THE DISCRETE-TIME PARABOLIC ANDERSON MODEL
WITH HEAVY-TAILED POTENTIAL

FRANCESCO CARAVENNA, PHILIPPE CARMONA, AND NICOLAS PETRELIS

ABSTRACT. We consider a discrete-time version of the parabolic Anderson model. This
may be described as a model for a directed (1 + d)-dimensional polymer interacting with
a random potential, which is constant in the deterministic direction and i.i.d. in the d
orthogonal directions. The potential at each site is a positive random variable with a
polynomial tail at infinity. We show that, as the size of the system diverges, the polymer
extremity is localized almost surely at one single point which grows ballistically. We give
an explicit characterization of the localization point and of the typical paths of the model.

1. INTRODUCTION AND RESULTS

The model we consider is built on two main ingredients, a random walk S and a random
potential £&. We start describing these ingredients. A word about notation: throughout the
paper, we denote by |-| the £! norm on RY, that is |z| = |z1|+...+|zg| for z = (z1,...,24),
and we set By := {z € Z¢: |z| < N}.

1.1. The random walk. Let S = {Sj}r>0 denote the coordinate process on the space
Qg := (Zd)No:{O’m"“}, that we equip as usual with the product topology and o-field. We
denote by P the law on Qg under which S is a (lazy) nearest-neighbor random walk started
at zero, that is P(Sp = 0) = 1 and under P the variables {Syy1 — Sk}r>0 are i.i.d. with
P(S1 =y) =0if |y| > 1. We also assume the following irreducibility conditions:

(1.1) P(S1=0) =k >0 and P(S;=y) >0 Vyec 2z with|y|=1.

The usual assumption E(S;) = 0 is not necessary. For € Z%, we denote by P, the law of
the random walk started at x, that is P,(S € -) :=P(S+z € -).

We could actually deal with random walks with finite range, i.e., for which there exists
R > 0 such that P(S; = y) = 0 if |y| > R, but we stick for simplicity to the case R = 1.

1.2. The random potential. We let £ = {£(2)},cz¢ denote a family of ii.d. random
variables taking values in R, defined on some probability space (Q¢, F,P), which should
not be confused with Qg. We assume that the variables £(x) are Pareto distributed, that is

(1.2) P(£(0) € dx) = (z)dz,

«
x1+0é 1[1700)

for some a € (0, 00). Although the precise assumption (|1.2)) on the law of £ could be relaxed
to a certain extent, we prefer to keep it for the sake of simplicity.
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In the sequel we could work with the product space Qg x €2¢, equipped with the product
probability P ® P, under which £ and S are independent, but it is actually not necessary,
because & and S will play on a separate level, as it will be clear in a moment.

1.3. The model. Given N € N:={1,2,3,...} and a P-typical realization of the variables
§ = {&(y)}yeza, our model is the probability Py ¢ on Qg defined by

N

dPre o . Hy (S :
aP ( = me Nl ), where HNg(S) = ;S(SZ),

(1.3)
and the normalizing constant Uy ¢ (partition function) is of course

N
(1.4) Une = E [eHNvf(S)} =E [exp (Z f(S,))] :

We stress that we are dealing with a quenched disordered model: we are interested in the
properties of the law Py ¢ for P-typical but fized realizations of the potential .
Let us also introduce the constrained partition function uy¢(x), defined for x € 7% by

9

N
(1.5) ung(z) = E lexp <Z€(S¢)> Lisy=a}
=1

so that Uyg¢ = Y, cza une(r). Note that the law of Sy under Py ¢ is given by

une(@) _ ung(x)
Un > yezd Ung(Y)

The law Py ¢ admits the following interpretation: the trajectories {(,5;)}o<i<ny model
the configurations of a (1 + d)-dimensional directed polymer of length N which interacts
with the random potential (or environment) {£(z)},cz¢. The random variable £(z) should
be viewed as a reward sitting at site z € Z%, so that the energy of each polymer configuration
is given by the sum of the rewards visited by the polymer. On an intuitive ground, the
polymer configurations should target the sites where the potential takes very large values.
The corresponding energetic gain entails of course an entropic loss, which however should
not be too relevant, in view of the heavy tail assumption . As we are going to see, this
is indeed what happens, in a very strong form.

Besides the directed polymer interpretation, Py is a law on Qg = (ZHNo which may
be viewed as a natural penalization of the random walk law P. In particular, when looking
at the process {Sj }r>0 under the law Py ¢, we often consider k as a time parameter.

(1.6) pNe(w) = Pne(Sy=12) =

Remark 1.1. An alternative interpretation of our model is to describe the spatial distribu-
tion of a population evolving in time. At time zero, the population consists of one individual
located at the site 2 = 0 € Z%. In each time step, every individual in the population per-
forms one step of the random walk S, independently of all other individuals, jumping from
its current site x to a site y (possibly y = ) and then splitting into a number of individuals
(always at site y) distributed like a Po(eé®)), where Po()) denotes the Poisson distribution
of parameter A > 0. The expected number of individuals at site € Z% at time N € N is
then given by uy¢(x), as one checks easily.

Remark 1.2. Our model is somewhat close in spirit to the much studied directed polymer
in random environment |2, 13, O], in which the rewards £(i,x) depend also on i € N (and
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are usually chosen to be jointly i.i.d.). In our model, the rewards are constant in the “de-
terministic direction” (1,0), a feature which makes the environment much more attractive
from a localization viewpoint. Notice in fact that a site  with a large reward &(z) yields a
favorable straight corridor {0,..., N} x {z} for the polymer {(¢, S;) }o<i<n-

We also point out that the so-called stretched polymer in random environment with a
fixed length, considered e.g. in [7], is a model which provides an interpolation between the
directed polymer in random environment and our model.

1.4. The main results. The closest relative of our model is obtained considering the
continuous-time analog @iy ¢(z) of (L.5), defined for ¢ € [0, 00) and x € Z? by

(1.7) Upe(z) == E [exp (/Otg(gu)du> 1{@@] ,

where ({Su}ue[o’oo), P) denotes the continuous-time, simple symmetric random walk on Z¢.
One can check that the function @, ¢(x) is the solution of the following Cauchy problem:

{ Bane(r) = Adye(a) + €(x) lpe(x)

() = To(x) for (t,z) € (0,00) x Z%,

known in the literature as the parabolic Anderson problem. We refer to [5, [4, [6] and references
therein for the physical motivations behind this problem and for a survey of the main results.

When the potential ¢ is i.i.d. with heavy tails like in and a > d, the asymptotic
properties as ¢ — oo of the function 1, ¢(-) were investigated in [8], showing that a very
strong form of localization takes place: for large ¢, the function @ ¢(-) is essentially concen-
trated at two points almost surely and at a single point in probability. More precisely, for

all £ > 0 and & € Q¢ there exist 7 52 € 74 such that

t?f’ t7£
Sy @)
Up (2 + Uup (2
(1.8) lim ellg) - rellrg) =1, P-almost surely,
oo ) ega iy g(x)
)
g e(2
(1.9) i tele) 1,  in P-probability,

1500 ) geza Urg(2)

cf. [8, Theorems 1.1 and 1.2]. The points ii?,ig? are typically at superballistic distance
(t/logt)'™4 with ¢ = d/(a — d) > 0, cf. [8, Remark 6]. We point out that localization at

one point like in (1.9)) cannot hold P-almost surely, that is, the contribution of Zg? cannot
be removed from ((1.8): this is due to the fact that @ ¢(z) is a continuous function of ¢ for

every fixed x € Z%, as explained in |8, Remark 1].

It is natural to ask if the discrete-time counterpart of @ ¢(-), i.e., the constrained partition
function uy ¢(-) defined in , exhibits similar features. Generally speaking, models built
over discrete-time or continuous-time simple random walks are not expected to be very
different. However, due to the heavy tail of the potential distribution, the localization
points 2&) , iﬁ? of the continuous-time model grow at a superballistic speed, a feature that is
clearly impossible for the discrete-time model, for which uy ¢(x) = 0 for |x| > N. Another
interesting question is whether for the discrete model one may have localization at one
single point P-almost surely. Before answering, we need to set up some notation.

We recall that By := {z € Z¢ : |x| < N}. It is not difficult to check that the values

pN.e(T)}zeny are all distinct, for P-a.e. £ € and for a € N, because the potentia
£ N 11 d for P § € Q¢ and for all N € N, b h 1
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distribution is continuous, cf. ((1.2). Therefore we can set
(1.10) wn,e = argmax {pne(z): € By},

and P-almost surely wy ¢ is a single point in Z%: it is the point at which pne(+) attains its
maximum. We can now state our first main result.

Theorem 1.3 (One-site localization). We have

(1.11) A}im pNe(Wne) = lim ung(Wne) =1, P(d¢)-almost surely.
— 00

N—o0 erzd uNg( )
Furthermore, as N — oo we have the following convergence in distribution:

WN7£
N

and cq = (f\y|§1(1 — lyl)*dy)~!

Recalling the definition ((1.6) of py ¢(x), Theorem shows that S under Py ¢ is localized
at the ballistic point wy ¢~ w - N.

(1.12) = w, where P(w € dz) = co (1 — |7))* 1jjz)<1y dz,

Next we look more closely at the localization site wy ¢. We introduce two points z](\})é, zﬁ)g €

7%, defined explicitly in terms of the potential &, through
zﬁ)g = argmax{(l - ]\‘,ﬂl) E(z) : € BN} ,

2 T 1
](V)g = argmax{(l - 1\‘f+|1) &(x) : xeBy\ {ZJ(V,)g}} )
Again, the values of {(1 — A',ﬂl) &(z)}eeny are P-as. distinct, by the continuity of the

potential distribution, therefore z](\}) and Zz(v) are P-a.s. single points in By. We can now

give the discrete-time analogues of (1.8]) and ( .

(1.13)

Theorem 1.4 (Two-sites localization). The following relations hold:

(1.14) A}im (pNé (zg\})g) + PN (21(\2)6)) =1 P(d&)-almost surely,
—00 ’ ’
(1.15) A}im pN,g(z](\})g) =1 in P(d€)-probability .
—00 ’

Putting together Theorems and we obtain the following information on wy .

