THE QUENCHED CRITICAL POINT
OF A DILUTED DISORDERED POLYMER MODEL

ERWIN BOLTHAUSEN, FRANCESCO CARAVENNA, AND BEATRICE DE TILIERE

ABSTRACT. We consider a model for a polymer interacting with an attractive wall
through a random sequence of charges. We focus on the so-called diluted limit, when
the charges are very rare but have strong intensity. In this regime, we determine the
quenched critical point of the model, showing that it is different from the annealed one.
The proof is based on a rigorous renormalization procedure. Applications of our results
to the problem of a copolymer near a selective interface are discussed.

1. INTRODUCTION

The issue addressed in this work is the determination of the quenched critical point for
the localization/delocalization phase transition of a polymer interacting with an attractive
wall through a diluted disordered potential. The model we consider was first introduced
by Bodineau and Giacomin in [4], as a reduced model for the so-called copolymer near a
selective interface model [5], with the hope that it would have the same behavior as the
full copolymer model, in the limit of weak coupling constants. As we will see, our main
result shows that this is not the case.

The cornerstone of our approach is a rigorous renormalization procedure. We point out
that the same result has recently been obtained by Fabio Toninelli [13], with a rather
different approach, see the discussion following Theorem [5| below for more details.

1.1. The model and the free energy. Let S = {S,},>0 be the simple symmetric
random walk on Z, and denote by P its law. More explicitly, So = 0 and {S, —Spn—1}n>1 are
i.i.d. random variables with P(S; = 4+1) = P(S; = —1) = . For N € N:= {1,2,...} we
denote by Py:(-) = P(-|S, >0 for n =1,..., N) the law of the random walk conditioned
to stay non-negative up to time N. The trajectories {(n,S,)}o<n<ny under Py model the
configurations of a polymer chain of length N above an impenetrable wall.

The interaction of the polymer with the wall is tuned by two parameters § > 0, and
p € [0, 1]. For fixed (3 and p, we introduce a sequence w = (wy,)n>1 of i.i.d. random variables,
taking values in {0, 8} and with law P given by:

Plw; =p8)=p, Pw =0)=1-p. (1.1)
We are ready to define our model: for a fixed (typical) realization w and N € N, we
introduce the probability measure Pzﬁv’f; defined by:

dP?\,’p 1 N
i (S) = exp ( wnl{sn:()}) R (1.2)
dpr;; Z]%fu Z

n=1
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FIGURE 1. A typical path of the polymer measure Py .

where the normalization constant Zjﬁ\,’z = Ej{,(exp (Zivzl wnly Snzo})) is usually called
the partition function.

Notice that the polymer measure PQBV”; and the partition function Z}%’i are functions of
N and w only; the superscripts 3, p are there to indicate that we are interested in the case
when the sequence w follows the law P, which depends on g3, p.

In this paper we focus on the regime of large 5 and small p: then w represents a random
sequence of charges sitting on the wall (i.e. on the z-axis), which are rare, but of strong
intensity, and which attract the polymer, see Figure [I| We are interested in the behavior
of the polymer measure P]BV’Z; in the limit of large N: in particular, we want to understand
whether the attractive effect of the environment w is strong enough to pin the polymer at
the wall (localization), or whether it is still more convenient for the polymer to wander
away from it (delocalization), as it happens when there are no charges. It should be clear
that we are facing a competition between energy and entropy.

The classical way of detecting the transition between the two regimes mentioned above,
is to study the free energy of the model, which is defined by:

. 1
f(B,p) = lim —log ZiT,. (13)

The existence of this limit, both P(dw)-a.s. and in L'(PP), and the fact that f(3,p) is non-
random are proved in [§] via super-additivity arguments. Notice that trivially Zﬁ,’i >1
and hence f(3,p) > 0 for all §,p. Zero is in fact the contribution to the free energy of
the paths that never touch the wall: indeed, by restricting to the set of random walk
trajectories that stay strictly positive until time N, one has

op o P(Si>0fori=1,....N) sP(Si>0fori=1,....N-1) y.o 1
Ne = p(S;>0fori=1,...,N) P(S;>0fori=1,...,N) 27

where we use the well-known fact that P(S; > 0fori = 1,...,N) ~ (const.)/VN as
N — oo, cf. [7, Ch. 3]. Based on this observation, we partition the phase space into:

e the Localized region £ := {(5,p) : f(B,p) > 0}
e the Delocalized region D := {(3,p) : f(8,p) = 0}.

By a standard coupling on the environment, it is clear that the function p — f(3,p)
is non-decreasing. Therefore for every § > 0, there exists a critical value p.(3) € [0,1]
such that the model is localized for p > p.(f) and delocalized for p < p.(3) (in fact for
p < pe(B), since the function f(3,p) is continuous). The main goal of this work is to study
the asymptotic behavior of p.(3), as 8 — oc.
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Remark 1. One may reasonably ask to what extent the definition of (de)localization
given above in terms of the free energy corresponds to a real (de)localized behavior of the

typical paths of Pfi}i). Let us just mention that, by convexity arguments, one can prove

that when (3,p) € L the typical paths of Pfi}i, for large N, touch the wall a positive
fraction of time, while this does not happen when (3, p) are in the interior of D. We do
not focus on path properties in this paper: for deeper results, we refer to [§]. ]

Remark 2. Models like P]ﬂ\;fu are known in the literature as (disordered) wetting models,
the terminology referring to the interpretation of {S,},>0 as the interface of separation
between a liquid and a gazeous phase, when the liquid is above an impenetrable wall.
More generally, P%i} belongs to the class of the so-called disordered pinning models,
which have received a lot of attention in the recent probabilistic literature, cf. [2] [10] [I,
12] 13] (see also [§] for an overview). In our case we prefer to refer to P]’i}fy as a polymer
model, because of its original interpretation as a simplified model for a copolymer near a
selective interface [4] (the link with the copolymer model is discussed below). O

1.2. The main result. Some bounds on p.(3) can be obtained quite easily, as shown in
[4, §4.1]. These results are stated in the following two lemmas, whose (easy) proofs are
given in detail here, since they provide some insight into the problem. Our main result is
then stated in Theorem [ below.

Lemma 3. The following relation holds:

1
— liminf — logp. < 1. 1.4
iminf 7 logp (B) (1.4)

Proof. Since the limit in ([T.3]) holds also in L!(PP), by Jensen’s inequality we get
3 1 ﬁ7 3 1 ﬁ7
f(B,p) = ]\}EHOONE(IOgZNf") < A}gnooﬁ log E(ZyY,) - (1.5)

This is usually called the annealed bound, and the limit in the r.h.s. above (whose existence
follows by a standard super-additivity argument) is the annealed free energy. It can be
evaluated using the definition ([1.2]) of the model, and Fubini’s Theorem:

N N
E(Z]ﬁv’fu) = E]'{',]E <exp (anl{sn_0}>> = Ej\', (exp (ZlogM(ﬁ,p)l{Sn_0}>> ,

n=1 n=1

where M(3,p) = E(e*1) = pe” + (1 — p). Therefore E(vai) is the partition function of
the simple random walk conditioned to stay non-negative, and given a constant reward
log M (3, p) each time it touches zero. This model is exactly solvable, see [8, §1.3], and in
particular we have:

1
Jim logE(Z}Y) = 0 if and only if M(8,p) < 2.

Looking back to (1.5 and recalling the definition of M(83, p), we have shown that

p < pU(B) = ﬁ = (B.p) €D,

where p?(f3) is the annealed critical point. Therefore equation (|1.4]) is proved. ]
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Lemma 4. The following relation holds:

1
— limsup — logp.(6) > (1.6)

B—o00 ﬁ

[OCRN )

Proof. We have to bound the partition function from below. To this aim, we compute
the contribution of the set of trajectories that touch the wall wherever there is a non-
zero charge (on even sites, because of the periodicity of the random walk). We need some
notations: we introduce the subset of paths
Qx = {S: Sp=0 < wn>O,Vn§N,nE2N},
and the locations {&,}n>0 of the positive charges sitting on even sites:
& =0 €nt1 = Inf{k>¢&,, k€2N: w, >0}, neN.

