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Abstract. We consider a discrete-time version of the parabolic Anderson model. This
may be described as a model for a directed (1 + d)-dimensional polymer interacting with
a random potential, which is constant in the deterministic direction and i.i.d. in the d
orthogonal directions. The potential at each site is a positive random variable with a
polynomial tail at infinity. We show that, as the size of the system diverges, the polymer
extremity is localized almost surely at one single point which grows ballistically. We give
an explicit characterization of the localization point and of the typical paths of the model.

1. Introduction and results

The model we consider is built on two main ingredients, a random walk S and a random
potential ξ. We start describing these ingredients. A word about notation: throughout the
paper, we denote by | · | the `1 norm on Rd, that is |x| = |x1|+ . . .+ |xd| for x = (x1, . . . , xd),
and we set BN := {x ∈ Zd : |x| ≤ N}.

1.1. The random walk. Let S = {Sk}k≥0 denote the coordinate process on the space
ΩS := (Zd)N0:={0,1,2,...}, that we equip as usual with the product topology and σ-field. We
denote by P the law on ΩS under which S is a (lazy) nearest-neighbor random walk started
at zero, that is P(S0 = 0) = 1 and under P the variables {Sk+1 − Sk}k≥0 are i.i.d. with
P(S1 = y) = 0 if |y| > 1. We also assume the following irreducibility conditions:

(1.1) P(S1 = 0) =: κ > 0 and P(S1 = y) > 0 ∀y ∈ Zd with |y| = 1 .

The usual assumption E(S1) = 0 is not necessary. For x ∈ Zd, we denote by Px the law of
the random walk started at x, that is Px(S ∈ ·) := P(S + x ∈ ·).

We could actually deal with random walks with finite range, i.e., for which there exists
R > 0 such that P(S1 = y) = 0 if |y| > R, but we stick for simplicity to the case R = 1.

1.2. The random potential. We let ξ = {ξ(x)}x∈Zd denote a family of i.i.d. random
variables taking values in R+, defined on some probability space (Ωξ,F ,P), which should
not be confused with ΩS . We assume that the variables ξ(x) are Pareto distributed, that is

(1.2) P(ξ(0) ∈ dx) =
α

x1+α
1[1,∞)(x) dx ,

for some α ∈ (0,∞). Although the precise assumption (1.2) on the law of ξ could be relaxed
to a certain extent, we prefer to keep it for the sake of simplicity.
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In the sequel we could work with the product space ΩS ×Ωξ, equipped with the product
probability P ⊗ P, under which ξ and S are independent, but it is actually not necessary,
because ξ and S will play on a separate level, as it will be clear in a moment.

1.3. The model. Given N ∈ N := {1, 2, 3, . . .} and a P-typical realization of the variables
ξ = {ξ(y)}y∈Zd , our model is the probability PN,ξ on ΩS defined by

(1.3)
dPN,ξ

dP
(S) :=

1

UN,ξ
eHN,ξ(S) , where HN,ξ(S) :=

N∑
i=1

ξ(Si) ,

and the normalizing constant UN,ξ (partition function) is of course

(1.4) UN,ξ := E
[
eHN,ξ(S)

]
= E

[
exp

(
N∑
i=1

ξ(Si)

)]
.

We stress that we are dealing with a quenched disordered model : we are interested in the
properties of the law PN,ξ for P-typical but fixed realizations of the potential ξ.

Let us also introduce the constrained partition function uN,ξ(x), defined for x ∈ Zd by

(1.5) uN,ξ(x) := E

[
exp

(
N∑
i=1

ξ(Si)

)
1{SN=x}

]
,

so that UN,ξ =
∑

x∈Zd uN,ξ(x). Note that the law of SN under PN,ξ is given by

(1.6) pN,ξ(x) := PN,ξ(SN = x) =
uN,ξ(x)

UN,ξ
=

uN,ξ(x)∑
y∈Zd uN,ξ(y)

.

The law PN,ξ admits the following interpretation: the trajectories {(i, Si)}0≤i≤N model
the configurations of a (1 + d)-dimensional directed polymer of length N which interacts
with the random potential (or environment) {ξ(x)}x∈Zd . The random variable ξ(x) should
be viewed as a reward sitting at site x ∈ Zd, so that the energy of each polymer configuration
is given by the sum of the rewards visited by the polymer. On an intuitive ground, the
polymer configurations should target the sites where the potential takes very large values.
The corresponding energetic gain entails of course an entropic loss, which however should
not be too relevant, in view of the heavy tail assumption (1.2). As we are going to see, this
is indeed what happens, in a very strong form.

Besides the directed polymer interpretation, PN,ξ is a law on ΩS = (Zd)N0 which may
be viewed as a natural penalization of the random walk law P. In particular, when looking
at the process {Sk}k≥0 under the law PN,ξ, we often consider k as a time parameter.

