
SCALING AND MULTISCALING IN FINANCIAL SERIES:

A SIMPLE MODEL
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Abstract. We propose a simple stochastic volatility model which is analytically tractable,
very easy to simulate and which captures some relevant stylized facts of financial assets,
including scaling properties. In particular, the model displays a crossover in the log-return
distribution from power-law tails (small time) to a Gaussian behavior (large time), slow
decay in the volatility autocorrelation and multiscaling of moments. Despite its few param-
eters, the model is able to fit several key features of the time series of financial indexes,
such as the Dow Jones Industrial Average, with a remarkable accuracy.

1. Introduction

1.1. Modeling financial assets. Recent developments in stochastic modelling of time se-
ries have been strongly influenced by the analysis of financial assets, such as exchange rates,
stocks, and market indexes. The basic model, that has given rise to the celebrated Black
& Scholes formula [22, 23], assumes that the logarithm Xt of the price of the asset, after
subtracting the trend, evolves through the simple equation

dXt = σ dBt, (1.1)

where σ (the volatility) is a constant and (Bt)t≥0 is a standard Brownian motion. It has
been well-know for a long time that, despite its success, this model is not consistent with a
number of stylized facts that are empirically detected in many real time series, e.g.:

• the volatility is not constant and may exhibit high peaks, that may be interpreted as
shocks in the market;

• the empirical distribution of the increments Xt+h −Xt of the logarithm of the price
— called log-returns — is non Gaussian, displaying power-law tails (see Figure 4(b)
below), especially for small values of the time span h, while a Gaussian shape is
approximately recovered for large values of h;

• log-returns corresponding to disjoint time-interval are uncorrelated, but not indepen-
dent: in fact, the correlation between the absolute values |Xt+h−Xt| and |Xs+h−Xs|
— called volatility autocorrelation — is positive (clustering of volatility) and has a
slow decay in |t − s| (long memory), at least up to moderate values for |t − s| (cf.
Figure 3(b)-(c) below).

In order to account for these facts, a very popular choice in the literature of mathematical
finance and financial economics has been to upgrade the basic model (1.1), allowing σ = σt
to vary with t and to be itself a stochastic process. This produces a wide class of processes,
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(a) Diffusive scaling of log-returns.
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(b) Multiscaling of moments.

Figure 1. Scaling properties of the DJIA time series (opening prices 1935-2009).
(a) The empirical densities of the log-returns over 1, 2, 5, 10, 25 days show a re-
markable overlap under diffusive scaling.
(b) The scaling exponent A(q) as a function of q, defined by the relation mq(h) ≈
hA(q) (cf. (1.4)), bends down from the Gaussian behavior q/2 (red line) for q ≥
q ' 3. The quantity A(q) is evaluated empirically through a linear interpolation of
(logmq(h)) versus (log h) for h ∈ {1, . . . , 5} (cf. section 7 for more details).

known as stochastic volatility models, determined by the process (σt)t≥0, which are able
to capture (at least some of) the above-mentioned stylized facts, cf. [6, 29] and references
therein.

More recently, other stylized facts have been pointed out concerning the scaling properties
of the empirical distribution of the log-returns. Given a daily time series (si)1≤i≤T over a
period of T � 1 days, denote by ph the empirical distribution of the (detrended) log-returns
corresponding to an interval of h days:

ph(·) :=
1

T − h

T−h∑
i=1

δxi+h−xi(·) , xi := log(si)− di , (1.2)

where di is the local rate of linear growth of log(si) (see section 7 for details) and δx(·)
denotes the Dirac measure at x ∈ R. The statistical analysis of various financial series, such
as the Dow Jones Industrial Average (DJIA) or the Nikkei 225, shows that, for small values
of h, ph obeys approximately a diffusive scaling relation (cf. Figure 1(a)):

ph(dr) ' 1√
h
g

(
r√
h

)
dr, (1.3)

where g is a probability density with power-law tails. Considering the q-th empirical moment
mq(h), defined by

mq(h) :=
1

T − h

T−h∑
i=1

|xi+h − xi|q =

∫
|r|q ph(dr) , (1.4)

from relation (1.3) it is natural to guess that mq(h) should scale as hq/2. This is indeed what
one observes for moments of small order q ≤ q̄ (with q̄ ' 3 for the DJIA). However, for
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moments of higher order q > q̄, the different scaling relation hA(q), with A(q) < q/2, takes
place, cf. Figure 1(b). This is the so-called multiscaling of moments, cf. [32, 21, 20, 17].

An interesting class of models that are able to reproduce the multiscaling of moments —
as well as many other features, notably the persistence of volatility on different time scales —
are the so-called multifractal models, like the MMAR (Multifractal Model of Asset Returns,
cf. [14]) and the MSM (Markov-Switching Multifractal, cf. [13]). These models describe
the evolution of the detrended log-price (Xt)t≥0 as a random time-change of Brownian
motion: Xt = WI(t), where the time-change (I(t))t≥0 is a continuous and increasing process,
sometimes called trading time, which displays multifractal features and is usually taken to
be independent of the Brownian motion (Wt)t≥0 (cf. [12] for more details).

Modeling financial series through a random time-change of Brownian motion is a classi-
cal topic, dating back to Clark [15], and reflects the natural idea that external information
influences the speed at which exchanges take place in a market. It should be stressed that,
under the mild regularity assumption that the time-change (I(t))t≥0 has absolutely contin-
uous paths a.s., any random time-change of Brownian motion Xt = WI(t) can be written as

a stochastic volatility model dXt = σt dBt, and viceversa.1 However, a key feature of mul-
tifractal models is precisely that their trading time (I(t))t≥0 has non absolutely continuous
paths a.s., hence they cannot be expressed as stochastic volatility models. This makes their
analysis harder, as the standard tools available for Ito diffusions cannot be applied.

The purpose of this paper is to define a simple stochastic volatility model — or, equiv-
alently, an independent random time change of Brownian motion, where the time-change
process has absolutely continuous paths — which agrees with all the above mentioned styl-
ized facts, displaying in particular a crossover in the log-return distribution from a power-law
to a Gaussian behavior, slow decay in the volatility autocorrelation, diffusive scaling and
multiscaling of moments. In its most basic version, the model contains only three real pa-
rameters and is defined as a simple, deterministic function of a Brownian motion and an
independent Poisson process. This makes the process analytically tractable and very easy
to simulate. Despite its few degrees of freedom, the model is able to fit remarkably well
several key features of the time series of the main financial indexes, such as DJIA, S&P 500,
FTSE 100, Nikkei 225. In this paper we present a detailed numerical analysis on the DJIA.

Let us mention that there are subtler stylized facts that are not properly accounted by our
model, such as the multi-scale intermittency of the volatility profile, the possible skewness
of the log-return distribution and the so-called leverage effect (negative correlation between
log-returns and future volatilities), cf. [16]. As we discuss in section 3, such features —
that are relevant in the analysis of particular assets — can be incorporated in our model
in a natural way. Generalizations in this sense are currently under investigation, as are the
performances of our model in financial problems, like the pricing of options (cf. A. Andreloli’s
Ph.D. Thesis [2]). In this article we stick for simplicity to the most basic formulation.

Finally, although we work in the framework of stochastic volatility models, we point out
that an important alternative class of models in discrete time, widely used in the econometric
literature, is given by autoregressive processes such as ARCH, GARCH, FIGARCH and their

1More precisely, “independent random time changes of Brownian motion with absolutely continuous time-
change” — that is, processes (Xt)t≥0 such that Xt −X0 = WI(t), where (Wt)t≥0 is a Brownian motion and
(I(t))t≥0 is an independent process with increasing and absolutely continuous paths a.s. — and “stochastic
volatility models with independent volatility” — that is, processes (Xt)t≥0 such that dXt = σt dBt, where
(Bt)t≥0 is a Brownian motion and (σt)t≥0 is an independent process with paths in L2

loc(R) a.s. — are the same
class of processes, cf. [6, 29]. The link between the two representations dXt = σt dBt and Xt −X0 = WI(t)

is given by σt =
√
I ′(t) and Bt =

∫ t
0

(I ′(s))−1/2dWI(s) =
∫ It
0

(I ′(I−1(v)))−1/2dWu.
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generalizations, cf. [18, 8, 5, 9]. More recently, continuous-time versions have been studied as
well, cf. [24, 25]. With no aim for completeness, let us mention that GARCH and FIGARCH
do not display multiscaling of moments, cf. [12, §8.1.4]. We have also tested the model
recently proposed in [10], which is extremely accurate to fit the statistics of the empirical
volatility, and it does exhibit multiscaling of moments. The price to pay is, however, that
the model requires the calibration of more than 30 parameters.

We conclude noting that long memory effects in autoregressive models are obtained
through a suitable dependence on the past in the equation for the volatility, while large
price variations are usually controlled by specific features of the driving noise. In our model,
we propose a single mechanism, modeling the reaction of the market to shocks, which is the
source of all the mentioned stylized facts.

1.2. Content of the paper. The paper is organized as follows.

• In section 2 we give the definition of our model, we state its main properties and we
discuss its ability to fit the DJIA time series in the period 1935-2009.

• In section 3 we discuss some key features and limitations of our model, point out
possible generalizations, and compare it with other models.

• Sections 4, 5 and 6 contain the proofs of the main results, plus some additional mate-
rial.

• In section 7 we discuss more in detail the numerical comparison between our model
and the DJIA time series.

• Finally, appendix A contains the proof of some technical results, while appendix B is
devoted to a brief discussion of the model introduced by F. Baldovin and A. Stella
in [7, 31], which has partially inspired the construction of our model.

1.3. Notation. Throughout the paper, the indexes s, t, u, x, λ run over real numbers while
i, k,m, n run over integers, so that t ≥ 0 means t ∈ [0,∞) while n ≥ 0 means n ∈ {0, 1, 2, . . .}.
The symbol “∼” denotes asymptotic equivalence for positive sequences (an ∼ bn if and only
if an/bn → 1 as n → ∞) and also equality in law for random variables, like W1 ∼ N (0, 1).
Given two real functions f(x) and g(x), we write f = O(g) as x→ x0 if there exists M > 0
such that |f(x)| ≤ M |g(x)| for x in a neighborhood of x0, while we write f = o(g) if
f(x)/g(x) → 0 as x → x0; in particular, O(1) (resp. o(1)) is a bounded (resp. a vanishing)
quantity. The standard exponential and Poisson laws are denoted by Exp(λ) and Po(λ),
for λ > 0: X ∼ Exp(λ) means that P (X ≤ x) = (1 − e−λx)1[0,∞)(x) for all x ∈ R while

Y ∼ Po(λ) means that P (Y = n) = e−λλn/n! for all n ∈ {0, 1, 2, . . .}. We sometimes write
(const.) to denote a positive constant, whose value may change from place to place.

2. The model and the main results

We introduce our model as an independent random time change of a Brownian motion,
in the spirit e.g. of [15] and [4]. An alternative and equivalent definition, as a stochastic
volatility model, is illustrated in section 2.2.

2.1. Definition of the model. In its basic version, our model contains only three real
parameters:

• λ ∈ (0,+∞) is the inverse of the average waiting time between “shocks” in the market;

• D ∈ (0, 1/2] determines the sub-linear time change t 7→ t2D, which expresses the
“trading time” after shocks;
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• σ ∈ (0,+∞) is proportional to the average volatility.

In order to have more flexibility, we actually let σ be a random parameter, i.e., a positive
random variable, whose distribution ν becomes the relevant parameter:

• ν is a probability on (0,∞), connected to the volatility distribution.

