GENERAL SMILE ASYMPTOTICS WITH BOUNDED MATURITY

FRANCESCO CARAVENNA AND JACOPO CORBETTA

ABSTRACT. We provide explicit conditions on the distribution of risk-neutral log-returns
which yield sharp asymptotic estimates on the implied volatility smile. We allow for a
variety of asymptotic regimes, including both small maturity (with arbitrary strike) and
extreme strike (with arbitrary bounded maturity), extending previous work of Benaim
and Friz [BEQ9]. We present applications to popular models, including Carr-Wu finite
moment logstable model, Merton’s jump diffusion model and Heston’s model.

1. INTRODUCTION

The price of a European option is typically expressed in terms of the Black&Scholes
implied volatility oimp(k,t) (where k denotes the log-strike and ¢ the maturity), cf. [G11].
Since exact formulas for a given model are typically out of reach, an active line or research
is devoted to finding asymptotic expansions for oimp(k,t), which can be useful in many
respects, e.g. for a fast calibration of some parameters of the model. Explicit asymptotic
formulas for oimp(k,t) also allow to understand how the parameters affect key features of
the volatility surface, such as its slope, and what are the possible shapes that can actually
be obtained for a given model. Let us mention the celebrated Lee moment’s formula [L04]
and more recent results [BF08, [BF09, [T09, [G10, [FF12, MT12l [GL14, [FJ09, RR09. (GMZ14].

A key problem is to link the implied volatility ezplicitly to the distribution of the risk-
neutral log-return X;, because the latter can be computed or estimated for many models.
The results of Benaim and Friz [BEQ9| are particularly appealing, because they connect
directly the asymptotic behavior of oimp(k, t) to the tail probabilities

Fi(k) = P(Xy > k), Fi(—k) =P(X; < —K). (1.1)

Their results, which are limited to the special regime of extreme strike kK — 400 with fixed
maturity ¢ > 0, are based on the key notion of reqular variation, which is appropriate when
one considers a single random variable X; (since t is fixed). This leaves out many interesting
regimes, notably the much studied case of small maturity ¢ — 0 with fixed strike k.

In this paper we provide a substantial extension of [BF09|: we formulate a suitable gen-
eralization of the regular variation assumption on Fy(x), Fy(x) which, coupled to suitable
moment conditions, yields the asymptotic behavior of imp(k, ) in essentially any regime of
small maturity and/or extreme strike (with bounded maturity). We thus provide a unified
approach, which includes as special cases both the regime of extreme strike kK — oo with
fixed maturity ¢ > 0, and that of small maturity t — 0 with fixed strike x. Mixed regimes,
where x and ¢ vary simultaneously, are also allowed. This flexibility yields asymptotic for-
mulas for the volatility surface oimp(k,t) in open regions of the plane.
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In Section [3] we illustrate our results through applications to popular models, such as
Carr-Wu finite moment logstable model and Merton’s jump diffusion model. We also discuss
Heston’s model, cf. In a separate paper [CCI5| we consider a stochastic volatility model
which exhibits multiscaling of moments, introduced in [ACDP12].

The key point in our analysis is to connect explicitly the asymptotic behavior of the
tail probabilities F;(k), Fy(x) to call and put option prices c(k, t), p(k,t) (cf. Theorems ,
and [2.7)). In fact, once the asymptotics of ¢(k, t), p(k, t) are known, the behavior of the
implied volatility oimp(k,t) can be deduced in a model independent way, as recently shown
Gao and Lee |[GL14]. We summarize their results in (see Theorem [2.9), where we also

give an extension to a special regime, that was left out from their analysis (cf. also [MT12]).

The paper is structured as follows.
e In Section 2] we set some notation and we state our main results.
e In Section [3] we apply our results to some popular models.
e In Section [ we prove Theorem [2.9] linking option price and implied volatility.

e In Section |5| we prove our main results (Theorems and .
e Finally, a few technical points have been deferred to the Appendix [A]

2. MAIN RESULTS

2.1. The setting. We consider a generic stochastic process (X;);>0 representing the log-
price of an asset, normalized by Xy := 0. We work under the risk-neutral measure, that
is (assuming zero interest rate) the price process (S; := eXt);>¢ is a martingale. European
call and put options, with maturity ¢ > 0 and a log-strike x € R, are priced respectively

c(r,t) = E[(eX —e)t],  p(k,t) = E[(e” — X1, (2.1)
and are linked by the call-put parity relation:
c(k,t) — p(k,t) =1—¢€". (2.2)

As in |[GL14], in our results we take limits along an arbitrary family (or “path”) of values of
(k,t). This includes both sequences ((kn,tn))nen and curves ((£s,ts))se(o,00), hence we omit
subscripts. Without loss of generality, we assume that all the x’s have the same sign (just
consider separately the subfamilies with positive and negative x’s). To simplify notation,
we only consider positive families k > 0 and give results for both x and —k.

Our main interest is for families of values of (k,t) such that

either kK — oo with bounded ¢, or ¢t — 0 with arbitrary x > 0. (2.3)
Whenever this holds, one has (see
c(k,t) =0, p(—k,t) = 0. (2.4)

We stress that gathers many interesting regimes, namely:
(a) k = oo and t — t € (0,00) (in particular, the case of fixed ¢t = > 0);
(b) kK — oo and t — 0;
(¢) t - 0and k — & € (0,00) (in particular, the case of fixed k = & > 0);
(d) t - 0and k — 0.
Remarkably, while regime @ needs to be handled separately, regimes @—@— will be

analyzed at once, as special instances of the case “k is bounded away from zero”.
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Remark 2.1. We stress the requirement of bounded maturity ¢ in . Some of our
arguments can be adapted to deal with cases when t — oo, but additional work is needed
(for instance, we assume the boundedness of some exponential moments E[e(t7X¢]  cf.
— below, which is satisfied by most models if ¢ is bounded, but not if ¢ — o0). We
refer to [T09 [JKM13]| for results in the regime t — co.

Given a model (Xi)ic[,00); the implied volatility oimp(k,t) is defined as the value of
the volatility parameter o € [0,00) that plugged into the Black&Scholes formula yields
the given call and put prices ¢(k,t) and p(k,t) in (see below). To avoid
trivialities, we focus on families of (k, t) such that ¢(k,t) > 0 and p(—~,t) > 0 (in fact, note
that oimp(k,t) = 0 if ¢(k,t) = 0 and, likewise, oimp(—~,t) = 0 if p(—k,t) = 0).

Notation. Throughout the paper, we write f(k,t) ~ g(k,t) to mean f(k,t)/g(x,t) — 1. Let
us recall a useful standard device (subsequence argument): to prove an asymptotic relation,
such as e.g. f(k,t) ~ g(k,t), it suffices to show that from every subsequence one can extract
a further sub-subsequence along which the given relation holds. As a consequence, in the
proofs we may always assume that all quantities of interest have a (possibly infinite) limit,
e.g. k — K € [0,00] and t — ¢ € [0, 00), because this is true along a suitable subsequence.

2.2. Main results: atypical deviations. We first focus on families of (k,t) such that
Fi(k) =0, resp. Fi(—k)—0, (2.5)

a regime that we call atypical deviations. This is the most interesting case, much studied
in the literature, since it includes regimes , and described on page [2, and also
regime @ provided k — 0 sufficiently slow.

When k — oo with fixed ¢ > 0, Benaim and Friz [BEQ9| require the regular variation of
the tail probabilities, i.e. there exist o > 0 and a slowly varying functionlﬂ Ly(+) such that

log Fy(k) ~ —Li(k) k%,  rtesp.  log Fy(—k) ~ —L¢(k) % (2.6)

It is not obvious how to generalize when ¢ is allowed to vary, i.e. which conditions to
impose on L, (k). However, one can reformulate the first relation in simply requiring the
existence of lim, o log Fy(ok)/log Fy(k) for any fixed o > 0, by [BGT89, Theorem 1.4.1],
and analogously for the second relation in . This reformulation (in which L;(k) is not
even mentioned!) turns out to be the right condition to impose in the general context that
we consider, when ¢ is allowed to vary. We are thus led to the following:

Hypothesis 2.2 (Regular decay of tail probability). The family of values of (k,t) with
k>0, t > 0 satisfies (2.5), and for every o € [1,00) the following limit exists in [0, +00]:

log F't(ok) log Fy(—ok)

1 = lim — , resp. I_ = lim ———————= | 2.7
T b Q= 27)

where limits are taken along the given family of values of (k,t). Moreover
lim I =1, resp. lim7_(p)=1. 2.8
im I+ (o) P im I_(e) (2.8)

Depending on the regime of k, we will also need one of the following moment conditions.
e Given 1 € (0,00), the first moment condition is

limsup E[eMMXt] < o0 | (2.9)

TA positive function L(-) is slowly varying if limz— oo L(oz)/L(z) = 1 for all ¢ > 0.
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along the given family of values of (k,t). When ¢t < T, it is enough to require that
E[eMMXT] < o0 (2.10)
because (e1+MXt),54 is a submartingale and hence E[e(1+1Xt] < E[e(1+mX7],
e Given 1 € (0,00), the second moment condition is

eXt — 1

1+n
lim sup EH ] < 00, (2.11)

along the given family of values of (k,t). Note that for n = 1 this simplifies to
3C € (0,00) : E[e?X] <1+ CK%. (2.12)

We are ready to state our main results, which express the asymptotic behavior of option
prices and implied volatility explicitly in terms of the tail probabilities. Due to different
assumptions, we first consider right-tail asymptotics.

Theorem 2.3 (Right-tail atypical deviations). Consider a family of values of (k,t) with
k>0, t > 0 such that Hypothesis is satisfied by the right tail probability Fy(r).

(i) [« bounded away from zero, t bounded away from infinity (liminf x > 0, limsup ¢ < c0)]
Let the moment condition (2.9) hold for every n > 0, or alternatively let it hold only
for some n > 0 but in addition assume that

I (0) > o, Yo>1. (2.13)
Then
log c¢(k,t) ~ log Fy(k) + K, (2.14)
—log Fy(k) —log Fy(k) 2K
Timp (K, 1) ~ \/ - - . -1 gt (2.15)
Special case: if —log Fy(k)/k — oo, assumption (2.13)) can be relaved to
lim I, (o) = o0, (2.16)
o0—00
and relations (2.14)-(2.15) simplify to
log c(k,t) ~ log Fy(k), (2.17)

K

V2t (~ log Fiy (k)
(i) [k and t vanish (k — 0, t — 0)] Let the moment condition (2.11)) hold for every n > 0,
or alternatively let it hold only for some n > 0 but in addition assume (2.16)). Then
log (c(k,t)/k) ~ log Fy(k), (2.19)
AN (2.20)
V2t (~log Fy(x))
Next we turn to left-tail asymptotics. The assumptions in this case turn out to be sensibly
weaker than those for right-tail. For instance, the left-tail condition E[e~7X7] < oo required

in [BFQ9, Theorem 1.2| is not needed, which allows to treat the case of a polynomially
decaying left tail, like in the Carr-Wu model described in Section

Uimp(/ﬁi, t) ~

Uimp(li, t) ~
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Theorem 2.4 (Left-tail atypical deviations). Consider a family of values of (k,t) with
k>0, t > 0 such that Hypothesis is satisfied by the left tail probability Fi(—k).

e [k bounded away from zero, ¢ bounded away from infinity (liminf x > 0, limsup¢ < c0)]
With no moment condition and no extra assumption on I_(-), one has

logp(—k,t) ~log Fi(—k) — Kk, (2.21)

G (—Hst) ~ <\/_k’g§(_”) b1 \/_loglj(_@> ﬁ (2.22)

Special case: if —log Fy(—k)/k — o0, relations (2.21)-(2.22) simplify to
logp(—k,t) ~ log Fi(—k), (2.23)

K
Vo (—Tog Fu(—n))

e [r and ¢ vanish (k — 0, t — 0)] Let the moment condition (2.11]) hold for every n > 0,
or alternatively let it hold only for some n > 0 but in addition assume that

Jimp(—/i,t)

liTm I_(p) =o0. (2.25)
Then
log (p(—k,t)/K) ~ log Fy(—k), (2.26)

KR

T V2t (Clog F(—r)

We prove Theorems and in below. The key step is to link the option prices
c(k,t), p(k,t) to the tail probabilities F;(x), F;(—k), exploiting Hypothesis Once this
is done, the asymptotic behavior of the implied volatility oimp(k,t) can be deduced using
the model independent results of [GLI4], that we summarize in

Timp(—K, t)

Remark 2.5. The “special case” conditions

log F° log Fy(—
_ e ak t(x) — 00, resp. _ D8R H=r)
K K

— 00, (2.28)

are automatically fulfilled in the small maturity regime ¢ — 0 with fixed strike kK = K > 0.
In this case, one can use the simplified formulas (2.17))-(2.18]) and (2.23)-(2.24).