Remark 1.1. An alternative interpretation of our model is to describe the spatial distribu-
tion of a population evolving in time. At time zero, the population consists of one individual
located at the site x = 0 ∈ Zd. In each time step, every individual in the population per-
forms one step of the random walk S, independently of all other individuals, jumping from
its current site x to a site y (possibly y = x) and then splitting into a number of individuals
(always at site y) distributed like a Po(eξ(y)), where Po(λ) denotes the Poisson distribution
of parameter λ > 0. The expected number of individuals at site x ∈ Zd at time N ∈ N is
then given by uN,ξ(x), as one checks easily.

Remark 1.2. Our model is somewhat close in spirit to the much studied directed polymer
in random environment [2, 3, 9], in which the rewards ξ(i, x) depend also on i ∈ N (and
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are usually chosen to be jointly i.i.d.). In our model, the rewards are constant in the “de-
terministic direction” (1, 0), a feature which makes the environment much more attractive
from a localization viewpoint. Notice in fact that a site x with a large reward ξ(x) yields a
favorable straight corridor {0, . . . , N} × {x} for the polymer {(i, Si)}0≤i≤N .

We also point out that the so-called stretched polymer in random environment with a
fixed length, considered e.g. in [7], is a model which provides an interpolation between the
directed polymer in random environment and our model.

1.4. The main results. The closest relative of our model is obtained considering the
continuous-time analog ût,ξ(x) of (1.5), defined for t ∈ [0,∞) and x ∈ Zd by

(1.7) ût,ξ(x) := E

[
exp

(∫ t

0
ξ(Ŝu) du

)
1{Ŝt=x}

]
,

where ({Ŝu}u∈[0,∞),P) denotes the continuous-time, simple symmetric random walk on Zd.
One can check that the function ût,ξ(x) is the solution of the following Cauchy problem:{

∂
∂t ût,ξ(x) = ∆ût,ξ(x) + ξ(x) ût,ξ(x)

û0,ξ(x) = 10(x)
for (t, x) ∈ (0,∞)× Zd ,

known in the literature as the parabolic Anderson problem. We refer to [5, 4, 6] and references
therein for the physical motivations behind this problem and for a survey of the main results.

When the potential ξ is i.i.d. with heavy tails like in (1.2) and α > d, the asymptotic
properties as t → ∞ of the function ût,ξ(·) were investigated in [8], showing that a very
strong form of localization takes place: for large t, the function ût,ξ(·) is essentially concen-
trated at two points almost surely and at a single point in probability. More precisely, for
all t > 0 and ξ ∈ Ωξ there exist ẑ

(1)
t,ξ , ẑ

(2)
t,ξ ∈ Zd such that

lim
t→∞

ût,ξ(ẑ
(1)
t,ξ ) + ût,ξ(ẑ

(2)
t,ξ )∑

x∈Zd ût,ξ(x)
= 1 , P-almost surely ,(1.8)

lim
t→∞

ût,ξ(ẑ
(1)
t,ξ )∑

x∈Zd ût,ξ(x)
= 1 , in P-probability ,(1.9)

cf. [8, Theorems 1.1 and 1.2]. The points ẑ
(1)
t,ξ , ẑ

(2)
t,ξ are typically at superballistic distance

(t/ log t)1+q with q = d/(α − d) > 0, cf. [8, Remark 6]. We point out that localization at
one point like in (1.9) cannot hold P-almost surely, that is, the contribution of ẑ

(2)
t,ξ cannot

be removed from (1.8): this is due to the fact that ût,ξ(x) is a continuous function of t for
every fixed x ∈ Zd, as explained in [8, Remark 1].

It is natural to ask if the discrete-time counterpart of ût,ξ(·), i.e., the constrained partition
function uN,ξ(·) defined in (1.5), exhibits similar features. Generally speaking, models built
over discrete-time or continuous-time simple random walks are not expected to be very
different. However, due to the heavy tail of the potential distribution, the localization
points ẑ

(1)
t,ξ , ẑ

(2)
t,ξ of the continuous-time model grow at a superballistic speed, a feature that is

clearly impossible for the discrete-time model, for which uN,ξ(x) ≡ 0 for |x| > N . Another
interesting question is whether for the discrete model one may have localization at one
single point P-almost surely. Before answering, we need to set up some notation.

We recall that BN := {x ∈ Zd : |x| ≤ N}. It is not difficult to check that the values
{pN,ξ(x)}x∈BN are all distinct, for P-a.e. ξ ∈ Ωξ and for all N ∈ N, because the potential
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distribution is continuous, cf. (1.2). Therefore we can set

(1.10) wN,ξ := arg max
{
pN,ξ(x) : x ∈ BN

}
,

and P-almost surely wN,ξ is a single point in Zd: it is the point at which pN,ξ(·) attains its
maximum. We can now state our first main result.

