspond to
record times which satisfy b; — b;_; > b;_1, see subsection

for AN < {Z (dift) 0} defined in ) (so that log Z(dlﬁ) is well-defined) which satisfies
lim limsup P((An,m)¢) = 0. (6.8)
N—o0

M—w0
The proof of this result is given in subsection [6.3] below.

Part 4 (final approximation). At last, we complete the proof of Theorem Our final goal
(3.32]) is a consequence of the next lemma, where we prove convergence in probability and
boundedness in LP for some p > 2.

Lemma 6.4 (Final approximation). Recall X{™ from (3.31]). For any ¢ > 0 we have

lim P(|log ZyY — { X" — JE[(XF™)*]}] > €) = 0. (6.9)
—00
Moreover, for some p > 2 we have
sup IE[| logZﬁ,N |p] < 0, sup E[|Xd°m|p] < 0. (6.10)
NeN NeN

Notice that, once we have convergence in probability , to obtain convergence in L? it
suffices to show uniform integrability of the squares of log Z]ﬁVN and X]‘%Pm, which is in turn
implied by boundedness in LP for some p > 2, as in (6.10]).

Intuitively, we can deduce from by exploiting the approximation , but
some care is needed to handle the logarithm.

The proof of Lemmal6.4] given in subsection[6.4] concludes the proof of Theorem[3.5] O

6.1. Proof of Lemma We rewrite the sum over ny,...,ng in according to
suitable record times. The first record time is ny; the second record time is the smallest n;
for which the previous jump n; — n;_1 exceeds ni; and so on. More precisely, the record
times are nj ,nj,,...,nj, where we define j; := 1 and, assuming that j, < o0, we set
Jr+1 = min{i € {j, +1,...,k} : nj —n;—1 > n; }, where we agree that min ¢J := co. The
number of record times is therefore ¢ := min{r > 1: j.41 = oo}.

If we rename the record times as b, := n;,, and we also set bl._; := n;j _1, we have by
construction by —b} > by and, more generally, b; —b;_; > b;_1 fori = 2,..., ¢ (see Figure l)).
If we name the corresponding space variables z, := x3, and z._; := Ty s then we can

rewrite (3.30)) equivalently as (6.2), with X dof; bib] (z,2;2") defined in (6.1]). O

6.2. Proof of Lemma 6.2, The proof, which is long and structured, is based on explicit
L? computations. A key Observatlon is that, by the expression | . for Zf,N

E[(zﬁN ] 1+2 3 3 HE[ xgom, 17b“b;](z£_1,zi;z£))2].

=1 0<bi<b)<..<bp<b,<N: z,2/€(Z2)t =1
bi—b;71>bi_1 Vi=2,...,€

, We can write

(6.11)
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To see why this holds, note that by (3.30) we can write

E[(Z3")"] =1+ Z (o7)" 2 H‘Jng (25— 1), (6.12)

O=mg<ni<...<np<N j=1
330':0 T1,.. ,xk€Z2

with ¢, (x) = P(S, = x| Sy = 0), see , and oy as in (3.19). Similarly, by (6.1),

E[(X%?ﬁ,b;b/](%zﬂ ] qz, al z—x)2><

MS

k:1

k
% Z Z qu—ni_1($z’ - DUZ'_1)2.

b=:n1<no<..<np_1<ngp=b zx1=z;7)=2" 1=2
max{ng—n1,...,ng—ngp_1}<b T2,...,xp_1€Z>

When we plug (6.13]) into (6.11]) we obtain (6.12)) by the same argument in the proof of
Lemma see subsection because the sum over nj,z; in (6.12)) can be rewritten in

terms of record times, which lead to the variables b,, ] and z,, 2/ in (6.11]).

We now turn to the proof of (6.5)). We will define two “coarse-grained approximations”

Z](\?g[)( o and Z](\(;gK) 2+ Which depend on a further parameter K € N, and we will show that
BN  7(8) (cg) (cg’) (cg’) 7 (diff)
ZN" Z]\(;KM7 Z]\?,K,M ~ Z]\(;KM7 Z]\?,K,M ZNM

where ~ denotes closeness in L? when we let N — o0, then K — oo and finally M — 0.
More precisely, we are going to prove the following relations:

limsup limsup limsup HZﬁN — Z](VKMHLZ =0, (6.14)
M—o0 K—w —00
limsup limsup limsup HZ]\?gKM — J(VKMHL2 =0, (6.15)
M—o0 K—o0 N—0
limsup limsup limsup HZ](\(;‘%)M — Z (diff) ||L2 =0, (6.16)

M—o0 K—w N—o
which together yield . We accordingly split the proof in three steps.

