ENHANCED NOISE SENSITIVITY, 2D DIRECTED POLYMERS
AND STOCHASTIC HEAT FLOW

FRANCESCO CARAVENNA AND ANNA DONADINI

ABSTRACT. We investigate noise sensitivity beyond the classical setting of binary random
variables, extending the celebrated result by Benjamini, Kalai, and Schramm to a wide
class of functions of general random variables. Our approach yields improved bounds
with optimal rates. We also consider an enhanced form of noise sensitivity which yields
asymptotic independence, rather than mere decorrelation.

We apply these result to establish enhanced noise sensitivity for the partition functions
of 2D directed polymers, in the critical regime where they converge to the critical 2D
Stochastic Heat Flow. As a consequence, we prove that the Stochastic Heat Flow is
independent of the white noise arising from the disorder.

1. Introduction

Given a function f(w) that depends on independent random variables w = (wy,ws, .. .), the
concept of noise sensitivity describes the intriguing phenomenon where a small perturbation
of the variables w; completely alters the function’s output. This phenomenon is particularly
relevant in the study of Boolean functions [O’D14], where small changes in input bits can
make the output unpredictable, and in statistical physics [GS14], where it describes the
sensitivity of systems to random noise, especially in the proximity of a phase transition.

The literature on noise sensitivity has largely focused on binary variables w; taking two
values, say =, and x_:

Plw;=2,)=p and Plw;=x2_)=1—p forsomepe (0,1). (1.1)

Most results also concern Boolean functions f(w) € {0, 1} (see references below). In this
paper, we extend the classical BKS criterion for noise sensitivity [BKS99] to a general
setting, allowing for a wide class of non-Boolean functions f(w) € R of general random
variables w; (see Theorems [2.942.10). When specialised to the binary setting, our results
yield asymptotically optimal rates (see Theorems .

The concept of noise sensitivity is usually formulated in terms of vanishing correlations
(see (2.1)) which — for Boolean function f(w) € {0,1} — corresponds to asymptotic
independence. For general real functions f(w) € R, however, it is natural to consider an
enhanced form of noise sensitivity (see ), where f(w) is composed with suitable test
functions to ensure asymptotic independence, rather than mere decorrelation. We show that
the BKS criterion implies enhanced noise sensitivity, at least when the random variables w;

take finitely many values (see Theorem [2.15)).
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2 F. CARAVENNA AND A. DONADINI

Our results on noise sensitivity are presented in Section [2} In the following Section [3| we
apply them to a model from statistical mechanics: the two-dimensional directed polymer
in random environment. We first establish an instance of enhanced noise sensitivity for
the partition functions (see Theorem , in the critical regime where they converge to
the Critical 2D Stochastic Heat Flow (SHF) [CSZ23|. Next, we prove the independence of
the SHF' from the white noise originating from the environment (see Theorem , which
indicates that the SHF is not the solution of a stochastic PDE driven by white noise.

In the related setting of the two-dimensional Stochastic Heat Equation with spatially
regularised white noise, the convergence of the solution to the SHF was recently established
in [Tsa24]. An analogue of our Theorem [3.6|in this context — proving independence of the
SHF from the white noise — was obtained independently and simultaneously in [GT25], as
a corollary of the main result of the paper, which shows that the SHF is a so-called black
noise. We refer the reader to the beginning of Section [3|for a more detailed discussion of
the SHF and further references.

The following Sections [4}f6] are devoted to the proof of our results, while some technical
points are deferred to the appendices.

Acknowledgements. We are very much indebted to Christophe Garban, who introduced
one of us (F.C.) to noise sensitivity and suggested to investigate it for directed polymers.
We are also grateful to Malo Hillairet, Giovanni Peccati and Hugo Vanneuville for
enlightening discussions and for pointing out relevant references.
We thank Daniel Ahlberg, Malo Hillairet and Ekaterina Toropova for generously sharing
a preliminary version of their manuscript [AHT25|, in which they independently prove a
generalisation of the BKS criterion, using different techniques.

2. Main results for noise sensitivity

In this section, we present our main results concerning noise sensitivity. Let us first recall
classical results in the setting of binary random variables w;’s, see (1.1)).

2.1. Binary setting. Given independent random variables w = (wy,ws,...), we denote
by w® = (wi,ws, ...) the configuration obtained by independently resampling each w; with
probability e (see Definition . We focus in this subsection on binary w;’s, see .

A sequence of Boolean functions fy(w) € {0, 1} is called noise sensitive if

Ve > 0: A}iinoo Cov [ fy(w®), fx(w)] =0, (2.1)

which implies the asymptotic independence of fx(w®) and fy(w). This notion was introduced
by I. Benjamini, G. Kalai and O. Schramm in their seminal paper [BKS99].

It was shown in the same paper that noise sensitivity is closely related to the probability
that flipping a single variable w;, changes the output of the function f(w). To formalize this,
the influence of wy, on f(w) is defined as

L(f) =P(f(h) # fh)), (2.2)

where wi denotes the configuration w = (wy,ws,...) with wy fixed to z;.. The main result
of [BKS99] establishes a sufficient “BKS criterion” for noise sensitivity, based on the sum
of squared influences: for any sequence of Boolean functions fy(w) € {0,1}, we have

ka(fN)2 o 0 = (fn)nen is noise sensitive . (2.3)
k
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This result was originally proved in the symmetric case p = % in [BKS99], but remarked to
hold for any p € (0, 1); a proof was given in [ABGR14].

Intuitively, the sum of squared influences measures how much the function f5 depends on
individual variables wy,. If this sum vanishes as N — oo, it indicates that no single variable
has a significant impact on the output, which must depend jointly on many variables,
making the function highly sensitive to noise.

A quantitative refinement of the BKS criterion was provided by N. Keller and
G. Kindler [KK13, Theorem 7]: for any € € (0,1) there is an exponent -, = ., > 0 such
that, for all Boolean functions f(w) € {0, 1}, one can bound

Cov [f(w%), f(w)] <20W[f]"*  with  W[f]:=4p(1—p) > L.  (2.4)
k

This was improved in [EG22|, where it was shown that — always for Boolean functions
f(w) € {0,1} — the RHS can be multiplied by Var[f].

The estimate shows that the covariance between f(w®) and f(w) is controlled by a
power of the sum of squared influences W[ f] and, clearly, it implies the BKS criterion .
The exponent ~, is asymptotically linear as e | 0, namely 7, ~ ae for a suitable & = a(p) > 0
(the asymptotic notation ~ means that the ratio of the two sides converges to 1).

It was already remarked in [KK13| [ABGR14] that the BKS criterion (2.3) holds beyond
Boolean functions. For instance, the proof of the estimate (2.4) in [KK13] goes through for
any function f(w) € [0, 1], provided one extends the definition (2.2 of influence as follows:

L[f] = E[|f(w}) = f@H)]]. (2.5)

More recently, building on ideas from [R06, [FSQO7], it was observed by R. van Handel in
a series of lectures (reported in [Ros20]) that a variation of (2.4) holds, in the symmetric
£

case p = %, for general functions f(w) € L?: for any € € (0,1), setting 9, = 572, one has

Cov [f(w5), f(w)] < Var[f]'""= W[f]" (2.6)

(the exponent ¥, improves on v, from , since v, ~ 0.234¢ as ¢ | 0, while J, > 0.5¢).

The bound can also be extended to general binary variables w; with p € (0,1), for a
suitable 1, , > 0, as shown in the forthcoming work [AHT25|, which studies noise sensitivity
with applications to Last Passage Percolation.

All the above results are formulated for binary variables w;. Our goal is to go beyond the
binary setting, extending the BKS criterion to general random variables w;’s and to
a large class of functions f(w) € L?. We establish a quantitative bound like , with a
suitable extension of the “L' notion” of influence. We also investigate an enhanced
notion of noise sensitivity, which yields asymptotic independence beyond Boolean functions.

In the next Subsection we formulate our setting and assumptions. In the following
Subsection 2.3 we extend the notion of influence. Subsections 2.4H2.6] are devoted to the
presentation of our main results, followed by some concluding remarks in Subsection

Remark 2.1. FEven though we focus on the setting of a finite or countable family of random
variables (w;);er, we point out that noise sensitivity can also be studied in a continuum
setting. We refer to [LPY23, BPY24] for criteria ensuring noise sensitivity for Poisson
point processes, with applications to problems involving continuum percolation.
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2.2. Our setting. We consider independent random variables w = (w;);eT, labeled by a
finite or countable set T, defined on a probability spaceﬂ (Q, A,P) and taking values in
measurable spaces (E;, &;):

wi: Q— F; with law wi(+) =P(w; € ). (2.7)

In many examples the w,’s take values in the same space (E;, &;) = (E,£) and they are i.i.d.
(independent and identically distributed), but we do not require it.

We are interested in functions f(w) € L? (where f: X et B — R is measurable). We
anticipate that, when the w;’s are i.i.d. and take finitely many values, we do not need
to impose any further constraint on f(w). For general w;’s, we need to require a suitable
hypecontractivity condition, that we now describe and illustrate by examples.

Given an index ¢ € T, we can look at f(w) as a function of w;, denoted by w; — f(w),

keeping all other variables (wj) j»i fixed. We will single out, for each i € T, a vector space
V; of functions of w; which a.s. contains w; — f(w), that is

VieT, fora.e. (wj)jz: w; — f(w) belongs to V; < L*(E;, ;) - (2.8)

Of course, the simplest choice would be to just take V; = LQ(Ei, 1), so that holds for
any f(w) € L* (by Fubini’s theorem). The reason for choosing a smaller V; < L*(E;, 11;) is
to ensure a hypercontractivity bound: we require that centred functions g € V; have L? norm
controlled by the L2 norm, for some ¢ > 2. This is our main assumption.

Assumption 2.2. The independent random variables (w;);ep and the function f(w) € L*
satisfy the following conditions.

(a) For any i€ T, there is a closed and separable vector space V; L? (E;, p;) containing

the constants, i.e. 1 € V;, such that w; — f(w) € V; a.s. (that is, (2.8]) holds).
(b) There exist an exponent q € (2,00) and a constant M, < o0 such that, for any i€ T,

lg(w)llg < My llg(w)la VgeV; with E[g(w;)] =0, (2.9)

where || - |, = E[| - 111V denotes the usual LY norm.