Theorem 1.3 (One-site localization). We have

(1.11) lim
N→∞

pN,ξ(wN,ξ) = lim
N→∞

uN,ξ(wN,ξ)∑
x∈Zd uN,ξ(x)

= 1 , P(dξ)-almost surely .

Furthermore, as N →∞ we have the following convergence in distribution:

(1.12)
wN,ξ

N
=⇒ w , where P(w ∈ dx) = cα (1− |x|)α 1{|x|≤1} dx ,

and cα := (
∫
|y|≤1(1− |y|)αdy)−1.

Recalling the definition (1.6) of pN,ξ(x), Theorem 1.3 shows that SN under PN,ξ is localized
at the ballistic point wN,ξ ≈ w ·N .

Next we look more closely at the localization site wN,ξ. We introduce two points z(1)
N,ξ, z

(2)
N,ξ ∈

Zd, defined explicitly in terms of the potential ξ, through

z
(1)
N,ξ := arg max

{(
1− |x|

N+1

)
ξ(x) : x ∈ BN

}
,

z
(2)
N,ξ := arg max

{(
1− |x|

N+1

)
ξ(x) : x ∈ BN \

{
z

(1)
N,ξ

}}
.

(1.13)

Again, the values of {(1 − |x|
N+1)ξ(x)}x∈BN are P-a.s. distinct, by the continuity of the

potential distribution, therefore z(1)
N,ξ and z(2)

N,ξ are P-a.s. single points in BN . We can now
give the discrete-time analogues of (1.8) and (1.9).

Theorem 1.4 (Two-sites localization). The following relations hold:

lim
N→∞

(
pN,ξ

(
z

(1)
N,ξ

)
+ pN,ξ

(
z

(2)
N,ξ

))
= 1 P(dξ)-almost surely ,(1.14)

lim
N→∞

pN,ξ
(
z

(1)
N,ξ

)
= 1 in P(dξ)-probability .(1.15)

Putting together Theorems 1.3 and 1.4, we obtain the following information on wN,ξ.

Corollary 1.5. For P-a.e. ξ ∈ Ωξ, we have wN,ξ ∈ {z
(1)
N,ξ, z

(2)
N,ξ} for large N . Furthermore,

(1.16) lim
N→∞

P
(

wN,ξ = z
(1)
N,ξ

)
= 1 .

In Proposition 1.6 below, we stress that the convergence in (1.15) does not occur P(dξ)-
almost surely in dimension d = 1, i.e., wN,ξ is not equal to z

(1)
N for all N large enough. We

strongly believe that the latter remains true for d > 1.

Proposition 1.6. In dimension d = 1, we have

(1.17) P
(

wN,ξ = z
(2)
N,ξ for infinitely many N

)
= 1 .
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The proof of two sites localization given in [8] for the continuous-time model is quite
technical and exploits tools from potential theory and spectral analysis. We point out that
such tools can be applied also in the discrete-time setting, but they turn out to be unneces-
sary. Our proof is indeed based on shorter and simpler geometric arguments. For instance,
we exploit the fact that before reaching a site x ∈ Zd a discrete-time random walk path
must visit a least |x| − 1 different sites ( 6= x) and spend at each of them a least one time
unit. Of course, this is no longer true for continuous-time random walks.

1.5. Further path properties. Theorem 1.3 states that P(dξ)-a.s. the probability mea-
sure PN,ξ concentrates on the subset of ΩS gathering those random walk trajectories S
such that SN = wN,ξ. It turns out that this subset can be radically narrowed. In fact, we
can introduce a restricted subset CN,ξ ⊆ ΩS of random walk trajectories, defined as follows:

• the trajectories in CN,ξ must reach the site wN,ξ for the first time before time N ,
following an injective path, and then must remain at wN,ξ until time N ;

• the length of the injective path until wN,ξ differs from |wN,ξ| — which is the minimal
one — at most for a small error term hN := (log logN)2/αN1−1/α if α > 1 and
hN := (logN)1+2/α if α ≤ 1 (note that in any case hN = o(N));

• all the sites x visited by the random walk before reaching wN,ξ must have an associated
field ξ(x) that is strictly smaller than ξ(wN,ξ).

More formally, denoting by τx = τx(S) := inf{n ≥ 0: Sn = x} the first passage time at
x ∈ Zd of a random walk trajectory S, we set

CN,ξ :=
{
S ∈ ΩS : Si 6= Sj ∀i < j ≤ τwN,ξ , Si = wN,ξ ∀i ∈ {τwN,ξ , . . . , N} ,

ξ(Si) < ξ(wN,ξ) ∀i < τwN,ξ , τwN,ξ ≤ |wN,ξ|+ hN

}
.

(1.18)

We then have the following result.

Theorem 1.7. For P-a.e. ξ ∈ Ωξ, we have

(1.19) lim
N→∞

PN,ξ(CN,ξ) = 1.