We denote by ¢y := max {k‘ >0: & < N} the number of positive charges (sitting on
even sites) up to time N. Finally, we introduce the distribution of the first return time to
zero of the simple random walk restricted to the non-negative half-line:

K*(n) = P(S;>0fori=1,...,n—1, 5, =0) (1.7)
(observe that K*(n) =0 for n odd) and we recall that [7, Ch. 3]

K*(2n) "< nT[/{Q where Cg = N ZK+(2n) =5- (1.8)

neN
Then we have

N
Zf,’f; > EJJ(z(exP (an1{3n=0}> 1{56%}>
n=1
1 r 3
_ BN . HK+(€ —¢ )) ( Z K+( ))
e =& -
P(Sl >0,...,5v ZO) (gzl n=N-¢ +1

Note that {(& — &-—1)/2}e>1 is an ii.d. sequence of geometric random variables with
parameter p. Therefore, by the strong law of large numbers, we have:

LN
. LN p . 1 + p +
| — = = | — log K —&_1) = =E(logK P —a.s.

Am 5 and NI_T}Cl)ON;_l og K (& — &—1) > (log K*(&)), P(dw)-a.s

Hence, from the last equation we get, P(dw)-a.s.,

1
lim —logZ{?, > £ (8 + E(log K*(c1)).

N—oo

By (1.8) there exists a positive constant ¢; such that K+ (n) > ¢;/n%?, for all n € 2N.
Using this bound and Jensen’s inequality yields:

A}iinoo % logZ]ﬁV’fd > g(ﬁ + logep — gE(log&» > g(ﬁ + logep — glogE(gl)>.
Since E(ﬁl) = 2p~ !, setting ¢y :=logc; — %log 2, we get

b B0+ S )
so that ,

p > e 3t = (8,p) € L,
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and equation (|1.6)) is proved. O

We can summarize Lemmas [3| and 4] in the following way: if we knew that

pe(B) = e creal (B — +00),

then % < Creq < 1 (the subscript red stands for reduced model, see the discussion below).
The main result of this paper is that in fact ¢,.q = % More precisely:

Theorem 5. For every c > % there exists 3o = Bo(c) such that

f(B.eP)y =0 forall§ = fo,
i.e. (B,e7¢P) €D for 3> By. Therefore

1 2
— lim — 1 = Z.
Jim ogpe(B) = 3

Let us discuss some consequences of this Theorem. We recall that the model P]B\,’i was
first introduced in [4], as a simplified version (‘reduced model’) of the so-called copolymer
near a selective interface model, cf. [5] (see also [§] for a recent overview). It is known
that the copolymer model undergoes a localization/delocalization phase transition. An
interesting object is the critical line separating the two phases, in particular in the limit
of weak coupling constants, where it becomes a straight line with positive slope Ccop.

A ot of effort has been put in finding the exact value of C.y,. This is motivated by
the fact that C.,, appears to be a universal quantity: it is independent of the law of the
environment [9, Section 3] and it determines the phase transition of a continuous copolymer
model, arising as the scaling limit of the discrete one [5], §0.3]. What is known up to now is

that % < Ceop < 1. Notice that % and 1 are exactly the bounds that were previously known
for ¢eq, and this is not by chance: indeed the definition of the model P]ﬁv”?u is inspired by

the strategy behind the proof of Cyp > %, cf. [].

The reason for introducing a reduced model is to have a more tractable model, which
would possibly have the same behavior as the full copolymer model in the limit of weak
coupling constants, i.e. for which possibly c,eq = Ceop. However, the numerical results
obtained in [6] provide strong indications for the fact that Ce,p > % If this is indeed the
case, our result shows that the reduced model does not catch the full complexity of the
copolymer model, i.e. the ‘missing free energy’ should come from a different strategy than
the one which is at the basis of the lower bound C,,, > %

By Theorem [5], our model provides also a non-trivial example of a linear chain pinning
model where, for large 3, the quenched critical point p.(3) is different from the annealed
one p*(3) = 1/(e® — 1) (see the proof of Lemma .

What we actually prove in this paper is a stronger version of Theorem [} i.e. Theorem [6]
stated in the next section. The proof relies on quenched arguments, based on a rigorous
renormalization procedure (somewhat in the spirit of [I1]). The idea is to remove from
the environment sequence w the positive charges that are well-spaced (that therefore give
no sensible contribution to the partition function) and to cluster together the positive
charges that are very close. This procedure produces a new environment sequence w’,
which has fewer charges but of stronger intensity. The key point is that replacing w by
w' in the partition function yields an upper bound on the free energy. Then, by iterating
this transformation, we obtain environment sequences for which the free energy can be
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estimated and shown to be arbitrarily small. A detailed description of this approach,
together with the organization of the paper, is given in Section

We point out that Theorem [5| has recently been obtained by Fabio Toninelli [I3] with a
simpler (though more indirect) argument, avoiding the renormalization procedure we ap-
ply. We however believe that our direct procedure, eliminating ‘bad’ regions in a recursive
way, is also of value for other problems, e.g. for proving that Ce,, < 1.

1.3. Beyond the simple random walk. Theorem [5| can actually be extended to a
broader class of models. Namely, let (T = {Tn}nZQ,P) be a renewal process, i.e. 7p = 0
and {7, — Th—1}n>1 under P are i.i.d. random variables taking positive values (including
+00). It is convenient to look at 7 also as the (random) subset U,>o{7,} of NU {0}, so
that expressions like {k € 7} make sense. We assume that 7 is terminating, i.e.

b =Pln<oo) <1, (1.9)

that it is aperiodic, i.e. gcd{n € N : P(n € 7) > 0} = 1, and that for some positive
constant C'r we have:

Ck
n3/2
We introduce ¢y := max{k > 0: 7, < N}, that gives the number of renewal epochs up
to N, and the renewal function U(-) associated to 7, defined for n € N by

K(n) := P(n=n) ~ (n — 00). (1.10)

Un) == P(ner) = > P(rp=n). (1.11)
k=0
By (1.9) and (1.10]), the asymptotic behavior of U(n) is [8, Th. A.4]
Ck 1
U(”)Nmm (n — o0),
so that in particular there exists a positive constant C such that
C
U(n) < 3 for every n € N. (1.12)

We stress that U(n) has the same polynomial behavior as K (n): this is a consequence of
equation (|1.9) and is a crucial fact for us.

