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Abstract. We consider a model for a polymer interacting with an attractive wall
through a random sequence of charges. We focus on the so-called diluted limit, when
the charges are very rare but have strong intensity. In this regime, we determine the
quenched critical point of the model, showing that it is different from the annealed one.
The proof is based on a rigorous renormalization procedure. Applications of our results
to the problem of a copolymer near a selective interface are discussed.

1. Introduction

The issue addressed in this work is the determination of the quenched critical point for
the localization/delocalization phase transition of a polymer interacting with an attractive
wall through a diluted disordered potential. The model we consider was first introduced
by Bodineau and Giacomin in [4], as a reduced model for the so-called copolymer near a
selective interface model [5], with the hope that it would have the same behavior as the
full copolymer model, in the limit of weak coupling constants. As we will see, our main
result shows that this is not the case.

The cornerstone of our approach is a rigorous renormalization procedure. We point out
that the same result has recently been obtained by Fabio Toninelli [13], with a rather
different approach, see the discussion following Theorem 5 below for more details.

1.1. The model and the free energy. Let S = {Sn}n≥0 be the simple symmetric
random walk on Z, and denote by P its law. More explicitly, S0 = 0 and {Sn−Sn−1}n≥1 are
i.i.d. random variables with P (S1 = +1) = P (S1 = −1) = 1

2 . For N ∈ N := {1, 2, . . .} we
denote by P+

N ( · ) = P ( · |Sn ≥ 0 for n = 1, . . . , N) the law of the random walk conditioned
to stay non-negative up to time N . The trajectories {(n, Sn)}0≤n≤N under P+

N model the
configurations of a polymer chain of length N above an impenetrable wall.

The interaction of the polymer with the wall is tuned by two parameters β ≥ 0, and
p ∈ [0, 1]. For fixed β and p, we introduce a sequence ω = (ωn)n≥1 of i.i.d. random variables,
taking values in {0, β} and with law P given by:

P(ω1 = β) = p, P(ω1 = 0) = 1− p. (1.1)

We are ready to define our model: for a fixed (typical) realization ω and N ∈ N, we
introduce the probability measure Pβ,p

N,ω defined by:

dPβ,p
N,ω

dP+
N

(S) =
1

Zβ,pN,ω
exp

(
N∑
n=1

ωn1{Sn=0}

)
, (1.2)
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Figure 1. A typical path of the polymer measure Pβ,c
N,ω.

We are ready to define our model: for a fixed (typical) realization ω and N ∈ N, we
introduce the probability measure Pβ,p

N,ω defined by:

dPβ,p
N,ω

dP+
N

(S) =
1

Zβ,p
N,ω

exp

(
N∑

n=1

ωn1{Sn=0}

)
, (1.2)

where the normalization constant Zβ,p
N,ω := E+

N

(
exp

( ∑N
n=1 ωn1{Sn=0}

))
is usually called

the partition function.
Notice that the polymer measure Pβ,p

N,ω and the partition function Zβ,p
N,ω are functions

of N and ω only; the superscripts β, p are there to indicate that we are interested in the
case when the sequence ω follows the law P, which depends on β, p.

In this paper we focus on the regime of large β and small p: then ω represents a random
sequence of charges sitting on the wall (i.e. on the x-axis), which are rare, but of strong
intensity, and which attract the polymer, see Figure 1. We are interested in the behavior
of the polymer measure Pβ,p

N,ω in the limit of large N : in particular, we want to understand
whether the attractive effect of the environment ω is strong enough to pin the polymer at
the wall (localization), or whether it is still more convenient for the polymer to wander
away from it (delocalization), as it happens when there are no charges. It should be clear
that we are facing a competition between energy and entropy.

The classical way of detecting the transition between the two regimes mentioned above,
is to study the free energy of the model, which is defined by:

f(β, p) = lim
N→∞

1
N

log Zβ,p
N,ω. (1.3)

The existence of this limit, both P(dω)–a.s. and in L1(P), and the fact that f(β, p) is non-
random are proved in [7] via super-additivity arguments. Notice that trivially Zβ,p

N,ω ≥ 1
and hence f(β, p) ≥ 0 for all β, p. Zero is in fact the contribution to the free energy of
the paths that never touch the wall: indeed, by restricting to the set of random walk
trajectories that stay strictly positive until time N , one has

Zβ,p
N,ω ≥

P
(
Si > 0 for i = 1, . . . ,N

)
P

(
Si ≥ 0 for i = 1, . . . ,N

) =
1
2P

(
Si ≥ 0 for i = 1, . . . ,N − 1

)
P

(
Si ≥ 0 for i = 1, . . . ,N

) N→∞−−−−−→ 1
2

,

where we use the well-known fact that P
(
Si ≥ 0 for i = 1, . . . ,N

) ∼ (const.)/
√

N as
N →∞, cf. [6, Ch. 3]. Based on this observation, we partition the phase space into:

• the Localized region L := {(β, p) : f(β, p) > 0}
• the Delocalized region D := {(β, p) : f(β, p) = 0}.

Figure 1. A typical path of the polymer measure Pβ,c
N,ω.

where the normalization constant Zβ,pN,ω := E+
N

(
exp

(∑N
n=1 ωn1{Sn=0}

))
is usually called

the partition function.
Notice that the polymer measure Pβ,p

N,ω and the partition function Zβ,pN,ω are functions of
N and ω only; the superscripts β, p are there to indicate that we are interested in the case
when the sequence ω follows the law P, which depends on β, p.

In this paper we focus on the regime of large β and small p: then ω represents a random
sequence of charges sitting on the wall (i.e. on the x-axis), which are rare, but of strong
intensity, and which attract the polymer, see Figure 1. We are interested in the behavior
of the polymer measure Pβ,p

N,ω in the limit of large N : in particular, we want to understand
whether the attractive effect of the environment ω is strong enough to pin the polymer at
the wall (localization), or whether it is still more convenient for the polymer to wander
away from it (delocalization), as it happens when there are no charges. It should be clear
that we are facing a competition between energy and entropy.

The classical way of detecting the transition between the two regimes mentioned above,
is to study the free energy of the model, which is defined by:

f(β, p) = lim
N→∞

1
N

logZβ,pN,ω. (1.3)

The existence of this limit, both P(dω)–a.s. and in L1(P), and the fact that f(β, p) is non-
random are proved in [8] via super-additivity arguments. Notice that trivially Zβ,pN,ω ≥ 1
and hence f(β, p) ≥ 0 for all β, p. Zero is in fact the contribution to the free energy of
the paths that never touch the wall: indeed, by restricting to the set of random walk
trajectories that stay strictly positive until time N , one has

Zβ,pN,ω ≥
P
(
Si > 0 for i = 1, . . . , N

)
P
(
Si ≥ 0 for i = 1, . . . , N

) =
1
2P
(
Si ≥ 0 for i = 1, . . . , N − 1

)
P
(
Si ≥ 0 for i = 1, . . . , N

) N→∞−−−−−→ 1
2
,

where we use the well-known fact that P
(
Si ≥ 0 for i = 1, . . . , N

) ∼ (const.)/
√
N as

N →∞, cf. [7, Ch. 3]. Based on this observation, we partition the phase space into:
• the Localized region L := {(β, p) : f(β, p) > 0}
• the Delocalized region D := {(β, p) : f(β, p) = 0}.

By a standard coupling on the environment, it is clear that the function p 7→ f(β, p)
is non-decreasing. Therefore for every β ≥ 0, there exists a critical value pc(β) ∈ [0, 1]
such that the model is localized for p > pc(β) and delocalized for p < pc(β) (in fact for
p ≤ pc(β), since the function f(β, p) is continuous). The main goal of this work is to study
the asymptotic behavior of pc(β), as β →∞.
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Remark 1. One may reasonably ask to what extent the definition of (de)localization
given above in terms of the free energy corresponds to a real (de)localized behavior of the
typical paths of Pβ,p

N,ω. Let us just mention that, by convexity arguments, one can prove

that when (β, p) ∈ L the typical paths of Pβ,p
N,ω, for large N , touch the wall a positive

fraction of time, while this does not happen when (β, p) are in the interior of D. We do
not focus on path properties in this paper: for deeper results, we refer to [8]. �

Remark 2. Models like Pβ,p
N,ω are known in the literature as (disordered) wetting models,

the terminology referring to the interpretation of {Sn}n≥0 as the interface of separation
between a liquid and a gazeous phase, when the liquid is above an impenetrable wall.

More generally, Pβ,p
N,ω belongs to the class of the so-called disordered pinning models,

which have received a lot of attention in the recent probabilistic literature, cf. [2, 10, 1,
12, 13] (see also [8] for an overview). In our case we prefer to refer to Pβ,p

N,ω as a polymer
model, because of its original interpretation as a simplified model for a copolymer near a
selective interface [4] (the link with the copolymer model is discussed below). �

1.2. The main result. Some bounds on pc(β) can be obtained quite easily, as shown in
[4, §4.1]. These results are stated in the following two lemmas, whose (easy) proofs are
given in detail here, since they provide some insight into the problem. Our main result is
then stated in Theorem 5 below.