Remark 1.8. It is worth stressing that in dimension d = 1 the set CN,ξ reduces to a
single N -steps trajectory. In fact, we have CN,ξ = S(N,wN,ξ), where we denote by S(N,x), for
x ∈ BN , the set of trajectories S ∈ ΩS such that

Si :=

{
i · sign(x) for 0 ≤ i ≤ |x|
x for |x| ≤ i ≤ N

.

As stated in Corollary 1.5, for large N the site wN,ξ is either z
(1)
N,ξ or z

(2)
N,ξ. Note that z

(1)
N,ξ and

z
(2)
N,ξ are easily determined, by (1.13). In order to decide whether wN,ξ = z

(1)
N,ξ or wN,ξ = z

(2)
N,ξ,

by Theorem 1.7 it is sufficient to compare the explicit contributions of just two trajectories,
i.e., PN,ξ(S(N,z

(1)
N,ξ)) and PN,ξ(S(N,z

(2)
N,ξ)). More precisely, setting κ(i) := P(S1 = i) for

i ∈ {±1, 0} (so that κ = κ(0), cf. (1.1)) and

bN,ξ(x) := e
∑|x|−1
i=1 ξ(i sign(x))+(N+1−|x|)ξ(x)κ(sign(x))|x|κ(0)N−|x| ,

we have wN,ξ = z
(1)
N,ξ if bN,ξ(z

(1)
N,ξ) > bN,ξ(z

(2)
N,ξ) and wN,ξ = z

(2)
N,ξ otherwise. Therefore, in

dimension d = 1, we have a very explicit characterization of the localization point wN,ξ.
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Remark 1.9. A strong localization result is displayed in [1] for the directed polymer model
with a “very heavy tailed” random environment (α < 2). It is shown that, in any dimension,
the polymer moves balistically in the hyperplane orthogonal to the deterministic direction.
Moreover, for any δ > 0, the polymer of size N remains, with probability 1−e−cδN (cδ > 0),
in a cylinder of width δN around the trajectory that minimizes the energy. If the inverse
temperature β is rescalled by N1−2/α, the attracting trajectory becomes the minimizer of
a variational formula involving both an energetic and an entropic term.
1.6. Organization of the paper. The paper is organized as follows.

• In Section 2 we gather some basic estimates on the field, that will be the main tool
of our analysis.

• In Section 3 we prove Theorem 1.4.

• In Section 4 we prove Theorem 1.3.

• In Section 5 we prove Proposition 1.6.

• In Section 6 we prove Theorem 1.7.

• Finally, the Appendixes contain the proofs of some technical results.

In the sequel, the dependence on ξ of various quantities, like HN,ξ, wN,ξ, z
(1)
N,ξ, etc., will be

frequently omitted for short.

2. Asymptotic estimates for the environment

This section is devoted to the analysis of the almost sure asymptotic properties of the
random potential ξ. With the exception of Proposition 2.5, which plays a fundamental
role in our analysis, the proof of the results of this section are obtained with the standard
techniques of extreme values theory and are therefore deferred to the Appendices A and B.

Before starting, we set up some notation. We say that a property of the field ξ depending
on N ∈ N holds eventually P-a.s. if for P-a.e. ξ ∈ Ωξ there exists N0 = N0(ξ) < ∞
such that the property holds for all N ≥ N0. We recall that | · | denotes the `1 norm
on Rd and BN = {x ∈ Zd : |x| ≤ N}. With some abuse of notation, the cardinality of
BN will be still denoted by |BN |. Note that |BN | = cdN

d + O(Nd−1) as N → ∞, where
cd =

∫
Rd 1{|x|≤1}dx = 2d/d!.

2.1. Order statistics for the field. The order statistics of the field {ξ(x)}x∈BN is the set
of values attained by the field rearranged in decreasing order, and is denoted by

(2.1) X
(1)
N > X

(2)
N > · · · > X

(|BN |)
N > 1 .

For simplicity, when t ∈ [1, |BN |] is not an integer we still set X(t)
N := X

(btc)
N . For later

convenience, we denote by x(k)
N the point in BN at which the value X(k)

N is attained, that is
X

(k)
N = ξ(x

(k)
N ). We are going to exploit heavily the following almost sure estimates.

Lemma 2.1. For every ε > 0, eventually P-a.s.

(2.2)
Nd/α

(log logN)1/α+ε
≤ X(1)

N ≤ Nd/α (logN)1/α+ε .

For every ϑ > 1 and ε > 0, eventually P-a.s.

(2.3)
Nd/α

(logN)ϑ/α+ε
≤ X((logN)ϑ)

N ≤ Nd/α

(logN)ϑ/α−ε
.
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There exists a constant A > 0 such that eventually P-a.s.

(2.4) sup
(logN)≤k≤|BN |

(
k1/αX

(k)
N

)
≤ ANd/α .

The proof of Lemma 2.1 is given in Appendix A.2. For completeness, we point out that
X

(1)
N /(cdN

d/α) converges in distribution as N → ∞ toward the law µ on (0,∞) with
µ((0, x]) = exp(−x−α), called Fréchet law of shape parameter α, as one can easily prove.

