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ABSTRACT. We study random pinning and copolymer models, when the return distribution
of the underlying renewal process has a polynomial tail with finite mean. We compute
the asymptotic behavior of the critical curves of the models in the weak coupling regime,
showing that it is universal. This proves a conjecture of Bolthausen, den Hollander and
Opoku for copolymer models [8], which we also extend to pinning models.

1. INTRODUCTION

The presence of disorder can drastically change the statistical mechanical properties of a
physical system and alter the nature of its phase transitions, leading to new phenomena.
Using a random walk to model a polymer chain, the effect of disorder on random walk models
has been of particular interest recently, giving rise to many random polymer models [25] 20].
In this work we focus on two important classes of random polymer models, the so-called
pinning and copolymer models.

e In the pinning model, the disorder is attached to a defect line, which can either attract
or repel the random walk path. As the temperature varies, a localization-delocalization
phase transition takes place: for sufficiently low temperatures, the random walk is
absorbed at the defect line, while at high temperature it wanders away. The origins
of such a model can be traced back to studies of wetting phenomena [I8, [I7] or
localization of flux line in superconducting vortex arrays [28]. We also mention the
interesting phenomenon of DNA denaturation, cf. [29)].

e In the copolymer model, disorder is distributed along the random walk path, which
meanders between two solvents separated by a flat interface. Each step of the random
walk path can be regarded as a monomer, and the disorder attached to the monomer
determines whether it prefers one solvent or the other. Also for this model, a sharp
localization-delocalization phenomenon is observed: the typical random walk paths are
either very close to the interface (in order to place most monomers in their preferred
solvents) or very far from it, according to the temperature. The origins of the copolymer
model in this context can be traced back to [19].

The purpose of this paper is to investigate the phase diagram of both models in the weak
coupling regime, in the case when the excursions of the random walk away from the defect
line (or interface) have a power-law tail with finite mean.
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1.1. Review of the models. We first recall the definition of the random pinning and
copolymer models. For a general overview, we refer to [25, 20, 21, 12].

The polymer chain is modeled by a Markov chain S = {S;, }n>0 on Z with Sy = 0, that
will be called the walk. Probability and expectation for S will be denoted respectively by P
and E. We denote by 7 := {7, }n>0, with 0 = 70 < 71 < 72 < ..., the sequence of random
times in which the walk visits 0, so that 7 is a renewal process with 79 = 0. We assume that
T is non-terminating, that is P(m; < oo) = 1, and that

p(n)

n1+a ’

K(n):=P(rp=n) = VneN={1,2..}, (1.1)

where a € [0, +00) and ¢ : (0,00) — (0,00) is a slowly varying function. In this paper we
focus on the case o > 1, for which the mean return time is finite:

= E[n] € (1,00). (1.2)

Remark 1.1. Many interesting examples have periodicity issues, that is, there exists T € N
such that K(n) = 0 if n ¢ TN. For instance, the simple symmetric random walk on Z
satisfies for n € 2N, with o = 1/2 and ¢(+) converging asymptotically to a constant.
However, we shall assume for simplicity that K(n) > 0 for every n € N. Everything can be
easily extended to the periodic case, at the expense of some cumbersome notation.

Remark 1.2. As it will be clear, in our framework the fundamental object is the renewal
process T, and there is no need to refer to the Markov chain S. However, let us mention that,
for any o > 0 and any slowly varying function ¢, a nearest-neighbor Markov chain S on Z
with Bessel-like drift can be constructed, which satisfies assumption asymptotically,
that is K(n) ~ ¢(n)/n'T as n — oo, cf. [2].

The disorder is modeled by a sequence w := {wy,},>1 of i.i.d. real random variables.
Probability and expectation for w will be denoted respectively by P and [E. We assume that
M(t) :=E[e"™] < oo V|t| <tg, withtg >0,  Elw]=0, Var(w)=1. (1.3)

We will often be making use of the log-moment generating function, that is
1
A(t) :=log M (t) = 5752 +o(t?) ast—0. (1.4)

Given a realization of the disorder w, the random pinning model is defined by a Gibbs
transform of the law P of the renewal process 7 (or, if one wishes, of the walk S):
dein,w — 1

N,B,h "™ pinw
ZN.6.h

eXn=1 (=G (B)+h) L nery qp. (1.5)

where {n € 7} is a shorthand for | J,cn{7% = n}, the event that the renewal process 7 visits
n (which corresponds to {S,, = 0}, referring to the walk S). The parameter 5 > 0 is the
coupling constant (or inverse temperature), h € R adds a bias to the disorder, and

2
W) = AB) = 2+ ol6?) (s BL0) (1.6

is the annealed critical point, the significance of which will be discussed later. The normalizing

constant

Zn = {ezfy:l(Bwn—hgin(ﬁ)-*-h)l{neﬂ} (1.7)

is called the partition function. We will also consider the constrained partition function

Z5n = B[S i Giluen 1] (18)
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In order to define the copolymer model, one traditionally works with nearest-neighbor
walks S that make symmetric excursions in the positive or negative half-plane. The signs of
the excursions are then i.i.d. symmetric {41}-valued random variables, independent of 7. In
our framework, it is actually simpler to proceed as in [12]. Without making any reference
to the walk S, under the law P we introduce a sequence of i.i.d. symmetric £1 random
variables € := {e, },>1, independent of the renewal process 7. Intuitively, the variable &,
models the sign of the excursion of the walk during the renewal interval (7,—1,7,) (even
when this interval has length 1). Given the disorder w, the copolymer model is then defined
via a similar Gibbs transform of the law P:

. 1 —2aTyN REP(N)—h)1,. _
dp?\(f),r;\f‘;z = m@ Zn:l(w”+ a (A)—h) {snf—l}dp7 (19)

where A > 0 is the coupling constant, h € R and Z]C\?I;\’z have the same interpretation as in

the pinning model, and
1
RSP (N) = N A(=2X) =X +0o(N) (asA10) (1.10)
is the corresponding annealed critical point. The constrained partition function for the
copolymer model is given by

3Ny =E [6*” et @ntha® V) =h)1 (e, ——1) 1{N€T}i|
POONI oy AT (@athE () ) (1.11)
= E H B 1{N€T} )
j=1

where |7 N (0, N]| = max{k > 0: 7, < N} is the number of renewal points that appear
before N, and we have integrated the excursions signs.

