
MODELLI DI POLIMERI E PASSEGGIATE ALEATORIE∗

FRANCESCO CARAVENNA

Sommario. In this talk we describe some probabilistic models of polymer chains
interacting with the environment, that undergo a phase transition between a loca-
lized regime and a delocalized one. We review the known results on the free energy
and on the path properties of the models and we mention the open problems.

1. Introduzione

1.1. Che cos’è un polimero? Un polimero è una grossa molecola costituita da un
gran numero di molecole più piccole, dette monomeri, unite a formare una catena
(cf. Fig. 1). La rilevanza di questa nozione è dovuta all’importanza che i polimeri
rivestono in natura. Sono infatti esempi di polimeri:

• DNA, RNA
• Proteine
• Materie plastiche

Di conseguenza, i polimeri costituiscono da lungo tempo un argomento di ricerca
centrale in chimica, fisica, biologia, . . . In questa conferenza vedremo come anche la
matematica possa essere inclusa in questa lista.

Figura 1. Rappresentazione schematica di una catena polimerica.

Data: 28 febbraio 2008.
∗Testo della conferenza di 30 minuti tenuta al XVIII Congresso dell’Unione Matematica Italiana,

a Bari, il 26 settembre 2007.
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1.2. Polimeri e probabilità. Consideriamo i seguenti processi basilari dalla teoria
della probabilità:

• la passeggiata aleatoria semplice {Sn}n su Zd, definita da

S0 = 0 , Sn =
n∑
i=1

Xi (n ≥ 1) ,

dove gli incrementi {Xi}i sono variabili aleatorie indipendenti e con la stessa
distribuzione P(Xi = ±ek) = 1

2d
, ∀k = 1, . . . , d, dove {ek}k=1,...,d indicano i

versori coordinati;

• la passeggiata aleatoria auto-evitante su Zd: fissato N ∈ N, è definita come la
passeggiata aleatoria semplice {Sn}0≤n≤N condizionata a non visitare alcun
sito più di una volta, cioè condizionata rispetto all’evento {Si 6= Sj ∀i 6=
j, i ≤ N, j ≤ N} (cf. Fig. 2).

Figura 2. Una traiettoria tipica della passeggiata auto-evitante su
Z2 per N = 18.

In che senso questi processi sono legati ai polimeri? Innanzitutto essi possono es-
sere visti come esempi di polimeri astratti, in cui gli incrementi giocano il ruolo dei
monomeri. Ma soprattutto, questi processi sono i mattoni fondamentali con cui è
possibile costruire modelli probabilistici per una descrizione statistica di polimeri in
interazione con l’ambiente, seguendo i principi della Meccanica Statistica. L’idea di
base è che le traiettorie del processo possano modellizzare le configurazioni del poli-
mero. Entriamo più nel dettaglio considerando un esempio specifico, che costituisce
l’oggetto di questa conferenza.

1.3. Il problema del copolimero. Consideriamo un copolimero, cioè un polimero
disomogeneo, i cui monomeri differiscano per una sola caratteristica: possono essere
idrofili o idrofobi. Immergiamo questo copolimero in una soluzione costituita da
acqua e olio, separati da un’interfaccia approssimativamente piatta (cf. Fig. 3). Per
fissare le idee, immaginiamo che i due tipi di monomeri si alternino in qualche modo
lungo la catena e che vi sia una maggioranza di monomeri idrofobi.

La domanda basilare è: qual è il comportamento del copolimero? A priori si
possono immaginare almeno due scenari radicalmente diversi:

• Localizzazione all’interfaccia: il copolimero decide di disporre ciascun mono-
mero (o quantomeno la maggior parte di essi) nel solvente “corretto”, cioè
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Introduzione Modelli periodici Modelli disordinati Che cos’è un polimero?

Qualitative introduction

Copolymer (= inhomogeneous polymer) near a selective interface

Monomers: (+) → hydrophobic (−) → hydrophilic
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Figura 3. Un copolimero, costituito da monomeri idrofobi (+) e
idrofili (−), in prossimità di un’interfaccia che separa acqua e olio.

i monomeri idrofili nell’acqua e quelli idrofobi nell’olio, in modo da massi-
mizzare il guadagno energetico. Dato che i monomeri idrofobi e idrofili si
alternano lungo la catena, per fare ciò il polimero dovrà restare molto vicino
all’interfaccia che separa acqua e olio.