2.3. Main results: typical deviations. Next we focus on the regime when ¢ — 0 and
x — 0 sufficiently fast, so that the tail probability F(k), resp. F;(—+) has a strictly positive
limit and condition is violated. We call this regime typical deviations. This includes the
basic regime of fixed Kk = 0 and t | 0. Mixed regimes, when x — 0 and ¢ — 0 simultaneously,
are also interesting, e.g. to interpolate between the at-the-money (k = 0) and out-of-the-
money (k # 0) cases, which can be strikingly different as ¢ — 0 (see [MT12]).

We make the following natural assumption.

Hypothesis 2.6 (Small time scaling). There is a positive function (y¢)¢>o with limy oy = 0
such that X/~ converges in law as t | 0 to some random variable Y :
Xt d

w—0> Y. (2.29)
Yt
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We refer to Remark [2.8] below for concrete ways to check Hypothesis [2.6] Let us stress
that (2.29)) is a condition on the tail probabilities, since it can be reformulated as

Fi(ay) = P(Y > a) and Fy(—ay) - P(Y < —a), (2.30)
for all @ > 0 with P(|Y| = a) = 0. If the support of the law of Y is unbounded from above
and below (as it is usually the case), the limits in (2.30]) are strictly positive for every a > 0.

The appropriate moment condition in this regime turns out to be with kK = v, i.e.
eXt —1
I=

Lastly, we introduce some notation. Denote by ¢(-) and ®(-) respectively the density and
distribution function of a standard Gaussian (see (4.1)) below), and define the function

dn>0: limsup E

1+n
} < 0. (2.31)
t—0

D(z) := ¢(ZZ) — ®(—2), Vz>0. (2.32)

As we show in below, D is a smooth and strictly decreasing bijection from (0, c0) to
(0,00). Its inverse D~ : (0,00) — (0, 00) is also smooth, strictly decreasing and satisfies

D7 y) ~+v/2(=logy) asylO, D_l(y)rv\/l??; asy T oo. (2.33)

We can finally state the following result, linking option prices and implied volatility to

tail probabilities in the regime of typical deviations.

Theorem 2.7 (Typical deviations). Assume that Hypothesis is satisfied, and moreover
the moment condition ([2.31)) holds. Then the random variable in (2.29) satisfies E[Y] = 0.
Fiz a € [0,00) with P(Y > a) > 0, resp. P(Y < —a) > 0. For any family of (k,t) with

t—0 and E—>a€[0,oo),

Tt
the asymptotic behavior of option prices is given by
c(k,t) ~ 1 E[(Y —a)T], resp. p(—r,t) ~E[(Y +a)7], (2.34)
and correspondingly the implied volatility is given by
a
if a>0
—1(El(YFa)%] ’
Timp(Ek, t) ~ Ci(a) %, with  Cy(a) = D (F) (2.35)
V2r E[Y#] if a=0.

Remark 2.8. Hypothesis [2.6] can be easily checked when the characteristic function of X;
is known, because, by Lévy continuity theorem, the convergence in distribution (2.29) is
equivalent to the pointwise convergence E[e?*X¢/%] — E[e™Y] for every u € R. We will see
concrete examples in Subsections (Carr-Wu model) and (Merton’s model).

Another interesting case is that of diffusions. Assume that X; = log Sy, where (St)>0
evolves according to the stochastic differential equation
dS; =/ V; S dW,
t t ot AWy ’ (2.36)
So=1
where W = (W)¢>0 is a Brownian motion and V' = (V4)¢>¢ is a positive adapted process,
representing the volatility, possibly correlated with W. Under the mild assumption that
limy_,o0 V; = 08 a.s., where op € (0,00) is a constant, one can show that Hypothesis
holds with 7 = v/t and Y ~ N(0, 02), see Appendix
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Interestingly, plugging Y ~ N(0,03) into (2.35) yields C(a) = 0¢ (see Appendix .
Consequently, if the moment condition lds, we can apply Theorem getting
Timp(£K, t) ~ o along any parabolic curve k ~ av/t. This result is consistent with recent
results by Pagliarani and Pascucci [PP15], who go beyond first-order asymptotics.

The proof of Theorem is given in below. The asymptotic behavior of
option prices follows easily from the convergence in distribution , because the needed
uniform integrability is ensured by the moment condition . The asymptotic behavior
(2.35)) of implied volatility can again by deduced from the option prices asymptotics in a
model independent way, that we now describe.

2.4. From option price to implied volatility. Whenever the option prices ¢(k,t) or
p(—k, t) vanish, they determine the asymptotic behavior of the implied volatility through
explicit universal formulas. These are summarized in the following theorem (of which we
give in Section || a self-contained proof), which gathers results from the recent literature.

Theorem 2.9 (From option price to implied volatility). Consider an arbitrary family of
values of (k,t) with k >0 and t > 0, such that ¢(k,t) — 0, resp. p(—k,t) — 0.

e Case of x bounded away from zero (i.e. liminf k > 0).

—1 t —1 t 2
Timp (K, T) ~ <\/og:(/@, ) +1- \/Oglj(ﬁ’ ) > TK, resp.

(2.37)
Timp(—K, t) ~ (\/—logpﬁ(—/i,t) _ \/_IOgPﬁ(—K,t) B 1) QTF&
e Case of Kk — 0, with k > 0.
Timp (K, ) ~ vk : resp.
D! (@) Vi
1 K (2.38)

Timp(—HK,t) ~ —D—l (M) i

K

where the function D : (0,00) — (0,00) is defined in (2.32))-(2.33).

o Case of Kk = 0.

c(0,¢) p(0,)
Timp (0, 1) ~ V21 N V2r N (2.39)

We stress that Theorem allows to derive immediately all the asymptotic relations
for the implied volatility oimp(+k,t) appearing in Theorems , and from the
corresponding relations for the option prices c(k,t) and p(—k,t).

The main part of Theorem is equation , which was recently proved by Gao and
Lee |GL14] extending previous results of Lee [L04], Roper and Rutkowski [RR09|, Benaim
and Friz [BF09| and Gulisashvili [G10]. As a matter of fact, Gao and Lee prove much more
than , providing explicit estimates for the error beyond first order asymptotics.

Equation (2.38)) is a new contribution of the present paper. In fact, [GLI14] assume that
—logk = o(—log ¢(k,t)) (cf. equation (4.2) therein), which excludes the regimes with k — 0
“fast enough”. The relevance of such regimes has been recently shown in [MT12|, where the

special case k o< /tlog(1/t) is considered (see [MT12, Theorem 3.1]).
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Remark 2.10. Relation (2.38) provides an interpolation between the at-the-money and
out-of-the-money regimes, described by (2.39) and (2.37)). Let us be more explicit.

Using ([2.33)), formula (2.38)) can be rewritten as follows:

K . (K, t)
it ——= ;
/2t (—Tog (<, )/) i Y
Oimp (K, ) ~ Dl(ﬁa)\/f if C(’: 2 —a € (0,00); (2.40)
\/%C(\"“/’Zt) if C(";’t) 00, orif k=0,

and analogously for oimp(—k,t), just replacing ¢(x,t) by p(—k,t).
Note that the last line in (2.40) matches with the at-the-money regime (2.39). In order
to see how ([2.40) matches with the out-of-the-money regime ([2.37)), it suffices to note that

) -1 _ .
whenever w — 00, resp. —128PRY o formula ([2.37) can be rewritten as

K
Y K

Cimp (K, T) ~ , resp. Cimp(—K, 1) ~ , (241
imp (% ) V2t (—log c(k, 1)) P imp( ) V2t (—log p(—k, 1)) (2:41)

and this coincides with the first line of (2.40) when £ — 0 slowly enough, namely
—logk = o —logc(k,t)) . (2.42)

2.5. Discussion. Theorems[2.3] and [2.7] are useful because their assumptions, involving
asymptotics for the tail probabilities Fy(k) and F;(—k), can be directly verified for many
concrete models (see Section [3| for some examples). The difference between the regimes of
typical and atypical deviations can be described as follows:

e for typical deviations, the key assumption is Hypothesis [2.6] which concerns the weak
convergence of Xy, cf. (2.29))-(2.30);
e for atypical deviations, the key assumption is Hypothesis[2.2] which concerns the large

deviations properties of Xy, cf. (2.7)-(2.8).

In particular, it is worth stressing that Hypothesis requires sharp asymptotics only
for the logarithm of the tail probabilities log Fy(k) and log Fy(—k), and not for the tail
probabilities themselves, which would be a considerably harder task (out of reach for many
models). As a consequence, Hypothesis can often be checked through the celebrated
Girtner-Ellis Theorem [DZ98, Theorem 2.3.6], which yields sharp asymptotics on log F;(x)
and log F;(—~k) under suitable conditions on the moment generating function of Xj.

3. APPLICATIONS

In this section we show the relevance of our main theoretical results, deriving asymptotic
expansions of the implied volatility for Carr-Wu finite moment logstable model ( and
Merton’s jump diffusion model ( The case of Heston’s model is briefly discussed in .

Our results can also be applied to a stochastic volatility model, recently introduced in
[ACDP12], which exhibits multiscaling of moments. Even though no closed expression is
available for the moment generating function of the log-price, the tail probabilities can be
estimated explicitly, as we show in a separate paper [CC15|. This leads to precise asymptotics

for the implied volatility, thanks to Theorems and
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3.1. Carr-Wu Finite Moment Logstable Model. Carr and Wu [CW04] consider a
model where the log-strike X; has characteristic function

E[eiuXt] _ et[iuu—\u‘aga(l—i—isign(u)tan(%))] 7 (31)
where o € (0,00), @ € (1,2] and we fix p := 0%/ cos(%*) to work in the risk-neutral
measure, cf. [CW04, Proposition 1|. The moment generating function of X; is

P\ o ()\0'722 }
E[C)\Xt] — & cos(73) if A Z O, (32)
+00 if A<0.