6.2.1. STEP 1: DEFINITION OF Z](\‘;g}(M AND PROOF OF . Let us fix M, K,N € N
with 1 « M « K « N. Our first coarse-graining approx1mat10n Z](\, I)< s of the partition

function Z]%N in (6.2)) is obtained by suitably restmctmg the sums over b,b' and z, 2':

o0
Z](\?i)(,M =1+ Z Z Z Z HXdO [b_ 1,bl,b’ Zi— 1,22'%2;) ) (617)

=1 je(1,.,M}s (bY)eBL()) (z.2)eS(bY) =1

where we sum over j = (j1,...,j¢) in the following set:
(1,..., M} = {1 Sji<..<je<M: ji—jii=2 Vz’=2,...,€}, (6.18)
then, given j = (ji,...,j¢), we sum over (b,1') in the set

Ji—1

BYj) = { b M) e N x NC: bie (N

LN, b e [bi, Kb] Vi=1,....1 } (6.19)
and finally, given (b,b), we sum over z, 2z’ in the “diffusive set”

Sb,b) = {(g,g’) e (22 x (Z3)': |z| < K\/bi, |2 < K2\/b; Yi= 1,...,6}.
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To see that ZJ(\?’gI)(’M in (6.17) is a restriction of Z]BVN in (6.2), note that for (b, ') € B ()
we have 0 <b; <) <...<b < b’ < N, and for large N we also have b; —b,_, > b;_; for

1 = 2, because b; > N% = le - > KNM bi—1 (recall that j; — j;—1 = 2) hence

bi— b, | > KNwb_y — Kby = (N7 —1)Kbi_1 >bi_;  for N>2M
Thus the range of the sums in (6.17)) is included in the range of the sums in (6.2). Since

the terms in the polynomial chaos (3.30)) are orthogonal in L2, it follows that

128 = 285 aallze = 1280 e = 1285 a7 (6.20)
hence to prove it suffices to show that
1
li E[(Z2V)*] < ——, 6.21
imsup E[(Zy")’] 5 (6.21)
e 1
l}én_}l&l)f h[gn_)loréf llj\r]n_}aréf E[(Z](\(;i)(jM)Z] = | (6.22)

Relation can be easily deduced from the expression (6.12f). Indeed, enlarging the
sums to 1 < nj —nj—1 < N and recalling the definition of Ry, we get

e}
2
E[(Z3)] <1+ X 002" Y 3 an]._n] (@) — zj1)?
k=1 1<nj—nj1<N z0:=0, x1,...,xx€Z2 j=1
j=1,.k (6.23)
[o's) N k 0 X 1
k=1 n=1 xe7?2 k=1

Since o ~ By ~ By/7/\/Iog N, see (3.19) and ([3.12), and since Ry ~ Llog N, see (3.11)),
we see that - is proved

We next prove (6.22). By definition (6.17) of ZJ(\(,:gI){ > in analogy with (6.11]), we have

E[(ZJ(\?%(M ] =1+ Z Z Z HE[ Xdom; 1,bz,b;](2271’zi§22))2] .
=1 je{1,..M}Ye (bY)eB(j) =1
(2,2)eSt(BY)

(6.24)

om

We now give a lower bound on E[ (X NI b (Fi—1s 7 z{))2] when we sum over b;, b, and
i—1 i

z;, 2} in the sets B(j) and S%(b, ). The next result is proved in Appendix

Lemma 6.5. For N M,K eN and je{1,..., M}, define

—_ . . dom 2
Evark(i) = f Z > E[(XEE ()] (6.25)

Then, for any M € N and j € {1,...,M}, we have

liminf liminf Eyx k(7)) = Iam(j) :=J ds. (6.26)
J

K—>w N—w =11 — 325
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Coming back to (6.24]), by definition (6.25)) of Zn s,k (j), we have the lower bound

0 l
E[(ZJ(\?%,M ]/ Z >, TIEvm (6.27)
=1 =1

jell My, i
which yields, by ,
0 Y4
liminf Tim inf E[(Z](\‘;%M)Z] >1+Y Y TG (6.28)