Lemma 3. The following relation holds:

− lim inf
β→∞

1
β

log pc(β) ≤ 1 . (1.4)

Proof. Since the limit in (1.3) holds also in L1(P), by Jensen’s inequality we get

f(β, p) = lim
N→∞

1
N

E
(

logZβ,pN,ω
) ≤ lim

N→∞
1
N

log E
(
Zβ,pN,ω

)
. (1.5)

This is usually called the annealed bound, and the limit in the r.h.s. above (whose existence
follows by a standard super-additivity argument) is the annealed free energy. It can be
evaluated using the definition (1.2) of the model, and Fubini’s Theorem:

E
(
Zβ,pN,ω

)
= E+

N E

(
exp

(
N∑
n=1

ωn1{Sn=0}

))
= E+

N

(
exp

(
N∑
n=1

log M(β, p)1{Sn=0}

))
,

where M(β, p) = E(eω1) = p eβ + (1 − p). Therefore E
(
Zβ,pN,ω

)
is the partition function of

the simple random walk conditioned to stay non-negative, and given a constant reward
log M(β, p) each time it touches zero. This model is exactly solvable, see [8, §1.3], and in
particular we have:

lim
N→∞

1
N

log E
(
Zβ,pN,ω

)
= 0 if and only if M(β, p) ≤ 2 .

Looking back to (1.5) and recalling the definition of M(β, p), we have shown that

p ≤ pa(β) :=
1

eβ − 1
=⇒ (β, p) ∈ D ,

where pa(β) is the annealed critical point. Therefore equation (1.4) is proved. �
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Lemma 4. The following relation holds:

− lim sup
β→∞

1
β

log pc(β) ≥ 2
3
. (1.6)

Proof. We have to bound the partition function from below. To this aim, we compute
the contribution of the set of trajectories that touch the wall wherever there is a non-
zero charge (on even sites, because of the periodicity of the random walk). We need some
notations: we introduce the subset of paths

Ωω
N :=

{
S : Sn = 0 ⇐⇒ ωn > 0, ∀n ≤ N, n ∈ 2N

}
,

and the locations {ξn}n≥0 of the positive charges sitting on even sites:

ξ0 := 0 ξn+1 := inf{k > ξn, k ∈ 2N : ωk > 0} , n ∈ N .
We denote by ιN := max

{
k ≥ 0 : ξk ≤ N

}
the number of positive charges (sitting on

even sites) up to time N . Finally, we introduce the distribution of the first return time to
zero of the simple random walk restricted to the non-negative half-line:

K+(n) := P
(
Si > 0 for i = 1, . . . , n− 1, Sn = 0

)
(1.7)

(observe that K+(n) = 0 for n odd) and we recall that [7, Ch. 3]

K+(2n) n→∞∼ CK
n3/2

where CK =
1

2
√
π
,

∑
n∈N

K+(2n) =
1
2
. (1.8)

Then we have

Zβ,pN,ω ≥ E+
N

(
exp

(
N∑
n=1

ωn1{Sn=0}

)
1{S∈ΩωN}

)

=
1

P (S1 ≥ 0, . . . , SN ≥ 0)
· eβ ιN ·

(
ιN∏
`=1

K+
(
ξ` − ξ`−1

)) ·( ∞∑
n=N−ξιN+1

K+(n)

)
.

Note that {(ξ` − ξ`−1)/2}`≥1 is an i.i.d. sequence of geometric random variables with
parameter p. Therefore, by the strong law of large numbers, we have:

lim
N→∞

ιN
N

=
p

2
and lim

N→∞
1
N

ιN∑
i=1

logK+(ξ` − ξ`−1) =
p

2
E
(

logK+(ξ1)
)
, P(dω)–a.s.

Hence, from the last equation we get, P(dω)–a.s.,

lim
N→∞

1
N

logZβ,pN,ω ≥
p

2

(
β + E

(
logK+(ξ1)

))
.

By (1.8) there exists a positive constant c1 such that K+(n) ≥ c1/n
3/2, for all n ∈ 2N.

Using this bound and Jensen’s inequality yields:

lim
N→∞

1
N

logZβ,pN,ω ≥
p

2

(
β + log c1 − 3

2
E
(

log ξ1

)) ≥ p

2

(
β + log c1 − 3

2
log E

(
ξ1

))
.

Since E
(
ξ1

)
= 2p−1, setting c2 := log c1 − 3

2 log 2, we get

lim
N→∞

1
N
Zβ,pN,ω ≥

p

2

(
β +

3
2

log p + c2

)
,

so that
p ≥ e−

2
3

(β+c2) =⇒ (β, p) ∈ L ,
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and equation (1.6) is proved. �

We can summarize Lemmas 3 and 4 in the following way: if we knew that

pc(β) � e−cred β (β → +∞) ,

then 2
3 ≤ cred ≤ 1 (the subscript red stands for reduced model, see the discussion below).

The main result of this paper is that in fact cred = 2
3 . More precisely:

Theorem 5. For every c > 2
3 there exists β0 = β0(c) such that

f(β, e−c β) = 0 for all β ≥ β0 ,

i.e. (β, e−c β) ∈ D for β ≥ β0. Therefore

− lim
β→∞

1
β

log pc(β) =
2
3
.

Let us discuss some consequences of this Theorem. We recall that the model Pβ,p
N,ω was

first introduced in [4], as a simplified version (‘reduced model’) of the so-called copolymer
near a selective interface model, cf. [5] (see also [8] for a recent overview). It is known
that the copolymer model undergoes a localization/delocalization phase transition. An
interesting object is the critical line separating the two phases, in particular in the limit
of weak coupling constants, where it becomes a straight line with positive slope Ccop.

A lot of effort has been put in finding the exact value of Ccop. This is motivated by
the fact that Ccop appears to be a universal quantity: it is independent of the law of the
environment [9, Section 3] and it determines the phase transition of a continuous copolymer
model, arising as the scaling limit of the discrete one [5, §0.3]. What is known up to now is
that 2

3 ≤ Ccop ≤ 1. Notice that 2
3 and 1 are exactly the bounds that were previously known

for cred, and this is not by chance: indeed the definition of the model Pβ,p
N,ω is inspired by

the strategy behind the proof of Ccop ≥ 2
3 , cf. [4].

The reason for introducing a reduced model is to have a more tractable model, which
would possibly have the same behavior as the full copolymer model in the limit of weak
coupling constants, i.e. for which possibly cred = Ccop. However, the numerical results
obtained in [6] provide strong indications for the fact that Ccop > 2

3 . If this is indeed the
case, our result shows that the reduced model does not catch the full complexity of the
copolymer model, i.e. the ‘missing free energy’ should come from a different strategy than
the one which is at the basis of the lower bound Ccop ≥ 2

3 .
By Theorem 5, our model provides also a non-trivial example of a linear chain pinning

model where, for large β, the quenched critical point pc(β) is different from the annealed
one pa(β) = 1/(eβ − 1) (see the proof of Lemma 3).

What we actually prove in this paper is a stronger version of Theorem 5, i.e. Theorem 6,
stated in the next section. The proof relies on quenched arguments, based on a rigorous
renormalization procedure (somewhat in the spirit of [11]). The idea is to remove from
the environment sequence ω the positive charges that are well-spaced (that therefore give
no sensible contribution to the partition function) and to cluster together the positive
charges that are very close. This procedure produces a new environment sequence ω′,
which has fewer charges but of stronger intensity. The key point is that replacing ω by
ω′ in the partition function yields an upper bound on the free energy. Then, by iterating
this transformation, we obtain environment sequences for which the free energy can be
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estimated and shown to be arbitrarily small. A detailed description of this approach,
together with the organization of the paper, is given in Section 2.

We point out that Theorem 5 has recently been obtained by Fabio Toninelli [13] with a
simpler (though more indirect) argument, avoiding the renormalization procedure we ap-
ply. We however believe that our direct procedure, eliminating ‘bad’ regions in a recursive
way, is also of value for other problems, e.g. for proving that Ccop < 1.

1.3. Beyond the simple random walk. Theorem 5 can actually be extended to a
broader class of models. Namely, let

(
τ = {τn}n≥0,P

)
be a renewal process, i.e. τ0 = 0

and {τn − τn−1}n≥1 under P are i.i.d. random variables taking positive values (including
+∞). It is convenient to look at τ also as the (random) subset ∪n≥0{τn} of N ∪ {0}, so
that expressions like {k ∈ τ} make sense. We assume that τ is terminating, i.e.

δ := P(τ1 <∞) < 1 , (1.9)

that it is aperiodic, i.e. gcd{n ∈ N : P(n ∈ τ) > 0} = 1, and that for some positive
constant CK we have:

K(n) := P(τ1 = n) ∼ CK
n3/2

(n→∞) . (1.10)

We introduce `N := max{k ≥ 0 : τk ≤ N}, that gives the number of renewal epochs up
to N , and the renewal function U(·) associated to τ , defined for n ∈ N by

U(n) := P(n ∈ τ) =
∞∑
k=0

P(τk = n) . (1.11)

By (1.9) and (1.10), the asymptotic behavior of U(n) is [8, Th. A.4]

U(n) ∼ CK
(1− δ)2

1
n3/2

(n→∞) ,

so that in particular there exists a positive constant C such that

U(n) ≤ C
n3/2

for every n ∈ N . (1.12)

We stress that U(n) has the same polynomial behavior as K(n): this is a consequence of
equation (1.9) and is a crucial fact for us.