This assumption is quite general and covers a variety of settings. We present here two
relevant examples, deferring a more detailed discussion to Appendix [C| where we connect
Assumption to the notion of ensembles from [MOQO10), Definition 3.1]. We point out
that a similar assumption also appears in [BF0S8, Proposition 2.1].

The first example concerns binary or, more generally, finite valued random variables w;.
In this setting, we allow for arbitrary functions f(w) € L%

Example 2.3 (Finite support). Let the random variables (w;);er be i.i.d. and take
finitely many values, i.e. their law u; = p has finite support (u(I) = 1 with |I| < o0).

Then Assumption is satisfied by every function f(w) € L2, for any exponent g > 2
(just choose V; = L2(E,u) = LY(E,p)) and for a suitable M, < o depending only on .
We refer to Lemma [C.I] and Remark [C.2] for an elementary proof.

TWe could work on the canonical space {2 = X, ¢
. . €
sometimes convenient to allow for extra randomness, e.g. to define w".

F;, taking w; as the coordinate projections, but it is
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The second example concerns general real valued random variables w;’s satisfying a
moment condition. In this setting, we can allow for any polynomial chaos f(w) € L?. This
will be relevant for the application to directed polymers in Section

Example 2.4 (Polynomial chaos). Let the (w;);er be independent real random variables
with zero mean, unit variance and a uniformly bounded moment of some order q > 2:

Elw]=0, Ew]=1, M,

¢ = sup|w;|, < oo, (2.10)
1€T

Then Assumption is satisfied by all f(w) € L? that are polynomial chaos, i.e. multi-
linear polynomials (or power series), where each variable w; appears with power 0 or 1:

e}
F@)=E[f1+ D f %) with fDw) = > flin,...,igwi, - w;, (2.11)
d=1 {i1,0rig}ST
i i Virk
(for coefficients f(-) such that Z{ilz-“vid} fiy, ... ,id)2 < 0, so the sum converges in L?).

Since w; — f(w) is a linear map, we see that condition (2.8)) holds with the choice
V, = {g(m) =a+px: a,fe R} and the bound ([2.9) holds by assumption (2.10)).

Remark 2.5 (Beyond polynomial chaos). Assumption s also satisfied by any
flw) e L? which, as a function of each w; for fived (w;);.i, is a polynomial of uniformly
bounded degree, provided the w;’s have enough finite moments; see Remark[C.3 for details.

Remark 2.6 (Binary setting). For binary w;’s, see (1.1), every function f(w) € L? is a
polynomial chaos, by the Fourier-Walsh expansion (see Lemma . Thus FExamples
and both extend the classical setting of binary w;’s, allowing for arbitrary f(w) € L”.

2.3. General influences. We extend the classical notion of influence (2.2)) to general
functions f(w) of general random variables (w;);cT-
For k € T, we introduce the “probabilistic gradient” of f with respect to wkﬂ

onf = f—E,[f] where we set  Ei[-] := E[-|o((w;);2x)] - (2.12)
We then define the “L* influence” of wy, on f as the first absolute moment of §,, f:
f"[f] := E[|6,f]] (2.13)

which is a quantification of “how much f depends on w;”. We finally extend the definition

of W[f], see (2.4), as the sum of squared L' influences:
WIS =Y e [1]2. (2.14)
k

Remark 2.7 (Binary vs. general influences). Definition (2.13)) generalises the classical
influence (2.2)) (see Lemma : for binary variables w;’s, see (1.1]), one has the following
correspondence for Boolean functions f(w) € {0,1}
1
(/] = 21— p) Kl
In particular, the definition (2.14) of W[f] extends the classical one from (2.4]).

TThis extends a definition of Talagrand [Tal94] for binary w;’s (see Remark A.3). The same notion,
denoted A, f, also appears in [BF0S].
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Remark 2.8 (L' vs. L? influences). A related notion of “L* influence” is
2
Wt [f] := E[(6:1)%].- (2.15)

For Boolean functions f(w) € {0,1} one has Infg)[f] = 2Inf,(€2) [f] (see Lemma , hence
L' and L* influences almost coincide, but for general functions they may differ significantly.

While the L* influence is relevant in several contexts, see e.g. [KKL8S8, [Tal94, MOO10],
it is the L' influence which plays a key role for our goals. This was already understood in
IKK13|, ABGR14 AHT25J where the influence Ik [f] for non-Boolean functions f is defined
as an L norm, see . However, definition (2.5|) still requires binary variables w; (md
moreover, is based on a dzscrete gradient which treats the values x4 equally, even for p ;é 5
This is why a “correction factor” p (1 — p) appears in the definition (2.4) of W[f].

Our general definition of influence appears to be more suz’table, since it is based
on the probabilistic gradient 6, f which takes into account the distribution of wy,.

2.4. General criteria for noise sensitivity. We are ready to state our first main results,

extending the Keller-Kindler bound ({2.4]) to our general setting, in the form (2.6)).
We recall that w® = (w; );er is the configuration obtained from w = (w;);er resampling
each w; independently with probability e, see Definition

Theorem 2.9 (General noise sensitivity). Let (w;);er be independent random variables
and let f(w) € L? be a function satisfying Assumption for some q > 2 and M, < ©

(see e.g. Examples|2.5 m (md-)
For any ¢ € (0,1), there is an exponent 7. , > 0 such that
€ e,
Var| f] Var| f]

The exponent vy, ,, see (5.11)), depends on the hypercontractivity constant 1, defined in
Lemma and it satisfies v, 4 ~ agz€ as e | 0 for an explicit oy € (0, %), see (5.12)).

We can give a uniform lower bound on the exponent v, , > 7, . M, > 0 depending on

the constant M, from Assumption (see (5.15) below). As a consequence, we can apply
the estimate (2.16) to a sequence of functions (fy(w))nen, which yields the announced
generalisation of the BKS criterion for noise sensitivity.

Theorem 2. 10 (General BKS criterion). Let (w;);er be independent random variables
and let (fy(w))nen be functzons satisfying Assumptzonfor the same q¢ > 2 and M, < c©

(see e.g. Examples 2 an - Also assume that limsup_, ., Var[fy] < co.
Then, recalling (2.13)-(2.14)), the BKS criterion for noise sensitivity applzes

hm WI[fn] =0 Ve > 0: J\}l_l)llOOCOV[fN<w ), fn(w)] =0. (2.17)

The proof of Theorems 2.10]is presented in Section[5] We exploit a chaos decomposition
known as Efron-Stein or Hoeffding decomposition, see Proposition which generalises
the notion (2.11)) of polynomial chaos: we can write any f(w) € L? as

F@) =E[f]+ D fP%)  with D= Y frw),
d=1

ICT: |I|=d



ENHANCED NOISE SENSITIVITY AND SHF 7

where the functions f;(-) depend on the variables (w;);c; and they are orthogonal to each
other. By direct computation, see (4.9) and (4.14)), we can write

0

Var[f] = D IF V15, Cov[f(w), flw)] = Dl —a)" £V (2.18)
d=1

d=1

The proof of the bound ([2.16) is then reduced to the estimate of | f (d)H% for d € N, which
we call the variance spectrum of f.

Remark 2.11 (Noise sensitivity and variance spectrum). For functions (fy(w))yen
with non-degenerate variances, say a < Var[fy] < b for some 0 < a < b < o0, it follows by
(2.18) that noise sensitivity is equivalent to the variance spectrum drifting to infinity:

. . d
Ve>0: lim Covl[fy(w?), fy(@)] =0 =  vdeN: Im |fJ3=0. (219)

Proving Theorem is then reduced to estimating | f <d>\|§. For binary w;’s, this was
obtained in [KK13| exploiting exponential large deviations bounds, which are not available in
our setting, since Assumption only asks for a finite moment bound, see . However,
moment bounds turn out to be just as good for our goals: we show in Theorem that

S 1 (v
Var[f] s ngd <Var[f]) (2.20)

where 7, € (0,1) is the hypercontractivity constant defined in the following result, which
follows by [MOO10, Proposition 3.16] and by the bound (2.9)) from Assumption

Lemma 2.12 (Hypercontractivity constant). If Assumption holds with g > 2
and M, < o, see (2.9), there is a constant n, € (0,1) such that

for any X = g(w;) with

Va,beR: bX|, < bX 2.21
abeR:  fotn Xl <la+bXly g™ IV R o
We fiz m, € (0,1) as the largest constant for which (2.21)) holds, which satisfies

1 1
(2.22)

- << .
2M,\/q—1 a g—1

Once the key bound ([2.20)) is established, we can apply the second relation in (2.18) to
deduce Theorem see Section [p] for the details.

Remark 2.13. Random wvariables X satisfying the bound in (2.21) are called (2,q,7,)-
hypercontractive [MOOI10, [O’D14]. In the case of polynomial chaos, see Example since
V; consists of linear functions, it is enough to check (2.21)) for X = w; — E[w;].

Remark 2.14. FEven though there is a gap between the bounds in (2.22)), one can show that
the hypercontractivity constant n, satisfies limgjon, = 1, see [CSZ20, Theorem B.1].

2.5. Enhanced noise sensitivity. The classical notion of noise sensitivity, namely

Ve > 0: Jim  Cov [fn (W), fy(w)] =0, (2.23)

yields the asymptotic independence of fy(w®) and fy(w) for Boolean functions fy € {0,1}.
However, this is no longer true for functions that take more than two values.
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For this reason, denoting by C}° the space of bounded and smooth functions with all
bounded derivatives, it is natural to investigate an enhanced noise sensitivity condition:

Ve> 0l Covlp(fy@elfv@)l =0  VeueCP (220

which yields the asymptotic independence of fy(w®) and fy(w) for general functions fy
(with, say, uniformly bounded variance). Indeed, if fy(w) converges in distribution as N — oo
to a random variable Y, then implies that, for any ¢ > 0, the pair (fy(w), fx(w%))
converges in distribution to (Y,Y") where Y’ is an independent copy of Y.

We now discuss conditions for the enhanced noise sensitivity property (2.24). By an
application of Cauchy-Schwarz, see (4.15)), it suffices to take 1) = ¢ in (2.24)), which reduces
to the “classical” noise sensitivity condition (2.23)) applied to the function p(fyn(w)).

