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Abstract. We review recent works where we have shown that disorder relevance is closely
related to the existence of non-trivial, random continuum limits.

1. Introduction

A basic question in disordered systems is whether arbitrarily small amount of disorder
changes the critical properties (e.g. shift in the critical curve, critical exponents, etc.) of
a statistical mechanics model. The Harris criterion [24] suggests that the answer to this
question depends on a suitably defined correlation length exponent ν of the (pure) statistical
mechanics model and the dimension d. In particular, any amount of disorder, however
small, is sufficient to change the qualitative properties of the system if ν ă 2{d, while the
properties stay the same for small disorder, when ν ą 2{d. The case ν “ 2{d is marginal
and the Harris criterion is inconclusive. There has been some effort to mathematically verify
Harris’ criterion on a case by case basis, showing that certain critical points are shifted
[5, 20, 21], or that there is smoothing of phase transitions [1, 23]. Earlier efforts to build a
mathematical framework around the Harris criterion considered correlation lengths defined
via finite size scaling [15, 16]. We propose a new point of view, which focuses on the existence
of a non-trivial, random continuum limit when disorder scales to zero in a particular way
as a function of the lattice spacing. Our approach covers also the marginal cases (for the
moment of polymer type models) and further reveals a phase transition that takes place
therein.

Let us set our framework. We define a pure statistical mechanics model as a law Pref
Ωδ

describing the distribution of a field of (correlated) variables σ “ pσxqxPΩδ , on a sub-lattice
of Ω Ă Rd:

Ωδ :“
`

δa1Zˆ δa2Zˆ ¨ ¨ ¨ ˆ δadZ
˘

X Ω, with δ ą 0, a1 “ 1 and a2, . . . , ad ą 0,

where we allow for different scaling of the dimensions, in which case the effective dimension
of the model is deff :“ a1 ` . . . ` ad. We assume that the field σ is a binary field, e.g. an
occupation σx P t0, 1u or spin σx P t˘1u field. Disorder is modeled by a family of i.i.d.
random variables ω :“ pωxqxPΩδ with zero mean, unit variance, and locally finite exponential
moments. Probability and expectation with respect to ω will be denoted respectively by
P and E. Given β ą 0, h P R and a P-typical realization of the disorder ω, we define the
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disordered model as the following probability measure PωΩδ;β,h for the field σ “ pσxqxPΩδ :

PωΩδ;β,hpdσq :“
e
ř

xPΩδ
pβωx`hqσx

ZωΩδ;β,h
Pref

Ωδ
pdσq , (1.1)

where the normalizing constant is the partition function defined by

ZωΩδ;β,h :“ Eref
Ωδ

“

e
ř

xPΩδ
pβωx`hqσx

‰

. (1.2)

For every k P N we define the k-point correlation function ψpkqΩδ
px1, . . . , xkq, for x1, . . . , xk P Ω,

as follows: denoting by xδ the point in Ωδ closest to x P Ω, we set

ψ
pkq
Ωδ
px1, . . . , xkq :“

#

Eref
Ωδ

“

σpx1qδ
σpx2qδ

¨ ¨ ¨σpxkqδ
‰

, if pxiqδ ‰ pxjqδ for all i ‰ j

0 , otherwise
. (1.3)

We have defined the k-point function on the whole Ω, rather than only on Ωδ, for convenience.

Assumption 1.1. For every k P N, there exist a symmetric function ψpkqΩ : Ωk Ñ R and
an exponent γ P r0,8q such that

pδ´γqk ψ
pkq
Ωδ
px1, . . . , xkq ÝÝÑ

δÓ0
ψ
pkq
Ω px1, . . . , xkq in L2pΩkq , (1.4)

and furthermore, for some ε ą 0,

lim sup
`Ñ8

lim sup
δÓ0

ÿ

ką`

p1` εqk

k!