Keeping the same environment ω = {ωn}n as in (1.1), we define the new partition
function

Zβ,pN,ω := E

(
exp

(
N∑
n=1

ωn 1{n∈τ}

)
1{N∈τ}

)
= E

(
exp

(
`N∑
k=1

ωτk

)
1{N∈τ}

)
, (1.13)

and we call f(β, p) the corresponding free energy:

f(β, p) := lim
N→∞

1
N

log Zβ,pN,ω P(dω)–a.s. and in L1(P) . (1.14)

Then we have the following extension of Theorem 5.

Theorem 6. For every c > 2
3 there exists β0 = β0(c) such that

f(β, e−c β) = 0 for all β ≥ β0 .
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Let us show that Theorem 5 can easily be deduced from Theorem 6. To this purpose,
we choose (τ,P) to be the renewal process with inter-arrival law K+(·) defined in (1.7).
Notice that τ is not aperiodic, but this is a minor point (it suffices to focus on the even
sites to recover aperiodicity), and that K+(·) satisfies (1.9) and (1.10) (restricted to even
sites). Then we can write the original partition function as

Zβ,pN,ω = E+
N

(
exp

(
N∑
n=1

1{Sn=0}

))
=

1
P (S1 ≥ 0, . . . , SN ≥ 0)

E

(
exp

(
`N∑
k=1

ωτk

))
.

This formula looks slightly different from (1.13). First, there is a pre-factor, due to the
fact that K+(·) is defined under the restricted law P

( · 1{S1≥0,...,SN≥0}
)

while Zβ,pN,ω is
defined as an average with respect to the conditioned law P+

N . We have already noted
that P

(
Si ≥ 0 for i = 1, . . . , N

) ∼ (const.)/
√
N , therefore this pre-factor is irrelevant for

the purpose of computing the free energy. The second difference is the presence in (1.13)
of the indicator function 1{N∈τ}, but again this boundary condition does not change the
Laplace asymptotic behavior, as is shown in [8, Rem. 1.2]. Therefore f(β, p) defined by
(1.14) coincides with f(β, p) defined by (1.3), and Theorem 5 follows from Theorem 6.

1.4. On more general return exponents. Another natural extension is to let the re-
newal process (τ,P) have inter-arrival distribution K(·) such that

K(n) ∼ L(n)
n1+α

(n→∞) , (1.15)

with α ≥ 0 and L : (0,∞) → (0,∞) a slowly varying function (cf. [3]), i.e. such that
L(tx)/L(x) → 1 as x → ∞, for every t > 0. In this paper we stick to the case α = 1

2
and L(n) → CK , for ease of notations, but we stress that our proof of Theorem 6 goes
through for the general case with easy modifications, provided one replaces 2

3 by 1
1+α in

the statement of Theorem 6. Lemma 4 also generalizes immediately, again with 2
3 replaced

by 1
1+α , hence we have pc(β) � e−cαred β with cαred = 1

1+α . In particular, for large β the
quenched critical point is different from the annealed one, for any value of α > 0.

2. Strategy of the proof: a renormalization procedure

In this section, we explain the strategy behind the proof of Theorem 6 in details, and
describe the organization of the paper. Before doing that, we introduce some notations,
and make some preliminary transformations of the partition function Zβ,pN,ω.

2.1. Some basic notations. Let us first introduce some notations to be used throughout
the paper. Given an arbitrary sequence ω = {ωn}n≥1, the sequence {tn}n≥0 = {tn(ω)}n≥0,
is defined as follows:

t0(ω) := 0 tn(ω) := min
{
k > tn−1(ω) : ωk > 0

}
. (2.1)

In our case, ω is the sequence of charges, and {tn}n≥1 are the locations of the positive
charges. However we are not assuming that ω is a typical realization of the law (1.1) (in
particular, the size of the positive elements of ω is not necessarily β).

Notice that the {tn}n≥0 are finite iff #{i ∈ N : ωi > 0} = +∞, which is always the case
for us. The increments of {tn}n≥0 are denoted by {∆n}n≥1 = {∆n(ω)}n≥1:

∆n(ω) := tn(ω)− tn−1(ω) (n ∈ N) . (2.2)
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Finally, we introduce the sequence {ηn}n≥1 = {ηn(ω)}n≥1 giving the intensities of the
positive charges, i.e.

ηn(ω) := ωtn(ω) (n ∈ N) . (2.3)
We stress that one can easily reconstruct the sequence ω in terms of {t, η} = {tn, ηn}n

(or equivalently of {∆n, ηn}n). Therefore we look at ω, {t, η} and {∆, η} as equivalent
ways of describing the sequence of charges.

We also mention an elementary fact that will be used in the next section: the sequence
{ωn}n≥1 is i.i.d. if and only if the variables {∆n, ηn}n≥1 are all independent, the {ηn}n≥1

are i.i.d. and the {∆n}n≥1 are i.i.d. geometrically distributed.

2.2. A preliminary transformation. In the partition function Zβ,pN,ω, the parameter N
represents the size of the system. However it turns out to be more convenient to consider
a partition function with a fixed number of positive charges.

Let us be more precise. Since the limit in (1.14) exists P(dω)–a.s., we can take it along
the (random) subsequence {tn}n≥0 = {tn(ω)}n≥0, i.e. we can write, P(dω)–a.s.,

f(β, p) = lim
n→∞

1
tn

log Zβ,ptn,ω , (2.4)

Let us focus on Zβ,ptn,ω: by summing over the locations of the positive charges that are
visited and recalling the definition (1.11) of the renewal function U(·), we obtain the
explicit expression

Zβ,ptn,ω ≤
n∑
k=1

∑
j1,...,jk−1∈N

0=:j0<j1<...<jk−1<jk=n

k∏
`=1

eηj` · U(tj` − tj`−1
) . (2.5)

We stress that in the r.h.s. we have U(tj` − tj`−1
) and not K(tj` − tj`−1

): in fact we are
fixing the positive charges that are visited, but the path is still free to touch the wall in
between the positive charges. Also notice that, when ω is distributed according to (1.1),
we have ηj` = β, but we keep the notation implicit for later convenience.

Formula (2.5) leads us to the following definition: for n ∈ N and C ∈ R+ we set:

Zn(ω,C) :=
n∑
k=1

∑
j1,...,jk−1∈N

0=:j0<j1<...<jk−1<jk:=n

k∏
`=1

eηj` · C

(tj` − tj`−1
)3/2

, (2.6)

so that applying the upper bound (1.12) on U(·) we have

Zβ,ptn,ω ≤ Zn(ω, C) . (2.7)

Notice that Zn(ω, C) carries no explicit dependence of the parameters β, p. In fact, we look
at Zn(ω, C) as a deterministic function of the constant C and of the sequence ω. In the
sequel, C will always denote the constant appearing in the r.h.s. of (1.12).

Now assume that (ω = {ωn}n,Pµ) is an i.i.d. sequence of random variables with marginal
law µ: Pµ(ω1 ∈ dx) = µ(dx). Then for C > 0 we define the free energy f(µ,C) as the limit

f(µ,C) := lim
n→∞

1
tn(ω)

logZn(ω,C) Pµ(dω)–a.s. . (2.8)

If we denote by µβ,p := (1− p) δ{0} + p δ{β}, then by (2.4) and (2.7) we can write

f(β, p) ≤ f
(
µβ,p , C

)
.
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Then to prove Theorem 6 it suffices to prove the following: for every C > 0 and c > 2
3

there exists β0 = β0(C, c) such that f
(
µβ,exp(−c β) , C

)
= 0 for every β ≥ β0.

Therefore, from now on, we focus on Zn(ω, C) and f(µ, C). The constants C > 0 and
c > 2

3 are fixed throughout the sequel. We also use the shorthand µβ for µβ,exp(−c β), i.e.

µβ :=
(
1− e−c β) δ{0} + e−c β δ{β} . (2.9)

Our goal is to show that f(µβ, C) = 0 for β large. For ease of notation, we only consider
the case β ∈ N (the general case can be recovered with minor modifications).

2.3. The renormalization procedure. The proof of Theorem 6 is achieved through an
induction argument. The steps of the induction are labeled by {β, β + 1, β + 2, . . .}, and
we call them level β, level β + 1, . . .

Each induction step consists of a renormalization procedure that acts both on the en-
vironment ω, and on the partition function Zn(ω, C), and produces an upper bound on
the free energy f(µ, C). Let us be more precise, by describing in detail how this procedure
works.

Renormalizing the environment (Section 3). At the starting point (level β) the environment
ω is i.i.d. with marginal law µβ defined in (2.9), supported on {0} ∪ {β}. More generally,
at level b ≥ β the environment ω will be i.i.d. with marginal law µb supported on {0} ∪
{b, b + 1, . . .}. If we are at level b, we define a renormalization map Tb acting on ω that
produces a new sequence Tb(ω) as follows.

