THE STRONG RENEWAL THEOREM

FRANCESCO CARAVENNA

ABSTRACT. We consider real random walks with positive increments (renewal processes)
in the domain of attraction of a stable law with index a € (0, 1). The famous local renewal

theorem of Garsia and Lamperti [GLG3|, also called strong renewal theorem, is known to

hold in complete generality only for o > % Understanding when the strong renewal

theorem holds for o < % is a long-standing problem, with sufficient conditions given by

Williamson [W68], Doney [D97] and Chi [CI5] [C13]. In this paper we give a complete

solution, providing explicit necessary and sufficient conditions (an analogous result has

been independently and simultaneously proved by Doney [D15]). We also show that these

conditions fail to be sufficient if the random walk is allowed to take negative values.
This paper is superseded by [CD16].

1. INTRODUCTION

We use the notations N = {1,2,3,...} and Ny = N U {0}. Given two functions f,g :
[0,00) = (0,00) we write f ~ g to mean lims_,o f(5)/g(s) = 1.

We denote by R, the space of regularly varying functions with index v € R, that is
[ € R, if and only if lim, o f(Ax)/f(z) = A7 for all A € (0,00). Functions in Rq are
called slowly varying. Note that f € R, if and only if f(z) = 27¢(x) for some slowly varying
function ¢ € Ry. We refer to [BGT89] for more details.

1.1. Main result. We fix a probability F' on [0, 00) and we let X, (X;);en be independent
and identically distributed (i.i.d.) random variables with law F. The associated random
walk (renewal process) will be denoted by Sy, := X7 + ...+ X,,, with Sp := 0. We say that
F' is arithmetic if it is supported by hZ for some h > 0, and the maximal value of A > 0
with this property is called the arithmetic span of F.

Our key assumption is that there exist a € (0,1) and A € R, such that

F(z) = F((x,0)) =P(X >x) ~ A(lx) as T — 00. (1.1)

We can write A(x) = L(z) 2%, for a suitable slowly varying function L € Ry. By [BGT89,
§1.3.2], we may take A : [0,00) — (0,00) to be differentiable, strictly increasing and

Al(s) ~a ) as s — 00. (1.2)

Let us introduce the renewal measure

U(dz) =) P(S, € da), (1.3)

n>0
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so that U(I) is the expected number of variables S, that fall inside I C R. It is well
known [BGT89, Theorem 8.6.3] that (I.1)) implies the following infinite-mean version of

the renewal theorem, with C = C(«a) = %(m)

U([0,z]) ~ gA(as) as T — 00. (1.4)

Let us introduce the shorthand

= (=h.0] where b arithmetic span of F’ (1f F ?s arithm'etic) ‘ (15)
any fixed number > 0 (if F' is non-arithmetic) .
Recalling ((1.2)), it is natural to look for a local version of (|1.4)), namely
A
Ulx+1)=U((x —h,z]) ~Ch (z) as T — 0. (1.6)

x
This relation, called strong renewal theorem (SRT), is known to hold in complete generality
under (L.I) when o > 1, cf. [GL63, W68, [E70]. On the other hand, when o < } there are
examples of F' satisfying ((1.1]) but not ([L.6)). It is therefore of great theoretical and practical
interest to find conditions on F', in addition to ((1.1)), ensuring the validity of (|1.6)) for o < %
Let us introduce the function
F(x+1)

r(r) = =———~axAlzx)F(z+1). 1.7

@)= Frmy 7y~ SA@F@ D) (17)
By (L.1)), one expects r(x) to be bounded for “typical” values of z, although there might be
exceptional values for which it is much larger. It is by now a classical result that a sufficient
condition for the SRT (|1.6)) is the global boundedness of r:

sup r(z) < oo, (1.8)
x>0

as proved by Doney [D97] in the arithmetic case (extending Williamson [W68§], who assumed
o > 1) and by Vatutin and Topchii [VT13] in the non-arithmetic case.

More recently [C15] [C13], Chi showed that can be substantially relaxed, through
suitable integral criteria. To mention the simplest [C13, Theorem 1.1], if one defines

b +
Rr(a,b) ::/ (rly) = T)" dy, where 2" := max{z,0}, (1.9)

a sufficient condition for the SRT ((1.6)), for a <

o(A(z)?) ifa<i
S \o(4) e
This clearly improves (1.8)) (just note that Rz(a,b) = 0 for T' = sup, >, r(z)). We refer to
[C15] [C13] for a variety of more general (and more technical) sufficient conditions.

, is that for some n € (0,1), T € [0, 00)

where u(x) := [} AlP g, (1.10)

Rr((1 —n)x, ) i

Integral criteria like (1.10]) are appealing, because they are very explicit and can be easily
checked in concrete examples. It is natural to ask whether more refined integral criteria
can provide necessary and sufficient conditions for the SRT . Our main result shows
that this is indeed the case, giving a complete solution to the SRT problem.

Theorem 1.1 (Strong Renewal Theorem). Let F' be a probability on [0, 00) satisfying (1.1))
with A € Rq, for a € (0,1). Define I = (—h,0] with h > 0 as in (L.5).

o [fa> %, the SRT (1.6|) holds with no extra assumption on F'.
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e [fa< %, the SRT (1.6|) holds if and only if

lim {hﬁs;ip A(1;1:)2 (/Im A(j)Q f(z — 5) ds)} =0. (1.11)

For a < %, setting Ro(a, b) := f; r(y)dy (see (1.9)), relation (1.11)) is equivalent to

. ) 1 1 A(s)?
while for a = % relation (1.12)) is stronger than (i.e. it implies) (1.11)).

In Section |3| we reformulate conditions — more explicitly in terms of the
probability F' (see Lemma . We also present an overview on the strategy of the proof
of Theorem which is a refinement of the probabilistic approach of Chi [C15] [C13]
and allows to treat the arithmetic and non-arithmetic cases in a unified way, avoiding
characteristic functions (except for their implicit use in local limit theorems).

In the rest of the introduction, after some remarks, we derive some consequences of
conditions (T.11)-(T.12), see §1.2] Then we discuss the case of two-sided random walks,
showing that condition (L.11)) is not sufficient for the SRT, see

Remark 1.2. A result analogous to Theorem has been independently and simultane-
ously proved by Doney [D15].

Remark 1.3. When o > % condition ([1.11)) follows from (1.1 (see the Appendix Ei
As a consequence, we can reformulate Theorem as follows: assuming (1.1)), condition
(1.11) is necessary and sufficient for the SRT (1.6|) for any o € (0,1). O

Remark 1.4. The double limit x — oo followed by 17 — 0 can be reformulated as follows:
relations (|1.11))-(1.12)) are equivalent to asking that, for any fixed function g(z) = o(x),

") A(s)? .
/1 . r(x —s)ds o o(A(z)?), (1.11])
0 As)? 2
/1 2 Ro(z — s,2)ds e o(A(z)?), (1.120)
as an easy contradiction argument shows. U

Remark 1.5. Relations ((1.11)-(1.12) contain no cutoff parameter T', unlike ([1.10f). This
can be introduced replacing r(x — s) by (r(x —s) — T)" and Ro(x — s,2z) by Rp(z — s, 2),

respectively, because ([1.11])-(|1.12)) are equivalent to the following:
. : 1 e A(s)? I
3T € [0,00) : lim ¢ lim sup (r(x—s)—T)" Jdsp =0, (L1I})
1

n—0 T—00 A(x)Z S
e L™ (As)? :
IT € [0,00) : %1_% {halis;ip A(:c)Q/l (52 Rr(z —s,x) |dsp =0. (1.12]")
This is easily checked, by writing
r@—s)<T + (r(z—s) —T)+, Ro(z — s,2) <Ts + Rp(x — s,x),

and noting that the terms T and T's give a negligible contribution to ((1.11)) and (1.12]),
respectively, because by Karamata’s Theorem [BGT89, Proposition 1.5.8]

T A 2 1 1
/1 f) ds ~ 5-A(nz)* ~ o0 A@)*  asz = 0. (1.13)
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Nothing is really gained with the cutoff T', since relations (1.11’))-(1.12]’)) are equivalent
to the T' = 0 versions ((1.11)-(1.12)). However, in concrete examples it is often convenient
to use (1.11]')-(1.12)), because they allow to focus one’s attention on the “large” values of
r. [l

1.2. Some consequences. An immediate corollary of Theorem is the sufficiency of

conditions ([1.8)) and ((1.10) for the SRT (|1.6]).

e For condition (|1.8), note that it implies (1.11]), thanks to (1.13]).

e For condition ((1.10)), note that it implies (1.12]’)), since Rp(z —s,z) < Rp((1 —n)z, x)
and, moreover, lim, o u(z) = [7(A(s)?/s?) ds < oo for a < 1, because A(s)?/s? is
regularly varying with index 2o — 2 < —1 (see [BGTR9, Proposition 1.5.10]).

More generally, all the sufficient conditions presented in [CI5] [C13] can be easily derived
from Theorem We present alternative sufficient conditions, in terms of “smoothness”
properties of F'. Observe that, if (1.1]) holds, for any s, = o(z) one has

F((.%',.I'—l— Sw]) _ P(X S (x,x—i—sx])
F((z,00)) P(X € (z,00)) w00

Our next result shows that a suitable polynomial rate of decay in ([1.14]) ensures the validity
of the SRT (1.6). (Analogous conditions, in a different context, appear in [CSZ16]).

0. (1.14)

Proposition 1.6. Let F be a probability on [0,00) satisfying (L)) for some o € (0, 3]. A
sufficient condition for the SRT (1.6)) is that there is e > 0 such that, for any 1 < s, = o(z),
F 1—2a+e
Blorts) _o((2)™7) w2 (115)
F((z,00)) x
We finally focus on the case v = . Our next result unravels this case, by stating under
which conditions on A(x) the SRT (/1.6]) holds with no further assumption on F' than (L.1))
(like it happens for a > %) Given a function L, let us define

L*(xz):= sup L(s). (1.16)

1<s<z
Theorem 1.7 (Case a = 3). Let F be a probability on [0,00) satisfying (L1) with o = 3,
that is A € Ry /5. Write A(x) = L(x)\/x, where L € Ry is slowly varying.
o If A(x) satisfies the following condition:
L) = O(L@), (1.17)

Tr—00
the SRT (1.6]) holds with no extra assumption on F'.
e If condition (1.17)) fails, there are examples of F' for which the SRT (|1.6|) fails.