Remark 1. When the model is calibrated to the main financial indexes (DJIA, S&P 500,
FTSE 100, Nikkei 225), the best fitting turns out to be obtained for a nearly constant σ.
In any case, we stess that the main properties of the model are only marginally dependent
on the law ν of σ: in particular, the first two moments of ν, i.e. E(σ) and E(σ2), are
enough to determine the features of our model that are relevant for real-world times series,
cf. Remark 10 below. Therefore, roughly speaking, we could say that in the general case of
random σ our model has four “effective” real parameters.

Beyond the parameters λ,D, ν, we need the following three sources of alea:

• a standard Brownian motion W = (Wt)t≥0;

• a Poisson point process T = (τn)n∈Z on R with intensity λ;

• a sequence Σ = (σn)n≥0 of independent and identically distributed positive random
variables with law ν (so that σn ∼ ν for all n); and for conciseness we denote by σ a
variable with the same law ν.

We assume that W, T ,Σ are defined on some probability space (Ω,F , P ) and that they are
independent. By convention, we label the points of T so that τ0 < 0 < τ1. We will actually
need only the points (τn)n≥0, and we recall that the random variables (−τ0), τ1, (τn+1−τn)n≥1

are independent and identically distributed with marginal laws Exp(λ). In particular, 1/λ is
the mean distance between the points in T , except for τ0 and τ1, whose average distance is
2/λ. Although some of our results would hold for more general distributions of T , we stick
for simplicity to the (rather natural) choice of a Poisson process.

For t ≥ 0, we define

i(t) := sup{n ≥ 0 : τn ≤ t} = #{T ∩ (0, t]} , (2.1)

so that τi(t) is the location of the last point in T before t. Plainly, i(t) ∼ Po(λt). Then we
introduce the basic process I = (It)t≥0 defined by

It = I(t) := σ2
i(t)

(
t− τi(t)

)2D
+

i(t)∑
k=1

σ2
k−1 (τk − τk−1)2D − σ2

0 (−τ0)2D , (2.2)

with the agreement that the sum in the right hand side is zero if i(t) = 0. More explicitly,
(It)t≥0 is a continuous process with I0 = 0 and Iτn+h−Iτn = (σ2

n)h2D for 0 ≤ h ≤ (τn+1−τn).

We note that the derivative ( d
dtIt)t≥0 is a stationary regenerative process, cf. [3]. See Figure 2

for a sample trajectory of (It)t≥0 when D < 1
2 .

We then define our model X = (Xt)t≥0 by setting

Xt := WIt . (2.3)

In words: our model is an random time change of the Brownian motion (Wt)t≥0 through
the time-change process (It)t≥0. Note that I is a strictly increasing process with absolutely
continuous paths, and it is independent of W .

When D = 1
2 and σ is constant, we have It = σ2t and the model reduces to Black &

Scholes with volatility σ. On the other hand, when D < 1
2 , the paths of I are singular (non

differentiable) at the points in T , cf. Figure 2. This suggests a possible financial interpretation
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τ1 τ2 τ3τ0

It

t

Figure 2. A sample trajectory of the process (It)t≥0

of the instants in T as the epochs at which big shocks arrive in the market, making the
volatility jump to infinity. This will be more apparent in next subsection, where we give a
stochastic volatility formulation of the model. We point out that the singularity is produced
by the sub-linear time change t 7→ t2D, that was first suggested by F. Baldovin and A. Stella
in [7, 31] (their model is described in appendix B).

2.2. Basic properties. Let us state some basic properties of our model, that will be proved
in section 6.

(A) The process X has stationary increments.

(B) The following relation between moments of Xt and σ holds: for any q > 0

E(|Xt|q) <∞ for some (hence any) t > 0 ⇐⇒ E(σq) <∞ . (2.4)

(C) The process X can be represented as a stochastic volatility model:

dXt = vt dBt , (2.5)

where (Bt)t≥0 is a standard Brownian motion and (vt)t≥0 is an independent process,

defined by (denoting I ′(s) := d
dsI(s))

Bt :=

∫ t

0

1√
I ′(s)

dWI(s) =

∫ It

0

1√
I ′(I−1(u))

dWu ,

vt :=
√
I ′(t) =

√
2Dσi(t)

(
t− τi(t)

)D− 1
2 .

(2.6)

Note that, whenever D < 1
2 , the volatility vt has singularities at the random times τn.

(D) The process X is a zero-mean, square-integrable martingale (provided E(σ2) <∞).

Remark 2. If we look at the process X for a fixed realization of the variables T and Σ,
averaging only on W — that is, if we work under the conditional probability P ( · |T ,Σ) —
the increments of X are no longer stationary, but the properties (C) and (D) continue to
hold (of course, condition E(σ2) <∞ in (D) is not required under P ( · |T ,Σ)).

Remark 3. It follows from (2.4) that if σ is chosen as a deterministic constant, then
Xt admits moments of all order (actually, even exponential moments, cf. Proposition 11 in
section 6). This seems to indicate that to see power-law tails in the distribution of (Xt+h−Xt)
— one of the basic stylized facts mentioned in the introduction — requires to take σ with
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power-law tails. This, however, is not true, and is one on the surprising features of the simple
model we propose: for typical choices of the parameters of our model, the distribution of
(Xt+h − Xt) displays a power-law tail behavior up to several standard deviations from
the mean, irrespective of the law of σ. Thus, the eventually light tails are “invisible” for
all practical purposes and real heavy-tailed distributions appear to be unnecessary to fit
data. We discuss this issue below, cf. Remark 5, after having stated some results; see also
subsection 2.4 and Figure 4(b) for a graphical comparisons with the DJIA time series.

Another important property of the process X is that its increments are mixing, as we
show in section 6. This entails in particular that for every δ > 0, k ∈ N and for every choice
of the intervals (a1, b1), . . . , (ak, bk) ⊆ (0,∞) and of the measurable function F : Rk → R,
we have almost surely

lim
N→∞

1

N

N−1∑
n=0

F (Xnδ+b1 −Xnδ+a1 , . . . , Xnδ+bk −Xnδ+ak)

= E
[
F (Xb1 −Xa1 , . . . , Xbk −Xak)

]
,

(2.7)

provided the expectation appearing in the right hand side is well defined. In words: the
empirical average of a function of the increments of the process over a long time period is
close to its expected value.

Thanks to this property, our main results concerning the distribution of the increments of
the process X, that we state in the next subsection, are of direct relevance for the comparison
of our model with real data series. Some care is needed, however, because the accessible time
length N in (2.7) may not be large enough to ensure that the empirical averages are close
to their limit. We elaborate more on this issue in section 7, where we compare our model
with the DJIA data from a numerical viewpoint.

2.3. The main results. We now state our main results for our model X, that correspond to
the basic stylized facts mentioned in the introduction: diffusive scaling and crossover of the
log-return distribution (Theorem 4); multiscaling of moments (Theorem 6 and Corollary 7);
clustering of volatility (Theorem 8 and Corollary 9).

Our first result, proved in section 4, shows that the increments (Xt+h − Xt) have an
approximate diffusive scaling both when h ↓ 0, with a heavy-tailed limit distribution (in
agreement with (1.3)), and when h ↑ ∞, with a normal limit distribution. This is a precise
mathematical formulation of a crossover phenomenon in the log-return distribution, from
approximately heavy-tailed (for small time) to approximately Gaussian (for large time).

Theorem 4 (Diffusive scaling). The following convergences in distribution hold for any
choice of the parameters D,λ and of the law ν of σ.

• Small-time diffusive scaling:

(Xt+h −Xt)√
h

d−−−→
h↓0

f(x) dx := law of
(√

2Dλ
1
2
−D)σ SD− 1

2 W1 , (2.8)

where σ ∼ ν, S ∼ Exp(1) and W1 ∼ N (0, 1) are independent random variables. The
density f is thus a mixture of centered Gaussian densities and, when D < 1

2 , has
power-law tails: more precisely, if E(σq) <∞ for all q > 0,∫

|x|qf(x) dx < +∞ ⇐⇒ q < q∗ :=
1

(1
2 −D)

. (2.9)
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• Large-time diffusive scaling: if E(σ2) <∞

(Xt+h −Xt)√
h

d−−−−→
h↑∞

e−x
2/(2c2)

√
2πc

dx = N (0, c2) , c2 = λ1−2D E(σ2) Γ(2D + 1) , (2.10)

where Γ(α) :=
∫∞

0 xα−1e−xdx denotes Euler’s Gamma function.

Remark 5. We have already observed that, when σ has finite moments of all orders, for
h > 0 the increment (Xt+h −Xt) has finite moments of all orders too, cf. (2.4), so there are
no heavy tails in the strict sense. However, for h small, the heavy-tailed density f(x) is by
(2.8) an excellent approximation for the true distribution of 1√

h
(Xt+h −Xt) up to a certain

distance from the mean, which can be quite large. For instance, when the parameters of our
model are calibrated to the DJIA time series, these “apparent power-law tails” are clearly
visible for h = 1 (daily log-returns) up to a distance of about six standard deviations from
the mean, cf. subsection 2.4 and Figure 4(b) below.

We also note that the moment condition (2.9) follows immediately from (2.8): in fact,
when σ has finite moments of all orders,∫

|x|qf(x) dx < +∞ ⇐⇒ E
[
S(D−1/2)q

]
=

∫ ∞
0

s(D−1/2)q e−s ds < +∞ , (2.11)

which clearly happens if and only if q < q∗ := (1
2 − D)−1. This also shows that the heavy

tails of f depend on the fact that the density of the random variable S, which represents
(up to a constant) the distance between points in T , is strictly positive around zero, and
not on other details of the exponential distribution.

The power-law tails of f have striking consequences on the scaling behavior of the moments
of the increments of our model. If we set for q ∈ (0,∞)

mq(h) := E(|Xt+h −Xt|q) , (2.12)

the natural scaling mq(h) ≈ hq/2 as h ↓ 0, that one would naively guess from (2.8), breaks
down for q > q∗, when the faster scaling mq(h) ≈ hDq+1 holds instead, the reason being
precisely the fact that the q-moment of f is infinite for q ≥ q∗. More precisely, we have the
following result, that we prove in section 4.

Theorem 6 (Multiscaling of moments). Let q > 0, and assume E (σq) < +∞. The quantity
mq(h) in (2.12) is finite and has the following asymptotic behavior as h ↓ 0:

mq(h) ∼


Cq h

q
2 if q < q∗

Cq h
q
2 log( 1

h) if q = q∗

Cq h
Dq+1 if q > q∗

, where q∗ :=
1

(1
2 −D)

.

The constant Cq ∈ (0,∞) is given by

Cq :=


E(|W1|q)E(σq)λq/q

∗
(2D)q/2 Γ(1− q/q∗) if q < q∗

E(|W1|q)E(σq)λ (2D)q/2 if q = q∗

E(|W1|q)E(σq)λ
[ ∫∞

0 ((1 + x)2D − x2D)
q
2 dx + 1

Dq+1

]
if q > q∗

, (2.13)

where Γ(α) :=
∫∞

0 xα−1e−xdx denotes Euler’s Gamma function.
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Corollary 7. The following relation holds true:

A(q) := lim
h↓0

logmq(h)

log h
=


q

2
if q ≤ q∗

Dq + 1 if q ≥ q∗
, where q∗ :=

1

(1
2 −D)

. (2.14)

The explicit form (2.13) of the multiplicative constant Cq will be used in section 7 for the
estimation of the parameters of our model on the DJIA time series.

Our last theoretical result, proved in section 5, concerns the correlations of the absolute
value of two increments, usually called volatility autocorrelation. We start determining the
behavior of the covariance.