Note that as a — 2 one recovers Black&Scholes model with volatility v/20, cf. §4.2| below.
Applying Theorems [2.3] and 2.7 we give a complete characterization of the volatil-

ity smile asymptotics with bounded maturity. This includes, in particular, the regimes of

extreme strike (k — £oo with fixed ¢ > 0) and of small maturity (¢ — 0 with fixed k).

Theorem 3.1 (Smile asymptotics of Carr-Wu model). The following asymptotics hold.
e Atypical deviations. Consider any family of (k,t) with k >0, t > 0 such that
either t—0 and k> /", or t—te(0,00) and Kk — o0. (3.3)

(This includes the regimes @, @, on page@ and part of regime @) Then one
has the right-tail asymptotics

__2—a a/2
2(a—1) a—1
Timp (K, t) ~ Bqy (Fh) , where B, := (a0) T (3.4)
t V2(a = 1) | cos(Z2)[a=1

The corresponding left-tail asymptotics are given by

log &~ log &= 2K
Cimp(—FK, ) ~ \/ th_\/ Kt 1/7, (3.5)

which can be made more explicit distinguishing different regimes:

r if t—0 and Hl—>0,

1/2tlog% log §
Vita—1
Vva

2
) o if t—0 and Ll—>a€(0,oo),

Oimp(—K, t) ~ t Ing (3.6)

if t—0 and K1—>oo,
log;

if t—te(0,00) and Kk — 0.

2K
t

e Typical deviations. For any family of (k,t) with

K
t—>07 W%QE[0,00), (37)

one has
a
D-1 (E[(UYﬂFa)i])

a

ifa>0,
2—«
Oimp(£K,t) ~ Cr(a)t 2o , with Cyi(a):= (3.8)

V2r o E[Y ] ifa=0.
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Remark 3.2 (Surface asymptotics for the Carr-Wu model). The fact that relations
and hold for any family of (k,t) satisfying yields interesting consequences. We
claim that, for any T € (0,00) and £ > 0, there exists M = M (e, T) € (0, 00) such that the
following inequalities hold for all (x,t) in the region Arar:= {0 <t <T, x> Mt'/*}:

2—« 2—a
~ 2(a-1) ~2(e-1)
(1- s)Ba<’Z> < Oimp(k,t) < (1+¢€)Bq (’Z) R (3.9)

Similar inequalities can be deduced from — and . Relation (3.9) gives a uniform
approzimations of the volatility surface oimp(k,t) in open regions of the plane (x,t).

The proof of is simple: assume by contradiction that there exist T, e € (0, 00) such
that for every M € (0,00) relation fails for some (kpr,tayr) € Ar . Extracting a
subsequence, the family (kar, tar) satisfies but not , contradicting Theorem

Proof of Theorem[5.1 Let Y denote a random variable with characteristic function

E[eiuY] _ e—|u\a(1+isign(u) tan(%)) 7 (310)
i.e. Y has a strictly stable law with index o and skewness parameter § = —1, and E[Y] = 0.
If we set
L Xt — ,Ll,t
Y = pryrag (3.11)

it follows by (3.1) that Y; has the same distribution as Y, because
E[ewYt] _ E[eiuY] _ €—|u|a(1+isign(u)tan(%)) ) (3.12)

It follows by (3.11) that

Xt 4

hence Hypothesis is satisfied with ~; := ¢/
Note that P(Y > a) > 0 and P(Y < —a) > 0 for all a € R, because the density of Y is
strictly positive everywhere. The right tail of Y has a super-exponential decay: as k — oo

- _ _ may |\ 1/(e=1)
log P(Y > k) ~ — By k(@71 where B, = ol <|COS( 2 )|> . (3.14)

(67 (@

cf. [CWO04] Property 1 and references therein|. On the other hand the left tail is polynomial:
there exists ¢ = ¢, € (0,00) such that

PY < —k)~ %, hence logP(Y < —k) ~ —alogk. (3.15)
K

Recalling that Fy(k) := P(X; > k) and Fy(—k) := P(X; < k), by (3.11]) we can write

= K — ut —K — ut

hence we can transfer the estimates (3.14)) and (3.15) to X;.
Henceforth we consider separately the regimes of atypical deviations (3.3), and that of
typical deviations ({3.7)). Note that it is easy to check that (3.5 is equivalent to (3.6)).
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Atypical deviations. Let us fix an arbitrary family of values of (k,t) satisfying (3.3]). Then
K/t — 0o (because a > 1), hence

K — ut K . —K — ut —K
oti/a "~ gitja otl/a otl/a

By (3.14), (3.15) and (3.16|) we then obtain

_ ~ K /(a=1) o
log Ft(k) ~ —By, (mﬁl/a> , log Fi(—k) ~ —logT. (3.17)

Let us now check the assumptions of Theorem [2.3]

e The first relation in (3.17) shows that Hypothesis is satisfied by the right tail
Fy(k), with I, (0) = 0®/(®=1. Note that I (0) > o for all o > 1, since a > 1, hence
also condition (2.13) is satisfied.

e Condition ([2.9) is satisfied because (2.10]) holds for all 7' > 0 and n > 0, by (3.2)).

e It remains to check condition (2.11). As we prove below, for all n € (0, — 1) and
T > 0 there are constants A, B,C € (0,0), depending on 7, T" and on the parameters
a, 0, such that for all 0 < ¢ < T and k > 0 the following inequality holds:

o1 a((19) <) 18

In particular, since x/ t1/® 5 50 by assumption (3.3)), condition ([2.11)) is satisfied.

Applying Theorem since — log Ft(k)/k — oo by the first relation in , the asymp-
totic behavior of oimp(k,t) is given by , which by coincides with .

Next we want to apply Theorem By the second relation in (3.17), Hypothesis
is satisfied by the left tail Fy(—k), with I_(9) = 1. If k is bounded away from zero, the
asymptotic behavior of oimp(k,t) is given by , which by yields precisely .

If Kk — 0 we cannot apply directly Theor because the moment condition is

satisfied only for some 7 > 0, and condition (2.25)) is not satisfied, since I_(g) = 1. However,

we can show that (2.26]) still holds by direct estimates. By (2.1))
p(=k,1) = E[(e™" — eX)1{x,c ] 2 El(e™ — ™) 1ix,c o] > (€77 — e ") Fy(~25)
and since (e7F — e72%) = e7 2 (e — 1) > e~ % k, we can write by (3.17) (recall that x — 0)

2 o (0%
log (p(—k,t)/K) > —2k — log @) ~ —log % . (3.19)

eXt —1

K

Next we give a matching upper bond on p(—k,t). Since ut < k eventually (recall that
K/t — 00, hence K/t — o0), by (3.16) and (3.15) we obtain, for all y > 1

2Ky ,
Fi(—kry) < P(Y < —th/a) <c

Haya )

for some ¢ = ¢, , , € (0,00). Then by Fubini’s theorem

p(—k,t) =E[(e" — eXt)l{XK,,{}] = E[/ exl{x<Xt}da;] = / e * Fi(—x)dx
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hence
o (07

log (p(—/{, t)/l-i) <logc” —log % ~ —log 5
This relation, together with (3.19)), yields

[0}

log (p(—k,t)/K) ~ —log % :

Since k/t'/® — oo, this shows that we are in the regime when x — 0 and p(—£,t)/k — 0.
We can thus apply equation (2.38) in Theorem E which recalling Remark simplifies
as the first line in (2.40)) (with p(—x,t) instead of ¢(k,t)), yielding

R

VR IoG(R0/R) ot log 5

hence (i3.5)) is proved also when x — 0 (cf. (3.6)).

Typical deviations. Let us fix an arbitrary family of values of (k, t) satisfying (3.7]). Relation
(3:18) for k = ; = t'/* shows that condition (2.31) is satisfied, and Hypothesis holds
by (3.13]). We can then apply Theorem and relation ([2.35)) gives precisely (3.8)). O
Proof of (3.18]). Since |exz—_1| <1lifzx<0and |ezT—1| <e"if x > 0, we have |62:T_1\ <1+4e®
for all z € R. If p,q > 1 are such that % + % =1, Young’s inequality ab < %ap + %bq yields
X, P

X1 1 th]> 1 g
——— <[] 1+ M)
Xt ‘ p< K q ( )
Noting that (a + b)" < 2" 1(a” + b") for » > 1, by Holder’s inequality, and denoting by
¢ = ¢py a suitable constant depending only on p, 7, we can write

147 | X [P(1+m)
< z -
< /{p(1+77)

Jimp(—lﬂ, t)

€XZt —1 Xt

K

K

eXt — 1

+ 1+ eQ(1+77)Xt> .
K

Given 0 < < o — 1, we fix p = py o > 1 such that B := p(1 +n) < a. (Note that B
depends only on 7, «.) Moreover, it follows by (3.11)) that

E[1X:|"] = (ot PEYIP] (1 + O@PU-19))

and note that E[|Y|?] < oo, because Y has finite moments of all orders strictly less than
cf. [CW04, Property 1]. Since for t < T one has E[ed(1TMX¢] < E[e?(1+MXT) < 00, by (3.2),
relation (3.18]) is proved. O

3.2. Merton’s Jump Diffusion Model. Consider a model [M76] where the log-return
X; has an infinitely divisible distribution, whose moment generating function is given by

2
E [exp(2X¢)] = exp <t {z,u + 3220’2 +A <eza+2252 — 1) }) , Vz e C, (3.20)

where p,a € R and o, A, 6 € (0,00) are fixed parameters.

The asymptotic behavior of oimp(k,t) has been studied by many authors. The case of
fixed t > 0 and kK — oo was derived by Benaim and Friz [BF09] using saddle point methods
(for the detailed computation see [FGY14|, [GMZ14]). The case of fixed k > 0 and ¢t — 0
follows by [FF12|, while the mixed regime of ¢ — 0, k — 0 with k o \/tlog(1/t) was
considered in [MT12]. Applying our results, we can complete the picture, providing general
formulas which interpolate between all these regimes, cf. Theorem [3.4]
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4.5

| asymptatic volatility
41| simulated volatilty |

35*”

o 0.05 01 0.15 02 0.25 03

FI1GURE 1. Implied volatility oimp(k,t) for Merton’s model (with parameters
A=0.01, 0 =0.3, 0 =0.2, a =0.1) in the regime xk = ko(t) for t € (0,0.3).
The asymptotic volatility is given by our formula , while the simulated
volatility is obtained using standard computational packages.

Let us define two functions k() — 0 and ka(t) — oo as t — 0 as follows:

ki(t) =/t log 1, Ka(t) :=/log %, (3.21)

which will separate different behaviors as ¢ — 0. We stress that x1(t) is precisely the scaling
considered in [MT12]. Let us also define f : [0,00) — (0, 00) by

2
f(@) := min (n + 2252> . (3.22)

Note that f is continuous and piecewise quadratic: more precisely, by explicit computation,
fla)=n+ % for all a € [\/2(n — 1)né, /2n(n + 1)), with n € N. It follows that
V2
f(0)=1, fla) ~ —a. (3.23)

a—oc0 0

The role of the function f is explained by the following Lemma, proved in Appendix [A-3]

Lemma 3.3. For every fized a € (0,00), ast — 0 one has

log P(X; > aka(t)) ~ —f(a) log%. (3.24)

Moreover, if either t — 0 and k > Ka(t), or if t =t € (0,00) and K — oo, one has

logP(X: > k) ~ 7%’ /2log§. (3.25)

We are now ready to state our main result for Merton’s model (see Figure [1)).