›

›ψ
pkq
Ωδ

›

›

2

L2pΩkq
“ 0 . (1.5)

This assumption suggests that the correlation functions of the pure system decay as a
power law (if γ ą 0) and moreover that their continuum limit exists. This is a natural
assumption that one expects to hold for systems with a continuous phase transition at
critical temperature and which can be verified in many situations, see the examples later
on. Let us note that we have implicitly assumed here that Eref

Ωδ

“

σxδ s converges to zero as
δ Ó 0. In situations that this limit is not zero, we need in (1.3) to consider the centered field
σxδ ´ Eref

Ωδ

“

σxδ s, instead. The case γ “ 0 is associated to a first order phase transition at
the critical temperature. The factor p1` εqk in (1.5) is needed when one considers an h for
which the variables eβωx`h ´ 1 are not mean zero. When these are mean zero, then ε can be
taken to be equal to zero in (1.5).

Under Assumption 1.1, we can determine the scaling limit of the partition function in
the continuum (δ Ó 0) and weak disorder (β, hÑ 0) limit: Fix β̂ ě 0, ĥ P R and define the
continuum partition function by

ZW
Ω;β̂,ĥ

:“
8
ÿ

k“0

1

k!

ż

¨ ¨ ¨

ż

Ωk
ψ
pkq
Ω px1, . . . , xkq

k
ź

i“1

`

β̂ W pdxiq ` ĥdxi
˘

, (1.6)

where the k “ 0 term of the sum equals 1 by definition, and W p¨q denotes white noise on
(the bounded open set) Ω Ď Rd. The convergence of the series in L2 is guaranteed by (1.5).
If (1.5) holds only with ε “ 0, the series (1.6) converges in Lp for all p P p0, 2q. We have
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Theorem 1.2 ([11]). Let Assumption 1.1 hold. For fixed β̂ ą 0, ĥ P R, rescale β, h as
follows:

β “ βδ “ β̂ δ deff{2´γ , h “ hδ “

#

ĥ δ deff´γ ´ 1
2β

2 in case σx P t0, 1u

ĥ δ deff´γ in case σx P t´1, 1u
. (1.7)

Then we have the convergence in distribution to ZW
Ω;β̂,ĥ

as δ Ó 0:
$

&

%

ZωΩδ;βδ,hδ in case σx P t0, 1u

e´
1
2
β̂2 δ´2γ

ZωΩδ;βδ,hδ in case σx P t´1, 1u

,

.

-

pdq
ÝÝÑ
δÓ0

ZW
Ω;β̂,ĥ

.

where the superscript pdq above the arrow denotes convergence in distribution.
The proof has been given in [11], cf. Theorems 2.3 and 2.5. Below we give a sketch of it

highlighting the main points.

Sketch of the proof of Theorem 1.2. Let us consider the so-called high temperature
expansion (|β|, |h| ! 1) of the partition function ZωΩδ;β,h and for simplicity let us assume
that the field takes the values σx P t0, 1u. In this case we can write

ZωΩδ;β,h “ Eref
Ωδ

«

ź

xPΩδ

`

1` ηxσx
˘

ff

, where ηx :“ epβωx`hq ´ 1 . (1.8)

and expanding the product we have

ZωΩδ;β,h “ 1`

|Ωδ|
ÿ

k“1

1

k!

ÿ

px1,x2,...,xkqPpΩδqk

ψ
pkq
Ωδ
px1, . . . , xkq

k
ź

i“1

ηxi , (1.9)

where the k! takes into consideration that we sum over ordered k-tuples px1, . . . , xkq. In
this way the partition function is written as a multi-linear polynomial of the independent
random variables pηxqxPΩδ with coefficients given by the k-point correlation function of the
reference field. A Taylor expansion shows that when β, h are small we have

Erηxs » h` 1
2β

2 “: h1 , Varrηxs » β2 . (1.10)

When |β|, |h| ! 1, the distribution of a polynomial chaos expansion, like the right hand
side of (1.9), is asymptotically, in the limit δ Ó 0, insensitive with respect to the distribution
of the random variables pηxqxPΩδ , as long as mean and variance are kept fixed. The precise
formulation of this loosely stated invariance principle is given by Theorems 2.6 and 2.8 in
[11], in the form of a Lindeberg principle and is the key point of the method: denoting by
prωxqxPΩδ a family of i.i.d. standard Gaussians satisfying (1.10), we can approximate, in the
limit δ Ó 0,

ZωΩδ;β,h » 1`

|Ωδ|
ÿ

k“1

1

k!