Keeping the same environment w = {wy}, as in (1.1), we define the new partition
function

N Iy
Z/Jg\f’fu = E(exp <an 1{ner}> 1{Ner}> - E(exp (Zw7k> 1{N€T}> ;o (113)

n=1 k=1

and we call £(3,p) the corresponding free energy:
1
f(8,p) := lim — log Zjﬁ\}p P(dw)-a.s. and in L'(P). (1.14)
N—oo N g
Then we have the following extension of Theorem

Theorem 6. For every c > 3 there exists By = Bo(c) such that

f(ﬂ,efcﬂ) =0 for all B > Gy.
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Let us show that Theorem [5] can easily be deduced from Theorem [6] To this purpose,
we choose (7,P) to be the renewal process with inter-arrival law KT (-) defined in .
Notice that 7 is not aperiodic, but this is a minor point (it suffices to focus on the even
sites to recover aperiodicity), and that KT (-) satisfies and (restricted to even
sites). Then we can write the original partition function as

N 3%
8p _ 1
) )

n=1

This formula looks slightly different from (1.13]). First, there is a pre-factor, due to the
fact that K*(-) is defined under the restricted law P( - 1g, >0, sy>03) While Zﬁ,’i is

defined as an average with respect to the conditioned law Pﬁ . We have already noted
that P(Si >0fori=1,... ,N) ~ (const.)/v/N, therefore this pre-factor is irrelevant for
the purpose of computing the free energy. The second difference is the presence in
of the indicator function 1{yc;y, but again this boundary condition does not change the

Laplace asymptotic behavior, as is shown in [8, Rem. 1.2]. Therefore £(3,p) defined by
(1.14)) coincides with f(53,p) defined by (1.3)), and Theorem [5| follows from Theorem @

1.4. On more general return exponents. Another natural extension is to let the re-
newal process (7, P) have inter-arrival distribution K (-) such that

L(n)
nlto

K(n) ~ (n — o0), (1.15)
with @« > 0 and L : (0,00) — (0,00) a slowly varying function (cf. [3]), i.e. such that
L(tx)/L(x) — 1 as  — oo, for every ¢t > 0. In this paper we stick to the case o = %
and L(n) — Ck, for ease of notations, but we stress that our proof of Theorem |§| goes
through for the general case with easy modifications, provided one replaces % by 14%04 in
the statement of Theorem@ Lemmaalso generalizes immediately, again with % replaced
by h%a, hence we have p.(3) < e %rea? with g = h%a In particular, for large (3 the

quenched critical point is different from the annealed one, for any value of o > 0.

2. STRATEGY OF THE PROOF: A RENORMALIZATION PROCEDURE

In this section, we explain the strategy behind the proof of Theorem [6] in details, and
describe the organization of the paper. Before doing that, we introduce some notations,
and make some preliminary transformations of the partition function Z%i.

2.1. Some basic notations. Let us first introduce some notations to be used throughout
the paper. Given an arbitrary sequence w = {wy, }»>1, the sequence {t, }n>0 = {tn(w)}n>0,
is defined as follows:

to(w) == 0 tn(w) == min{k > t,_1(w) : w, > 0}. (2.1)

In our case, w is the sequence of charges, and {¢,},>1 are the locations of the positive
charges. However we are not assuming that w is a typical realization of the law (in
particular, the size of the positive elements of w is not necessarily (3).

Notice that the {t, }n>0 are finite iff #{i € N: w; > 0} = 400, which is always the case
for us. The increments of {t, }n>0 are denoted by {Ay}n>1 = {An(w) tn>1:

Ap(w) == tyh(w) — th-1(w) (neN). (2.2)
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Finally, we introduce the sequence {n,}n>1 = {n(w)}n>1 giving the intensities of the
positive charges, i.e.
(W) = Wy, (w) (neN). (2.3)

We stress that one can easily reconstruct the sequence w in terms of {¢t,n} = {t,, nn}n
(or equivalently of {A,,n,}n). Therefore we look at w, {t,n} and {A,n} as equivalent
ways of describing the sequence of charges.

We also mention an elementary fact that will be used in the next section: the sequence
{wp }n>1 is i.1.d. if and only if the variables {A,, 7, }n>1 are all independent, the {7, }n>1
are 1.i.d. and the {A,},>1 are i.i.d. geometrically distributed.

2.2. A preliminary transformation. In the partition function Z]ﬁ\;pw, the parameter NV
represents the size of the system. However it turns out to be more convenient to consider
a partition function with a fixed number of positive charges.

Let us be more precise. Since the limit in exists P(dw)-a.s., we can take it along
the (random) subsequence {t, },>0 = {tn(w)}n>0, i.e. we can write, P(dw)-a.s.,

tn,w ?

1
£(0,p) = lim — logz" (2.4)

Let us focus on fow: by summing over the locations of the positive charges that are
visited and recalling the definition of the renewal function U(-), we obtain the
explicit expression

n k

Zph, <) > [Teve U, —t, ). (2.5)

k=1 J1seesje—1€EN =1
0=:jo<j1<...<Jrp—1<jrp=n

We stress that in the r.h.s. we have U(t;, —tj,_,) and not K(t;, —t;, ,): in fact we are
fixing the positive charges that are visited, but the path is still free to touch the wall in
between the positive charges. Also notice that, when w is distributed according to ,
we have 7;, = 3, but we keep the notation implicit for later convenience.

Formula (2.5)) leads us to the following definition: for n € N and C' € R* we set:

n k
Z,w,C) == 3 3 T v - _5)3/2 (2.6)

t.
k=1 J1y-Jk—1€N =1 (Je Je—1
0=:j0<j1<...<Jjg—1<Jr:=n

so that applying the upper bound ((1.12)) on U(:) we have
Zph, < Za(w,C). (2.7)

Notice that Z,(w,C) carries no explicit dependence of the parameters 3, p. In fact, we look
at Z,(w,C) as a deterministic function of the constant C and of the sequence w. In the
sequel, C will always denote the constant appearing in the r.h.s. of .

Now assume that (w = {wy, }n,Py) is an i.i.d. sequence of random variables with marginal
law p: P, (w1 € dz) = p(dx). Then for C' > 0 we define the free energy F(u, C) as the limit

1
F(u,C) = nh_}rrgo @ log Z,,(w, C) Py (dw)-a.s.. (2.8)

If we denote by jig, := (1 —p) 6;0y + pdyay, then by (2.4) and (2.7) we can write
£(8,p) < F(upyp,C)-
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wiN

Then to prove Theorem |§| it suffices to prove the following: for every C > 0 and ¢ >
there exists By = Po(C,c) such that F(u@’exp(_cﬂ) ,C) =0 for every B > fy.

Therefore, from now on, we focus on Z,(w,C) and F(u,C). The constants C > 0 and
c> % are fixed throughout the sequel. We also use the shorthand pg for pg exp(—cp), 1-€.

Hg = (1 — €_Cﬂ) (5{0} + 6_055{5} . (2.9)

Our goal is to show that F(ug,C) = 0 for 3 large. For ease of notation, we only consider
the case § € N (the general case can be recovered with minor modifications).