Theorem 3.4 (Smile Asymptotics of Merton’s model). Consider a family of values of (k,t)
with k > 0 and t > 0.

(1) Ift = 0 and k = O(ka(t)), then

(3.26)
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which can be rewritten more explicitly as follows:

o if 0<k<oki(t)
Timp (K, T) ~ \/Zt/;Tg'; i om(t) < k< ra(l) (3.27)
2tf(/:z)log’: if k~aka(t) with a€ (0,00)
(2) If t 50 and k> Ka(t), orif t—1t€ (0,00) and Kk — oo, then
Ox (3.28)

Oimp(K,t) ~ 4 | ——F— .
p(r 1) 2t,/21log &

Proof. We have to prove relation (3.27) (which is equivalent to (3.26)), by extracting subse-
quences) and relation (3.28)). We distinguish different subcases.

Assume first that ¢ — 0 with k = O(V/t). By extracting sub-sequences, assume that
x 2
k/Vt — a € [0,00). Note that X;/\/t 4, N(0,0?), because E[ewﬁ] — e 202 for every

u € R, as one checks by (3.20). We then apply Theorem with v; = /¢, because the
moment condition (2.31) for n = 1 follows by (3.20) (see also (2.12])). Relation (2.35) yields

Vit
o(k,t) ~Ci(a) —= =0,
since C'y(a) = o (see ((A.4) in Appendix [A.2)). This matches with the first line of (3.27)).

Next we assume that ¢ — 0 with v/ < x < 1. Applying [MT12, Proposition 2.3], we
can write

ok, 1) ~ B[(e”W 2" — e5)t] + Ot
with 0 < C := [[°(e” — 1)v(dz) < oo, where v denotes the Lévy measure of X. The first
term is the usual Black&Scholes price of a call option with s > v/t: applying below
with v = o/t and dy = vt g~ _o—i\/i’ together with and , we get

a2 a2
c(k,t) v ¢(dr) t e 2 t e 2 t
~ — +C-=—5—7+C—-—~ —— + C—.
K K (d1)? K \/277(;—2215)3/2 K V2r d} K
_z2 22 22
ertlng \6/5253 = 6_7_10g( 271'23) — 6_7(1_‘—0(1)) as z — 00, we get
c(k,t) K2

~ e 2ozt o L a+b (say).
K K

The inequalities max{a, b} < a + b < 2max{a, b} yield log(a + b) ~ max{loga,logb} (the
additive constant log 2 is irrelevant, since a,b — 0) hence

c(k,t) K2 t ) K2 K
—logT ~ —max{ — m(l +o0(1)), log <Cﬁ>} ~ mln{m, log¥ .

It is easy to check that the asymptotic equality #2% ~ log % holds when x ~ or1(t). It
follows that:

e in case k < ok (t) we have

c(k,t) K2

1 AT
o8 202t

(3.29)
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e in case Kk > ok (t) we have

t
—ogc'Li Nogﬁ. .
1 (1) I 3.30
K t

(Note that when k ~ ok1(t) both relations (3.29) and (3.30]) hold.)
We can deduce the asymptotic behavior of oimp(k,t) applying relation (2.38]) (note that
c(k,t)/k — 0, since k > v/t) which, by Remark reduces to the first line of ([2.40)), i.e.

K
\/2t (—log(c(k,t)/K)) '
Plugging (3.29)-(3.30]) into this relation yields the first and second line of (3.27]).
Next we assume that t — 0 with n < k < Ka(t), for some fixed n > 0. We claim that

1
clr,t) ~ log 7 (3.32)

which plugged into (3.31)) proves the second line of (3.27)) (since log % ~ log % in this regime).

(3.31)

Oimp(lﬂ},t)

— log

When k > 0 is fixed, (a stronger version of) relation (3.32)) was proved by Figueroa—Lopez
and Forde in [FE12|. For the general case, we fix a € (0,00) and we apply relation (3.24)),
which yields the lower bound

c(k,t) = E[(eX" — %) ] > (e2%2®) — e") P(X; > a ka(t)) ~ e2(=f(@)log ; (1+o(1))

- 3.33
~ e~ F(@log }(1+0(1)) (333)

because K2(t) = y/log 1 < log 1. For an upper bound, we recall that x > n and [FH09]

logP(X; >n) ~ — log% ast—0. (3.34)
Then, for every fixed b € (0,00), using , and Caucy-Schwarz we can write
c(k,t) < gbr2(t) P(n < Xy <bka(t)) + E[eXt l{Xt>bK2(t)}]
< b2 (t)—log ¢ (1+0(1)) + E[er‘]% P(X; > blﬁ:g(t))%
~ e log $(1+0(1) 4 ) 3 F(B)log §(140(1) 7

where in the last step we used E[eQXt]% < (4 for some constant C1, since E[e?Xt] — 1 as

t — 0 by (3.20)). By (3.23)), we can fix b large enough so that f(b) > 2, hence c(k,t) <
— log ¢ (140(
e t

) and for every £ > 0 we can choose a > 0 small enough such that f(a) < 1+¢,
hence ¢(k,t) > e~ (142) log  (1+0(1)) by (3.33]). Altogether, relation (3.32)) is proved.

Let us proceed with the regime ¢ — 0 and k ~ akz(t) for some a € (0,00). Relation

(3-24) shows that such a family of (k,t) satisfies Hypothesis 2.2| with I (o) = f(ea)/f(a)
(we stress that a € (0,00) is fixed throughout this argument, hence I can depend on a).

Since the moment condition (2.9)) is clearly satisfied by (3.20]), we can apply Theorem :
relation (2.18)), coupled with (3.24)), proves the third line of ((3.27).

Finally, it remains to prove (3.28)), hence we assume that either ¢ — 0 and xk > ka(t), or
t — ¢ € (0,00) and k — co. Relation (3.25)) shows that Hypothesis[2.2]holds with I (¢) = o.
By Theorem relation (2.18]) yields (3.28)), completing the proof of Theorem . O
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3.3. The Heston Model. Given the parameters \,9,n,09 € (0,00) and ¢ € [—1,1], the
Heston model [H93]| is a stochastic volatility model (St)¢>o defined by the following SDEs

ds, = S /Vidwi,
dVi = =A\(V; = 0)dt + nv/V; dW?,
Xo = 0, Vo = o0 )
where (W}!)i>0 and (W2);>0 are standard Brownian motions with (dW}!, dW?) = pdt.
Note that S; displays explosion of moments, i.e. E[SF] = oo for p > 1 large enough. In
general, for any fixed ¢ > 0 one can define the explosion moment p*(t) as
p*(t) :=sup{p > 0: E[S?] < oo},

so that E[SY] < oo for p < p*(t) while E[SF] = oo for p > p*(t) (in the case of Heston’s
model, one has E[S?] = oo also for p = p*(t)). The behavior of the explosion moment p*(t)
is described in the following Lemma, proved below.

Lemma 3.5. If o = —1, then p*(t) = 400 for every t > 0.
If o > —1, then p*(t) € (1, +00) for every t > 0. Moreover, ast | 0

. C

2 V1 — 0?
_— (arctan vo—e + 7719<0) ifo<l1
1

- ifo=1
U

The asymptotic behavior of the implied volatility cimp(k,t) is known in the regimes of
large strike (with fixed maturity) and small maturity (with fixed strike).

where

(3.35)

e In [BF08], Benaim and Friz show that for fixed ¢t > 0, when k — +00

V2K
(k) ~ ) — () — 1), 3.36
T ()~ 7 (VI - V@ 1) (3.36)
based on the estimate (cf. also [AP07])
—logP(X; > k) ~ p*(t) K. (3.37)

e In [FJ09], Forde and Jacquier have proved that for any fixed x > 0, as ¢ | 0
K

Timp(K, 1) ~ ———oe

o5 t) 5% V2 A% (k)
where A*(+) is the Legendre transform of the function A : RT — R U {oco} given by
ogop

(3.38)

ifp<C,
A= {1 (VI= oot (fmrv/T=2) o) (3.39)
00 ifp>0C,
where C' is the constant in (3.35)). Their analysis is based on the estimate
1
—logP(X; > k) ~ —=A"(k), (3.40)

tlo t
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obtained by showing that the log-price (X;)¢>0 in the Heston model satisfies a large
deviations principle as t | 0, with rate 1/t and good rate function A*(k).

We first note that the asymptotics and follow easily from our Theorem ,
plugging the estimates and into relations ([2.15)) and (2.18)), respectively.

We also observe that the estimates (3.36) and (3.38) match, in the following sense: if we
take the limit ¢ — 0 of the right hand side of (3.36) (i.e. we first let x T +00 and then ¢ | 0
in Gimp(k,t)), we obtain

V2r 1 V2 1 R
B39 5 Vim0 Vig e V2l

If, on the other hand, we take the limit x 1 oo of the right hand side of (3.38) (i.e. we first
let ¢ | 0 and then k T 400 in oimp(kK,t)), since A*(k) ~ Cﬁﬂ we obtain

K VE
3.38) ~ = ,
' ) kt+oo /2Ck V2

which coincides with (3.41]). Analogously, also the estimates (3.37)) and (3.40)) match.

It is then natural to conjecture that, for any family of values of (k,t) such that 1 +oo
and t | 0 jointly, one should have

(3.41)

(3.42)

log P(X; > k) ~ —C% , (3.43)
where C is the constant in (3.35)). If this holds, applying Theorem relation ([2.18)) yields
VK (3.44)

Timp (K, 1) ~ ——,
RAReTe
providing a smooth interpolation between ({3.36]) and ((3.38)).

Remark 3.6 (Surface asymptotics for the Heston model). If (3.44) holds for any family
of values of (k,t) with Kk — oo and t — 0, it follows that for every € > 0 there exists
M = M(e) € (0,00) such that the following inequalities hold:

(1_5)\/ﬁ§01mp( 7t)§(1+ )m?

for all (k,t) in the region Ap pr == {0 <t < ﬁ, Kk > M}, as it follows easily by contradiction

(cf. Remark [3.2| for a similar argument).

Proof of Lemma[3.5 Given any number p > 1 we define the explosion time 7% (p) as
T*(p) :=sup{t > 0: E[S] < oo}.