ÿ

px1,x2,...,xkqPpΩδqk

ψ
pkq
Ωδ
px1, . . . , xkq

k
ź

i“1

`

βrωxi ` h
1
˘

. (1.11)

Introducing the white noiseW p¨q on Rd and considering the parallelepiped ∆ :“ p´ δa1

2 , δ
a1

2 qˆ

¨ ¨ ¨ˆp´ δad
2 , δ

ad

2 q, we can replace each rωx by δ´deff{2W px`∆q. Since h1 “ h1δ´deffLebpx`∆q,
the inner sum in (1.11) coincides (recalling that ψpkqΩδ

px1, . . . , xkq is piecewise constant), with
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the following (deterministic + stochastic) integral:
ż

¨ ¨ ¨

ż

Ωk
ψ
pkq
Ωδ
px1, . . . , xkq

k
ź

i“1

`

β δ´deff{2W pdxiq ` h1 δ´deff dxi
˘

. (1.12)

Finally, applying (1.4) and rescaling β, h as in (1.7), equations (1.11)-(1.12) suggest that
as δ Ó 0 ZωΩδ;β,h converges in distribution to the continuum partition function ZW

Ω;β̂,ĥ
defined

in (1.6). The rigorous justification of these steps follows by Theorems 2.3 and 2.5 in [11]. �

1.1. Some examples. Let us look at some examples of application of Theorem 1.2.

The disordered pinning model. Let τ “ pτkqkě0 be a renewal process on N with
Ppτ1 “ nq “ Lpnqn´p1`αq, α ą 0 and Lp¨q a slowly varying function. Consider Ω “ p0, 1q,
δ “ N´1 for N P N and define Pref

Ωδ
to be the law of pσx :“ 1δτ pxqqxPΩδ , where δτ “

tN´1 τnuně0 is viewed as a random subset of Ω. It is known that this model goes through
a localization-delocalization transition when h crosses a critical value hcpβq, [21]. If Mpβq
is the log-moment generating function of ω, then the quantity hcpβq `Mpβq equals zero
for sufficiently small β, if α P r0, 1{2q (disorder irrelevance, [4]), is strictly positive for all
β ą 0, if α ą 1{2, (disorder relevance, [5, 20] ), while either scenarios are possible when
α “ 1{2 (marginal), according to whether the quantity

řN
n“1 1{nLpnq2 diverges or not [7].

For N P N, β̂ ą 0 and ĥ P R, set h1 :“ h`Mpβq and

βN “

$

’

’

&

’

’

%

β̂
LpNq

Nα´1{2
if 1

2 ă α ă 1

β̂
1
?
N

if Erτ1s ă 8

, h1N “

$

’

&

’

%

ĥ
LpNq

Nα
if 1

2 ă α ă 1

ĥ
1

N
if Erτ1s ă 8

. (1.13)

As a consequence of Theorem 1.2, we have that, when α ą 1{2, the partition function
ZωNt,βN ,hN of the disordered pinning model converges in distribution, for every t ě 0, when
N Ñ8 to the random variable ZW

t,β̂,ĥ
given by

ZW
t,β̂,ĥ

:“ 1`
8
ÿ

k“1

1

k!

ż

¨ ¨ ¨

ż

r0,tsk
ψpt1, . . . , tkq

k
ź

i“1

`

β̂ W pdtiq ` ĥdti
˘

, (1.14)

where W p¨q denotes white noise on R and ψtpt1, . . . , tkq is a symmetric function, defined for
0 ă t1 ă ¨ ¨ ¨ ă tk ă t by

ψpt1, . . . , tkq “

$

’

’

’

&

’

’

’

%

Ckα
t1´α1 pt2 ´ t1q1´α ¨ ¨ ¨ ptk ´ tk´1q

1´α
if 1

2 ă α ă 1

1

Erτ1s
k

if Erτ1s ă 8

, (1.15)

with Cα :“ α sinpπαq
π . The series in (1.14) converges in L2, and in addition ErpZωNt,βN ,hN q