Corollary 1.5. For P-a.e. £ € Q¢, we have wy ¢ € {z](\})é, zﬁ)g} for large N. Furthermore,

. 1
(1.16) lim P (WN7§ = ZJ(V?&) =1.

N—oo

In Proposition below, we stress that the convergence in ([1.15)) does not occur P(d¢)-

almost surely in dimension d = 1, i.e., wy ¢ is not equal to z](\}) for all N large enough. We
strongly believe that the latter remains true for d > 1.

Proposition 1.6. In dimension d =1, we have

(1.17) P (WN’g = z](\?)g for infinitely many N) =1.
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The proof of two sites localization given in [8] for the continuous-time model is quite
technical and exploits tools from potential theory and spectral analysis. We point out that
such tools can be applied also in the discrete-time setting, but they turn out to be unneces-
sary. Our proof is indeed based on shorter and simpler geometric arguments. For instance,
we exploit the fact that before reaching a site € Z? a discrete-time random walk path
must visit a least |x| — 1 different sites (# x) and spend at each of them a least one time
unit. Of course, this is no longer true for continuous-time random walks.

1.5. Further path properties. Theorem |1.3| states that P(d{)-a.s. the probability mea-
sure Py ¢ concentrates on the subset of Qg gathering those random walk trajectories S
such that Sy = wy¢. It turns out that this subset can be radically narrowed. In fact, we
can introduce a restricted subset Cy ¢ C Qg of random walk trajectories, defined as follows:

e the trajectories in Cn¢ must reach the site wy ¢ for the first time before time N,
following an injective path, and then must remain at wy ¢ until time V;
e the length of the injective path until wy ¢ differs from |wy ¢| — which is the minimal
one — at most for a small error term hy := (loglog N)?/¢ N'=V/* if o > 1 and
hy = (log N)*2/® if o < 1 (note that in any case hy = o(N));
e all the sites z visited by the random walk before reaching wx ¢ must have an associated
field {(x) that is strictly smaller than &(wy ).
More formally, denoting by 7, = 7,(S) := inf{n > 0: S,, = z} the first passage time at
x € Z% of a random walk trajectory S, we set
Cne = {S €Qs: Si#SjVi<j<Tyy., Si=wneVi€ {TWN@,...,N},
(1.18)
§(Si) < g(WN,E) Vi < Twner Twye = ‘WN,§| + hN} .

We then have the following result.

Theorem 1.7. For P-a.e. £ € Q¢, we have

1.19 lim P = 1.
(1.19) Jm Py e(Cre)

Remark 1.8. It is worth stressing that in dimension d = 1 the set Cn¢ reduces to a

single N-steps trajectory. In fact, we have Cy ¢ = SWNwn.e) where we denote by S&V) | for
x € By, the set of trajectories S € g such that

g i-sign(x) for 0 <i < |z
)= for |z| <i< N~
As stated in Corollary for large IV the site wyy ¢ is either 25\})5 or z](\?)g Note that Z](\})g and
z](\?)g are easily determined, by (1.13). In order to decide whether wy ¢ = z](\})é Or Wy¢ = z](\?)g,
by Theorem it is sufficient to compare the explicit contributions of just two trajectories,
(1) (2)
ie., PN,g(S(N’ZN,f)) and PN@(S(N’ZN»&)). More precisely, setting (i) := P(S1 = i) for
i € {£1,0} (so that k = k(0), cf. (1.1))) and

bye(x) == St € sign(2)+(N+HI—[eDE() i (iom (1)) g (0)N o1

we have wy e = z](\})g if bN,g(z](\})g) > bN7§(z](3)£) and wye = zﬁ)g otherwise. Therefore, in
dimension d = 1, we have a very explicit characterization of the localization point wy ¢.
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Remark 1.9. A strong localization result is displayed in [I] for the directed polymer model
with a “very heavy tailed” random environment (v < 2). It is shown that, in any dimension,
the polymer moves balistically in the hyperplane orthogonal to the deterministic direction.
Moreover, for any § > 0, the polymer of size N remains, with probability 1 —e~¢ (cs > 0),
in a cylinder of width 6 N around the trajectory that minimizes the energy. If the inverse
temperature 3 is rescalled by N1=2/® the attracting trajectory becomes the minimizer of
a variational formula involving both an energetic and an entropic term.

1.6. Organization of the paper. The paper is organized as follows.

e In Section 2] we gather some basic estimates on the field, that will be the main tool
of our analysis.

e In Section [3] we prove Theorem [I.4]
e In Section [4] we prove Theorem [I.3]
e In Section [§] we prove Proposition [I.6]
e In Section [f] we prove Theorem

e Finally, the Appendixes contain the proofs of some technical results.

In the sequel, the dependence on & of various quantities, like Hy ¢, W ¢, z](\})g, etc., will be
frequently omitted for short.

2. ASYMPTOTIC ESTIMATES FOR THE ENVIRONMENT

This section is devoted to the analysis of the almost sure asymptotic properties of the
random potential £. With the exception of Proposition [2.5] which plays a fundamental
role in our analysis, the proof of the results of this section are obtained with the standard
techniques of extreme values theory and are therefore deferred to the Appendices [A] and [B]

Before starting, we set up some notation. We say that a property of the field £ depending
on N € N holds eventually P-a.s. if for P-a.e. £ € ¢ there exists Ny = No(§) < o0
such that the property holds for all N > Ny. We recall that | - | denotes the ¢! norm
on R? and By = {z € Z? : |z| < N}. With some abuse of notation, the cardinality of
By will be still denoted by |By|. Note that |[By| = cgN¢ + O(N91) as N — oo, where
Cqd = fIR{d 1{|x|§1}d$ = 2d/d!.

2.1. Order statistics for the field. The order statistics of the field {£(z)},ep, is the set
of values attained by the field rearranged in decreasing order, and is denoted by
(2.1) X > x@ s> xIP S

(1th

For simplicity, when ¢ € [1,|By|] is not an integer we still set XJ(\I;) = Xy 7. For later

convenience, we denote by xg\lf) the point in By at which the value X](Vk)

is attained, that is
X](\];) =¢ (xgl\;)) We are going to exploit heavily the following almost sure estimates.
Lemma 2.1. For every € > 0, eventually P-a.s.
d/a
al < X < N (1og N)ote

(loglog N)l/ate
For every ¢ > 1 and € > 0, eventually P-a.s.

Nd/a - XJ(éIOgN)ﬂ) - Nd/a .
(log N)ﬁ/a+z—: (log N)ﬁ/afs

(2.2)

(2.3)
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There exists a constant A > 0 such that eventually P-a.s.
(2.4) sup (kl/O‘X](\f)) < ANV,
(log N)<k<|Bn]|
The proof of Lemma [2.1] is given in Appendix [A:2] For completeness, we point out that

X](\})/(chd/o‘) converges in distribution as N — oo toward the law pu on (0,00) with
1((0,z]) = exp(—z~%), called Fréchet law of shape parameter «, as one can easily prove.

) x U+

Next we give a lower bound on the gaps X](\? for moderate values of k.

Proposition 2.2. For every ¥ > 0 there exists a constant v > 0 such that eventually P-a.s.
Nd/e
(2.5) inf (X](V’“) - X](\],€+1)) S
1<k<(log N)? (log N)7
The proof of Proposition [2.2]is given in Appendix

2.2. Order statistics for the modified field. An important role is played by the modi-
fied field {¢)n(x)}zeBy, defined by

||
2.6 =11-—— .
(2.6 oxte) = (1- 50 ) €o)
The motivation is the following: for any given point x € By, a random walk trajectory
(S0, 51,...,5N) that goes to z in the minimal number of steps and sticks in x afterwards

has an energetic contribution equal to leﬂl_l £(Si) + (N + Dyn(z) (recall (1.3).

The order statistics of the modified field {¢n(z)}zen, Will be denoted by
72V > 20 > s 78
and we let z](\’;) be the point in By at which ¢y attains Z(k), that is @Z)N(z](\];)) = Z](\];). A
simple but important observation is that Zj(\lf)
Y (z) is increasing in N for fixed x. Also note that Z](\f) < X](\’;), because Yy (x) < &(x).

is increasing in IV, for every fixed k£ € N, since

Our attention will be mainly devoted to ZJ(\}) and Z](?), whose almost sure asymptotic
behaviors are analogous to that of X](\P, cf. (2.2)).

Lemma 2.3. For every € > 0, eventually P-a.s.
N/ @) < ) o
<2\ < 2\ < N (log N)Yote
(loglog N)1/ate = 7N = =N = (log ')
The proof is given in Appendix[B.2] Note that only the first inequality needs to be proved,
thanks to (2.2)) and to the fact that, plainly, Z](\?) < Z](\}) < X](\}).

(2.7)

Next we focus on the gaps between Z](\}), Z](\?) and Z](\i;’). The main technical tool is given
by the following easy estimates, proved in Appendix [B.1]

Lemma 2.4. There is a constant ¢ such that for all N € N and 6 € (0,1)
(2.8) P(ZP>1-62zP)<cs,  P2ZY>0-6)2) <o’
As a consequence, we have the following result, which will be crucial in the sequel.

Proposition 2.5. For every d and «, there exists B € (1,00) such that

Nd/a
Z](\}) G R eventually P-a.s. .
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Although we do not use this fact explicitly, it is worth stressing that the gap Z](\}) — ZJ(\?)

can be as small as N%/~1 (up to logarithmic corrections), hence much smaller than the right
hand side of (2.9)), cf. Appendix This is the reason behind the fact that localization at
the two points {z](\})g, z](\?)g} can be proved quite directly, cf. Section whereas localization

at a single point WNg € {ZN)g,ZA?)é} is harder to obtain, cf. Section Furthermore, one

may have wy ¢ # 2 N,§ precisely when the gap Z](\}) — Z](\?) is small, cf. Section

Proof of Proposition[2.5. For r € (0,1) (that will be fixed later), we set Ny := ||, for
k € N. By the second relation in (2.8)), for v > 0 (to be fixed later) we have

(3) 1 (1) 1
P < —7 < < 00
Z < Zn, < (log Ng)7 Nk’) = Z (log Ny)2v (const.) Z k?r"/ ’

keN kEN kEN
provided 2rv > 1. Therefore, by the Borel-Cantelli lemma and (2.7, eventually (in k) P-a.s.
(2.10) 20 _ g0 5 (e

Ny, N = (10g Nk)7+1 :
Now for a generic N € N, let £ € N be such that Ny_1 < N < Ni. We can write

2y = 23 = (23 - 23)) + (23] - 23) + (23, - 257).