We first need to define isolated charges, good charges and bad blocks at level b. To this
purpose, we fix the threshold Lb :=

⌊
e

2
3

(b+Kb)
⌋
, where the constant Kb is defined explicitly

in (3.2) below. A positive charge is said to be an isolated charge if both its neighboring
positive charges are at distance greater than Lb. Among the isolated charges, we call good
charges those that have intensity exactly equal to b, i.e. the least possible intensity. Finally,
a group of adjacent positive charges is said to be a bad block if all the distances between
neighboring charges inside the group are smaller than Lb. Note that a charge is either
isolated, or it belongs to a bad block (see Figure 2 for a graphical illustration).
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those that have intensity exactly equal to b, i.e. the least possible intensity. Finally, a
group of adjacent positive charges is said to be a bad block if all the distances between
neighboring charges inside the group are smaller than Lb. Note that a charge is either
isolated, or it belongs to a bad block (see Figure 2 for a graphical illustration).

good charge isolated charges

b b + 5b + 8

Lb = bad blocks

Figure 2. Good charges, isolated charges and bad blocks at level b.Figure 2. Good charges, isolated charges and bad blocks at level b.

Then the renormalized environment ω′ = Tb(ω) is obtained from ω in the following way:
each bad block is clustered into one single larger charge, each good charge is erased, the
isolated charges that are not good are left unchanged and finally the distances between
charges are suitably shortened. In Section 3 we show that the new environment ω′ con-
structed in this way is still i.i.d. and we obtain an explicit expression for the marginal
law of ω′1, denoted by µb+1 := Tb(µb). Observe that by construction µb+1 is supported by
{0} ∪ {b+ 1, b+ 2, . . .}.
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Renormalizing the partition function (Section 4). The idea behind the definition of good
charges and bad blocks is the following:

- if a charge is good, it is not worth for the polymer to visit it, because this would
entail a substantial entropy loss;

- on the other hand, if a charge belongs to a bad block and the polymer visits it, it
is extremely convenient for the polymer to visit all the charges in the block.

These rough considerations are made precise in Section 4 (as a side remark, notice that
the choice of what is ‘good’ and what is ‘bad’ is biased by the fact that we aim at proving
delocalization). As a consequence, if we replace the environment ω with the renormalized
one Tb(ω), we get an upper bound on the partition function. More precisely, if we also
denote by Tb the transformation acting on C > 0 by Tb(C) := C · (1 + B e−Kb C) (where
B is an absolute constant defined in Lemma 10 below), then we show that the partition
function satisfies, for every N ∈ N,

Zn(ω,C) ≤ (const.)ZN
(
Tb(ω), Tb(C)

)
, (2.10)

for a suitable n = n(ω,N) such that n ≥ N and tn(ω) ≥ tN (Tb(ω)). Taking ‘ 1
tn

log’ on
both sides of (2.10), and letting n→∞, we then obtain for every b ≥ β,

f
(
µb, C) ≤ f

(
µb+1, Tb(C)

)
(recall that µb+1 = Tb(µb)) and by iteration we have for b ≥ β

f
(
µβ, C) ≤ f

(
µb, Cb

)
where Cb :=

(
Tb−1 · Tb−2 · · ·Tβ

)
(C) . (2.11)

Completing the proof (Section 5). The last step is to get a control on the law µb and on the
constant Cb, in order to extract explicit bounds from (2.11). By easy estimates, we show
that Cb ≤ 2C for every b, so that this yields no problem. The crucial point is rather in
estimating the law µb: in Proposition 12 we prove (when β is large but fixed) an explicit
stochastic domination of µb, which allows to show that

lim
b→∞

f
(
µb, Cb) = 0 .

By (2.11) this implies that f
(
µβ, C) = 0, and Theorem 6 is proved.

3. Renormalization of the environment

In this section we describe the renormalization transformation performed on the en-
vironment, outlined in the previous section. At level b ∈ {β, β + 1, . . .} the sequence
ω = {ω1, ω2, . . .} is i.i.d. where the ωi have law µb supported on {0} ∪ {b, b + 1, . . .}. We
set

cb := µb ([b,∞)) , c̃b := µb ([b+ 1,∞)) . (3.1)
Then we act on ω by clustering and removing charges, in order to obtain a new environment
sequence ω′ = Tb(ω) which is still i.i.d. but with a new charge distribution µb+1 = Tb(µb)
supported by {0} ∪ {b+ 1, b+ 2, . . .}. The definition of Tb depends on

Kb :=
⌊
K0 + log+(2C) + 2 log b

⌋
, Lb :=

⌊
e

2
3

(b+Kb)
⌋
, (3.2)

where log+(x) := log(x) ∨ 0, K0 is an absolute positive constant defined in Lemma 10
below, and C is the constant appearing in (1.12).

We remind the reader that the sequence {ωk}k≥1 is in one-to-one correspondence with
the pair of sequences

( {tk}k≥1 , {ηk}k≥1

)
, where 0 < t1 < t2 < · · · is the sequence of
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intensity b = good charge

S0 = 0 S1 = 1 S2 = 2 S3 = 4

τ0 = 0 τ1 = 4 τ2 = 7 τ3 = 8 τ4 = 11

σ0 = 0 σ1 = 1 σ2 = 5 σ3 = 8 σ4 = 9

Y1 Y2 Y3 Y4
∆σ1 ∆σ2 ∆σ3 ∆σ4 ∆σ5

Lb =

Figure 3. A sample configuration of charges, with the corresponding val-
ues of the variables σk, τk and Sk. Also indicated are the blocks Yk and the
spacing ∆σk

between blocks.

Then we act on ω by clustering and removing charges, in order to obtain a new environment
sequence ω′ = Tb(ω) which is still i.i.d. but with a new charge distribution µb+1 = Tb(µb)
supported by {0} ∪ {b + 1, b + 2, . . .}. The definition of Tb depends on
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, (3.2)
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We remind the reader that the sequence {ωk}k≥1 is in one-to-one correspondence with
the pair of sequences

( {tk}k≥1 , {ηk}k≥1

)
, where 0 < t1 < t2 < · · · is the sequence

of successive times where ωtk > 0 and ηk := ωtk . We also set for convenience η0 :=
0. Alternatively, we can replace {tk}k≥1 by the sequence {∆k}k≥1 , ∆k := tk − tk−1,
where t0 := 0. We will freely switch from one representation to the other without special
mentioning (see §2.1 for more details).

We define two sequences {σn}n≥0, {τn}n≥0 of random times by σ0 := 0,

τn := inf {k ≥ σn : ∆k+1 > Lb} , σn+1 = τn + 1 .

Note that τ0 = 0 if and only if ∆1 > Lb =
⌊
e

2
3
(b+Kb)

⌋
. In words, the sequence {τn}n≥0

represents the indices of those positive charges that have a ‘distant’ (∆ > Lb) neighboring
charge on the right. Of course, one could define the sequence {τn}n≥0 alone, without the
need of introducing {σn}n≥0, but in the sequel it will be convenient to deal with both
{τn}n≥0 and {σn}n≥0. Next we define a sequence of random variables Yk, k ≥ 0, taking
values in the space

Γ :=
( {1} × R+

) ∪⋃
n≥2

( {n} × Nn−1 × Rn
+

)
,

by
Yk :=

(
τk − σk + 1 , (∆σk+1, . . . ,∆τk

) , (ησk
, ησk+1, . . . , ητk

)
)

(the meaning of these definitions will be explained in a moment). We occasionally write
Γ =

⋃∞
n=1 Γn. Here we understand that in case τk = σk, the ∆-part is absent, and the

variable takes values in the Γ1-part of Γ. It should be remarked that in case σ0 = τ0 = 0
we have Y0 = (1, 0) (recall that η0 := 0). See Figure 3 for a graphical illustration of the
variables just introduced.
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Let us give some insight into these definitions. Each Yk represents a block of adjacent
positive charges, possibly reducing to one single charge. More precisely:

• If Yk contains more than one charge, i.e. Yk ∈ Γn with n ≥ 2, then Yk corresponds
to a bad block as defined in §2.3, because by construction the distances between
the positive charges contained in it, {∆i}σk+1≤i≤τk , are such that ∆i ≤ Lb.
• If on the other hand Yk ∈ Γ1, then Yk is an isolated charge, because the distances

∆σk ,∆σk+1
with its neighboring blocks are by construction larger than Lb.

• If Yk ∈ Γ1 and in addition ησk = b, i.e. Yk ∈ {1} × {b}, then Yk is a good charge.
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The variables σk and τk give the indexes of the first and last positive charge appearing in
the k-th block, and therefore τn− σn + 1 is the number of positive charges in a bad block.

Being larger than Lb, the variables ∆σk are not geometrically distributed. We therefore
subtract Lb and put

∆̂k := ∆σk − Lb , k ≥ 1 .

Note that the two sequences {Yk}k≥0 and {∆̂k}k≥1 contain all the information of the
original sequence ω. The basic properties of the variables Yk, ∆̂k are given in the following
Lemma, whose (elementary) proof is omitted for conciseness.

Lemma 7.
a) The random variables Y0, Y1, Y2, . . . , ∆̂1, ∆̂2, . . . , are independent.
b) The random variables Yk, k ≥ 1, are identically distributed with the following dis-

tribution:
• τk − σk + 1 is geometrically distributed with parameter:

qb := Pµb(∆1 > Lb) = (1− cb)Lb , (3.3)

i.e. for n ∈ N

P (τk − σk + 1 = n) = qb (1− qb)n−1 .