=1 l‘e{lv"'vM}i i=1
Recalling the definition (6.18) of {1,..., M}%, we can rewrite the r.h.s. of (6.28) as
o0 M ¢
L+, & {(Z IM<J'>> - D InGh) - IM(jz)} :
=1 j=1 Jioeenge€{Lyes M}

Fh#k: |jn—jrl<1

The second term gives a vanishing contribution as M — 00, because maxi<;j<m I (j) < %,
with C :=

/82
1-42

0 0 ,
. . 1.C" (e _ (O VN
Z IM(jl)"'IM(”)<Z;e<>3M£1:M—OO’0,
le~~~7jz€{1,...,M} =1
Fh#k: |jn—jrl<1

TNH

where (Z) is the number of pairs {h, k} with h # k and 3M*~! bounds the number of choices

of ji,...,j¢ with jn € {jr — 1, ji, jr + 1}. Since ZJ I (g _Sol ds—log1_132,we
have finally shown that

A .. A (cg) 2 o 1 ¢ 1

1}\1}1_}3? lllgn_}oréf l%n_)loréf E[(ZNvaM) ] =1 +€=Zl 7 (log = 62> = 5 (6.29)
which is (6.22)). This completes the proof of (6.14)). O

6.2.2. STEP 2: DEFINITION OF Z](\?g}l{)M AND PROOF OF (6.15)). Starting from Z}&g}){M in

(6.17), we set b._; = 0 and 2/_, = 0 inside each X$°™ to obtain our second approximation:

ZNKM =1+ Z Z Z Z HXd°“8 bist] (05 zi3z) - (6.30)

=1 je{1,. .M} (bY)eB ()) (z.2)eSH(bY) =1
Heuristically, the reason why we set b,_; = 0 is that b; » b,_,, hence b; —}_; ~ b; (indeed,
j;—1 ji—
note that b; > N7 » N > bi_, since j; — 1> ji_1, see (6.19) and (6.18)).
We need to prove (6.15)). Given b,b’ and z, 2/, let us introduce the shortcuts

X; = Xdo[b, bi;b;](z;_l, 23 21 Y = Xﬁ?ff)"bi;b;](o,zi;zg), (6.31)

—1°
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so that, comparing (6.17)) and (6.30), we can write

4
N T VD VD VD VN U1

(=1 je(l., M} (bb)EBL() (z2)eS{bY) \i=l =1

=
|
i~
s
SN—

S s n oy gl i)

jefl,. . MYe (b)EBY()) (2.2)eSH(bY) h=1 * i=1 i=h+1

and note that different terms in the sums are orthogonal in L?. We justify below the
following key estimate, see Lemma for any € > 0, for NV large enough, we can bound
forallt=1,...,¢

E[(Y; — Xi)?] < €E[Y?]. (6.32)
By the triangle inequality, this implies E[X?]"/? < (1 + €)E[Y?]"/2 < 2E[Y;?]"/?, hence

E[(Z55 0 — 255 00)7] < Z Z 3 3 (éf@h)HEY?

=1 je{1,.. .M}, (bY)eB()) (z,2)eS(bb) h=1
0
eyd Yy % A
=1 je{1,..M}% (bY)EB()) (z.2)eSt(bY) i=1

because Z 2(6=h) — 4::11 < 4%. We now enlarge the sum ranges to obtain the factoriza-
tion

<ese x qf z o x ol 69

/=1 1<ji<ge<..<jp<M 1i=1 Ji—1 Ji - 2 eZ2
J1<j2 Je i bi<be(N i ,Nﬁ] 2i,2,€L

The following asymptotics on the term in brackets is proved in Appendix [A:2]
Lemma 6.6. For any M € N and j € {1,..., M} we have

. dom VAV — ) = M 62
]\P_I)noo { Z IE[XM[O,,,;,)/](O,@Z) ]} = Iu(j) = LMI 1— 325 ds. (6.34)

j=1 J_
b<b/e(N'3T NTT]
2,2'€72

We can plug (6.34) into (6.33)) (where the sum is finite: it can be stopped at ¢ = M,
since for ¢ > M there is no choice of 1 < j; < jo < ... < jy < M), which yields

0 0
lim sup E[(ZJ(\?:OTK),M — ZJ(\?FI)(,M)Q] <€ Z 4 Z H Ins(ji)