We already observed that Z](\];) is increasing in IV, therefore the third term in the right hand
side is non-negative and can be neglected. From (2.10) we then get for large N

N, )d/oc 1 1 Nd/a 1 1
011y 7O _ 7@ < (N 7V _ 7V 7 _ ()
( ) N N = (log Nk)’erl ( Ny ) = 2(10g N)’y+]_ ( Ny N )7
because Ny > N and N < 2N for large N (note that N;C/N;€ 1 —> 1 as k — oo)
It remains to estimate Z](\}k) ( ). Observe that Z{! ¢n( ) > Yn(z, +1) because
Z7(Ll) is the maximum of @bn. Therefore we obtain the estimate
1
2y = 200 = puni (=) = vn(o) < b (o) = dalzidy)
1 1)
_ ’27(#1’ f(zn+1) < 5(27(L+1)
(n+1)(n+2) n

which yields

Nj,—1

O L) O Sy Ne=Ne—r o)y Ne = Ni—1 50)
2.12 VA N = Z VA < X
w1 - = 3 (@l - a) < i g < Mo
Observe that as k — oo

ek — ek=1)" " (k1)T
(2.13) W:ek (k=17 _ 1 = o r(1+0(1))

Since N < Ny = €], it comes that k > (log N)*/" and therefore (2.13) allows to write
for large N
Ny — Ni_y 1
< .
Ni—1 = (log N)t/r—1
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Looking back at (2.11]) and (2.12), by (2.2]) we then have eventually P-a.s.

Nd/a Nd/a
2.14 72V - 7% > - .
( ) N N =9 (log N)'y—l—l (lOg N)l/r—l/a—Q
The second term in the right hand side of (2.14]) can be neglected provided the parameters
r € (0,1) and «y € (0, 00) fulfill the condition 1/r —1/a —2 > v+ 1. We recall that we also
have to obey the condition 2rvy > 1. Therefore, for a fixed value of r, the set of allowed
values for « is the interval (% 1_ é — 3), which is non-empty if 7 is small enough. This

shows that the two conditions on r,v can indeed be satisfied together (a possible choice

is, e.g., r = m and v = 4(3057“)) Setting 5 := v + 1, it then follows from ([2.14]) that

equation (2.9) holds true. O

3. ALMOST SURE LOCALIZATION AT TWO POINTS

In this section we prove Theorem [[.4. We first set up some notation and give some
preliminary estimates.

3.1. Prelude. We recall that z](;) and ZJ(\?) are the two sites in By at which the modified

potential 1y, cf. ([2.6), attains its two largest values z{V = wN(zg\})) and Z](\?) = wN(z](\?)).

It is convenient to define Ji,J2 € {1,...,|Bn|} as the ranks (in the order statistics) of
the two sites where the modified potential reaches its maximum and its second maximum,
respectively. Thus,

(3.1) Z](\}) — U L2 _ ZEE\}]Q)

N N
*) i the point in By at which the potential £ attains its k-th largest

value, i.e., X](\];) = 5(355(?)), cf. Section . We stress that J; and Jo are functions of N and
&, although we do not indicate this explicitly. An immediate consequence of Lemma[2.3]and
relation (2.3)) is the following

)

where we recall that =

Corollary 3.1. For every d, o, € > 0, eventually P-a.s.
(3.2) max{J;, Jo} < (log N)'*e.

Next we define the local time ¢y (z) of a random walk trajectory S € Qg by

N
(33) EN(:L') = KN(l‘» S) = Z 1{5'1-:38} )
=1

so that the Hamiltonian Hy(S), cf. (1.3), can be rewritten as
(34) Hy(S) = In(x)€(x).

rEBN

We also associate to every trajectory S the quantity

(3.5) Bn(S) = min{k > 1: Ly (2F) > 0.
In words, xg\fN(S)) 1s the site in By which mazimizes the potential & among those visited by

the trajectory S before time N. Finally, we introduce the basic events

(3.6) AI,N = {S S QS : ﬁN(S) = Jl}, .AQ’N = {S € QS : ﬁN(S) = JQ}.
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In words, the event A; n consists of the random walk trajectories S that before time N wvisit
the site z (r’ecall (3-1)) and do not visit any other site x with &(z) > £(z1(\l,))

It turns out that the localization of Sy at the point zJ(V) is implied by the event A; x,

i.e., for both i = 1,2 we have
(3.7) A}im Pne(Ain, S # z%)) =0, P(d¢)-almost surely .
—00

The proof is simple. Denoting by 7n; the last passage time of the random walk in z](\i,) before
time N, that is
Tn; ~=max{n < N: S, = zj(\l[)},
we can write, recalling (|1.3]),
N-1 Hy(S)
. E|e"~N2)1 4y
(3.8) Pye(Aiv, Sx#2y) = > [

r=0

i N 1{?1\1,1:7“}]
Un ’

We stress that the sum stops at » = N — 1, because we are on the event Sy # z](\?.
Furthermore, on the event A; y N {7n,; = r} we have S, ¢ {x%), . ,xg\‘,]i)} for all n €

{r+1,...,N} (we recall that z](\? = xg\‘,m) By the Markov property, we can then bound
the numerator in the right hand side of (3.8]) by

¥ (S {2 {2 yn=1,.. J}]

Analogously, for the denominator in the right hand side of (3.8} -, recalling (|1 , we have

] =E[e®)1

UNE > E[GHN(S) 1 j| N*TG(N*T)XJ(\}I’.) )

{Sn=2" Wne{r,...N}} {(5,=2\{}

Plainly, B( ) <ex p(lX (Ji+1) ), therefore we can write

2

—1
) (J3)
PN,{(Ai,Na SN#zN) < o~ (N=r)(Xy " +logr) g (Nz Ze—zx +ogk) (Nz)
=1
(J3) (J;+1)
e_(XN _XN

I
)

T

. , —log k)
J; Ji+1
o UXY =X tog k) _

E%g

3.10 .
( ) 1— e—(XJ(\}]i)—X](\,Ji+1)—logn)

o~

1

From Corollaryand Propositionit follows that P(d¢)-almost surely X](\}]i) —X](\}]iﬂ) —
400 as N — oo, therefore is proved.

3.2. Proof of . Let us set, for i = 1,2,

(3.11) Win =15 € Qs : B (S) =Ji Sn = ou |

={S € Qs Sy =2y, tn(z) =0 Vx € By such that £(z) > (=)} -

In words, the event W; n consists of those trajectories S such that Sy = z](\? and that before
time N do not visit any site x with &(x) > 5(,21(\1,)). We are going to prove that

(3.12) ]\}im (PN7§(W17N) + PN@(WQ’N)) =1, P(d¢)-almost surely,
—00
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which is a stronger statement than (1.14)). In view of (3.7)), it is sufficient to prove that
(3.13) A}im (Prne(Ain) + Prge(Aan)) =1, P(d¢)-almost surely .
—00

We start deriving an upper bound on the Hamiltonian Hy = Hy ¢ (recall (1.3)). For an
arbitrary k € {1,...,|Bn|}, to be chosen later, recalling (3.3)), (3.4), (3.5 and the fact that
Y zezadn(x) = N, we can write

k ' ' IBn| ) '
Hy($) = Y en@Dea)+ 3 en(@)e?)
(3.14) i=p N(S) =k
S < Z €N ) ( %N(S))) -f-NX(kJrl)
i=BN(S)

Note that £n (m(ﬁN(S))) > 0, that is, any trajectory S visits the site :L'(BN( ) before time N,

by the very definition of An(S). It follows that any trajectory S before time N must

(Bn(S)) (/BN(S))‘ (1)

visit at least |z | different sites, of which at least |z}, — k are different from x’,

(k)

. This leads to the basic estimate

k
(3.15) > @) < N - lad" ) 4k
i=Bn(S)

By (3.14) and recalling ([2.6)), this yields the crucial upper bound

10 Hy(S) < (N 4+ Dion (a5 ) + (k= 1) () 4 N x G
. < (N +D)9n (@) + (k-1 XY + N x§H.
We stress that this bound holds for all k € {1,...,|By|} and for all trajectories S € Qg.

Next we give a lower bound on Uy (recall (1.4))). We restrict the expectation to one
single N-steps random walk trajectory, denoted by S* = {S/}o<i<n, that goes to zﬁ) in

the minimal number of steps, i.e. ]z](\}) |, and then stays there until epoch N. By (1.1)), this
trajectory has a probability larger than e~¢V for some positive contant ¢, therefore

(3.17) Unyg > eINEI=eN > £ IN+1-|sy)D=elN — (V1N () =eN > ((N+1(ZY)=0)

where we have used the definition of 1y, see (2.6)).

We can finally come to the proof of (3.13]). For all trajectories S € (A yUA2 n)¢ we have
BN (S) & {J1, 2}, therefore arggN(S)) 4 {z](\}) )} and consequently ¥y (x 5N(S))) < Z](\:,)’).
From ([3.16)) and (3.17)) we then obtain

E eHN(S) 1 .
Pye((Ain UAn)©) = ( (A1nUAz v)°)
(3.18) T

< exp (V1) (28 - 20) - X - 42X P - o))

By (2.9), there exists 8 € (1, c0) such that Z](\}) fZJ(\:;’) > N /(log N)? eventually P-almost
surely. We now choose k = ky = (log N)? with ¢ := 3max{fa, 1} > 1. Applying (2.2) with
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e =1/a and (2.3) with € = 3, we have eventually P-a.s.
1 3 kn+1
((Z](\/') o Z](\/')) . X](VN+ ) IK/”V_FSX( ) )
S N/ 11 (legN)PPe e N N
- (log N)8  (log N)28 N Nd/a (log N)B
therefore, eventually P-almost surely,

Pne(Ain) + Pre(Aon) = 1= Pre((A,ny U Az n)°)
N1+d/o

> 1—ex —— (14 0o(1
e p( (logN)ﬁ( o ))) )
which completes the proof of (3.13]).