Note that if T7*(p) =t € (0, 4+00) then p*(t) = p. By [APO7] (see also [FK09])

(

+00 if A(p) >0, x(p) <0,
) L e [(X2HVAD) M) £ AD) > 0 =0
T*(p) =4 VA ° (x(p)—\/A(p) i AR) 20 x(p) >0, (55
—A A
_Z(p) <arctan v X(p)(p) +7r1x(p)<0> if A(p)<O0,
where
x(p)=omp — X, A@p):=x*p) —n*@0° —p),

TThis is because A(p) 1 400 as p 1 C, hence the slope of A*(k) converges to C as k — oo.
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Observe that if o = —1, then x(p) = —p—A < 0 and A(p) = \2+p (277)\ + 772) > 0, which
implies T (p) = +oo for every p > 1, or equivalently p*(¢) = +oo for every ¢t > 0.
On the other hand, since

Alp) = *0*p* +X* = 2n0dp — ?*p* +1°p = "% (0% — 1) + p(n* — 2n0)) + A2,
we observe that if o # 1, then Ap < 0 as p — 400, which implies

2 V1-—0?
T*(p) 7) (arctan % + 771Q<0>

ptoo p(ny/1 — 02 on
1 2 V1— 02
= ——— | arctan vo—e +7mlo<o | -
Pny/1— 02 0
In particular this leads to the conclusion that, if |g| # 1, then

. C
p*(t) 00T

(3.46)

where C' was defined in (3.35]).
It remains to study the case o = 1, in which x(p) > 0 for every p. We have two possibil-
ities: if 7 > 2\ then A(p) > 0 when p — +o0, and so by (3.45))

1 2 4+ 2n\ 21
O S TV p(n* + 2n)) L2l
pteo \/p(n® + 2nA) np—/pm*+20A) ) NP
On the other hand, if n < 2\, then A(p) < 0 when p — oo and so
2 20\ — n? 21
T"(p) ~ ———— | arctan VPEIA =17 ~ ==
proo /p(2n\ — n?) n np
Finally if n = 2\, A(p) = A2, and so

1 2\ 21
T*(p):log<1+ ) ~ ==

"(p)

A np —2X\) pteo 1 p
In all the cases we obtain p*(t) i % 1, in agreement with (3.37). O

4. FROM OPTION PRICE TO IMPLIED VOLATILITY

In this section we prove Theorem We start with some background on Black&Scholes
model and on related quantities. We let Z be a standard Gaussian random variable and
denote by ¢ and ® its density and distribution functions:

é(2) == P(Zdi dz) _ 6\/; . B(:)=P(Z<2) = /_ () dt . (4.1)

4.1. Mills ratio. The Mills ratio U : R — (0, 00) is defined by
1 d(2) B O(—2)
¢(2) #(z)

The next lemma summarizes the main properties of U that will be used in the sequel.

U(z): Vz e R. (4.2)

Lemma 4.1. The function U is smooth, strictly decreasing, strictly conver and satisfies

U'(z) ~ —;12 as z 1 00. (4.3)
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Proof. Since ®'(z) = ¢(z) and ¢ is an analytic function, U is also analytic. Since ¢'(z) =
—z¢(z), one obtains

U'z)=2U(z) - 1, U'(2) =U(2) 4 2U"'(2) = (1 + 22)U(2) — z. (4.4)

Recalling that U(z) > 0, these relations already show that U’(z) < 0 and U”(z) > 0 for all
z < 0. For z > 0, the following bounds hold [S54, eq. (19)], [PO1, Th. 1.5]:

z 1 1 22 +2
== <U(») < = . Vz>0. 4.5
2241 241 =) ity P A3 (45)

z

Applying (4.4) yields U”(z) > 0 and _H% <U'(z) < —ﬁ for all z > 0, hence (4.3). O

We recall that the smooth function D : (0,00) — (0, 00) was introduced in (2.32)). Since

1
D'(z) = 2 (2) <0, (4.6)
D(-) is a strictly decreasing bijection (note that lim, |y D(2) = oo and lim,_,o D(z) = 0).
Its inverse D~1 : (0,00) — (0, 00) is then smooth and strictly decreasing as well. Writing

D(z) = ¢(z)(L = U(2)), it follows by ([&F) that 1 — U(z) ~ Z% as z 1 0o, hence

z

1 e~ 7% 1 1
D(Z)N;@W)NW as z 1 00, D(Z)N;fb(o):\/gz as 2] 0.

It follows easily that D~!(-) satisfies (2.33).

4.2. Black&Scholes. Let (B;);>o be a standard Brownian motion. The Black&Scholes
model is defined by a risk-neutral log-price (X; := 0By — %O’Qt)tzo, where the parameter
o € (0, 00) represents the volatility. The Black&Scholes formula for the price of a normalized
European call is Cgs(k, 0v/1), where & is the log-strike, ¢ is the maturity and we define

1 — er)* ifo=0,
Cas(i,v) i= Effer 20" — eyt = { ¢ o (4.7
(I)(dl) — e“@(dg) ifv>0,
where @ is defined in (4.1), and we set
di=d =54 do = dy —
! 1(,v) TR so that ; ; v (4.8)
de = da(k,v) == -5 — 5, dy = di +2k.

Note that Cgs(k, v) is a continuous function of (x,v). Since e*¢(d2) = ¢(d1), for allv > 0
one easily computes
aCBS (’%7 'l))
ov

hence Cgs(k,v) is strictly increasing in v and strictly decreasing in x (see Figure . It is
also directly checked that for all k € R and v > 0 one has

Cgs(k,v) =1—€" 4+ "Cgs(—k,v). (4.9)

= ¢(d1) >0,

In the following key proposition, proved in Appendix [A.4] we show that when £ > 0
the Black&Scholes call price Cgs(k,v) vanishes precisely when v — 0 or d; — —oo (or,
more generally, in a combination of these two regimes, when min{d;,logv} — —o0). We
also provide sharp estimates on Cgs(k,v) for each regime (weaker estimates on log Cgs (%, v)

could be deduced from Theorems and .
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FIGURE 2. A plot of (k,v) — Cgs(k,v), for k € [-10,10] and v € [0, 4].

Proposition 4.2. For any family of values of (k,v) with k >0, v > 0, one has
Cgs(k,v) =0 if and only if min{d;,logv} — —o0, (4.10)

that is, Cgs(k,v) — 0 if and only if from any subsequence of (k,v) one can extract a
sub-subsequence along which either dy — —oo or v — 0. Moreover:

o ifdy:=—7+35 — —o0, then
v
~ _— 4.11
CBS(’L%U) Qb(dl) _dl(_dl +Q}) ’ ( )
e if v — 0, then
CBs(H, U) ~ —U/(—dl) ¢(d1)v; (4.12)

where ¢(-) and U(-) are defined in (4.1) and (4.2).

4.3. Proof of Theorem Since the function v — Cgs(k,v) is a bijection from [0, c0)
to [(1 —e®)™, 1), it admits an inverse function ¢ — Vgs(k, ¢), defined by

Cgs(k, Ves(k,c)) = c. (4.13)
By construction, Vgs(k, -) is a strictly increasing bijection from [(1 —e®)*, 1) to [0, 00). We
will mainly focus on the case x > 0, for which Vgs(k,-) : [0,1) — [0, 00).

Consider an arbitrary model, with a risk-neutral log-price (X¢):>0, and let ¢(k,t) be the
corresponding price of a normalized European call option, cf. (2.1]). Since z — (z — €)™ is
a convex function, one has c(k,t) > (E[eXt] —e®)* = (1 —e”)* by Jensen’s inequality; since
(z—ef)* < z*, one has c(k,t) < E[eXt] = 1. Consequently, by (£.13)), we have the following
relation between the implied volatility oimp(k,t) (defined in §2.1)) and Vgs(k, c(k, t)):
Ves(k, ¢(k,t))

Relation (4.14]) allows to reformulate Theorem more transparently in terms of the
function Vgs. Inspired by (2.2)), we define p = p(k, ¢) by

p:i=c—(1—¢"). (4.15)

Timp (K, t) = (4.14)
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Consider an arbitrary family of values of (k, ¢), such that either k > 0, ¢ € (0,1) and ¢ — 0,
or alternatively k <0, p € (0,1) and p — 0 (with p as in (4.15))). Then, in light of (4.14)),

we can write the following:
e If kK bounded away from zero (liminf |x| > 0), relation (2.37) is equivalent to

Vas(r.¢) ~ V2(=loge+ k) —/2(=loge) ifk>0, (4.16)

V2 (=logp) — /2 (~logp+ k) ifk<O0.

e If k is bounded away from infinity (limsup || < o), relations (2.38) and (2.39) are
equivalent to

(" ifh>0,
DI(2)
Ves(k,c) ~ ¢ V2re=V2rp if k=0, (4.17)
_r if k<0,
D-1(Z£)

where D~1(.) is the inverse of the function D(-) defined in (2.32), and satisfies (2.33)).
The proof of Theorem is now reduced to proving relations (4.16|) and (4.17)). We first

show that we can assume k > 0, by a symmetry argument.

Deducing the case k < 0 from the case k > 0. Recalling (4.9) and (4.13)), for all x € R and
ce[(1—e€")",1) we have

Ves(k,c¢) = Vps(—k,1 —e " + e "c) = Vps(—k,e "p),
where p is defined in (4.15)). As a consequence, in the case k < 0, replacing k by —k and ¢

by e *p in the first line of (4.16)), one obtains the second line of (4.16]).
Performing the same replacements in the first line of (4.17)) yields

—K

D=1(e=rL)

which is slightly different with respect to the third line of (4.17). However, the discrepancy
is only apparent, because we claim that D' (e™*£-) ~ D~!(L). This is checked as follows:
if K — 0, then e™*£ ~ L£.if Kk - Kk € (—00,0), since p — 0 by assumption, the first

)

relation in (2.33)) yields D' (e ™" £-) ~ , /2(—log() + &) ~ \/2(—log(_%€)) ~ D YL,
Em)

as required. (See the lines following below for more details.) O

VBS(’%v C) ~

Proof of for k > 0. We fix a family of values of (k,c) with ¢ — 0 and x bounded
away from zero, say x > ¢ for some fixed & > 0. Our goal is to prove that relation (4.16))
holds. If we set v := Vps(k, ¢), by definition we have Cgs(k,v) =c— 0.

Let us first show that d; := —7 + § — —o0. By Proposition Cgs(k,v) — 0 implies
min{d;,logv} — —oo, which means that every subsequence of values of (k,c) admits a
further sub-subsequence along which either dy — oo or v — 0. The key point is that v — 0
implies d; — —o0, because d; < —% + & (recall that x > d). Thus di — —oo along every
sub-subsequence, which means that d; — —oo along the whole family of values of (k,c).

Since di — —o0, we can apply relation . Taking log of both sides of that relation,
recalling the definition of ¢ and the fact that Cgs(k,v) = ¢, we can write

v

——d1(—d1 o) (4.18)

1
log c ~ —§d% — log V27 + log
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We now show that the last term in the right hand side is o(d?) and can therefore be
neglected. Note that —d; > 1 eventually, because d; — —o0, hence

1 Y <log —— <0
0 0 .
g—al1(—cl1—i—v) =810 =
Since v — # is decreasing for —dy > 0, in case v > —d; one has
v —dl(—dl + U) 9
log————+——| =log —————% <log(—2dy) = o(dy) .
8 i (ds 1 0) g < log(—2d) = o(dy)

On the other hand, recalling that d; < —% + 5, in case v < —d; one has d; < —% - %1,

which can be rewritten as v > %‘le and together with v < —d; yields

v —dl(—d1 + ’U) —dl(—dl — dl) 3(—d1)3 2
8 )| % 5 < log 25 g | —55 o(dy)
- 1
In conclusion, (4.18)) yields logc ~ —%d%, that is there exists v = v(k, ¢) — 0 such that
(1+7)loge = —1d?, and since logc < 0 we can write
1, 1(/kr* 22
(L ltogel =yt =3 (5 + %~ ).