Theorem 8. Assume that E(σ2) <∞. The following relation holds as h ↓ 0, for all s, t > 0:

Cov(|Xs+h −Xs|, |Xt+h −Xt|) =
4D

π
λ1−2D e−λ|t−s|

(
φ(λ|t− s|)h + o(h)

)
, (2.15)

where

φ(x) := Cov
(
σ SD−1/2 , σ

(
S + x

)D−1/2)
(2.16)

and S ∼ Exp(1) is independent of σ.

We recall that ρ(Y,Z) := Cov(Y, Z)/
√
V ar(Y )V ar(Z) is the correlation coefficient of two

random variables Y,Z. As Theorem 6 yields

lim
h↓0

1

h
V ar(|Xt+h −Xt|) = (2D)λ1−2D V ar(σ |W1|SD−1/2) ,

where S ∼ Exp(1) is independent of σ,W1, we easily obtain the following result.

Corollary 9 (Volatility autocorrelation). Assume that E(σ2) < ∞. The following relation
holds as h ↓ 0, for all s, t > 0:

lim
h↓0

ρ(|Xs+h −Xs|, |Xt+h −Xt|)

= ρ(t− s) :=
2

π V ar(σ |W1|SD−1/2)
e−λ|t−s| φ(λ|t− s|) ,

(2.17)

where φ(·) is defined in (2.16) and σ ∼ ν, S ∼ Exp(1), W1 ∼ N (0, 1) are independent
random variables.

This shows that the volatility autocorrelation of our process decays exponentially fast for
time scales larger than the mean distance 1/λ between the epochs τk. However, for shorter
time scales the relevant contribution is given by the function φ(·). By (2.16) we can write

φ(x) = V ar(σ)E(SD−1/2 (S + x)D−1/2) + E(σ)2Cov(SD−1/2, (S + x)D−1/2) , (2.18)

where S ∼ Exp(1). When D < 1
2 , as x→∞ the two terms in the right hand side decay as

E(SD−1/2 (S + x)D−1/2) ∼ c1 x
D−1/2 , Cov(SD−1/2, (S + x)D−1/2) ∼ c2 x

D−3/2 . (2.19)

where c1, c2 are positive constants, hence φ(x) has a power-law behavior as x → ∞. For
x = O(1), which is the relevant regime, the decay of φ(x) is, roughly speaking, slower than
exponential but faster than polynomial (see Figures 3(b) and 3(c)).
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(b) Volatility autocorrelation
in the DJIA (1935-2009): log
plot.
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(c) Volatility autocorrelation
in the DJIA (1935-2009):
log-log plot.

Figure 3. Multiscaling of moments and volatility autocorrelation in the DJIA time
series (1935-2009), compared with our model.

(a) The DJIA empirical scaling exponent Â(q) (circles) and the theoretical scaling
exponent A(q) (line) as a function of q.
(b) Log plot for the DJIA empirical 1-day volatility autocorrelation ρ̂1(t) (circles)
and the theoretical prediction ρ(t) (line), as functions of t (days). For clarity, only
one data out of two is plotted.
(c) Same as (b), but log-log plot instead of log plot. For clarity, for t ≥ 50 only one
data out of two is plotted.

2.4. Fitting the DJIA time series. We now consider some aspects of our model from a
numerical viewpoint. More precisely, we have compared the theoretical predictions and the
simulated data of our model with the time series of some of the main financial indexes (DJIA,
S&P 500, FTSE 100 and Nikkei 225), finding a very good agreement. Here we describe in
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(a) Density of the empirical
distribution of the DJIA log-
returns (1935-2009).
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Figure 4. Distribution of daily log-returns in the DJIA time series (1935-2009),
compared with our model (cf. subsection 7.3 for details).
(a) The density of the DJIA log-return empirical distribution p̂1(·) (circles) and the
theoretical prediction p1(·) (line). The plot ranges from zero to about three standard
deviations (ŝ ' 0.0095) from the mean.
(b) Log-log plot of the right and left integrated tails of the DJIA log-return empirical
distribution p̂1(·) (circles and triangles) and of the theoretical prediction p1(·) (solid
line). The plot ranges from one to about twelve standard deviations from the mean.
Also plotted is the asymptotic density f(·) (dashed line) defined in equation (2.8).

detail the case of the DJIA time series over a period of 75 years: we have considered the
DJIA opening prices from 2 Jan 1935 to 31 Dec 2009, for a total of 18849 daily data.

The four real parameters D,λ,E(σ), E(σ2) of our model have been chosen to optimize
the fitting of the scaling function A(q) of the moments (see Corollary 7), which only depends
on D, and the curve ρ(t) of the volatility autocorrelation (see Corollary 9), which depends
on D,λ,E(σ), E(σ2) (more details on the parameter estimation are illustrated in section 7).
We have obtained the following numerical estimates:

D̂ ' 0.16, λ̂ ' 0.00097, Ê(σ) ' 0.108, Ê(σ2) ' 0.0117 '
(
Ê(σ)

)2
. (2.20)

Note that the estimated standard deviation of σ is negligible, so that σ is “nearly constant”.
We point out that the same is true for the other financial indexes that we have tested. In
particular, in these cases there is no need to specify other details of the distribution ν of σ
and our model is completely determined by the numerical values in (2.20).

As we show in Figure 3, there is an excellent fitting of the theoretical predictions to
the observed data. We find remarkable that a rather simple mechanism of (relatively rare)
volatilty shocks can account for the nontrivial profile of both the multiscaling exponent A(q),
cf. Figure 3(a), and the volatility autocorrelation ρ(t), cf. Figure 3(b)-(c).

Last but not least, we have considered the distribution of daily log-returns: Figure 4
compares both the density and the integrated tails of the log-return empirical distribution,
cf. (1.2), with the theoretical predictions of our model, i.e., the law of X1. The agreement
is remarkable, especially because the empirical distributions of log-returns was not used for
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the calibration the model. This accuracy can therefore be regarded as structural property of
the model.

In Figure 4(b) we have plotted the density of X1, represented by the red solid line, and
the asymptotic limiting density f appearing in equation (2.8) of Theorem 4, represented by
the green dashed line. The two functions are practically indistinguishable up to six standard
deviations from the mean, and still very close in the whole plotted range. We stress that f
is a rather explicit function, cf. equation (2.8). Also note that the log-log plot in Figure 4(b)
shows a clear power-law decay, as one would expect from f (the eventually light tails of X1

are invisible).

Remark 10. We point out that, even if we had found V̂ ar(σ) := Ê(σ2) − (Ê(σ))2 > 0
(as could happen for different assets), detailed properties of the distribution of σ are not
expected to be detectable from data — nor are they relevant. Indeed, the estimated mean

distance between the successive epochs (τn)n≥0 of the Poisson process T is 1/λ̂ ' 1031 days,
cf. (2.20). Therefore, in a time period of the length of the DJIA time series we are considering,
only 18849/1031 ' 18 variables σk are expected to be sampled, which is certainly not enough
to allow more than a rough estimation of the distribution of σ. This should be viewed more
as a robustness than a limitation of our model: even when σ is non-constant, its first two
moments contain the information which is relevant for application to real data.

3. Discussion and further developments

Now that we have stated the main properties of the model, we can discuss more in depth
its strength as well as its limitations, and consider possible generalizations.

3.1. On the role of parameters. A key feature of our model is its rigid structure. Let
us focus for simplicity on the case in which σ is a constant (which, as we have discussed,
is relevant for financial indexes). Not only is the model characterized by just three real
parameters D,λ, σ: the role of λ and σ is reduced to simple scale factors. In fact, if we
change the value of λ and σ in our process (Xt)t≥0, keeping D fixed, the new process has
the same distribution as (aXbt)t≥0 for suitable a, b (depending of λ, σ), as it is clear from
the definition (2.2) of (It)t≥0. This means that D is the only parameter that truly changes
the shape (beyond simple scale factors) of the relevant quantities of our model, as it is
also clear from the explicit expressions we have derived for the small-time and large-time
asymptotic distribution (Theorem 4), mulstiscaling of moments (Theorem 6) and volatility
autocorrelation (Theorem 8).

More concretely, the structure of our model imposes strict relations between different
quantities: for instance, the moment q∗ = (1

2 −D)−1 beyond which one observes anomalous
scaling, cf. (2.14), coincides with the power-law tail exponent of the (approximate) log-return
distribution for small time, cf. (2.9), and is also linked (through D) to the slow decay of
the volatility autocorrelation from short to moderate time of the, cf. (2.18) and (2.19). The
fact that these quantitative constraints are indeed observed on the DJIA time series, cf.
Figures 3 and 4, is not obvious a priori and is therefore particularly noteworthy.

3.2. On the comparison with multifractal models. As we observed in the introduction,
the multiscaling of moments is a key feature of multifractal models. These are random time-
changes of Brownian motion Xt = WIt , like our model, with the important difference that
the time-change process (It)t≥0 is rather singular, having non absolutely continuous paths.
Since in our case the time-change process is quite regular and explicit, our model can be
analyzed with more standard and elementary tools and is very easy to simulate.
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A key property of multifractal models, which is at the origin of their multiscaling features,
is that the law of Xt has power-law tails, for every t > 0. On the other hand, as we already
discussed, the law of Xt in our model has finite moments of all orders — at least when
E(σq) <∞ for every q > 0, which is the typical case. In a sense, the source of multiscaling
in our model is analogous, because (approximate) power-law tails appear in the distribution
of Xt in the limit t ↓ 0, but the point is that “true” power-law tails in the distribution of Xt

are not necessary to have multiscaling properties.
We remark that the multiscaling exponent A(q) of our model is piecewise linear with

two different slopes, thus describing a biscaling phenomenon. Multifractal models are very
flexible in this respect, allowing for a much wider class of behavior of A(q). It appears
however that a biscaling exponent is compatible with the time series of financial indexes (cf.
also Remark 14 below).

We conclude with a semi-heuristic argument, which illustrates how heavy tails and mul-
tiscaling arise in our model. On the event {(−τ0) ≤ h, τ1 > h} we can write, by (2.2),
Ih = σ2

0{(h − τ0)2D − (−τ0)2D} & h2D and therefore |Xh| = |WIh | ∼
√
Ih |W1| & hD.

Consequently we get the bound

P (|Xh| & hD) ≥ P ((−τ0) ≤ h, τ1 > h) & h , (3.1)

which allows to draw a couple of interesting consequences.

• Relation (3.1) yields the lower bound E(|Xh|q) & hDqP (|Xh| & hD) & hDq+1 on the
moments of our process. Since Dq + 1 < q/2 for q > q∗ = (1

2 −D)−1, this shows that

the usual scaling E(|Xh|q) ' hq/2 cannot hold for q > q∗.

• Relation (3.1) can be rewritten as P ( 1√
h
|Xh| & t) & t−q

∗
, where t = h−( 1

2
−D) and

q∗ = (1
2 −D)−1. Since t → +∞ as h ↓ 0, when D < 1

2 , this provides a glimpse of the
appearance of power law tails in the distribution of Xh as h ↓ 0, cf. (2.8) and (2.9),
with the correct tail exponent q∗.

3.3. On the stochastic volatility model representation. We recall that our process
(Xt)t≥0 can be written as a stochastic volatility model dXt = vt dBt, cf. (2.5). It is interesting
to note that the squared volatility (vt)

2 is the stationary solution of the following stochastic
differential equation:

d(v2
t ) = −αt

(
v2
t

)γ
dt + ∞ di(t), (3.2)

where we recall that (i(t))t≥0 is an ordinary Poisson process, while γ is a constant and αt is
a piecewise-constant function, defined by

γ := 2 +
2D

1− 2D
> 2 , αt :=

1− 2D

(2D)1/(1−2D)

1

σ
2/(1−2D)
i(t)

> 0 .