3.3. Proof of (1.15). Recalling (3.11), we are going to prove that
(3.19) Jim Pye(Win) =1,  in P(d€)-probability,
—00

(1+0(1)),

which is stronger than . In view of , it suffices to show that
(3.20) A}gnoo Pye(Ain) =1, in P(d¢)-probability .
We actually prove the following: for every N € N there exists a subset I'y C {2¢ such that
as N — oo one has P(I'y) — 1 and infeer, Py e(Ai,n) — 1, which implies .

For every trajectory S € (A n)¢ we have By (S) # Ji, therefore x%N(s)) #* zj(\}) and
consequently ¥y (z 6N(S))) < Z](\?). From (3.16)) and (3.17]) we then obtain

E(GHN(S) ]‘(-Al,N)C)

Pye((An)e) =
(3.21) el ) Ung

< exp (V1) (20 - 20) - xE - 42Xl - o))
We set I‘ = {Z < (1- logN) ](;)} and it follows from (2.8) that IP)(FS\I,)) — 1 as

N — oo. Note that for € € ng) we have
((Z](\}) o Z](\?)) _X](\];-‘rl) k= lX(l) ) > ( 1 Z](\}) —X](\]]H_l)

LX) —e)
We now fix k = ky = (log N)? with ¢ := 3max{2a,1} > 1. Applying (2.2) with e = 1/a,
(2.3) with e =2 and ({2.7)), we have eventually P-a.s.

1 kn+1 k
(loglNZJ(V)_XJ(VN - J<\77+11X() )

1 1 (log N)V+2/ c N/«
> d/a . — — _= .
= <(log N2~ (logN)2 N Ni7a ) = Gognyz L o)

In particular, defining F( ) {logNZ(l) — X](\I;H) N+11X(1) — ¢ > NY*/(log N)3}, we

have IP’(FEV)) — 1 as N — oo. Setting 'y := Fg\l,) N I‘g\%), we have P(I'y) — 1 as N — o0;
furthermore, by the preceding steps we have that, for all £ € I'y,

N+1 log N N+1

Nd/e
Pre(Ain) = 1= Pre((Ain)7) = 1 —exp <(N " 1)(logl\f)3> |

This completes the proof of (3.20]).
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4. ALMOST SURE LOCALIZATION AT ONE POINT

In this section we prove Theorem Relation ([1.11)) is obtained in two steps. First, we
refine the results of the previous section, showing that (3.12) still holds if we replace the
events W n, @ = 1,2, that were introduced in (3.11)), by

- : _1,0
Wiw = {8 €05t aw(S) = i, S = 20, o)) > M1

(4.1)

, RO
{seas: sw=20, en(:) > g,

In(z) = 0 Vo € By such that £(z) > f(z](\i[))},
that is, if we require that the random walk trajectories spend at ZJ(\? at least (N — \z](\l,)]) /2
units of time (recall (3.3)). In the second step, we show that eventually P(d¢)-almost surely
(4.2) max {PN7§(W1,N), PN,g(WQ,N)} > min {PN,g (WI,N)7 PN,{(WQ,N)} >
which yields (1.11]). Finally, we prove (1.12)) in Section
4.1. Step 1. In this step we refine (3.12), showing that
(4.3) A}im (PN7§(VNVLN) + PNyg(WZN)) =1, P(d¢)-almost surely
—00

where )/NVi,N is defined in (4.1). Consider indeed S € Wj n \ VA\Z,N, with ¢ € {1,2}. Before

reaching z(i), S must visit at least |2| — 1 different sites at which, by definition of W; y,
N N ;

the field is smaller than §(z(i)) = X(J") (recall @)’ hence
RO
H(8) < () X357 + Z X (N = () = (120 = D)X

Since EN(zj(\i,)) < (N - \ZN 1)/2 on Wi n \ Wi7N, we obtain
1211

L gy N o
Hy(S) < MRl x (04 3 x4 (N Bl +1) XU
j=1
i (J3)
Rewriting (3.17) as Un¢ > e+ DX —eN (recall (2.6])), we can write
RO )
PyeWin \Win) = {SEW: NAWi N}
Un
(4.4) o

< eCN eXp ( ‘z ’( (Jz _ J1+1 Z X J1+J)>
- 2

Applying (2.7) with e = 1/a and (2.2)) with € = ¢/2, it follows that eventually P-a.s.

A2 2D 5 Nt XX} < N (g Nt

Since by definition Z](Vi) =(1- ‘ |)X(‘]’)7 it follows that for both ¢ € {1,2} and for every
€ > 0, eventually P-a.s.

N

4.5 >
( ) |Z ‘ (log N)l/aJre
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Next we observe that, by the upper bound in ({ and (| , we have

ZX(J (log N) X} Z Xy <Nd/a<(logN)H3/2a+ Z 11/>
] «

j=[log N j=[log N'|
therefore there exists a constant ¢ > 0 such that, eventually P-almost surely,
N _ .
(46) ZX(‘]) < CNd/a+1 /o if o >1 ‘
= N7 ) (log N)I3/2a Nd/eif o < 1

Looking back at (4.4), we can apply (4.5) and (4.6) as well as Proposition and
Corollary to conclude that P(d€)-a.s. the right hand side of (4.4)) vanishes as N — oo.

Recalling (3.12)), it follows that (4.3) holds true, and the first step is completed.

4.2. Step 2. In this step we prove that

(4.7) ]\}im | log PNvg(lf/\V/LN) — log PN’E(WZN)’ = 00, P(d¢)-almost surely .
— 00
Together with (| @ this shows that
(4.8) A}lm max {PNg(Wl N) PN7§(W2,N)} =1, P(d¢)-almost surely ,
—00

which yields (1.11) and, moreover, shows that

1 — —

z if Pye(W > Py (W

WNe = ](\;) N’g(Nl’N) N’g(NQ’N) , eventually P(d¢)-almost surely .
ZN if PN,g(WzyN) > PN,{(WI,N)

It is convenient to introduce some further notation. Recalling (4.1)), for N € N and
x € By we define the following subsets of (g:

(4.9) WN(CC) = {S €Qgs:Sy=uz, Iy(x) > N_2|”T|, In(2) =0Vz st £(2) > f(ﬁ)},

so that )/VZ N = WN( ](V)) Next we set

(4.10) Cn(w) = logB[e™ 1 0]

so that we can write
(4.11) ‘ log PN,£<W1,N) — log PN,&(WZN)‘ = ‘CN(Z](\P) — CN(zﬁ))‘ .

Finally, given an arbitrary € € (0,d/a) and setting Ny := |k%*¢|, we introduce the event
Hj. € Q¢ defined by

41 Hi = {5 € Q¢ I,y € By, ¢ #y, In € {max{|z|, |y|},..., Ngs1} such that
' d/a d/o o
£@) > el €) > e, 1Cn(w) = Caly) < N7}

(log Ng41) 2/ (log Nk+1)
We are going to show that
(4.13) > P(Hy) < o0
keN

We claim that this implies (4.7) and completes the step. Indeed, by the Borel-Cantelli
lemma it follows from (|4.13] - ) that for P-almost every £ € Q¢ there exists k = k() < oo such
that & ¢ H, for all k > k. For any N > N, let k € N,k > k be such that Ny < N < Ny
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and note that, plainly, z](\}),zj(\%) € By C Bp,,,- Recalling the lower bound in (2.7) and
([@.11)), since & € Hy, for all k > k we conclude that eventually P(d¢)-almost surely

| log PN,&(WLN) — log PN,g(Wz,N){ > Nd/a—e

which is a stronger statement than (4.7]).
We are left with proving (4.13)), for which we have to estimate

(4.14) P(&(x) > t.&(y) > t,|Cn(2) — Culy)| < M),
for suitable t and M. Recalling (4.9) and (4.10), it is useful to set

. - S
(4.15) CN(y, (E) = logE[eHN( ) 1SEWN(y) 1{2N(x)=0}] .

Note in fact that, on the event &(x) > £(y), we have Cn(y) = Cn(y; ), by the definition
([4.9) of Wn (y). Therefore, splitting on {&{(x) > &(y)} and {&(z) < &(y)} and using

the symmetry between x and y, we can easily estimate
P(&(x) > t,&(y) > 1,|Cn(z) — Culy)| < M)
(4.16) < 2P(E(z) > t,€(y) > t,|Cn(z) — Culys 2)| < M)
< 2R [1ig(y) P(E(x) > t, [Cnlx) — Culy; )| < M|G,)],

where G, := 0({£(2)}.cza\ (2})- We stress that Cy(y; x) is G,-measurable, because by defi-

nition it does not depend on &(x) (recall (4.15))).
We now need to study the dependence of Cy,(z) on &(x) conditionally on G,, i.e., when

all the other field variables {£(z),z # x} are fixed. Recalling (4.10), (4.9) and summing

over the values of the variable ¢y (z), we can write Cy,(z) = g(£(z)), where
n—|z|
g(s) i=log 3 e and e =Bl ITHO L g 10 @y ]
k:%(n—kL‘H—l)
We stress that, on the event {{,(z) = k}, the term H,(S)—k&(z) does not depend on £(z).

Therefore the coefficients ¢, ; (and, hence, the function g(-)) only depend on {{(2),z # «},
i.e., they are G,-measurable. Also note that the function g(-) is smooth and Lipschitz, since

n—lal ks
Ly a1y €

g'(s) =

1
= g 2 an Tl
2k n—ein) & ok

Therefore, by the change of variables formula, from we obtain
P(&(x) > t, Cu(z) € dv|Gy) =P(&(x) > t, g(&(x)) € dv|Gy)

1 1 o do < 2 « 4
= _ v v
tot @Emaxdt L 1or(g=T(0))] (g=1(v))Fe = (n— [a| + 1) tl+a

hence
P(&(z) > t, |Cu(z) — Culys2)| < M|Gy)
< 2a
= (n—|z|+ 1)ttt
Coming back to ([£.16)), since P(£(y) > t) < ¢, we conclude that

-2M .