Remark 1.8. Condition (1.17) is satisfied, in particular, when A(z) ~ c¢y/z for some
€ (0,00), hence the SRT ([1.6)) holds with no extra assumption on F', in this case.

In order to understand how ([1.17)) arises, we bound the integral in (1.12]’|) from above
by L*(z)?R((1 — 1)z, ), hence a sufficient condition for the SRT (1.6)) is
L* 2
3T € [0, 00) : lim <limsup A((;:))Q Rr((1 - n)x,x)) =0, (1.18)

n—0 T—00
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and a slightly weaker (but more explicit) sufficient condition is

T 2
In € (0,1), T € [0,00) : Rr((1—n)z,z) =0 <;((x))2> : (1.19)

It is worth observing that (L.18)-(L.19) refine Chi’s condition (L.I0) for a = 1, because it

is easy to show that u(x) > ¢ L*(x)? for some ¢ € (0, 00).

1.3. Beyond renewal processes. It is natural to consider the two-sided version of ,
i.e. to take a probability F' on the real line R which is in the domain of attraction of a
stable law with index « € (0, 1) and positivity parameter ¢ € (0, 1]. More explicitly, setting
F(x) := F((—o0,7]) and F(z) := F((x,00)), assume that

F(zx) ~ ﬁ and F(—z) ~ ﬁ as x — 00, (1.20)
where A € R, and p > 0, ¢ > 0 are finite constants. As usual, let S,, = X1 + ...+ X, be
the random walk associated to F' and define the renewal measure U(-) as in .

The “integrated” renewal theorem still holds (with a different value of C = C(«, 0))
and, for a > %, the SRT follows again by with no additional assumptions cf.
IGL63, W68, [E70, [ET1] (we give an independent proof in Section .

For a < %, our next result gives a necessary condition for the SRT, which is shown to be
strictly stronger than ([1.11)), when ¢ > 0. This means that condition is not sufficient
for the SRT in the two-sided case .

Theorem 1.9 (Two-sided case). Let F' be a probability on R satisfying (1.20) for some
A € Ry, with a € (0,1) and p > 0, ¢ > 0. Define I = (—h,0] with h > 0 as in (1.5)).

o Ifa> %, the SRT (1.6|) holds with no extra assumption on F.
o [fa< %, a necessary condition for the SRT (1.6 is the following:
1 7 A(s)?
lim {lim sup A0)? </1 (5) (r(@ —s) + Lgsopr(@ + 5)) ds> } =0. (1.21)

n—0 T—00 S

There are examples of F satisfying (1.11)) but not (L.21)), for which the SRT fails.

It is not clear whether (|1.21)) is also sufficient for the SRT, or whether additional condi-
tions (possibly on the left tail of F') need to be imposed.

1.4. Structure of the paper. The paper is organized as follows.

e In Section [2| we recall some standard background results.

e In Section [3| we reformulate conditions (1.11)-(1.12) and (1.21)) more explicitly in
terms of F' (see Lemma and we describe the general strategy underlying the

proof of Theorem which is carried out in the following Sections [4] [5] and [6]

e In Section[7]we prove Proposition[I.6land Theorems[I.7]and [1.9] while the Appendix[A]
contains the proofs of some auxiliary results.

2. SETUP

2.1. Notation. We write f(s) < g(s) or f < g to mean f(s) = O(g(s)), i.e. for a suitable
constant C' < oo one has f(s) < Cg(s) for all s in the range under consideration. The
constant C' may depend on the probability F' (in particular, on «) and on h. When some
extra parameter € enters the constant C' = Cy, we write f(s) <c g(s). If both f < g and
g < f, we write f ~ g. We recall that f(s) ~ g(s) means lims_,o f(s)/g(s) = 1.



6 FRANCESCO CARAVENNA

2.2. Regular variation. We recall that A : [0, 00) — (0, 00) in (1.1 is assumed to be dif-
ferentiable, strictly increasing and such that holds. For definiteness, let us fix A(0) := %
and A(1) := 1, so that both A and A~ map [1, ) onto itself.

We observe that, by Potter’s bounds, for every £ > 0 one has

a+-e < A(Ql‘) < a—

S @) 04 °, Vo € (0,1], z € (0,00) such that px >1. (2.1)

More precisely, part (i) of [BGT89, Theorem 1.5.6] shows that relation holds for
oxr > I, for a suitable Z. < oo; the extension to 1 < pz < Z. follows as in part (ii) of the
same theorem, because A(y) is bounded away from zero and infinity for y € [1, Z.].

We also recall Karamata’s Theorem [BGT89, Proposition 1.5.8]:

. : ) 1
if f(n) € R¢ with ¢ > —1: ;f(n) o~ ﬁtf(t). (2.2)
As a matter of fact, this relation holds also in the limiting case ( = —1, in the sense that

tf(t) = o(32! _, f(n)), by [BGTSY, Proposition 1.5.9a].

2.3. Local limit theorems. We call a probability F' on R lattice if it is supported by
vZ + a for some v > 0 and 0 < a < v, and the maximal value of v > 0 with this property is

called the lattice span of F. If F is arithmetic (i.e. supported by hZ, cf. §1.1)), then it is also
lattice, but the spans might differ (for instance, F'({—1}) = F({+1}) = 5 has arithmetic

span h = 1 and lattice span v = 2). A lattice distribution is not necessarily arithmeticm
Let us define

an == A71(n), n € Np,

so that a, € Ry/o. Under (L.1)) or, more generally, (1.20), S,,/a, converges in distribution
as n — oo toward a stable law, whose density we denote by ¢. If we set

lattice span of F (if F' is lattice)

, 2.3
any fixed number > 0 (if F' is non-lattice) (2:3)

J = (—v,0] with v = {
by Gnedenko’s and Stone’s local limit theorems [BGT89, Theorems 8.4.1 and 8.4.2] we
have

lim sup
n—00 R

anP(SnEerJ)vgo(i)‘:O. (2.4)

Since sup,cp ¢(z) < 0o, we obtain the useful estimate

1
supP(S, € (x —w,z]) Sw — (2.5)
z€R an

which, plainly, holds for any fixed w > 0 (not necessarily the lattice span of F').
Besides the local limit theorem ({2.4]), a key tool in the proof will be a local large deviations
estimate by Denisov, Dieker and Shneer [DDS08, Proposition 7.1] (see (4.14) below).

'If I is lattice, say supported by vZ 4+ a where v is the lattice span and a € [0,v), then F is arithmetic
if and only if a/v € Q, in which case its arithmetic span equals h = v/m for some m € N.
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3. PROOF OF THEOREM [[LI} STRATEGY

We start reformulating the key conditions (1.11))-(1.12) and (1.21)) more explicitly in

terms of F'. We recall that X denotes a random variable with law F'. The next Lemma is
proved in Appendix

Lemma 3.1. Assuming (1.1]), condition (L.11|) is equivalent to

A(s)2
lim | limsup —— / () px er—ds)| =0, (3.1)
n—0 T—r00 A(l’) s€[1,nx) S
where we set P(X € x —ds) := P(z — X € ds), and condition (1.12) is equivalent to
) ) x e A(s)?
71712(1) <11£ILS£I) A0 /1 2 P(X € (x —s,z])ds | =0. (3.2)

Analogously, assuming (1.20)), condition (1.21)) is equivalent to

. . T A(s)? B
%13(1) (hlrgsip A@) /SE[LW) . (P(X ex—ds) + 1y P(X €z + ds))) =0, (3.3)

It is now easy to prove the second part of Theorem through a standard integration
by parts, one shows that if o < % relation (3.2) is equivalent to (3.1]), while if « = % it is
stronger than (3.1)). We refer to the Appendix for the details.

Next we turn to the first part of Theorem i.e. the fact that (1.11]) is a necessary and
sufficient condition for the SRT. The following general statement is known [C15, Appendix]:

for F satisfying ([1.1)), or more generally (1.20)), the SRT (1.6) is equivalent to

lim (limsup T Z P(S, € x + I)) =0, (3.4)

6—0 T—00 A(IE) 1<n<A(6z)

which means that small values of n give a negligible contribution to the renewal measure
(we refer to Remark below for an intuitive explanation of (3.4)). By Lemma it
remains to show that condition 1s mecessary and sufficient for .

The necessity of (or, if we assume , of ) is quite easy to check and is
carried out in the Appendix Showing the sufficiency of for is much harder
and is the core of the paper.

e In Section 4| we prove that follows by alone, if a > % The proof is based
on the notion of “big jump” and on two key bounds, cf. Lemmas and that
will be exploited in an essential way also for the case a < %

e In Section [5| we prove that implies in the special regime o € (%, %] This
case is technically simpler, because there is only one big jump to deal with, but it
already contains all the ingredients of the general case.

eIn Section@we complete the proof, showing that (3.1)) implies (3.4)) for any « € (0, %]
The strategy is conceptually analogous to the one of Section [5] but it is technically
much more involved, because we have to deal with more than one big jump.

Remark 3.2. Condition (3.1)), equivalently ((1.11)), implies that for any fixed w > 0

P(XE(x—w,x])-o(A;x)> as T — 00, (3.5)
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as we prove in the Appendix This is not surprising, since (3.5)) is a necessary condition
for the SRT (|1.6]), because U(x + I) > P(S; € x + 1) = P(X €  + I). In Appendix
we also prove the following easy consequence of (3.5)): for all fixed m € N and w > 0

A
P(Sy € (z —w,z]) =0 ((z)) as T — 00. (3.6)
x
Relations (3.5))-(3.6) will be useful in the next sections. O

Remark 3.3. It is worth explaining how (3.4) arises. For fixed § > 0, by (1.3)) we can

write

Ux+1) > > P(S,cxz+1). (3.7)
A(J:p)<n§A(%x)

Since P(S, € x4+ 1) ~ % ¢(5-) by (2.4) (where we take h = v for simplicity), a Riemann
sum approximation yields (see [C15, Lemma 3.4] for the details)

Z P(S,ex+1I)~h Alw) C(9), with C(0) = a/ 22 2p(L)dz.
A@z)<n<A(tz) o J

One can show that lims_,o C(0) = C, therefore proving the SRT amounts to controlling
the ranges excluded from (3.7), i.e. {n < A(6z)} and {n > A(32)}. The latter always gives
a negligible contribution, by the bound P(S,, € z+1) < C/a, (recall (2.5)), and the former
is controlled precisely by . U

4. PROOF OF THEOREMS AND : THE CASE « > %

In this section we prove that, if a > %, relation (3.4), which is equivalent to the SRT

(1.6), follows with no additional assumptions by (L.1)), or more generally by (1.20) (we
never use the positivity of the increments of the random walk in this section).