2.3. The renormalization procedure. The proof of Theorem [f]is achieved through an
induction argument. The steps of the induction are labeled by {3,8 + 1,8+ 2,...}, and
we call them level 3, level 5+ 1, ...

Each induction step consists of a renormalization procedure that acts both on the en-
vironment w, and on the partition function Z,(w,C), and produces an upper bound on
the free energy F(u,C). Let us be more precise, by describing in detail how this procedure
works.

Renormalizing the environment (Section[d). At the starting point (level 3) the environment
w is i.i.d. with marginal law pg defined in , supported on {0} U {3}. More generally,
at level b > (3 the environment w will be i.i.d. with marginal law py, supported on {0} U
{b,b+1,...}. If we are at level b, we define a renormalization map T} acting on w that
produces a new sequence Tp(w) as follows.

We first need to define isolated charges, good charges and bad blocks at level b. To this
purpose, we fix the threshold L; := Le%(bJer)J, where the constant K is defined explicitly
in below. A positive charge is said to be an isolated charge if both its neighboring
positive charges are at distance greater than L. Among the isolated charges, we call good
charges those that have intensity exactly equal to b, i.e. the least possible intensity. Finally,
a group of adjacent positive charges is said to be a bad block if all the distances between
neighboring charges inside the group are smaller than L;. Note that a charge is either
isolated, or it belongs to a bad block (see Figure [2| for a graphical illustration).

good charge isolated charges
o o / 0-0—0 c\‘ o 0—0-0
b b+38 b+5

(L= ———] bad blocks

FIGURE 2. Good charges, isolated charges and bad blocks at level b.

Then the renormalized environment w’ = Tj(w) is obtained from w in the following way:
each bad block is clustered into one single larger charge, each good charge is erased, the
isolated charges that are not good are left unchanged and finally the distances between
charges are suitably shortened. In Section |3| we show that the new environment w’ con-
structed in this way is still i.i.d. and we obtain an explicit expression for the marginal
law of w}, denoted by upy1 := Tp(1p). Observe that by construction pp; is supported by
{0yu{b+1,b6+2,...}.
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Renormalizing the partition function (Section . The idea behind the definition of good
charges and bad blocks is the following:
- if a charge is good, it is not worth for the polymer to visit it, because this would
entail a substantial entropy loss;
- on the other hand, if a charge belongs to a bad block and the polymer visits it, it
is extremely convenient for the polymer to visit all the charges in the block.
These rough considerations are made precise in Section 4| (as a side remark, notice that
the choice of what is ‘good’ and what is ‘bad’ is biased by the fact that we aim at proving
delocalization). As a consequence, if we replace the environment w with the renormalized
one Tp(w), we get an upper bound on the partition function. More precisely, if we also
denote by Tj, the transformation acting on C' > 0 by T3(C) := C - (1 + Be %0 C) (where
B is an absolute constant defined in Lemma |10] below), then we show that the partition
function satisfies, for every N € N,

Z,(w,C) < (const.) Zy(Ty(w), TH(C)), (2.10)

for a suitable n = n(w, N) such that n > N and t,(w) > tn§(Tp(w)). Taking ‘ilog’ on
both sides of (2.10)), and letting n — oo, we then obtain for every b > 3,

F(/”‘buc) S F(:U’b-f-th(C))
(recall that upr1 = Tp(up)) and by iteration we have for b >

F(ug,C) < F(w,Cy)  where  Cp = (Tpo1-Tp—2---13)(C). (2.11)

Completing the proof (Section @ The last step is to get a control on the law u; and on the
constant Cp, in order to extract explicit bounds from (2.11f). By easy estimates, we show
that C, < 2C for every b, so that this yields no problem. The crucial point is rather in
estimating the law p;: in Proposition [12| we prove (when 3 is large but fixed) an explicit
stochastic domination of up, which allows to show that

lim F C) = 0.
Jim F (5, C)
By (2.11)) this implies that F(us,C) = 0, and Theorem |§| is proved.

3. RENORMALIZATION OF THE ENVIRONMENT

In this section we describe the renormalization transformation performed on the en-
vironment, outlined in the previous section. At level b € {3,5 + 1,...} the sequence
w = {wi,wy,...} is i.i.d. where the w; have law p; supported on {0} U {b,b+1,...}. We
set

Cp ‘= Hb ([b7oo)) s Co = Wb ([b+ 1700)) : (31)
Then we act on w by clustering and removing charges, in order to obtain a new environment
sequence w’ = Ty(w) which is still i.i.d. but with a new charge distribution ppy1 = Tp(up)
supported by {0} U{b+ 1,0+ 2,...}. The definition of T, depends on

K, = LKO + 10g+(26) + 2log bJ 7 Ly := Le%(bJer)J 7 (3.2)

where log™(x) = log(z) V 0, Ky is an absolute positive constant defined in Lemma
below, and C is the constant appearing in ((1.12)).
We remind the reader that the sequence {wy},~, is in one-to-one correspondence with

the pair of sequences ({tx}ysq,{Nk}y> ), where 0 < ¢1 < t3 < --- is the sequence of
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[ So=0 S =1 Sy =2 S3 =14 \
’T(]: 7'1—4 7'2—7 T3 8 T4:11 ‘
’0'0: 0'1:1 0'2—5 0'3—8 0'4—9 ‘
A k- A A 2 A A
Ton Y v Tt W
Ly= —i intensity b = good charge

FIGURE 3. A sample configuration of charges, with the corresponding val-
ues of the variables o}, 75, and Sj. Also indicated are the blocks Y} and the
spacing A,, between blocks.

successive times where w;, > 0 and 7, := wy, . We also set for convenience 7y := 0. Alter-
natively, we can replace {tk}k21 by the sequence {Ak}kzl , Ay =t —tp_1, where tg := 0.
We will freely switch from one representation to the other without special mentioning (see

for more details).

We define two sequences {0y, },,~o, {Tn},>o of random times by o¢ := 0,
Tp = 1nf{k > oy : Aprq > Ly} On+t1 =Tn+ 1.

Note that 79 = 0 if and only if Ay > L, = Le%(b+Kb)J. In words, the sequence {7, }n>0
represents the indices of those positive charges that have a ‘distant’ (A > Lj) neighboring
charge on the right. Of course, one could define the sequence {7, },>0 alone, without the
need of introducing {oy, }n>0, but in the sequel it will be convenient to deal with both
{Tn}n>0 and {0y, }n>0. Next we define a sequence of random variables Yy, k£ > 0, taking
values in the space

Ii= ({1} xRy)U Un22 ({n} x N*"1 x R?),

by
Y, = (Tk —or+1, (Agpt1s-- - Ar) , Nows Moty - -3 ry) )

(the meaning of these definitions will be explained in a moment). We occasionally write
I' = U2, I'y. Here we understand that in case 7, = oy, the A-part is absent, and the
variable takes values in the I'1-part of I'. It should be remarked that in case og = 79 = 0
we have Yy = (1,0) (recall that ny := 0). See Figure 3| for a graphical illustration of the
variables just introduced.