• Delocalizzazione in un solvente: il polimero potrebbe invece decidere di flut-
tuare liberamente nell’olio, dato che i monomeri sono per la maggior parte
idrofobi. Infatti, alla penalizzazione energetica dovuta ai monomeri idrofili
che si trovano nell’olio, si contrappone il guadagno entropico dovuto al fatto
che, non essendo costretto a stare in prossimità dell’interfaccia, il polimero
ha accesso a una porzione molto più ampia dello spazio delle configurazioni.

Quale di questi due scenari prevale? La risposta può dipendere da molte variabili,
tra cui ad esempio le caratteristiche intrinseche del copolimero, la forza dell’intera-
zione con i solventi, la temperatura, . . . Al variare di queste caratteristiche, l’uno
o l’altro scenario può prevalere, dando origine a una transizione di fase. È chiaro
che il meccanismo fondamentale in gioco è la competizione tra energia e entropia.
Il nostro obiettivo è di rendere conto di questa competizione in modo quantitativo,
per mezzo di modelli probabilistici basati su passeggiate aleatorie.

Quale tipo di passeggiata aleatoria è sensato utilizzare per costruire tali modelli?
La scelta più naturale cadrebbe certamente sulle passeggiate auto-evitanti, che per-
mettono di costruire modelli più realistici: infatti il vincolo di non auto-intersecarsi
corrisponde fisicamente al fatto che il polimero occupa un volume. Sfortunatamente,
a dispetto della semplicità della loro definizione, le passeggiate auto-evitanti sono
oggetti matematici estremamente difficili, che costituiscono di per sé un oggetto di
ricerca tuttora molto attivo (si veda la monografia [12]). Se si vogliono modellare
polimeri in interazione con l’ambiente, come nel caso del copolimero sopra descritto,
i modelli costruiti a partire da passeggiate auto-evitanti risultano intrattabili, per lo
meno se si è interessati a ottenere risultati rigorosi.

Modelli matematicamente più trattabili, e tutt’altro che banali, si ottengono inve-
ce a partire da processi più basilari, quali passeggiate aleatorie ordinarie o passeggiate
dirette, in cui una componente cioè è deterministica: un esempio tipico è costituito
dal processo {(n, Sn)}n∈N a valori in Zd+1, dove {Sn}n∈N è la passeggiata aleatoria
semplice su Zd. Questa è esattamente la situazione su cui ci concentreremo in questa
conferenza, nel caso specifico d = 1: considereremo cioè modelli bidimensionali (o,
più precisamente, (1+1)-dimensionali). Vedremo che, a dispetto dell’apparente roz-
zezza della loro definizione, i modelli considerati esibiscono fenomeni interessanti ed
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estremamente ricchi, permettendo una comprensione dei meccanismi che sono alla
base delle transizioni di fase in questo genere di situazioni.

Un elemento chiave del problema del copolimero sopra descritto è la disomogeneità
del sistema, che in questo caso può essere codificata nella successione dei tipi di
monomeri ω = +,−,−, . . . (cf. Fig. 3). Si distinguono due tipi di modelli, a seconda
del modo in cui viene scelta ω:

• modelli periodici, in cui ω è una successione deterministica e periodica, fissata
a priori: questi modelli sono rilevanti da un lato per le applicazioni ai polimeri
sintetici, e dall’altro lato come approssimazione di modelli disordinati;

• modelli disordinati, in cui ω è la realizzazione di un processo aleatorio: questi
modelli sono rilevanti per le applicazioni biologiche.

Per ciascuna di queste classi, descriveremo i risultati noti e i problemi aperti.

2. Modelli periodici

2.1. Definizione. Gli ingredienti fondamentali del modello sono:

• la successione ω ∈ {+1,−1}N periodica dei monomeri, dette anche cariche;
• la lunghezza N ∈ N del polimero;
• i parametri di interazione λ, h ≥ 0;
• la passeggiata aleatoria semplice

({Sn},P) su Z.