2s Ñ

ErpZW
t,β̂,ĥ

q2s as N Ñ8. When Erτ1s ă 8, e.g. when α ą 1, the continuum partition function
is given concretely by

ZW
t,β̂,ĥ

pdq
“ exp

"

β̂

Erτ1s
Wt `

ˆ

ĥ

Erτ1s
´

β̂2

2 Erτ1s
2

˙

t

*

, (1.16)

where W “ pWtqtě0 denotes a standard Brownian motion.
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The directed polymer model. Let pSnqně0 be a random walk on Zd. Consider
Ω “ p0, 1q ˆRd, δ “ N´1 for N P N and set Ωδ :“

`

pδZq ˆ pδ1{2Zdq
˘

X Ω. Define Pref
Ωδ

to be
the law of the field pσx :“ 1AδpxqqxPΩδ , where Aδ :“ tp nN ,

Sn
N1{α quně0 is viewed as a random

subset of Ω. In this setting the external field h in (1.1) is taken to be equal ´Mpβq.
For d ě 3 it is known that a small amount of disorder does not change the

?
N fluctuations

of the simple, symmetric random walk, while superdiffusivity is expected and localization
occurs in d “ 1, 2 for any arbitrary β ą 0, see [18] and references therein. When d “ 1, N2{3

fluctuations for the polymer path are predicted by the KPZ theory. In d “ 2 the fluctuation
exponent is still elusive. In d “ 1 we introduced [11] a generalization of the directed polymer
model where the increments of the walk lie in the domain of attraction of an α-stable law,
with 1 ă α ď 2. For N P N and β̂ ą 0 we set βN :“ N´

α´1
2α β̂ and the application of Theorem

1.2 in this situation yields that, for every t ě 0 and x P R, the point-to-point partition
function ZωNt,βN pN

1{αxq converges in distribution as N Ñ8 to a random variable ZW
t,β̂
pxq,

which is a solution to the fractional Stochastic Heat Equation

Btu “ ∆α{2 u`
?
pβ̂ 9W u with up0, ¨q “ δ0p¨q, (1.17)

where p is the period of the walk. When α “ 2 the fractional Laplacian is the usual Laplacian
on R and this result was obtained in [2].

The random field Ising model pd “ 2q. Consider a bounded and connected set
Ω Ď R2 with smooth boundary and define Pref

Ωδ
to be the critical Ising model on Ωδ at

inverse temperature β “ βc “
1
2 logp1`

?
2q and ` boundary condition. The measure on

spin configurations t˘1uΩδ is given by

Pref
Ωδ
pσq :“ P`Ωδpσq “

1

Z`Ωδ
exp

´

βc
ÿ

x„yPΩδYBΩδ

σxσy

¯

ź

xPBΩδ

1σx“`1

It has been shown in [17] that Assumption 1.1 is satisfied for P`Ωδ with γ “ 1{8. Theorem
1.2 allows to construct the continuum partition function of the random field perturbation of
P`Ωδ . The continuum partition function is given in terms of iterated Wiener integrals but it
is less explicit [11].

Remark 1.3. Theorem 1.2 allows to construct the continuum limit of partition functions.
Even though this is a main ingredient, additional work is required in order to construct the
continuum limit of the disordered measure. This is related to establishing convergence of
partition functions as a process. In this way, the construction of the continuum models has
been achieved for the pinning model [13] and for the directed polymer model [3] but not yet
for the random field Ising model.