It is natural to try and apply the BKS criterion (2.17)) from Theorem to p(fy(w)).
We note that influences are stable under compositions by Lipschitz functions, see ((5.16):

Inf{"fo(£)] < 2|/l Inf V1], (2.25)

therefore W[ fy] — 0 implies W[p(fx)] — 0 for all p € Cp°. However, to apply Theorem
to o(fn(w)), we should first check that o(fy(w)) for ¢ € Cy° satisfies Assumption This
is not obvious knowing only that fy(w) satisfies Assumption

To avoid technicalities, we focus on the case when (w;);er are i.i.d. random variables
which take finitely many values, see Example [2.3] In this setting, Assumption [2.2] holds for
any function in L*, hence it also applies to o(fn(w)). As a corollary of Theorem we
show that the BKS criterion yields enhanced noise sensitivity.

Theorem 2.15 (Enhanced noise sensitivity). Let (w;);cr be i.i.d. random variables
with finitely many values. Then, for any functions (fy(w))ven we have

lim W[fy] =0 0, Unpety (226)
im = = ’
N VN Jim Covio(f (@), $(fn ()] = 0.

This extends, for any k € N, to vector valued functions fy(w) = (f](\})(w), e f](f) (w)):
the criterion (2.26)) still applies with W[ fy] := Z;C:l W] ](\;)] (for ¢, : R* > R).

The proof of this result is given in Section [5] An interesting application to directed
polymers and the SHF is presented in Section [3] where we exploit enhanced noise sensitivity
to show asymptotic independence of fn from any bounded order chaos, see Theorem

2.6. Optimal BKS. Our generalisation of the Keller-Kindler bound contains an
exponent 7, , > 0 which depends on the hypercontractivity constant 7, from Lemma

We now present a refined bound, obtained by optimising over ¢, which is especially interesting
when the hypercontractivity constant 7, is explicit.

We consider in particular the situation when 7, attains its largest possible value 1//q — 1,
see . This includes the classical setting of binary w;’s with p = %, see [Bon70],
where we allow for arbitrary f(w) € L% More generally, by Remark we can consider any
polynomial chaos f(w) € L? if we assume that the centred random variables X = w; — E[w;]
are so-called (2, ¢, 1/4/q — 1)-hypercontractive for any ¢ > 2, that is

Vg > 2, Va,beR: la+n,bX|,<la+bX[|,  with n,= ﬁ (2.27)
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Let us recall some interesting distributions which satisfy (2.27)).

Example 2.16 (Optimal hypercontractivity). The random variable X = w; — E[w;]
satisfies the optimal bound (2.27)) if w; has either of the following distributions:

e a binary distribution (L.I)) with p = J [Bon70];
e a Gaussian distribution N (m,c?) for some m € R, ¢ > 0 [Nel73];

e a uniform distribution on some interval (a,b) € R [MOO10, Theorem 3.13].

The following refined bound is proved in Section

Theorem 2.17 (Refined bound). Let the independent random variables (w;);er and
the function f(w) € L? satisfy Assumptz'onfor some q = q. Then we can bound

C € ’ W 1—%
Ve e (0,1): OV[JQ;;[}]JC @] (Var[{j}]> © (2.28)
where q(e) > 2 is defined by (recall n, € (0,1) from Lemma
q(e) == sup{q € (2,q]: q >1—¢}. (2.29)
In the special case when n, = 1/y/q —1 for any q > 2, we obtain the bound
C %, WIf] \ 7=
vee 0.1): Ov[g:r[}]fw < (a) (230)

which applies, in particular, to any function f(w) € L? of independent binary random
variables (w;)ier with p = %, see (1.1). More generally, (2.30) holds for any polynomial

chaos f(w) € L* when X = w; — Ew;] satisfies [2.27)) (see Example .

Note that recovers (2.6)), since ¥, = ¢/(2 — ). Remarkably, this ezponent is
optimal, i.e. there are functions f(w) for which Cov| f(w®), f(w)] matches the RHS of
as W[f] | 0 (up to logarithmic corrections). We show this by building an example which
generalises the “Tribes” function by M. Ben-Or and N. Linial [BOLS&T].

We work in the symmetric binary case with P(w; = 1) = P(w; = —1) = 1/2 for
i € N. Let us fix a sequence (a;);eny with a; € N such that

a; = ER O(1) for some v € (0,3). (2.31)

w\»—t

We also require ¢ — a; € 2N (for periodicity issues) so that IP’(Z _qw; =ay) > 0.
Given t,m € N, we define a function f, ,,,(w) = fi (wy,...,wy) for n =t -m as follows.

e We divide the index set {1,...,n} = (J;~,; By in m intervals (or “tribes”) of length ¢:

By:={({—-1)t+1,...,0t}, f=1,....m. (2.32)
e To each interval we associate the random variable
Yy(w) := (2.33)

1 .
{ ZieBé wi:at}
Note that (Yy(w))s=1,. , are ii.d. Bernoulli random variables Be(p,) with

t _t

e 2
=P ;= ~ 2 , 2.34
P (Zzzlw at) PN \/% ( )
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by Gaussian estimates for the simple random walk (the factor 2 is due to periodicity).
e We define the Modified Tribes function f, ,,,(w) to be the Boolean function equal to 1

if Y,(w) = 1 for at least one £ = 1,...,m, and 0 otherwise:
Feom (@) 1= Lge1,m: vyw)=1) = 1 = Ly, )=0,ve=1,....m}- (2.35)
Since P(fy;m = 1) = 1 — (1 —p)™, for m = m; := |1/p,] we have the convergence in
distribution

Fo(@) = fom, (W) —2— Be(1 —e ).

t—00

To show the optimality of the exponent £/(2 —¢) in (2.30)), we prove a lower bound which
matches the RHS of (2.30) up to logarithmic corrections. The proof is given in Section [6]

Theorem 2.18 (Modified Tribes). For v € (0, 3), the Modified Tribes function f;(w)
satisfies the following: for any € € (0,1) there is ¢, > 0 such that, as t — 0,

Cov [fi(w®), filw)] _ ( WIS )22 (1 Var[ft]>—wls> )30
Varlf] “\Valr) \*win - e
In particular, the exponent €/(2 — €) in cannot be improved.

Remark 2.19. Replacing “= a;” by “> a;” in the definition (2.33) of Y, we would obtain
a monotone Boolean function f;(w) which, we believe, still satisfies (2.36)) (with a different
power of the logarithm). We keep the current definition to make computations simpler.

2.7. Concluding remarks. We presented extensions of the BKS criterion for noise
sensitivity beyond the classical case of binary random variables w;. Our setting, formulated
in Assumption [2.2] entails a form of hypercontractivity, see Lemma [2.12]

The only result which is formulated under more restrictive conditions is Theorem [2.15
which ensures enhanced noise sensitivity. This is due to the fact that Assumption is
not obviously stable under composition with smooth functions. It would be interesting to
investigate this issue, with the goal of extending the applicability of Theorem [2.15

It would also be interesting to understand to which extent our key Assumption [2.2] could
be relaxed. We point out, however, that some form of hypercontractivity must be required
for the general BKS criterion (2.17)) to hold, as the following example shows.

Example 2.20 (Lack of hypercontractivity). Let w = (w;);ey be i.i.d. random variables
uniformly distributed in (0, 1). For N € N we define

N
fa(w) :=;1@,N<w> with Y, n(@) =Ty, oq 1y

Let us show that, even though W[ fx] — 0, the family (fx)yen is not noise sensitive.
Plainly Var[fy] = N% (1-— %) — 1as N — o0. Since fy = f](\(,)) + f](\}) has only chaos
components of degree 0 and 1 (because 0,0, fy = 0 for i # j, see Proposition , we have

Covl (&), Sy ()] = (1= ) IF§[3 = (1 = &) Varl fy] ——— 1~ =0,
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hence (fn)nen 8 not noise sensitive. However, since 0; fy = Y; v — %, we have

)

N—o

N
mf [l = E[6in]] = 30 - %) = Wil = Z [y < § -0,
=1

which shows that the general BKS criterion (2.17) does not apply.
This is not in contrast with our Theorem because the functions fy fail to satisfy
Assumption with the same ¢ > 2 and M, < co: indeed, we must have

M, > 1Yin —E[Yinllg _ pi-2 .
HY@',N - E[Yi,N] (P N—w

We can also consider the monotone Boolean functions gy (w) := 1, (w)=1}- One can
show that these functions are also not noise sensitive, even though W[gy] — 0.

3. Application to 2D directed polymers and SHF

We present an application of our noise sensitivity results to the so-called directed polymer
in random environment. This is a much studied model in statistical mechanics and prob-
ability theory, both as a prototype of disordered system and because of its link with the
(multiplicative) Stochastic Heat Equation and Kardar-Parisi-Zhang (KPZ) equation and
universality class. We refer to [Com17, [Zyg24l, [CSZ24] for more details and references.

We focus here on the case of space dimension 2. In a critical regime of vanishing disorder
strength, directed polymer partition functions, averaged over the starting point on the
diffusive scale, converge to a universal limit, named in [CSZ23| the Critical 2D Stochastic
Heat Flow (SHF) (see Theorem below). An axiomatic characterisation of the SHE was
recently provided by L.-C. Tsai [Tsa24], who also established continuity in time as a measure
valued process. It was shown in the same paper that the SHF also arises as the limit of
solutions of the 2D Stochastic Heat Equation with space-regularised white noise, as the
regularisation is removed and the noise intensity is suitably rescaled.

We prove here the following novel results.

e In Theorem [3:2] we establish enhanced noise sensitivity for the directed polymer
partition functions converging to the SHF.

e In Theorem [3.6] we deduce the independence of the SHF from the white noise arising
from the scaling limit of the environment.

In the setting of the Stochastic Heat Equation, a similar result was obtained simultaneously
and independently in [GT25], as a corollary of their main result that the SHF is a black
noise (see also [HP24] for a related result on the directed landscape).

Many properties related to the SHF have been investigated, including moments [BC95,
CSZ20, |GQT21],[C24, [LZ24], comparison to Gaussian multiplicative chaos [CSZ23b, [CM24],
flow property [CM24], singularity and regularity as a random measure [CSZ25]. See also
[N25], [C25] for recent progress on a martingale description of the SHF. We refer to the
recent lecture notes [CSZ24] for an extended discussion and further references.

3.1. Setting. Let T = NxZ% and w = (w(n, ) (n,z)er e a family of i.i.d. random variables
under the law P, called environment or disorder, with zero mean, unit variance and finite
exponential moments:

Elw(n,z)] =0, Elwmn,z)? =1,  AB) :=logE[e®™™] <o V3> 0.
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Let (S,,),en be the symmetric simple random walk on 7¢, with law and expectation P, E.
Given a disorder realisation w, a system size N € N, and inverse temperature (or disorder
strength) 5 > 0, the directed polymer is the random probability law for S given by

X1 (Bw(.5,)-A(8))
zy’

dP%P () = dP(S),
where Z]“\’,"g is the normalising constant called partition function.