Next we give a lower bound on the gaps X(k)
N −X

(k+1)
N for moderate values of k.

Proposition 2.2. For every ϑ > 0 there exists a constant γ > 0 such that eventually P-a.s.

(2.5) inf
1≤k≤(logN)ϑ

(
X

(k)
N −X

(k+1)
N

)
≥ Nd/α

(logN)γ
.

The proof of Proposition 2.2 is given in Appendix A.3.

2.2. Order statistics for the modified field. An important role is played by the modi-
fied field {ψN (x)}x∈BN , defined by

(2.6) ψN (x) :=

(
1− |x|

N + 1

)
ξ(x) .

The motivation is the following: for any given point x ∈ BN , a random walk trajectory
(S0, S1, . . . , SN ) that goes to x in the minimal number of steps and sticks in x afterwards
has an energetic contribution equal to

∑|x|−1
i=1 ξ(Si) + (N + 1)ψN (x) (recall (1.3)).

The order statistics of the modified field {ψN (x)}x∈BN will be denoted by

Z
(1)
N > Z

(2)
N > · · · > Z

|BN |
N ,

and we let z(k)
N be the point in BN at which ψN attains Z(k)

N , that is ψN (z
(k)
N ) = Z

(k)
N . A

simple but important observation is that Z(k)
N is increasing in N , for every fixed k ∈ N, since

ψN (x) is increasing in N for fixed x. Also note that Z(k)
N ≤ X(k)

N , because ψN (x) ≤ ξ(x).

Our attention will be mainly devoted to Z(1)
N and Z

(2)
N , whose almost sure asymptotic

behaviors are analogous to that of X(1)
N , cf. (2.2).

Lemma 2.3. For every ε > 0, eventually P-a.s.

(2.7)
Nd/α

(log logN)1/α+ε
≤ Z(2)

N ≤ Z(1)
N ≤ Nd/α (logN)1/α+ε .

The proof is given in Appendix B.2. Note that only the first inequality needs to be proved,
thanks to (2.2) and to the fact that, plainly, Z(2)

N ≤ Z(1)
N ≤ X(1)

N .

Next we focus on the gaps between Z(1)
N , Z

(2)
N and Z(3)

N . The main technical tool is given
by the following easy estimates, proved in Appendix B.1.

Lemma 2.4. There is a constant c such that for all N ∈ N and δ ∈ (0, 1)

P(Z
(2)
N > (1− δ)Z(1)

N ) ≤ c δ , P(Z
(3)
N > (1− δ)Z(1)

N ) ≤ c δ2 .(2.8)

As a consequence, we have the following result, which will be crucial in the sequel.

Proposition 2.5. For every d and α, there exists β ∈ (1,∞) such that

(2.9) Z
(1)
N − Z

(3)
N ≥ Nd/α

(logN)β
, eventually P-a.s. .
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Although we do not use this fact explicitly, it is worth stressing that the gap Z(1)
N −Z

(2)
N

can be as small asNd/α−1 (up to logarithmic corrections), hence much smaller than the right
hand side of (2.9), cf. Appendix B.3. This is the reason behind the fact that localization at
the two points {z(1)

N,ξ, z
(2)
N,ξ} can be proved quite directly, cf. Section 3, whereas localization

at a single point wN,ξ ∈ {z
(1)
N,ξ, z

(2)
N,ξ} is harder to obtain, cf. Section 4. Furthermore, one

may have wN,ξ 6= z
(1)
N,ξ precisely when the gap Z(1)

N − Z
(2)
N is small, cf. Section 5.

Proof of Proposition 2.5. For r ∈ (0, 1) (that will be fixed later), we set Nk := bekrc, for
k ∈ N. By the second relation in (2.8), for γ > 0 (to be fixed later) we have∑

k∈N
P
(
Z

(1)
Nk
− Z(3)

Nk
≤ 1

(logNk)γ
Z

(1)
Nk

)
≤ c1

∑
k∈N

1

(logNk)2γ
≤ (const.)

∑
k∈N

1

k2rγ
<∞ ,

provided 2rγ > 1. Therefore, by the Borel-Cantelli lemma and (2.7), eventually (in k) P-a.s.

(2.10) Z
(1)
Nk
− Z(3)

Nk
≥ (Nk)

d/α

(logNk)γ+1
.

Now for a generic N ∈ N, let k ∈ N be such that Nk−1 ≤ N < Nk. We can write

Z
(1)
N − Z

(3)
N =

(
Z

(1)
N − Z

(1)
Nk

)
+
(
Z

(1)
Nk
− Z(3)

Nk

)
+
(
Z

(3)
Nk
− Z(3)

N

)
.