Let us give some insight into these definitions. Each Y} represents a block of adjacent
positive charges, possibly reducing to one single charge. More precisely:

e If Y}, contains more than one charge, i.e. Y € I';, with n > 2, then Y}, corresponds
to a bad block as defined in because by construction the distances between
the positive charges contained in it, {A;}s, +1<i<r,, are such that A; < Ly.

e If on the other hand Y3 € I'1, then Y} is an isolated charge, because the distances
Ay, Ay, With its neighboring blocks are by construction larger than L.

e If Y}, € I'; and in addition n,, =10, i.e. Yy € {1} x {b}, then Y}, is a good charge.
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The variables o, and 75 give the indexes of the first and last positive charge appearing in
the k-th block, and therefore 7, — 0, + 1 is the number of positive charges in a bad block.

Being larger than Ly, the variables A,, are not geometrically distributed. We therefore
subtract L and put
Ak::Agk—Lb, kZI
Note that the two sequences {Yj}r>o and {ﬁk}kZI contain all the information of the

original sequence w. The basic properties of the variables Yz, Ay are given in the following
Lemma, whose (elementary) proof is omitted for conciseness.

Lemma 7.
a) The random variables Yy, Y1,Ya, ... ,31, 32, ..., are independent.
b) The random variables Yy, k > 1, are identically distributed with the following dis-
tribution:
o 7. — o + 1 is geometrically distributed with parameter:
gy ‘= P#b (Al > Lb) = (1 — Cb)Lb, (33)
i.e. forneN
P(ry—or+1l=n)=gq (1—q)"".
e Conditionally on {1, — o + 1 = n}, we have that Ny, Noy+1,---+Nr aT€ N

i.1.d. random variables with distribution [, given by

7 () = po ()

Hp T Tbl{mzb}-
o Whenn >2, Ay, 41,...,A;, aren—1 i.i.d. random variables distributed like
Ay conditionally on {A1 < Lp}.
¢) The random variables 31, 32, ... are i.1.d. geometrically distributed with parameter

Cp-

d) The distribution of Yy is given by an obvious modification: 1o + 1 is geometrically
distributed as in b), and conditionally on {To + 1 = n} the distribution of the A;, n;
is the same as described above, except that there is one n; less, since ng := 0.

Next we define a mapping ¢ : I' — NU{0}. On I'1, we simply put ® ((1,7)) := n, while
onI',,, n > 2, we put

n n—1
@((n,(Al,...,An,l),(m,...,nn))) - Zm—ZElogAiJ+2(n—l)Kb. (3.4)
i=1 i=1

The interpretation is as follows: if Y}, is a bad block, i.e. if Yy, € I';, with n > 2, then Y}, will
be replaced by a single charge in the new environment sequence w’, and ®(Y}) is exactly
the value of this clustered charge. The reason why the size of the clustered charge should

be given by (3.4]) will be clear in the next section. Since n; > b and A; < eg(b‘*'Kb), it follows
from ([3.4)) that the value of the clustered charge is always greater than b+ (n— 1) Kj, hence
it is strictly greater than b, if n > 2.
We are ready to define the new sequence w’ = Tj(w). First we set
o = @ (V) . (3.5)
Then we introduce a sequence of stopping times by setting Sy := 0 and for £ > 1

Sy = inf {n > Sk_1: {1 > on} or {1, =0, and 1, > b}}
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FIGURE 4. An illustrative example of the map 7T, sending w to w’ (the
starting w is the same as in Figure. The distances A,, between blocks
are shortened by L; and become Ap, the bad blocks (Y7,Y2,Ys in this
example) are clustered into one single charge, the good charges (Y3 in this
example) are erased, while the charges that are isolated but not good (none
in this example) are left unchanged.

(see also Figure [3). The variables {Si}r>o indicate which blocks will survive after the
renormalization: the block Ys, will become the k-th positive charge of w’. More precisely,
we set

Sk
e = @(Ys,) , A= YA, (3.6)
J=Sk-_1+1
and the sequence (A}, 7)., defines our new sequence w' =: T} (w) (see also Figure .

Note that the effect of the sequence {Sk}r>0 is to erase all the good charges in w.

In the next lemma we show that {w}, },,>1 is indeed i.i.d., and we denote its one-marginal
law by ppi1 := Tp(pp). Observe that 7 is not included in the new sequence w’, but it will
enter the estimate given below in Proposition [9] (remark that 7o = 0 if 79 = 0).

Lemma 8. The random variables A}, n,. are all independent. The n), are identically
distributed and the A} are identically geometrically distributed, therefore the sequence
{w) tn>1 is ii.d. The law ppiq(z) of Wy satisfies, for x > 0, the following relation:

tor1(2) = o () Lipzpi1y + @ (Qoms) (), (3.7)

where

ERIEIS b (H “) > y(an) v(wni)

n=141,..bp=1 \i=1 T1,...,Zn4+1b
Z? 1 xz—z:b:1 L%logéij—ﬂnl(b:a:
(3.8)

Proof. Introducing the subset A of I' defined by A := {1} x [b+1,00) U|J,;>9 I'n, We see
that Sy, is nothing but the sequence of times when Y,, visits the set A. In particular, by
Lemma (7} the increments {S; — Sk—1}x>1 are i.i.d. geometrically distributed, independent
of the ﬁn, with parameter v = P(Y; € A). (As a matter of fact, one can easily compute
v =(1-q) + qy/cp, cf. , but the precise value of 7 is immaterial for the proof.)
Therefore the variables A are i.i.d. geometrically distributed, with parameter c; .
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Notice that the variables Y, are i.i.d. and independent of the S,,. It follows easily that
the variables . are i.i.d. and independent from the Aj,. The sequence wj, is therefore i.i.d.
and moreover for z > 0 we have P(w] = z) = (¢, ) - P(n} = x).

It remains to determine the law of nj = ®(Ys,). Plainly, Y, is distributed like Y;
conditionally on {Y; € A}, hence

P(wi = x) = Cb’)/P((I)(YI) =x ‘ Y, € A) = Cbp(q)(yl) = x,Yl S A) . (39)
Since {Y1 € A} is the disjoint union {ry = o1, 75, > b} UU,>1{m — 01 = n} and since
®(Y7) =y, if 71 = 01, we can write

Pwi=1) = ¢, P(r1 =01) P(o, =2, 0oy, > b| 71 =01)

o0
+ Zch(Tl — 01 :n)P(CD(Yl) =$}T1 — 01 :n) .
n=1
By Lemmal[7] the first term in the r.h.s. equals
b @b Lzp1) Mp(T) = @b Liapg1y Hp(T)
matching with (3.7)). Using (3.4) and again Lemma |7, we rewrite the second term as

Ly

o0
ZCbe(l_Qb)n Z Z P(Aoyti = li, Moy 4jo1 = 25, |71 — 01 = 1)
n=1

l1,ln=1 T1,...,n+1b
P(n+1,(6:),(zi)) =z

S S Tl —a) T m)
=Y anl-a)" Y > [[—— 1=
n=1 Crdn=1 1,1 >b =1 L
Q(n+1,(4:),(zi))==
00 Ly n n+1
= @ Z Z Z H(l — )i Hub(xj) = q (Qomp) (2),
n=1 £1,....0n=1 T4y Tpt1b i=1 j=1
O(n+1,(6;),(z:))=2
so that equation (3.7) is proved. O

As a side remark, we observe that by summing equation (3.7)) (or, more easily, equation
(13.9)) over x > b+ 1 we obtain the following explicit formula for py.1(0):

pp1(0) = 1 — (@ + (L—q)ep),

cf. (3.1). Since ¢, < ¢ =1 — up(0), it follows that ppr1(0) > wp(0), i.e. at each renormal-
ization step the density of positive charges decreases.