We have to estimate the probability of the event {S,, € x + I} with n < A(dz), where
Sp=X1+ Xo+ ...+ X, Let us call “big jump” any increment X; strictly larger than a
suitable threshold &, ., defined as a multiplicative average of a,, and x:

1=7a 1
na = A ' =g, (;) , with 74 = % (1 — {a}) >0, (4.1)
n

where {z} := z — |z] € [0,1) denotes the fractional part of z. The reason for the specific
choice of v, > 0 will be clear later (it is important that ~, is small enough).

4.1. Bounding the number of big jumps. As a first step, for every « € (0, 1), we show
that, on the event {S,, € z+I} with n < A(dz), the number of “big jumps” can be bounded
by a deterministic number k, € Ny, defined as follows:

1 . . .
Ko = L{J —1. ie. ke =m if a€ (#H’ #H] with m € Npy. (4.2)

Note that ko, = 0 if @ > % and this is why the SRT holds with no additional assumption
in this case. If a < %, on the other hand, k, > 1 and a more refined analysis is required.
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Let us call B,’ix the event “there are exactly k big jumps”, i.e.

By, = { max X; < gm} ,

1<i<n

Bﬁx:: {Ellg{l,...,n}, |[I| =k : miInX¢>§n7x, max Xiggw}, kE>1,
’ i€

je{]"?"'?n}\'[
(4.3)
and correspondingly let B,%’; be the event “there are at least k big jumps”:
n
B2 = | B, (4.4
l=k

The following lemma shows that the event B%g‘”l gives a negligible contribution to ((3.4))
(just plug £ = 0 and m = ko + 1 into (4.5))). This sharpens [C13, Lemma 4.1], where £ was
defined as | 1], i.e. one unit larger than our choice of kq. Furthermore, we allow for
an extra parameter £, that will be useful later.

Lemma 4.1. Let F satisfy (1.20) for some A € R, with o € (0,1) and p > 0, g > 0.
There is 1 = nq > 0 such that for all 6 € (0,1], z € [1,00), £,m € Ny the following holds:

A(x)é—f—l
73} .

if £4+m>kKo+1: Z nEP(SnGI"i‘I,B%Zl)Sg’m(ST] (4.5)

1<n<A(dx)

Proof. Throughout the proof we work for n < A(dz), hence a,, < dz < x (since 6 < 1).
Consequently, recalling (4.1)), we have a, < &, , < z.
For m € N, recalling (12.5)), we can write

P(S,ex+1,BZ7) =P (Snea:—i-f, JAC{L,...,n} Al =m: min X; >§W>
) S
<np™P <Sn ex+1, 1gignmXi > §n7$>
=nm / P (Sm € dw, min X; > £n,z> P(Sp-me€xz—w+1) (4.6)
weR 1<i<m

<nm™P ( min X; > ﬁn,m> {SupP(Snm €2+ I)}
1<i<m z€R

1 n™ 1
,Sm U
Qn—m A(gn,z)m an
and this estimate holds also for m = 0 (in which case P(S, € 2+1, BZ9) = P(S, € z+1)).

Next we apply the lower bound in (2.1) with € = a and ¢ = &, /= (note that the condition
o0r = &, > 1 is fulfilled because &, ; > an > 1):

A(gn#«;) S é-n’x 2 _ <a/7n)201')/a
Alx) ~ \ =z x ’
Looking back at (4.6)), we get

SnP(X > &)™

m—+4

Z (an;avam—f—l . (4.7)

1<n<A(éz)

1.2a'yam

Alz)m

Y n'P(Swcx+1I, BYY) S
1<n<A(dz)
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Since a,, € Ry/q, the sequence in the sum is regularly varying with index

1 1
,;n’&a =(m+4) — E(Qoryam +1)=(m+4)(1 -2y, — o + 29,4 .

By assumption £ > 0 and m + £ > k4 + 1, hence

1
it > Ja with Jo = (ko +1)(1 — 274) — o (4.8)
We claim that
Jo>—1,  thati bt (4.9)
" , at is Ko o 1o .

To verify it, write ko +1 = [1] =1 — {1} = =2 4 (1 — {1}) 50 that relation (4.9)

becomes 1 — {1} > 1= 1272‘; Since 7o < 1 by construction, cf. (4.1, we have %% <

=2y, < 4%‘ and it remains to note that 41“ =1— {1}, by definition ({I) of 7.
Coming back to (| -, since the sequence in the sum is regularly varying with index

ot = Ja > —1, we can apply relation (2.2), getting
20¢'me A((sx)m+€+1 A(éx)éerJrl
>m —
Z (S cx+1, B ) ~L,m A(.I‘)m (51,)2a'yam+1 - 52a7am+1A(x)m$ :
1§n§A(6:c)

(4.10)

It is convenient to introduce a parameter b = b, € [2, ), depending only on «, that will
be fixed later. Note that (| . ) holds trivially for dx < 1 (the left hand side vanishes, due to
A(0) < 1), hence we may assume that dz > 1. We can then apply the upper bound in
with € = (1 — b)a and ¢ = §, that is A(6x) < 6**A(z), which plugged into gives

l+1
ST WP (Sp €t I, BET) Spp soletmiD-Caramiy AW
1<n<A(dz) T
_ solimt0(0-2a) - Lr2yaery AT (4.11)
Xz
+1

< god(ra+1)(0-27a)— 5 +1} %

T

)

where the last inequality holds because m + ¢ > K, + 1 and £ > 0 by assumption (recall
that § <1 and note that b — 2, > 0, because b > % and vy, < %) Recalling (4.8)), we get

¢ >m ol (Jat 1) —(1=b) (st 1)} Al@) T
> 0P (Spca+I, BYY) Som o ot} 22 (4.12)
1<n<A(dz) t

Since J,+1 > 0, by (4.9), we can choose b < 1 so that the term in bracket is strictly positive.

More explicitly, defining b = b, := max{l é i"ﬂ the right hand side of (4.12)) becomes

< golz (ot} A@T )”1 . This shows that relation ) holds with n =1, := fa(,]a +1). O

4.2. The case of no big jumps. Next we analyze the event Bmc of “no big jumps”,
showing that it gives a negligible contribution to (3.4)), irrespective of a € (0,1). (The
extra parameter ¢ and the sup over z in (4.13)) will be useful later.)
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Lemma 4.2. Let F satisfy (1.20) for some A € Ry, with o« € (0,1) and p >0, ¢ > 0. For
all § € (0,1], z € [1,00), £ € Ny the following holds, with v = v, > 0 defined in (4.1)):

1 A(x)HH

Z n’  sup P(S,ez+1, B?w) Se /3 Ay

(4.13)
1<n<A(sz) 2207z T

Proof. Throughout the proof we may assume that dx > 1, because for §z < 1 the left hand
side of (4.13]) vanishes (recall that A(0) < 1 by construction).

We need a refinement of ([2.4]), given by [DDSO08, Proposition 7.1] (see also [C15, Lemma
3.2]): if F satisfies ([1.1]), or more generally (|1.20)), there are C7,Cy < oo such that for any
sequence s, — oo and z > 0

n 1 1 _z
P <Sn €z+1, max X; < sn) <y ¢C2 A < + ) e sn . (4.14)
1<i<n Sn  an
We choose s, = &z, cf. (4.1)). For n < A(0z), with 6 < 1, we have a,, < x, hence by (4.1)
we get &, » > ap and consequently A(&, ) > n. Applying (4.14), we obtain

_n 1 1 =z 1 _z(=
P (S, €z+1, BY,) < Cye A < + > e < —e e, (4.15)
’ gn,z Ganp, an,

The function ¢(y) := %6—1/7;7 is increasing for y € (0, ¢|, with ¢ € (0,1) a fixed constant
(by direct computation ¢ = 71/7). Then, if § < 2, for z > 6722 and a, < dz one has

1 (Ve 1 a 1
P(Sy el B,) < e 0 oo (S8 ) < ootV
( ) an, \/gxgp Vor \/53780( )

hence, always for § < 2, applying (2.1) with ¢ = a/2 and o = 6,

Z n’ sup P (Sn€z+1, Bg,m) < P(V0)
ISHSA(dl‘) 225"//233 \/3$

Bounding §/* < 1 since § < 1, relation (#.13)) is proved for § < 2.

In case 0 € (c?,1], the right hand side of ({#.13)) is ~ A(x)**!/x, hence we have to show
that the left hand side is < A(z)!/z. The contribution of the terms with n < A(c%z) is
under control, by (#.16) with § = 2. For the remaining terms, by (2.5),

14 A(z)t1
Z nt  sup P(Sn€z+I,Bg7w)< Z n SL,

~ 2

a c°r
A(c?z)<n<A(dz) 22872z A(c2z)<n<A(Sz)

where we have bounded a, > a4(c22) = c2r and n < A(6x) < A(x) (recall that 6 < 1). O

4.3. Proof of Theorems and for a > % Assume , or more generally ,
for some a > % We have already observed that x, = 0 for a > %, cf. . We can then
apply Lemma with £ = 0 and m = 1, since £ + m > ko + 1 in this case. Together with
Lemma [£.2] with ¢ = 0 and z = x, this yields

Y P(Sncx+D)= >  PSpcx+I,Bi)+ >, P(S.cz+I B,
1<n<A(dx) 1<n<A(dz) 1<n<A(dz)
< <577 + e_ﬁ) Alz) :
X

e*ﬁ A(ﬂ:)“‘l
52

A(z)t < 52 . (4.16)

(4.17)
which shows that relation (3.4]), and hence the SRT (1.6[), holds true for o > % O
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5. PROOF OF THEOREM (1.1} SUFFICIENCY FOR « € (3, 1]

For a < % big jumps have to be taken into account, because k, > 1, cf. , and we
need to show that their contributions can be controlled using , which is equivalent
to by Lemma In order to illustrate the main ideas, in this section we focus on
the special case a € (3, %], which is technically simpler, because ko, = 1. The general case
a € (0, 3] is treated in Section @

Throughout this section we assume conditio and we show that, for a € (%, %], it
implies (3.4]), which is equivalent to the SRT (|1.6)).

We start with a basic estimate.