We already observed that Z(k)
N is increasing in N , therefore the third term in the right hand

side is non-negative and can be neglected. From (2.10) we then get for large N

(2.11) Z
(1)
N − Z

(3)
N ≥ (Nk)

d/α

(logNk)γ+1
−
(
Z

(1)
Nk
− Z(1)

N

)
≥ Nd/α

2 (logN)γ+1
−
(
Z

(1)
Nk
− Z(1)

N

)
,

because Nk ≥ N and Nk ≤ 2N for large N (note that Nk/Nk−1 → 1 as k →∞).
It remains to estimate Z(1)

Nk
− Z(1)

N . Observe that Z(1)
n = ψn(z

(1)
n ) ≥ ψn(z

(1)
n+1), because

Z
(1)
n is the maximum of ψn. Therefore we obtain the estimate

Z
(1)
n+1 − Z

(1)
n = ψn+1(z

(1)
n+1)− ψn(z(1)

n ) ≤ ψn+1(z
(1)
n+1)− ψn(z

(1)
n+1)

=
|z(1)
n+1| ξ(z

(1)
n+1)

(n+ 1)(n+ 2)
≤
ξ(z

(1)
n+1)

n
,

which yields

(2.12) Z
(1)
Nk
− Z(1)

N =

Nk−1∑
n=N

(
Z

(1)
n+1 − Z

(1)
n

)
≤ Nk −Nk−1

Nk−1
ξ(z

(1)
Nk

) ≤ Nk −Nk−1

Nk−1
X

(1)
Nk
.

Observe that as k →∞

(2.13)
ek
r − e(k−1)r

e(k−1)r
= ek

r−(k−1)r − 1 =
r

k1−r (1 + o(1)) .

Since N ≤ Nk = bekrc, it comes that k ≥ (logN)1/r and therefore (2.13) allows to write
for large N

Nk −Nk−1

Nk−1
≤ 1

(logN)1/r−1
.
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Looking back at (2.11) and (2.12), by (2.2) we then have eventually P-a.s.

(2.14) Z
(1)
N − Z

(3)
N ≥ Nd/α

2 (logN)γ+1
− Nd/α

(logN)1/r−1/α−2
.

The second term in the right hand side of (2.14) can be neglected provided the parameters
r ∈ (0, 1) and γ ∈ (0,∞) fulfill the condition 1/r− 1/α− 2 > γ + 1. We recall that we also
have to obey the condition 2rγ > 1. Therefore, for a fixed value of r, the set of allowed
values for γ is the interval ( 1

2r ,
1
r −

1
α − 3), which is non-empty if r is small enough. This

shows that the two conditions on r, γ can indeed be satisfied together (a possible choice
is, e.g., r = α

6(3α+1) and γ = 4(3α+1)
α ). Setting β := γ + 1, it then follows from (2.14) that

equation (2.9) holds true. �

3. Almost sure localization at two points

In this section we prove Theorem 1.4. We first set up some notation and give some
preliminary estimates.

3.1. Prelude. We recall that z(1)
N and z(2)

N are the two sites in BN at which the modified
potential ψN , cf. (2.6), attains its two largest values Z(1)

N = ψN (z
(1)
N ) and Z(2)

N = ψN (z
(2)
N ).

It is convenient to define J1, J2 ∈ {1, . . . , |BN |} as the ranks (in the order statistics) of
the two sites where the modified potential reaches its maximum and its second maximum,
respectively. Thus,

z
(1)
N = x

(J1)
N , z

(2)
N = x

(J2)
N ,(3.1)

where we recall that x(k)
N is the point in BN at which the potential ξ attains its k-th largest

value, i.e., X(k)
N = ξ(x

(k)
N ), cf. Section 2.1. We stress that J1 and J2 are functions of N and

ξ, although we do not indicate this explicitly. An immediate consequence of Lemma 2.3 and
relation (2.3) is the following

Corollary 3.1. For every d, α, ε > 0, eventually P-a.s.

(3.2) max{J1, J2} ≤ (logN)1+ε.

Next we define the local time `N (x) of a random walk trajectory S ∈ ΩS by

(3.3) `N (x) = `N (x, S) =
N∑
i=1

1{Si=x} ,

so that the Hamiltonian HN (S), cf. (1.3), can be rewritten as

(3.4) HN (S) =
∑
x∈BN

`N (x) ξ(x) .

We also associate to every trajectory S the quantity

(3.5) βN (S) := min{k ≥ 1: `N (x
(k)
N ) > 0} .

In words, x(βN (S))
N is the site in BN which maximizes the potential ξ among those visited by

the trajectory S before time N . Finally, we introduce the basic events

(3.6) A1,N :=
{
S ∈ ΩS : βN (S) = J1

}
, A2,N :=

{
S ∈ ΩS : βN (S) = J2

}
.
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In words, the event Ai,N consists of the random walk trajectories S that before time N visit
the site z(i)

N (recall (3.1)) and do not visit any other site x with ξ(x) > ξ(z
(i)
N ).