For every dimension d there exists a critical value 8. = (.(d) = 0 such that for 8 < £,
the behaviour of the polymer path is diffusive, while for 8 > . a localised behavior emerges.
The critical value is known to be 8. > 0 for d = 3, while 8. = 0 for d = 1, 2. Remarkable
progress on the understanding of the the critical point for d > 3 was only obtained recently,
see [J23| [HL24) [L25] and references therein.

In the recent years, there has been much focus on studying the scaling properties of the
model in a finer window around the critical point 8. = 0 when the dimension equals one
or two. To this end, one can rescale the disorder strength as the volume grows by letting
8 = Bx — 0 appropiately, in order to obtain non-degenerate limits for ZZU\JEBN‘ The case
of spatial dimension one was first treated by Alberts, Khanin and Quastel [AKQ14] who
showed that the right scaling is Sy ~ BN71/4.

In dimension d = 2 the right scaling is By ~ 3/v/Ry, where Ry = 27]1\[:1 P(S, =S)) ~
1 Jog N (we denote by " an independent copy of S). It was first shown in [CSZ17] that
the model exhibits a phase trasition on this finer scale with critical point BC =1

The behaviour at the critical point B = 1 is more subtle: the partition function Zy
starting from a point converges to zero in distribution, while its expectation is one and its
second and higher moments diverge. This intermittent behavior suggests to average the
partition function in space in order to obtain a meaningful limit.

Let us first state precisely the scaling of 8y around 30 = 1, known as critical window:

2 A6y _q - L (9o e )
oy i=e RN(+ ogN )’ e R. (3.1)

Given two continuous and compactly supported test functions g, h € CC(RQ) and two times
0 < s <t < o, consider the averaged partition function

w 1 x w.B , W
ZN,;/;”t(g,h) - Z 9(\/7%> E[eH(Ns,Nt](S )]l{Sm:yo} ! Sns = xo] h(j—oﬁ), (3.2)

2
Zo,YoEL

where
N
HGRG(S,w) = D {Bw(n, S,) =A@} = Y, {Bw(nz) — A(B)}Hs,—
n=1 (n,z)eT
The following is the main result of [CSZ23].

Theorem 3.1 (Directed Polymer and Stochastic Heat Flow [CSZ23|). Fiz Sy in
the critical window (3.1)) for some 9 € R. For any g,h € CC(RQ) and 0 < s <t < oo, the

partition functions in (3.2) with 8 = By converge in distribution to a non trivial limit:

Zatn(g,h) —2— Z22,(g,h) = g(@) h(y) Z2,(dz, dy) (3.3)
" N—o0

R?xR?
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where Z° = (Zﬁt(dx, dy))o<s<t<o s @ stochastic process of random measures on R? x R?,
called the critical 2D Stochastic Heat Flow. The convergence in (3.3) holds jointly over
s,t, g, h in the sense of finite-dimensional distributions (f.d.d.).

3.2. Enhanced noise sensitivity for directed polymers. In our first main result for
the directed polymer model, we establish enhanced noise sensitivity for the sequence of
rescaled partition functions appearing in ((3.3)).

Theorem 3.2 (Enhanced noise sensitivity for 2D directed polymers). Consider
By in the critical window (3.1)) with ¥ € R. Given g,h € Cc(Rz) and 0 < s <t < o, the
partition function Z]“\),’ﬁN (g,h) in (3.3) is, for every N € N, a function of the environment:

;S,t
() == Zx3% (g, h) . (3.4)
This sequence of functions is noise sensitive, namely
Ve>0:  Covlfy(w"), fy(w)] = Cov[Z3. N (9, 1), Zyi (9. )] == 0. (35)

If we further assume that the disorder variables w(n,z) take finitely many values,
enhanced noise sensitivity holds: for any k € N, given g;, h; € C’C(RQ) and 0 < s; <t; < o0
fori=1,... k, defining the vector-valued function fy(w) € RF by

k w,
Inw) = (@), oy @) = (285N (9 1)),
the following asymptotic independence property holds:
Ve >0, Vp,¢ e C°(R” - R): Cov[p(fn (W), Y(fnW))] —=0.  (3.6)

N—o0

Remark 3.3 (Polynomial chaos). The partition function fy(w) in (3.4) satisfies our
Assumptz’on because, for any (n,z) € N x ZQ, it depends on w(n, z) as a linear function
of the “tiled” random wvariables {(n,z) defined by

C(n,z) = oPnw(nz)=A(Bn) _ 1,

see (3.13) below, hence (2.8) holds with V, .y = {a((n, z) + b: a,b € R}. Equivalently, we
can view fy(w) as a polynomial chaos in the variables ((n,z), see Example[2.4)

We prove Theorem exploiting our general noise sensitivity results, more precisely we

deduce (3.5)) from Theorem and (3.6 from Theorem To this purpose, it suffices
to show that the function fy(w) defined in (3.4)) satisfies the general BKS criterion
1
Wiinl = ) Infgn),z) [Fn] prEwed (3.7)
(n,z)ENXZ2
for any fixed g,h € C.(R?*) and 0 < s < ¢ < o0 (we recall that the influence Inf,(cl) [f] was

defined in (2.13])). This follows from the following computation, proved in Subsection
For easy of notation, we focus on the simple case when s = 0,t = 1.

Proposition 3.4 (Influences for directed polymer). For Sy in (3.1), consider the
partition function fy(w) := Z]‘f,’;gﬁ (g,h) in 3.2) with s =0, t =1 and g, h € C,(R?).
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For any (n,z) € N x Z* we have

Inf() )] < L,y () S5 3 19(38)] gz — 20) an—nlo — 2) W) (38)

ro,yer

with oy from (3.1)), where q,(z — x) = P(S,, = 2| Sy = x) is the random walk kernel.

Proof of Theorem [3.2 It suffices to show that (3.7)) holds. We will prove that

Wil = 0( 1o ) (39)

We recall that g, h € CC(R2). For simplicity, let g be supported in the unit ball {| - | < 1}.
We can bound |h(-)| < |h]y in (B.8), after which the sum over y, € Z* gives 1. We can also
restrict the sum to |zo| < +/N and bound |g(-)| < |g|l,,- We then obtain

Wil = Y, Infy) [

(n,z)eNxZ

2 N
< llgl% 1% 3 o 2 NN gz ) anlz — )

2 I 2
Lez To,L0EZL

o, |zo|< VN

O'
= lgle Il <2 Z Y. alzo =) = O(0R),
) acer

|zol,z0| <VN

where the last equality holds because Zxer2 Qon (7o — ) = 1 and the sums over zj, and n
give O(N?). Since 0% = O(1/Ry) = O(1/log N), see (3.1)), we have proved (3.9). O

Remark 3.5. In the recent work by Y. Gu and T. Komorowski [GK25|, a proof of classical
(non ehnanced) noise sensitivity for the SHE and the Schrodinger equation is given, either
in one dimension with white noise, or in higher dimensions with space-colored noise.

3.3. Asymptotic independence of SHF and white noise. By the central limit theorem,
the disorder field w = (w(n, z)), suitably rescaled, converges in distribution to (space-time)
white noise & = £(t, ) on [0,00) x R®. The latter is defined as the centred Gaussian
generalised field with covariance Cov[{(s,y),&(t, )] = d(t — s) 0(z — y).

For a precise statement, let us consider test functions o € C,([0,%0) x R?). Evaluating
the white noise (o) on g, which formally corresponds to S[O o0) X2 &(t,x) o(t, z) dt dx, one

gets a genuine centred Gaussian process (§(0)),ec, with Cov[§(e),£(0)] = <o, 0),2-
For N e N, define an approximation £, of the white noise by the rescaled disorder w:

Envl(o) == N Z o(

(n,z)eNxZ

f) w(n,z).

2\3

It is easy to check that, as N — o0, one has the convergence in distribution &x(0) — £(0)
jointly over o € C,([0,0) x R?) in the finite-dimensional distributions sense.
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Summarising, we have the two convergences

w, d 9 Y
ZN = (ZN;éf\t] (g’h>)s§t,g,hECC(R2) Noow 2= (Zs,t(f, g>)s<t,g,h€Cc(R2)’ (3'10)
d
En = (gN(Q))geC’c([O,oo)x]R2) N §= (g(g))gecc([07w)xR2)7 (3.11)

both in the finite-dimensional distributions sense (for simplicity: see Remark below). It
is then natural to ask for the joint convergence of the pair (Zy,&y).

For each N € N, we remark that Zy is a function of w, hence it is also a function of &y .
Nevertheless, remarkably, this dependence is fully lost as N — 00: our next result shows
that the SHF 2 which arises as the limit of Z n is independent of the white noise £ which
arises as the limit of £y .

Theorem 3.6 (Independence of SHF and white noise). Assume that the disorder
variables w(n, z) take finitely many values. As N — oo, we have the joint convergence in
distribution (Zy,&N) — (Zﬁ,ﬁ), in the f.d.d. sense, where Z° and & are independent.

Proof. We use the shorthand x = (s,t; g, h) so that we may view Zy and 2% as processes
indexed by x. It suffices to show the following: for any k, ¢ € N, given any X = (x1,..-, X&)
and ¢ = (o1,-..,00), we have the asymptotic independence of the random vectors

ZN()Z’) = (ZN(Xi>)1<i<k and é.N(@ = (gN(tQi))léigg )
that is for a suitable class of test functions ¢ : R* R and (U R’ — R we have

Jlim Cov[p(2x(X)), $(€x(@)] = 0. (3.12)

We are going to take ¢ € C}°, while for ¢ we take arbitrary polynomials (they are enough
to determine convergence in distribution to Gaussian random variables).

Each random variable £x(g;) is a linear function of w, hence its chaos decomposition
only contains terms of degree 1. Since 1) is a polynomial, say of degree d, it follows
that the chaos decomposition of V(En(0)) only contains terms of degree < d.

On the other hand, by the enhanced noise sensitivity property , it follows that the
variance spectrum of p(Zx (X)) drifts to infinity for any ¢ € C;°, see Remark namely
the contribution to Var[p(Zx(X))] given by chaos of degree < d vanishes as N — .