2. Marginal relevance

Inspecting the first part of relation (1.7), we see that the situation γ “ deff{2 is incompat-
ible with the assumption of weak disorder as the exponent in the scaling vanishes and the
strength β of the disorder does not tend to zero when δ Ó 0. This is essentially a restatement
of Harris’ marginal condition ν “ 2{d (see [11] for a discussion). In the case of the pinning
model the incarnation of this condition is α “ 1{2 and in the case of the long range DPRM
α “ 1, which were both excluded. The issue with these marginal values is not technical but
rather structural. This can been seen if one sets, for example, the marginal value α “ 1{2 in
the formula for the continuum pinning partition (1.15). This formal substitution leads to
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stochastic integrals, which cannot be given an Itô sense due to the fact that the kernel (1.15)
is not L2 integrable. The situation is similar in the case of p2 ` 1q-dimensional directed
polymer corresponding to a simple symmetric random walk, since deff “ 2, while by the
local limit theorem, the exponent γ in (1.4) takes the value deff{2 “ 1.

A source of this difficulty is that the vanishing of the exponent d{2´ γ induces a new
time scale, which is actually exponential. To be more precise, let us look at the multilinear
expansion (1.9). In this setting we will be assuming that Erηxs “ 0 and, for the sake of
exposition, that the k´point correlation function is the correlation function of either a
simple, symmetric random walk on Z2, or a one dimensional Cauchy random walk, i.e.
ψppn1, x1q, ..., pnk, xkqq “ PpSn1 “ x1, ..., Snk “ xkq “

śn
i“1 PpSni´ni´1 “ xi ´ xi´1q. We

will denote by qnpxq the probability that the random walk is at location x at time n.
Computing the variance of the k-th term in the multilinear expansion, we obtain that it is
asymptotically equal to

E

»

—

–

´

ÿ

x1,...,xk
1ďn1ă¨¨¨ănkďN

k
ź

i“1

qni´ni´1pxi ´ xi´1q

N
ź

i“1

ηxi

¯2

fi

ffi

fl

“
ÿ

x1,...,xk
1ďn1ă¨¨¨ănkďN

k
ź

i“1

qni´ni´1pxi ´ xi´1q
2

« plogNqk.

This computation indicates two things: First, that the right rescaling of β is βN :“ β̂{
?

logN .
Second, that the asymptotic variance will remain unchanged if we summed over a time
horizon tN for any arbitrary but fixed time variable t. On the other hand, if we considered
a time horizon N t with t ą 0, we will see a (linear in t) change in the asymptotic behavior.
Therefore, the correct time scale is pN t : t ą 0q and to incorporate this we decompose

the summations over n1, ..., nk over intervals nj ´ nj´1 P Iij , with Iij “
`

N
ij´1

M , N
ij
M

‰

,
ij P t1, ...,Mu and M a coarse graining parameter which will eventually tend to infinity. We
can then rewrite the k-th term in the expansion (1.9) as

β̂k

Mk{2

ÿ

1ďi1,...,ikďM

ΘN,M
i1,...,ik

where (2.1)

ΘN,M
i1,...,ik

:“

ˆ

M

logN

˙k{2
ÿ

nj´nj´1P Iij for j“1,...,k

x1,...,xkPZd

k
ź

j“1

qnj´nj´1pxj ´ xj´1q ηpnj ,zjq

We now observe that if an index ij is a running maximum for the k-tuple i :“ pi1, ..., ikq, i.e.

ij ą maxti1, ..., ij´1u then
`

N
ij´1

M , N
ij
M

‰

Q nj " nr P
`

N
ir´1
M , N

ir
M

‰

, for all r ă j :. Using a
version of the local limit theorem, the inequality implies that qnj´nj´1pzj´zj´1q « qnj pzjq for
nj P Iij and nj´1 P Iij´1 . Decomposing the sequence i :“ pi1, ..., ikq according to its running
maxima, i.e. i “ pip1q, ..., ipmpiqqq with iprq :“ pi`r , ..., i`r`1 ´ 1q and i1 “ i`1 ă i`2 ă ¨ ¨ ¨ ă i`m
the successive running maxima, it can be shown that (2.1) factorizes (asymptotically when
N tends to infinity) as

β̂k

M
k
2

ÿ

iPt1,...,Muk
7

ΘN ;M

ip1q
ΘN ;M

ip2q
¨ ¨ ¨ΘN ;M

ipmq
.