Remark 1.3. The different parametrization of the copolymer model, as compared to the
pinning one, is to conform with most of the existing literature. To recover the pinning
parametrization, it suffices to replace w by —w, 2A by 8 and 2Ah by h.

Many statistical properties of the models can be captured through the (quenched) free
energies, which are defined by
i . 1 in, . 1 in,
FP(B, h) == ]\}gnoo N log ZR;’HB?;L = ]\}Hn N Elog ZR,’HB?‘;L,

—00

(1.12)

.1 .1

FOP(\ h) := A}gnoo N log Z %5 = A}gnoo N Elog ZyR5
where the limits exist P-a.s. and remain unchanged if we replace the partition functions by
their constrained counterparts (see |20, Ch. 4]). From the definition of the partition functions,
by restricting the expectation E to the event {m; > N} (that is {S,, >0 forn=1,2,..., N}
in the walk interpretation) and observing that log P(r; > N) = O(log N), by (L1)), it follows
that the free energies are nonnegative. A (quenched) localization-delocalization transition
can be determined from the critical curves

BRI (B) = sup{h: FP"(8,h) =0} and ALP(A) = sup{h: FP(AR) =0} (L.13)

The meaning of these critical curves is that, when h exceeds the critical value, the free
energy is strictly positive and the polymer puts a positive fraction of its monomers at {0},
in the pinning model (resp. in {0, —1,—2,...}, in the copolymer model); on the other hand,
these fractions equal 0 when h is below the critical value. We refer to |20, 25] for details.
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The effect of the disorder is best seen through comparison of the (quenched) models with

their annealed counterparts. In particular, the annealed free energies are defined by

FP (B ) = 1\}1_1}100% logEZR;5  and  FP(A h) = ]\}21100% log EZ5

The annealed models are exactly solvable and their phase diagrams can be completely
determined (see e.g. [20]). In particular, the critical value of h, above which the annealed free
energy is strictly positive, is h = 0, both for the pinning and copolymer model. This is simply
because we have subtracted the “true” annealed critical points hh" (3) and hg *(8) from h
in the definition of our models, for later convenience. As a consequence, a key signature that
disorder alters the nature of the phase transition is that the quenched critical curve h2™ ()
(resp. he P(N)) is strictly positive for any small 8 (resp. A). In this case, disorder is said to
be relevant; otherwise, it is said to be irrelevant.

It has been shown in [31] that for the copolymer model disorder is relevant for every o > 0,
regardless of the underlying renewal process 7 (satisfying the above mentioned assumptions).
On the other hand, for the pinning model, it is known that disorder is irrelevant when
a < 1/2 or when o = 1/2 and Y, o, 1/np(n)? < oo (cf. [1I, B0, 14, 26]), relevant when
a > 1/2, and believed to be also relevant (almost confirmed in [3] 4, 22, 23]) when o = 1/2
and Y, <1 1/np(n)? = co. See [21] for an overview.

1.2. The main results. A fundamental problem for random pinning and copolymer models,
when disorder is relevant, is the asymptotic behavior of the critical curves in the weak coupling
regime 5, A ] 0. The interest of this question lies in the belief that such asymptotic behavior
should be universal, i.e., not depend too much on the fine details of the model.

For the copolymer model, the behavior of the critical curve hc’?(\) for small A has been
investigated extensively. In the seminal paper [7], Bolthausen and den Hollander investigated
the special copolymer model in which S = {5, },>1 is the simple symmetric random walk
on Z and the disorder variables w,, are {#1}-valued and symmetric. They were able to show
that the slope of the critical curve limy o he”P(A)/A exists and coincides with the critical
point of a continuum copolymer model (in which the walk S is replaced by a Brownian
motion and the disorder sequence w is replaced by white noise). This result was recently
extended by Caravenna and Giacomin [10]: for the general class of copolymer models that we
consider in this paper, in the case o € (0,1), it was shown that the slope of the critical curve
exists and is a universal quantity, namely it is the critical point of a suitable a-continuum
copolymer model. In particular, the slope depends only on o and not on finer details of
the renewal process 7 and disorder w. For consistency with the literature, we define (recall
(1.10))

cop cop
me = lim fa”(A) = he "V =1-1lim

he™®(N)
A0 A 0 '

(1.14)

The precise value of m,, in particular for &« = 1/2, has been a matter of a long debate.
It was conjectured by Monthus in [27], on the ground of non-rigorous renormalisation
arguments, that my/ = 2 /3, and a generalization of the same argument yields the conjecture
meq = 1/(a + 1). The rigorous lower bound m, > 1/(a + 1), for every a > 0, was proved by
Bodineau and Giacomin in [5]. Very recently, it was shown by Bolthausen, den Hollander
and Opoku [8] that this lower bound is strict for every a € (0, 00), thus ruling out Monthus’
conjecture (see also [6] for earlier, partial results, and [IT] for a related numerical study).

In this work, we focus on the case a > 1. Let us stress that this case was not considered in
[10], because no non-trivial continuum model is expected to exist, due to the finite mean of
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the underlying renewal process. This consideration might even cast doubts on the (existence
and) universality of the limit in ((1.14]). However, it was recently proved in [§] that

cop g cop
lim inf fa”(A) — he (M) > 2t )
AL0 A 2(1 + o)

(The “critical curve” in [§] corresponds to hg ¥ (A) — he P (A) in our notation; furthermore,

our exponent « is what they call a — 1, hence the right hand side in (1.15)) reads 1;‘—:‘ in [8].)
The universal lower bound (|1.15)), depending only on «, led naturally to the conjecture
[8] that m, exists also for & > 1 and coincides with the right hand side of (1.15]). Our first

main result proves this conjecture, establishing in particular the universality of the slope.

Vo € (1,00). (1.15)

Theorem 1.4. For any copolymer model defined as above, with o > 1, the limit in (1.14)

exists and equals my = 2(2;;0&). Equivalently,
heP () Q
li = . 1.1
W T (1.16)

Remark 1.5. In a work in progress [13], the partition function of the copolymer model
under weak coupling is shown to converge, for every o > 1, to an explicit “trivial” continuum
limit, the exponential of a Brownian motion with drift, which carries no dependence on
«. In particular, the continuum limit of the partition function gives no information on the
slope of the critical curve, which is in stark contrast to the case a € (0,1).