Looking back at (3.12]), we can replace ¢(Zx(X)) by
PN ()T = (28 (D) — e (Zn (D)7,

see ([4.11)), i.e. we can remove the terms of degree < d, up to a negligible error in L?. After

this modification, the covariance vanishes because ¢(Z N()Z))(>d) is orthogonal to ¥({x(0)),
which only contains terms of degree < d. The proof is complete. O

Remark 3.7 (Stronger topologies). Both convergences (3.10) and (3.11) are known to
hold beyond f.d.d., under stronger topologies (e.g. in the space of continuous measure-valued

processes for Zy — 27, see [Tsa24], and in a negative Hélder space for & — ).
Since tightness for the pair (Zx,&n) follows by tightness for the marginals — and since
f.d.d.’s determine the law — Theorem yields the joint convergence (Zn,&N) — (Zﬁ,f)

under the corresponding product topology, with zY and & independent.
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3.4. Proof of Theorem Let us decompose the expectation appearing in (3.2]) on the
event {S, = z} and on its complement {S, # z}. Writing E, for E[-|S, = z(], using the
Markov property of the random walk as well as the additivity of the Hamiltonian, we obtain

w,B
Ezo [eH(OVNA]/ (5 ]l{SN=Z!0}] =0 eBNW(n’Z)iA(ﬂN) ag + b

w,B
with a; = E; [eH(OvHJXI](S’w) 1¢g :Z}] ,
HON (5 " (3.13)
)
Qg = E[e (1] ]l{SN:yO} ‘ Sp = Z] )

HYN (8, w)
bi=E,, [e (0.N] Lis, 223 ]1{5N=yo}] :

Note that the terms aq, as,b do not depend on w(n,z). In particular, the term b vanishes
when we apply the operator 6, ,)f = f — E(, ) f. It follows that

w,B
O(n,2) Ex, [eH(UvNI\]’(S’w)

We next observe that, by (3.1)),

E[|eﬁNw(n’Z)_)\(ﬁN) _ 1|] < \/]E[(eﬁNw(nvz)_A(ﬁN) _ 1)2] _ \/e)\(26N)_2>\(:8N) —1=o0y,

]l{SN:yO}] = a; (eBNw(nvz)_A(BN) _ 1) as .

w8
while by Fubini, since E[e”@#] = 1, we have

E[al] = E:co []I{Sn:z}] = Qn(z - :BO) ) E[aQ] = E[]I{SN:yO} | Sp = Z] = QN—n(yO - z) :
Plugging these computations into (3.2)), since Inf&)z) [fn] = E[l6(n,2) fwl], we obtain (3.8)).

4. General setting

We give in this section the definition of the objects of our interest.

4.1. Random variables. We recall that w = (w;);et denote independent random variables,
defined on a probability space (£2,.4,P) and with values in measurable spaces (E;, &;), with
laws u;, see . Whenever we write f(w) we imply that f: X, E; — R is measurable
with respect to &);cp &;, so that f(w) is a random variable defined on €.

It is convenient to work on a general probability space —rather than on the canonical
space (2, A,P) = (X o1 Ei, ®ier€;, ®ierti)— to allow for extra randomness.

Definition 4.1 (e-randomisation). For ¢ € [0,1], we denote by w® = (wf);er the
modified family where wi = w; with probability 1 — ¢, while wi is independently resampled
with probability €. More explicitly, we define

wi 1= w; Ly sey + 0 Ly <y (4.1)
where @ = (&;);er @8 an independent copy of w = (w;)ser and U = (U;)er are independent

random variables (also independent of w, ) uniformly distributed in (0,1).

We often omit w and write E[f], Var[f], etc. We denote by (-, -) the L? scalar product:
(F9) = E[f(w) g(@)].
We denote by F; the o-algebra generated by the random variables w; for i € I < T:
Fri=o(w;:ie€l). (4.2)
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We denote by L? (F7) the subspace of L? random variables which are F. 7-measurable, i.e.
functions of (w;);e;. We recall that E;[ -] = E[ - [Fq (], see (2.12).

4.2. General chaos decomposition. Every function f(w) € L? admits an orthogonal
chaos decomposition similar to the definition of a polynomial chaos, see (2.11)), where

monomials f (i1, -,4q)w;, - -w;, are replaced by suitable orthogonal functions fr(w). This
is also called Hoeffding or Efron-Stein decomposition.

Proposition 4.2 (Chaos decomposition). If w = (w;);er are independent random
variables, any function f(w) € L? can be written as the L* convergent series

O 1% = fg = Elf],
_ 40 ,
flw)y= "+ ; Y% (w) with f(d) ) = 2 ) (4.3)

ICT: |I|=d

for a unique choice of functions fr(w) € L2, labelled by finite subsets I € T, such that

fre L*(F;)  and  Eu[f;]=0 Vkel. (4.4)
Explicitly, recalling the operator 6; g := g — E;[g] from , we can write
fOTIZ{il,...,id}I flzdil"'éidff with f[iz ]E[f|./—"j] (45)

We refer to [O’D14, Section 8.3] for a discussion (where f, f; are denoted by = fgl).
We provide a compact proof of Proposition [£.2]in Appendix [B] One can also give a hands-on
construction of the functions f;’s by fixing a basis of L2, see Lemma and Remark

Remark 4.3. The first property in (4.4) means that f; is a function of w; = (w;)ser- The
second property in (4.4) means that, if f; is non zero, then “f; depends on every wy, fork e I”
(if f1 does not depend on some wy,, i.e. if it is constant w.r.t. wy, then fr =E.[f1] =0).

The properties (4.4]) imply that, for all k€ T and I < T,

f] lfke.[, f[ lf,[gj,
0nfr:=fr—E = Elfi|Fs] = 4.6
kf1 = fr — Eglf1] {0 kel [f11F ] 0 IS, (4.6)
Then it follows by the chaos decomposition (4.3 that
onf= 3 fi. EfIFN=)fr- (4.7)
I2{k} IcJ
The second property in (4.6)) implies that the functions f;’s are orthogonal:
<f[7f]>:0 for any[#‘]v (48)
therefore by (4.3|) we obtain
- d) 2 - 2
Var[f] = D IFV15 = )] I£113- (4.9)
d=1 d=1 I<T:|I|=d
Similarly, for any functions f(w), g(w) € L?,
0 o0
Cov[f,g] = Y FD 6 D) =] Froon - (4.10)
d=1 d=1 ICT: |I|=d
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Given f(w) € L* with chaos decomposition (@.3)), we define its projection f (<d) (w) on
chaos of order up to d by

d
YW= Y fw). (4.11)
£=0

ICT: |I|<d
(An important result by Bourgain [Bou79, Proposition 6], see also [O’D14l, Theorem 10.39],
ensures that such projections are bounded in L? for 1 < ¢ < o0.)

4.3. Noise operator. Given 7 € [0, 1], we define a noise operator T" : L* 1?2 acting on
functions f(w) € L? with chaos decomposition (4.3 ([1.3)-([.4) as follows:

Q0
d) d
T"f(w) 2 ' fOw) = Bl Y0t Y filw). (412
d=1  ICT:|I|=d
Recalling the definition (4.1]) of w® = (w§);er, We introduce the conditional expectation
E[-|w] :=E[-|o(w)ier]
i.e. we integrate out the U;’s and @,;’s in (4.1f). In the next result, we compute the covariance

between f(w®) and f(w) explicitly in terms of the operator 7.

Lemma 4.4. For any e € (0,1) we have

E[f(w") Iw] =T f(w), (4.13)
hence, recalling the chaos decomposition (4.3] . for any f(w),g(w) € L* we can write
o0

Cov[f(w),g(w)] = 2 (1— s)d <f(d),g(d)>

1

.
[

(4.14)
e (1 —e)? Cov[fs9, g7,

[
18

S8
Il

1
where we note that (Cov[f(sd),g(gd)] = Z? 1<f(€),g(g)> (see (4.10) and (4.11])). Moreover,

Cov[f(w®),g \/(Cov ), f(w)] - Cov[g(w®), g(w)]. (4.15)

Proof. The first equality in (4.14) follows by (4.13]) and (4.3)) since
E[f(«") g(w)] = E[E[f(w")[«] g(w)] = T' " f, 90,
while the second equality in (4.14) holds by summation by parts. The inequality (4.15)
follows by (4.14]) applying Cauchy-Schwarz.
It remains to prove (4.13)), for which it suffices to show that

Elfr(w)|w] =1 - fi(w) VICT. (4.16)
For any fixed k € I, writing w® = (w});., U {w)}, we note that the event {U, < ¢} gives a
null contribution to - because the variable wi = @}, can be integrated out:

E[f1(w) Ly, <oy | w] = B[ f1((w5) 2k © {@k}) L, <oy | @]
= B[ Ex[f11((w5)j24) L, <e} | @] = 0,

by the second property in (4.4]). We then restrict the LHS of (4.16]) to the event ﬂ ke I{Uk > e},
on which we have f;(w®) = fr(w) by the first property in (4.4]). This proves O
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4.4. Hypercontractivity. The noise operator 7" enjoys a fundamental hypercontractivity
property when applied to functions f(w) € L? which satisfy Assumption We recall that
the hypercontractivity constant n, € (0,1) is defined in Lemma

Theorem 4.5 (General hypercontractivity). Let the independent random variables
(w;)ieT and the function f(w) € L? satisfy Assumption for some q > 2.
Let f'(w) be any linear combination f' of components f; from ([&.3)):

Fw)= Y arfiw) — with |fl3= )] a7lfilz <. (4.17)
ICT ICT
Defining n, € (0,1) as in Lemma the noise operator T" from (4.12) satisfies
177% f g < 1]z (4.18)
In particular, if f = fy only contains terms of degree up to d, we can bound
1
|filg < = Ifala for fa= D, arfr. (4.19)
Mg ICT: |I|<d

We show in Appendix |C| that Theorem is a slight extension of results from [MOO10)]
(which focus on finite T and finite dimensional V;). To this purpose, we show in Lemma
that functions f(w) € L? which satisfy Assumption (@) can be characterised as multi-
linear polynomials with respect to suitable ensembles [MOO10, Definition 3.1].

5. Proof of noise sensitivity criteria

In this section we prove Theorem and Theorem from which we then deduce
Theorems We fix a family (w;);er of independent random variables as in ([2.7)).

5.1. Preparation. We first state a basic interpolation bound.

Remark 5.1 (Interpolation bound). For any g € L? we can bound

1—-2 2
Lilot: gl, <lgly Lol (5.1)

(just write p=al+ (1—«a)2 fora=2—p= g:—Q € (0,1) and apply Holder).