We stress that (vt)
2 is a pathwise solution of equation (3.2), i.e., it solves the equation for

any fixed realization of the stochastic processes i(t) and αt. The infinite coefficient of the
driving Poisson noise is no problem: in fact, thanks to the superlinear drift term −αt

(
v2
t

)γ
,

the solution starting from infinity becomes instantaneously finite.2

The representation (3.2) of the volatility is also useful to understand the limitations of our
model and to design possible generalizations. For instance, according to (3.2), the volatility
has the rather unrealistic feature of being deterministic between jumps. This limitation
could be weakened in various way, e.g. by replacing i(t) in (3.2) with a more general Levy

2Note that the ordinary differential equation dx(t) = −αx(t)γdt with x(0) =∞ has the explicit solution

x(t) = c t−1/(γ−1) where c = c(α, γ) = (α(γ − 1))−1/(γ−1).



14 ALESSANDRO ANDREOLI, FRANCESCO CARAVENNA, PAOLO DAI PRA, AND GUSTAVO POSTA

subordinator, and/or adding to the volatility a continuous random component. Such addition
should allow a more accurate description of the intermittent structure of the volatility profile,
in the spirit of multifractal models.

In a sense, the model we have presented describes only the relatively rare big jumps of the
volatility, ignoring the smaller random fluctuations that are present on smaller time scales.
Besides obvious simplicity considerations, one of our aims is to point out that these big
jumps, together with a nonlinear drift term as in (3.2), are sufficient to explain in a rather
accurate way the several stylized facts we have discussed.

3.4. On the skewness and leverage effect. Our model predicts an even distribution
for Xt, but it is known that several financial assets data exhibit a nonzero skewness. A
reasonable way to introduce skewness is through the so-called leverage effect. This can be
achieved, e.g., by modifying the stochastic volatility representation, given in equations (2.5)
and (3.2), as follows:

dXt = vt dBt − β di(t)

dv2
t = −αt

(
v2
t

)γ
dt + ∞ di(t),

where β > 0. In other words, when the volatility jumps (upward), the price jumps downward
by an amount γ. The effect of this extension of the model is currently under investigation.

3.5. On further developments. A bivariate version ((Xt, Yt))t≥0 of our model, where the
two components are driven by possibly correlated Poisson point processes T X , T Y , has been
investigated by P. Pigato in his Master’s Thesis [27]. The model has been numerically cal-
ibrated on the joint time series of the DJIA and FTSE 100 indexes, finding in particular
a very good agreement for the volatility cross-correlation between the two indexes: for this
quantity, the model predicts the same decay profile as for the individual volatility autocor-
relations, a fact which is not obvious a priori and is indeed observed on the real data.

We point out that an important ingredient in the numerical analysis on the bivariate
model is a clever algorithm for finding the location of the relevant big jumps in the volatility
(a concept which is of course not trivially defined). Such an algorithm has been devised by
M. Bonino in his Master’s Thesis [11], which deals with portfolio optimization problems in
the framework of our model.

4. Scaling and multiscaling: proof of Theorems 4 and 6

We observe that for all fixed t, h > 0 we have the equality in law Xt+h −Xt ∼
√
IhW1,

as it follows by the definition of our model (Xt)t≥0 = (WIt)t≥0. We also observe that i(h) =
#{T ∩ (0, h]} ∼ Po(λh), as it follows from (2.1) and the properties of the Poisson process.

4.1. Proof of Theorem 4. Since P (i(h) ≥ 1) = 1 − e−λh → 0 as h ↓ 0, we may focus on
the event {i(h) = 0} = {T ∩ (0, h] = ∅}, on which we have Ih = σ2

0((h− τ0)2D − (−τ0)2D),
with −τ0 ∼ Exp(λ). In particular,

lim
h↓0

Ih
h

= I ′(0) = (2D)σ2
0 (−τ0)2D−1 a.s. .

Since Xt+h −Xt ∼
√
IhW1, the convergence in distribution (2.8) follows:

Xt+h −Xt√
h

d−→
√

2Dσ0 (−τ0)D−1/2W1 as h ↓ 0 .
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Next we focus on the case h ↑ ∞. Under the assumption E(σ2) <∞, the random variables
{σ2

k−1(τk − τk−1)2D}k≥1 are independent and identically distributed with finite mean, hence
by the strong law of large numbers

lim
n→∞

1

n

n∑
k=1

σ2
k−1(τk − τk−1)2D = E(σ2)E((τ1)2D) = E(σ2)λ−2D Γ(2D + 1) a.s. .

Plainly, limh→+∞ i(h)/h = λ a.s., by the strong law of large numbers applied to the random
variables {τk}k≥1. Recalling (2.2), it follows easily that

lim
h↑∞

I(h)

h
= E(σ2)λ1−2D Γ(2D + 1) a.s. .

Since Xt+h −Xt ∼
√
IhW1, we obtain the convergence in distribution

Xt+h −Xt√
h

d−→
√
E(σ2)λ1−2D Γ(2D + 1)W1 as h ↑ ∞ ,

which coincides with (2.10). �

4.2. Proof of Theorem 6. Since Xt+h −Xt ∼
√
IhW1, we can write

E(|Xt+h −Xt|q) = E(|Ih|q/2|W1|q) = E(|W1|q)E(|Ih|q/2) = cq E(|Ih|q/2) , (4.1)

where we set cq := E(|W1|q). We therefore focus on E(|Ih|
q
2 ), that we write as the sum of

three terms, that will be analyzed separately:

E(|Ih|
q
2 ) = E(|Ih|

q
2 1{i(h)=0}) + E(|Ih|

q
2 1{i(h)=1}) + E(|Ih|

q
2 1{i(h)≥2}) . (4.2)

For the first term in the right hand side of (4.2), we note that P (i(h) = 0) = e−λh → 1 as
h ↓ 0 and that Ih = σ2

0((h− τ0)2D − (−τ0)2D) on the event {i(h) = 0}. Setting −τ0 =: λ−1S
with S ∼ Exp(1), we obtain as h ↓ 0

E(|Ih|
q
2 1{i(h)=0}) = E(σq)λ−Dq E

(
((S + λh)2D − S2D)

q
2
) (

1 + o(1)
)
. (4.3)

Recalling that q∗ := (1
2 −D)−1, we have

q T q∗ ⇐⇒ q

2
T Dq + 1 ⇐⇒ −1 T

(
D − 1

2

)
q .

As δ ↓ 0 we have δ−1((S+δ)2D−S2D) ↑ 2DS2D−1 and note that E
(
S(D− 1

2
)q
)

= Γ(1−q/q∗)
is finite if and only if (D − 1

2)q > −1, that is q < q∗. Therefore the monotone convergence
theorem yields

for q < q∗ : lim
h↓0

E
((

(S + λh)2D − S2D
) q

2
)

λ
q
2 h

q
2

= (2D)q/2 Γ(1− q/q∗) ∈ (0,∞) . (4.4)

Next observe that, by the change of variables s = (λh)x, we can write

E
(
((S + λh)2D − S2D)

q
2
)

=

∫ ∞
0

((s+ λh)2D − s2D)
q
2 e−s ds

= (λh)Dq+1

∫ ∞
0

((1 + x)2D − x2D)
q
2 e−λhx dx .

(4.5)

Note that ((1 + x)2D − x2D)
q
2 ∼ (2D)

q
2x(D− 1

2
)q as x→ +∞ and that (D − 1

2)q < −1 if and
only if q > q∗. Therefore, again by the monotone convergence theorem, we obtain

for q > q∗ : lim
h↓0

E
(
((S + λh)2D − S2D)

q
2

)
λDq+1 hDq+1

=

∫ ∞
0

((1+x)2D−x2D)
q
2 dx ∈ (0,∞) . (4.6)
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Finally, in the case q = q∗ we have ((1 +x)2D−x2D)q
∗/2 ∼ (2D)q

∗/2 x−1 as x→ +∞ and we
want to study the integral in the second line of (4.5). Fix an arbitrary (large) M > 0 and
note that, integrating by parts and performing a change of variables, as h ↓ 0 we have∫ ∞
M

e−λhx

x
dx = − logMe−λhM + λh

∫ ∞
M

(log x) e−λhx dx = O(1) +

∫ ∞
λhM

log
( y

λh

)
e−y dy

= O(1) +

∫ ∞
λhM

log
(y
λ

)
e−y dy + log

(
1

h

)∫ ∞
λhM

e−y dy = log

(
1

h

) (
1 + o(1)

)
.

From this it is easy to see that as h ↓ 0∫ ∞
0

((1 + x)2D − x2D)
q∗
2 e−λhx dx ∼ (2D)

q∗
2 log

(
1

h

)
.

Coming back to (4.5), noting that Dq + 1 = q
2 for q = q∗, it follows that

lim
h↓0

E
(
((S + h)2D − S2D)

q∗
2

)
λDq∗+1 h

q∗
2 log( 1

h)
= (2D)

q∗
2 . (4.7)

Recalling (4.1) and (4.3), the relations (4.4), (4.6) and (4.7) show that the first term in the
right hand side of (4.2) has the same asymptotic behavior as in the statement of the theorem,
except for the regime q > q∗ where the constant does not match (the missing contribution
will be obtained in a moment).

We now focus on the second term in the right hand side of (4.2). Note that, conditionally
on the event {i(h) = 1} = {τ1 ≤ h, τ2 > h}, we have

Ih = σ2
1(h−τ1)2D+σ2

0

(
(τ1−τ0)2D−(−τ0)2D

)
∼ σ2

1(h−hU)2D+σ2
0

((
hU+

S

λ

)2D

−
(
S

λ

)2D)
,

where S ∼ Exp(1) and U ∼ U(0, 1) (uniformly distributed on the interval (0, 1)) are inde-
pendent of σ0 and σ1. Since P (i(h) = 1) = λh+ o(h) as h ↓ 0, we obtain

E(|Ih|
q
2 1{i(h)=1}) = λhDq+1E

[(
σ2

1(1− U)2D + σ2
0

((
U +

S

λh

)2D

−
(
S

λh

)2D) q
2
)]

. (4.8)

Since (u + x)2D − x2D → 0 as x → ∞, for every u ≥ 0, by the dominated convergence
theorem we have (for every q ∈ (0,∞))

lim
h↓0

E(|Ih|
q
2 1{i(h)=1})

hDq+1
= λE(σq1)E

(
(1− U)Dq

)
= λE(σq1)

1

Dq + 1
. (4.9)

This shows that the second term in the right hand side of (4.2) gives a contribution of the
order hDq+1 as h ↓ 0. This is relevant only for q > q∗, because for q ≤ q∗ the first term gives
a much bigger contribution of the order hq/2 (see (4.4) and (4.7)). Recalling (4.1), it follows
from (4.9) and (4.6) that the contribution of the first and the second term in the right hand
side of (4.2) matches the statement of the theorem (including the constant).