= P(&(x) > t, Cn(x) € [Cu(y; ) — M, Cr(y; ) + M]|Gy)

S8aM
(n —|z| + 1)ti+2e”

(417)  B(E(2) > 1E(y) > £,]Cu(@) — Culy)l < M) <
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We are finally ready to estimate P(Hy). Recalling the definition (4.12) and the fact that
Ny = | k], applying (#.17)) we obtain
Ny 4 4
Ny) /> a
P(H) <2 3 D P(E@).£0) > origarms [Cnlw) = Caly) < N7

r#y€Bn, | n=|z|
|lz>1y]

_ N,
8 Nd/a € k41 1
< 2(const.) (Npy1)* i Z

{(Nk)d/a/(log Nk+1)2/a}(1+20‘) o] n—lz|+1
log N 2/a+5 1 k‘2/€ 2/a+5
< (const.”) (log ]X;;) < (const.”) (ng2),
k
from which (4.13)) follows. This completes the step.
4.3. Proof of (1.12). In view of ([1.16)), it is sufficient to prove that
(1)

(4.18) % — w, where P(wedz) = ca(l—|2])* i<y d,

and we recall that ¢, := (f|y|<1(1 — |yD*dy) L.
Setting on(z) =1 — ]\‘,ﬂl and recalling (1.2), for z € By and t € (1,00) we have

P(z\) =2, ¢(x) edt) = P(&(2) <t Vze By \ {2}, &(x) € dt)
_ N () o
- I (1-2255) wea

zEBN, z#£T

therefore for all function f : R¢ — R we can write

z(l) x o0 2)% o
()] - sr [e I ()

zEBN 2EBN, z#xT

(4.19) E

Now set t = N%®s and note that as N — oo, uniformly in s € (¢,00) and z € Bi_e)n;
where € > 0 is arbitrary but fixed, by a Riemann sum approximation we have

S log <1— %) - = SelipD (1—]fi1>a(1+o(1))

zEBN, zF#x N+1 zEBN, zF#x
—1
s* (1 = 537

Coming back at (4.19) and noting that fooo ST¥a e~ A/ ds = fooo e A% du = A~1, by a simple
change of variables, it follows again by a Riemann sum argument that if f is continuous

and bounded we have
F ﬁ _ sz<g> L 1l a
N || T N5 Ve N/ ‘@ N +1

rEBN

lim E
N—oo

:%/,mm—mw%
ly]<1

proving (4.18]).
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5. PROOF OF PROPOSITION

We want to prove, for d = 1, that
(5.1) P (WN,§ = zﬁ)g for infinitely many N) =1.

To simplify notation, we only consider the case a > 1 and we set m, = E(§1) = a/(a—1), cf.
(1.2)). Recalling (1.1)), we set kK = P(S; = 0) and # = P(S; = 1). For the sake of simplicity,
we also assume that log(k/k) > —mq. The cases log(k/k) < —mgq and log(k/k) = —mg
are controlled with analogous arguments.
For a,7 > 0 and for n € N and € > 0 we define the event B., , C Q¢ by

Beyn = {3z € n,(14+¢e)n]: &(z) € (1,1 +e)nl/e,

Ay € Bn, (1+2)3n] : £(y) € (1,1 +¢)§n"/?,

Vz € [=Tn, (1+€)7n]\{w y}: €(z) < gn/e,

S £(0) > (ma =) (y — ac)},

where we set [a,b] := [a,b] N Z for short. By direct computation, one checks easily that
limy, 00 P(Be ) > 0 for all fixed €, > 0. In what follows, we denote by z,y the (random)

points appearing in the definition of B, .
Recalling (2.6)), for all N € N we have

(1-2(1+e)n"* < yy(x) < (1-2)(1+e)nl,
(1- 3"(1+5)) dplle < hn(y) < (1-32)( —|—6)§n1/°‘.

(5.2)

(5.3)

It follows that for all N € [tln, 13n] we have ¢y (z) > (1 — 111‘752)111/@ = (& + O(e))nl/=,

wn(y) > (1— 39;; )3nt/e = (25 + O(e))n/*, while ¥ (2) < n/® for all z € [-N,N]\

{z,y}. Therefore, by choosing € small enough, we can state that on the event B. ,, and
for all n € N, N € [4n, L3n] we have

(5.4) {23} = {o).
For N = n we have ¢y (z) = (& +0(e))n'/® and ¢n(y) = (2 + O(e))n*/®, uniformly
in n; on the other hand, for N = £n we have ¢y (z) = (% + O(e))n/ and Yy (y) =

(35 + O(e))n'/®, always uniformly in n. It follows that, if € > 0 is chosen small enough we
have for all n € N,

(5.5) Y1, (y) —Pu, () <0 but s, (y) = P1s, (z) > 0.
At this stage, we pick €9 > 0 such that and are satisfied. Next observe that
(5.6) (N + 1) (¥n(y) — ¥n(x)) = 2(x) — y&(y) + (N + 1)(E(y) — &(2))

is increasing in N, because by construction (£(y) — &(x)) > 0. It follows that there is
N;; € (3n,£n) such that:
o for Yn < N < N we have (¢n(y) — ¢n(2)) < 0, hence z = z](\}) and y = z](\?);

o for N < N < £n we have (¢n(y) — ¢n(z)) > 0, hence z = z](\?) and y = z](\}).
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&(x)) when N increases by 1. Since

(UNz41(y) — Ynzg1(x)) > 0, it then

By (N +1)(¢n(y) — ¢n(2)) increases by (£ (yi)
&(x)), that is

(N + D (@ (y) — ¥z (2)) < 0 and (N +1) +
follows that (N7 +1)(¢n; (y) — ¥y (2)) > —(£(y) —

(N + 1(Z4) — Z§) = (N + 1) (v (2) — ¥ () < (E(y) — €(2)

(5.7)
< <§ + 260) nt/o —. Co nl/a,

by the definition of the event B, ;1.

Consider now the contributions of the two N-steps random walk trajectories S and
S(NY) that reach respectively = and y in the minimal number of steps and stick there until
time N, i.e.,

(N,z)

Py (SNo)) = N Zis! €O+ (NHn (@) e tog(%)
PNg(S(N,y)) — G Ne2iZ @)+ (N+1)¢N(y)+ylog(%)7
so that

Pre(S™M) VI )~ (N+1) (o () (4) +(y—2) log(£)
(5.8) ,

We apply this relation for N = N;i on the event Be, nyn, With 279 := mq +log(k/k) (which

is strictly positive, by our initial assumtion). Then z = z](\}z, Y= z](\?) and ((5.8) becomes

(N7z0%)
Py e(S7) | S0l 60— ()23 -2+ log(5)

> e(ma—n—i-log(%))(y—z)—conl/o‘ > enn—cgnl/a

)
*

(5.9) Py (SN

)

where we have used ([5.7)), the last condition in (5.2)) and the fact that y — x > n, again by
(5.2). Since a > 1 by assumption, we have shown that on the event Bej »,.n

x (2) * (1)

IfPye(SW N )) —|—PN§(S(N"Z§\P)) > 2 this shows that wy ¢ = zj(\?). To sum up, there exists
no € N such that for n > ng

2
Beomon C {3N € (Un,22n) : wye =20}
)
U{HNG (121 n, 277,) PNg(S(N’ZE\?))-FPN,E( NZN < 4}

Recalling that PN75(S(N’ZJ(V2>)) + PN75(S(N7ZN )) = 1 as N — oo, P(d¢)-almost surely when
d =1, cf. Remark it follows that almost surely

lim sup Bz 5,n := {Bey,no,n for infinitely many n} C {wy e = z](\?) for infinitely many N} .
n—oo
Finally, note that P(limsup,, o, Beomo,n) = limMy—oo P(Bey 5o,n) > 0, and it is not difficult
to realize that indeed P(lim sup,,_, . Beyno,n) = 1, because when m > n the event B. ;) m
is asymptotically independent of B, ;, . This completes the proof.
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6. PATH PROPERTIES

In this section we prove Theorem i.e., we show that imy_o Pne¢(Cne) = 1, P(d)-
almost surely, where the set Cy ¢ is defined in ((1.18).

For i = 1,2, we denote for simplicity by 7; := inf{n € N: §,, = z%)} the first time at
which the random walk visits the site z](\z,) and we set
Din = {SGQS: <N, SpA S Vm<n<t, Sp=21Vne {n,...,N}}
(6.1) .
Kin = {S €g: < |20 +hN},

where we recall that hy := (loglog N)¥® N'=V/if ¢ > 1 and hy := (log N)' T2/ if a < 1.
Recalling the definition (4.1)) of the set W; n, we are going show that for both ¢ = 1,2

(6.2) lim Pyge (VNV”V \Dz’,N) =0, P(d¢)-almost surely,
N—oo

(6.3) A}im Pne(Win NDin)\Kin) =0, P(d¢)-almost surely .
—00

Recalling relation (4.8)), proved in the last section, Theorem is a consequence of ([6.2)
and ((6.3)). The rest of this section is therefore devoted to proving these relations.

6.1. Step 1: proof of (6.2). We fix i € {1,2} throughout the section. By definition, a
random walk trajectory S € W; n \ D; v makes either some loops before time 7; (i.e., before
reaching z](f,)) or some ezxcursions outside z](\l[) between time 7; and time N. We need to set
up some notation to account for such loops and excursions.

We set ig = jo := —1 and, for k € N, we denote by iy, = ix(5), jr = jx(S) the extremities

of the k-th loop made by a trajectory S € {0g before reaching z](\l,):

ipr=inf{ne€{jr_1+1,...,5—1}: Ime{n+1,....,1 — 1} s.t. Sp, =S, },

6.4
(64) Jr i=max{n < 7;: S, =S},

with the usual convention inf () := co. We also set Ty, := {ix, + 1,...,Jjx} and |Zy| := jk — ik
for conciseness. Then we denote by N' = N (S) := max{k € N : i} < oo} the total number
and by £ = L(S5) := Zﬁle |Zi| the total length of the loops of the trajectory S. Note that
N =L =0if i1 = o0, i.e., if the trajectory S has no loops. Finally, we denote by 7 (S) the

injective skeleton of S before reaching z](\z,), i.e., the random walk trajectory of 7; — L steps

defined (with some abuse of notation) by

(6.5) m(S) = {7 (S)n}tnefo,...ni—r} = {Sntnefo, .UM 7,

(%)

We let V; v, denote the set of all r-steps injective paths, starting at 0 and ending at 2/,

which do not visit any site x € By with £(z) > §(z](\i,)) (recall (3.3)):
(6.6) Viny = {(Sn)n<r: Sr= z](\i,), Sy # Sy, form # n, £.(z) = 0 when &(x) > 5(25\1,))} :

Note that for S € W; y \ D; n we have 7(S) € V; N r,—r(5)-
Next we deal with the excursions outside z](\?. Set iy = ji, = 7 — 1 and for k € N denote

by i) = i,.(S), ji = ji(S) the extremities of the k™ excursion outside zj(\i,) made by the
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trajectory S between time 7; and time N:
f=min{ne {1 +1,...,N—1}: S, #2001,

(6.7) '
Jr i=min{n > S, = z](\zf)}.