N—0 1<j1<jo<.. <j[<M i=1

<62§Z§<Aﬁ: > eexp< ZIM )‘1_6252)

(6.35)

This completes the proof of (6.15]), since we can take € > 0 as small as we wish.
It only remains to justify (6.32). The following result is proved in Appendix
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Lemma 6.7. Given K, M € N and € > 0, there exists No = Ny(e, M, K) < o such that
for all N > Ny the following bound holds:

1 1 2 Jasl
E[(XRfape (1, 2:2) = X§0 01 (0,252) ] < 2 E[XR[G 401 (0, 2:2)%] (6.36)

uniformly for (a,x),(b,2),(b',2') € Z3 .., = {y € Z® : y1 + yo + y3 is even} such that, for
some je{l,..., M},

G-+

ae[0,N"37 ], be(NT Nir], |z|<K:a, |2 <KVb. (6.37)

6.2.3. STEP 3: PROOF OF ([6.16). Recalling (6.4), we can rewrite Z](\?ﬁ) in (6.3]) as follows:

d1ff _1+Z Z Z Z HXdoob 410, i3 7) -

(=1 1<j1<jo<...<je<M bb’eNf 2,2/ (22)¢ i=1 (6.38)

bi<ble(N” e NM]

By (6.30} -, we see that Zy (ce ) K. 18 a restriction of the sum which defines Z](\(,hj\fff), therefore

1285 00 = 23 |2 = 12800 72 = 12850 e

Then, to prove (6.16)), it is enough to show that

(cg’) 2 1
1}\1/rfn_lgf h}I{n_)lOréf l%n_goréf E[(ZNgKM) = L (6.39)
i 1
VMeN:  limsup E[(ZUD)’] < —. 6.40
N_mp [( N,M) ] 1 32 (6.40)

We first consider (6.39)). Recalling (6.30]), in analogy with (6.11]), we can write

E[(Z](VKM =1+ Z Z Z Z HE Xdonolb b’ (0, 215 27)?] -

=1 je{1,.,.M} (bb)eB()) (2.2)eSt(bY) i=1

We can now use the quantity =y ar k(i) defined in (6.25) to bound

[e'e] 4
E[(Zz(vc,gfg,M)Q] >1+> > ] EvmkGi),

e:l ze{lv"vM}é( i=1

which coincides with the r.h.s. of . As a consequence, the bounds from ((6.28)) to (6.29)
apply verbatim to IE[(ZJ(\?gI/()My] and show that holds.

We finally consider , which we have essentially already proved. Indeed, note that
E[(Z](\iilf?M)Q] is given by the second line of where we replace €2 and 4¢ by 1. When

we apply the limit (6.34), we obtain an analogue of (6.35)), again with € and 4¢ replaced
by 1, which yields precisely (6.40]). This completes the proof of Lemma O
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6.3. Proof of Lemma We recall that the event Ay s was defined in . In order
to prove (|6.7)), it is enough to show that the following three relations hold:

(diff) dom dom
o b log Z, XN, Anar ) = A1
Mot ljréljgop < 08 NM Z { NM(J) } >, N,M) 0, (6.41)
lim limsu Xdom Xdom| =0, 6.42
M- N—>OOp Z L2 ( )
lim limsu Xdom ] Xdo}fn =0. 6.43
M—o0 N—»oop Z [( ) ] 71 ( )

We are going to exploit the followmg result.

Lemma 6.8. Fiz 3 < 1. For every M € N and j € {1,..., M} we have

ﬁ 52 C 52
dom 27 _ — ) =C5 = ﬁA
]\}linoo E[ X ()% = LA_; 1 % ds < e with ¢ = ¢z : 5 (6.44)

Moreover, there exist ps > 2 and C' = CB < 00 such that for all 2 < p < Ps

VMeN, Vje{l,...,M}: lim sup E[|Xd0m( NIP] < Cp.
N—w M=

Proof. Relation is already proved in , by the definition of X dom( /).