It turns out that the localization of SN at the point z(i)
N is implied by the event Ai,N ,

i.e., for both i = 1, 2 we have

(3.7) lim
N→∞

PN,ξ

(
Ai,N , SN 6= z

(i)
N

)
= 0 , P(dξ)-almost surely .

The proof is simple. Denoting by τ̃N,i the last passage time of the random walk in z(i)
N before

time N , that is
τ̃N,i := max{n ≤ N : Sn = z

(i)
N } ,

we can write, recalling (1.3),

PN,ξ

(
Ai,N , SN 6= z

(i)
N

)
=

N−1∑
r=0

E
[
eHN (S) 1Ai,N 1{τ̃N,i=r}

]
UN,ξ

.(3.8)

We stress that the sum stops at r = N − 1, because we are on the event SN 6= z
(i)
N .

Furthermore, on the event Ai,N ∩ {τ̃N,i = r} we have Sn 6∈ {x(1)
N , . . . , x

(Ji)
N } for all n ∈

{r + 1, . . . , N} (we recall that z(i)
N = x

(Ji)
N ). By the Markov property, we can then bound

the numerator in the right hand side of (3.8) by

E
[
eHN (S) 1Ai,N 1{τ̃N,i=r}

]
≤ E

[
eHr(S) 1{Sr=z(i)N }

]
B

(N,i)
N−r ,

where B
(N,i)
l := E

x
(Ji)
N

[
eHl(S) 1{Sn 6∈{x(1)N ,...,x

(Ji)
N } ∀n=1,...,l}

]
.

(3.9)

Analogously, for the denominator in the right hand side of (3.8), recalling (1.1), we have

UN,ξ ≥ E
[
eHN (S) 1{Sn=x

(Ji)
N , ∀n∈{r,...,N}}

]
= E

[
eHr(S) 1{Sr=x

(Ji)
N }

]
κN−re(N−r)X(Ji)

N .

Plainly, B(N,i)
l ≤ exp(lX

(Ji+1)
N ), therefore we can write

PN,ξ

(
Ai,N , SN 6= z

(i)
N

)
≤

N−1∑
r=0

e−(N−r)(X(Ji)
N +log κ)B

(N,i)
N−r =

N∑
l=1

e−l(X
(Ji)
N +log κ)B

(N,i)
l

≤
∞∑
l=1

e−l(X
(Ji)
N −X(Ji+1)

N −log κ) =
e−(X

(Ji)
N −X(Ji+1)

N −log κ)

1− e−(X
(Ji)
N −X(Ji+1)

N −log κ)
.(3.10)

From Corollary 3.1 and Proposition 2.2 it follows that P(dξ)-almost surelyX(Ji)
N −X(Ji+1)

N →
+∞ as N →∞, therefore (3.7) is proved.

3.2. Proof of (1.14). Let us set, for i = 1, 2,

Wi,N :=
{
S ∈ ΩS : βN (S) = Ji, SN = z

(i)
N

}
=
{
S ∈ ΩS : SN = z

(i)
N , `N (x) = 0 ∀x ∈ BN such that ξ(x) > ξ(z

(i)
N )
}
.

(3.11)

In words, the eventWi,N consists of those trajectories S such that SN = z
(i)
N and that before

time N do not visit any site x with ξ(x) > ξ(z
(i)
N ). We are going to prove that

(3.12) lim
N→∞

(
PN,ξ(W1,N ) + PN,ξ(W2,N )

)
= 1 , P(dξ)-almost surely ,
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which is a stronger statement than (1.14). In view of (3.7), it is sufficient to prove that

(3.13) lim
N→∞

(
PN,ξ(A1,N ) + PN,ξ(A2,N )

)
= 1 , P(dξ)-almost surely .

We start deriving an upper bound on the Hamiltonian HN = HN,ξ (recall (1.3)). For an
arbitrary k ∈ {1, . . . , |BN |}, to be chosen later, recalling (3.3), (3.4), (3.5) and the fact that∑

x∈Zd `N (x) = N , we can write

HN (S) =

k∑
i=βN (S)

`N (x
(i)
N )ξ(x

(i)
N ) +

|BN |∑
i=k+1

`N (x
(i)
N )ξ(x

(i)
N )

≤

(
k∑

i=βN (S)

`N (x
(i)
N )

)
ξ
(
x

(βN (S))
N

)
+N X

(k+1)
N .

(3.14)

Note that `N
(
x

(βN (S))
N

)
> 0, that is, any trajectory S visits the site x(βN (S))

N before time N ,
by the very definition (3.5) of βN (S). It follows that any trajectory S before time N must
visit at least |x(βN (S))

N | different sites, of which at least |x(βN (S))
N | − k are different from x

(1)
N ,

. . . , x(k)
N . This leads to the basic estimate

(3.15)
k∑

i=βN (S)

`N (x
(i)
N ) ≤ N − |x(βN (S))

N |+ k .