• Conditionally on {τk − σk + 1 = n}, we have that ησk , ησk+1, . . . , ητk are n
i.i.d. random variables with distribution µb given by

µb (x) :=
µb (x)
cb

1{x≥b}.

• When n ≥ 2, ∆σk+1, . . . ,∆τk are n− 1 i.i.d. random variables distributed like
∆1 conditionally on {∆1 ≤ Lb}.

c) The random variables ∆̂1, ∆̂2, . . . are i.i.d. geometrically distributed with parameter
cb.

d) The distribution of Y0 is given by an obvious modification: τ0 + 1 is geometrically
distributed as in b), and conditionally on {τ0 + 1 = n} the distribution of the ∆i, ηi
is the same as described above, except that there is one ηi less, since η0 := 0.

Next we define a mapping Φ : Γ→ N∪ {0}. On Γ1, we simply put Φ ((1, η)) := η, while
on Γn, n ≥ 2, we put

Φ
((
n, (∆1, . . . ,∆n−1) , (η1, . . . , ηn)

))
:=

n∑
i=1

ηi −
n−1∑
i=1

⌊
3
2

log ∆i

⌋
+ 2 (n− 1)Kb . (3.4)

The interpretation is as follows: if Yk is a bad block, i.e. if Yk ∈ Γn with n ≥ 2, then Yk will
be replaced by a single charge in the new environment sequence ω′, and Φ(Yk) is exactly
the value of this clustered charge. The reason why the size of the clustered charge should
be given by (3.4) will be clear in the next section. Since ηi ≥ b and ∆i ≤ e

2
3

(b+Kb), it follows
from (3.4) that the value of the clustered charge is always greater than b+(n−1)Kb, hence
it is strictly greater than b, if n ≥ 2.

We are ready to define the new sequence ω′ = Tb(ω). First we set

η̂0 := Φ (Y0) . (3.5)

Then we introduce a sequence of stopping times by setting S0 := 0 and for k ≥ 1

Sk := inf
{
n > Sk−1 : {τn > σn} or {τn = σn and ησn > b}}
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Y1 Y2 Y3 Y4∆σ1 ∆σ2 ∆σ3 ∆σ4 ∆σ5

Lb =

ω

ω′

∆̂1 ∆̂2 ∆̂3 + ∆̂4 ∆̂5 (+. . . )

η′
1 η′

2 η′
3

Tb

Figure 4. An illustrative example of the map Tb sending ω to ω′ (the
starting ω is the same as in Figure 3). The distances ∆σk

between blocks
are shortened by Lb and become ∆̂k, the bad blocks (Y1, Y2, Y4 in this
example) are clustered into one single charge, the good charges (Y3 in this
example) are erased, while the charges that are isolated but not good (none
in this example) are left unchanged.
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from (3.4) that the value of the clustered charge is always greater than b+(n−1)Kb, hence
it is strictly greater than b, if n ≥ 2.
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Then we introduce a sequence of stopping times by setting S0 := 0 and for k ≥ 1

Sk := inf
{
n > Sk−1 : {τn > σn} or {τn = σn and ησn > b}}

(see also Figure 3). The variables {Sk}k≥0 indicate which blocks will survive after the
renormalization: the block YSk

will become the k-th positive charge of ω′. More precisely,
we set

η′k := Φ (YSk
) , ∆′

k :=
Sk∑

j=Sk−1+1

∆̂j , (3.6)

and the sequence (∆′
k, η

′
k)k≥1 defines our new sequence ω′ =: Tb (ω) (see also Figure 4).

Note that the effect of the sequence {Sk}k≥0 is to erase all the good charges in ω.

In the next lemma we show that {ω′n}n≥1 is indeed i.i.d., and we denote its one-marginal
law by µb+1 := Tb(µb). Observe that η̂0 is not included in the new sequence ω′, but it will
enter the estimate given below in Proposition 9 (remark that η̂0 = 0 if τ0 = 0).

Lemma 8. The random variables ∆′
k, η

′
k are all independent. The η′k are identically

distributed and the ∆′
k are identically geometrically distributed, therefore the sequence

{ω′n}n≥1 is i.i.d. The law µb+1(x) of ω′1 satisfies, for x > 0, the following relation:

µb+1(x) = qb µb(x)1{x≥b+1} + qb (Qbµb) (x) , (3.7)
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are shortened by Lb and become ∆̂k, the bad blocks (Y1, Y2, Y4 in this
example) are clustered into one single charge, the good charges (Y3 in this
example) are erased, while the charges that are isolated but not good (none
in this example) are left unchanged.
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we set

η′k := Φ (YSk) , ∆′k :=
Sk∑

j=Sk−1+1

∆̂j , (3.6)

and the sequence (∆′k, η
′
k)k≥1 defines our new sequence ω′ =: Tb (ω) (see also Figure 4).

Note that the effect of the sequence {Sk}k≥0 is to erase all the good charges in ω.
In the next lemma we show that {ω′n}n≥1 is indeed i.i.d., and we denote its one-marginal

law by µb+1 := Tb(µb). Observe that η̂0 is not included in the new sequence ω′, but it will
enter the estimate given below in Proposition 9 (remark that η̂0 = 0 if τ0 = 0).

Lemma 8. The random variables ∆′k, η
′
k are all independent. The η′k are identically

distributed and the ∆′k are identically geometrically distributed, therefore the sequence
{ω′n}n≥1 is i.i.d. The law µb+1(x) of ω′1 satisfies, for x > 0, the following relation:

µb+1(x) = qb µb(x) 1{x≥b+1} + qb (Qbµb) (x) , (3.7)

where

(Qbν) (x) :=
∞∑
n=1

Lb∑
`1,...,`n=1

(
n∏
i=1

(1− cb)`i−1

) ∑
x1,...,xn+1≥bPn+1

i=1 xi−
Pn
i=1b 32 log `ic+2nKb=x

ν(x1) · · · ν(xn+1) .

(3.8)

Proof. Introducing the subset A of Γ defined by A := {1} × [b+ 1,∞) ∪⋃n≥2 Γn, we see
that Sk is nothing but the sequence of times when Yn visits the set A. In particular, by
Lemma 7, the increments {Sk−Sk−1}k≥1 are i.i.d. geometrically distributed, independent
of the ∆̂n, with parameter γ = P (Y1 ∈ A). (As a matter of fact, one can easily compute
γ = (1 − qb) + qb c̃b/cb, cf. (3.1), but the precise value of γ is immaterial for the proof.)
Therefore the variables ∆′k are i.i.d. geometrically distributed, with parameter cb γ.
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Notice that the variables YSk are i.i.d. and independent of the Sn. It follows easily that
the variables η′k are i.i.d. and independent from the ∆′n. The sequence ω′n is therefore i.i.d.
and moreover for x > 0 we have P (ω′1 = x) = (cb γ) · P (η′1 = x).

It remains to determine the law of η′1 = Φ(YS1). Plainly, YS1 is distributed like Y1

conditionally on {Y1 ∈ A}, hence

P (ω′1 = x) = cb γ P
(

Φ(Y1) = x
∣∣Y1 ∈ A

)
= cb P

(
Φ(Y1) = x , Y1 ∈ A

)
. (3.9)

Since {Y1 ∈ A} is the disjoint union {τ1 = σ1, ησ1 > b} ∪ ⋃n≥1{τ1 − σ1 = n} and since
Φ(Y1) = ησ1 if τ1 = σ1, we can write

P (ω′1 = x) = cb P (τ1 = σ1)P
(
ησ1 = x, ησ1 > b

∣∣ τ1 = σ1

)
+

∞∑
n=1

cb P (τ1 − σ1 = n)P
(

Φ(Y1) = x
∣∣ τ1 − σ1 = n

)
.

By Lemma 7, the first term in the r.h.s. equals

cb qb 1{x≥b+1} µb(x) = qb 1{x≥b+1} µb(x) ,

matching with (3.7). Using (3.4) and again Lemma 7, we rewrite the second term as
∞∑
n=1

cb qb (1− qb)n
Lb∑

`1,...,`n=1

∑
x1,...,xn+1≥b

Φ(n+1,(`i),(xi))=x

P
(

∆̂σ1+i = `i, ησ1+j−1 = xj ,
∣∣ τ1 − σ1 = n

)

=
∞∑
n=1

cb qb (1− qb)n
Lb∑

`1,...,`n=1

∑
x1,...,xn+1≥b

Φ(n+1,(`i),(xi))=x

n∏
i=1

cb(1− cb)`i−1

1− qb
n+1∏
j=1

µb(xj)
cb

= qb

∞∑
n=1

Lb∑
`1,...,`n=1

∑
x1,...,xn+1≥b

Φ(n+1,(`i),(xi))=x

n∏
i=1

(1− cb)`i−1
n+1∏
j=1

µb(xj) = qb (Qbµb) (x) ,

so that equation (3.7) is proved. �

As a side remark, we observe that by summing equation (3.7) (or, more easily, equation
(3.9)) over x ≥ b+ 1 we obtain the following explicit formula for µb+1(0):

µb+1(0) = 1 − (
qb c̃b + (1− qb)cb

)
,

cf. (3.1). Since c̃b ≤ cb = 1− µb(0), it follows that µb+1(0) ≥ µb(0), i.e. at each renormal-
ization step the density of positive charges decreases.