Intuitively, the bound (6.45) holds because E[|Xd°m( ] < C’E[X]‘i,?}{}[(j) ] by the
hypercontractivity of polynomial chaos. The details are presented in Appendix [A.4] (Il

It only remains to prove and the three relations (6.41[)-(6.43)).
Proof of (6.8 . For any p > 2 we can bound, by Markov’s inequality,

(6.45)

IP’ ANM Z dom %) M2 Je{Ta)f }EUXdom( )|p]7

and relation (| . ) follows directly by - O

Proof of (6.41)). By (6.3) we can write log Z](\?IHM) = Z 1 log(1 + Xf{,oﬁ( ). If we fix 2 <
p < m1n{3 pﬁ} with pj; as in Lemma we can bound |log(1 + z) — {z — 32%}| < c[z|?

for |z| < 5, hence

M
diff C
E IOgZ](VM) Z {Xdom (J) — Xdom( ) } HAN,IM S ¢ Z E[‘Xdom( )’p] C P 1>
7 7=1 j=1 M2
which proves (6.41]), by Markov’s inequality. O

Proof of (6.42)). The polynomial chaos Z]Ai L Xdem () contains less terms than X ™, there-
fore to prove ((6.42) it is enough to show that for any fixed M € N

1 52
. dom . 1 dom _ /8
NthOOE[(EX ) ]—]\}Enoo]E[(X ) ]_J 1_325(13 (6.46)

0
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Where the last equahty follows by (6.44)), because X§™ equals X dom( ) for M = j =1 (cf.
with ( and . Since the variables X](%,‘?]\‘} (7)’s are centered and independent,
a further application of 1' yields

[(ZXdOm )2] %E[Xdom Ao, Z I () —Jol 1_3225(13, (6.47)

7=1

as desired. This completes the proof. O
Proof of (6.43). In view of the first equalities in (6.46|) and (6.47)), it suffices to show that

Z {(X8em () - E[XS5 ()%}

7j=1

hm lim sup
M—-o N«

=0, (6.48)
L

This is a weak law of large numbers for the independent random variables W; := X%,‘?ﬁ ()2,
which satisfy the following Lyapunov condition (by (6.45) with g := p/2):
C

EI(12613>1,C=C'3<OO: VM eN limsup max E[WI] < —

6.49
Nooo j€{l,...,M} J Ma ( )

We prove (6.48) by truncation at level Ty := M~%, for an arbitrary a € (3,1). Note
that

M M E[W;-J] L+alg-1) .
Z Wi 1w, >TM}H 2 :E[”j ]l{Wj>TM}] < E 1 S M 4 ~ max E[Wj] ,
j=1 j=1 izl Ty, je{l,...,.M}

which, by (6.49)), vanishes as N — oo followed by M — oo provided 1 + a(q — 1) — ¢ < 0,
that is a < 1. To prove (6.48) it only remains to show that

M
lim limsup ’ Z {Wj Low, <ty — E[W} ]l{stTM}]}H =
j=1 '

M—-o N«

It is simpler to prove convergence in L?, because this follows by a variance computation:

M M
ar ( > W n{wngMQ = > Var (W Ly, <)) < M Tip = M2,
j=1 j=1

which vanishes as M — oo provided 1 — 2a < 0, that is a > % (Il

6.4. Proof of Lemma We first prove . In view of (6.7) and , it suffices to

show that

Ve>0:  lim P(|log 23" —log Zyy/| > €, Anar) =0, (6.50)
—00

where we recall that the event Ay ) < {Z](\iﬁ > 0} was defined in (6.6).
For any a,b € R and ¢,7 € (0,1) we have the following inclusion:
{|loga —logh| > e} < {b < 2ne} U {|a — b| > ne?}.
Indeed, if both b > 2ne and |a — b| < ne?, then a = b — ne® = 2ne — ne? = ne, so that both
a,b € [ne,0), hence |loga — logb| = |Sb 1dz| < |b —a| < ineg = e. It follows that

P(|log Z3¥ —log Z\h)| > e, Anar) < P(Z\'y) < 2ne, Anar) +B(1Z3Y — 23V} | > ne?)
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and note that the second term in the r.h.s. vanishes as N — oo followed by M — oo, for
any fixed €, € (0, 1), thanks to (6.5). It remains to show that

Ye>0: lim limsup limsup ]P’(Z](\?lj\f? < 2ne, An M) =0.