It only remains to show that the third term in the right hand side of (4.2) gives a negligible
contribution. We begin by deriving a simple upper bound for Ih. Since (a+b)2D−b2D ≤ a2D
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for all a, b ≥ 0 (we recall that 2D ≤ 1), when i(h) ≥ 1, i.e. τ1 ≤ h, we can write

Ih = σ2
i(h)(h− τi(h))

2D +

i(h)∑
k=2

σ2
k−1(τk − τk−1)2D + σ2

0

[
(τ1 − τ0)2D − (−τ0)2D

]
≤ σ2

i(h)(h− τi(h))
2D +

i(h)∑
k=2

σ2
k−1(τk − τk−1)2D + σ2

0τ
2D
1 ,

(4.10)

where we agree that the sum over k is zero if i(h) = 1. Since τk ≤ h for all k ≤ i(h), by

the definition (2.1) of i(h), relation (4.10) yields the bound Ih ≤ h2D
∑i(h)

k=0 σ
2
k, which holds

clearly also when i(h) = 0. In conclusion, we have shown that for all h, q > 0

|Ih|q/2 ≤ hDq
(

i(h)∑
k=0

σ2
k

)q/2
. (4.11)

Consider first the case q > 2: by Jensen’s inequality we have(
i(h)∑
k=0

σ2
k

)q/2
= (i(h) + 1)q/2

(
1

i(h) + 1

i(h)∑
k=0

σ2
k

)q/2
≤ (i(h) + 1)q/2−1

i(h)∑
k=0

σqk . (4.12)

By (4.11) and (4.12) we obtain

E
(
|Ih|q/2 1{i(h)≥2}

)
≤ hDq E(σq)E

(
(i(h) + 1)q/2 1{i(h)≥2}

)
. (4.13)

A corresponding inequality for q ≤ 2 is derived from (4.11) and the inequality (
∑∞

k=1 xk)
q/2 ≤∑∞

k=1 x
q/2
k , which holds for every non-negative sequence (xn)n∈N:

E
(
|Ih|q/2 1{i(h)≥2}

)
≤ hDqE

(
i(h)∑
k=0

σqk 1{i(h)≥2}

)
≤ hDq E(σq)E

(
(i(h) + 1) 1{i(h)≥2}

)
.

(4.14)
For any fixed a > 0, by the Hölder inequality with p = 3 and p′ = 3/2 we can write for h ≤ 1

E
(
(i(h) + 1)a 1{i(h)≥2}

)
≤ E

(
(i(h) + 1)3a

)1/3
P (i(h) ≥ 2)2/3

≤ E
(
(i(1) + 1)3a

)1/3
(1− e−λh − e−λhλh)2/3 ≤ (const.)h4/3 ,

(4.15)

because E
(
(i(1) + 1)3a

)
<∞ (recall that i(h) ∼ Po(λ)) and (1− e−λh − e−λhλh) ∼ 1

2(λh)2

as h ↓ 0. Then it follows from (4.13) and (4.14) and (4.15) that

E
(
|Ih|q/2 1{i(h)≥2}

)
≤ (const.′)hDq+4/3 .

This shows that the contribution of the third term in the right hand side of (4.2) is always
negligible with respect to the contribution of the second term (recall (4.9)). �

5. Decay of correlations: proof of Theorem 8

Given a Borel set I ⊆ R, we let GI denote the σ-algebra generated by the family of random
variables (τk1{τk∈I}, σk1{τk∈I})k≥0. Informally, GI may be viewed as the σ-algebra generated
by the variables τk, σk for the values of k such that τk ∈ I. From the basic property of the
Poisson process and from the fact that the variables (σk)k≥0 are independent, it follows that
for disjoint Borel sets I, I ′ the σ-algebras GI , GI′ are independent. We set for short G := GR,
which is by definition the σ-algebra generated by all the variables (τk)k≥0 and (σk)k≥0, which
coincides with the σ-algebra generated by the process (It)t≥0.



18 ALESSANDRO ANDREOLI, FRANCESCO CARAVENNA, PAOLO DAI PRA, AND GUSTAVO POSTA

We have to prove (2.15). Plainly, by translation invariance we can set s = 0 without loss
of generality. We also assume that h < t. We start writing

Cov(|Xh|, |Xt+h −Xt|)
= Cov

(
E
(
|Xh|

∣∣G) , E(|Xt+h −Xt|
∣∣G)) + E

(
Cov

(
|Xh|, |Xt+h −Xt|

∣∣G)) . (5.1)

We recall that Xt = WIt and the process (It)t≥0 is G-measurable and independent of the
process (Wt)t≥0. It follows that, conditionally on (It)t≥0, the process (Xt)t≥0 has indepen-
dent increments, hence the second term in the right hand side of (5.1) vanishes, because
Cov(|Xh|, |Xt+h − Xt||G) = 0 a.s.. For fixed h, from the equality in law Xh = WIh ∼√
IhW1 it follows that E(|Xh||G) = c1

√
Ih, where c1 = E(|W1|) =

√
2/π. Analogously

E(|Xt+h −Xt||G) =
√

2/π
√
It+h − It and (5.1) reduces to

Cov(|Xh|, |Xt+h −Xt|) =
2

π
Cov

(√
Ih,
√
It+h − It

)
. (5.2)

Recall the definitions (2.1) and (2.2) of the variabes i(t) and It. We now claim that we
can replace

√
It+h − It by

√
It+h − It 1{T ∩(h,t]=∅} in (5.2). In fact from (2.2) we can write

It+h − It = σ2
i(t+h)(t+ h− τi(t+h))

2D +

i(t+h)∑
k=i(t)+1

σ2
k−1(τk − τk−1)2D − σ2

i(t)(t− τi(t))
2D ,

where we agree that the sum in the right hand side is zero if i(t + h) = i(t). This shows
that (It+h − It) is a function of the variables τk, σk with index i(t) ≤ k ≤ i(t + h).
Since {T ∩ (h, t] 6= ∅} = {τi(t) > h}, this means that

√
It+h − It 1{T ∩(h,t]6=∅} is G(h,t+h]-

measurable, hence independent of
√
Ih, which is clearly G(−∞,h]-measurable. This shows

that Cov(
√
Ih,
√
It+h − It 1{T ∩(h,t] 6=∅}) = 0, therefore from (5.2) we can write

Cov(|Xh|, |Xt+h −Xt|) =
2

π
Cov

(√
Ih,
√
It+h − It 1{T ∩(h,t]=∅}

)
. (5.3)

Now we decompose this last covariance as follows:

Cov
(√

Ih,
√
It+h − It 1{T ∩(h,t]=∅} = E

[(√
Ih − E

(√
Ih
))√

It+h − It 1{T ∩(h,t]=∅}

]
= E

[(√
Ih − E

(√
Ih
))√

It+h − It 1{T ∩(0,t+h]=∅}

]
+ E

[(√
Ih − E

(√
Ih
))√

It+h − It 1{T ∩(h,t]=∅}1{T ∩([0,h]∪(t,t+h]) 6=∅}

] (5.4)

We deal separately with the two terms in the r.h.s. of (5.4). The first gives the dominant
contribution. To see this, observe that, on {T ∩ (0, t+ h] = ∅}

Ih = σ2
0

[
(h− τ0)2D − (−τ0)2D

]
and

It+h − It = σ2
0

[
(t+ h− τ0)2D − (t− τ0)2D

]
.
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Since both σ2
0

[
(h− τ0)2D − (−τ0)2D

]
and σ2

0

[
(t+ h− τ0)2D − (t− τ0)2D

]
are independent

of {T ∩ (0, t+ h] = ∅}, we have

E
[(√

Ih − E
(√

Ih
))√

It+h − It 1{T ∩(0,t+h]=∅}

]
= E

[(
σ0

√
(h− τ0)2D − (−τ0)2D − E

(√
Ih
))

σ0

√
(t+ h− τ0)2D − (t− τ0)2D 1{T ∩(0,t+h]=∅}

]
= e−λ(t+h)E

[(
σ0

√
(h− τ0)2D − (−τ0)2D − E

(√
Ih
))

σ0

√
(t+ h− τ0)2D − (t− τ0)2D

]
= e−λ(t+h)

{
Cov

(
σ0

√
(h− τ0)2D − (−τ0)2D, σ0

√
(t+ h− τ0)2D − (t− τ0)2D

)
+

[
E

(
σ0

√
(h− τ0)2D − (−τ0)2D

)
− E

(√
Ih
)]
E

(
σ0

√
(t+ h− τ0)2D − (t− τ0)2D

)}
.

(5.5)

Since δ−1((δ + x)2D − x2D) ↑ 2Dx2D−1 as δ ↓ 0, by monotone convergence we obtain

lim
h→0

1

h
Cov

(
σ0

√
(h− τ0)2D − (−τ0)2D, σ0

√
(t+ h− τ0)2D − (t− τ0)2D

)
= 2DCov

(
σ0(−τ0)D−1/2, σ0(t− τ0)D−1/2

)
= 2Dλ1−2DCov

(
σ0S

D−1/2, σ0(λt+ S)D−1/2
)

= 2Dλ1−2Dφ(λt),

(5.6)

with S := λ(−τ0) ∼ Exp(1) and φ is defined in (2.16). Similarly

lim
h→0

1√
h
E

(
σ0

√
(t+ h− τ0)2D − (t− τ0)2D

)
=
√

2DE
(
σ0(t− τ0)D−1/2

)
< +∞. (5.7)

Therefore, if we show that

lim
h→0

E

(√
Ih
h

)
=
√

2DE
(
σ0(−τ0)D−1/2

)
(5.8)

using (5.5), (5.6), (5.7), we have

lim
h→0

1

h
E
[(√

Ih − E
√
Ih

)√
It+h − It 1{T ∩(0,t+h] = ∅}

]
= 2Dλ1−2Dφ(λt) (5.9)

To complete the proof of (5.9), we are left to show (5.8). But this is a nearly immediate
consequence of Theorem 6: indeed, using (2.13) and the fact that q∗ > 1,

E
√
Ih =

1

E
√
|W1|

E(|Xh|) =
C1

E|W1|
√
h+ o(

√
h) =

√
2DE

(
σ0(−τ0)D−1/2

)√
h+ o(

√
h) .

The proof is now completed if we show that the second term in (5.4) is negligible, i.e. it is

o(h). By Cauchy-Schwarz inequality and the simple fact that
(√
Ih − E

√
Ih
)2 ≤ Ih +E(Ih)

E
[(√

Ih − E
√
Ih

)√
It+h − It 1{T ∩(h,t]=∅}1{T ∩((0,h]∪(t,t+h])6=∅}

]
≤
(
E

[(√
Ih − E

√
Ih

)2
(It+h − It)

]
P (T ∩ ((0, h] ∪ (t, t+ h]) 6= ∅)

)1/2

≤ (E [(Ih + E(Ih)) (It+h − It)]P (T ∩ ((0, h] ∪ (t, t+ h]) 6= ∅))1/2

≤
(
2E

[
I2
h

]
P (T ∩ ((0, h] ∪ (t, t+ h]) 6= ∅)

)1/2
=
(
2E

[
I2
h

])1/2√
2λh .

(5.10)
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By Theorem 6, E
[
I2
h

]
is of order h2 if 4 < q∗, and of order h4D+1 if 4 > q∗, with a logarithmic

correction for q∗ = 4. In both cases
(
E
[
I2
h

])1/2√
2λh = o(h), and the proof is completed. �

6. Basic properties of the model

In this Section we start by proving the properties (A)-(B)-(C)-(D) stated in section 2.2.
Then we provide some connections between the tails of σ and those of Xt, also beyond the
equivalence stated in (2.4). Finally, we establish a mixing property that yields relation (2.7).
One of the proofs is postponed to the Appendix.

We denote by G the σ-field generated by the whole process (It)t≥0, which coincides with
the σ-field generated by the sequences T = {τk}k≥0 and Σ = {σk}k≥0.