:Strictly speaking, for this inequality to be valid uniformly, we need to restrict to values of i P t1, ...,Muk7 :“

ti P t1, ...,Muk : |ij ´ ik| ą 1u, but this is a minor technical point that be easily taken care of.
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The heart of the argument is to show that all the ΘN ;M

ipjq
converge jointly, when N Ñ8 to

standard normal variables. This is established in Proposition 5.2 in [12]. The argument is
combinatorial and makes use of (a version of) the Fourth Moment Theorem [19, 28, 27].
Once this convergence is established, a re-summation leads to

Theorem 2.1 (Limit of partition functions [12]). Let ZωN,β be the partition function of
a directed polymer or a pinning model whose transition probability kernel or renewal function
satisfies a form of local limit theorem. Assume that the replica overlap of two independent
random walks S, S1 (in case of directed polymers) or two independent renewals τ, τ 1 (in case
of pinning)

RN :“

$

’

&

’

%

E
“
řN
n“1 1Sn“S1n

‰

,

E
“
řN
n“1 1nPτXτ 1

‰

,

diverges as a slowly varying function when N Ñ 8. Then, defining βN :“ β̂{
?
RN with

β̂ P p0,8q, the following convergence in distribution holds, where pWtqtě0 is a standard
Brownian motion:

ZωN,βN
pdq

ÝÝÝÝÑ
NÑ8

Z β̂ :“

$

&

%

exp

ˆ
ż 1

0

β̂?
1´β̂2 t

dWt ´
1
2

ż 1

0

β̂2

1´β̂2 t
dt

˙

if β̂ ă 1

0 if β̂ ě 1

. (2.2)

Moreover, for β̂ ă 1 one has limNÑ8 ErpZωN,βN q
2s “ ErpZ β̂q

2s.

An extension of the above Theorem at a process level is also established in Theorems
2.11 and 2.12 in [12] which show a multi scale and log-correlated structure. The analogous
results for the 2d Stochstic Heat Equation are also established in [12].

It is worth pointing out the phase transition at β̂ “ 1. It is by now well known [18]
that there are two regimes in directed polymers in random media: the strong and the weak
disorder regimes, which can be classified as the regimes where the normalized partition
function ZωN,β{ErZωN,βs has an a.s. zero or strictly positive limit, as N tends to infinity. In
the weak disorder regime the polymer path behaves, essentially, as a simple symmetric
random walk while in the strong disorder regime localization takes place. It was shown [18]
that for d ě 3 and β smaller than a critical value βc, the model is in the weak disorder
regime. On the other hand in dimensions d “ 1, 2 it is shown [18] that the critical value βc
equals zero, that is, for any β ą 0 there is strong disorder. Theorem 2.1 shows that actually
there is a transition between weak and strong disorder in dimension two, which is observed
when one looks on the scale β̂{RN and with transition at β̂c “ 1. Moreover, this transition
is common among all marginally relevant disordered polymer models that fall within the
scope of Theorem 2.1. Finally, it is worth noting that similar transition takes place in the
model of Gaussian Multiplicative Chaos [29].

3. Some consequences

Having a continuum model at hand can be very useful in extracting sharp information
on the phase diagram of the discrete models. To describe one such use, we will use the
pinning model as an example. Its free energy (we recenter the parameter h to h´Mpβq for
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convenience) is defined as

fpβ, hq :“ lim
NÑ8

1

N
logZωN,β,h´Mpβq “ lim

NÑ8

1

N
E
“

logZωN,β,h´Mpβq

‰

.

One can show that f is nonnegative and transition from a zero to a strictly positive value
determines a localization/delocalization transition. In particular, we can define the critical
value hcpβq :“ supth : F pβ, hq “ 0u. Much effort has been devoted to the study of this
critical value and in particular whether it is strictly positive for all sufficiently small values
of β. It has been shown that hcpβq “ 0, for all sufficiently small β, when α P r0, 1{2q [4, 30],
while if α P p1{2, 1q there exist constants c, C and a slowly varying function rLp¨q determined
by Lp¨q, such that cβ

2α
2α´1 rLp1{β2q ă hcpβq ă Cβ

2α
2α´1 rLp1{β2q, for all sufficiently small β

[5, 20]. With the help of a continuum partition function, this result can be strengthened to
a statement of existence of the limit limβÑ0 β