For the random pinning model with a > 1, rough upper and lower bounds of the order
3% are known for the critical curve h2™(B), cf. [3, [16]. (The quadratic, rather than linear,
behavior is simply due to the different way the parameters (5, h) and (A, h) appear in the
two models, cf. Remark . We sharpen these earlier results by establishing the following
analogue of Theorem

Theorem 1.6. For any random pinning model defined as above, with o > 1, we have

_hE™(B) a 1
lim = —
slo [ 1+a2u

(1.17)

where p = E[m].

Thus, the asymptotic behavior of the critical curve of the random pinning model with o > 1
is also universal, in the sense that it depends only on the exponent a and on the mean p of
the underlying renewal process, and not on the finer details of the renewal process or the
disorder distribution.

Remark 1.7. For the random pinning model with a > 1, it is also shown in [I3] that the
partition function under weak coupling converges, in the continuum limit, to the exponential
of a Brownian motion with drift, which depends on u but not on a > 1. As a consequence,
the continuum limit gives no information on the asymptotic behavior .

The fact that we can prove the same type of result for the random pinning and copolymer
models is not unexpected for o > 1. In fact, when the underlying renewal process has finite
mean, there is typically a positive fraction of monomers interacting with the disorder, for
both models, since P(n € 7) and P(g, = —1) (recall and (1.9)) tend to a positive
constant as n — oo (1/u and 1/2, respectively). Also, the annealed free energies of both
models are proportional to the square of the coupling constants 3, respectively A, if the
bias h is also scaled properly (proportional to 32 for the pinning model and to A for the
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copolymer model). This fact is then reflected in the (annealed) correlation length of the
system, which plays a central role in the coarse graining analysis we will carry out later.

When a < 1, the above analogies between the random pinning and copolymer models
break down. In [3] it was shown that for a € (1/2,1), h2™(3) satisfies the bounds

_ 2 _ . 2a _
¢TI BTTP(BT) < hEM(B) < cBTTw(B7?)
for some ¢ > 0 and a slowly varying function 1 (-), related in an explicit way to ¢(+). It
is then reasonable to conjecture that, in analogy with the universality of the slope of the
critical curve for the copolymer model, the limit

hpin
lim ————— (8)
o0 prTy(8-2)
exists and is also universal. The method we use in this paper falls short in answering this
question. However, the random pinning model under weak coupling does admit a continuum

limit when « € (1/2,1), which is currently under construction in [I3]. This gives hope to
prove the existence and universality of the limit in ((1.18)).

(1.18)

1.3. Organization and main ideas. We present the proof of Theorem [I.6 concerning
the random pinning model, in Sections [2| (lower bound) and [3| (upper bound). The proof
of Theorem [1.4] concerning the copolymer model, follows the same line of arguments —in
fact, the upper bound is significantly easier in this case— so we only sketch the proofs and
highlight the differences in Sections [4] and [f

Remark 1.8. The upper bound on hc’P(\) in relation for the copolymer is the same
as the lower bound , which was established in [8] as an application of a quenched large
deviations principle, developed by the authors and their collaborators. Here we present an
alternative and self-contained proof, which is remarkably short (see Section .

The proof of the lower bound on h.(-) is based on a refinement of the “fractional moment
and coarse graining” method, developed in [16] 23], see [2I] for an overview. The standard
application of this moment method makes use of a change of measure, which via the use of
Holder’s inequality gives rise to an energy-entropy balance. In [16], 23], the entropy factor
can be bounded by an arbitrary constant, while the energy factor can be made arbitrarily
small. Our refinement requires optimizing this energy-entropy balance, which is crucial in
obtaining the precise constants. We also need a refinement in the coarse graining procedure.
In the standard application, the polymer only needs to place a positive fraction of monomers
at the interface in each visited coarse-grained block, while in our case, we need to ensure
that this positive fraction is in fact close to 1. For this step, @ > 1 plays a crucial role.

The upper bound on h.(-) makes use of the following smoothing inequality (the distinction
between the pinning and copolymer, as usual, is simply due to their different parametrization).

Theorem 1.9. Recall relation (1.3)). For the pinning model, for every 0 < 8 < ty/2 and
6] < Bto/2, there exists Ags € (0,00) with limg 5, (0,0) Ap,s = 1, such that
1+« 52
Ags —5 .
2 P

For the copolymer model, for every 0 < X < to/4 and |0| < to/2, there exists Ay s € (0,00)
with imy ) (0,00 Axe = 1, such that

0 < (8, hEM () + ) < (1.19)

1+«
2

0 < FP(A, AP (N) +8) < Apg 2. (1.20)
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The smoothing inequality was first proved in [24], without the precision on the constant

and under more restrictive assumptions on the disorder. In the case of Gaussian disorder, it

appears in [20] with the right constant (14 «)/2, cf. Theorem 5.6 and Remar 5.7 therein. The

general statements we use here are proved in [9]. We remark that the precise (asymptotic)

constant (1 + «)/2 is crucial in obtaining the exact limits of he"P(A\)/A an h2™(3)/52.
The idea to prove the upper bound is to couple the smoothing inequality with a rough

linear (but quantitative) lower bound on the free energies. More precisely, we prove that for

every c € R,

in 2 CcO

PR (B, cB7) > 1[0—1] and liminfm Zc—l. (1.21)

32 i 24 AL0 A2 2
Remarkably, enforcing the compatibility of these inequalities with the corresponding smooth-
ing inequalities ((1.19) and ([1.20)) leads to the sharp upper bound on the critical curves.

lim inf
BL0

Finally, a remark on notations. To ease the reading, we will drop the superscripts pin
and cop from our notation for the free energy, partition function, and critical curve. This
should not lead to confusion, since pinning and copolymer models are treated in separate
sections. Moreover, we will refrain from using the integer parts, that is, instead of |z | we
simply write z. It will be clear from the context when the integer part of x is used.

2. ON THE PINNING MODEL: LOWER BOUND

As already mentioned, we use the “fractional moment and coarse graining” method
(see |21]), but with several crucial refinements, that we now explain.