We also set Z := {i} +1,...,7;} and |Z;| := j;. — i}; furthermore, we denote by N’ =
N'(S) := max{k > 0: i}, < oo} the total number and by £’ = L/(S) := Z/k\il |Z},| the total
length of the excursions of the trajectory S. Note that N7 = L' = 0 if ¢} = o0, i.e., if there
are no excursions.

We can now start with the proof of (6.2)). Recalling the definition (1.3]) of our model and
using the notation we have just introduced, we obtain the decomposition

= He(9)
(6.8) PneWin\Din) = Z Z me(S) {SGWLN\DZ‘,N} Lin(8)=5"1) -
r=|z Z)| S*€Vi N r

We bound the partition function Uy ¢ from below by considering the trajectories that reach
z](\l[) through an injective path, avoiding the sites = with {(z) > & (zj(\l])), and stick at z](\l,)
afterwards, getting

N )
(6.9) Uve> S % SR €SN HI=IEGER) p(g) g

r= |Z Z)|S EVlNr

where for simplicity we set P(S*) := P(S1 = S7,...,S, = 5;) and we recall (1.1)).
Next we estimate the double sum in the right hand side of . Observe that for S €

Wl ~ \ D; n we have £+ L' > 1, because S must make at least one loop before reaching
z](\,) or one excursion outside z](V) before time N. By definition of W; n, cf. ., any site

x visited by S in the loops or excursions has an associated potential £(z) < ¢ (zN ), hence
¢(z) < XUV = ¢y — (x U = x U)o, @) Tt follows that on {£ =1, £/ = I} we
have Hy(S) < S 2L e(S5) + (N +1—r)e(2W) — 1+ 1)(x Y — x7™), hence

H S
E(e™< 1 p, vy Hans)=s7))

< Y RSN X by 2 () = 5Y).

LI'ENg, 1+1'>1
Looking back at and , we conclude that
Pne (V’D/ZN \ Din)
(610) < sup Z e_(l'i‘l/)(X](VJi)—X](\}]iJrl)) P(E — l,ﬁl — l/,ﬂ'(S> — S*) ‘

re{|z0], N} LIeNg, (+1/>1 P(5%) k=7
S*€Vi N r»

We are left with estimating the ratio in the right hand side of . It is convenient
to disintegrate the event {£ = [} (resp. {£’ = I'}) by summing on the total number N
and the locations Z = {Zj }<a of the loops (resp. the total number N’ and the locations

= {Z}. } k< of the excursions). Using the Markov property and bounding the probability
of each loop and excursion (trivially) by 1, for all n, I = {Iy}r<pn, 7', I' = {I} }x<n and for
all injective trajectories S* € V; v, we have

PN =nI=IN =0T =I'n(S) =5 <P(S*) N7,
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because |[{n € {r;,...,N—=1}: S, = Sp41}| = N—71;,— L', by definition of £, and 7, = r+L
when 7(S) = S* € V; N, by definition of L. It follows that

PEZZ,L/ZZI77TS :S* IR n o
( (5 HN—(T) ) < g .H(n,f,n',p); Shc Mkl =1 Y 1 :l’}‘.

It remains to bound the cardinality of the set in the right hand side. For fixed n € {0, ...,[},
the intervals I = {Ij}xr<y consist of 2n points in {0,...,7} C {0,..., N}, therefore the
number of possible choices for I is bounded from above by (N + 1)?* < (N + 1)%. Anal-
ogously, for every n’ € {0,...,1'}, the number of choices for I’ is bounded from above by
(N +1)?" < (N 4 1)%. Looking back at (6.10), we can write

PNg(VA\Z- N\ D; N) < Z 6—(l+l’)(X1(\‘[]i)_XJ(\;]z‘+l)+10gn—210g(N+1)) (1+1) (l/ +1)
L,I'eNg, I4+1'>1

J Ji+1
< (const.) Ze : X( +)Jrlogf»c—2log(N+1))m3

o~ (X7 XY tlog k-2log(N+1))

< (const.”) : :
(1 — e~ (X=X Hog r=2log(N+1)))

where in the second inequality we have used that > ;e 14y (1+1) (' +1) < (const.)m?
It then follows from Corollary and Proposition that relation (6.2]) holds true, com-
pleting the first step.

6.2. Step 2: proof of 1} Throughout the section we fix ¢ € {1,2}. We recall that

7 :=inf{n e N: 5, = ZN } denotes the first time at which the random walk visits z](\,)

A random walk trajectory S € l/\/Z NN D;n (cf and (| . ) reaches z( ) through an
()

injective path, avoiding sites where the potential is larger than & (z](\,)), and sticks at zp
afterwards (from time 7; to time N). Therefore the corresponding Hamiltonian (cf. ((1.3)
is bounded from above by

Ti—1 N

Hye(5) < D2ES) + (N +1-ma) < DX + (N + 1= me(ay).
j=1

Recalling the definition (6.1)) of the set IC; n, for S € (VA\ZN ND;n) \ Ki,n we obtain

Hye(S ZX + (N +1— 20| - hn)€(=R)
therefore, cf. (1.3)),
1 ) () (i)
Prne(Win NDin) \ Kin) < T oSN X (N2 h)EGD)

As usual, we obtain a lower bound on Uy ¢ by considering a single trajectory that reaches

the site z](\? in |z](\i,)| steps and sticks there afterwards, getting

Une > e HImlan DEGR) o



22 FRANCESCO CARAVENNA, PHILIPPE CARMONA, AND NICOLAS PETRELIS

for a suitable ¢ > 0, cf. (1.1). Note that f(z](\lf)) > Z](\? > N2 /(loglog N)3/2* eventually
P(d¢)-almost surely, for both i € {1,2}, by relation ({2.7). Therefore

3/2a

PN,g((VNVz',N N Dz‘,N) \’Cz‘,N) < er-vzl X}@') — hy N2 /(loglog N)

Since hy := (loglog N)?/® N'=V«if o > 1 and hy := (log N)'*?/® if a < 1, it follows from

(4.6) that PN,&((Wi,N NDin) \ lCi,N) — 0 as N — oo, P(d§)-almost surely. This proves
that (6.3)) holds true and completes the second step.

APPENDIX A. ORDER STATISTICS FOR THE FIELD

This section is devoted to the order statistics X](\}), e ,X](\‘,BND of the field {&(x)}zeny -
We first give some basic probability estimates, from which the proofs of Lemma [2.I] and
Proposition [2.2] will be deduced.

A.1. Basic estimates. We start comparing the relative sizes of X](\];) and X](\I;).

Lemma A.1. For all N,p,k € N with 1 < p < k < |By| and for all € (0,1) we have

T )a-a-ae.

(A1) PO > a-0x@) < ()

In the special case p =1 the equality holds:
(A.2) P(XY > (1-0)Xy) =1 -1 -omHFt.

Proof. We introduce the shortcuts My := sup,c4&(x), {X](\,m)m(n)} = {X](\,m), . .,X](\?)}
and A€ := By \ A for convenience. We recall that By = {z € Z% : |z| < N}. Summing over
the location of the subsets {X](\})m(k_l)} = A and {Xj(f)m(k_l)} = B, so that X](\’;) = Mye
and X](é)) = M4\ B)e, we can write

P(XY) > (1-0)X{)

=Y p(xPea-axP xPYy 4 (xpel) = p)

ACBy, |Al=k—1

1
= > P<MAc<§(y)<15MAchEB, §(Z)>MBVZEA\B).
ACBy, |Al=k—1 B
BQA, |B|=k—p

Since Mp > M 4c on the event we are considering, we can replace Mp by Mac and obtain
the upper bound

(1—-0) 1 1
PXY >1-0xP) < Y ]P’( P _yen,

BCA,|B|=k—p
1 1
§G) ~ (Mae)
We stress that in the special case p = 1 we have A = B, so that A\ B = () and therefore
the above inequality is an equality.

aVzeA\B).
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By assumption the field £(-) has a Pareto distribution with parameter o > 0, cf. (|1.2)),
therefore gia is uniformly distributed on the interval (0,1): P(a < % < b) = b—a for all

0 < a<b<l. It follows that

e 1
PO 20-9x8) < A== S By )
ACBy, | AJ=k—1 A
BQA»|B|:]€7P

R L el

and again all these inequalities are equalities if p = 1. It only remains to check that the last
sum equals one. To this purpose, note that for all ¢ € N, summing on the location of the

set {X](\P"'(Z)}, we can write

1= Y PUXY =4 = 3 PE(@) > M Yz € A)
ACBy , |A|l=¢t ACBy , |Al=¢
1 1 1
= IP’( — < aneA): E<a> O
Agsg:mz £(z) (Mae) Ags%A—e (M ye )t

)

Next we give some bounds on the absolute size of X](\I; .

Lemma A.2. Let ¢,C > 0 be such that ¢ < ‘%}," < C. Then for all k € {1,...,|Bn|} and
t € (0,00) the following relations hold:

k
#) o ydfapy « O 1
(A.3) P(Xy > N¥ot) < e
k—1 m
(k) dfa _e 1 [eC
(A.4) P(Xy <tNYe) < 77 2 (ta> .