4. RENORMALIZATION OF THE PARTITION FUNCTION

In the preceding section we have defined, at each level b of the induction, a renormalizing
map T}, acting on the environment sequence w and producing a renormalized sequence
w' = Tp(w). In this section we show that, by replacing w by Tp(w), one gets an upper
bound on the free energy. This will be the key to the proof of Theorem [6] in Section
With some abuse of notation, we define the map 7} acting on the positive number C by

T,(C) == (1+Be ™ 0)-C, (4.1)

where K} is defined in (3.2]) and B is an absolute constant defined in Lemma [10| below.
Then we have the following
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Proposition 9. There exists by such that for every b > by, for every C € (0,2C| and for
all N € N, there exists for P, —a.e. w, a natural number n (w, N) < co satisfying

N < n(w,N), tN(Tb(w)) < tn(w,N)(w)v

and such that )
Zn(wyN)(w, C) S e"o . ZN (Tb(w),Tb(C)). (4.2)

Proof. We set

n(w,N) = Tg,-.
The interpretation is as follows: by construction (see Section |3) Yg, is the N-th block
of charges of w that will survive after the renormalization, and n (w, N) is the index of
the last positive charge in that block. Therefore it is evident that n(w,N) > N. Also
tn(w,N) (W) = tn(Th(w)) is easy to check, because in the renormalization procedure leading
from w to w’ = Ty(w) the distances between charges are shortened (see also Figure [4)).

For the rest of the proof, we fix N € N, and n :=n (w, N), and we typically drop them
from notations. The estimate is purely deterministic and holds for any w which has the
property that n < oco.

We are going to work with the subsets of {0 t1,to,...,ty,} and we need some notation.
We write J for the collection of intervals I; {to ,...,tTj}, 1 < 5 < Sy. Note that
Uf]:\’l Ij = {ts,,...,tn}. In J there are the ‘bad’ intervals fj =1Is;, 1 < j <N,
and the other ones, we call ‘good’. Note that the ‘good’ intervals correspond to what we
have called good charges in Sections [2 and [3] while the ‘bad’ intervals correspond to the
bad blocks and also to the isolated charges that are not good. In particular, the good
intervals are just single points: for this reason, we also call them ‘good points’. The bad
intervals may be single points, too. We write 7?2 for the set {fl, e ,fN} of bad intervals,
and G C {t1,...,t,} for the subset of good points. The first interval Iy = {0,...,¢,} is
somewhat special. In case 79 = 0, there is no charge (because wp = 0). In case 79 > 0, this
interval is of course ‘bad’, but we keep it separate from the others (remark that we don’t
take it into 7).

We are in the situation where between the bad intervals, there may or may not be good
points in G. Also before the first bad interval, i.e. between Iy and I, there may or may not
be good points. If X C 7, we write P (X) for the set of subsets F' C {0,¢1,...,t,} which
contain 0 and t,, and which have the property that it has non void intersection with any
interval in X, and empty intersection with any interval in J\X. Then

Ziw )= Y Z CIFIIC(F) R(F)

XcJ,Xsly FeP(X

_ Z C ) (clretr(En L) IT (¢ R(FA D),

XcJ,XsIy FeP(X Tex
where for a finite set A = {s, ... ,sm}, m > 1, we set
m
C(A) =] (si = sim1) 2,
i=1

and we put ((A) := 1 in case A reduces to a single point. We also set

R(F) :=exp {erF wx} ,
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where we recall that wg := 0. Note that the sum over X is only over those which contain
the last interval in J (which is a bad one, namely In=1 Sy ), in agreement with .

The ¢ (F) for F' € P (X) contains the parts inside the F'N I, and the ‘interaction part’.
We want to split off this interaction part, and estimate it by a bound which depends only
on X. If the intervals in X are (in increasing order) I,,...,I,, = Ig,, we write M; for
the largest point of I,.;, and m; for the smallest. Put

k
C(X) o= (my — b)) P T (my — M_y) 2.
Jj=2

Then, if F € P (X)
C(F)<{(X)¢FNI) [[¢@EnT).

IeX
The inequality comes from the fact that if x is the largest element of I N F, and y is the
smallest element of I’ N F, T an interval below I’, then (y — )2 < (m/ — M)f?’/Q7 m/
being the smallest point in I’, and M the largest of I. We set for I € J

af)= Y (CMRECE)),
FCI, F#£0

and « (Ip) with one C-factor less. With this notation, we have the estimate

Z,(w,0) < D {(X)a(l) [H a(I)] :

XCJ,X3In TeX

Next we claim that
a(I) < CU=VE R (1) ¢ (1) =: Cexp [®], (4.3)

where K3 is defined in . This is evident if I contains just one point, say ¢;, in which
case «(I) = Ce™. If I contains more than one point, then first observe that there are
ol — 1 < e(HI=DEKy pogsibilities to choose a non-empty subset F C I, because Kj > 2 log 2
for b > by and by large. Assume I = {t5,t541,...,to4+r =t-}, and F' = {t;,,...,t;.}, s0
that

m m . —3/2
CWIR(F) ¢ (F)=C™exp [E :Tzl njr] I @, —t2) /2. (4.4)
r=2
. . -3/2 -3/2
We can bound this from above by replacing (tjr - thfl) by (tjril_i'_l — thfl) , and

for the remaining gaps t;41 — t;, we simply use 1 < efve” (t;,1 — ti)_g/ 2 (we recall that

tiv1 —t; < 3 (0+K) and n; > b by construction). Therefore, the right hand side of || is
bounded by

ot B R (1) ¢ (1) < CelTPVRR (1) ¢ (1),
having used that K, > log2C > log C, and (4.3) follows. Note that the definition of ®;

matches with (3.4]).
For the first interval I, we have a factor C' less on the right hand side of (4.3]), and

therefore from (4.3) it follows that o (Iy) < e™ (we recall that 7 is defined in (3.5)).
Combining, we get

Zo@,C)<e® S )N elan)]

XcJ,X>In
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We have thus succeeded in clustering all the bad blocks.

Let us now fix X’ ¢ JPd X’ 5 [y. Summing over X with X N 7% = X’ amounts to
summing over all subsets of G. Assume the intervals in X’ are described by the sequence
0<ky<ji<ki<jpp<hk< - <inlknp=n
with I() = {to, e ,tko} y X' = {{tjl, cen 7tk1} EEEE) {tjm7 v 7tkm}}7 ’I’ri: |X" Write also gr,

1 <r < m, for the set of good points between ¢y, , and ¢;,, and G, := G, U {ty,_,,¢;,

Then we can write the summation over X with X N JP2d = X’ as the summation over
Ay CGi,..., Ay C Gy For a single t; € G we have ®(4,y = b. We therefore get

Z é(X) o1 X [HEX exp [@1]} = [HIGX’ exp @1} f[E b, C, gr ,

XeJ: Xngbad=Xx"

where for a finite subset A ={sq, s1,...,Sm}, the s; ordered increasingly, we set
E(,CA) = Y cARtelAT o), (4.5)
ACA
AD{s0,5m}

Remark that the points in G, have inter-distances all > e%(bJer). We can therefore
apply Lemma [T1] below, and obtain

C(1+ BCe 1)
(tJ'r - tkr71)3/2 .