2.1. The general strategy. To obtain a lower bound on the critical curve h.(3), it suffices
to prove F(3,h) = 0 for suitably chosen h as a function of 5. This is further reduced to
showing that for some ¢ € (0,1), we have

hmlanE[( Nﬂh)q < 00. (2.1)

Indeed, note that

N—oo

. . 1 C,w C,w
F(53,h) :I%gloréf NE[IOg ZNB h] = liminf —CE[log (ZNB h)C]

G _
< I%n_ggofN—ClogE[(ZNﬁh) ] = 0.
To obtain ([2.1)), we employ a coarse-graining scheme. The idea is to divide the system into
(large) finite blocks, each one being of size k, the correlation length of the annealed model,
proportional to 1/3%. We estimate the partition functions on different blocks separately, and
then “glue” these estimates together through a coarse-graining procedure.

We first estimate the partition function of a system of size k, the coarse-graining length
scale. Let P_;;, denote the law under which {wi}1<i<k are i.i.d. with density

P_
d §k — H —§w1 A( 5 (22)

which is an exponential tilting of the law of {wi}lggk. We then apply the standard change
of measure trick: by Holder’s inequality, for any ¢ € (0,1)
1

c,w ™ c,w dP ™ dP =< ¢
E[(Zkiﬁ,h)q :]E—(Svk[(zk:,é’,h)cm] < Eosp [Zk,b’h] E 51@[(0@ M) ] - (2.3)
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The second factor is easily computed:

_ 2e71-¢ 1<
sul(m) T - HE)T] -
dP_s dP_s

LA—OR[AE D)+ T A-0)]

k . . 1-¢
H 61(6wi+1§/\(—6)]
=1

(2.4)
Using ((1.8) and recalling (|1.6)), the first factor in (2.3]) can also be computed:
E_si[204,] = E {e(A(B—é)—A(B)—A(—éHh) ALkl {kET}} , (2.5)
Since Tjrar)] < Kk < Tlra[k)+1, 1t follows by the strong law of large numbers that
|7 N1, K] 1
- P-a.s.. 2.
k k—oo L & ( 6)

Since P(k € 7) — i > 0 as kK — o0, by the renewal theorem, we have the convergence in

distribution
|7 N1, k]| d 1

. ey under P(-|k e ). (2.7)

We now parametrize everything in terms of 8. Let us set
t
2
hg =cB*, d3=af, kﬁ:@’

As 310, we have kg — oo and, recalling (1.4)),

for ¢,a,t € (0,00) with a > c.

(AP = 85) = A(8) = A(=0) + )2 ~ (s = 65)2 — (c= ). € (~o0,0).

Together with the fact that P(k € 7) — % as k — oo, it follows from (2.5)) and (2.7)) that

im B : L (e-a)t
lﬁlﬁ)l B5s.ks [Zzﬂuj@hﬂ] = ﬁ e Vi, (2.8)
hence, by ([23) and (Z4),
1 ¢ a? ¢
limsupE[(Z¥ O < Senlemdt Tyt Va>c. 2.9
310 [( kﬁ,ﬁ,hﬁ) :| MC ( )
Note that the exponent is a polynomial of second degree in a: optimizing over a yields
1
a= 1=¢ , (2.10)
I
and one gets the basic estimate
: 1 ¢ 1-¢
limsupE[(Z;* < = exp{(c—)t}. (2.11
510 (7 0ms)] pé 7 24 )

To feed this estimate into the coarse graining scheme and obtain , we need to make
the right hand side arbitrarily small. This can be accomplished by choosing ¢ large enough,
provided ¢ < (1 —¢)/(2u), or equivalently, h/5% < (1 —()/(2u). As we will see later, the
coarse graining scheme works only if ¢ > 1/(1 + «), which leads to h/8? < a/(2(1 + a)u)
and thus to the sharp lower bound on he(B).

Note that the bound (2.11]) is derived via a subtle balance between the cost of changing
the measure and the annealed partition function under the changed measure, i.e., the two
factors in the right hand side (2.3). This is in contrast to |21, Proposition 7.1|, where:
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e the cost of changing the measure is only required to be an arbitrary fixed constant for
each coarse graining block;

e the annealed partition function under the changed measure is small over any interval
whose length exceeds a §-proportion of the coarse graining block.

In our case, the cost of changing the measure needs to be estimated sharply; furthermore, in
order to balance this cost and get , we need to average the partition function under
the changed measure over an interval whose length is close to the full coarse graining block.
Fortunately such configurations can be shown to give the dominant contribution in the case
a > 1. We stress that this is not the case when o < 1.

2.2. Proof of the lower bound. We divide the proof into several steps.

STEP 1. Let us first set up the proper framework. To prove the lower bound for h.(/) in
(1.17)), we show that for every e > 0 small enough there exists Sy = Bo(g) € (0, 00) such that
for every 5 € (0, By) we have

a 1
1+a2u’
As explained in Section it suffices to show that there exists ( = (. € (0, 1) such that

F(B, c. %) = 0, where . = (1—¢) (2.12)

. . c,w C
l}ﬂlgofE[(ZNﬁ,csﬂ) ] < . (2.13)
Henceforth let € € (0, 1) be fixed. We then set
1 £ «

G = 1+« + 21+« € (ma )
For later convenience, we assume that ¢ is small enough so that (14« — §)¢: > 1 and also
a — /2 > 1 (which is possible, since o > 1). We set the coarse graining length scale to be
b= koo = te/8? (2.15)

for some t. € (0,00), which depends only on ¢ and will be fixed at the end of the proof.
Recall from the exponentially tilted law P:= ED_57k. We will use it with & = kg, and

1_C€

(2.14)

0 =0ge 1= a.f =

B, (2.16)

where the choice of a. is (a posteriori) optimal, recall (2.10]). Note that ¢, < (1 — Cg)i by
(2.12) and (2.14)), hence a. > 2¢. by (2.16)). In particular, we stress that

az > ce, (2.17)

a relation that will be used several times in the sequel.
Now we recall the crucial relation (2.8]), which can be rewritten in our current setting as

L~ 1 _l( —et
C,w _ Qg —Ce)le
%%E[Ztsﬁ,%%m] = ;e z ) (2.18)

The convergence ([2.18)) is actually uniform when t. varies in a compact subset of (0, 00).
In particular, there exists [51(g) > 0 such that for all 5 € (0,61(¢)) and all n € N with
(1—¢/5)t.872<n<tB2 we have

L2¢ hamcdfin o Fzew ] < 1T hlamc)tin (2.19)
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This uniform bound follows from the convergence in (2.7)), because the functions z +— e~¢*

are uniformly bounded and uniformly Lipschitz, if C' ranges over a bounded set. Note that
the upper and lower bounds in (2.19)) are bounded away from 0 and oo (for a fixed € > 0),
because (1 — £)t. < f*n < t..