Vpe (1,2), ge (2,00) with

We recall the chaos decomposition (4.3) of a function f(w) € L?, which yields the
expansion (4.9) for Var[f], and the projection f(Sd) on chaos of order < d, see (4.11)).

The core of our proof is the next result which bounds the contribution of |fS?|% in

terms of the sum of squared L' influences W[ f], see (2.14)). This is close in spirit to [KK13,
Lemma 6], but we use moment bounds rather than large deviations. A key tool is the

hypecontractivity estimate (4.19)) from Theorem

Theorem 5.2 (Key boundﬁ Let (w;)ier be independent random wvariables and let

f(w) e L? satisfy Assumption for some q > 2. Define n, € (0,1) as in Lemma .
Then we can bound

for 521—773:

€ 1-2
CwUW%fWﬂg(VWﬂ> q (5.2)

Var[f] Var[/]
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which yields

N Tl Dy Y sl 3 WIS\
VEENT Vel T Vel S <Var[f]) | (5:3)

Proof. Without loss of generality, we assume that the index set T is totally ordered (e.g.
via a correspondence with N). For finite I € T we can thus consider max(l) € T and we
note that max(l) = k if and only if I = {k} v J with J <k (i.e. j <k for all j € J).

Fix ¢ > 2 from Assumption ﬁ and e >1— 772. We can write, by the first line of ,

Cov[ﬂw‘f),f(w)]sanf'mn%:Z{ > nz”f1|§}. (5.4)
)=k

ICT keT \ ICT: max(l)=

The term in bracket can be identified with |7 g,[3 (recall (4.12)) where we define the
function

gw) = D> fiw), (5.5)

ICST: max(])=k
hence we can rewrite (5.4]) as
Cov[f(w®), fw)] = >} [T gyl . (5.6)

keT
The function g;, is connected to the influence Inf,(cl)[ f1, see (2.13)): indeed, introducing
the o-algebra Fy, := o(w(i): i < k), we can write by (4.6)-(4.7)

gk(w)zE[ >

ICT: Isk

fgk] —E[60f | Farl. (5.7)

It follows by (5.5)) that

| T g, |l3 = (Tgy., Thg,> =g, T"(T"gy)) .

Let p = 45 be the conjugate exponent of q. Applying Hélder, the interpolation bound .
and the hypercontractlwty bound - (note that g, satisfies condition (4.17))), we get

2
1T gil3 < i, [T (T g1, < lgi], HngS [T gy, -

After simplifying the last factor HT"‘? ng , with one power from the LHS, we can plug this
estimate into ([5.6)). Applying Holder again, we arrive at

Corlf(). f)] < (3 gkﬁ)l_ (2 ||gk||2) . (5.5)

keT keT
To complete the proof of ([5.2)), it suffices to show that

Do lgelt < WL X lgwls < Var[f]. (5.9)

keT keT

The first relation in ([5.9)) is a consequence of (5.7]) and (2.13]), since
lgkls = E[|E[ 0 f | F<i] | ] < E[E[10x || F<r] ] = E[ 0k f]]-
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The second relation in (5.9)) follows directly by (5.7) and (4.9)), since

Dlaelz=2> > i< Dy Ifilz = Varlf].

keT keT ICT: max(l)=k ICT: |[I|>=1

The proof is completed. O

5.2. Proof of Theorem The first bound ([2.28]) follows directly from Theorem
because the constraint ¢ > 1 — 17 in (5.2)) is the same as 772 > 1 — € appearing in the

definition ([2.29) of ¢(¢). Then (2.28)) is recovered from (5.2)) with ¢ = q(¢).

Let us now consider the special case of 1, = 1/4/¢ — 1. A direct computation gives

2 . . 2—¢
ng=1l—¢ if and only if ngJ(E)::l—e'
Applying (2.28) with ¢(e) as above leads to (2.30]) and lets us conclude. O

5.3. Proof of Theorem We fix g € (2,00) as in Assumption [2.2]and 71, € (0,1) as in
Lemma 212 Let us define

g,i=1—n7 >0, (5.10)
We will prove (2.16]) for the following exponent . ,:

(1-2) = e o

1
logn, f e (5.11)
2

Remark 5.3. One could obtain a sharper bound for € > &,/2 refining the proof below, but
we omit the details, since we are mostly interested in small €.

Remark 5.4. Note that ase | 0

_2
Ve,g ~ Qg€ with Qg = 1 e (0,3) . (5.12)

log Mg
To prove that oy < %, note that hypercontractivity constant satisfies n, < \/qu’ see ([2.22)),

hence
_2
ag < fla) = .
! log(q —1)

Since limg o f(q) = %, it suffices to show that f(-) is strictly decreasing for ¢ > 2. We have
2(g—1)log(g—1)—q(qg—2
Py = 2= oslg=1) ~4(g =2
q" (q—1) (log(q — 1))

and we note that the numerator is strictly negative for for ¢ > 2, as it vanishes for ¢ = 2
and its derivative equals 2log(q — 1) +4 —2¢ <0 (bylogz < x —1 for x > 1).

Henceforth we assume that 0 < € < %éq. ‘We introduce the shorthand

i () 513
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Since 172 =1-¢&,, we can bound Z(Ll Hf(e) I5<(1—- éq)fdé Var[f] by Theorem see
(5.3). We use ([#.14) to estimate Cov[f(w®), f(w)]: for any d € N, recalling ({&.9)), we get

d d ~
Cov[f(w), fw)] < Y e(1—¢) (Z \f“N%) + (1 - )™ Var[f]
/=1

: (5.14)
d 1—¢ d 7
< {55 > < - ) +(1 5)d+1} Var[f],
1—¢
d=1 q
7 d+1 d+1
For ¢ < %6_(] we have ¢ := 11_}2 = 11:255 > 14+ ¢ > 1, hence 2?21 Qe < Qg_l < % ((11:;))(2“
q

which yields

Var[f] d+1

Plainly, this estimate holds also for d = 0 (since the LHS is at most 1 — ¢, see (4.14)).
We first assume that % < 1. Let de Ny = {0,1,...} be the largest integer for which
q

(1-¢,)

_\d 1)
(1 - 8q) = 1_¢ ’
q
that is
1-¢
- lo 4
d— { aa; J > 0.
log Tz,
For such d we can estimate
C g 10517755‘1 5 log 116
= 1 or L
ov[f(w )a f(w)] <2 (1 N €)d+1 <9 (1 _ E)log =g, _ 2 _ log =&, ’
Var[f] 1-¢,

and this bound holds also if % > 1 (the LHS is always at most 1). We finally note that
q

1
p— log /%

I—¢
1) log 1= 2 log 1—— W[f] Tewq
2 I 1) ‘e <4 ,
<1—5q> ! 1—5( ) ! (Var[f]

for e < $&, < 3, by definition of § and . ,, see (5.13) and (5.11). The proof of (2.16) is
]

complete.

log 11

5.4. Proof of Theorem The exponent 7, , appearing in (2.16)), defined in (5.11)),
contains the hypercontractive constant 7, from Lemma which depends on the vector

spaces V; in Assumption However, by (5.11]) and (2.22)), we can bound

log -1
2) E1e (5.15)

ZYeq:=(1-2 ,
e 2 Tea = (17 log(4M; (g — 1))

and note that 7, , only depends on ¢, ¢ and M,. In particular, given functions (fx(w))nen
which satisfy Assumption for the same ¢ > 2 and M, < o, we can apply the bound

(2.16) with . , replaced by 7. ,, which proves the general BKS criterion (2.17)). O
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5.5. Proof of Theorem [2.15] We follow the arguments sketched in the discussion before
Theorem [2.15} - Let us first prove the bound ( -, recalling (2.13)): for p € C;°

fM [o(N)] = E[Je(f) — Eelo(H][]
<E[|o(f) — o(ExlfD)]] + E[[Exle( H)ﬂﬂﬂ (5.16)

]
<2[¢' o B[|f — Ex[£1]] = 21 loo Inf{ V1]
This easily extends to a vector of functions f(w) = ( (w), .. .f(k) (w)) with ¢ : R* & R:

W] < 201 Y i) with oo = max 6]

<i<k

In particular, by (2.14), condition W[f] := Zz W[ ()] — 0 implies W[e(fn)] — 0

For i.i.d. random variables (w;);cr with finitely many values, we can apply Theorem to
any functions in L? with bounded variance, in particular to ¢(fy) for ¢ € C;°. Then condition
W[ fn] — 0 — which implies W[p(fn)] — 0 — yields Cov[o(fx(w®)), o(fx(w))] — 0 for
any € > 0 and p € C}°, see . Finally, by an application of Cauchy-Schwarz, see ,
we obtain Cov|p(fx(w®)), ¥ (fx(w))] — 0 for any ¢, € Cy°, which proves (2.26). O

6. Modified Tribes function

In this section we prove Theorem We first consider a general class of “tribes”-like
functions, for which computations are more transparent. We will then specialise to the

specific function from (2.35)) to reach the optimal exponent /(2 — ¢) in (2.30).

6.1. Tribes-like functions. For t € N let A; = A;(wy,...,w;) be an event depending on ¢
variables, that is invariant under permutations of the w,;’s and has probability

pyi=P(4;) =0 ast — o0.
We set
my = [1/p;]
and consider the intervals (By)y—1,. m, in (2.32). Denoting by wpg, the collection (w;)iep,
we define

VW) i=Tawy) and  filw) =T, vw)=1) - (6.1)
Note that (Y;(w)), are i.i.d. Bernoulli random variables of parameter p,, hence

E[f]=1-(1—p)™ —1—¢" and Var[ f;] - e t1—eh. (6.2)

t—00

Remark 6.1. The definition of f; is coherent with (2.33)) when A; = {22:1 w; = as}. The
original Tribes function [BL85|] corresponds to Ay = {w; =1Vi=1,...,t

We recall that w® denotes the e-randomisation of w, see Definition Let us define
Gre = P(Y1 (") = 1| Vi (w) = 1) = P(A(w) | Ay(w)) - (6.3)

The covariance between f,(w®) and f;(w) has an explicit asymptotic behavior described in
the following Lemma, whose proof is given in Subsection

Lemma 6.2. Suppose that p, = o(q.) ast — o, for any € € (0,1). Then, as t — oo,
COV[ft(WE)a fr(w)] ~ e’ Qi - (6.4)



24 F. CARAVENNA AND A. DONADINI

We next consider the influence of wy on Yj(w) (recall the classical definition (2.2)) of
influence). Since Y, (w) is invariant under permutations of the wy’s, it is enough to focus on

re o= LY = P(Y(w}) # V(@) = P(4,(wh) n 4,() = @), (6.5)

where we recall that w_li is the configuration w where we fix w; = +£1. We use r; to express
the influence of w;, on f;: recalling (2.35)), a direct computation shows that as ¢t — o

L[f] = P(ft(wb #* ft(wl—)) =7 (1 —pt)mt_l ~ T e (6.6)
Recalling the definition (2.4)) of W[ f], we then obtain
2
"t
Pt
Comparing (6.4) and (6.7]), we see that to reach the optimal exponent /(2 — ¢) in (2.30)),

the quantities p;, ry, g, . need to satisfy, as t — oo,

2\ z=+o(1)
+o(1) — Qe > (t Tt) : 7 (6.8)

WLIfe] ~tmy Il[ft]2 ~e %t (6.7)

Cov[f(w), f(w)] = WIf]7=

where the term o(1) in the exponent allows for possible logarithmic corrections.