4. Renormalization of the partition function

In the preceding section we have defined, at each level b of the induction, a renormalizing
map Tb acting on the environment sequence ω and producing a renormalized sequence
ω′ = Tb(ω). In this section we show that, by replacing ω by Tb(ω), one gets an upper
bound on the free energy. This will be the key to the proof of Theorem 6 in Section 5.
With some abuse of notation, we define the map Tb acting on the positive number C by

Tb(C) :=
(
1 +B e−Kb C

) · C , (4.1)

where Kb is defined in (3.2) and B is an absolute constant defined in Lemma 10 below.
Then we have the following
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Proposition 9. There exists b0 such that for every b ≥ b0, for every C ∈ (0, 2C] and for
all N ∈ N, there exists for Pµb–a.e. ω, a natural number n (ω,N) <∞ satisfying

N ≤ n (ω,N) , tN (Tb(ω)) ≤ tn(ω,N)(ω) ,

and such that
Zn(ω,N)(ω,C) ≤ eη̂0 · ZN

(
Tb(ω), Tb(C)

)
. (4.2)

Proof. We set
n (ω,N) := τSN .

The interpretation is as follows: by construction (see Section 3) YSN is the N -th block
of charges of ω that will survive after the renormalization, and n (ω,N) is the index of
the last positive charge in that block. Therefore it is evident that n(ω,N) ≥ N . Also
tn(ω,N)(ω) ≥ tN (Tb(ω)) is easy to check, because in the renormalization procedure leading
from ω to ω′ = Tb(ω) the distances between charges are shortened (see also Figure 4).

For the rest of the proof, we fix N ∈ N, and n := n (ω,N) , and we typically drop them
from notations. The estimate is purely deterministic and holds for any ω which has the
property that n <∞.

We are going to work with the subsets of {0, t1, t2, . . . , tn} and we need some notation.
We write J for the collection of intervals Ij :=

{
tσj , . . . , tτj

}
, 1 ≤ j ≤ SN . Note that⋃SN

j=1 Ij = {tσ1 , . . . , tn}. In J there are the N ‘bad’ intervals Îj := ISj , 1 ≤ j ≤ N,
and the other ones, we call ‘good’. Note that the ‘good’ intervals correspond to what we
have called good charges in Sections 2 and 3, while the ‘bad’ intervals correspond to the
bad blocks and also to the isolated charges that are not good. In particular, the good
intervals are just single points: for this reason, we also call them ‘good points’. The bad
intervals may be single points, too. We write J bad for the set

{
Î1, . . . , ÎN

}
of bad intervals,

and G ⊂ {t1, . . . , tn} for the subset of good points. The first interval I0 = {0, . . . , tτ0} is
somewhat special. In case τ0 = 0, there is no charge (because ω0 = 0). In case τ0 > 0, this
interval is of course ‘bad’, but we keep it separate from the others (remark that we don’t
take it into J ).

We are in the situation where between the bad intervals, there may or may not be good
points in G. Also before the first bad interval, i.e. between I0 and Î1, there may or may not
be good points. If X ⊂ J , we write P (X) for the set of subsets F ⊂ {0, t1, . . . , tn} which
contain 0 and tn, and which have the property that it has non void intersection with any
interval in X, and empty intersection with any interval in J \X. Then

Zn (ω,C) =
∑

X⊂J , X3ÎN

∑
F∈P(X)

C |F |−1ζ (F )R (F )

=
∑

X⊂J , X3ÎN

∑
F∈P(X)

ζ (F )
(
C |F∩I0|−1R (F ∩ I0)

) ∏
I∈X

(
C |F∩I|R (F ∩ I)

)
,

where for a finite set A = {s0, . . . , sm}, m ≥ 1, we set

ζ (A) :=
m∏
i=1

(si − si−1)−3/2 ,

and we put ζ(A) := 1 in case A reduces to a single point. We also set

R (F ) := exp
[∑

x∈F ωx
]
,



16 ERWIN BOLTHAUSEN, FRANCESCO CARAVENNA, AND BÉATRICE DE TILIÈRE

where we recall that ω0 := 0. Note that the sum over X is only over those which contain
the last interval in J (which is a bad one, namely ÎN = ISN ), in agreement with (2.8).

The ζ (F ) for F ∈ P (X) contains the parts inside the F ∩ I, and the ‘interaction part’.
We want to split off this interaction part, and estimate it by a bound which depends only
on X. If the intervals in X are (in increasing order) Ir1 , . . . , Irk = ISN , we write Mj for
the largest point of Irj , and mj for the smallest. Put

ζ̂ (X) := (m1 − tτ0)−3/2
k∏
j=2

(mj −Mj−1)−3/2 .

Then, if F ∈ P (X)
ζ (F ) ≤ ζ̂ (X) ζ (F ∩ I0)

∏
I∈X

ζ (F ∩ I) .

The inequality comes from the fact that if x is the largest element of I ∩ F, and y is the
smallest element of I ′ ∩ F, I an interval below I ′, then (y − x)−3/2 ≤ (m′ −M)−3/2 , m′
being the smallest point in I ′, and M the largest of I. We set for I ∈ J

α (I) :=
∑

F⊂I, F 6=∅

(
C |F |R (F ) ζ (F )

)
,

and α (I0) with one C-factor less. With this notation, we have the estimate

Zn (ω,C) ≤
∑

X⊂J , X3ÎN
ζ̂ (X)α (I0)

[∏
I∈X

α (I)

]
.

Next we claim that

α (I) ≤ Ce2(|I|−1)KbR (I) ζ (I) =: C exp [ΦI ] , (4.3)

where Kb is defined in (3.2). This is evident if I contains just one point, say tj , in which
case α (I) = Ceηj . If I contains more than one point, then first observe that there are
2|I|− 1 ≤ e(|I|−1)Kb possibilities to choose a non-empty subset F ⊂ I, because Kb ≥ 2 log 2
for b ≥ b0 and b0 large. Assume I = {tσ, tσ+1, . . . , tσ+R = tτ} , and F = {tj1 , . . . , tjm} , so
that

C |F |R (F ) ζ (F ) = Cm exp
[∑m

r=1
ηjr

] m∏
r=2

(
tjr − tjr−1

)−3/2
. (4.4)

We can bound this from above by replacing
(
tjr − tjr−1

)−3/2 by
(
tjr−1+1 − tjr−1

)−3/2
, and

for the remaining gaps ti+1 − ti, we simply use 1 ≤ eKbeηi (ti+1 − ti)−3/2 (we recall that
ti+1 − ti ≤ e 2

3
(b+Kb) and ηi ≥ b by construction). Therefore, the right hand side of (4.4) is

bounded by
CmeKb(R−m+1)R (I) ζ (I) ≤ Ce(|I|−1)KbR (I) ζ (I) ,

having used that Kb ≥ log 2C ≥ logC, and (4.3) follows. Note that the definition of ΦI

matches with (3.4).
For the first interval I0, we have a factor C less on the right hand side of (4.3), and

therefore from (4.3) it follows that α (I0) ≤ eη̂0 (we recall that η̂0 is defined in (3.5)).
Combining, we get

Zn (ω,C) ≤ eη̂0
∑

X⊂J , X3ÎN
ζ̂ (X)C |X|

[∏
I∈X exp [ΦI ]

]
.
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We have thus succeeded in clustering all the bad blocks.

Let us now fix X ′ ⊂ J bad, X ′ 3 ÎN . Summing over X with X ∩ J bad = X ′ amounts to
summing over all subsets of G. Assume the intervals in X ′ are described by the sequence

0 ≤ k0 < j1 ≤ k1 < j2 ≤ k2 < · · · < jm ≤ km = n

with I0 = {t0, . . . , tk0} , X ′ = {{tj1 , . . . , tk1} , . . . , {tjm , . . . , tkm}}, m = |X ′|. Write also Gr,
1 ≤ r ≤ m, for the set of good points between tkr−1 and tjr , and Gr := Gr ∪

{
tkr−1 , tjr

}
.

Then we can write the summation over X with X ∩ J bad = X ′ as the summation over
A1 ⊂ G1, . . . , Am ⊂ Gm. For a single tj ∈ G we have Φ{tj} = b. We therefore get∑

X∈J :X∩J bad=X′
ζ̂ (X)C |X|

[∏
I∈X exp [ΦI ]

]
=
[∏

I∈X′ exp [ΦI ]
] m∏
r=1

Ξ
(
b, C,Gr

)
,

where for a finite subset A = {s0, s1, . . . , sm} , the si ordered increasingly, we set

Ξ (b, C,A) :=
∑
A⊂A

A⊃{s0,sm}

C |A|−1 e(|A|−2)b ζ(A) . (4.5)

Remark that the points in Gr have inter-distances all > e
2
3

(b+Kb). We can therefore
apply Lemma 11 below, and obtain

Ξ
(
b, C,Gr

) ≤ C
(
1 +BCe−Kb

)(
tjr − tkr−1

)3/2 .
We thus get

Zn (ω,C) ≤ eη̂0
∑

X′⊂J bad, X′3ÎN

[∏
I∈X′ exp [ΦI ]

] |X′|∏
r=1

C
(
1 +BCe−Kb

)(
tjr − tkr−1

)3/2 .