STEP 2. We now develop the coarse graining scheme. The system size IV will be a multiple
of the coarse graining length scale: N = mk = mt.~2 for some m € N. We then partition
{1,...,N} into m blocks By, ..., B, of size k = t.372, defined by

B = {(i—1k+1,...,ik} € {1,...,N},

so that the macroscopic (coarse-grained) “configuration space” is {1,...,m}. A macroscopic
configuration is a subset J C {1,...,m}. By a decomposition according to which blocks are
visited by the renewal process (we call these blocks occupied), we can then write

C,w - ~
ZN B = Z Zy
JC{1,...m}: meJ

where for J = {j1,...,J¢}, with 1 < j1 < jo <...<jp=mand { = |J|,

¢
7, = Z Z Z (HK(di - fi—l)zdiZdi’fi> , (2.20)

di,f1€Bj, de—1,fe-1€Bj,_; dt€Bj,=Bm \i=1
di<fi de—1<fe-1
where we set fo:=0 and fy:= N =mk, and for all d < f € N,
_ 2 9l
2a = PO 2oy = 20 e

with 99w 1= {(9%W)n}nen = {Wnid}nen defined as a shift of the disorder w. Since (. < 1,
one has that (a + b)S < a‘ 4 b, for all a,b > 0, and consequently

E[(Zy5.2)°1 < > E[(2)%]- (2.21)
JCA{1,....m}: meJ

To bound IE[(Z])CE], we apply the change of measure as in . Let @J be the law of the
disorder obtained from P, where independently for each n € |J;c; B;, the law of w, is tilted
with density e~ %n~AM=9) with § = a.3 as chosen in . Then by the same argument as
in , we have

1

. ~ o= (AP \TE]

E[(2,)%] < Es[2,]“E, [<~> } . (2.22)
dP;

To bound the second factor, note that for J = {ji,...,j¢}, the same calculation as in ([2.4])

gives (recall that k =t.372 and 6 = a.f3)

I 1 ¢ e
~ 1-Ce 1=¢e ¥ v
S[(E) T elGE) T eI g e
dP; dP; i=1neBy,
_ L [AGES O S A0 ke < 6(1+%)§1£%5t5|J‘, (2.23)

where the last inequality holds, by (1.4]), for 8 small enough, say 8 € (0, 52(¢)), for some
B2(g) > 0. To bound the first factor in (2.22)), recall that a. > ¢. and note that, for every
n € ;e Bi, for B < Pa(e) we have

Byleg] = MB-O-AB-A0) el _ o—(ac—c)Fro(5) o (2.24)



CRITICAL CURVES AT WEAK COUPLING 11

provided (33(¢) is chosen small enough. Furthermore, for d, f € B; for any i € J,
E][Zd’f] = ﬁ(f — d), where ﬂ(n) = E[Zg,wﬂ,ceﬁQ] . (2.25)
Therefore from ([2.20f), we obtain

l
Es(Z;) < ) ... > > <HK(dz- — fis)u(fi — dz-)) . (2.26)
di,f1€Bj, de—1,fe-1€B;j, | dy€Bj,=Bm \i=1
di<fi dg—1<fe-1
This expression is nice because it would be the probability of a renewal event, if u were
replaced by
u(n) == P(n e ).

We are going to make this replacement in the next step, but first we need some estimates.

Since u(n) — 1/p as n — oo by the renewal theorem, we can choose C € (0, 00) such
that

1 C1
— < uln) < — VneN. 2.27
G Sulm < (227)

Furthermore, by relation ([1.1)) and the fact that slowly varying functions are asymptotically
dominated by any polynomial, it follows that there exists C . € (0,00) be such that
C
K (n) < 2,e

— n1+o¢—% )

VneN. (2.28)
Finally, since 0 < |7 N [1,n]| <k for every n € {1,...,k = t.372}, recalling (2.5) we obtain

e 2aemelley(n) < Un) = E[Z°% ] = E[e(*(“fcfmz*owz)) il 1{neT}}

n, B, ce 32 (229)

< wu(n) <1,

for 8 € (0, B2(¢)), because a. > ¢, (recall )

STEP 3. We now replace u(-) in by a suitable multiple of u(-). However, this is
only possible for occupied blocks that are surrounded by occupied blocks. The blocks with
unoccupied neighboring blocks have to be dealt with in a different way.

Let us be more precise. Fix ¢ such that both j; € J and j; — 1 € J U {0}. Then we claim
that the terms in with |d; — fi—1| < {5k give the main contribution. Indeed, setting

fioi=0G—-1Dk, di=(Gi—1k+1,

= = = 2 N~ S —9(ae— 1 |2

U(fiy —dia) K(d; — fioy) U(f; — di) > (7% Ceﬁs@) K(1), (2.30)
where we used the lower bounds in (2.29)) and (2.27). Using instead the upper bound in
(2.29) that u(-) < 1, together with (2.28)), yields

_ _ k2 Cy . 1012 Oy .
Z u(fi-1 —di—1) K(di — fi-1) u(fi —di) < o = 7
fi—1€B;, |, di€Bj, (1%]{?) ta—3 glta o—3
|di—fi—1]> 15k
(2.31)

Recall that ¢ is chosen small enough, so that o — 5 > 1, and k = t.72 = oo as B ] 0.
Therefore, we can find 83(¢) € (0, 00) such that for every 8 € (0, 83(¢)), the contribution of
the terms in (2.26)) with |d; — fi—1] > 1%k is smaller than the contribution of the terms with
d; — fi—1| < {5k (comparing (2.30) and (2.31])).
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To summarize: when § < f3(¢), the right hand side of can be bounded from above
by restricting the sum to |d; — f;—1] < {5k for every i such that both j; € J and j; —1 € J,
provided one introduces a multiplicative factor of 2 for each such i.

Let us now set

J={jeJ: j—1eJu{0tand j+1ecJU{m+1}}.