Seguendo [2], possiamo definire il modello Pλ,h
N,ω come modificazione della legge P del-

la passeggiata aleatoria semplice, mediante la densità (derivata di Radon-Nikodym)

dPλ,h
N,ω

dP
(S) :=

1

Zλ,h
N,ω

· exp
(
Hλ,h
N,ω(S)

)
dove l’Hamiltoniana (energia) Hλ,h

N,ω è definita da

Hλ,h
N,ω(S) := λ

N∑
n=1

(ωn + h) sign(Sn) ,

mentre Zλ,h
N,ω è la costante di normalizzazione, chiamata funzione di partizione. (Per

praticità di notazione, la nostra energia ha segno opposto rispetto alle convenzioni
della Meccanica Statistica.)

Per una traiettoria illustrativa, si veda la Figura 4. Si noti che il parametro λ ≥ 0
modula la forza globale dell’interazione, e corrisponde fisicamente all’inverso del-
la temperatura assoluta, mentre il parametro h descrive una possibile asimmetria
dell’interazione (senza perdere in generalità, si può assumere che h ≥ 0).

L’idea alla base del modello è che la misura Pλ,h
N,ω descriva la distribuzione statistica

delle configurazioni del polimero, assegnate le “condizioni esterne” ω, λ, h,N . Ciò a
cui siamo interessati sono le proprietà del modello per N →∞, il cosiddetto limite
termodinamico. In analogia con la descrizione euristica data nell’introduzione, si
possono immaginare a priori due possibili scenari per le traiettorie di Pλ,h

N,ω:
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Figura 4. Una traiettoria illustrativa del modello Pλ,h
N,ω. Per ogni

escursione sono indicati la somma delle cariche e il solvente visitato.

• Localizzazione: le traiettorie restano vicine all’interfaccia, per massimizzare
l’energia Hλ,h

N,ω

• Delocalizzazione: le traiettorie preferiscono fluttuare nell’olio, per massimiz-
zare l’entropia di P

Qual è lo scenario corretto? La risposta dipende da λ, h? Prima di rispondere a queste
domande, bisogna innanzitutto capire come definire precisamente i comportamenti
sopra descritti.

2.2. La transizione di fase. Il modo usato in Meccanica Statistica per distinguere
tra regime Localizzato e regime Delocalizzato consiste nel guardare all’asintotica
della funzione di partizione

Zλ,h
N,ω := E

(
exp(−Hλ,h

N,ω)
)
.

Più precisamente, si definisce energia libera il tasso di crescita esponenziale di Zλ,h
N,ω:

fω(λ, h) := lim
N→∞

1

N
logZλ,h

N,ω .

L’esistenza di tale limite si dimostra facilmente con argomenti di super-additività.
L’interesse di fω(λ, h) è spiegato da questa semplice considerazione: restringendo

il valore atteso che definisce Zλ,h
N,ω alle traiettorie {Sn} che fluttuano nell’olio, cioè

per cui Sn ≥ 0 per ogni n ≤ N , si ottiene facilmente la stima fω(λ, h) ≥ λh.
Quindi λh può essere visto come il contributo all’energia libera dato dalle traiettorie
delocalizzate. Possiamo di conseguenza dare una definizione di quando il modello
con parametri ω, λ, h è Localizzato o Delocalizzato, nel modo seguente:

• L =
{

(ω, λ, h) : fω(λ, h) > λh
}

• D =
{

(ω, λ, h) : fω(λ, h) = λh
}
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Si può obiettare che questa definizione è abbastanza indiretta: a priori non è affatto
chiaro se le proprietà dell’energia abbiano un corrispettivo in termini del comporta-
mento delle traiettorie tipiche del modello. Chiariremo questo punto a breve. Per il
momento ci concentriamo su un altro genere di questione, di pari importanza: fissata
la successione dei monomeri ω, al variare dei parametri λ e h si possono osservare
entrambi i regimi L e D oppure soltanto uno di essi? Nel primo caso, saremmo in
presenza di una transizione di fase: al variare delle condizioni esterne, il sistema può
passare da un regime localizzato a un regime delocalizzato. Questo è in effetti quello
che accade, come mostra il seguente teorema, dimostrato in [3], che vale per succes-
sioni periodiche ω ∈ RN non costanti e normalizzate in modo da avere media nulla
su un periodo (ciò può essere ottenuto semplicemente mediante una traslazione in
h).