Remark 6.3 (Tribes is not optimal for (2.30)). A natural candidate to verify optimality
of (2.30) is the original Tribes function [BL85] corresponding to Ay = {w; = 1Vi=1,...,t}.

However, in this case one has p; = 1/2t = e_tlogQ, ry = 1/2t_1 ~2p; and g = (1 — %)t =
otlos(l=3) o _ Ve _ (tﬁ>'ys+o(1) ith o~ — —1o8(1=6/2) arouo oo - d
, Qte =Pt = Ly, with Ve = ——jog5 - AVote that 7. # 5=, ana even

as € | 0 we have v, ~ 21(;3? ~ 0.721 ¢, hence is mot satisfied.
6.2. Proof of Lemma We set for short Y; := Y] (w) and Y7 := Y;(w®). Observe that
E[(1 - fi(w")) (1 = fi(w))] = P(fi(w) = 0, fi(w) = 0) =P(Y; = 0,Y] =0)"
=P(Y1 =0)""P(Yy =0|Y; =0)"™
(1 p)™ (- B = 1Y, = )™

We can write, recalling ¢, . from (6.3,

. PY;y =1){1—-P(Y7 =1|Y; =1) pe(1—qp.)
P(Yy =1]Y; =0) = — {P(lelo) - }_tl_ptt’s

2
=p(1— Qt,a) +O0(p;) ast— .

Finally, since m; = |1/p,|, we have that pym; = 1 + O(p;) and

Cov[fi(w), fi(w)] = Cov[(1 = f, (")) (1 = fi(w))]
= (1 =p)™ (L —p + rare + O(Pf))mt —(1- pt)2mt
- (1 _pt)mt [e_1+Qt,5+O(pt) _ e—1+O(Pt)]
= (1—p)™ e’ (g + O(py) + O(Qia)] .

Assuming p, = o(g; ), we obtain ((6.4)). O
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6.3. Proof of Theorem We need to check that the Modified Tribes function,

corresponding to A; = {25:1 w; = at} with a; from , satisfies .
We recall that p; = P(A4;) is given in (2.34). Note that the event A; means that the
difference between the number of “+” and the number of “—” signs in wy,...,w; equals a;.
Let us now fix € € (0,1) and estimate

Qte = P(At(wg) | At(w)) )

which is the probability that the difference between the number of “+” and the number of
[44 9 . . . . . t
—7 signs is still equal to a, after resampling. Assuming that »},_; w; = a;, set

t+ _ t—
N = 2at number of “+7 Ny :=t—N; = 2at number of “=”.  (6.9)
Conditionally on A,(w), we can write 4,(w®) = {BJ — B = 0}, where B and B_ are
respectively the number of changed “+4” and “—” signs after rerandomising;:
Bf =|{i=1,...,t:w; = 1,0 = -1}, B =|{i=1,...,t:w;=—1,u; =1}

Under P(- | A;(w)), BY and B are independent binomial random variables, with respective
laws Bin(N,,e/2) and Bin(N; ,e/2) with N;*, N, as in (6.9). Therefore

Ut e = E[B; - B;|At(w)] = (Nt+ - Nt_)% = ay %7

oF 1= Var[BY — B |A@)] = (V' + N,)5(1-5) = 1501 - 5).

Local Gaussian estimates for the simple random walk then give
2

_Mte 2
20‘2 _4 e
2 e t,e e 2t 2—e¢

= . (6.10)

)6[071))~\/@ NEEED)

We observe, recalling (2.31) and ([2.34)), that p, = o(q;.) as t — o0 (since ¢/(2 —¢) < 1), so
the assumption of Lemma [6.2]is satisfied. More precisely,

WEtp)®  (p)T 1
~ —= ~cC, . with ¢, ~ —.
5te(2—¢) 13 el0 +/27e
Finally, we compute r; (see (6.5))):
P>, = 1) P>l —a —1 =l
= (21:1 Wi a; + ) + (Zzzl Wi ay ) ~P Z w;=a; | ~ p;. (612)
2 2 ;
=1
The bound in follows by gathering (6.11]) and (6.12]), which shows the optimality of
the exponent /(2 — ). More precisely, by (6.2), and (6.7)),

(COV[ft(wa)7ft(w)] o1 W[ft] -
Var[ f;] e T T Var[f;] ~ TPt (6.13)

hence by (6.11) we get, for a suitable c.,
Covlfyw). filw)] & < WIf] )
Var[f;] tz%s Var| f;]
At last, from the second relation in (6.13|) we obtain, recalling (2.34]),

t~ (2re g5

Qte = ]P)(B: - Bz—:_ = 0) ~ I[D(N(:ut,evo—t,e

Gt (6.11)
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which plugged into (6.13)) concludes the proof of ([2.36)). O

Appendix A. Influences for Boolean functions and binary variables
We recall the definition of L' and L? influences for a function f(w) € L*:
mfl[f] = E[l5ef], W] = E[(05)°]. (A1)

We first show that, for a Boolean function f, these notions coincide up to a factor 2.

Lemma A.1 (Influences for Boolean functions). For a Boolean function f(w) € {0,1}

f[f] = 2Inf P [f] = P(f(w) # fwha)) (A.2)

where wi];d denotes the family w = (w;);er with wy, replaced by an independent copy Wi

Proof. For a Bernoulli variable X with mean ¢ we have E[| X —¢|] = 2¢(1—¢) = 2 Var[X].
Conditionally on (w;), .k, the distribution of f(w) is Bernoulli with mean Ej[f], hence

ItV [f] = 2If P[] = 2B[Bx[£] (1 — Ex[f])]

Using the modified family w4, we can write EL[f]1 (1 —EL[f]) = Ex[f(w) (1 — f(wikl”ld))],
and recalling that f € {0, 1} is Boolean we obtain (with Py (-) := Eg[1,])

ELLf] (1~ Bilf]) = Pu(/(@) = 1, f(wha) = 0) = 5 Pu(F(w) # f(wha)
This completes the proof of (A.2). O

We next compute the influences in the special case of binary w;’s.

Lemma A.2 (Influences for binary variables). Ifw; € {x_,z,} are binary variables,

see (1.1), for any function f(w) we have

f[f] = 2p(1 — p) E[|f(w5) — fM)], (A.3)
fP[f] = p(1 - p) E[(F (W) — £(wh))?], (A4)

where wi denotes the family w = (w;) in which we fix wy = 4.

Proof. By we compute Ei[f] = p f(wh) + (1 — p) ("), hence

— Wk = fW” ifw, =2
R s A e

from which (A.3)) and (A.4) readily follow. O

Remark A.3. Relation (A.5)) shows that, for binary w;’s, our definition of o, f = f—Ei[f]
coincides with Ay f from [Tal94].

Combining Lemmas and we finally obtain the following result.

Lemma A.4 (Influences for Boolean functions of binary variables). For a Boolean
function f(w) € {0,1} of binary variables w; € {x_,x}, see (L.1), we have

Inf("[f] = 2InfP[f] = 2p(1 — p) P(F(wh) # F(Wh)). (A.6)
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Proof. We apply and note that
{f(@) # flwha)} = (@) # Fh)} o {or # i},

where we recall that wj, denotes an independent copy of wy. Since P(wy, # wy) = 2p(1 —p)
and the event {f(w") # f(w")} is independent of wy,w}, the proof is completed. O

Appendix B. Orthogonal decomposition

We first prove the Efron-Stein decomposition in Proposition which shows that any
function f(w) € L? admits the chaos expansion ({.3) with f; given by (4.5).

Proof of Proposition The necessity of is easy: if we assume that holds
for some functions f;’s satisfying , we already observed that the properties in
must hold, from which we can directly deduce (4.5]).

It remains to show that holds with f; given by . We first assume that T is
finite, say T = {1,...,n}. Since E; + §; is the identity operator, see , we can write

Fo i 46) Bt s) =B S

d=11CT: |I|=d

where we expanded the product of commuting operators ¢; and E; (by Fubini’s theorem)
and we denoted by f; the function obtained from f applying d; for i € I and E; for j € I°.
If we write I = {iy,...,iq} and, for convenience, I = {ji,...,j,_q}, We obtain ([4.5):

fr =20, - &, fi with fr = E; - E; ,f=E[flFl].

We next consider the case |T| = 0. We write T = | J,,. T, for increasing sets T,, < T, 1
with |T,,| = n and we define

I i=E[ f|F.] where F,:=0(w;:i€T,). (B.1)

Since |T,| < oo, we already know that f,, admits the decomposition (4.3]). Crucially
(F)r = fi for I < T, because ELf,, | ;] = EIE[f|F] | Fr] = ELf [ F1], see (4.5), hence

a0
fo=EU+), > fr (B.2)
d=1 ICT,: |I|=d
Note that f,, = E[ f|F,] is a martingale bounded in L?, hence fo = E[f|Fp] =fin L?
because F, = 0 (e Fn) = 0(w = (w;)ier). Letting n — oo in (B.2)), we obtain (4.3). O

We deduce that any function f(w) € L? of binary variables w;’s is a polynomial chaos.

Lemma B.1 (Completeness for binary w;’s). Let the w; be independent and centred
real random variables which take two values. Then every function f(w) € L% isa polynomial

chaos, i.e. it is of the form (2.11)).