2(b,C,G,) <

We thus get
X’ -K
R C(1+ BCe %0
Z, (w,C) < e Z [HleX, exp [(I)I]} H ( 3/2)
X/C]bad, XIBfN r=1 (t,]r - tk’r—l)

Note that C (1 + BCe %) is by definition T;(C), cf. (4.1).

We are almost done. For the renormalized environment w’ = T,(w), defined in Section
we call {t},n, }ken the locations and intensities of the positive charges of W' (see §2.1)).
Consider the following correspondence: to each bad interval I; € JP2d we associate the
positive charge 7, € w'. Notice in fact that ] = @ i, see (4.3) and (3.6). Moreover, given
two bad intervals [; = {tj,, . te, }, I, = {tjps st} € Jbd with I, below I, we can
bound ¢;,, — tx, > t], —t;, because in passing from w to w’ the distances A,, between

intervals have been shortened to A; (it may be useful to look at Figure . Therefore we
can bound Z, (w,C) by

4]

e d) = 2 [L" W = ™ Zy (W, Ty(0)) ,
A={ao,...,ax}c{0,...,N} i=1 a1
0=ap<...<ap=N
where the last equality is just the definition (2.6]) of the partition function, and the proof

is completed. O

We conclude this section with an auxiliary result (Lemma below) that is used in the
preceding proof. We first need a basic renewal theory lemma.
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Lemma 10. There exist positive constants B and Ky such that for every C' > 0 and for
all K > Ko+ log C the following relation holds for every N € N:

N
Ce K
+ .— —-K
@N '_Z Z HJ_] 3/2—(1+BC ) N3/2
k=1 Joeeto1 €N =1 Ve = Je1)
0=:jo<j1<...<Jrp—1<jr:=N
Proof. Defining the constant A := (ZZO:1 n_3/2)_1, we set
A C _g
q(n) = 3 vi=geh.
Note that we can write
o) = Z'yk *(n (4.6)

where ¢**(-) denotes the k-fold convolution of the probability distribution ¢(-) with itself.

Let us prove by induction that ¢**(n) < Ak%2/n®?2 for every k € N and n € N. The
case k = 1 holds by definition of ¢(-). For the inductive step, if k is even, k = 2m, we can
write

[n/2] [n/2]

1
*(Zm _ 5/2 *m,
<zzq 0 <2Am ;q O =
2Am5/2 = omgy = AR m)?/?
n/g (n)2)3/2 Z 32

and the odd case follows analogously. Then by (&.6) we can bound ©; by Ag (y)n=3/2,
where

[e.@]
g(7) = Kk <y 489,
k=1
provided 0 < v < 7, 7o sufficiently small. Let us set Ky := —log(A~p), then if K >
Ko + log C, we have v < v, and therefore
A 8C Ce K
+ 2 -K
On < (1+87) 55 < <1+Ae ) SR
The proof is completed by setting B := 8/A. O

Lemma 11. Let Ky and B be the constants of Lemmal[I0. Then VN > 2,Vb > 0, VC > 0,
VK > Ko +log C and for all T = (to,...,tn) € NN with
to <t <...<tn and t, —tn1>e3<b+K),vn:1,...,N,
the following relation holds for E(b,C,T) (defined in (4.5)):
C

=2(b,C,T) < (14 BCe™ X)) ——.
( ) ( )(tn—t1)3/2
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Proof. Expanding the definition of Z(b,C,7) we can write:

=(b,C,T) —bz > H

_ )3/2°
J1sensjk—1€EN =1 (%, tﬂf i
0 Jo<j1<..<Jp—1<Jr:=N
Fix a configuration j; < --- < jr_1 C {1,---,N — 1}. Then we have
k k
1 - 1 ZZ:l(tje - tj(’.—l)
. _ k
é:lt“ Loy tn —to HZ:l(tje - tj£—1)
it
tN_tO —1 ¢ tj’_tj/—l
=1 0e{l, ke ¢
_2 _ k
(b+K)(k—1) 1
e 3 . . .
- tn—t H — Ju since tj, — tj,_, = 2O (5, — o)
N — 1o 11 ve(l - K\ Jer — Jer—1
2 ) . _2 _
R L v A o G
tn—to T[T,y (je = je1) En—=to  TT;_1 (e = Je—1)

Therefore we get:

_ _, ettE N3/2 N k Ce K
E0,C,T) < e (tn — 10)3/2 ; jly--'J;lGN g e — jo_1)3/2
0=1j0<j1<...<Jgp—1<Jp:=N
< (14 BCe™¥) B
(tN _ 750)3/2 ’
having used Lemma and we are done. O

5. PROOF OF THEOREM

The starting point in the proof of Theorem |§| is Proposition |§|, which immediately gives
an upper bound on the free energy F(uyp, C), for every b > by and C € (0,2C]. In fact,
since the limit in (2.8]) holds P, (dw)-a.s., we can take it along the (random) subsequence
{n(w, N)}nen and relation (4.2) yields

F(up, C) < liminf
( ) N—oo tn(w,N)(w)
and since t,(,, ny(w) > tn(Th(w)) we obtain, again by (2.8)),
F(up, C) < F(ppgr, Tp(C)) .

Note in fact that ppsq is by definition the one-marginal law of Tj(w), when w has law pp,
see Section [3] We now iterate this relation starting from b = 3: if we set

Cs:=C and C, = (Tb,l Ty—o---Tp4q -Tg) (C) forb>p, (5.1)

since in below we show that Cp < 2C for every b > 3, provided ( is sufficiently large,
we can write

log ZN (Tb(w), Tb(C)) s Pﬂb (dw)fa.s.,

F(ps,C) < F(u,Cp), VB3 > by, Vb > 3. (5.2)
We stress that, though not explicitly indicated, both the law p and the constant Cp depend
also on 3, which is the starting level of our procedure: however 3 is kept fixed in all our
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arguments. We recall that to prove Theorem |§| it suffices to show that F(uﬁ, C) = 0 when
B is large (see §2.2)). Hence by (5.2)) we are left with showing that, if we fix § sufficiently
large, F(,ub,Cb) vanishes as b — oo.