This is a second degree equation in v?, whose solutions (both positive) are
1 1 1 1 > 1
&:2K1+2<+wr%412¢<<+w\%4>_F<+wr%d]' 419)
K K K

Since d; — —o0, eventually one has d; < 0: since dj = —£ + £ = —3-(v/2k — v) (V2K + v),
it follows that v?2 < 2k, which selects the “—” solution in (4.19)). Taking square roots of
both sides of (4.19) and recalling that v = Vs(k, ¢) yields the equality

Ves(k, ¢) = v/2(1 + )| log ¢ + 25 — v/2(1 +7)|log ], (4.20)

as one checks squaring both sides of (|4.20]).
Finally, since 7 — 0, it is quite intuitive that relation (4.20)) yields (4.16|). To prove this
fact, we observe that by (4.20) we can write

Ves(k, ¢) ( K >
_ , 421
V2| log c| + 2k — /2] log c| I | log ¢| (21

where for fixed v > —1 we define the function f, : [0,00) — (0,00) by

NIyt —/T+y o 1
fy(x) = NiE for z > 0, f+(0) == lxlﬁ)lf,y(x) viETh

By direct computation, when v > 0 (resp. v < 0) one has <L f.(z) > 0 (resp. < 0) for all
x > 0. Since limg 1 fy(z) = 1, it follows that for every & > 0 one has f,(0) < f,(z) <1
if ¥ > 0, while 1 < f,(z) < f,(0) if v < 0; consequently, for any ~,

1 1
Fr(@) < Ve >0,

7< 77 -
Vith —" V1=l

which yields lim_,g f,(z) = 1 uniformly over x > 0. By (4.21]), relation (4.16)) is proved. O
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Proof of for k > 0. We now fix a family of values of (k, ¢) with ¢ — 0 and  bounded
away from infinity, say 0 < xk < M for some fixed M € (0, 00), and we prove relation (4.17)).

We set v := Vps(k, ¢) so that Cgs(k,v) = ¢ — 0, cf. . (Note that v > 0, because
¢ > 0 by assumption.) Applying Proposition we have min{d;,logv} — —oo0, i.e. either
d; — —oo or v — 0 along sub-subsequences. However, this time d; — —oco implies v — 0,
because d; > —% + % (recall that k < M), which means that v — 0 along the whole given
family of values of (k,c).

Since v — 0, relation yields
c~ =U'(=dy) ¢(dy)v. (4.22)
Let us focus on U’(—d): recalling that dy = —% + § and v — 0, we first show that
U'(—dy) ~ U’<’;> . (4.23)
By a subsequence argument, we may assume that & — o € [0, o], and we recall that v — 0:
o if p < 00, U'(—dy) and U’'(£) converge to U'(o) # 0, hence U'(—dy)/U'(£) — 1;
o if p = 00, —d; and £ diverge to oo and yields U'(=dy)/U'(£) ~ (2)/(—d1) — 1.
The proof of is completed. Next we observe that, again by v — 0,

1 152 1 1s2 | 02 1 1 12 1 K
—d = 7€_§d1 = 6_2(u2+ 2 _H) ~ eiﬁ‘ e 2v2 — 655 <> .
¢(=d1) V2T V2T V2 ¢ v

We can thus rewrite (4.22) as
cr~ —U'<H> (;S(K) ey (4.24)
v v

If kK = 0, recalling (4.4)) we obtain ¢ ~ ¢(0)v = %ﬁv, which is the second line of (4.17)).
Next we assume « > 0. By (4.4]), (4.2) and (2.32)), for all z > 0 we can write

—U'(2) d(2) = —¢(2) (2U(2) — 1) = ¢(2) — 28(—2) = 2D(2),

hence (4.24)) can be rewritten as
c~/€eé“D<H> , ie. (1 +fy)c—ne§“D<H) ,
v v

for some v = y(k, c) — 0. Recalling that v = Vgs(k, ¢), we have shown that

VBS(H7 C) =

KR

ke2"”

D! (“};J) ~ D! (Z) . (4.26)

By a subsequence argument, we may assume that £ — 7 € [0,00] and £ — & € [0, M].

(4.25)

We now claim that

e If n € (0,00), then & = 0 (recall that ¢ — 0) hence (1 + ’y)c/(/ﬁe%“) — 1; then both
sides of (4.26) converge to D~1(n) € (0,00), hence their ratio converges to 1.

e If 7 = oo, then again kK = 0, hence (1 + V)C/(HC%H) — o0 since D7 L(y) ~ ﬁy‘l as

y — 00, cf. (2.33), it follows immediately that (4.26]) holds.
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o If n =0, then (1 +7v)c/( Kez® ) — 0: since D~1(y) ~ /2[logy| as y — 0, cf. ([2.33),

(8572 - () ()]
ﬁ€2 3K

because |log | — oo while |log|[(1 +'y)/e2 ]| = 3k €| ,%], hence (4.26]) holds.

Having proved -, we can plug it into ( , obtaining precisely the first line of (4.17)).
This completes the proof of Theorem O

logc‘,
K

5. FROM TAIL PROBABILITY TO OPTION PRICE

In this section we prove Theorems and We stress that it is enough to prove
the asymptotic relations for the option prices c(k, t) and p(—k, t), because the corresponding
relations for the implied volatility oimp(%x,t) follow immediately applying Theorem

5.1. Proof of Theorem and We prove Theorem [2.3]and [2.4]at the same time. We
recall that the tail probabilities Fy(k), F;(—k) are defined in (L.1I)). Throughout the proof,
we fix a family of values of (k,¢) with kK > 0 and 0 < ¢t < T, for some fixed T" € (0, 00), such
that Hypothesis is satisfied.

Extracting subsequences, we may distinguish three regimes for s:

e if K — 0o our goal is to prove (2.14)), resp. (2.21));

e if Kk — K € (0,00) our goal is to prove ([2.17)), resp. (2.23), because in this case, plainly,
one has —log F'4(k)/k — 00, resp. —logFt(— )/k — o0, by (12.5));

e if kK — 0, our goal is to prove (2.19), resp. (2.26).
Of course, each regime has different assumptions, as in Theorem and

Step 0. Preparation. It follows by conditions (2.7 and ([2.8) that
Ve >0 Jo. € (1,00): Ii(p:) <1+e, (5.1)
therefore for every € > 0 one has eventually

log Fi(0o) > (1+2)log Fiy(k),  resp.
log Fi(—o:k) > (1 +¢) log Fy(—k) ,

where the inequality is “>" instead of “<”, because both sides are negative quantities.
We stress that Fy(k) — 0, resp. Fy(—k) — 0, by (2.5)), hence

log Fy(k) = —o0, tesp. log Fi(—k) — —0c0. (5.3)
Moreover, we claim that in any of the regimes k — oo, Kk = Kk € (0,00) and k£ — 0 one has
log F¢(k) + k — —00. (5.4)

This follows readily by (5.3) if k = 0 or k — & € (0,00). If K = 0o we argue as follows: by
Markov’s inequality, for n > 0

Fy(k) < E[etmXe)e=(4mr (5.5)

hence
log Fy(k) 4+ k < —nk + log Ble0HMXe]
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Since in the regime k — 0o we assume that the moment condition (2.9) holds for some or
every 1 > 0, the term log E[e(H")Xt] is bounded from above, hence eventually

log Fy(k) + K < —g K, (5.6)

which proves relation ([5.4)).

The rest of the proof is divided in four steps, in each of which we prove lower and upper
bounds on ¢(k,t) and p(—k,t), respectively.

Step 1. Lower bounds on ¢(k t) We are going to prove sharp lower bounds on ¢(k,t), that

will lead to relations | - and (| -

By . ) and ( . for every € > 0 we can write

c(ryt) > EBl(e™ = €M1 (x,50.m)] = (€% — ") Fy(0er) (5.7)
and applying (5.2)) we get
log c(k,t) > log (€2" — ") + (1 + ¢) log Fy(k) . (5.8)

If k — 00, since log(e?" — ) = k 4 log(el®==1* — 1) > k eventually, we obtain

logc(k,t) > K+ (1 +e)log Fy(k) = (14 ¢€)(log Fy(k) + k) — er

5.9
_(1+5+55)(10gFt(/<;)+n), (5.9)
where in the last inequality we have applied ([5.6)). It follows that
1 t
lim sup 0g c(#s 1) <l+e+ %E, (5.10)

log Fy(k) + K
where the lim sup is taken along the given family of values of (,t) (note that log c(x,t) and
log F'y(k) + K are negative quantities, cf. (5.4]), hence the reverse inequality with respect to
(5.9)). Since € > 0 is arbitrary and n > 0 is fixed, we have shown that

log ¢(k, t)
log Fy(k) + K
that is we have obtained a sharp bound for (2.14]). -

If Kk — & € (0,00), since log(e?" —e") — log(eF—e®) is bounded while log Fy (k) — —oo0,

relation ([5.8)) gives

lim sup <1, (5.11)

limsupw <l+4e.
log F'¢(k)

Since € > 0 is arbitrary, we have shown that when k — & € (0, 00)

1 t
lim sup 221 (5.12)
log F'y (k)
obtaining a sharp bound for (2.17)).

Finally, if & — 0, since for x > 0 by convexity log(e®" — ) = k + log(ele==D* — 1) >
K+ log((0e — 1)k) = k + log(o: — 1) + log k, relation ([5.8) yields

t _
tog ) _1og e(s,£) — log s > log(oe — 1) + (1 -+ £) log Fi() .
K

Again, since log(g. — 1) is constant and log Fy(k) — —o0, and € > 0 is arbitrary, we get

log (c(k,t)/k)
log Fy(k) =h (513

lim sup
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proving a sharp bound for (2.19).
Step 2. Lower bounds on p(—k,t). We are going to prove sharp lower bounds on p(—k,t),

that will lead to relations ([2.21f), (2.23) and ({2.26]).
Recalling (2.1]) and (5.1)), for every € > 0 we can write

pl—r,) 2 E[e™ = )L png] = (75— e @M Fy(—gr),  (5.14)

and applying we obtain
logp(—k,t) > log (e7" — e ") + (1 4 ¢) log Fy(—k) . (5.15)
If k — 00, since log(e ™" — e2") = —k + log(1 — e~(@¢==1") ~ —g eventually one has

log(e™" — e79") > —(1 + ¢)x and we obtain
logp(—k,t) > (1 +¢)(log Fy(—k) — k) .
Since € > 0 is arbitrary, it follows that

log p(—~, 1)

— <1 5.16
log Fy(—k) — K ’ (5.16)

lim sup

which is a sharp bound for (2.21)).
If Kk — & € (0,00), since log(e™ " —e~2") — log(e~F—e ") is bounded while log F;(—k) —
—o0, and € > 0 is arbitrary, relation (5.15)) gives

log p(—~, 1)

<1 5.17
log F;(—r) — (5.17)

lim sup

which is a sharp bound for (2.23]).
Finally, if & — 0, since e =% — e 2% = e=0=f(gle==1k _ 1) > ¢=0=(p_ — 1)x by convexity,
since k > 0, one has eventually

log (67 — e %") > log k + log (e7%" (9. — 1)) > log k + £ log Fy(—k),
because log (e 72" (g, — 1)) — log(o- — 1) > —oo while log F;(—r) — —oo. Relation (5.15)
then yields, eventually,

p(—K,t)

log = log p(—r,t) —logk > (1+ 2¢) log Fy(—r).