Teorema 1. Fissata arbitrariamente la successione ω, al variare di λ e h si os-
serva una transizione di fase non banale tra un regime Localizzato e un regime
Delocalizzato. Nel piano (λ, h) le regioni L e D sono separate da una curva critica
crescente λ 7→ hc(λ) = hωc (λ), soluzione di un problema variazionale esplicito, tale
che hωc (λ) ∼ Cω λ

3 per λ→ 0.

Programma

λ

h

0

D

L

hc(λ)

Figure: Write caption.
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La dimostrazione di questo teorema usa tecniche dalla teoria delle grandi devia-
zioni. Una dimostrazione alternativa, basata sulla teoria del rinnovo, si può trovare
in [5]. Il comportamento asintotico della curva critica per λ → 0 è estremamente
importante ed è connesso con questioni di universalità, a cui accenneremo breve-
mente nel seguito. Vedremo come il comportamento del modello disordinato sia
radicalmente diverso.

2.3. Il comportamento delle traiettorie. Resta aperta la questione di caratte-
rizzare la definizione di localizzazione/delocalizzazione, basata sull’energia libera, in
termini del comportamento delle traiettorie tipiche del modello. In altre parole, se i
parametri (ω, λ, h) sono nella regione L (risp. D), in che senso le traiettorie tipiche

di Pλ,h
N,ω sono localizzate (risp. delocalizzate)?
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Una risposta precisa a questa domanda può essere data studiando il riscalamento
diffusivo della legge Pλ,h

N,ω. Più precisamente, si introduce l’interpolazione lineare

XN(t) :=
SbNtc√
N

+ (Nt− bNtc)SbNtc+1 − SbNtc√
N

, t ∈ [0, 1] ,

e si studia il limite in legge del processo {XN(t)}t∈[0,1] rispetto alla misura Pλ,h
N,ω per

N → ∞. Il risultato, dimostrato in [5], è il seguente, dove {Bt}t≥0 indica un moto
Browniano reale standard:

Teorema 2. Fissati arbitrariamente ω, λ, h con λ > 0, il riscalamento diffusivo di
Pλ,h
N,ω converge in legge nello spazio C([0, 1]) per N →∞:

• in L verso il processo banale X(t) ≡ 0 (infatti SN = O(logN));

• in
◦
D verso il meandro browniano X(t) = Bt | {Bs ≥ 0 : ∀s ≤ 1};

• sulla curva critica, cioè se h = hc(λ), verso il browniano riflesso X(t) = |Bt|.
Questo teorema dà una caratterizzazione precisa del comportamento localizza-

to/delocalizzato delle traiettorie, che corrisponde essenzialmente alla definizione data
in termini dell’energia libera. “Essenzialmente” perché il comportamento delle tra-
iettorie sulla curva critica risulta diverso da quello all’interno di D, benché l’energia
libera sia in ogni caso nulla.

La dimostrazione di questo teorema è basato sulla teoria del rinnovo. Un’altra
caratterizzazione traiettoriale della transizione di fase è data in [6] in termini del
limite in legge del processo {Sn}n∈N, senza riscalamento, nello spazio RN.

3. Modelli disordinati

3.1. Definizione. Il modello è formalmente lo stesso del caso periodico:

dPλ,h
N,ω

dP
(S) :=

1

Zλ,h
N,ω

· exp
(Hλ,h

N,ω(S)
)
, Hλ,h

N,ω(S) := λ
N∑
n=1

(ωn + h) sign(Sn) ,

La differenza fondamentale è il modo in cui viene scelta la disomogeneità ω, che non
è più deterministica bens̀ı essa stessa aleatoria. Più precisamente, {ωn}n∈N è una
successione di variabili aleatorie indipendenti e isonome, di legge P, tali che

M(α) := E
(

exp(αω1)
)
< ∞ ∀α ∈ R .

Senza perdita di generalità, fissiamo inoltre la normalizzazione E(ω1) = 0, E(ω2
1) = 1.