To estimate F(ub, Cp), we start from a very rough upper bound on the partition function:
from the definition (2.6)) we can write for every n € N

n

Z,(w,€) < eSimalntlone/a) | §° 3 H@W ,

k=1 ) j},...,jk,-leN ) /=1
0=1j0<j1<...<Jp—1<Jjp=n

where A := (2;0:1 m=3/ 2)_1 < 1 is the constant that makes m — A/m3/? a probability
law. With this choice, the term in parenthesis in the r.h.s. above is bounded from above
by the probability that a renewal process with step law A/ m?/2 visits the point ¢,, hence
it is less than 1 and we have

n tn(w)
C C
Zy(w,C) < exp ( E (772‘ + log A)) = €Xp ( E (Wj + log A 1{wj>0}>>

i=1 j=1
Now, if the sequence w is i.i.d. with marginal law u, with 0 < x(0) < 1, by (2.8) we have

tn(w)

: C C
F(u,C) < nh_)rglo (@) Jzz:l <wj —i—logz 1{wj>0}> = E“(wl) —i—]P’#(wl > 0) .logz,

having used that ¢,(w) — oo, P,(dw)-a.s., and the strong law of the large numbers.
Combining this bound with (5.2)), we get

F(pp,C) < F(up,Cp) < Eppwi) + (1= (0)) -log%, (5.3)

for every 3 > by and for every b > (.
We are left with estimating the r.h.s. of ((5.3)). To this purpose, we exploit the stochastic
domination on pup given by the following

Proposition 12. There exists a finite by (depending on C > 0 and ¢ > %) such that for
all b> B > by we have:
pp(z) < e 5TVE Ve >b. (5.4)

Applying (5.4) to (5.3), for any fixed 5 > [y := by V by, we obtain for every b > 3

F(up,C) < erf%x*ﬁ + <10g i;) Ze,g‘%ﬁ'

r=b r=b

It is clear that both the sums in the r.h.s. can be made arbitrarily small by taking b large.
Moreover, in below we show that C, < 2C for all b. Therefore, by letting b — oo, we
have shown that F (ug, C) = 0 for all 8 > By, and this completes the proof of Theorem@ O

The proof of Proposition [12] is given in below. Before that, we need to establish
two technical lemmas.
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Lemma 13. Let m e N, m > 2, letb e N, b > 3V 100, and z > mb. Then
Apyp (2) = Z exp [— 2:11 \/;67} < e VEETVE,

T1yeenyTm b
T1+-+Tm=2

Proof. We first treat the case m = 2. There we have for the left hand side
[2/2]
Agp(2) <2 Z exp [—vVz —Vz —z].
z=b
For x < z/2
Vz—x=+z/1— g

For t < 1/2, we have from concavity of the square root function
Vi—t>1- (2—\/5)7:,
and therefore for z < z/2

Vz—x >

>

(-
()

= Sl

V7 —
V7 —
Hence,

1
2

z—b %)
Zexp [—f— Vz— :U] < Qe_ﬁZeXp [
r=b

r=b

oo 1 00
Z exp [—\/ﬂ < / e Vil2gs = 8/ tetdt
= 2 b—1 VE=1/2
= 8< b2_1+1> e_vb_l/ggéexp {—i\/lg} )

if b > 100. This proves the claim for m = 2.
The general case follows by induction on m. Assume m > 3. Then

z—(m—1)b

A = X TS en[-Y) v

r1=b T2,..., T >b
Tot - +Tm=2—T1

z—(m—1)b
-2
Z e V¥ exp [—ﬂ— m4\/5}

r1=b

z—b
< e_mT_Q\/EZexp (Vo —Vz—u < e VETEEVE
z=b

IA

by induction and the m = 2 case. ]
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Lemma 14. There exists by = ba(C) such that for every b > by and n € N we have:

Le%(h+Kb)J n 3
By p(z) = Z T EL Gl 2K 4 <9€ + Z ({2 log &'J — 2Kb>>
01y =1 i=1

o
where A, () is defined in Lemma [13 and Ky is defined by (3.2).

Proof. By Lemma we have:

Aners (m * Z (E log giJ B 2Kb>) <e iVhe T+ (13 log 6] -2K0),
=1

Since for 0 < a < b we have Vb —a > Vb — Va, it follows that

x+i<ﬁlogeiJ —2Kb> >z — zn:(sz— Elogeib > 1 — \/2nK,,

=1

because ¢; > 1. Therefore

Ani1p (m + Z (E logEiJ - 2Kb>> < o i Vbe— VT V2K,
i=1

Plugging this in the definition of B, ;(x) and using the fact that L% log¢;| > %log 4 —1
yields:

n

Le%<b+Kb)J
Bnb(x) < e—%x—ﬁe—%\/l;e%nl(b-i-\/QnKb 2 : €
’ - /
=1 1

IN

n
b 21y

V2K
o= 2o—vE ,— Vb (— 5 Vi Kot Yot +1+log 5 (b+K))n

Observe that, for every fixed C > 0, we havi —%\/l;—l— %Kb—l— % +1-+log %(b—l—Kb) — —00
as b — oo (recall the definition (3.2)) of K3). Therefore there exists by = ba(C), such that
for all b > by, By y(x) < e 37 Vi 5V, 0

5.1. Proof of Proposition The law py is defined recursively by equations (3.7) and
(3.8), starting from pg = (1 — 6*05)5{0} + 6*055{5}. In particular we have

us(B) = e, pg(x) =0, Ve>p+1,
and for x >

2(b+Ky)

o le3 |

(@) < (@) + Y Y > (1) - po(@nt1) - (5.5)
n=1 {1, =1 T1, 0, Tn412b

Z?:ll xi—zyzl(\_% logfjj —QKb):J?

We recall that i, is supported on {0} U {b,b+1,...}.
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Let us prove equation (5.4) by induction on b = 3,3+ 1,---. For b = 3 we have
pa(B) = ePe = =38 (e=3)8 < ~3A—VE
whenever 3 > bs(c) := ﬁ In particular, (5.4]) holds for b = 3, provided 3 > b3(c).
3

Assume now that pq(z) < e_%x_ﬁ, for all 5 < a < b. Then, using (5.5) and the fact
that pg(xz) =0, Vo > B+ 1, we have:

o [e3TED)

Mb-i—l Z Z Z Z /La(l'l) T ,Ua(anrl) ,

a=pn=1 {1, Ln=1 Ti, ,Tptl = Q
Z?Jrlliﬂz ;L:l(L%lOngJ _2Kb) =

Plugging in the induction assumption yields:

,U/b—l—l Z ZBna

a=pFn=1

where By, () is defined in Lemma Assuming 8 > by and using Lemma (14| gives:

b (z) < eT3TTVE Z Z

a=0Fn=1

0 /&

2 ]

e~ 3TV7 Z e~ 1o
a=p3

IN

S —
<emirVE e X5 — em5rVE (20(10 + \/ﬁ)e_\/??)
B-1
< e 5"7VZ when 3 > 6000.
Hence Proposition |12 holds for all 5 > b;(C, ¢) := max{b2(C), b3(c),6000}. O

5.2. Bounding the constant C,. We are going to show that C, < 2C for all b > 3. We
recall the definition (2.11)) of Cp (see also ((5.1])):

Cs = C, Co = T (Cp1) = (1+BChre ¥=1) -Gy, b> 3,
where C is the constant appearing in the definition (2.6|) of the partition function. Passing
to logarithms we get

b—1
logCp = logC+ > log (1 + BCye Xe).
a=0

We prove that C, < 2C by induction: the case b = (3 is trivial since Cg = C. Assuming
that C, < 2C for all a € {3,...,b— 1}, we have

b—1
log C, < logC + Zlog (1 +2BCC_K“) .
a=p
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By the definition (3.2)) of K, we have K, > (K() + log(2C) + 2log a) — 1, therefore

b—1 [e'e)
B 1
log Cp, < logC + E log (1+61_K0§) < logC + Bel™HKo g ol
a=p a=p

Therefore, if we choose 3 sufficiently large, we get logC, < log(2C) and we are done.
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