Since € > 0 is arbitrary, we have shown that

log (p(—/{, t)/li)

I
im sup Tog Fy(—r)

<1, (5.18)

obtaining a sharp bound for (2.26]).

Step 3. Upper bounds on c(k,t). We are going to prove sharp upper bounds on ¢(k,t), that

will complete the proof of relations ([2.14)), (2.17) and (2.19)). We first consider the case
when the moment assumptions (2.9) and (2.11)) hold for every n > 0.

Let us look at the regimes kK — oo and kK — & € (0,00) (i.e. x is bounded away from
zero), assuming that condition (2.9) holds for every n > 0. By Hélder’s inequality,
(k. 1) = El(e¥ — €)1x,5m] < Ble¥ 1 (x,00] < B[00 Fy(i) T . (5.19)

Let us fix € > 0 and choose 1 = 7. large enough, so that ﬁ > 1 —e. By assumption ([2.9)),
for some C € (0, 00) one has

E[e(1+n)Xt]ﬁ <C,
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hence eventually, recalling that log F';(x) — —o0, by ,

log c(k,t) <logC' + (1 —¢)log F(k) < (1 — 2¢)log Fy(k) . (5.20)
Since € > 0 is arbitrary, this shows that
m >1. (5.21)

which together with completes the proof of (2.17), if &k — & € (0,00). If K = o0
and condition holds for every n > 0, then log Fy(k)/k — —oo by (5.5)), which yields
log Fy(k) ~ log F(k) + k, hence together with completes the proof of ([2.14).

We then consider the regime x — 0, assuming that condition holds for everyn > 0.
We modify as follows: since (eXt — e®) < (eXt — 1) < |eXt — 1],

lim inf

eXt — 1

Fy(k) T . (5.22)

147 ﬁi
ctt) < BX ~ 11 x0] < wE| }

K

Let us fix € > 0 and choose 1 = 7). large enough, so that ﬁ > 1 —e. By assumption (2.11)),
for some C' € (0,00) one has

Xt 1 1+n ﬁ
E[e ] <o, (5.23)
K
hence relation (5.22) yields eventually
c(k,t) — —
log ——= <logC + (1 —¢)log Fi(k) < (1 — 2¢)log F(k) . (5.24)
K

Since € > 0 is arbitrary, we have proved that

log (c(ﬁ, t)/H)
log F'¢(r)

which together with ([5.13)) completes the proof of (2.19).

It remains to consider the case when the moment assumptions (2.9)) and (2.11]) holds for
some 1 > 0, but in addition conditions (2.13)) (if K — oo or kK = & € (0,00)) or (2.16) (if
k — 0) holds. We start with considerations that are valid in any regime of k.

Defining the constant

> 1, (5.25)

lim inf

—K
A=1i SR S 5.26
lmSUP{logFt(ﬁ)—i-/i} (5.26)

where the lim sup is taken along the given family of values of (k,t), we claim that A < co.
This follows by (5.4)) if K — 0 or if kK — & € (0,00) (in which case, plainly, A = 1), while if
Kk — +oo it suffices to apply (5.6) to get A < 2/n+ 1. It follows by ([5.26]) that eventually

k< —A(log Fi(Kk) + k) . (5.27)

Next we show that, for all fixed e > 0 and 1 < M < oo, eventually one has

log < sup e Ft(,‘{y)> < (1—¢)(log F¢(k) + k), (5.28)
ye(1,M]
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which means that the sup is approximately attained for y = 1. This is easy if £ — 0 or if
Kk — K € (0,00): in fact, since k — F¢(k) is non-increasing, we can write

log < sup e Ft(/ﬁy)> <log (" Fy(k)) = kM + log Fy(k)
ye[l,M]

= (log F¢(k) + k) + (M — 1)&,

and since log Fy(k) + x — —oc by (5.4), while (M — 1)& is bounded, ([5.28) follows.

To prove (5.28)) in the regime K — oo, we are going to exploit the assumption (2.13)).
First we fix § > 0, to be defined later, and set 71 := [%] and a, :=1+nd forn =0,...,n,

so that [1, M] C Uzzl[an,l, ay]. For all y € [ap—1,a,] one has, by (2.7),
log Fy(ky) < log Fy(kan_1) ~ Iy (an_1)log Fy(k) < an_1log Fy(k),
having used that I, (9) > o, by (2.13)), hence eventually
log Fy(ky) < (1 — 6)an_1log Fy(k), Yy € [an—1,an) .

Recalling that a,, = a,—1+ 9, we can write a, < (1—9)a,—1+0(1+ M), because a,—1 < M
by construction, and since e"¥ < " for y € [a,—1, ay], it follows that

log ( sup e Ft(/@'y)> < max_(ank + (1 — 8)an—1log Fi(k))
ye[:l,M] 77,21,...,7‘[,

= max_((1—6)an—1(log Fy(k)+ k) +0(1 + M)K) .

n=1,...,n
Plainly, the max is attained for n = 1, for which a,,—1 = ag = 1. Recalling (5.27)), we get
log < sup e Ft(/qy)) <(1-0(1+ A+ AM))(log Fi(k) + k) .
y€(1,M]
Choosing ¢ :=¢/(1 + A+ AM), the claim (5.28) is proved.
We are ready to give sharp upper bounds on ¢(k, t), refining (5.19)). For fixed M € (0, c0),

we write

C(Hv t) = E[(eXt - eﬁ)l{n<Xt§fiM}] + E[(eXt - en)l{Xt>l-€M}] ) (529)
and we estimate the first term as follows: by Fubini-Tonelli’s theorem and ([5.28)),

E[(e — e") (e x, <urry] = E[(/,i
kM

kM
= / e’ Plr < Xy <kM)dx < / e’ Fy(z)dx (5.30)

K

o0

e’ 1{I<Xt} dl‘) ]‘{Ii<Xt<K/M}:|

M —
= I{/ Y Ft(liy) dy < k (M _ 1) e(l—e)(logF}(n)—&-n) )
1

To estimate the second term in ([5.29)), we start with the cases kK — oo and k — & € (0, 00),
where we assume that (2.9)) holds for some n > 0, as well as (2.16)), hence we can fix M > 1
such that I (M) > HT” Bounding (eXt — e) < eXt, Holder’s inequality yields

E[(eX — e")1{x,5nm}] < E[e<1+n>Xt]ﬁ Fy(kM)T = O Fy(kM)T

where C' € (0,00) is an absolute constant, by (2.9). Applying relation (2.7) together with
I.(M)> % we obtain

] _7_ ; log Fiy(kM) ~ . —7—77]+(M) log Fy(k) < log Fy(k), (5.31)
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hence eventually

logE[(eX" — e“)l{Xt>,{M}] <(1—¢)logFy(k) < (1— 5)(logFt(/€) + /43) . (5.32)
Recalling and , eventually k(M — 1) < e_a(logft(“)"’”), hence by
log E[(et — e uex,<umy] < (1 —2¢)(log Fy(k) + k) . (5.33)
Looking back at , since
log(a + b) < log 2 + max{loga,logb}, Va,b>0, (5.34)

by , and again one has eventually
log c(k,t) <log2+ (1 — 2¢)(log Fi(k) + k) < (1 — 3¢)(log Fi(k) + k) .
Since € > 0 is arbitrary, this shows that
log ¢(k, t)
log Fie(k) + Kk —
which together with completes the proof of , if kK — co. Since log Fy(k) + k ~
log Fi(k) if K — & € (0,00), by (5.3, we can rewrite in this case as

liminf 2 > 1, (5.36)

lim inf

L, (5.35)

which together with (5.12]) completes the proof of (2.17)).
It remains to consider the case when x — 0, where we assume that relation (2.11)) holds

for some 7 € (0, 00), together with (2.16)). As before, we fix M > 1 such that I, (M) > 1.

n
eXt _ er\ 111
B|(7) 1een] <8

for some absolute constant C' € (0,00), by (2.11)), the second term in ([5.29)) is bounded by

Xe _ K Xt — e [T T o — o
E[(e™ —e")lix,>emy] < KE||——— Fi(kM)T™n < kC Fy(kM)Tn . (5.38)
K

In complete analogy with (5.31))-(5.32)), we obtain that eventually

El(e® — e®)1{x,>nm}] <
p <

By (5.4), eventually (M — 1) < e_‘f(logft(”)“‘“), hence by ({5.30)

E[(e*t —e)1
[(6 e ) {n<Xt§nM}] S(
K
Recalling (5.29) and (5.34), we can finally write

Since

eXt — 1

1+n
] <C, (5.37)

log (1 —¢)log Fy(k). (5.39)

log 1 —2¢)(log Fy(k) + k) . (5.40)

t _ _
log clr:t) <log2+ (1 —2¢)(log Fy(k) + k) < (1 —3e)log Fy(k),
K
because  — 0 and log F'¢(x) — —oo. Since € > 0 is arbitrary, we have proved that

log (c(k,t)/k)
—ogFig 2 1, (5.41)

which together with ([5.13)) completes the proof of (2.19).

lim inf
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Step 4. Upper bounds on p(—k,t). We are going to prove sharp upper bounds on p(—x,t),

that will complete the proof of relations (2.21)), (2.23]) and (2.26)).
By (2.1) we can write

p(_"@ t) = E[(eiﬁ - eXt)l{XtSfm}] <e ™" Ft(_"i) )
therefore

log p(—+,t)
— - >1, 5.42
log Fi(—k) — Kk — (542)
which together with ([5.16)) completes the proof of (2.26)), if K — co. On the other hand, if
k — K € (0,00), since relation (5.42)) implies (recall that x > 0)

IOg p(_’%? t)
log Fy(—k) — '
in view of (5.17)), the proof of (2.23) is completed.

It remains to consider the case k — 0. If relation (2.11]) holds for every n € (0,00), we
argue in complete analogy with (5.22)-(5.23)-(5.24), getting

log (p(—m,t)/n)
log Fy(—k)

which together with (5.18) completes the proof of (2.26)). If, on the other hand, relation
(2.11)) holds only for some n € (0,00), we also assume that condition (2.25) holds, hence
we can fix M > 1 such that I_(M) > 1;'7'77. Let us write

(5.43)

lim inf >1, (5.44)

p(=r,t) = E[(e™" = eX) 1 pnrex,<my] + Elle™" = €)1 x,< )] - (5.45)

In analogy with (5.30)), for every fixed € > 0, the first term in the right hand side can be
estimated as follows (note that y — Fi(—ky) is decreasing):

—K

M
e’ Fy(z)dz = m/ e ™" F(—kry)dy
—kM 1
< k(M — 1) Fy(—k) < kel logFi(=r)
The second term in ([5.45)) is estimated in complete analogy with (5.37))-(5.38)-(5.39)), yield-

ing

E[(eiﬁ - GXt)l{an<Xt§fn}] < /

El(e™ — e*)1{x,<prn] -

log - (1 —¢)log Fy(—k) .
Recalling ((5.34]), we obtain from ([5.45))
—K,1
log =k, ) <log2+ (1 —¢)log Fy(—k) < (1 — 2¢)log Fi(—k),
K

and since ¢ > 0 is arbitrary we have proved that relation (5.44) still holds, which together
with (5.18]) completes the proof of (2.26)), and of the whole Theorem O

5.2. Proof of Theorem By Skorokhod’s representation theorem, we can build a
coupling of the random variables (X;);>0 and Y such that relation (2.29) holds a.s.. Since
the function z + 27 is continuous, recalling that v — 0, for k ~ a~y; we have a.s.