Note that C
(
1 +BCe−Kb

)
is by definition Tb(C), cf. (4.1).

We are almost done. For the renormalized environment ω′ = Tb(ω), defined in Section 3,
we call {t′k, η′k}k∈N the locations and intensities of the positive charges of ω′ (see §2.1).
Consider the following correspondence: to each bad interval Îl ∈ J bad we associate the
positive charge η′l ∈ ω′. Notice in fact that η′l = ΦÎl

, see (4.3) and (3.6). Moreover, given
two bad intervals Îl = {tjl , . . . , tkl}, Îm = {tjm , . . . , tkm} ∈ J bad, with Îl below Îm, we can
bound tjm − tkl > t′m − t′l, because in passing from ω to ω′ the distances ∆σi between
intervals have been shortened to ∆̂i (it may be useful to look at Figure 4). Therefore we
can bound Zn (ω,C) by

Zn (ω,C) ≤ eη̂0
∑

A={a0,...,ak}⊂{0,...,N}
0=a0<...<ak=N

|A|∏
i=1

eη
′
ai

Tb(C)
(t′ai − t′ai−1

)3/2
= eη̂0 ZN

(
ω′, Tb(C)

)
,

where the last equality is just the definition (2.6) of the partition function, and the proof
is completed. �

We conclude this section with an auxiliary result (Lemma 11 below) that is used in the
preceding proof. We first need a basic renewal theory lemma.
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Lemma 10. There exist positive constants B and K0 such that for every C > 0 and for
all K ≥ K0 + logC the following relation holds for every N ∈ N:

Θ+
N :=

N∑
k=1

∑
j1,...,jk−1∈N

0=:j0<j1<...<jk−1<jk:=N

k∏
`=1

Ce−K

(j` − j`−1)3/2
≤ (1 +BCe−K

) Ce−K

N3/2
.

Proof. Defining the constant A :=
(∑∞

n=1 n
−3/2

)−1
, we set

q(n) :=
A

n3/2
, γ :=

C

A
e−K .

Note that we can write

Θ+
n =

∞∑
k=1

γk q∗k(n) , (4.6)

where q∗k(·) denotes the k-fold convolution of the probability distribution q(·) with itself.
Let us prove by induction that q∗k(n) ≤ Ak5/2/n3/2 for every k ∈ N and n ∈ N. The

case k = 1 holds by definition of q(·). For the inductive step, if k is even, k = 2m, we can
write

q∗(2m)(n) ≤ 2
bn/2c∑
`=1

q∗m(`) q∗m(n− `) ≤ 2Am5/2

bn/2c∑
`=1

q∗m(`)
1

(n− `)3/2

≤ 2Am5/2

(n/2)3/2

∞∑
`=1

q∗m(`) =
A (2m)5/2

n3/2
,

and the odd case follows analogously. Then by (4.6) we can bound Θ+
n by Ag (γ)n−3/2,

where

g (γ) :=
∞∑
k=1

k5/2γk ≤ γ + 8γ2,

provided 0 < γ ≤ γ0, γ0 sufficiently small. Let us set K0 := − log(Aγ0), then if K ≥
K0 + logC, we have γ ≤ γ0, and therefore

Θ+
n ≤

(
γ + 8 γ2

) A

n3/2
≤
(

1 +
8C
A

e−K
)
Ce−K

n3/2
.

The proof is completed by setting B := 8/A. �

Lemma 11. Let K0 and B be the constants of Lemma 10. Then ∀N ≥ 2, ∀b > 0, ∀C > 0,
∀K ≥ K0 + logC and for all T = (t0, . . . , tN ) ∈ NN+1 with

t0 < t1 < . . . < tN and tn − tn−1 > e
2
3

(b+K) , ∀n = 1, . . . , N ,

the following relation holds for Ξ(b, C, T ) (defined in (4.5)):

Ξ(b, C, T ) ≤ (
1 +BCe−K

) C

(tn − t1)3/2
.
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Proof. Expanding the definition of Ξ(b, C, T ) we can write:

Ξ(b, C, T ) = e−b
N∑
k=1

∑
j1,...,jk−1∈N

0=:j0<j1<...<jk−1<jk:=N

k∏
`=1

C eb

(tj` − tj`−1
)3/2

.

Fix a configuration j1 < · · · < jk−1 ⊂ {1, · · · , N − 1}. Then we have
k∏
`=1

1
tj` − tj`−1

=
1

tN − t0

∑k
`=1(tj` − tj`−1

)∏k
`=1(tj` − tj`−1

)

=
1

tN − t0
k∑
`=1

∏
`′∈{1,··· ,k}\`

1
tj`′ − tj`′−1

≤ e−
2
3

(b+K)(k−1)

tN − t0
k∑
`=1

∏
`′∈{1,··· ,k}\`

1
j`′ − j`′−1

[
since tj` − tj`−1

≥ e2(b+K)/3 (j` − j`−1)
]

=
e−

2
3

(b+K)(k−1)

tN − t0

∑k
`=1(j` − j`−1)∏k
`=1(j` − j`−1)

=
e−

2
3

(b+K)(k−1)

tN − t0
N∏k

`=1(j` − j`−1)
.

Therefore we get:

Ξ(b, C, T ) ≤ e−b
eb+K N3/2

(tN − t0)3/2

N∑
k=1

∑
j1,...,jk−1∈N

0=:j0<j1<...<jk−1<jk:=N

k∏
`=1

C e−K

(j` − j`−1)3/2

≤ (
1 +BCe−K

) C

(tN − t0)3/2
,

having used Lemma 10, and we are done. �

5. Proof of Theorem 6

The starting point in the proof of Theorem 6 is Proposition 9, which immediately gives
an upper bound on the free energy f(µb, C), for every b ≥ b0 and C ∈ (0, 2C]. In fact,
since the limit in (2.8) holds Pµb(dω)–a.s., we can take it along the (random) subsequence
{n(ω,N)}N∈N and relation (4.2) yields

f
(
µb, C

) ≤ lim inf
N→∞

1
tn(ω,N)(ω)

logZN
(
Tb(ω), Tb(C)

)
, Pµb(dω)–a.s.,

and since tn(ω,N)(ω) ≥ tN (Tb(ω)) we obtain, again by (2.8),

f
(
µb, C

) ≤ f
(
µb+1, Tb(C)

)
.

Note in fact that µb+1 is by definition the one-marginal law of Tb(ω), when ω has law µb,
see Section 3. We now iterate this relation starting from b = β: if we set

Cβ := C and Cb :=
(
Tb−1 · Tb−2 · · ·Tβ+1 · Tβ

)
(C) for b > β , (5.1)

since in §5.2 below we show that Cb ≤ 2C for every b ≥ β, provided β is sufficiently large,
we can write

f
(
µβ, C

) ≤ f
(
µb, Cb

)
, ∀β ≥ b0, ∀b ≥ β . (5.2)

We stress that, though not explicitly indicated, both the law µb and the constant Cb depend
also on β, which is the starting level of our procedure: however β is kept fixed in all our
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arguments. We recall that to prove Theorem 6 it suffices to show that f
(
µβ, C

)
= 0 when

β is large (see §2.2). Hence by (5.2) we are left with showing that, if we fix β sufficiently
large, f

(
µb, Cb

)
vanishes as b→∞.

To estimate f
(
µb, Cb

)
, we start from a very rough upper bound on the partition function:

from the definition (2.6) we can write for every n ∈ N

Zn(ω, C) ≤ e
Pn
i=1(ηi+log(C/A))

 n∑
k=1

∑
j1,...,jk−1∈N

0=:j0<j1<...<jk−1<jk=n

k∏
`=1

A

(tjk − tjk−1
)3/2

 ,

where A :=
(∑∞

m=1m
−3/2

)−1
< 1 is the constant that makes m 7→ A/m3/2 a probability

law. With this choice, the term in parenthesis in the r.h.s. above is bounded from above
by the probability that a renewal process with step law A/m3/2 visits the point tn, hence
it is less than 1 and we have

Zn(ω, C) ≤ exp

(
n∑
i=1

(
ηi + log

C
A

))
= exp

(
tn(ω)∑
j=1

(
ωj + log

C
A

1{ωj>0}

))

Now, if the sequence ω is i.i.d. with marginal law µ, with 0 < µ(0) < 1, by (2.8) we have

f(µ, C) ≤ lim
n→∞

1
tn(ω)

tn(ω)∑
j=1

(
ωj + log

C
A

1{ωj>0}

)
= Eµ

(
ω1

)
+ Pµ

(
ω1 > 0

) · log
C
A
,

having used that tn(ω) → ∞, Pµ(dω)–a.s., and the strong law of the large numbers.
Combining this bound with (5.2), we get

f
(
µβ, C

) ≤ f
(
µb, Cb

) ≤ Eµb(ω1) +
(
1− µb(0)

) · log
Cb
A
, (5.3)

for every β ≥ b0 and for every b ≥ β.
We are left with estimating the r.h.s. of (5.3). To this purpose, we exploit the stochastic

domination on µb given by the following

Proposition 12. There exists a finite b1 (depending on C > 0 and c > 2
3) such that for

all b ≥ β ≥ b1 we have:

µb(x) ≤ e− 2
3
x−√x ∀x ≥ b . (5.4)

Applying (5.4) to (5.3), for any fixed β ≥ β0 := b0 ∨ b1, we obtain for every b ≥ β

f
(
µβ, C

) ≤ ∞∑
x=b

x e−
2
3
x−√x +

(
log
Cb
A

) ∞∑
x=b

e−
2
3
x−√x .