0 Moo N-ow
To this purpose, we can bound
P(Z$) < 2ne, Anar) < IP’<| log Ziyy} — {Xdom — IE[(X$m™)2)}| > 1, AN,M>
+ P(Xdom — LE[(X3m)2] < log(2ne) + 1)

and note that the first term in the r.h.s. vanishes as N — oo followed by M — oo, by .
To show that the second term vanishes as N — oo followed by n | 0, we fix n > 0 small, so
that log(2ne) + 1 < 0, and we apply Markov’s inequality to bound, for some C' < o0,

om om 2
E[(X3™ - SE[(X3™)?])7] c
| log(2ne) + 1[2 = |log(2ne) + 127

P(X]dvom — LE[(X3em)2] < log(2ne) + 1) <

because E[ (X & — %E[(X]d\,om)z])Q] converges to a finite limit as N — o0, see (6.46)).

It only remains to prove . The second bound in follovvs by - because
we already remarked that X e X]C\l,"]r&( ) with j = M = 1 see and (6.4), (6.1).

The first bound in was proved in [CSZ20] (see equations (3.12) (3 14) and the lines
following (3.16)) exploiting concentration of measure for the left tail of log Zy. O

7. Proof of Theorem [3.6]
We have already noticed in ([6.46)) that

Tlim E[(XE™)?] = 0% = log

which follows by (6.44)), because X 4™ Xf\l;ﬁn(l) (see (3.31) and (6.4)), (6.1))). Therefore

we only need to prove that

(7.1)

xgem 4 N (0,02) . (7.2)

We can apply Theorem to the polynomial chaos X]Cl,om defined in (3.31). As in the
proof of Theorem can cast X{™ in the form (2.4) with T := N x Z2? and n}¥ =
3.19

nn(m, z) defined in (3.19)), while for A := {t1,...,tx} = {(n1,21),..., (nk, zk)} S T we set

max{ng—ni,...,Ng—ng_1 }<N1—ng

qN<A) = (O.N>k]l{ O=ng<ni<...<np<N } anj —nj— 1 x] 1)

By Theorem to prove ([7.2)) we need to verify the following conditions:

(1) Limiting second moment: we already showed that limy o E[(X$°™)2] = 02, see (7.1).
(2) Subcriticality: we need to show that

hm lim sup Z qn(A)? =0. (7.3)

K= N—o AcT
|A|I=K
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Arguing as in , we can enlarge the sums to 1 <
constraint max{ng -1,

n; —nj—1 < N and remove the
ng — nk—1} < g — no, to get the bound
o0
k
Z QN<A)2 < Z (U]2V) Z Z anj_nj 1 Ty 1)2
AcT k=K I<nj—nj 1SN gy,..,0,€Z? j=1
A=K j=1,...k z0:=0
oe) N 0 22\ K
k
S (szv)k<2 3 qn(x)2> S (0% Ryt A=, (B )A27
K=K n=1 zez? K=K 1-p
from which ([7.3)) follows.

(3) Spectral localization: given M, N € N, we define disjoint subsets B; < T by
Bj =

(NF N3] AN) x 22 forj=1,..

LM
and, recalling that 0% (B;) := ZACIB qn(A)2, see (2.6), we need to show that
M
i, 2y i, ov(By) = o

=0 and lim {
j=

~max

I 2 (B } ~0.
M—>o0 1. .M ljr\?_?;p o (B;)

For this it suffices to note that 0% (B;) = E[XJ‘%,‘?Am/[(j)ﬂ and then to apply (6.44)
The proof of Theorem is completed

U
Appendix A. Some technical results

We collect here the proofs of some technical results

A.1. Proof of Lemma [6.5] We are going to prove that there is a constant C' < oo such
that, for any given M, K € N and j € {1,..., M}, we have

j ~

; i P )
liminf Exak (i) = (1-(64)5) J K ds, (A1)
N—o0 %1—62(1—%)8
which clearly implies ([6.26])).
Given a,b € Ny as in the range of the sums (6.25)), we note that for large N
a< iK%, (A.2)
oyt
This clearly holds if a = 0, hence for j = 1 because a < N S = 0, while for j > 2 from
-1

NM and b > N’ we get a < N— Wb < iK%forlargeN,sayN

-, for fixed a,b and z, the sums over v’

> (2K)?M. By
[b, Kb] and 2,2’ € Z? in equal
2N B[Sy s)]

e[b,Kb)

|z|<Kb
|2/ |<K2%Vb
© k (A.3)
= 2(012\7>k Z Qbfa(xl —58)2 Z HQni—ni_l(xi _«Tz‘—1>2-
k=1 |:E1|SK\/B (=2

b<no<..<np<Kb: =
max{nz—b,...,ng—ngk_1}<b

wg,...,xkEZQZ |xk\<K2\/B
We get a lower bound by keeping just the first K terms in the sum over k € N. Moreover