Lemma 5.1. If F satisfies (1.1) with « € (0,1), there are C,c € (0,00) such that for all
n € Ny and z € [0, 00)

C _..n_
P(Sy€z4+1)< —e 7, (5.1)
n

Proof. Assuming that n is even (the odd case is analogous) and applying ({2.5)), we get

P(S» < z)

|3

1
P(Snez—i—l):/ P(Sz €dy) P(Sz € z—y+1) < —
y€[0,2] ? ? a

B

)

1
§P<maxXi§z

_(1-P(X > 2))? _ e~ B P(X>2) - ¢ CAE
an 1<i< -

Qn an an

provided ¢ > 0 is chosen such that P(X > z) > 2¢/A(z) for all z > 0. This is possible by
([1.1) and because z — A(z) is (increasing and) continuous, with A(0) > 0 (see §2.2). O

We are ready to prove that (3.4)) follows by (3.1]) for a € (%, %] In analogy with (4.17)),
we apply Lemmawith ¢ = 0 and, this time, with m = 2, so that /4+m > k,+1 (because

o = 1). Applying also Lemma with ¢ = 0 and z = x, we obtain

~ 1\ A
Z P(Snex—l—I)S(dn—i—e 571/3)ﬂ+ Z P(S, €z +1, B%x) (5.2)
1<n<A(éz) t 1<n<A(éz)

The first term gives no problem for (3.4]), hence we focus on P(S,, € x + I, B}w). Plainly,

P(S, e x+1, B}w) <nP <S’n cx+1, Xy, >& max X;< fn,m>
’ 1<j<n—1

(5.3)
:n/ P(Xedy)P(Sn—lEﬂf—y‘FIa Bg—l,x)?
YE(&n,2,7]

where we recall that Bgfl,z = {maxi<j<n—1 Xi <&zl
We first consider the contribution to the integral given by y € (&2, z(1 — 67/2)] (where
v = 9o > 0 was defined in (4.1))): since z —y > §7/2x, this contribution is bounded by
nP(X >¢&,,) sup P (Sn_l ez+1, B® ) < sup P (Sn_l cz+1, Bg,l’x) ,

n—1lx) ~
2>67/2g 2>67/2g

(5.4)
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because P(X > &,.) < P(X > a,) ~ 1/A(ay) = 1/n, since &, > an(z/an)'™ > a,, for
n < A(dz) with 6 < 1. Applying Lemma with £ =0, by (5.3)) we get

_1_ A
> P(Sncax+l, B,)Se P Alx) + Tsa
1<n<A(dz) v

where  Z5, = / P(X € dy) (Z nP(Sp—1€ex—y+ I)) .
yG(m(l—é’Y/Q),z] neN

(5.5)

Next we look at the contribution to Zs, given by y € (x — 1,z]. Applying Lemma
recalling that z — A(z) is increasing, for z —y < 1 we have

> nP(Spq€x—y+1I)<
neN neN

hence the contribution to Zs, in (5.5) of y € (z — 1, z] is bounded by

e Al =: C < 00, (5.6)

an—1

C P(Xedy):CP(XE(ac—l,w])zo(A(x)>,
yE(z—1,7] T

where the last equality is a consequence of (3.1)), see (3.5). We can thus rewrite (5.5 as

(A ) a
I(S,x o < x > * /ye(w(l—(S’Y/Q),z—l} P(X © dy) (2 Y (Snil - v I)> . (57)

neN
Finally, we show in a moment that the following estimate holds:

2
ZnP(Sn_lew—i—I)gM, Vw > 1. (5.8)
w

neN
Plugging this into (5.7)), since x —y > 1, we get

Loz =0 <A£f)> " /ye(g;(l_m/Q),x—l} S ) H
—¢ <A§j)> " / €[1,67/2) A(SS)Q PX €z —ds),

by the Change of variable s = z — y. Gathering (5.2 and ( -, we have shown that
relation (3.4), and hence the SRT . holds true for a E (2, 3.

It only remains to prove ([5.8]). The term n = 1 contributes only if 0 € w+ 1 = (w — h, w]
(recall that Sy = 0), i.e. if w < h. Since inf (o A(w)?/w > 0, this gives no problem for
. For n > 2 we bound n < 2(n — 1), and renaming n — 1 as m we rewrite as

2
ZmP(SmeerI)gA(Z), Vw > 1. (5.10)
meN

e Let us first look at the contribution of the terms m > A(w). By Lemma

m 2 m
Z mP (S, ew+1) < Z je—cA(mSA(ZUU) Z A ()e—cm

m>A(w) m>Aw) m>A(w)

(5.9)

because a,, > w for m > A(w). The bracket is a Riemann sum which converges to
floote_Ct dt < oo as w — oo. It is also a continuous function of w (by dominated
convergence), hence it is uniformly bounded for w € [1, 00).
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e For the terms with m < A(w), we distinguish the events B%}w and ng, i.e. whether

there are “big jumps” or not (recall (4.3))). Applying Lemma withd=1,z=w
and with £ = m =1 (note that ko, = 1 and hence { +m > K, + 1), we get
A 2
Y mP(Swew+I, Brl) S Alw)”
m<A(w) z

Likewise, by Lemma [£.2 with § = 1, = w and £ = 1, we obtain

A 2
Z mP (Sm € w41, ng) < eilﬂ.
m<A(w) z
Altogether, we have completed the proof of (5.10]), hence of (5.8). O

6. PROOF OF THEOREM : SUFFICIENCY FOR «a € (0, 1]

In this section we assume condition , which by Lemma s equivalent to @ ,
and we show that for any a € (0, %] it implies , which is equivalent to the SRT (]E .
We stress that the strategy is analogous to the one adopted in Section || for o € (%, %],
but having to deal with more than one big jumps makes things more involved. In order to

keep the exposition as streamlined as possible, we will use a “backward” induction, proving
the following result, which is stronger than (3.4)).

Theorem 6.1. Let F' be a probability on [0,00) satisfying (1.1) with a € (0,1). Assume
that condition (3.1)) is satisfied. Then, for every £ € Ny,

> nfP(Spcx+I)| =0. (6.1)
1<n<A(éz)

xT
lim | imsup ————
550 | manet A(z)tH

In particular, setting £ = 0, relation (3.4) holds.

Proof. Writing P(S, € x + 1) = P(S, € 2+ I, BZY), Lemma {4.1{ with m = 0 shows that
relation holds for all £ > k, + 1.
We can now proceed by “backward induction”: we fix £ € {0,1,..., K4} and assume that
holds for all ¢ > ¢+ 1. If we show that (6.1]) holds for £ = ¢, Theorem is proved.
Let us define m := ko — £. Again by Lemma foro<landx>1

_ B A(z)t!
> n'P(Spex+I, BT <67 Ale)™
1<n<A(dz) v
Likewise, by Lemma |4.2
_ 1 A Z"‘l
S alP(Sa a1, BL,) < e wn AT
’ T

1<n<A(éz)

Therefore, the proof is completed if we show that for every fixed m € {1,2,...,m}

S° wfP(Spex+1, B, | =0. (6.2)
1<n<A(dz)

lim | limsu —
0—0 r—>oop A($)£+l
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Proof of (6.2). Note that P(S,, € x + I, B)',) = 0 if n < m. For n > m, plainly,

P (Sn cx—+1, BZLx) <nmP <Sn cx—+1, 1I§r%i§nmXi > &na mff§§anj < {n@)

=n" P(S,ed in X;€edw |1

' /(ynu)E(O,x]Q ( SRt = w) foztesd
P(Spm€x—y+1,B) ,..) -

Since w > &, := aga! ™7 if and only if a, < (2)Y7z, i.e. n < A((2)Y7z), we obtain

S n'P(S,ex+1, Bl
1<n<A(dz)

IN

/(y,w)e(o,;c]2 {P (Sm < dy, 1I§I%i§nmXi © dw) (6.3)

Z nttmp (Sn_m cx—y+1, Bg_m,x) } ,
mSnSA({(%)l/“//\é}x)

where we set a Ab := min{a, b}. The contribution to the sum of the single term n = m can
be bounded as follows: since S,,_,, = Sy = 0, by (3.6)

P(Snedy, min X; €dw | Lige,_ <P(S,cx+1I _0< ,
/(y w)€(0,z]? < 4 1<i<m > {0ez—y+1} ( ) .

which is negligible for (6.2)). Consequently, we can restrict the sum in (6.3) to n > m + 1.
In this case n < (m+1)(n—m) <, (n —m), and renaming n —m as n we simplify (6.3) as

S wfP(S,ex+1,BY,)
n<A(dx)

Sm P <Sm €dy, min X; € dw)
/(y,w)G(O,:EP { 1<i<m (6.4)

> nﬂmp(snex—yH,ng)}.
1<n<A({(2)V/7A8})
We split the domain of integration in as (0,7)2 = J; U Jy U J3 U Jy, where
Ji={y<z—(NzAw)}, L= {y>z-1},

J3i={w>dz,ye(x—x,z—1]}, Jy={w <8z, ye(x—wz—1]}.

and consider each sub-domain separately.
Contribution of Ji. Let us set
w

6 = 0(w,x,8) == (;) v NG, (6.5)

so that Ji = {y <z — 67z}. Since & — y > 67z on Ji, the sum in (6.4) is bounded by

_ 1 A(g)ftrml
Z nt™ sup P (Spez+1, B,Ow) Se /3 L,

? X
1<n<A(8z) 2207z
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where the inequality follows by Lemma with ¢ replaced by § and ¢ replaced by £+ m.
The contribution of J; to the integral in (6.4) is thus bounded by

I4+m+1
_ Az)

~

S S
/ P (Sm €dy, min X; € dw) e (DI (6.6)
T we(0,z], y€(0,2—(6VzAW)] 1<i<m
We split this integral in the sub-domains JlS = {w < §z} and J7 = {w > §z}.
Bounding P(X > §7x) < 1/A(67z) < 6727%/A(x), by the lower bound in (2.1 with ¢ = «
and p = 4, the contribution of J{ is controlled by

A t+m+1 __1_ __1 A l+m+1
Le 67/3P< min Xi>57x) =e /3 LP(X>57x)m
x 1<i<m x
¢S A(z)iH
~ §52vam T ’
which gives no problem for (6.2). Next we bound the contribution of JlS to by
A I+m+1 1
Alw) ™ / P < min X; € dw) ® (E) , with o(t):=e /3.
€ we (0,07 z] 1<i<m x

We set G(w) := P (minj<;<, X; > w), so that P (min<;<,, X; € dw) = —dG(w). Integrat-
ing by parts, since the contribution of the boundary terms is negative, we get

A(z)trm+t 07w ,(wy 1 A(z)trmtt ey ]
s —_) = < —_) =
G(w) ¢ (:z:) xdwN /0 Aw) ( > xdw.

x
Performing the change of variable v = w/x, since A(vz) > A(x)v>® by ([2.1]), we obtain

~

1 5 1o s AR
SR el IO Pl s RPN il
0 0 0

T p2am T 3 UQam+4/3 ~ T

X 0 T

which again gives no problem for (6.2]). Overall, the contribution of .J; is under control.