(eXt . en)+ (eY'yt(l—l-o(l)) -1 ea%(l—&—o(l)) . 1>+

= (Y —a)T, (5.46)
Vt

£10

Tt Ve
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and analogously for kK ~ —ay;
(5 — ¥y
Yt t}0
Taking the expectation of both sides of these relations, one would obtain precisely (2.34)).
To justify the interchanging of limit and expectation, we observe that the left hand sides
of (5.46) and (5.47) are uniformly integrable, being bounded in L'*". In fact

leXt — e”| leXt — 1] |er — 1]
< +

a.s.

(—a—Y)* = (Y +a). (5.47)

—= )

Tt Tt Tt
and the second term in the right hand side is uniformly bounded (recall that x ~ a7y by
assumption), while the first term is bounded in L7 by (2.31). O

APPENDIX A. MISCELLANEA

A.1. About conditions and . Recall from that (X¢)e>0 denotes the risk-
neutral log-price, and assume that X; — Xy := 0 in distribution as ¢t — 0 (which is
automatically satisfied if X has right-continuous paths). For an arbitrary family of values
of (k,t), with t > 0 and x > 0, we show that condition implies ([2.4)).

Assume first that t — 0 (with no assumption on k). Since x > 0, one has (et —e®)* —
(1—e®)* = 0 in distribution, hence ¢(x,t) — 0 by and Fatou’s lemma. With analogous
arguments, one has p(—k,t) — 0, hence is satisfied.

Next we assume that £ — oo and ¢ is bounded, say ¢ € (0,7 for some fixed 7' > 0. Since
2+ (z—c)* is a convex function and (e*t);>¢ is a martingale, the process ((eXt —e®)*);>q
is a submartingale and by we can write

0 < c(k,t) S E[(e™ — )] = E[(e™T — ") 1{xynn)] < Ele™1ixmp]-

It follows that, if Kk — 400, then ¢(k,t) — 0. With analogous arguments, one shows that
p(—k,t) — 0, hence condition ([2.4) holds.

A.2. About Remark Let (S¢)t>0 be a positive process which solves (2.36]). By Ito’s

formula, the process X; := log S; solves

dX; = Vi dW, — 3V, dt (A1)
Xo=0 '
Assuming V; — 08 a.s. as t — 0, we want to show that
X
24y~ N(0,02). (A.2)

\/Z t—0

Let us define

1 [t X 4% ERVATAR
Jt::/Vsds, It::t—i—Jt—agt:/MdWs.
2v't Jo Vit Vi 0 Vit

By V; — 08 a.s. it follows that J; ~ gao — 0 a.s., by the fundamental theorem of calculus.
Moreover, since v/ V; — og a.s.,

! \/‘/s_ 2 a.s
(I) ::/ |ta0|d5§ sup |/ Vs — aol* =25 0. (A.3)
0

0<s<t t—0
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first t — 0 for fixed § > 0, and then § — 0, we see by (A.3) that I; — 0 in probability as
t — 0. Since oW/t — Y ~ N(0,03) in distribution as ¢t — O,Iﬂ by Slutsky’s theorem

X Wy d 2

L~ it ot -5 04+Y =Y ~ N(0,02),
hence relation (A.2)) holds.

Next we show that, plugging Y ~ N(0,03) into (2.35), we obtain Cy(a) = oy for any
a > 0. Since Y has a symmetric law, it suffices to focus on C4 (a). Then

We now use the inequality P(|I| > ) < 8% +P((I); > §), cf. [KS8Y, Problem 5.25|. Sending

2 2

+ o 0o T2
a e 2 a e 2
N(0,1) — — = de — — d
< ©.1) 00) ] JO[/;B:U\/% T = V21 x]

“ofef3) 7o (7)) -+ ()

where we used the density ¢ and distribution function ® of a N (0, 1) random variable, cf.

(4.1), and the definition (2.32)) of D. Looking back at (2.35)), we obtain Cy (a) = oy. O

A.3. Proof of Lemma We start with some estimates. It follows by (3.20) that
d al
XS oWetput+ >,

=1

E[(Y —a)T] =0y E

(A.4)

with Y; ~ N(a,6?) and Ny ~ Pois(\t) (and we agree that the sum equals 0 in case N; = 0).
By Chernoff’s bound] P(N; > M) < (%)™, hence

M n
P(X; > k) = e—)\tZP(N(,ut—i-nOz,g%—i-ndz) > k) ()Z') + O((?}t)M> ., (A.D)
n=0 ’

where N (a,b) denotes a Gaussian random variable with mean a and variance b. We recall
the standard estimate log P(N(0,1) > z) ~ —32? as & — co. Then we can write:
If ¢ is bounded from above (e.g. t — ¢ € [0,00)) and k — o0,
K2 (A.6)
2%t +né?)
In particular, we get from that, for fixed M € N,

2 M w2 n M
P(X; > k) ~ e 2010 Ze‘m“*o(l)) A" o <6)‘t> >

log P(N (pt + na, 0%t +né?) > k) ~ —

— n! M
n= (A.7)
2 2 1 A\ M
< e mmHoM) L ar max e—(;?mlogﬁ+1ogn!)(1+o(1)) Lol (M '
- n=1,...M M
For a lower bound, restricting the sum in (A.5)) to a single value n € N, we get
2
P(X; > k) > e*(2<02?+n62>+"1°g%“‘)g"!)(l”(l)) . (A.8)

fIn fact, the distribution of ooW/v/t is N(0,08) for all t > 0.
!Just apply Markov’s inequality P(N; > M) < e”MeE[eNt] = ¢=Mat2t(¢" =1 4nd optimize over o > 0.
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We now prove relation ([3.24). We fix a family of (k, ¢) with ¢ — 0 and k ~ a ka(t) for some
€ (0,00). To get an upper bound we drop the term logn! in (A7) (since e~ 8™ < 1)

and plug x ~ a,/log %, getting

i(l (1)) (i ) 1+o(1)) ext\ M
P(X: > k) < t20% Tol)) 4 pp —HllaXM t gzt (I+o + 0 <M) . (A.9)

Let us denote by 7, € N the value of n € N for which the minimum in the definition ((3.22))
of f(a) is attained. Choosing M € N large enough, so that M > n,, the middle term in
is ¢/(@(1+e(1) and is the dominating one, provided M > eX and M > f(a), so that
the third term is < t/(%). For an analogous lower bound, we apply with n = n,: since
o2t +né? ~ nd? (recall that t — 0), we get

P(Xt > IQ) > e—logﬁa! tf(a)(l—l—o(l)) _ (const.) tf(a)(l—i—o(l)) )

We have thus proved relation (3.24)
It remains to prove relation (3.25)). We fix a family of (k,t) such that either ¢ — 0 and
k> Ka(t), or t — t € (0,00) and kK — oo. Since n! > (n/e)”,

K2 1 K2 2
2n 52+nlog)\ +lognl > 2n 62+n10g )\t - ;>%{252 +xlog )\t}

By direct computation, the infimum is attained at

T — (A.10)

d4/2log % ’

K2 / K
1> — — .
5 52+nlog)\ + logn! 5 210gt (1+0(1))

We now choose M = |3z] in (A.7)), so that

P(X, > k) < o~ 2 (1H00) | 370~ v/208 F (1+ol(1) +0<<At> )

which yields

N

i
< o m o) 4 o~§v/2gT (Hol) | o(e**”’”“(’g%) : (A.11)

where we have absorbed 3z inside the o(1) term in the exponential, because log(3z) =

o(k) = o(ky/log ) by (A.10) (recall that x — 00). The dominant contribution to (A.11])

is given by the middle term (note that 3z log % ~ %%,/QIOg 7, always by (A.10)). For a
corresponding lower bound, we apply (A.8) with n = |Z]|: since logn! ~ nlog(n/e) and
ot + |7]6% ~ |Z]? (because T — o), we get

P(X;>kK)>e ~(ssay 1) os fyHoalz)!) (Lro(1) _ —( gz +17) o ) (1o(1)

_ o 5y/Zog E(1+0(1)

We have thus shown that
logP(X; > k) ~ —51/210g—

completing the proof of relation (3.25) and of Lemma O
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A.4. Proof of Proposition Let us first prove (4.11) and (4.12). Since ¢(dz)e” =
o(dy), cf. (4.1]) and (4.8)), recalling (4.2]) we can rewrite the Black&Scholes formula as

follows:

Cas(k,v) = ¢(d1) (U(—d1) — U(—dz)) = ¢(d1)(U(—d1) — U(—dy +v)) . (A.12)
If dy — —o0, applying we get
—di1+v ) —d1+v 1 B v
v U == [ Do [ T 5e = g

and is proved. Next we assume that v — 0. By convexity of U(-) (cf. Lemma [4.1)),
U(—dl) — U(—d1 + ’U)
v
hence to prove it suffices to show that U’'(—dy + v) ~ U’(—dy). To this purpose,
by a subsequence argument, we may assume that d; — di € RU {£o0}. Since d; < %
for k > 0, when v — 0 necessarily d; € [~00,0]. If dj = —o0, i.e. —d; — 400, then
—di + v ~ —dy — 400 and U'(—dy +v) ~ U’(—dy) follows by (4.3)). On the other hand, if
dy € (—00,0] then both U’(—dy) and U’(—d; + v) converge to U’'(—d1) # 0, by continuity

of U', hence U'(—dy)/U'(—dy +v) — 1, i.e. U'(—dy +v) ~ U'(—d;) as requested.

Let us now prove . Assume that min{d;,logv} — —oo, and note that for every
subsequence we can extract a sub-subsequence along which either d; — —ooc or v — 0. We
can then apply (4.11)) and (4.12)) to show that Cgs(k,v) — O:

e if d — —o0, the right hand side of (4.11)) is bounded from above by ¢(d;)/(—d1) — 0;

eIf K >0and v — 0, then d; < § — 0 and consequently ¢(d;)U’(—dy) is uniformly
bounded from above, hence the right hand side of (4.12]) vanishes (since v — 0).

—U’(—dl + ’U) < < —U/(—dl) R

Finally, we assume that min{d;,logv} /4 —oo and show that Cgs(x,v) /4 0. Extracting
a subsequence, we have min{dj,logv} > —M for some fixed M € (0,00), i.e. both v >
e:=e M >0andd > —M, and we may assume that v — T € [¢, +oc] and d; — d; €
[—M, +00]. Consider first the case 7 = +o0, i.e. v — +o0: by one has —d; +v =
—dy > § — +00, hence ¢(d1)U(—d; + v) — 0 (because ¢ is bounded), and recalling
relation yields

Cgs(k,v) = ®(d1) — ¢(d1)U(—dy +v) — ®(dy) > 0.

v —

Next consider the case 7 < +o0: since d; < %, we have d; < § and again by (A.12) we
obtain Cgs(k,v) — ¢(d1)(U(—d1) — U(—dy + 7)) > 0. In both cases, Cgs(x,v) # 0. O
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