GAUSSIAN LIMITS FOR SUBCRITICAL CHAOS 31

e we remove the constraint ny < Kb (because max{ng —b,...,n; —ng_1} < b already
yields ng = b + Zfzg(m —n;—1) < Kb) and sum freely over the increments

m; :==mn; —n;—1 € {1,...,b} fori=2,...,k; (A.4)
e we change variables to y; := r1 — x and ¥y; := z; — x;_1 for ¢ = 2, that we restrict to
| < 3KVb—a and lyi| < 3K/m; fori>2,

which imply both |z1| < K+vb and |zx| < K?Vb as required by (A.3)). Indeed,
recalling that |z| < K2y/a < $K+/b by (6.25) and (A-2), we obtain

1 1
21| < || + |z] < §K\/H+ 5K\/Bg KVb,
k
1
k] < lza] + D] luil < EVD+ (K - 1)§K\/B < K2Vb.
=2

These restrictions yield the following lower bound on (|A.3)):

él(a?v)k ( > Qba(y1)2> ﬁ ( Zb: > Qmi(yz‘)2> ‘ (A5)

lyil<zKvb—a =2 dmi=lly|<g K mq

Recalling that u, and Ry are defined in (3.10|) and (3.11)), we define restricted versions

N N
W= Y qw? RY =YW= Y g, (A.6)
lyl<iKvn m=1 m=l <3 Kym

so that we can rewrite (A.5)) more compactly as follows:

K (KK
(080 o) (ROY = gt L AT )
k=1 ‘ ¢ 1_U]2VR1()K)

Bounding (U?VRZ()K))K < (0% Ry)¥ in the numerator and recalling ([6.25)), we obtain
2, (K)

- . K . o Uy

:N7M7K(J) = (1 - (O-JQVRN) ) ln(f_ ot Z 1N27b‘Rf(LI() s (A?)
J— . . i

0<a<N M bE(N% +1ogN%Nﬁ] ON 1y

- ‘
where we restricted the sum range to b € (IV o+ log N, %N ﬁ] for later convenience.
We now claim that for some C' < o0 we have, for n, NV large enough,

11

2(1_g)7rn

1
Ry > (1-%) - log N . (A.8)

This follows by (A.6) writing ;") = u, — D> 1Ky dn(y)?, recalling that u, ~ 11l py
2

m™n

(3.10), bounding sup,cz2 ¢ (y) < 5 by the local limit theorem (see (A.14) below) and then

estimating

E[]S,]?] 4
1
ly|>3K/n K K
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We can plug the bounds (A.8)) into (A.7) because, uniformly for a,b in the sum range, we
have b > b—a > logN — o as N — o0. Since 0%, ~ 8% ~ 73%/log N, see (3.12) and
(3.19), for large N we have (possibly enlarging C)

2 (K) 32
ON Up—qg C 1 log N
— > (1-5) : : (A.9)
1— 0% RN Klb—ay_ B(1- S logh

The r.h.s. is a decreasing function of b — a, hence we get a lower bound setting a = 0. By
monotonicity in b, we can then bound the sum in (A.7) by an integral:

%N% 1 1BQN
—_ . A o
Svankli) = 0= @) (-39 [°, 2 : —
[N'3T +logN] T 1 — logN (log x) ( ﬁ)
With the change of variable x = N®, the integral equals
by 32 log[N'& +log N log(L N 31
f - p a ds with an := og| N"ar + log ], by = M
av 1= 2s(1— %) log N log N
Since limy_,c any = % and limy_,o by = %, we have proved (A.1)). O

A.2. Proof of Lemma A lower bound for (6.34]) is already provided by (6.26[), hence
6.13)

it suffices to prove a matching upper bound. By (6.13]) with (a,z) = (0,0), we can write

> 2 E[XRR (0,2 2) Z 2 A

i—1 j 1e72 _ ; 2
b<ve(N'W NHr] 2 k=1 be(NW,Nﬁ] =L
k (A.10)
2
% 2 Z H dn;—n;_1 (l‘z — :El',l) .
b=:n1<ng2<...<nj <0 T1i=2 =2

max{ne—ni,...,ng—ng_1}<b T2, . TREL?