Contribution of Jo. By Lemma [5.1] for x — y < 1 we have

_ nttm _en=1
d P (S e —y+ 1)<y e Al =: Cg,,, < 00, (6.7)

Ay
neN neN nl

because z — A(z) is increasing, hence the contribution of J; to (6.4)) is bounded by

A
/ P (Sm €dy, min X; € dw> Crim Sim P(Sm € (x - 1L,a]) =0 < (:r)) ’
(y’w)e‘]2 1§Z§m )

X

where the last equality is a consequence of (3.1)), see (3.6). This shows that J gives a
negligible contribution to ((6.2)).

Technical interlude. Before analyzing J3 and Ja, let us elaborate on (6.1) (where we
rename £ as k and x as z for later convenience). Our induction hypothesis that (6.1) holds
for all K > ¢+ 1 can be rewritten as follows: for every ¢ > 0 there is Z;(d) < oo such that

k
Z nkP(Sn€z+I)§fk(6)M, Vk >0+ 1, Yz > z(0), (6.8)

1<n<A(d2) ~
where we set f(0) := 2limsup,_,.(...) in (6.1]) (with ¢ replaced by k), so that
lim f,(8) = 0. (6.9)
6—0
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We also claim that

% A(z)]”l _
> n P(Sp€z+D)Sp———, Vh2l+1,V2>1. (6.10)

neN

To show this, fix 0x € (0,1] such that fx(0) < 1, by . If we restrict the sum to
n < A(dxz), relation shows that (6.10) holds for z > z;(9), while for z < z(0)

Z P(S, €z+1) Z nk < Az )k+1 < % (Sk) A(z)k-i-l < A(z)k’—i-l.

2 z z
n<A(Syz) nSA(z)

It remains to prove that (6.10)) holds for the sum restricted to the terms with n > A(62):
applying (5.1)) followed by a,, > AA®Gz) = = Opz >k 2, We can write

k k+1 k
i n® _.n A(z) 1 n e
P(S,, I < — Az) <, A\
Z n"P(Sn € 2+1) S Z an c ~k T {% A(z) \A(z) ¢

n>A(Sz) n>A(02)

The bracket is a Riemann sum which converges to the integral fooo th e~ dt < oo as z — oo.
Being a continuous function of z (by dominated convergence), the sum is uniformly bounded

for z € [1,00). The proof of (6.10) is completed.

Let us finally rewrite (3.1), which is equivalent to our assumption (A.2)), as follows:
defining g(n) := 2 limsup,_, . (...) in (3.1)), for every n € (0, 1] there is Z(n) < oo such that

2
/ Als) P(X € z—ds) < g(n) Az) , Vz > Z(n), (6.11)
[Lmz) 5 o
with
lim g(n) = 0. (6.12)
n—0
Moreover, we claim that for any ¢ € (0,1)
2
/ A p(x e 2 — ds) < Ay, (6.13)
€[icz] S <

To show this, let us fix 77 € (0,1) such that g(77) < 1, and split | €l = fse[l 72) T fse [72,¢2]"
The contribution of [1,7z) is controlled by relation (6.11) for z > z(7), while for z < z(7)
it is enough to note that ¢ := inf c1 z7) (z) > (0 while

A(s)? =(7))\2
sup P(X € z—ds) < A(Z(n))" =: C < o0,
2€[1,Z(7)] Js€[l,5z) S

hence ([6.13)) holds restricted to [1,7z). Finally, for the integral over [z, (z] we estimate

/ AP pix e o —ds) < AV p(x > (12 ¢ 5, A
€[71z,¢2]

s Nz Ny

completing the proof of (6.13)).
Contribution of J3. We recall that

J3={w>d"z,y€ (zr—6x,x—1]}.
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For m = 1, since S, = minj<i<m X; = X1, we have J3 = {y € (z — 2,z — 1], w = y}.
Applying (6.10) with £ = ¢+ 1 and z = z — y, the contribution of J3 to (6.4]) is bounded
by

a2 _ 2
5,7/ P(X € dy) AE 9T A(m)‘f/ P(X € o —ds) AT
ye(z—6"z,x—1] s€[1,67x)

T —y s

where we have performed the change of variable s = x — y. Applying (3.1), or equivalently
(6.11)-(6.12)), it follows immediately that J3 gives no problem for (6.2)), when m = 1.

Next we assume that m > 2. It is convenient to set

A, = 121§nmX¢, M, = 12‘2}; X;. (6.14)

Applying (6.10) for k = ¢ + m, the contribution of J3 to (6.4)) is bounded by

Az — I4+m+1
SZm / p (Sm € dy, A > 5V$) —(l' y) .
’ yE(xz—dVz,z—1] r—yYy

We need to estimate P (S, € dy, Ay, > §7x). The events {X; > max;eqy . myp\ g5} Xi) for
j=1,...,m cover the whole probability space and have the same probability, hence

P (S, € dy, Ay, € dw) < mP (S, € dy, Ay, € dw, Myp,—1 < Xip)

(6.15)

Nl
<m P (Sp-1 € du, Apy—1 € dw, My,—1 € dv) Tiyey—u} P(X edy —u), (6.16)
u,ve(0,y] -

where 1¢,<, ) comes from {M;, 1 < X;,}. Note that
u=8Sn1<(m—-1)Mp1=m—-1v<(m—1)(y—u),
which yields the restriction u < %y. In particular, for y < x we have y < %x, which
by (6.16]) yields the bound
P (Sm € dy, Ay, € dw)
< m/ P Syt € du, Ay € du) P(X € dy — ). (6.17)
u€(0,==z]

Plugging this into (6.15)), the contribution of J3 to (6.4) is bounded by

Sm / P (Smfl e du, Apy—1 > (W.T)
u€(

O,mT_lr]

. (6.18)
o Nmal
/ P(X edy — U)M .
ye(z—67z,z—1] r—y

With the change of variables s = z — y, the term in bracket in (6.18]) becomes

f+m+1 _ 2
/ PXex—u— ds)L < A(§Vx)Hm-t / P(X € x —u—ds) Als)
se[l,07x) s s€[l,07x) S
_ A 2
< A(§7g)HHmt / P(X € x —u—ds) () ,
s€[1,md7 (z—u)) S

where in the last inequality we have enlarged the domain of integration, for u < %x (as
in (6.18))). Since z — u > %az, we can apply (6.11) with z =  — u and n = md?, provided
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x is large enough (so that Lz > Z(md?)). This allows to bound (6.18) by

< A(é%)”m_l/ P (Sm—1 € du, Ay > 072) {g(mm) A@_“)}

uE(O,mglx] r—u
< A@E )P (A, > 572) g(ma) A2
EZ’
and since P (A,,_1 > t) = P(X > t)™"1 ~ 1/A(t)™ ! the last line is

m A(x)

_ z +1
~ A(é”w)eg(mm) . Sm g(md7) A(i) .

Plugging this bound into (6.2]) and applying (6.12)), we have shown that the contribution
of Js is under control.

Contribution of Jy. Note that Jy := {w < 67z, y € (xv — w,z — 1]} is empty for m = 1,
provided § > 0 is small enough: in fact, relations y > x —w and w < §”z cannot be fulfilled
simultaneously, since y = w for m = 1. Henceforth we assume that m > 2.

Recalling and plugging with k = £+ m into , the contribution of Jy is
bounded as follows:

Al — 7)f+m+1
Stm / P (S, € dy, Ay, € duw) 2=V (64g)
) we(1,67z], ye(z—w,z—1] r—y

Our goal is to show that this satisfies (6.2)). It is convenient to set for C, D € (0, 00)
)E+m+1

A _
@?D(:U, 0) == / P (S, € dy, Ay, € dw) M ’ (6.20)
o we[C,§7z], yE[z—Dw,x—1] xr—vy

so that (6.19) is bounded from above by 6%5(:17,5) with C = D = 1. Consequently, to

prove our goal ([6.2) it is enough to show the following: recalling that £ € {0,...,ks} is
fixed,

. . X C.D _
lim (1 —c = D 1,2,...,m}. (6.21
5%<1£S£p A(z)eﬂ@&m (fv,5)> 0, VO,De(0,00), Vme{l,2,...,m}. (6.21)

Note that
P (Sy, € dy, Ay, € dw) < mP (S, € dy, X, € dw, Apyp—1 > w)
=mP(X €dw)P (Sp—1 €dy —w, Ap—1 > w)

therefore

C,D
GE,m (x,6) Sm / P(X € dw)
we[C,07z]

_ o\ mtl
/ P (Sy-1 € dy —w, Am_lzw)M .
yElzr—Dw,z—1] xr—y

Next we change variable from y to s = (w+ ) —y in the inner integral (for fixed w). Since
dy—w=x—dsand z —y =s —w, we get

_ £4+m4+1
/ P(X € dw) / P(Spm-1 €x—ds, A1 > w) Als —w) .
we[C,67x] s€[l+w,(D+1)w] S—w
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Writing P (Sy,—1 € x —ds, Ajpm1 > w) =
and observing that

)P (Sm_1 cx—ds, A1 € du) ]l{uzw}

u€(0,00

{welC, 0], sl +w,(1+Dw]} C{sec[1+C,(1+D)dz], w € [75,5 — 1]},

we obtain by Fubini’s theorem

@g’D(;U,(S) Sm/ P (Spm-1 € x —ds, App—1 € du)
m s€[14C,(14+D)§7 z], u€[0,00)

Als — 2+m+1
{ / P(X € dw) (S w) ]l{wgu}} .
we|

7551 s-w

We can restrict the domain of integration for u to [{7'5,00), because for u < 175 the
inner integral vanishes, due to 1y,<,). After this restriction, we drop 1,<,} and change
variable from w to ¢t = s — w in the inner integral, getting

@g;f(a:, J) Sm/ P(Spm-1 € x—ds, Ajp—1 € du)
’ s€[1+C,(14+D)é7a], u€[75,00)
_ (6.22)
A(t)£+m+1
/ P(X es—dt) —— .
tell,125] ¢

Applying (6.13) with z = s and ¢ = H% allows to bound the term in bracket by

_ 2 {+m
A(s)”ml/ P(X € s—dt) Al <p &, (6.23)
tefl, 2% t §

hence from ((6.22)) we get the crucial estimate

A l+m
05"P(2,8) Sm / P (Sp_1 € 2 —ds, Ap_1 € du) A(s)™™

’ 86[1+C,(1+D)(57z},u6[1+%,oo) S
(6.24)

Let us first consider the case m = 2. Then S,,_1 = X, hence by (6.11) with z = 2 and
n= (14 D) we get

C,D l A(s)?
07, (z,6) Sm A(x) P(X €z —ds)
I’ S w
s€[14+C,(14+D)d7x]

and recalling (6.12)) it follows that (6.21]) is proved.