Proof. Throughout the proof we shall assume that ¢ > N~%_1In fact, for t < N~%< there

is nothing to prove, because the left hand side of (A.4]) is zero (recall that the field £(-) is

bounded from below by one, cf. (1.2))) and the right hand side of (A.3) is greater than one:

in fact, for k < |By| we have (k —1)! < k¥ < |By|¥ < (OCN?)* and therefore for ¢ < N—d/a
ck 1 cko1 1

S
k! tha = (CNd)k tha (Nd/at)a =1
We start proving (A.3)). The case k = 1 is easy:

1\ Bnl
IP(X](VI) < N¥et) = P(¢(z) < NVt Vo € By) = (1 - ) :
and since (1 — 2)* > 1 —az for a > 1 and z € [0, 1] we obtain

[Bn|
(A.5) P(xy > Nt = 1—<1 L ) < Byl _C

~ taNd
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For the general case, summing over the location of the set {X](\P"'(kfl)} = {XJ(\}), ceey X](\lffl)}
and recalling the shortcuts My = sup,c4 ¢(z) and A° := By \ A we get
P(Xy >Ny = N Py > N, (xPEYY = a)

ACBy, |Al=k-1
= > P(Mae > NYot, {(z) > Mae Yz € A)
ACBy, |A|=k—1

= > P (MAc > N¥ey,
ACBy, |Al=k—1

<

Y Al .
gy ~ Mg © )

We have already remarked that the random variables 1/£(x)® are uniformly distributed

over the interval (0,1), that is P(515 < s) = s for s € (0,1). Then with some easy bounds

s =
we obtain
(k) dfayy _ o dfa
P(Xy > Ny = Y- E(Ma(kl),MAc>N t>
ACBN Ac
|A|=k—1
! d/a 1 (1) - nrd/a
< Ny D PMac> N < s > POG > N,
ACBN ACBy
|Al=k—1 |A|=k—1

where we have used that P(Mae > N¥°t) < IP’(X](\}) > N%ot) for all A C By. Since
(") <n™/m! and |By| < CN?, we obtain

(k) o prd/a 1 |Bn| (1) o pd/a
P(Xy' > NYet) < Ndk—1)pa(k—1) (k:—l P(Xy > NY*t)
k—1 k
. 1 Byt e 1

Ndk=Dgak=1) (k= 1) t« = (k— 1) tok’

having applied (A.5)). Equation (A.3]) is proved.
To prove (A.4), note that the random variable Y := #{z € By : £(z) > tN%?} is
binomial B(n,p) with parameters n = |[By| and p = P(¢ > tNY*) = 1/(t*N%), therefore
" k=1
d/a m n—m
P(Xy) <tNYe) = P(Y <k-1) = ) <m>p (1-p)

(%)

1 m 1 |Bn|—m
1—-——= .
— <to¢Nd> ( tO‘Nd>

Using the estimates (1 —2)* < e and (') < n™/m! we get

n
m

(A.6)

k—1 m
B
[p(X](\’;) < tNYy < o N Z R <’BN|6W§V¢) 7
from which (A 4) follows, recalling that |By| > ¢N% and 1/(t*N?) < 1 by assumption. [

We are finally ready for the proof of Lemma [2.1] and Proposition to which the next
subsections are devoted.



DISCRETE-TIME PAM WITH HEAVY TAILED POTENTIAL 25

A.2. Proof of Lemma We start considering equation (2.2). Let us set Ny := 2¥. By
(A.3]) we have

C 1
d/a 1/a+e/2
E ]P) Nk) / (IOgN ) / €/ ) g (10g2)1+a5/2 Z k1+a6/2 < o,
keN

keN
and by (|A.4] M
ZIP’ < (N) ¥ (log log Ny ) ~1/*=2/2) < Zexp (—c(log log Nk)1+5a/2>
keN keN

1
= E < 00
ea/2 ’
k;eN k 10g2 c(loglog 2+log k)

because for large k the exponent c(loglog?2 + log kz)m/2 exceeds 1. By the Borel-Cantelli
lemma, it follows that eventually (in k) P-a.s.

(Nk)d/oz ) i I
(log log N)/are/2 = XN = (NR)¥ (log Ny)V/te/2.

Now take a generic N € N and set k := |logy(N)], so that Ny < N < Ngii. Observe
that X](\}k) < X](\}) < XJ(\}JC)H’ because X](\}) is increasing in /N. Plainly, one has Ny1; < 2N,

N, > %N, log Ni; < log N and log Ny41 < log2+log N < 2log N (for large N). Then it
follows from (A.7) that for large NV

Nd/e
2—d/a — < X}\}k) < X}\}) < X}\}k) ) < 2d/a+1/a+a/2 Nd/a (logN)l/a-i-e/Q ]
(loglog N )¢/ +

Equation (2.2) follows observing that 2¢/® < (loglog N)¥/? and 2%/a+1/ate/2 < (log N)e/?
for large V.
Next we focus on the lower bound in equation (2.3)). By (A.4)) we can write

(A7)

((log 1)) /e PRI L L m
og < < e~ C log N)vTae - v+ae
IP(XN < (ng)ﬁ/M) < e mz::o — (¢C (1og Ny +2¢)

Observe that, for fixed = > 0, the sequence m — 2™ /m! is increasing for m < z, therefore
for k < x we have an_:lo ™ /m! < k¥ /k! < k(ex/k)*, because m! > (m/e)™ for all m € N.
It follows that for some constant C’ > 0 and for large N we can write

d/a
((log N)?) N —c(log N)?+ae 9 (o s (log N)?
IP’<XN < (1ogN)19/a+a> <e (log N)” (C' (log N)**)

<A8) < (IOg N)ﬁ efc(logNYH'“E+(logN)ﬁ[aeloglogN+logC’]

< (log N)'& 6—%c(10gN)19+ae < N_Q,

because by assumption ¥ > 1 and € > 0 (the —2 could be replaced by any negative number).
The Borel-Cantelli lemma then yields directly the lower bound in .

Finally, we prove together the upper bound in and . By Stirling’s formula we
have (k —1)! > (/’€ Lyk=1 > ( )k for large k. Applylng (A.3), we can then write

d/o k 1/a ak k
B o 4N < ¢ k < (3C) o -2
P<XN >Ak;1/a>—(k—1)!<A = \4a) =°
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provided A is chosen larger than (¢2/3C)Y®. By the inclusion bound,

d/a

(k) N ok (const.)

P(ﬂke{(logN),...,BN!}. Xy >Ak1/a> < k>§l :Ne < NTo
>log

therefore by the Borel-Cantelli lemma it follows that, eventually P-almost surely in IV, one

has X](\];) <A ]Zf//; for all £ > log N. This yields immediately (2.4]), as well as the upper
bound in ({2.3]), because by assumption ¢ > 1. O

A.3. Proof of Proposition Since the relation ([2.5)) becomes stronger as [ increases,
we can safely assume that § > 1. Then by (2.3)) we have that, eventually P-a.s.,

(A.9) x® > x(en?) 5 N e

_W, VkS(IOgN)'B.

Since a more quantitative control will be needed later, we observe that for large N

d/a
where Cn = U {Xr()glogm)ﬁ) < m} ,

A.10 P(C <
(A.10) (Cn) < U (log m)2/a

2/~

as it follows from (A.8)).
Thanks to (A.9), in order to prove (2.5)) it suffices to show that for every 5 > 1 there
exists v > 0 such that, eventually P-a.s., the following event holds:

Yy = {Vk < (logN)?: xW — x(FHD > XY .
- NN T (log N)Y

In order to apply the Borel-Cantelly lemma, it is convenient to group the events Vy together.
More precisely, for n € Ny we set N,, := €™ |, where the constant » € (0,1) will be fixed
later, and we define

Vy = ﬂ Vi -

Np<m<Np41

The proof is then completed once we show that the event V, holds eventually P-a.s. (in n).

It only remains to show that IP’(]ZCL) decays fast enough as n — oo. By construction, if
V,, does not hold, there must exist m € {N,, + 1,...,Np11} and k < (log m)? such that
0< Xéf) — X,ngﬂ) < (log m)_VXT(r]f). Let y, z € B,, be the two points at which the values
X% and X8 are attained, that is &(y) = X% and £(z) = X ¥ It is convenient to
distinguish three cases, according to whether y and z are in By, or not.

(1) If both y,z € By, we can write £(y) = X](\IZ;) and £(z) = X](\Zl) for some k' < k”.
Since by construction £(z) = Xr(,erl) and B,, 2 By, , we must have k¥’ < k+1, whence
k' <k < (logm)® < (log N,41)?. Also note that

XN, =, < X)X = X - X

< (logm) XM = (logm) VX §) < (log N) XN

This shows that, if V, does not hold and both y,z € By, , there must exist k' <
(log NnH)fB such that X](\];) — XJ(\'f +1) < (log Nn)_VX](\];n).

n n
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(2) To handle the case when y,z € By, \ Bn,, € Bn,,, \ Bn,, it is sufficient to observe
that £(y) and £(z) must take large values, because of (A.9). More precisely, on the
event Cf; , cf. (A.10), both £(y) and £(z) must be larger than m®/(logm)?8/e >

NA® [ (log Nyysy) 2810
(3) Consider finally the case when exactly one of the points y, z lies in By,,. If y € By,

and z € B, \ By,,, we have {(y) = X](\};:L) for some k&’ < (logm)?, as we have already
remarked, therefore 0 < X](\f;) —&(2) < (log m)*VX](\]f;). Viceversa, if z € By, and

y € By \Bn,,, we may write 0 < f(y)—X](\];:) < (logm)~&(y), for some k" < (logm)?.
In either case, we can state that there exists some point z € By, \ By, and some

k < (log N,,11)? such that (1 — (log N,)™7) < f(x)/X](\]fg < (1 — (log N,)~ ")~ L.

These considerations lead us directly to the following basic decomposition:
Ve € W U (Cy, UWP) U WP,

where the event Cy has been introduced in (A.10) and we have set

K41 1 K
e, U (o))

k’<(log Np41)P

@ U Nd/a Nd/oz
Wy = EW) = g §(2) 2 e
Y,2€BN,, 1 \BNy,, Y72 (log Nn+1)2'8/a (log Nn+1)26/a
1 £(x) 1 -t
W) .= U {1— < —= < (1—) .
n Y k Y
xEBNn+1 \Bn,, s k<(log Np+1)P (log Nn) X](Vn) (log Nn)

Note that, by (A.10), > ,enP(Cr,) < X en N%z < Yaene ™ < oco. By the Borel-
Cantelli lemma, it suffices to show that ) IP’(WTSZ')) < oo for ¢ =1,2,3 and it will follow
that V, holds eventually P-a.s., that is what we want to prove.