We can sum over the space variables: by (3.10) and (3.11)), the r.h.s. equals

e 2
k k— O Up
(%) Z wp (Rp)* ™ = Z 1]\[7]% (A.11)
k=1 i=1 g it g o} Ry
be(N M ,NM | be(N M ,NM |
Since 012\, up ~ %% and 0]2\, Ry ~ logN logb, as N — oo the r.h.s. of is asymptotic
to
32 1 & 32 1 i ~
Z logN b JNM 1ogzv5 dp — JAJJ B ds (A12)
_ _ _ i1 ] — 32 ' :
be(N%,Nﬁ]l logNlogb N1 — o log @ 7 B s
by the change of variable x = N*. This completes the proof of ([6.34)). O

A.3. Proof of Lemma We can assume that j > 2, because if j = 1 we have a = 0

and z = 0, see (6.37]), hence (6.36)) trivially holds.

Note that by (6.1]) we can write

E[X]%/?E,b;b’] (z, 2; Z/)2] = Qp—al(z — $)2 FN,[b;b'](Z; Z’) )
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where we set

0 k
FN [bb’ 23 Z = Z UN Z Z ani_ni71($7; _xi—1)2'

b=mi<no<..<np_1<np=b xz1:=z,x}:=2" =2
1<ng—ni,..,np—nE_1<b  o,...,x)_1EL>

The key point is that Fy, 1(2;2") does not depend on (a, z). It follows that

m m 2 2
E[(Xg/?[a,b;b/] (2,2;2") = X](%/C:[o,b;b/] (0, 2; Z/)) ] = (Qb—a(z —x) - Qb(z)) FN,[b;b'](ZS ),
therefore, to prove (6.36]), it is enough to show that for K, M € N and € > 0 there is
Ny = Ny(e, M, K) < o such that, for N > Ny and for a, b, x, z as in (6.37]), we have
‘1 — % < €
Gb—a(z — T)
We recall the local limit theorem [LL10L Theorem 2.1.3]: as n — oo, uniformly for y € Z2E|

o—lz[2/2
an(y) = n}2( (ﬁ) +0(1)) 21 ez with  g(z) := ) (A.14)

(A.13)

2T

In particular, for (n,y) € Z2, ., in the “diffusive regime” we can write

even

4
-z y —
an(y) = —9(5) (L+o(1))  for [yl = O(n). (A.15)
Note that a,b, x, z as in (6.37)) satisfy (recall that j > 2)

0<a< N <N-mb, |o|<EVh, |o|<K*Ja< KX N-wvh. (A16)
It follows that for any K, M € N, uniformly for a,b, x, z as in , we have as N — o0
a=o(), |z=0Wb), |z|=0(Vb),
which in turn imply that |z — 2| < |2| + |z] = O(v/b) = O(v/b — a) and hence, by (A-15),

B(2) b—a e —al* _ |2?
= 1 1)) —— 1.
Qp—a(z — ) b exp( b—a b (1+0(1)) N—o
This completes the proof of (A.13)), hence of (6.36]). O

A.4. Proof of (6.45). The random variables ny in (3.19)) satisfy supy E[|nny|P] < o

for all p < oo, by the assumption (3.1) (see [CSZ17al eq. (6.7)]). We can then estimate
2

[]X dom (5)|P] by the hypercontractive bound ([4.2)), which gives rise to the r.h.s. of (A.10] m

with o3 replaced by C), o%. We can then follow the proof of Lemma [6.6) . in Appendlx

verbatim though (A.11 and -, Where we note that the replacement of O'N by C, o3

amounts to replace BQ by pBQ, by (3.19) and . Since ﬁ < 1 and lim, |2 C) = 1, see
[CSZ20, Theorem B.1}, we can fix p; > 2 and 6 = 63 < 1 such that for all 2 < p < p; we

can bound Cpﬁ2 ¢ < 1, hence

2 J C 52 ~ 1 o~
limsup [|Xdom( )’p]p < fM piﬂAdS < M , (Al’?)
Y 11— Cpf2s M
which completes the proof. [l

TThe scaling factor in (A14) is n/2 because the simple random walk on Z* has covariance matrix 31,
while the factor 2 L, y)ezs,,, is due to periodicity.
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