´ 2α
2α´1 rLp1{β2q´1hcpβq. Denote the continuum

free energy (which we assume to exist) by

Fpβ̂, ĥq “ lim
tÑ8

1

t
ErlogZt,β̂,ĥs “ lim

tÑ8

1

t
lim
NÑ8

E logZNt,βN ,hN´MpβN q,

and assuming that we can interchange the limits over N, t, this leads to

Fpβ̂, ĥq “ lim
NÑ8

N lim
tÑ8

1

Nt
E logZNt,βN ,hN´MpβN q “ lim

NÑ8
NF pβN , hN q.

Expressing N and h in terms of β, we can write the above as

Fpβ̂, ĥq “ lim
βÑ0

F pβ, β
2α

2α´1 rLp 1
β qĥq

β
2

2α´1 rLp 1
β q

2
, indicating that hcpβ̂q “ lim

βÑ0

hcpβq

β
2α

2α´1 rLp 1
β q
. (3.1)

The quantitative estimate that justifies the above interchange of limits and thus the validity
of the limits in (3.1) was shown in [14] and is

Theorem 3.1 ([14]). Let F pβ, hq be the free energy of the disordered pinning model with
renewal exponent α P p1{2, 1q and Fpβ̂, ĥq the free energy of the corresponding continuum
model. For all β̂ ą 0, ĥ P R and η ą 0 there exist δ0 ą 0 such that for all δ P p0, δ0q

Fpβ̂, ĥ´ ηq ď
F pβ̂ δα´

1
2Lp1{δq, ĥ δαLp1{δqq

δ
ď Fpβ̂, ĥ` ηq.

The situation should be similar in other cases, like the Directed Polymer and the Random
Field Ising model but the corresponding quantitative estimates have not been established, yet.
We expect that one should be able to prove that for the 1d DPRM the limit limβÑ0 β

´4fpβq

should exist and the same should be the situation for the limit limhÑ0 h
´1{15xσ0yβc,h for the

2d RFIM at critical temperature, with the limits being given in terms of the corresponding
continuum free energies.

Acknowledgements
FC acknowledges the support of GNAMPA-INdAM. RS is supported by NUS grant R-146-
000-185-112. NZ is funded by EPSRC via EP/L012154/1.

References
[1] M. Aizenman and J. Wehr, Rounding effects of quenched randomness on first-order phase transitions,

Commun. Math. Phys. 130, 489–528, 1990
[2] T. Alberts, K. Khanin, J. Quastel, Intermediate Disorder for 1 ` 1 Dimensional Directed Polymers,

Ann. Probab. 42, 1212–1256, 2014.



SCALING LIMITS AND DISORDER RELEVANCE 9

[3] T. Alberts, K. Khanin, J.Quastel, The continuum directed random polymer, J. Stat. Phys. 154.1-2
(2014) 305-326

[4] K. S. Alexander, The effect of disorder on polymer depinning transitions, Commun. Math. Phys. 279
(2008), no. 1, 117–146

[5] K. S. Alexander and N. Zygouras. Quenched and annealed critical points in polymer pinning models.
Commun. Math. Phys. 291 (2009), no. 3, 659–689.

[6] T. Alberts, K. Khanin, and J. Quastel. The intermediate disorder regime for directed polymers in
dimension 1` 1. Ann. Probab. 42 (2014), 1212–1256.

[7] Q. Berger, H. Lacoin, Pinning on a defect line: characterization of marginal disorder relevance and
sharp asymptotics for the critical point shift, Journal of the Inst. Math. Jussieu, (2015) to appear

[8] Q. Berger, F. Caravenna, J. Poisat, R. Sun, and N. Zygouras. The Critical Curve of the Random
Pinning and Copolymer Models at Weak Coupling. Commun. Math. Phys. 326 (2014), 507–530.

[9] J. Bricmont and A. Kupiainen. Phase transition in the 3d random field Ising model. Commun. Math.
Phys. 116 (1988), 539–572.