If j € J, say j = j; for some 1 < i < |J| =, then we have restricted the summation in (2.26)
to both |d; — fi—1| < {5k and [diy1 — fi| < {5k, which yields f; —d; > (1 — £)k. Recalling
(2.25)), (2.19) and (2.27)), we can then bound

Wi —di) < Deu(fi—di),  where Do = Cy(1+e)e n(@)1-

oo

e (2.32)

This is the crucial replacement, after which we can remove the restrictions |d; — fi—1| < l%k
in (2.26) to get an upper bound. (Note that D, can be made arbitrarily small by choosing
te large, because a. > ¢, so we may assume henceforth that D, < 1.)

It only remains to deal with the terms j € J \ J, i.e. the occupied blocks that have at
least one neighboring block which is unoccupied. For these blocks, we replace u(f; — d;) by
u(fi — d;), thanks to (2.29)). Gathering the above considerations, we can upgrade (2.26)) to

i ¢
E;[Z;] < 2PI(D)V! Z Z Z ( K(di_fil)u(fi—di)> , (2.33)
i—1

di,f1€Bj, d¢—1,fe—1€Bj,_, d¢€Bj,=Bm
di<h de—1<fr—1

where we note that the summation is now the probability of a renewal event.

STEP 4. We now deal with the gaps between occupied blocks. Let i € {1,...,¢} be such
that j; € J but j; —1 ¢ J U {0}, that is j; — ji—1 > 2. Since d; € Bj, and f;—1 € Bj,_,, we
have d; — fi—1 > (ji — ji—1 — 1)k. Then it follows from ({2.28) that

Cor 1 21ty . 1
K(d; — fi_1) < € _ < ., —, (234
(= fi) = kT2 (G — i — 1) kT (i — jim1)' T2 (234
where the last inequality holds because n — 1 > & for n > 2. Furthermore, by ({2.27),
u(fier = di1) < Cu(fioy —dima),  wlfi —di) < CRu(fi — di), (2.35)

where we recall that f, ; = (i — 1)k and d; = (i — 1)k + 1 denote respectively the last point
of the block B;_1 and the first point of the block B;.

We can now insert the bounds ([2.34)), into (2.33)), starting with the smallest
i € {1,...,¢} such that j; — 5,1 > 2 (if any), and then proceeding in increasing order.
(When there are two consecutive gaps, that is, when both j; — j;—1 > 2 and j;—1 — ji—2 > 2,
the first bound in becomes u(f;_1 — di—1) < C?u(f,_; — d;_1), because we have
already replaced d;_1 by d;_1 in the previous step.) In this way, we eliminate all the terms
in that depend on f;_1 and d;, and the double sum over f;_1 and d; can be removed
by introducing a multiplicative factor k2.

Having eliminated the gaps, we are left with “clusters of consecutive occupied blocks”:
more precisely, the surviving sums in are those over variables f;_1,d; with a < j <0,
for every maximal interval {a,...,b} C {1,...,¢}. These sums can be factorized and each
such interval gives a contribution equals to the probability (hence bounded by 1) that the
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renewal process visits a clusters of consecutive occupied blocks. Therefore

~ rx 9 21+ ¢ 1
E,;[Z;] < 2V1(D) K2 2e _
121] < (Do) , H . BT (G — gima) TR
16{1,,5} Ji—Ji—122 (2 36)
o /olta [{i€ {1, b} Gi—jim1>2}| :
_ 9l (p (201?2> ' 1 -
k2T ief{1,...,0} (Ji — Ji-1) o2
Next observe that
(JNJ| = [J[=[J] < 2[{ie{L,.... 0} ji—ji1 = 2}, (2.37)

o
since each point in J \ J is either the starting point or ending point of a gap, i.e., a pair

{ji=1,4i} with j; — ji—1 > 2. Since o — § > 1, by our choice of ¢, and k = t.f72 = oo as
B 10, there exits S4(¢) € (0,00) such that for every 5 € (0, B4(g)), we have

21+a Cil CQ . )
Taoso1 S (De)”.
Since D, < 1, it follows from (2.36)) and (2.37) that
E, [Z 1
2] < e [ ——————. 2.35)
ie{1,...,.0} (]i - ]i—l) 2

STEP 5. We now conclude the proof. Looking back at (2.21)), (2.22), (2.23]) and (2.38]), we
can write

() € D) (H( Sme)  em

JC{ oy meg Niefi..o Ui = Jim1 )
where, recalling the definition ([2.32)) of D., we have set

a2 € ‘12 15
G = (2D.)% (FR)T TG = (9(1 4 ))& e (%) te {$FCemae+ (1 55) 5 75 e
Let us now replace the value of a. = 1;—@ that we fixed in (2.16) (recall from (2.10) that

this value is optimal in minimizing the second exponential, if we neglect the term ¢/20),

getting
Ci( 1—

LT o) pte S (ee—(1-55) 155 )te

G. = (20 +)01) e

We now substitute in the value of ¢. = (1 — €>1—Toaﬂ set in (2.12)), and substitute inside the

parentheses in the exponential the value of (. = 7 + -~ +5 514_—& set in , which gives

Ce(_o 1 _Ce9% _a 1 _Ce_a 1¢
G. < (2(1+¢e)Cy) " en (Tham)5le o~ irabTazale = (2(1+s)01)<5 i Trazu il

We are ready for the final step: by the definition (2.14)) of (., and the fact that & has been
fixed small enough, we have (1 + a — 5){; > 1. Since the upper bound for G. vanishes as
te = 400, we can fix t. € (0,00) large enough, depending only on &, such that

The right hand side of (| is then smaller than one, because it can be recognized
as the probability of Vlsltlng m for a renewal process, with return distribution given by

K(n) := G./n1*2=3)% and K(co) =1 — Y oneN K(n) > 0. In conclusion, we have shown
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that for any £ > 0 small enough, we can find 5y(g) := min{B1(g), B2(g), B3(e), Ba(e) } € (0, 0)
and t. € (0,00), such that for all 8 € (0, Bo(e))

E[(Z0% 42 pe )] <1 ¥meEN,

where ¢, was defined in (2.12)). This establishes (2.13)) and concludes the proof.

3. ON THE PINNING MODEL: UPPER BOUND

3.1. A lower bound on the free energy. The strategy of the proof has been outlined in
Sectlon First we prove the lower bound on the free energy of the pinning model stated
in , Wh1ch we restate here as a lemma.