Let us consider W7(11). By we have IP(X](\I,CH) > (1—5)XJ(\’;)) < ck ¢ for some constant
¢ > 0. Recalling that N,, = ¢, for large n we have

" | (log Niu 1) o) . "
POWVY) < ]P(X ><1—>X )
Al e ; e (log N,,)v ) = N
Ay [(10g No+1)?) » .,
C # Z k, < C/ (log NTL+1) C
= (log Np)? - (log Nt~ nr(-28)"

k=1

for suitable ¢, ¢” > 0. It follows that > ]P’(W,gl)) < oo provided r(y —28) > 1.
(2)

Next we consider W,~’. Observe that there exist constants ¢, > 0 such that

(Vo)1

nl—r

(A'12) ’BNn+1 \BNn‘ < C(Nn—l-l - Nn) (Nn)d_l <c

9
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because Ny — N, = [e™F)" | — || = e® rn" 1 (1 + 0(1)) as n — oco. Recalling that
P(¢(x) > t) < t=* by (1.2)), for a suitable ¢’ > 0 we can write

d/o 2
Ny
POVD) < > P<£(y) > W)
y,zEBNn+1\BNn,y7éz & ¥+l
(01)2 (Nn)Qd (logNn+1)4ﬁ < J ntor _ '
= n20-r) (Nn)2d = n2(l=r) — p2-(46+2)r

Therefore ), ]P(Wr(f)) < oo provided 2 — (48 + 2)r > 1.
We finally focus on W7(L3). Note that by (1.2]) for all £ > 1 and € < % we can write

&) . =97 a :

1—e)t

for some universal constant ¢ > 0. Note that £(x) is independent of X](\i? it z & By,,. If we
are on the event Cf, , cf. (A.10), XJ(\Z) > (N,)%/(log N,,)?P/® for k < (log N,,)?, hence

1 £(z) 1 -1 1 (log Ny )™
Pl 1-— 1——— < < .
( log Ny < x ) < ( <logzvn>v> e A T AT

Recalling (A.10)), it follows that

1
POWY) < P(Cw,) + POV, C5) < — + (log Nus1)? By, | - ca

Ny,
! 1
e s ) -

for a suitable constant ¢ > 0. If r(y — a — §) > 1 we then have )" ]P’(W,(lg)) < 0.
The proof is completed observing that the three relations we have found, namely

(log Ny,)*~
(N )

IN

r(y—28) > 1, 2—-(4B+2)r>1, r(y—a—p)>1,

can be satisfied at the same time. In fact, for any fixed S, we can choose r € (0,1) small
enough such that the second relation holds (e.g. r := (438 + 3)~!) and then choose v > 0
large enough so that the first and the third relations are satisfied (e.g. v := 65 + o + 3).

APPENDIX B. ORDER STATISTICS FOR THE MODIFED FIELD
B.1. Proof of Lemma We are going to prove the following stronger result.
Lemma B.1. For all k> 2 and 6 € (0,1) one has
(B.1) P (Z](\]f) >(1- 5)Z§V1>) <(1—(1—8))kt,

Proof. We set Ly := sup,e4 ¥n(z) (recall (2.6)) and A° := By \ A for short. We also set

||

on(z) == (1 = §537), so that ¥y (z) = @n(z){(z). Summing over the location of the set
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A= {ZJ(\}), e Z](\lffl)}, so that Z](\];) = L zc, we can write
PZY >1-85z{)= Y P ({Z}V“, 2y 2 A Ly > (1 - 5)21(;))
ACBy, |Al=k—1
(B2) = > P(Lac<¢n(z) < (1-6)'Lac, Vo € A)

ACBn,|A|l=k—1
= o QON(‘T) o 1 @N(«T) @
= AQBNJZ/H:kl]P) ((1 - 5) ( L 4c ) < E(‘r)a < < La > , Vo € A) .

It follows from ([1.2)) that the variable 1/£(z)® is uniformly distributed on the interval (0, 1),
that is, its distribution function equals J(x) := (z A 1)1(g o) (x), hence

P ((1 5y < g(i)a < ta) = () — J((1— 6)%)

One checks easily that J((1 — 0)%t*) > (1 — 0)*J(t) for all 6 € (0,1) and ¢t > 0 (the

inequality is strict for ¢ > 1), therefore
H J (@N(fb’) > ‘
(Lae)®

€A

(B3) Py >(-0zy)<a-(-o" > E
ACBy, |Al=k—1

Setting 6 = 1 in (B.2]) we see that the sum in the right hand side of the last equation equals
one, and the proof is completed. [l

Remark B.2. One can refine the proof of Lemma to show that
P(20 > (1-0)20) 2 (1-Cee™) (1= (1 -0,

for suitable constants cg, Cy € (0,00) and for large N. In fact, restricting the expectations

in (B.2) to the event {Z](\’f) > 1}, one has ¢n(z)/Lac <1 and therefore (B.3]) becomes
P28 > (1- 020, 2P > 1) = (1 - (1 -6 BZ® > 1).

It then remains to check that IP’(Z](\’,C) > 1) < Cpexp(—c,N?), which can be easily done by
direct computation.

B.2. Proof of Lemma As already remarked, only the first inequality in (2.7 needs
to be proved, because Z ]\? < Z](\}) < X](\}) (recall (2.2])). We start with an auxiliary lemma.

Lemma B.3. There exist constants c1,co such that for all N € N andt >0
(B.4) P(ZE < NUot) <cpe i |
Proof. Setting Oy 1= sup,cp,\ (2} ¥n(z) for short, we can write

B(Zy < NY*t)= 3 B0, < Nt £(x) > Ox)

TEBN

1 1 1 1 1
= 2 P(Osz Z Nig Ea)e oa) < 2 E(Oszl{cfméta}) ’

TEBN z z€BN
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because 1/£(x)® is uniformly distributed on the interval (0,1), as it follows from (|1.2). We
then apply the basic formula E(Z 1{z54) = aP(Z > a) + [*P(Z > s)ds, getting

(2) da 1 & 1
et 3 (oo () [ ) )

xEBN
We now claim that there exists ¢ > 0 such that for all N € N, z € By and u > 0

1 U
) > <e Y,
(B.5) ]P’(Oa_Nd) e

Since |By| < CN? for some constants C, we get

o0

C Ca (C C
P(Zﬁ)SNd/“t)gt—ae_Ct + C e Udy < e ¢t ( + )

Since the function t — t~%e —get is bounded on R, it follows that ( . ) holds true with

Co = %c and for ¢q large enough.

It remains to prove (B.5)), for which we can write

2]y
1 _u 1 (- w59)
P <a = d> o 1 < a2 iU
OI N zeBn\{x} E(Z) N
< exp | & Z (1- ﬁ)a
> P Nd N+1 ’
z€BN\{z}

because P(1/£(2)* > a) = 1 —a < e ® for a € [0,1] (recall (1.2)). By a Riemann sum
approximation, as N — oo one has

1
< > (=F)T — [ a-lh7dy € (0,0),
z€BN\{z} ly|<1
from which it follows that (| m ) holds true for some ¢ > 0. O

Proof of Lemma . Thanks to the inequality - the proof is identical to that of the
lower bound in , cf. Appendlxm A2l More precisely, one first shows, through a standard
Borel-Cantelli argument, that the first inequality in (with e replaces by £/2, say) holds
along the subsequence Nj, := 2*; the extension to all values of N then follows easily, because

Z](\?) is increasing in N. We omit the details for conciseness. O
B.3. Further results. It may be useful to observe that if 21(\21 =+ z](\}) then

(B.6) |ZJ(\2H| > |z](;)| and 5(21(\2-1) > f(z](;))

In fact, when ZJ(\}EH =+ z](\})

(B.7) Z29 = on (=) > ?/)N(ZJ(\}L), Uns1(z)) < 7/1N+1(ZJ(\2_1) = Zﬁll,
from which we obtain, recalling the definition (2.6) of ¥,

2313
(N+1)(N+2)

we have by definition

= (o0) — on D) < Ui () — o) = vaNfl')g((zZvaz))’

hence |z](\})| 5(21(\})) <|z N+1| &(z N+1) This shows that at least one of the two inequalities in
must hold. Two cases remain that need to be excluded:
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o if |z](\3_1| < \z](\})| and f(z](\}ll) > 5(2](\})), then

‘Z(l) | Z(1)|
YN (2 E\Hrl) = (1 NN—:ll §(ZN+1) >(1- Z‘V]il ,g(zg\})) — @/;N(z](\})) — Z](\})a
(1)

which is absurd, because Z;’ is by definition the maximum of 9y

e analogously, if ]z](\}lﬁ > \z](\})\ and 5(21(\})“) < 5(21(\})), then

(1) (1)
: 257
21 = vna () = (1 - Nﬁ;) §(zy) < (1 o 2) §N) = vnn ().

which is again absurd, because Zj(\g-l is by definition the maximum of ¥p1.
Next we show that a staternent analogous to (2.9)) for the gap ZJ(\}) — Z](\?) does not hold.

Let us fix any N for which z - 7$ 2 note that there are almost surely infinitely many

(
N+1
such values of N, otherwise Zy, ( ) = wN(z](\})) would be eventually constant). We set = := z(l)

and y := z(f) for short. Then Z( ) = =Yy (x) and Z ) > ¥ (y), hence, recalling ([2.6]),

29— 29 < hy(e) ~by() = - (N + 1) (@) — ) + ylew) — efe())

N+1
= (& E(y) —E@)
_ m((N +2)(6(@) — ) + Iylé(y) - lal(@)) + €l —ele)
xii(%\f“( ) - 7/’N+1(y)) + w

By construction y = 21(\21 and y # x, therefore Y5, (y) = ZJ(\QH > Y541 (x). Recalling

, we infer that eventually P-a.s.

ey 1 x @
j— Z .
N N N +1 N+1—
We stress that this bound differs from the one in almost by a factor N~1. It turns
out that the bound (B.8) is quite sharp (up to logarithmic corrections): in fact, by the

first bound in (2.8]), (2.7) and a Borel-Cantelli argument, it follows that for every ¢ > 0,
eventually P-almost surely,

Nd/a 1 (log N)1/01+E

(1) d/o—1
1) _ @) 5 Zn - N
(B.9) IN =N = N(log N)1+e/2 = (log N)l+e

This implies in particular that N (Z](\}) — Z](\?)) — 400, P-almost surely.
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