Henceforth we assume that m > 3. We start focusing on the contribution to (6.24]) given
by u > §7x, which is bounded by

A l+m
/ P(Sm—1€x—ds, Appo1 > 07x) Als)™ ,
SE[1+C,(1+ D)7z s
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and applying (6.17) with m replaced by m — 1 we get, by Fubini’s theorem,

2+m
<o | AT
s€[14C,(14+D)é7z] s
/ P (Sm—2 € du, Apyp—o > 072) P(X € x —u—ds)
ue(O,%x]
) (6.25)
< A((1 + D)§"z)r+m—2 / P (Spr € du, Ay > 072)
u€(0, =7 ]

2
/ Als) PXex—u—ds);.
s€[1+C,(1+D)svx] S

Concerning the inner integral, we enlarge the domain of integration to [1,7(z — u)) with
i = iimps =201+ D)5 sup —— =2(m—1)(1+ D)5, (6.26)

usm=e T Y

after which we can apply (6.11) with z = z —u and n = 7 (which satisfies z > Z(7) provided
x is large enough, since x —u > %5 ). In this way,

Als 2 R Az — ~
{/ ()P(XEx—u—ds)}Sg(m(u)smg(n) ,
s€[14-C,(14+D)é7x]

where the last inequality holds again because x —u > %5 (recall that x — A(x)/z is
regularly varying with index o — 1 < 0). Then ([6.25)) is bounded by

<D z‘l(cS“*m)Eer_2 g() Aix) A(x)ZH

P(Am—z 2072) S 9(h) — —,

because P(A,, 2 > t) = P(X > t)™2 ~ 1/A(t)™ 2. Looking back at our goal (6.21]), and
recalling (6.26]) and (6.12)), the contribution of u > 67z to (6.24)) is under control.
It finally remains to consider the contribution of u < 67z to (6.24)): since

{se1+C,(1+ D)z, u € [Fp,6"x]} ={ue [%75793]7 se[l1+C,(1+ D)ul},

applying Fubini’s theorem we can write such a contribution as follows:

A I+m
/ " P (Spm-1 €z —ds, Am_ledu)L
ue[{ 5 07a], s€[1+C,(1+D)u]
A _ I+m
:/ e P (Sm—1 € dy, App—1 € du) (z=y)
ue[ 115 672, yele—(1+D)uz—(1+C)] r—y
< @g;fz/l(x,é), with O = %’ D':=1+D,
where for the last inequality we recall (6.20]). Therefore
. . C,D . . x C'.D'
%12(1] (11£S£p A)E O (x, 5)> < %gr(l) <11:I51i>5£p A @Z,m—l(x’ (5)) . (6.27)

We can then conclude by induction on m. In fact, we have already proved that (6.21]) holds
for m = 2, and relation (6.27)) shows that if it holds for m — 1 then it holds for m. O
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7. PROOF OF PROPOSITION AND AND OF THEOREMS AND [0

7.1. Proof of Proposition We can reformulate condition (|1.15]) equivalently as fol-
lows: there exist zg,C € (0,00) such that (for the same ¢ > 0 as in ([1.15))

M<C<S>Ha+a= Vo >z, Vs € [1,2]. (7.1)

F((z,00)) @

T

It is clear that ([7.1]) implies ([1.15]), and the converse also holds, by a contradiction argument.
Then it suffices to show that condition (7.1]) implies (3.2)) (which is equivalent to (1.12)),
by Lemma . For z > 2x¢ and 0 < s < 5, by (7.1)),

P(X € (x—s,2]) < CP(X > — s) (%)HM < A(lx) ()

- (7.2)

is regularly varying with index (2a —2)+1—-2a+e=-1+¢ > —1,

. A(s)2 1_
Since —g‘;) gl—2ate

one has [/ %‘3)2 st=2ate ds < A(z)% z722F¢ by [BGTRY, Proposition 1.5.8], hence

A(nx)? (nz)—2te

x 7 A(s)?
P(X — < >
@) /1 2 (X € (x—s,2])ds < s~
Then (3.2)) follows. O

7.2. Proof of Theorem We recall that A(z) = L(z)\/z with L € Ry, and a sufficient
condition for the SRT (|1.6) when o = % is given by (|1.18)).

If (1.17) holds, we can write L*(z) < L(x) = A(z)/y/x, hence (1.18)) is implied by

Rr((1—
3T € [0,00) : lim <limsup r(( n)x,w)) =0. (7.3)
n—0 T—00 xr
It is easy to show that this holds for 7" = 0, with no extra assumption on F. By ((1.7)-(L.9))
Ro((L=mew) = [ yAw PO+ Day<eaw) [ FusDay, (04
—n)x —n)x

and the last integral can be estimated as follows: by Fubini’s theorem

/ Fly+1I)dy = / (/ Lite(—nu) F(dt)> dy
(1-n)x (1=n)z R
< / </ Leyertern)y dy> F(dt)
te((1—n)z—h,z] \JR
1 1
=hE(=mz—hal) ~ b\ g e~ A

1 1 1
~ h —1) ~ h .
T ((1 — e ) w0 Ay M
Recalling ((7.4)), it follows that (7.3 holds. This proves the first part of Theorem

Next we observe that if F' satisfies (|1.1)), then necessarily F(x+1) = o(1/A(x)) as x — oc.
Interestingly, this bound can be approached as close as one wishes, in the following sense.
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Lemma 7.1. Fiz two arbitrary positive sequences (zn)nen, (En)nen such that z, — oo and
en — 0. For any A(z) € Ry, with a € (0,1), there are a constant ¢ € (0,00), a subsequence
(nk)ken of n and a probability F' on (0,00) satisfying (L.1)) such that

Eny,

F({z}) > ¢ A Vk € N. (7.5)

With Lemma at hand, we prove the second part of Theorem Assume that A(x) €

R1/2 is such that condition fails, that is there is a sequence (zy,)nen With 2, — oo

such that
L*(zn)
Cn =

L(xy)

By (1.16)), since L(-) is continuous, we can write L*(x,) = L(sy) for some 1 < s, < .

We recall that, for any € > 0, one has L(s)/L(z,) — 1 uniformly for s € [ez,,, x,], by the

uniform convergence theorem of slowly varying functions [BGT89, Theorem 1.2.1]. Then
it follows by that necessarily s, = o(z,). Summarizing:

(7.6)

) L(s
Ty — OO, Sp = o(xy), Cn — 00 with Cn = LEQCZ%
Let us define
1
Zn ‘= Tn — Sn 5n::<7n7

so that z, ~ x, — oo and &, — 0. By Lemma there are a subsequence (ng)ren of n
and a probability F' on (0, 00) such that (7.5 holds. Then, by A(x) = L(z)+/z,

/nxnk A(j)Q F(xnk - dS) > 14(;7%)2 F({xnk - Snk}) = L(S”k)2 F({Z”k})
1 Tk
A n 2 n A n
= G L e )) 2 G, kP 2 6, o HE),

where in the last inequality we used the definition of €, and the fact that A(x,) ~ A(z,),
since x,, ~ z,. Consequently, condition (3.1)) is not satisfied, because for every n > 0

x 7 A(s)?
lim su / F(xy,, —ds) > limsup ¢ =00.
x—)oop A(l‘) 1 S ( " ) o k%oop an

Since (3.1)) —which is equivalent to (1.11)— is necessary for the SRT ([1.6)), we have built
an example of F' satisfying (|1.1]) but not (|1.6]), completing the proof of Theorem O

7.3. Proof of Lemma Fix ng € N such that ¢; := annoﬂ #?n) < 1. Then define
a probability F; on N by
2a
Fl({n}) = (1 - cl)]l{nzno} + nA(n)]l{nZno—i-l} ’ (77)
so that
2
Fl((x,oo))wm as T — 00.

We may assume that (x,)nen is increasing. Fix a subsequence (ny)ren of n such that

Engi1 1 ep,

< = , Vk € N, (7.8)
A(xnk+1) 2 A(‘:Unk)
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which is clearly possible since A(xy,,,) > A(zn,) and €, — 0. Then define a probability
F; supported by E := {z,, : k€ N} by

-1
€
E({z, ) =c L where ,
2t ) i A@n,) (keN Al )

and note that c > 0 because the series converges, by (7.8). Given x € (0, 00), if we define
k(xz) :=min{k € N: z,, >z}, using (7.8) we can write

Engir 1 Enga)
E CQ <cg——F7—"< E P <c 2,
k>k(z) x”’“ Al@ng,) k>k(z) 2t Alw)

where the last inequality holds because x,, - > x by construction. Since ¢, — 0, we have
shown that Fy((x,00)) = o(1/A(z)) as x — oo.
We can finally define the probability F := $(F} 4+ F3), which satisfies (I.1]) since

Fi(e.00) ~ 5 (R0 + Fal(e.oo) ~ 5 (05 +9 (505 ) ) ~ 10
and by construction F({zy,}) > $Fs({zn,}), hence holds with ¢ := ¢2/2. O

7.4. Proof of Theorem (1 The case « > was already considered in Section hence
we focus on a < 1 . Since the necessity of (|1. 21 is proved in Appendix it remains to
give examples of F satisfying (1. 20|) and (L.11)) but not (L.21).