Lemma 3.1. For every c € R
2 1
mnmf(ﬁﬁﬁ)z F—} (3.1)
510 B I 21

Proof. A naive lower bound on the free energy is to apply Jensen’s inequality, interchanging
the log in with the expectation E over the renewal process that appear in the partition
function (recall ) However, this only leads to a trivial bound, as the expression in
the exponential in is a linear function of the disorder w. To get a better bound,
before applying Jensen we perform a partial integration over a subset of the renewal points,
obtaining a “coarse-grained Hamiltonian” that is no longer linear in w. This has certain
analogies with Theorem 5.2 in [20]. The details are as follows.

For ¢ € N and ¢ > ¢, we define Hé‘g to be the free energy of the constrained model of
size £ conditioned to have exactly ¢ returns:

Hzg(fj = 10gE[€Z£:1(Bwn_A(ﬁ)+h)l{"ET}|Tq =1{.

Let 7(@) .= {n(ﬂ)}neNo with T,Sq) ‘= Tnq, Which is a renewal process that keeps one in every ¢
renewal points in 7. We also set

./\/’](\?) = max{n e Ny : 79 <N} = 7@ n[1,N].

By requiring N € 7(9) and taking conditional expectation w.r.t. 7(2, we obtain

N(Q)
net (Bwn—A(B)+h)L(ner _
INw 2 E[ez”l(ﬁw D+ ne }1{N67(q>}] = E[GXP< E H(?j) 0 ) )1{1\/@7(@}} ;
=1 7 U

where 9w = {wy 1 tnen defines a shift of the disorder w.

Since E[TI(Q)] = qu and T(q()q) <N T/(\/_gq) , by the strong law of large numbers

N'(q
i N Z f(; ) = iE[ FED)], P-as. and in L'(dP), (3.2)

for every function f : N — R such that f(Tl(q)) € L'(dP). Since P(N € 7(9) — i > 0 as
N — o0, by the renewal theorem, it is not difficult to deduce that

N(lI)

[ 2 ot

qu

NeT@leU(“ﬂ. (3.3)
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We are going to apply this to f(¢) := E[H, Ji0% )] Recalling ([1.12]), by Jensen’s inequality we get

N(Q)
@| _ 1 @)
F(8,h) = limsup NEELle ey N e T‘J] = BB [H o }
= — Z |:lOgE{ Zgzl(ﬂwn_/\(ﬂ)"‘h)l{neﬂ P N}:| (34)
e I e |
N=1

The rest of this section is devoted to studying this lower bound as 3, h | 0.
Let us denote

ungq(n) == P(ner|ry=N), ung(n,m) := P(ner,mer|ry,=N). (3.5)

By Jensen’s inequality,

N
1OgE[€ZfL1 Bunliner} |y — N} _ Zﬁwnuz\/,q(n) > 0. (3.6)
n=1
Therefore we can apply Fatou’s Lemma in (3.4) to obtain
. F(B,c?)
liminf ——~= 3.7
sl B2 (3.7)
1 S ZN, Bwnl - N
-5 1 log E|e4n=1 el =N| —>
= C—3 + lim inf — Z P(Tq =N) E[ og [6 |7'q , ] Zn—l /BwnUN,q(n)}
H BLO-qp = B
1 0 ZNf Buwnl — N
1 1 log E[e2=n=1 nert |- = N — 3
> 24— 3 P(ry = N)E[liminf = [ i ~ =% BW”UN’q(”)}.
M a5 810 B

By Taylor expansion, for fixed disorder w and as 5 | 0, we have

E [627]:[:1 ﬁw’ﬂl{nET}

Tq:N} = 1+5anu]\/q + 62 Z WinwnUN,q(M, n)—i—o(BQ)

m,n=1

Since log(1 + z) = @ — 222 + o(2?) as x | 0, we obtain

v Wn, neT —_ N
E[lim inf 1ogE[eZn:1 - }‘Tq _2 N] — D=1 5wnUN,q(n)}
B0 B
1 N

w\»a

N N
1
=3 Z(UN,q(”) —un,4(n) Z“N,q )2, (3.8)
n=1 n=1

where the last equality holds, by (3.5]), because ZnN:1 L{nery = q on the event {7, = N}.
Note that

I\DMQ

Z“qu(n [|7’ﬂ7’ﬂ( HTq—Tq—N], (3.9)



16 Q.BERGER, F.CARAVENNA, J.POISAT, R.SUN, AND N.ZYGOURAS

where 7 is an independent copy of 7. Intuitively, since each renewal process 7,7 has mean
return time p, the expression in (3.9) should be of the order ¢/u. In order to prove it, we

fix n > 0. Decomposing the right hand side in (3.9)) according to whether |7 N7 N (0, ]] <
(1 +n)N/u? or not, and noting that |7 N (0, H l{Tq N} = ¢, we obtain
1+n)N lTN7N (0, ]|>(1+n) N/, 7y =7,=N
ZuMq(”)Q < ( ;7) 1q ( e q )
1 K (7q = N)
. N \/P (rn7N (0 ]\>(1+77)N/M) P(ry = N)
B p? P(ry = N)? ’

where we used Cauchy-Schwarz inequality for the second inequality. We note that 7N 7T is
a renewal process with finite mean p2. Therefore, by a standard Cramer large deviation
estimate [I5, Theorem 2.2.3|, there exist C, € (0,00) such that for all ¢ € N large enough

max TOTN > (14+n)N e Cnd,
Ne((1—n)qp,(1+n)qp) (’ (0, NJ| > (1 +n) /M)

and hence, uniformly in N € ((1 — n)qu, (1 +n)qu), we have

N 2 _io
2 (L+n) e 29
unqg(n)” <gq +4q . 3.10
> ung(n) i B =) (3.10)

We finally plug the bound (3.10) into (3.8), and then into (3.7]) (note that the denominator
P(ry = N) in (3.10) gets simplified). Restricting the summation to N € ((1—n)qpu, (14+1)qp),
thanks to (3.6), we obtain, for ¢ large enough,

L F(BefH) -5 1 (1+1n)? 1 1
lim inf > —|——<1—7> — (2 e 20na,
nh 72 T . pn(q) 2M( nqp)
where p,(q) := P (74 € (1 — n)gp, (L +n)gu) ) = 1 as ¢ — oo by the law of large numbers.
First letting ¢ 1 co and then letting 1 | 0 gives the desired bound (3.1)). U
3.2. Completing the proof. Recall the smoothing inequality (|1.19))
in 1+Oé (h — he(B))?