It is clear that both the sums in the r.h.s. can be made arbitrarily small by taking b large.
Moreover, in §5.2 below we show that Cb ≤ 2C for all b. Therefore, by letting b → ∞, we
have shown that f

(
µβ, C

)
= 0 for all β ≥ β0, and this completes the proof of Theorem 6. �

The proof of Proposition 12 is given in §5.1 below. Before that, we need to establish
two technical lemmas.
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Lemma 13. Let m ∈ N, m ≥ 2, let b ∈ N, b ≥ β ∨ 100, and z ≥ mb. Then

Am,b (z) :=
∑

x1,...,xm≥b
x1+···+xm=z

exp
[
−
∑m

i=1

√
xi

]
≤ e−

√
z−m−1

4

√
b.

Proof. We first treat the case m = 2. There we have for the left hand side

A2,b (z) ≤ 2
dz/2e∑
x=b

exp
[−√x−√z − x] .

For x ≤ z/2
√
z − x =

√
z

√
1− x

z
.

For t ≤ 1/2, we have from concavity of the square root function
√

1− t ≥ 1−
(

2−
√

2
)
t,

and therefore for x ≤ z/2
√
z − x ≥ √

z −
(

2−
√

2
) x√

z

≥ √
z −

(√
2− 1

)√
x.

Hence,
z−b∑
x=b

exp
[−√x−√z − x] ≤ 2e−

√
z
∞∑
x=b

exp
[
−1

2
√
x

]
.

∞∑
x=b

exp
[
−1

2
√
x

]
≤

∫ ∞
b−1

e−
√
t/2dt = 8

∫ ∞
√
b−1/2

te−tdt

= 8
(√

b− 1
2

+ 1
)

e−
√
b−1/2 ≤ 1

2
exp

[
−1

4

√
b

]
,

if b ≥ 100. This proves the claim for m = 2.
The general case follows by induction on m. Assume m ≥ 3. Then

Am,b (z) =
z−(m−1)b∑
x1=b

e−
√
x1

∑
x2,...,xm≥b

x2+···+xm=z−x1

exp
[
−
∑m

k=2

√
xk

]

≤
z−(m−1)b∑
x1=b

e−
√
x1 exp

[
−√z − x1 − m− 2

4

√
b

]

≤ e−
m−2

4

√
b
z−b∑
x=b

exp
[−√x−√z − x] ≤ e−

√
z−m−1

4

√
b,

by induction and the m = 2 case. �
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Lemma 14. There exists b2 = b2(C) such that for every b ≥ b2 and n ∈ N we have:

Bn,b(x) =
be 2

3 (b+Kb)c∑
`1,··· ,`n=1

e−
2
3

(x+
Pn
i=1(b 3

2
log `ic−2Kb))An+1,b

(
x+

n∑
i=1

(⌊
3
2

log `i

⌋
− 2Kb

))

≤ e−
2
3
x−√xe−

n
8

√
b,

where Am,b(x) is defined in Lemma 13 and Kb is defined by (3.2).

Proof. By Lemma 13, we have:

An+1,b

(
x+

n∑
i=1

(⌊
3
2

log `i

⌋
− 2Kb

))
≤ e−n4

√
be
−

q
x+

Pn
i=1(b 3

2
log `ic−2Kb).

Since for 0 ≤ a ≤ b we have
√
b− a ≥ √b−√a, it follows that√√√√x+

n∑
i=1

(⌊
3
2

log `i

⌋
− 2Kb

)
≥ √x−

√√√√ n∑
i=1

(
2Kb −

⌊
3
2

log `i

⌋)
≥ √x−

√
2nKb ,

because `i ≥ 1. Therefore

An+1,b

(
x+

n∑
i=1

(⌊
3
2

log `i

⌋
− 2Kb

))
≤ e−n4

√
be−
√
xe
√

2nKb .

Plugging this in the definition of Bn,b(x) and using the fact that b3
2 log `ic ≥ 3

2 log `i − 1
yields:

Bn,b(x) ≤ e− 2
3
x−√xe−

n
4

√
be

4
3
nKb+

√
2nKb

be
2
3 (b+Kb)c∑
`1=1

e

`1


n

≤ e− 2
3
x−√xe−

n
4

√
be

4
3
nKb+

√
2nKb

(
e · 2

3
(b+Kb)

)n
= e−

2
3
x−√xe−

n
8

√
be

(− 1
8

√
b+ 4

3
Kb+

√
2Kb√
n

+1+log 2
3

(b+Kb))n.

Observe that, for every fixed C > 0, we have −1
8

√
b+ 4

3Kb+
√
Kb√
n

+1+log 2
3(b+Kb)→ −∞

as b → ∞ (recall the definition (3.2) of Kb). Therefore there exists b2 = b2(C), such that
for all b ≥ b2, Bn,b(x) ≤ e− 2

3
x−√xe−

n
8

√
b. �

5.1. Proof of Proposition 12. The law µb is defined recursively by equations (3.7) and
(3.8), starting from µβ = (1− e−c β)δ{0} + e−c βδ{β}. In particular we have

µβ(β) = e−βc, µβ(x) = 0, ∀x ≥ β + 1 ,

and for x ≥ β

µb+1(x) ≤ µb(x) +
∞∑
n=1

be 2
3 (b+Kb)c∑

`1,··· ,`n=1

∑
x1,··· ,xn+1≥bPn+1

i=1 xi−
Pn
j=1(b 3

2
log `jc−2Kb)=x

µb(x1) · · ·µb(xn+1) . (5.5)

We recall that µb is supported on {0} ∪ {b, b+ 1, . . .}.
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Let us prove equation (5.4) by induction on b = β, β + 1, · · · . For b = β we have

µβ(β) = e−βc = e−
2
3
β−(c− 2

3
)β ≤ e− 2

3
β−√β,

whenever β ≥ b3(c) := 1
(c− 2

3
)2

. In particular, (5.4) holds for b = β, provided β ≥ b3(c).

Assume now that µα(x) ≤ e−
2
3
x−√x, for all β ≤ α ≤ b. Then, using (5.5) and the fact

that µβ(x) = 0, ∀x ≥ β + 1, we have:

µb+1(x) ≤
b∑

α=β

∞∑
n=1

be 2
3 (α+Kb)c∑

`1,··· ,`n=1

∑
x1, · · · , xn+1 ≥ αPn+1

i=1 xi −
Pn
j=1(b 3

2
log `jc − 2Kb) = x

µα(x1) · · ·µα(xn+1) ,

Plugging in the induction assumption yields:

µb+1(x) ≤
b∑

α=β

∞∑
n=1

Bn,α(x),

where Bn,α(x) is defined in Lemma 14. Assuming β ≥ b2 and using Lemma 14 gives:

µb+1(x) ≤ e− 2
3
x−√x

b∑
α=β

∞∑
n=1

e−
n
8

√
α

≤ e− 2
3
x−√x

∞∑
α=β

e−
√
α

10

≤ e− 2
3
x−√x

∫ ∞
β−1

e−
√
α

10 = e−
2
3
x−√x

(
20(10 +

√
β − 1)e−

√
β−1
10

)
≤ e− 2

3
x−√x, when β ≥ 6000.

Hence Proposition 12 holds for all β ≥ b1(C, c) := max{b2(C), b3(c), 6000}. �

5.2. Bounding the constant Cb. We are going to show that Cb ≤ 2C for all b ≥ β. We
recall the definition (2.11) of Cb (see also (5.1)):

Cβ := C , Cb = T b−1(Cb−1) =
(
1 +B Cb−1 e

−Kb−1
) · Cb−1 , b > β ,

where C is the constant appearing in the definition (2.6) of the partition function. Passing
to logarithms we get

log Cb = log C +
b−1∑
a=β

log
(
1 +B Ca e−Ka

)
.

We prove that Cb ≤ 2C by induction: the case b = β is trivial since Cβ = C. Assuming
that Ca ≤ 2C for all a ∈ {β, . . . , b− 1}, we have

log Cb ≤ log C +
b−1∑
a=β

log
(
1 + 2B C e−Ka) .
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By the definition (3.2) of Ka we have Ka ≥
(
K0 + log(2C) + 2 log a

)− 1, therefore

log Cb ≤ log C +
b−1∑
a=β

log
(
1 + e1−K0

B

a2

) ≤ log C + B e1−K0

∞∑
a=β

1
a2
.

Therefore, if we choose β sufficiently large, we get log Cb ≤ log(2C) and we are done.
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