We first consider the case o < 2. We fix A(x) := 2% and, in analogy with , we define
a symmetric probability F; on Z by

2a
Fi({n}) == a1 Ljnj=no) + wAM) Lijn|>no+1} » (7.9)
where ¢; € (0,1) and ng € N are chosen so that ), Fi({n}) = 1. Note that
2 2
Fi((—oo. —2]) ~ F ~— = . 1
(o, =a]) ~ Fil(,00) ~ = s as @b (7.10)

For n,k € N we define (recall that o < 1)

Ty =2 oz = kﬁ, E,={zpr=xn+2z: 0<k< ky =2z} (7.11)

so that E), is a finite set of points in [y, Z,41). Since |E,| < 2x172% we have

A A n 2 12« 92
Z (y> < (Q? ) | | < 1_a$n = — =:d,, (712)
yEEn yVlogy = xn/loga, zn “Vdogx, z¢+/logx,

and note that )y d, < oo, since z,, = 2". We can then define a probability Fy by

AY) Liyer Lyer
K{y}) =c =c , where E = E,, 7.13
D= ey e vy U 719

and ¢ is a normalizing constant. Note that for = € [z, 2441) we have the upper bound

1 1 1

F: < F: ) < dp, S
((z,00)) _nzz 2(En, Z MZQ&TL ~ \/@2&4 2§ /Tog ¢

<10<1>0< 1 > as T — 00
~areylogz \zv) \A(z) '

neN

(7.14)
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Consequently, the probability F' := %(F1 + F) satisfies (1.20]) with A(z) = z® and p =q =
1.

Let us show that I’ does not satlsfy ., which is equivalent to ( - We focus on the
second part of the integral. For n <3 Land z = Zn, so that [z, + 1, z, +nxy,) C E,, we have

A(s)? Lyelan+ 1,00 tnen)}
F(x, +ds) = rer - S By ({y
[ B 3 )

> Ben)) Y

1<k<(nwn)l=2e 7k

because F5({-}) is decreasing on E. Recalling (7.11)-(7-13)), since }7_; + ~ log 2, we obtain

log xn

2
/ A (0 + ds) 2y Fal{msi ] logan 2
(1,n2n) §

The lim sup,_,., in then equals oo for every fixed 7 > 0, hence (3.3) does not hold.
Let us finally show that F' does satisfy , which is equivalent to %D by Lemma
Since F} clearly satisfies , it suffices to focus on F5. Note that
1
> (&= )2 LveE-noe-1}

82
[, 2 a0y <{ on pen)]
) S z€(x—nz,x—1] yek (715)

1 1
S 1 T—nNT,T— .
~ gl-oflogx ;E (z — y)l—2 {ye(@—nz,z—1]}

For > 5 we have x —1 € [z, z441) for some ¢ > 2. For n < certamly r—nr >3 >34 1,
hence we can replace 1(yc(z—nz,e—1]} BY L{ycir, 1 z—1]} 0 , getting

A(5)2 A(IE) 1 ]l{y<:0—1}
F - d < _—_— = -4 . 716
\/[1,7733) s 2(55 3) ~ l’\/@ Z (LE PRy + Z ( Ty ( )

yEE, 1 y) yeE, T y)

It suffices to show that both sums are uniformly bounded, and relation (3.1)) holds.
We start looking at the second sum. Writing y = 2%, by (7.11)), the constraint y < x—1
becomes k < k for a suitable k = k, (the precise value is immaterial), hence

Loy<a 1 1
Zﬁ: ZW—H > o = (7.17)

_ X — X
yeE, 0<k<Fk ) O<k<k—1 bk TR

where we have bounded the term k = k by = — Ty > 7 — (v —1) =1, while for the terms
k < k we have replaced x by zy i < x. Next observe that for k = k—i

5 [1 —(1- i) 12a} .

— 1 — 1 —
Tof = Tpfq = 2 — Zpoq = k1720 — (k—i)T-20 =

Since 1 — (1 —x)7 >z for 0 <z <1 and v > 1, we obtain x,; — x5 Z_l?:l 2§, hence

]l{y<:p 1} 1 1

Yot Y e Y e S
(z—y) k,a) k —~ i

yeE, 1<i<k 1<i<k
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uniformly over k, by (2.2)). Analogously, for the first sum in (7.16]), we can write y = zp_1 «
and sum over 0 < k < k with k := ky_; (recall (7.11))). Arguing as before, we can bound

1 1 1
Z m: Z ( )1—2a§1+ Z R )20

X = Tp—1k N Ty 14 —Te-1k
yEE,_, 0<k<k ’ ogkgk—l( t=1Lk

and also this sum is < 1, by the previous steps with k in place of k.

We finally consider the case o = . We fix A(z) := /z/log(1 + z) and we define F} as
in (7.9) (with our current A(x)), so that (7.10]) holds. Next we change (7.11)) to

Ty =2", 2= vk _ I, Ep={xpp=zp+2z: 0<k< by = [log(1 + z,)]%},

and note that F,, C [x,,x,+1). We then define a probability F, supported by E :=
UnEN E”:
Aly)1 1
B{2}) = e ) gyery  _ {ver} '
y/loglog(1+y) f log(1 +y) y/loglog(1 +y)

Since |E,| < 2(log(1 + z,,))?, we can write
3 A(y) | En| < 2 log(1 + an)

veb, Y loglog(1 + y) ./wnlog 1+ x,)Jloglog(1 4+ z,)  /Zn /loglog(l + z,,)

hence for = € [y, x¢4+1) we have the upper bound

=:d,,

oo . log(1 + z) (L
Fg((x,oo))ﬁnz:zﬁb( <2Zd RS Toglogl 1 a) (A(:v))‘

It follows that F := 1(Fy + F») satisfies (1.20) with A(z) = /z/log(1+z) and p = ¢ = 1.
To show that F' does not satisfy (3.3)), note that for n < % and z = x,, we have

v
(log(1 + zx))?

/[ )A(S>2F<xn+ds>ze<{an}> T
sNTn

S
1<k<|log(14nzn)]?

A(zy, A(zy,
. (n) log{ [log(1 + nan) |2} =, (@ )\/loglog:l:n.

loglog(1 + x,,) Tn
Finally, to show that F' satisfies (3.1)), arguing as in ([7.15)) we get the analogue of ([7.16)):

A(s)? ds A(x) 1
/[lm) s Folw —ds) 5 x+/loglog(1l + x) { ye%;_l log(1 +z —y)]? ( )
7.18
Liy<a—1y
i y%;é log(1 + 2 — y)J? } ’

and it remains to show that both sums are bounded. For a suitable k = k, the second sum
is

1 1 1

> < + ) : (7.19)
log(1 - 2 log 2)2 log(1 —_ 2
oSz llos(l+ o —ze)? = (log2)? * | = [log(l+ayf — wes)
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where we have bounded the term k = k by = — Ty > *—(z—1) =1 and we have replaced
x by z,j in the remaining terms. Next we note that for all k < E—1

VE _ \k s k
log(1 + Typ— xe)) > log(1+ Typ— 33&,;71) = log (1 +evVk _¢ k_l) 2 log ﬁ 2 \/%7

which plugged into (7.19) shows that the sum is uniformly bounded. The first sum in ([7.18))
is estimated similarly, replacing ¢ by ¢ — 1 and k by ky_;. This completes the proof. O

APPENDIX A. MISCELLANEA

A.1. Proof of Lemma By (1.7)), uniformly for 0 < s < nz and n < %, we can write

r(x —s) _rx—s)
(x —s)A(x—s)  xA(z)’
and analogously with s replaced by —s. Then ({1.21)) is equivalent to the following relation:

Flx—s+1)~

(A1)

/nw A(s)? (Flz—s+1)+ Lo F(z + s+ 1)) d5> =0. (a2
1

lim <lim sup
s

x

We show below that (A.2]) is equivalent to (3.3). Then (1.21)) is equivalent to (3.3)), i.e. the
last statement in Lemma [3.1| holds. For ¢ = 0, we have the equivalence of (1.11)) and (3.1)).

Let us now prove the equivalence of relations (3.2) and (1.12). Since h > 0 is fixed,
uniformly for 0 < s < nx and n < % we can write

P(Xe(x—s,z2]) ~P(X € (x—s,x—h]) = /R]l{te[h,s)} F(z —dt)

Writing 1 = % fR Liue(t—n,qy du, for any fixed ¢, by Fubini’s theorem we get

1 [° 1 [°
P(XE(mfs,x])NE ; </R]1{te[u,u+h)}F(l“dt)) du:h/O Flz—u+1)du.

Applying (A.1]) then gives

P(X € (z — s,x]) L1 1

s 1
th@c)/o o —utl)du =g oy Role —s,2),

which shows that is equivalent to (1.12)).

It remains to prove the equivalence o and . We recall that I = (—h,0] and,
for this purpose, we can take h > 0 arbitrarily also in the lattice case. We first claim that
in (3.3) one can equivalently replace the domain of integration [1,nz) by [1 + h,nz). For
this it is enough to show that the interval [1,1 + h) gives a contribution to which
is dominated by that of [1 + h,1 4+ 2h). The function A(s)?/s is continuous and strictly
positive, hence it is bounded away from zero and infinity in any compact interval. Then
for x, 2’ large enough

- A(s? ,
A(z) /56[171.5_11) s P(X e —ds) 3 A(z) PXe(x—h-1,2-1)),

xl / A(S)2 , /
P(X €2’ —ds) 2
A Jocpinssom 5 0 )2 4w
T

Choosing =’ = = + h and letting z — oo, since ﬁ;},) ~ Ay Ve have proved the claim.

With analogous estimates one deals with P(X € = + ds) in (3.3).