0 <FP(B,h) < Ag h_ho(s )573 : (3.11)
Setting h = ¢f?, we then have

. R(B, ) 1+a[ ( h(ﬁ))]z

lim inf < c— | limsu . 3.12

Bl g T2 a0 B (3.12)

Combining (3.12) with (3.1]) gives
1 21 1
+a[c (hmsuph(f))] 2<c> VeceR.
2 g0 B Iz 2p
We can rewrite this inequality as
A +Bc+C>0 VeceR,
with
l+a . he(B) 1 1+a ( he(B)\> 1
A= , B=—(14«a)limsup ——, (C=——| limsup 4+ —.
2 (1+e) s B p 2 sl B 2°
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(Note that the lim sup is finite, because 0 < h.(8) < A(B) = %52 + 0(/3?) for every B > 0, cf.
[20, Proposition 5.1].) Then we must have B? — 4AC < 0 and this readily leads to

h 1
lim sup C(ZB) < — a ,
glo B 2ul+a
which is precisely the upper bound in (1.17)).

4. ON THE COPOLYMER MODEL: LOWER BOUND

We now consider the copolymer model, with constrained partition function

Z0pew E[e—wz§:1<wn+ha<x>—h>1{en:

*1}1{Nef}} :
where we recall that hq(\) = haP(\) = (2A) "1A(=2)), cf. (1.10). The method and steps
are the same as for the pinning model, discussed in Section [2] with only minor differences.
In fact, replacing w by —w, 2X by 8 and 2\h by h casts the copolymer partition function in
exactly the same form as the random pinning model, the only difference being 1¢,¢c;) in the
pinning partition function replaced by 1y, __3, cf. (1.8)).

Relations (2.5)), (2.6) and (2.7)) still hold with |7 N [1, k]| replaced by Zﬁzl L, ——1y and

i replaced by 2. Following the same procedure, it suffices to show

. . C,w C
l}ﬁng[(ZN,/\,h) ] < o (4.1)
for
Q 1 £ «
h=h::=c)\:= and (=¢( = 1+a+§1+o¢' (4.2)

T P

The only major difference in the calculation is in (2.20)). In the copolymer case, this is
replaced by

¢
Zy= > > > (HK(di—fi—l)szfpl,dizdiufi> ' (43)
di,fr€B;,  de—1,fo-1€B;j, | d¢€Bj,=Bm \i=1

di<f1 dp—1<fo—1

cop .__ _cop .
where 2 T A ] with

»COP . 1+ 672/\ > nernn(@ntha(N)—h)
7 = 5
Recalling the notation f, ; := j;_1k and d; := (j; — 1)k, with k = t.872 = t.A"2/4, we use
that (see [31], (3.16)])

for any I C (0, 00).

Z;?f)l’di o 225})1']9—17?171]%&7511'} Z%')iﬂi' (4.4)
Following we have that
E[(Z35.0T < > E[(Z)9]. (45)

JC{1,...,m}: meJ

for ¢ chosen in (the same as in (2.14))). Substituting into ([4.3), we have
¢ Ce
5 \Ge S \Ge
Bl(2)) <2 T[e| (47 5) | El2)7).
i=1
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where
V4

Ly = Z e Z Z <H K(d; — fi1)Zz;ir)_1,fil]U(di,di}Zd"’fi> :
d1,f1€By; de—1,fe-1€B;,_; dy€Bj,=Bm \i=1
di<f1 de—1<fe-1

To proceed further, one needs to note that (a + b)% < a% + b%, for all a,b > 0, hence

e 1 —2A(e di wntha(A)—h
£|(57.0) | 2 g (Bl T )y
= 21 (1 + E[e@_?Fl)[A(_z’\CE)_CSA(—QA)—QACsh]}) < %(1 1) =216,

where the last inequality holds because A((.x) > (-A(z) for every x € R, by convexity, and
h = h: > 0, cf. (4.2). Finally, let P; be the law of the disorder obtained from P, where
independently for each n € | J,_ ; B;, the law of w, is tilted with density eOn—A0)  with

0:= af:=(1—{)A,
cf. (2.16). In complete analogy with ([2.24]), we have

e cop _ <
E |:Z(fi1,f¢1}U(divdi]] <1

icJ

The rest of the proof then proceeds exactly as in the analysis of the pinning model.

5. ON THE COPOLYMER MODEL: UPPER BOUND

The proof goes along the very same lines as for the pinning model, cf. Section [3] In fact,
the analogue of the lower bound (3.1)) on the free energy is much simpler for the copolymer.

Lemma 5.1. For every c € R

.. F(\ced) 1
hrilonf 2 >c— 3 (5.1)

Proof. A direct application of Jensen’s inequality is sufficient. Let
Ny :=max{n € Ng: 7, < N} = |7 N [1, N]|.
Recalling (1.12)) and (|1.11]), in analogy with (3.3 we obtain

Ny AL watha(N)—h

1 1 n=t. _1+1

F(A7h):]\}i_1r>rlooNIElogE[H T ’
j=1

14 e 22 2211<wn+ha(x>—h)]

2 )‘NGT}

v

1
—EE |(log
" 2

AN (wntha(N)—h) N
log ~¢ 1 HZ(wﬁha(A)—h)]

2

_ 1 i K(N)E
MN:I

- )‘(ha()‘) - h)7

n=1
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where the term A Y™ (w, + ha(\) — h) is inserted to ensure that the expression inside
the expectation is nonnegative, by Jensen’s inequality. We can then apply Fatou’s Lemma,

analogously to (3.7)): recalling ([1.10]), a simple Taylor expansion yields

A, A 1
lim nf F(Xf) > -

Y

[\)

completing the proof. O

Coupling the lower bound (5.1)) with the smoothing inequality (1.20) for the copolymer
model, exactly as we did for the pinning model in Section [3.2] we obtain

) he(N) a
lim sup < ,
A0 A 2(1 + a)

which completes the proof of Theorem [I.4]
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