Proof of property (A). We first focus on the process (It)t≥0, defined in (2.2). For h > 0 let
T h := T − h and denote the points in T h by τhk = τk − h. As before, let τh

ih(t)
be the largest

point of T h smaller that t, i.e., ih(t) = i(t+ h). Recalling the definition (2.2), we can write

It+h − Ih = σ2
ih(t)

(
t− τhih(t)

)2D
+

ih(t)∑
k=ih(0)+1

σ2
k−1

(
τhk − τhk−1

)2D
− σ2

ih(0)

(
−τhih(0)

)2D
,

where we agree that the sum in the right hand side is zero if ih(t) = ih(0). This relation
shows that (It+h − Ih)t≥0 and (It)t≥0 are the same function of the two random sets T h and
T . Since T h and T have the same distribution (both are Poisson point processes on R with
intensity λ), the processes (It+h − Ih)t≥0 and (It)t≥0 have the same distribution too.

We recall that G is the σ-field generated by the whole process (It)t≥0. From the definition
Xt = WIt and from the fact that Brownian motion has independent, stationary increments,
it follows that for every Borel subset A ⊆ R[0,+∞)

P (Xh+· −Xh ∈ A) = E
[
P
(
WIh+· −WIh ∈ A | G

)]
= P (WI· ∈ A) = P (X· ∈ A) ,

where we have used the stationarity property of the process I. Thus the processes (Xt)t≥0 and
(Xh+t−Xh)t≥0 have the same distribution, which implies stationarity of the increments. �

Proof of property (B). Note that E(|Xt|q) = E(|WIt |q) = E(|It|q/2)E(|W1|q), by the inde-
pendence of W and I and the scaling properties of Brownian motion. We are therefore left
with showing that

E(|It|q/2) <∞ ⇐⇒ E(σq) <∞ . (6.1)

The implication “⇒” is easy: by the definition (2.2) of the process I we can write

E(|It|q/2) ≥ E(|It|q/2 1{i(t)=0}) = E(σq0)E(|(t− τ0)2D − (−τ0)2D|q/2)P (i(t) = 0) ,

therefore if E(σq) =∞ then also E(|It|q/2) =∞.
The implication “⇐” follows immediately from the bounds (4.13) and (4.14), which hold

also without the indicator 1{i(h)≥2}. �

Proof of property (C). Observe first that I ′s := d
dsIs > 0 a.s. and for Lebesgue–a.e. s ≥ 0.

By a change of variable, we can rewrite the process (Bt)t≥0 defined in (2.6) as

Bt =

∫ It

0

1√
I ′(I−1(u))

dWu =

∫ t

0

1√
I ′s

dWIs =

∫ t

0

1√
I ′s

dXs ,
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which shows that relation (2.5) holds true. It remains to show that (Bt)t≥0 is indeed a
standard Brownian motion. Note that

Bt =

∫ It

0

√
(I−1)′(u) dWu .

Therefore, conditionally on G (the σ-field generated by (It)t≥0), (Bt)t≥0 is a centered Gauss-
ian process — it is a Wiener integral — with conditional covariance given by

Cov(Bs, Bt | G) =

∫ min{Is,It}

0
(I−1)′(u) du = min{s, t} .

This shows that, conditionally on G, (Bt)t≥0 is a Brownian motion. Therefore, it is a fortiori
a Brownian motion without conditioning. �

Proof of property (D). The assumption E(σ2) < ∞ ensures that E(|Xt|2) < ∞ for all
t ≥ 0, as we have already shown. Let us now denote by FXt = σ(Xs, s ≤ t) the natural
filtration of the process X. We recall that G denotes the σ-field generated by the whole
process (It)t≥0 and we denote by FXt ∨ G the smallest σ-field containing FXt and G. Since
E(WIt+h − WIt |FXt ∨ G) = 0 for all h ≥ 0, by the basic properties of Brownian motion,
recalling that Xt = WIt we obtain

E(Xt+h|FXt ∨ G) = Xt + E(WIt+h −WIt |FXt ∨ G) = Xt.

Taking the conditional expectation with respect to FXt on both sides, we obtain the mar-
tingale property for (Xt)t≥0. �

Let us state a proposition, proved in Appendix A, that relates the exponential moments
of σ to those of Xt. We recall that, when our model is calibrated to real time series, like the
DJIA, the “observable tails” of Xt are quite insensitive to the details of the distribution of
σ, cf. Remarks 3 and 5.

Proposition 11. Regardless of the distribution of σ, for every q > (1−D)−1 we have

E [exp (γ|Xt|q)] =∞ , ∀t > 0 , ∀γ > 0 . (6.2)

On the other hand, for all q < (1−D)−1 and t > 0 we have

E [exp (γ|Xt|q)] <∞ ∀γ > 0 ⇐⇒ E
[
exp

(
ασ

2q
2−q
)]

<∞ ∀α > 0 , (6.3)

and the same relation holds for q = (1−D)−1 provided D < 1
2 .

Note that (1 −D)−1 ∈ (1, 2], because D ∈ (0, 1
2 ], so that for D < 1

2 the distribution of Xt

has always tails heavier than Gaussian.

We finally show a mixing property for the increments of our process. In what follows, for
an interval I ⊆ [0,+∞), we let

FDI := σ (Xt −Xs : s, t ∈ I)

to denote the σ-field generated by the increments in I of the process X.

Proposition 12. Let I = [a, b), J = [c, d), with 0 ≤ a < b ≤ c < d. Then, for every A ∈ FDI
and B ∈ FDJ

|P (A ∩B)− P (A)P (B)| ≤ e−λ(c−b) . (6.4)

As a consequence, equation (2.7) holds true almost surely and in L1, for every measurable
function F : Rk → R such that E[|F (Xb1 −Xa1 , . . . , Xbk −Xak)|] < +∞.
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Proof. We recall that T denotes the set {τk : k ∈ Z} and, for I ⊆ R, GI denotes the σ-algebra
generated by the family of random variables (τk1{τk∈I}, σk1{τk∈I})k≥0, where (σk)k≥0 is the
sequence of volatilities. We introduce the G[b,c)-measurable event

Γ := {T ∩ [b, c) 6= ∅}.
(We recall that the σ-field GI was defined at the beginning of section 5.) We claim that, for
A ∈ FDI , B ∈ FDJ , we have

P (A ∩B ∩ Γ) = P (A)P (B ∩ Γ). (6.5)

To see this, the key is in the following two remarks.

• FDI and FDJ are independent conditionally on G = GR. This follows immediately from
the independence of W and (It). As a consequence, P (A∩B|G) = P (A|G)P (B|G) a.s..

• Conditionally to G, the family of random variables (Xt − Xs)s,t∈[c,d) is a Gaussian
process whose covariances are measurable with respect to the σ-field generated by
the random variables {It − Ic : t ∈ (c, d)}. In particular, P (B|G) is measurable with
respect to this σ-field. Similarly for [a, b) in place of [c, d). Note also that the increment
It − Ic is a measurable function of the random variables

{(τk1{τk∈I}, σk1{τk∈I}) : k ≥ 0} ∪ {(σi(c), τi(c))}.
It follows that the random variable (P (B|G)1Γ) is G(b,d) measurable, and it is therefore
independent of P (A|G), which is G(−∞,b] measurable.

Thus we have

P (A ∩B ∩ Γ) = E(P (A ∩B|G)1Γ) = E(P (A|G)P (B|G)1Γ) = P (A)P (B ∩ Γ)

where the two remarks above have been used. Thus (6.5) is established. Finally

|P (A ∩B)− P (A)P (B)|
= |P (A ∩B ∩ Γ) + P (A ∩B ∩ Γc)− P (A)P (B ∩ Γ)− P (A)P (B ∩ Γc)|
= |P (A ∩B ∩ Γc)− P (A)P (B ∩ Γc)| = |P (A ∩B|Γc)− P (A|Γc)P (B|Γc)|P (Γc)

≤ P (Γc) = e−λ(c−b) .

We finally show that equation (2.7) holds true almost surely and in L1, for every measur-
able function F : Rk → R such that E[|F (Xb1 −Xa1 , . . . , Xbk −Xak)|] < +∞. Consider the

Rk-valued stochastic process ξ = (ξn)n∈N defined by

ξn := (Xnδ+b1 −Xnδ+a1 , . . . , Xnδ+bk −Xnδ+ak) ,

for fixed δ > 0, k ∈ N and (a1, b1), . . . , (ak, bk) ⊆ (0,∞). The process ξ is stationary, because
we have proven in section 6 that X has stationary increments. Moreover, inequality (6.4)
implies that ξ is mixing, and therefore ergodic (see e.g. [30], Ch. 5, §2, Definition 4 and
Theorem 2). The existence of the limit in (2.7), both a.s. and in L1, is then a consequence
of the classical Ergodic Theorem, (see e.g. [30], Ch. 5, §3, Theorems 1 and 2). �

7. Estimation and data analysis

In this Section we present the main steps that led to the calibration of the model to the
DJIA over a period of 75 years; the essential results have been sketched in Section 2.4. We
point out that the agreement with the S&P 500, FTSE 100 and Nikkei 225 indexes is very
good as well. A systematic treatment of other time series, beyond financial indexes, still has
to be done, but some preliminary analysis of single stocks shows that our model fits well
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some but not all of them. It would be interesting to understand which of the properties we
have mentioned are linked to aggregation of several stock prices, as in the DJIA.

The data analysis, the simulations and the plots have been obtained with the software
R [28]. The code we have used is publicly available on the web page http://www.matapp.

unimib.it/~fcaraven/c.html.

7.1. Overview. For the numerical comparison of our process (Xt)t≥0 with the DJIA time
series, we have decided to focus on the following quantities:

(a) The multiscaling of moments, cf. Corollary 7.

(b) The volatility autocorrelation decay, cf. Corollary 9.

Roughly speaking, the idea is to compute empirically these quantities on the DJIA time
series and then to compare the results with the theoretical predictions of our model. This is
justified by the ergodic properties of the increments of our process (Xt)t≥0, cf. equation (2.7).

The first problem that one faces is the estimation of the parameters of our model: the two
scalars λ ∈ (0,∞), D ∈ (0, 1

2 ] and the distribution ν of σ. This in principle belongs to an

infinite dimensional space, but in a first time we focus on the moments E(σ) and E(σ2). In
order to estimate (D,λ,E(σ), E(σ2)), we take into account four significant quantities that
depend only on these parameters:

• the multiscaling coefficients C1 and C2 (see (2.13));

• the multiscaling exponent A(q) (see (2.14));

• the volatility autocorrelation function ρ(t) (see (2.17)).

We consider a natural loss functional L = L(D,λ,E(σ), E(σ2)) which measures the distance
between these theoretical quantities and the corresponding empirical ones, evaluated on the
DJIA time series, see (7.3) below. We then define the estimator for (D,λ,E(σ), E(σ2)) as
the point at which L attains its overall minimum, subject to the constraint E(σ2) ≥ (E(σ))2.

It turns out that the estimated values are such that E(σ2) ' (E(σ))2, that is σ is
nearly constant and the estimated parameters completely specify the model. (The constraint
E(σ2) ≥ (E(σ))2 is not playing a relevant role: the unconstrained minimum nearly coincides
with the constrained one.) Thus, the problem of determining the distribution of σ beyond
its moments E(σ) and E(σ2) does not appear in the case of the DJIA. More generally, even

we had found V̂ ar(σ) := Ê(σ2)− (Ê(σ))2 > 0 and hence σ is not constant, fine details of its
distribution ν beyond the first two moments give a negligible contribution to the properties
that are relevant for application to real data series, as we observed in Remark 10.

7.2. Estimation of the parameters D,λ,E(σ), E(σ2). Let us fix some notation: the
DJIA time series will be denoted by (si)0≤i≤N (where N = 18848) and the corresponding
detrended log-DJIA time series will be denoted by (xi)0≤i≤N :

xi := log(si)− d(i) ,

where d(i) := 1
250

∑i−1
k=i−250 log(si) is the mean log-DJIA price on the previous 250 days.