P(X € (2 —2h—1,2 —h—1]).
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Next we note that there are constants 0 < ¢ < C' < 0o (depending on w) such that

c(}ll/:h‘él(:ydggffygc(i/;fl(ttydt), Vs>1+h. (A.3)

Plugging this into (3.3), where the domain of integration has been changed to [1 + h,nz),
shows precisely that (3.3) is equivalent to (A.2). O

A.2. Proof of Theorem second part. We show that condition is equivalent
to for a < %, while it is stronger for a = % By Lemma analogous statement
holds for ((1.12)) and (1.11]), proving the second part of Theorem

For fixed x, we define G(s) :=P(zx — X € (1,8])) =Pz — X <s)—P(z — X < 1) and

note that P(x — X € ds) = dG(s). Integrating by parts, since G(1) = 0 we get
A 2 A 2 nx A 2
/ ©)” p(y— X e ds) = Glpa—) 2 [T g 4 < (5) )ds. (A.4)
) S nx 1 ds s
The first term in the right hand side equals
2 2
P(X € (x —nz,xz — 1)) Alnz)” ~ ! - ! Alnr)
ne  a—soe \A((L-n)z) Al@-1)) nz (A5)

(e ) B oo B2

hence this terms always gives a negligible contribution to the limit in (3.1).
Next observe that by ([1.2)

N[ =

A(s)? .
d A(s)2  2A(s)A(s)  A(s)2 | T G- D7z if a<
ds s s 52 _ O<A(S)2)

N[ =

P if o =
5—00 S

If a < 3, for the second term in (A.4) we can write

- WG()d<A@V)3{KWA@meX€h_Sw_1»®

1 ds s 52

(A.6)

:/nx As)’ P(X e (z—s,x—1))ds.
1

52

If relation (3.2)) holds, it follows by (A.4])-(A.5)-(A.6) that relation (3.1]) also holds. Vicev-
ersa, if (3.1)) holds, applying again (A.4))-(A.5))-(A.6]) together with (3.5 (which is a con-

sequence of (3.1] . we see that (| . holds Thus 3.2) and (3.1]) are equivalent for a < %
For a = ; we can replace ~ by < in , hence (3.2)) still implies (3.1]). O

A.3. Necessity of ([1.11)) and - for the SRT We assume that F'is a probability
on R satisfying (|1.20). We show that relation Wthh is equivalent to the SRT ( ,
EI

implies (3.3]), hence it implies ((1.21)), by Lemma In particular, the case ¢ = 0 shows

that, assuming ([1.1)), relation (3.4]) implies (1.11)).
Recall that J = (—v,0], cf. (2.3). Assume that F' satisfies (|1.20)) and define K C R by

{@m ifg=0
K = , (A.7)
[—2,—1]U[1,2] ifqg>0
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Here is a mild refinement of the local limit theorem (2.4)), there are ¢, C' € (0, 00) such that

inf P (Sn €z+J, max X; < C’an> > < , Vn € N. (A.8)

2€R: z/an€K an
This follows by [C13 Lemma 4.5], but it is worth giving a direct proof. By ({2.4]), there is
c1 > 0 such that

inf P(S,ez+J)>2L,  VneN, (A.9)
z€R: z/an€K an

because min,cx ¢(z) > 0. Next, for the maximum restricted to i < n/2 (assuming that n
is even for simplicity, the odd case is analogous), we can write

P (Sne,z—i—J, max X; >C’an> :/P<Sn € dy, max X; >Can)P<Sn Ez—y—i—J)
1<i<n R 2 1<i<? 2

§P<max X; >C’an> {supP(Sn Ex—i—J)} .
1<i<2 zeR 2

The term in bracket is < ca/ay, by (2.5)). By Potter’s bounds (2.1) and by A(a,) = n we
have P(X > Cay,) < ¢3/A(Cay) < c4/(C*?n), hence

n Cq4 (&) Co Cq
2 C%na, 2C%92a,’

sup P <Sn € z+J, max X; > C’an> <
2€R 1<i<y

The contribution of {max%gign X; > Cay,} is the same, by exchangeability, hence by (A.9))

. cl CoCyq coca\ 1
f P(S,ez+ X, <C >7_27:( _7)7’
ZERZIZI/I%GK ( nest 2 an> D 2C/2q,, 7 Cap an

which proves (A.8)), provided C' is chosen large enough.

Next we argue as in [C13, Proposition 2.2]. Since {X; > ¢, maxjc(i, o)} Xj < t} are
disjoint events for ¢ = 1,...,n, we can write

P(SnE:B—I—J)>nP(Sn€;1:+J, Xn>§, max Xj<$). (A.10)
27 1<j<n—1 2

If n < A(0x) then a, < éx, hence § > Cay, for § < % Therefore, by (A.7)-(A.8),

(e 9]

x

P(S,exz+J)> / P(X edy)nP <Sn1 cExr—y+J, | Jnax 1Xj < C’an>
<j<n—

2

e n—1
> / P(X edy)c L @—y)/an-1eK} (A11)

z an—1

M

> /x P(X € dy) L — Li(@—y)/an-1eK} 5
2

where the last inequality follows because a,,—1 < |z —y| < 2a,,_1, by the definition (A.7)) of

K, and we recall that a,, = A~'(m). Let us assume that ¢ > 0. If we restrict the integral

toy € (x —dx,x — 1)Uz + 1,z + dz), i.e. 1 < |y — z| < dz, summing over n < A(dx) we

get,

_ |lz—y|
Z L(@—y)/an—1eK} = Z H{A(L;y‘)gnflgA(\:vfyD} > Alx —yl) — A(555).
1<n<A(éz) 1<n<A(dz)
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Since A(z) — A(3) 2 A(z), and also A(3) 2 A(z), we obtain from (A.11)

Y
3 P(Snex+J)z/ P(X e dy) Az =D
1<|ly—z|<dz ’x - y’
1<n<A(éz) (A12)

A(s)?
= (P(X € x —ds) + Lm0y P(X € 4+ ds)),
e1,6z) S

where we performed the change of variables s = x — y and we inserted 14~ so that the
formula holds also for ¢ = 0 (just restrict (A.11) to y € (v — dz,z — 1]).
Assume now that (3.4)) holds. If we can replace I = (—h,0] by J = (—v, 0] therein, (A.12)
shows that (3.3) holds, completing the proof. To replace I by J, it suffices to write
lv/h]
P(S,ex+J) < Z P(S,€xp+ 1), where xp:=x—Llh, (A.13)
=0
and note that relation (3.4) holds replacing P(S,, € = + I) by P(S,, € x, + I), for fixed ¢,
because x/A(z) ~ xy/A(xy). (Since v > 0 and h > 0 are fixed, Lv/hJ is also fixed.) O

A4 On condition 1_} for a > 2 Let us show that condition is always satisfied
for a > 5. By Lemma it is equivalent to prove . Plainly,

/ A(S)QP(XE:L'—dS)S< sup A(8)2>P(X€($—77“’7x])
€[1nz)

S s€[ipz) S
< A("x)2< 1 1 > (A.14)
~onr NA(Q-mz)  Alz)
A(T) 901 1 1) — A(z) 20
o S (e ) = A oo,

where the second inequality holds because A(s)?/s is regularly varying with index 2a—1 > 0
and we can apply [BGT89, Theorem 1.5.3]. Consequently relation (3.1)) holds. O

A.5. Necessity of conditions (3.5) and (3.6). We prove that (3.1) implies (3.5) and
(3.6). Let us consider relation (3.1)) with = replaced by z + 1: restricting the integral to

y € [1,1+ w), since A(s)?/s is bounded away from zero, we get

2
0= lim limsupm/ Als) P(X ex+1—ds)
€[1,1+w)

n—0 T—$00 A(ﬂf + 1) S

r+1
> limsup ——P(X € (r —w, x lim su
~ m—>oop Alx +1) ( ( D= a:—>oopA()

which is precisely (3.5)). In order to obtain (3.6)), let us write

P(X € (x — w,z]),

P(Sm(r —w,z]) <mP <Sm €(x—w,x], max X; <X,
1<i<m—1

<m P(Sm_ledy, max Xigx—y> PXe(x—y—w,xz—y])
yelo,mta]

1<i<m—1
<m sup P(X € (z—w,z2])= sup 0<A(Z)> §O<A(Jr)> ’
€[ z,a] z€[Lx,a] z Z

completing the proof. O



THE STRONG RENEWAL THEOREM 31

REFERENCES

[BGT89] N. H. Bingham, C. H. Goldie and J. L. Teugels (1989), Regular variation, Cambridge University

[CD16]
[CSZ16]
[C15]
[C13]
[DDSO08]
[D97]
[D15]
[E70]
[ET1]
[GL63]
[VT13]

[W68]

Press.

F. Caravenna and R. Doney, Local large deviations and the strong renewal theorem, preprint
(2016), arXiv:1612.07635 [math.PR]

F. Caravenna, R. Sun and N. Zygouras, The continuum disordered pinning model, Probab. Theory
Related Fields 164 (2016), 17-59.

Z. Chi, Strong renewal theorem with infinite mean beyond local large deviations., Ann. Appl.
Probab. 25 (2015), 1513-1539.

Z. Chi, Integral criteria for Strong Renewal Theorems with infinite mean, preprint,
arXiv:1312.6089v3 [math.PR]

D. Denisov, A.B. Dieker, V. Shneer, Large deviations for random walks under subexponentiality:
the big-jump domain, Ann. Probab. (2008) 36, 1946-1991.

R.A. Doney, One-sided Local Large Deviation and Renewal Theorems in the Case of Infinite Mean,
Probab. Theory Rel. Fields 107 (1997), 451-465.

R.A. Doney, The strong renewal theorem with infinite mean via local large deviations, preprint
(2015), arXiv:1507.06790 [math.PR]

K.B. Erickson, Strong renewal theorems with infinite mean, Trans. Amer. Math. Soc. 151 (1970),
263-291.

K.B. Erickson, A renewal theorem for distributions on R' without expectation, Bull. Amer. Math.
Soc. 77 (1971), 406-410.

A. Garsia and J. Lamperti, A discrete renewal theorem with infinite mean, Comm. Math. Helv.
37, 221-234, 1963.

V.A. Vatutin and V. Topchii, A key renewal theorem for heavy tail distributions with 8 € (0,0.5],
Theory Probab. Appl. 58 (2013), 387-396.

J. A. Williamson, Random walks and Riesz kernels, Pacific J. Math. 25 (1968), 393-415.

DIPARTIMENTO DI MATEMATICA E APPLICAZIONI, UNIVERSITA DEGLI STUDI DI MILANO-BICOCCA, VIA
Cozz1 55, 20125 MILANO, ITALY
E-mail address: francesco.caravenna@unimib.it



	1. Introduction
	1.1. Main result
	1.2. Some consequences
	1.3. Beyond renewal processes
	1.4. Structure of the paper

	2. Setup
	2.1. Notation
	2.2. Regular variation
	2.3. Local limit theorems

	3. Proof of Theorem 1.1: strategy
	4. Proof of Theorems 1.1 and 1.9: the case > 12
	4.1. Bounding the number of big jumps
	4.2. The case of no big jumps
	4.3. Proof of Theorems 1.1 and 1.9 for > 12

	5. Proof of Theorem 1.1: sufficiency for (13, 12]
	6. Proof of Theorem 1.1: sufficiency for (0, 12]
	7. Proof of Proposition 1.6 and and of Theorems 1.7 and 1.9
	7.1. Proof of Proposition 1.6
	7.2. Proof of Theorem 1.7
	7.3. Proof of Lemma 7.1
	7.4. Proof of Theorem 1.9

	Appendix A. Miscellanea
	A.1. Proof of Lemma 3.1
	A.2. Proof of Theorem 1.1: second part
	A.3. Necessity of (1.11) and (1.21) for the SRT
	A.4. On condition (1.11) for > 12
	A.5. Necessity of conditions (3.5) and (3.6)

	References