[10] F. Camia, C. Garban, and C.M. Newman. The Ising magnetization exponent on Z2 is 1{15. Probab.
Theory Relat. Fields (to appear), arXiv:1205.6612.

[11] F. Caravenna, R. Sun, N. Zygouras. Polynomial chaos and scaling limits of disordered systems. J. Eur.
Math. Soc., to appear.

[12] F. Caravenna, R. Sun, N. Zygouras. Universality in marginally relevant disordered systems,
arXiv:1510.06287

[13] F. Caravenna, R. Sun, N. Zygouras. The continuum disordered pinning model. Prob. Theory Rel. Fields,
(2016), no. 1-2, 17-59

[14] F. Caravenna, F.L. Toninelli, N. Torri, Universality for the pinning model in the weak coupling regime,
arXiv:1505.04927

[15] J.T. Chayes, L. Chayes, D.S. Fischer, and T. Spencer. Finite-Size Scaling and Correlation Lengths for
Disordered Systems. Phys. Rev. Lett. 57, number 24, 15 December 1986.

[16] J.T. Chayes, L. Chayes, D.S. Fischer, and T. Spencer. Correlation Length Bounds for Disordered Ising
Ferromagnets. Commun. Math. Phys. 120 (1989), 501–523.

[17] D. Chelkak, C. Hongler, and C. Izyurov. Conformal invariance of spin correlations in the planar Ising
model. Ann. Math. (to appear), arXiv:1202.2838.

[18] F. Comets, T. Shiga, N. Yoshida. Probabilistic analysis of directed polymers in a random environment:
a review. Stochastic analysis on large scale interacting systems, 115–142, Adv. Stud. Pure Math., 39,
Math. Soc. Japan, Tokyo, 2004.

[19] P. de Jong, A central limit theorem for generalized multilinear forms, J. Multivariate Anal. 34, 275–289,
1990

[20] B. Derrida, G. Giacomin, H. Lacoin, F. Toninelli, Fractional moment bounds and disorder relevance for
pinning models. Comm. Math. Phys. 287.3 (2009), 867-887

[21] G. Giacomin. Random Polymer Models. Imperial College Press, London, 2007.
[22] G. Giacomin. Disorder and critical phenomena through basic probability models. École d’Été de

Probabilités de Saint-Flour XL – 2010. Springer Lecture Notes in Mathematics 2025.
[23] G. Giacomin, F. Toninelli, Smoothing effect of quenched disorder on polymer depinning transitions,

Comm. Math. Phys. 266.1 (2006) 1-16
[24] A.B. Harris, Effect of random defects on the critical behaviour of Ising models. Journal of Physics C:

Solid State Physics, 1974.
[25] H. Lacoin. New bounds for the free energy of directed polymer in dimension 1+1 and 1+2. Commun.

Math. Phys. 294 (2010) 471–503.
[26] E. Mossel, R. O’Donnell, and K. Oleszkiewicz. Noise stability of functions with low influences: Variance

and optimality. Ann. Math. 171, 295–341, 2010.
[27] I. Nourdin, G. Peccati, G. Reinert. Invariance principles for homogeneous sums: universality of Gaussian

Wiener chaos. Ann. Probab. 38, 1947–1985, 2010.
[28] D. Nualart and G. Pecati. Central limit theorems for sequences of multiple stochastic integrals. Ann.

Probab. 33, 177–193, 2005.
[29] R. Rhodes and V. Vargas, Gaussian multiplicative chaos and applications: a review. Probab. Surveys 11,

315–392, 2014.
[30] F.L. Toninelli A replica-coupling approach to disordered pinning models, Comm. Math. Phys. 280,

389-401 (2008)



10 F.CARAVENNA, R.SUN, AND N.ZYGOURAS

Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca, via
Cozzi 55, 20125 Milano, Italy

E-mail address: francesco.caravenna@unimib.it

Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge
Road, 119076 Singapore

E-mail address: matsr@nus.edu.sg

Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
E-mail address: N.Zygouras@warwick.ac.uk


	1. Introduction
	1.1. Some examples.

	2. Marginal relevance
	3. Some consequences
	References