(Other reasonable choices for d(i) affect the analysis only in a minor way.)
The theoretical scaling exponent A(q) is defined in (2.14) while the multiscaling constants

C1 and C2 are given by (2.13) for q = 1 and q = 2. Since q∗ = (1
2 −D)−1 > 2 (we recall that

0 ≤ D ≤ 1
2), we can write more explicitly

C1 =
2
√
D Γ(1

2 +D)E(σ)λ1/2−D
√
π

, C2 = 2D Γ(2D)E(σ2)λ1−2D . (7.1)

http://www.matapp.unimib.it/~fcaraven/c.html
http://www.matapp.unimib.it/~fcaraven/c.html
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Defining the corresponding empirical quantities requires some care, because the DJIA data
are in discrete-time and therefore no h ↓ 0 limit is possible. We first evaluate the empirical
q-moment m̂q(h) of the DJIA log-returns over h days, namely

m̂q(h) :=
1

N + 1− h

N−h∑
i=0

|xi+h − xi|q .

By Theorem 6, the relation log m̂q(h) ∼ A(q)(log h) + log(Cq) should hold for h small.
By plotting (log m̂q(h)) versus (log h) one finds indeed an approximate linear behavior, for
moderate values of h and when q is not too large (q . 5). By a standard linear regression
of (log m̂q(h)) versus (log h) for h = 1, 2, 3, 4, 5 days we therefore determine the empirical

values of A(q) and Cq on the DJIA time series, that we call Â(q) and Ĉq.
For what concerns the theoretical volatility autocorrelation, Corollary 9 and the station-

arity of the increments of our process (Xt)t≥0 yield

ρ(t) := lim
h↓0

ρ(|Xh|, |Xt+h −Xt|) =
2

π V ar(σ |W1|SD−1/2)
e−λt φ(λt) , (7.2)

where S ∼ Exp(1) is independent of σ and W1 and where the function φ(·) is given by

φ(x) = V ar(σ)E(SD−1/2 (S + x)D−1/2) + E(σ)2Cov(SD−1/2, (S + x)D−1/2) ,

cf. (2.18). Note that, although φ(·) does not admit an explicit expression, it can be easily
evaluated numerically. For the analogous empirical quantity, we define the empirical DJIA
volatility autocorrelation ρ̂h(t) over h-days as the sample correlation coefficient of the two
sequences (|xi+h − xi|)0≤i≤N−h−t and (|xi+h+t − xi+t|)0≤i≤N−h−t. Since no h ↓ 0 limit can
be taken on discrete data, we are going to compare ρ(t) with ρ̂h(t) for h = 1 day.

We can then define a loss functional L as follows:

L(D,λ,E(σ), E(σ2)) =
1

2

{(
Ĉ1

C1
− 1

)2

+

(
Ĉ2

C2
− 1

)2}
+

1

20

20∑
k=1

(
Â(k/4)

A(k/4)
− 1

)2

+
400∑
n=1

e−n/T(∑400
m=1 e

−m/T
)( ρ̂1(n)

ρ(n)
− 1

)2

,

(7.3)

where the constant T controls a discount factor in long-range correlations. Of course, different
weights for the four terms appearing in the functional could be assigned. We fix T = 40 (days)

and we define the estimator (D̂, λ̂, Ê(σ), Ê(σ2)) of the parameters of our model as the point
where the functional L attains its overall minimum, that is

(D̂, λ̂, Ê(σ), Ê(σ2)) := arg min
D∈(0, 1

2
], λ, E(σ), E(σ2)∈(0,∞)

such that E(σ2)≥(E(σ))2

{
L(D,λ,E(σ), E(σ2))

}
,

where the constraint E(σ2) ≥ (E(σ))2 is due to V ar(σ) = E(σ2)− (E(σ))2 ≥ 0. We expect
that such an estimator has good properties, such as asymptotic consistency and normality
(we omit a proof of these properties, as it goes beyond the spirit of this paper).

We have then proceeded to the numerical study of the functional L, which appears to
be quite regular. With the help of the software Mathematica [26], we have obtained the
estimates for the parameters, given already in (2.20):

D̂ ' 0.16, λ̂ ' 0.00097, Ê(σ) ' 0.108, Ê(σ2) ' 0.0117 '
(
Ê(σ)

)2
(7.4)
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7.3. Graphical comparison. Having found that Ê(σ2) ' (Ê(σ))2, the estimated variance
of σ is equal to zero, that is σ is a constant. In particular, the model is completely specified
and we can compare some quantities, as predicted by our model, with the corresponding
numerical ones evaluated on the DJIA time series. The graphical results have been already
described in section 2.4 and show a very good agreement, cf. Figure 3 for the multiscaling
of moments and the volatility autocorrelation and Figure 4 for the log-return distribution.

Let us give some details about Figure 4. The theoretical distribution pt(·) := P (Xt ∈ ·) =
P (Xt−X0 ∈ ·) of our model, for which we do not have an analytic expression, can be easily
evaluated numerically via Monte Carlo simulations. The analogous quantity evaluated for
the DJIA time series is the empirical distribution p̂t(·) of the sequence (xi+t − xi)0≤i≤N−t:

p̂t(·) :=
1

N + 1− t

N−t∑
i=0

δxi+t−xi(·) . (7.5)

In Figure 4(a) we have plotted the bulk of the distributions pt(·) and p̂t(·) for t = 1 (daily
log-returns) or, more precisely, the corresponding densities, in the range [−3ŝ,+3ŝ], where
ŝ ' 0.0095 is the standard deviation of p̂1(·) (i.e., the empirical standard deviation of the
daily log returns evaluated on the DJIA time series). In Figure 4(b) we have plotted the tail
of p1(·), that is the function z 7→ P (X1 > z) = P (X1 < −z) (note that Xt ∼ −Xt for our

model) and the right and left empirical tails R̂(z) and L̂(z) of p̂1(·), defined for z ≥ 0 by

L̂(z) :=
#{1 ≤ i ≤ N : xi − xi−1 < −z}

N
, R̂(z) :=

#{1 ≤ i ≤ N : xi − xi−1 > z}
N

,

in the range z ∈ [ŝ, 12ŝ].

7.4. Variability of estimators. In this paper we have identified relatively rare but dra-
matic shocks in the volatility as the main common source of various stylized facts such
as multiscaling, autocorrelations and heavy tails. As observed in Remark 10, the expected
number of shocks in a period of 75 years is about 18, which is a rather low number; this
means that empirical averages may be not very close to their ergodic limit or, in different
words, estimators should have non-negligible variance. A way to detect this is to simulate
data from our model for 75 years, and then compute estimators using data in different sub-
periods, that we have chosen of 30 years. Figure 5(a) and 5(b) show indeed a considerable
variability of the values of the estimators for the multiscaling exponent and the volatility
autocorrelations, when computed in different subperiods. We have then repeated the same
computations on the DJIA time series, see Figure 5(c) and 5(d), and we have observed a
similar variability. We regard this as a significant test for this model.

Remark 13. We point out that, among the different quantities that we have considered,

the scaling exponent Â(q) appears to be the most sensitive. For instance, if instead of the
opening prices one took the closing prices of the DJIA time series (over the same time period

1935-2009), one would obtain a different (though qualitatively similar) graph of Â(q).

Remark 14. The multiscaling of empirical moments has been observed in several financial
indexes in [17], where it is claimed that data provide solid arguments against model with
linear or piecewise linear scaling exponents. Note that the theoretical scaling exponent A(q)
of our model is indeed piecewise linear, cf. (2.14). However, Figure 5(a) shows that the

empirical scaling exponent Â(q) evaluated on data simulated from our model “smooths out”
the change of slope, yielding graphs that are analogous to those obtained for the DJIA time
series, cf. Figure 5(c). This shows that the objection against models with piecewise linear
A(q), raised in [17], cannot apply to the model we have proposed.
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(b) Volatility autocorrelation
in subperiods of 30 years:
sumilated data.
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(c) Multiscaling exponent in
subperiods of 30 years: DJIA
data.
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(d) Volatility autocorrelation
in subperiods of 30 years:
DJIA data.

Figure 5. Variability of estimators in subperiods of 30 years.

Empirical evaluation of the observables Â(q) and ρ̂1(t) in subperiods or 30 years
for a 75-years-long time series, sampled from our model (Xt)t≥0 ( (a) and (b)) and
from the DJIA time series ((c) and (d))

Appendix A. Proof of Proposition 11

We first need two simple technical lemmas.

Lemma 15. For 0 < q < 2, consider the function ϕq : [0,+∞)→ [0,+∞) define by

ϕq(β) :=

∫ +∞

−∞
eβ|x|

q− 1
2
x2 dx.
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Then there are constants C1, C2 > 0, that depend on q, such that for all β > 0

C1e
C1β

2
2−q ≤ ϕq(β) ≤ C2e

C2β
2

2−q
. (A.1)

Proof. We begin by observing that it is enough to establish the bounds in (A.1) for β large

enough. Consider the function of positive real variable f(r) := eβr
q− 1

2
r2 . It is easily checked

that f is increasing for 0 ≤ r ≤ (βq)
1

2−q . Thus

ϕq(β) ≥
∫ (βq)

1
2−q

1
2

(βq)
1

2−q
f(r) dr ≥ 1

2
(βq)

1
2−q f

(
1

2
(βq)

1
2−q

)
=

1

2
(βq)

1
2−q exp

[
c(q)β

2
2−q
]
,

with c(q) := 1
2q q

q
2−q − 1

8q
2

2−q > 0. The lower bound in (A.1) easily follows for β large.

For the upper bound, by direct computation one observes that f(r) ≤ e−
1
4
r2 for r >

(4β)
1

2−q . We have:

ϕq(β) ≤
∫
|x|≤(4β)

1
2−q

f(|x|) dx+

∫
|x|>(4β)

1
2−q

e−
1
4
x2dx ≤ 2(4β)

1
2−q ‖f‖∞ +

∫ +∞

−∞
e−

1
4
x2dx .

Since ‖f‖∞ = f((βq)
1

2−q ) = exp
[
C(q)β

2
2−q
]

for a suitable C(q), also the upper bound

follows, for β large. �

Lemma 16. Let X1, X2, . . . , Xn be independent random variables uniformly distributed in
[0, 1], and U1 < U2 < . . . < Un be the associated order statistics. For n ≥ 2 and k = 2, . . . , n,
set ξk := Uk − Uk−1.Then, for every ε > 0

lim
n→+∞

P

(∣∣∣∣{k ∈ {2, . . . , n} : ξk >
1

n1+ε

}∣∣∣∣ ≥ n1−ε
)

= 1.

Proof. This is a consequence of the following stronger result: for every x > 0, as n→∞ we
have the convergence in probability

1

n

∣∣∣{k ∈ {2, . . . , n} : ξk >
x

n

}∣∣∣ −→ e−x ,

see [33] for a proof. �

Proof of Proposition 11. Since Xt = WIt and
√
ItW1 have the same law, we can write

E
[
eγ|Xt|

q
]

= E
[
exp

(
γI

q/2
t |W1|q

)]
.