Proof. When |T| = n < o0, functions f(w) with binary w;’s can be identified with functions
f:{z_,z,}" — R, which form a vector space of dimension 2". The monomials (w;);cT are
precisely 2" (orthogonal, hence) linearly independent functions, which are then a basis. It
follows that any function f(w) is a (finite) sum »; f(Iwy, i.e. a polynomial chaos.

When |T| = oo we argue as in the proof of Proposition we write T = | J,,cy T), for finite

increasing sets T, and define f, by (B.1). We already know that f,,(w) = >.jcp fu(I)wy is
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a polynomial chaos with coefficients f,,(I) = f(I) independent of n, since {f,,,w;> = (f,w;)
for I € T,,. Then (2.11)) holds because f,, — f in L? by martingale convergence. O

Appendix C. Assumption ensembles, and hypercontractivity

In this section, we discuss Assumption connecting it to the notion of ensembles from
IMOO10]. We then prove Theorem deducing it from results in [MOO10].

C.1. Rephrasing Assymption [2.2] Let us look more closely at our key Assumptlon
We start from part (a) . discussing property ([2.8)) relative to the vector spaces V; < L? (E;, ul)
which are by assumption separable Hilbert spaces with 1 € V.

Let us fix an orthonormal basis of V; starting with the constant function 1:

WO =1, WD K evie PELpm): O Ry =6, (C)

If V; has finite dimension M; < oo the sequence is finite: hl(»z) for ¢ =0,1,...,M; — 1
(otherwise it is an infinite sequence). We can then rephrase condition ({2.8)) as follows: for

any given index i € T we can write, for a.e. (w;);.i,

flw) = Z oy hy) (w;) for coefficients ap = oy ((w;) ) - (C.2)
(=01,...

This means that f(w), as a function of w;, is a linear combination of the functions hgé)’s

We next discuss Assumption ([2.2) (]E[), focusing on the bound (2.9). The next simple
result covers many cases, including Examples and (and beyond).

Lemma C.1 (Finite-dimensional vector space). Let the random variables (w;);er be
i.i.d. with law p on (E,€). Fiz ¢ > 2 and a finite dimensional vector space V < LY(E, ).

Any function f(w) € L? which satisfies Assumption @ with V; =V also satisfies
Assumption (]ED, Jor a suitable M, < .

Proof. We need to show that condition ([2.9) holds for some M, < oo. Fix an orthonormal
basis KO, V. h® of V with 1) = 1. Any g € V with Elg(w;)] = (g, h(0)> = ( can be
written as g(-) = 21221 ay h(z)(-) with ay € R. By the triangle inequality and Cauchy-Schwarz

k 1 1
e 2 . 2
lg(wil, < meh( wi)l, < Mq(Za%) with Mq:=(2uh uq) <.

(=1
Since | g(w;)|3 = Zif:l aj, we have shown that (2.9) holds. O

Remark C.2. Lemma covers Example because for u with finite support the space
V = L*(E, u) is finite dimensional (and it coincides with LY(E, ) for any q).

It also includes Example since the space of linear functions V = {a + fz: a, 5 € R}
has dimension 2 and V < LY(R, ) under assumption (2.10).

Remark C.3. We can invoke Lemma also for Remark namely when f(w) € L?
depends on any given w; as a polynomial of uniformly bounded degree, say at most h (for
h = 1 we recover polynomial chaos from Ezxample .
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Indeed, Assumption (&) is satisfied with V; =V = {ag + yz + ... + ozhxh: a; € R}
which has finite dimension h + 1. In order to have V < LY(R, u) for some given q > 2, we
only need to require that the w;’s have uniformly bounded moments of order qh.

C.2. Ensembles and multi-linear polynomials. Recall the orthonormal basis in
the space V;. Defining the families of random variables
2= {Xigi=1, X1, Xin, ... S L*(Q):  Xip:= b9 (wy), (C.3)
we obtain a so-called sequence of ensembles (Z;);eT according to [MOQO10, Definition 3.1]J:
e random variables X; , within each family 2Z; are orthonormal;
o different families Z;’s are independent.

Let us call multi-index any sequence £ = (¢;);c1 with ¢; € {0,1,...} such that ¢; # 0 only
for finitely many i € T (if V; has finite dimension M; < o we also require ¢; < M;). For
each multi-index £ we define a multi-linear monomial X, in the ensembles (Z;)iet:

/.
X=X, = [ [ 17 (). (C.4)
€T €T
(the product is finite since X;, = 1 when £; = 0). These random variables are orthonormal:

(Xg, Xy) =06,y for all multi-indexes £, £'.

Definition C.4 ([MOO10]). We call multi-linear polynomial in the ensembles (.2;);er
any random variable f(w) in the linear subspace of LQ(Q) generated by the X,’s:

flw) = Zf(f) Xy for real coefficients (f(f))e with Zf(f)Q < (C.5)
£ £
where the series converges in L* (hence we must have f(£) = {f(w), Xp)).
We are ready to give an equivalent characterisation of Assumption ().

Lemma C.5. A function f(w) € L? satisfies Assumption @ if and only if it is
a multi-linear polynomial in the ensembles (Z;);et, i.e. (C.5) holds. In this case, the
functions fr(w) appearing in the chaos decomposition (4.3)) of f(w) are

frwy = 3 f@OXe  with f(O) =), Xp). (C.6)
& Zovser

Before giving the proof, let us make two observations.

Remark C.6 (Ensembles and polynomial chaos). For real valued w;’s with E[w;] = 0
and ]E[w?] = 1, if we take the space of linear functions V; = {x — a + px: «, 5 € R} with
canonical basis hl(o) =1 and hl(»l)(x) = x, we obtain the ensembles Z; = {1,w;}. In this
setting, multi-indexes £ have components ¢; € {0,1} and X, = wy, ***wj, s nothing but the

multi-linear monomial in (2.11) with {iy,...,iq} = {i€ T: ¢; = 1}. Definition (C.5|) then

gives the polynomial chaos in (2.11)).

Remark C.7 (Ensembles and chaos decomposition). If we take V; = LZ(EZ-, i) —
assumed to be separable — Assumption (d) is satisfied by every f(w) € L? (by Fubini’s
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theorem). Then it follows by Lemma that every f(w) € L? is a multi-linear polynomial,
i.e. multi-linear monomials X, are a basis of L*(Q,o((w;)ier),P). Formula (C.6) then

provides a hands-on construction of the chaos decomposition in Proposition [{.3.

Proof of Lemma It is clear that any multi-linear polynomial (C.5)) in the ensembles
(Z5)et satisfies Assumption (&), since by construction X;, = hz(e (w;) with h e V;.

i
We now prove that any f(w) € L? satisfying Assumption () is of the form (C.5)). We
fix an index 7 € T and note that, by (2.8), w; = f(w) belongs to V; conditionally on (w;); ;.

Since hz(»o)7 hl(l), ... is an orthonormal basis of V;, we write f(w) as the L? convergent series
0. ¢
F@y= Y ), i we Y w) = Y E[fw) Xig] Xip, . (C)
£;=0,1,... £;=0,1,...

If i € T is another index, using again Assumption () and recalling (C.4)), we obtain
fwyi= 3 Y BB X ] Xy, 1 Xig, Xy,

0r=0,1,... £;=0,1,... g

= D By E[f(w) Xe] X,
£ multi-indexes
£, =0Vke{i,i'}

Iterating the same argument for all indexes in a given finite set T,, = {i,...,i,} € T, since
E;, E;, - E; [-]=E[-|Fpr,] by Fubini’s theorem, we obtain
flw) = 2 E[f(w) X¢| Frvr, | Xe - (C.8)

£ multi-indexes
supported in T,,

If T is finite, we can take T,, = T and we obtain our goal (C.5)), since E[ - | Fp\r, | = E[].
When T is infinite, writing T = (J,,.y T, for finite increasing sets T,,, we have by (C.8])

neN

E[f(w)|Fr,] = > E[f(w) X¢] X, (C.9)
R

because E[E[- | Fpr, ]| Fr_ | = E[-] by Fubini’s theorem. Since E[f(w) | Fr | — f(w) in L?
as n — 00, by martingale convergence, our goal (C.5)) follows by ((C.9). O

C.3. Proof of Theoremﬁ. Let us prove (4.18)). By Lemma any f(w) € L? satisfying
Assumption is a multi-linear polynomial in the sequence of ensembles (Z;);cr. As a

consequence, in the language of [MOQO10l Definition 3.9], proving the bound amounts
to showing that the sequence of ensembles (Z;);er s (2,4q,1,)-hypercontractive.

We first consider the case when T is finite and all V;’s have finite dimension, so each
ensemble Z; consists of finitely many random variables. This is the setting considered in
[MOO10, Proposition 3.11], by which it suffices to show that each individual family Z;
is (2, q,m,)-hypercontractive, i.e. the bound holds (the proof is similar to [Jan97,
Lemma 5.3]). But this is precisely the way we have fixed 71, € (0,1), see Lemma hence
is proved in this case.

We next consider the case when either T is infinite or some V; has infinite dimension. Let
us write T = (J,,c5 T, as the increasing union of finite sets T,,. For each n € N, we define

fu(w) € L? by restricting the sum in (C.5) to multi-indexes £ = (,);er supported in T,, and
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with all components satisfying ¢; < n. We already proved that (4.18)) holds for f,:
IT" follg < [ fullz YR eEN, (C.10)

and it remains to let n — oo. By construction f, — f in LZ, and since T" is a bounded
operator, we also have T f,, — T" f in L*, in particular |T" f, |7 — |T™ f|? in probability.
Taking the limit n — oo in (C.10)) we then obtain, by Fatou,

Hanqu < hﬁl(%f Hananq < T}l_l;nm anHQ = HfH27

which completes the proof of (4.18]).

The proof just given shows that the bound (4.18) holds not just for f but for any
multi-linear polynomial in the sequence of ensembles (Z;);cr, which includes any linear
combination of components f; such as f" in (4.17).

If we now consider fj = ngd ay fr with degree at most d, we can define T fh even

though 1/n, > 1, see ([4.12), and we have the identity fj = 7" (Tl/n‘l f3). Applying (418)
with f replaced by T f4, which is still a linear combination of f;’s, we get

1 1 1
2 1 2 2 2 2 2 2
ch/z”q < HT /M f(liHQ = Z WO‘I Hf]HQ S g Z ar | frlz = 24 ||f/\|27
ICT: |I|<d "lq Mg 17! |11<d Mg
which is precisely (4.19)). O
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