Nel sistema sono dunque presenti due diverse sorgenti di aleatorietà, P e P, che
giocano due ruoli profondamente diversi. Si determina inizialmente la successione
ω, distribuita secondo P; quindi questa realizzazione ω viene usata come ingrediente
“esterno” per definire il modello Pλ,h

N,ω. La presenza dell’aleatorietà esterna P (detta
“quenched randomness”) è alla base del termine “sistemi disordinati”.
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3.2. La transizione di fase. L’energia libera è sempre definita come il tasso di
crescita esponenziale della funzione di partizione:

f(λ, h) := lim
N→∞

1

N
logZλ,h

N,ω .

Questo limite esiste P(dω)-q.c. e in L1(dP) e non dipende da ω. Naturalmente f(λ, h)
dipende dalla scelta della legge di ω1.

Esattamente come nel caso periodico, il contributo all’energia libera delle traiet-
torie delocalizzate nell’olio vale λh. Di conseguenza, fissata la legge di ω1, dividiamo
il piano (λ, h) nelle regioni

• L =
{

(λ, h) : f(λ, h) > λh
}

• D =
{

(λ, h) : f(λ, h) = λh
}

Il legame tra questa definizione, basata sull’energia libera, e le proprietà traietto-
riali di Pλ,h

N,ω è un problema abbastanza delicato nel caso disordinato, a cui faremo
riferimento brevemente nelle conclusioni. Ci concentreremo piuttosto sulla caratte-
rizzazione del diagramma di fase, cominciando col seguente risultato, dimostrato
in [2].

Teorema 3. Fissata la legge di ω1, al variare di λ e h si osserva una transizione
di fase non banale tra un regime Localizzato e un regime Delocalizzato. Nel piano
(λ, h) le regioni L e D sono separate da una curva critica crescente λ 7→ hc(λ), tale
che hc(λ) ∼ mλ per λ→ 0, con m > 0.

Introduction Numerical investigation Theoretical analysis The phase diagram

The critical line

Theorem ([BdH 97])

There exists a continuous, increasing curve hc : [0,∞) → [0,∞) ,
with hc(0) = 0 and 0 < h′c(0) < ∞, such that

L =
{
(λ, h) : h < hc(λ)

} D =
{
(λ, h) : h ≥ hc(λ)

}

0

hc(λ)

λ

L

D
Slope at the origin:

◮ Brownian scaling

◮ Universality

Francesco Caravenna Random copolymers at selective interfaces June 22, 2007 11 / 32Benché la situazione possa apparire qualitativamente simile al caso periodico, c’è
una differenza sostanziale nel comportamento della curva critica per λ → 0. Que-
sto regime di debole accoppiamento è estremamente interessante: infatti è possibile
definire una versione continua del nostro modello, costruita utilizzando moti Brow-
niani invece che passeggiate aleatorie, che risulta essere il limite di scala del modello
discreto [2]. La costante m, che dà la tangente all’origine della curva critica hc(λ),
determina completamente il diagramma di fase del modello continuo ed è ritenuta
una quantità universale, cioè per larga parte insensibile ai dettagli del modello (per
esempio, in [9] è stato dimostrato che m risulta largamente indipendente dalla legge
di ω1).
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3.3. La curva critica. Uno dei primi problemi è ottenere maggiori informazioni
sulla curva critica. Infatti, a differenza del caso periodico, nel caso disordinato non
è nota alcuna formulazione esplicita per hc(λ).

Introduciamo la famiglia di curve indicizzata da q > 0:

h(q)(λ) :=
logM(−2qλ)

2qλ
, dove M(α) := E

(
exp(αω1)

)
.

Si noti che d
dλ
h(q)(λ)

∣∣
λ=0

= q. La ragione si introducono queste curve è che esse
sono apparse a più riprese nella letteratura fisica come congetture per la vera curva
critica. Più precisamente, è stato congetturato che:

• hc(·) = h(1)(·) [7, 16]
• hc(·) = h(2/3)(·) [13, 14]

È interessante osservare che a queste congetture corrisponde il seguente teorema,
dimostrato in [1].

Teorema 4. Per ogni λ ≥ 0 vale la seguente relazione:

h(2/3)(λ) ≤ hc(λ) ≤ h(1)(λ) .