We begin with the proof of (6.3), hence we work in the regime q < (1 − D)−1, or q =
(1−D)−1 and D < 1

2 ; in any case, q < 2. We start with the “⇐” implication. Since It and
W1 are independent, it follows by Lemma 15 that

E
[
exp

(
γI

q/2
t |W1|q

)]
≤ CE

[
exp

(
δI

q
2−q
t

)]
, (A.2)

for some C, δ > 0. For the moment we work on the event {i(t) ≥ 1}. It follows by the basic
bound (4.10) that

It ≤
i(t)∑
k=0

ξ2D
k σ2

k , (A.3)
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where we set

ξk :=


τ1 for k = 0

τk+1 − τk for 1 ≤ k ≤ i(t)− 1

t− τi(t) for k = i(t)

Note that
∑i(t)

k=0 ξk = t. By applying Hölder inequality to (A.3) with exponents p = 1
2D ,

p′ = 1
1−2D , we obtain:

It ≤ t2D

 i(t)∑
k=0

σ
2

1−2D

k

1−2D

.

By assumption q ≤ 1
1−D , which is the same as (1− 2D) q

2−q ≤ 1. Thus

I
q

2−q
t ≤ t

2Dq
2−q

 i(t)∑
k=0

σ
2

1−2D

k

(1−2D) q
2−q

≤ t
2Dq
2−q

i(t)∑
k=0

σ
2q
2−q
k . (A.4)

Now observe that if i(t) = 0 we have It = σ2
0[(t − τ0)2D − (−τ0)2D] ≤ σ2

0 t
2D, hence (A.4)

holds also when i(t) = 0. Therefore, by (A.2)

E
[
eγ|Xt|

q
]
≤ CE

exp

δ t 2Dq2−q

i(t)∑
k=0

σ
2q
2−q
k

 = C E
[
ρi(t)+1

]
, (A.5)

where we have set

ρ = ρt := E

[
exp

(
δ t

2Dq
2−q σ

2q
2−q
0

)]
.

Therefore, if ρ < ∞, the right hand side of (A.5) is finite, because i(t) ∼ Po(λt) has finite
exponential moments of all order. This proves the “⇐” implication in (6.3).

The “⇒” implication in (6.3) is simpler. By the lower bound in Lemma 15 we have

E
[
eγ|Xt|

q
]

= E
[
exp

(
γI

q/2
t |W1|q

)]
≥ CE

[
exp

(
δI

q
2−q
t

)]
, (A.6)

for suitable C, δ > 0. We note that

E

[
exp

(
δI

q
2−q
t

)]
≥ E

[
exp

(
δI

q
2−q
t

)
1{i(t)=0}

]
= E

[
exp

(
δ
[
(t− τ0)2D − (−τ0)2D

] q
2−q σ

2q
2−q
0

)]
P (i(t) = 0) .

(A.7)

Under the condition

E
[
exp

(
ασ

2q
2−q
)]

= +∞ ∀α > 0,

the last expectation in (A.7) is infinite, since
[
(t− τ0)2D − (−τ0)2D

]
> 0 almost surely and

is independent of σ0. Looking back at (A.6), we have proved the “⇒” implication in (6.3).

Next we prove (6.2), hence we assume that q > (1 −D)−1. Consider first the case q < 2
(which may happen only for D < 1

2). By (A.6)

E
[
eγ|Xt|

q
]
≥ CE

[
exp

(
δI

q
2−q
t

)]
.
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We note that, by the definition (2.1) of It, we can write

It ≥
i(t)∑
k=2

σ2
k−1(τk − τk−1)2D , (A.8)

where we agree that the sum is zero if i(t) < 2. For n ≥ 0, we let Pn to denote the conditional
probability P ( · |i(t) = n) and En the corresponding expectation. Note that, under Pn, the
random variables (τk − τk−1)nk=2 have the same law of the random variables (ξk)

n
k=2 in

Lemma 16, for n ≥ 2. Consider the following events:

An := {σ2
k ≥ a, ∀k = 2, . . . , n} , Bn :=

{∣∣∣∣{k = 2, . . . , n : ξk >
1

n1+ε

}∣∣∣∣ ≥ n1−ε
}
,

where a > 0 is such that ν([a,+∞)) =: ρ > 0 and ε > 0 will be chosen later. Note that
Pn(An) = ρn−1 while Pn(Bn) → 1 as n → +∞, by Lemma 16. In particular, there is c > 0
such that Pn(Bn) ≥ c for every n. Plainly, An and Bn are independent under Pn. We have

ψ(n) := En

[
exp

(
δI

q
2−q
t

)]
≥ En

[
exp

(
δI

q
2−q
t

)
1An∩Bn

]
≥ c ρn−1 exp

[
δa

q
2−q

(
1

n1+ε

)2D q
2−q

n
(1−ε) q

2−q

]
= c ρn−1 exp

[
δa

q
2−qn

(1−2D−ε(1+2D)) q
2−q
]

(A.9)

Note that q > 1
1−D is equivalent to (1−2D) q

2−q > 1, therefore ε can be chosen small enough

so that b := (1− 2D − ε(1 + 2D)) q
2−q > 1. It then follows by (A.9) that ψ(n) ≥ d exp(dnb)

for every n ∈ N, for a suitable d > 0. Therefore

E

[
exp

(
δI

q
2−q
t

)]
= E[ψ(i(t))] = +∞ ,

because i(t) ∼ Po(λt) and hence E[exp(d i(t)b)] =∞ for all d > 0 and b > 1.
Next we consider the case q ≥ 2. Note that

E
[
eγ|Xt|

q
]

= E
[
exp

(
γI

q/2
t |W1|q

)]
, (A.10)

hence if q > 2 we have E
[
eγ|Xt|

q]
=∞, because E[exp(c|W1|q)] =∞ for every c > 0, It > 0

almost surely and It is independent of W1. On the other hand, if q = 2 we must have D < 1
2

(recall that we are in the regime q > (1−D)−1) and the steps leading to (A.9) have shown

that in this case It is unbounded. It then follows again from (A.10) that E[eγ|Xt|
2
] =∞. �

Appendix B. The model of Baldovin and Stella

Let us briefly discuss the model proposed by F. Baldovin and A. Stella [7, 31], motivated
by renormalization group arguments from statistical physics. They first introduce a process
(Yt)t≥0 which satisfies the scaling relation (1.3) for a given function g, that is assumed to
be even, so that its Fourier transform ĝ(u) :=

∫
R e

iuxg(x)dx is real (and even). The process
(Yt)t≥0 is defined by specifying its finite dimensional laws: for t1 < t2 < · · · < tn the joint
density of Yt1 , Yt2 , . . . , Ytn is given by

p(x1, t1;x2, t2; . . . ;xn, tn) = h

(
x1√
t1
,
x2 − x1√
t2 − t1

, . . . ,
xn − xn−1√
tn − tn−1

)
, (B.1)
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where h is the function whose Fourier transform ĥ is given by

ĥ(u1, u2, . . . , un) := ĝ
(√

u2
1 + . . .+ u2

n

)
. (B.2)

Note that if g is the standard Gaussian density, then (Yt)t≥0 is the ordinary Brownian motion.
For a non Gaussian g, the expression in (B.2) is not necessarily the Fourier transform of a
probability on Rn, so that some care is needed (we come back to this point in a moment).
However, it is clear from (B.1) that the increments of the process (Yt)t≥0 corresponding to
time intervals of the same length (that is, for fixed ti+1 − ti) have a permutation invariant
distribution and therefore cannot exhibit any decay of correlations.

For this reason, Baldovin and Stella introduce what is probably the most interesting
ingredient of their construction, namely a special form of time-inhomogeneity. They define it
in terms of finite dimensional distributions, bur it is simpler to give a pathwise construction:
given a sequence of (possibly random) times 0 < τ1 < τ2 < · · · < τn ↑ +∞ and a fixed
0 < D ≤ 1/2, they introduce a new process (Xt)t≥0 defined by

Xt := Yt2D for t ∈ [0, τ1), (B.3)

and more generally

Xt := Y(t−τn)2D+
∑n
k=1(τk−τk−1)2D for t ∈ [τn, τn+1) . (B.4)

For D = 1/2 we have clearly Xt ≡ Yt, while for D < 1/2 the process (Xt)t≥0 is obtained from
(Yt)t≥0 by a nonlinear time-change, that is “refreshed” at each time τn. This transformation
has the effect of amplifying the increments of the process for t immediately after the times
(τn)n≥1, while the increments tend to become small for larger t.

Let us shed some light into the implicit relations (B.1)–(B.2). If a stochastic process
(Yt)t≥0 is to satisfy these relations, it must necessarily have exchangeable increments: by
this we mean (cf. [19, p.1210]) that, setting ∆Y(a,b) := Yb − Ya for short, the distribution
of the random vector (∆YI1+y1 , . . . , ∆YIn+yn) — where the Ij ’s are intervals and yj ’s real
numbers — does not depend on y1, . . . , yn, as long as the intervals y1 + I1, . . . , yn + In
are disjoint. If we make the (very mild) assumption that (Yt)t≥0 has no fixed point of
discontinuity, then a continuous-time version of the celebrated de Finetti’s theorem ensures
that (Yt)t≥0 is a mixture of Lévy processes, cf. Theorem 3 in [19] (cf. also [1]). Actually,
more can be said: since by (1.3) the distribution of the increments of (Yt)t≥0 is isotropic,
i.e., it has spherical symmetry in Rn, by Theorem 4 in [19] the process (Yt)t≥0 is necessarily
a mixture of Brownian motions. This means that we have the following representation:

Yt = σWt, (B.5)

where (Wt)t≥0 is a standard Brownian motion and σ is an independent real random variable
(a random, but time-independent, volatility). Viceversa, if a process (Yt)t≥0 satisfies (B.5),
then, denoting by ν the law of σ, it is easy to check that relations (B.1)–(B.2) hold with

g(x) =

∫
R

1√
2πσ

e−
x2

2σ2 ν(dσ) , (B.6)

or, equivalently,

ĝ(u) =

∫
R
e−

σ2u2

2 ν(dσ) .

This shows that the functions g for which (B.1)–(B.2) provide a consistent family of finite
dimensional distributions are exactly those that may be expressed as in (B.6) for some
probability ν on (0,+∞).
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Note that a path of (B.5) is obtained by sampling independently σ from ν and (Wt)t≥0

from the Wiener measure, hence this path cannot be distinguished from the path of a Brown-
ian motion with constant volatility. In particular, the (possible) correlation of the increments
of the process (Yt)t≥0 cannot be detected empirically, and the same observation applies to
the time-inhomogeneous process (Xt)t≥0 obtained by (Yt)t≥0 through (B.3)–(B.4). In other
words, the processes obtained through this construction have non ergodic increments.

Nevertheless, Baldovin and Stella claim to measure nonzero correlations from their sam-
ples: after estimating the function g and the parameters t0 and D on the DJIA time series,
their simulated trajectories show a good agreement with the clustering of volatility, as well
as with the basic scaling (1.3) and the multiscaling of moments. The explanation of this ap-
parent contradiction is that Baldovin and Stella do not simulate the process (Xt)t≥0 defined
through the above construction, but rather an autoregressive approximation of it. In fact,
besides making a periodic choice of the times τn := nt0, they fix a small time step δ and a
natural number N and they first simulate xδ, x2δ, . . . , xNδ according to the true distribu-
tion of (Xδ, X2δ, . . . , XNδ). Then they compute the conditional distribution of X(N+1)δ given
X2δ = x2δ, X3δ = x3δ, . . . , XNδ = xNδ — thus neglecting xδ — and sample x(N+1)δ from
this distribution. Similarly, x(N+2)δ is sampled from the conditional distribution of X(N+2)δ

given X3δ = x3δ, . . . , XNδ = xNδ, X(N+1)δ = x(N+1)δ, neglecting both xδ and x2δ, and so
on. It is plausible that such an autoregressive procedure may produce an ergodic process.
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