Introduction Numerical investigation Theoretical analysis The phase diagram

Upper and Lower Bound on the critical line

0

h

λ

L

D
h(1)(λ)

h( 2
3
)(λ)

hc(λ)

h′c (0) ∈ [
2

3
, 1]

Theorem ([BdH 97], [Bodineau and Giacomin 04])

h(·) := h(2/3)(·) ≤ hc(·) ≤ h(1)(·) =: h(·)

Francesco Caravenna Random copolymers at selective interfaces June 22, 2007 12 / 32

In particolare, questo risultato mostra che la tangente all’origine m = h′c(0) della
curva critica soddisfa

2

3
≤ m ≤ 1 .

Le evidenze numeriche sembrano indicare che la vera curva critica non coincida né
con h(2/3)(·) né con h(1)(·), e che m ∈ (2

3
, 1). Il problema di dimostrare rigorosamente

queste congetture è rimasto completamente aperto per diversi anni. Recentemente
in [15] è stato dimostrato che, per una larga classe di distribuzioni di ω1 e per λ
sufficientemente grande, effettivamente hc(λ) < h(1)(λ). Questo è al momento l’unico
risultato rigoroso disponibile.
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È tuttavia possibile, combinando le osservazioni numeriche con argomenti teorici,
fornire argomenti di tipo statistico che mostrano in maniera estremamente convin-
cente che hc(λ) > h(2/3)(λ), cf. [4]. Il punto di partenza è la seguente osservazione,
che segue da argomenti di super-additività:

(λ, h) ∈ L ⇐⇒ ∃N ∈ N : E
(

logZλ,h
N,ω

)
> λh .

Questo mostra che la localizzazione è un fenomeno di volume finito. Per dimostrare
che hc(λ) > h(2/3)(λ), per un fissato λ, è dunque sufficiente trovare N ∈ N tale che

E
(

logZ
λ,h(2/3)(λ)
N,ω

)
> λh .

Calcolare numericamente questo valore atteso è numericamente improponibile per
N & 10, mentre i valori di N per cui la relazione è vera sono empiricamente almeno

N ≈ 103. È qui che entrano in gioco considerazioni statistiche. Infatti, benché non
sia possibile calcolare esattamente E

(
logZλ,h

N,ω

)
, esiste una tecnica molto semplice

per calcolare esattamente Zλ,h
N,ω in O(N2) passi, per un qualunque ω fissato. L’idea è

che, se la variabile aleatoria logZλ,h
N,ω ha buone proprietà di concentrazione attorno

al suo valore medio, è sufficiente calcolarla per un numero ristretto di ω per avere
informazioni significative su E

(
logZλ,h

N,ω

)
. Più precisamente, si può eseguire un test

statistico prendendo come ipotesi nulla

H0 : E
(

logZλ,h
N,ω

) ≤ λh .

Dato che ω 7→ logZλ,h
N,ω è una funzione Lipschitziana su RN , si possono applicare

le potenti disuguaglianze di concentrazione, cf. [11], per dare una stima dall’alto
esplicita sulla probabilità di errore di prima specie. A questo punto non resta che
calcolare logZλ,h

N,ω per un numero sufficiente di ω, distribuite secondo P (prodotte
mediante un generatore di numeri pseudo-casuali), e si ottiene che il p-value del
test risulta minore di 10−5. Questa procedura può essere ripetuta per diversi valori
di λ, e porta alla conclusione che hc(λ) > h(2/3)(λ), con un livello di confidenza
estremamente elevato. Per maggiori dettagli, si veda la discussione in [4].

3.4. Conclusioni. In definitiva, per quanto riguarda l’energia libera e la curva cri-
tica del modello disordinato, c’è una buona comprensione qualitativa generale. Re-
stano però alcuni punti da chiarire, in particolare l’individuazione della curva critica.
Un altro aspetto importante riguarda la regolarità della transizione di fase, di cui
non abbiamo parlato: è noto in grande generalità che è almeno del secondo ordine,
cf. [10].

Per quanto riguarda i risultati traiettoriali, osserviamo che c’è una buona com-
prensione della fase localizzata. Per la fase delocalizzata sono stati ottenuti risultati
interessanti in [9], ma molte questioni sono ancora aperte. Per maggiori dettagli, si
veda la recente monografia [8] e le referenze ivi citate.
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