By (3.14) and recalling (2.6), this yields the crucial upper bound

HN (S) ≤ (N + 1)ψN
(
x

(βN (S))
N

)
+ (k − 1) ξ

(
x

(βN (S))
N

)
+N X

(k+1)
N

≤ (N + 1)ψN
(
x

(βN (S))
N

)
+ (k − 1)X

(1)
N +N X

(k+1)
N .

(3.16)

We stress that this bound holds for all k ∈ {1, . . . , |BN |} and for all trajectories S ∈ ΩS .
Next we give a lower bound on UN,ξ (recall (1.4)). We restrict the expectation to one

single N -steps random walk trajectory, denoted by S∗ = {S∗i }0≤i≤N , that goes to z(1)
N in

the minimal number of steps, i.e. |z(1)
N |, and then stays there until epoch N . By (1.1), this

trajectory has a probability larger than e−cN for some positive contant c, therefore

(3.17) UN,ξ ≥ eHN (S∗)−cN ≥ eξ(z
(1)
N )(N+1−|z(1)N |)−cN = e(N+1)ψN (z

(1)
N )−cN ≥ e(N+1)(Z

(1)
N −c) ,

where we have used the definition of ψN , see (2.6).
We can finally come to the proof of (3.13). For all trajectories S ∈ (A1,N∪A2,N )c we have

βN (S) 6∈ {J1, J2}, therefore x(βN (S))
N 6∈ {z(1)

N , z
(2)
N } and consequently ψN (x

(βN (S))
N ) ≤ Z

(3)
N .

From (3.16) and (3.17) we then obtain

PN,ξ

(
(A1,N ∪ A2,N )c

)
=

E(eHN (S) 1(A1,N∪A2,N )c)

UN,ξ

≤ exp
(
−(N + 1)

(
(Z

(1)
N − Z

(3)
N )−X(k+1)

N − k−1
N+1X

(1)
N − c

))
.

(3.18)

By (2.9), there exists β ∈ (1,∞) such that Z(1)
N −Z

(3)
N ≥ Nd/α/(logN)β eventually P-almost

surely. We now choose k = kN = (logN)ϑ with ϑ := 3 max{βα, 1} > 1. Applying (2.2) with
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ε = 1/α and (2.3) with ε = β, we have eventually P-a.s.(
(Z

(1)
N − Z

(3)
N )−X(kN+1)

N − kN−1
N+1 X

(1)
N − c

)
≥ Nd/α

(
1

(logN)β
− 1

(logN)2β
− (logN)ϑ+2/α

N
− c

Nd/α

)
=

Nd/α

(logN)β
(1 + o(1)) ,

therefore, eventually P-almost surely,
PN,ξ(A1,N ) + PN,ξ(A2,N ) = 1−PN,ξ

(
(A1,N ∪ A2,N )c

)
≥ 1− exp

(
− N1+d/α

(logN)β
(1 + o(1))

)
,

which completes the proof of (3.13).

3.3. Proof of (1.15). Recalling (3.11), we are going to prove that

(3.19) lim
N→∞

PN,ξ(W1,N ) = 1 , in P(dξ)-probability ,

which is stronger than (1.15). In view of (3.7), it suffices to show that

(3.20) lim
N→∞

PN,ξ(A1,N ) = 1 , in P(dξ)-probability .

We actually prove the following: for every N ∈ N there exists a subset ΓN ⊆ Ωξ such that
as N →∞ one has P(ΓN )→ 1 and infξ∈ΓN PN,ξ(A1,N )→ 1, which implies (3.20).

For every trajectory S ∈ (A1,N )c we have βN (S) 6= J1, therefore x
(βN (S))
N 6= z

(1)
N and

consequently ψN (x
(βN (S))
N ) ≤ Z(2)

N . From (3.16) and (3.17) we then obtain

PN,ξ

(
(A1,N )c

)
=

E(eHN (S) 1(A1,N )c)

UN,ξ

≤ exp
(
−(N + 1)

(
(Z

(1)
N − Z

(2)
N )−X(k+1)

N − k−1
N+1X

(1)
N − c

))
.

(3.21)

We set Γ
(1)
N := {Z(2)

N ≤ (1 − 1
logN )Z

(1)
N } and it follows from (2.8) that P(Γ

(1)
N ) → 1 as

N →∞. Note that for ξ ∈ Γ
(1)
N we have(

(Z
(1)
N − Z

(2)
N )−X(k+1)

N − k−1
N+1X

(1)
N − c

)
≥
(

1
logNZ

(1)
N −X

(k+1)
N − k−1

N+1X
(1)
N − c

)
.

We now fix k = kN = (logN)ϑ with ϑ := 3 max{2α, 1} > 1. Applying (2.2) with ε = 1/α,
(2.3) with ε = 2 and (2.7), we have eventually P-a.s.(

1
logNZ

(1)
N −X

(kN+1)
N − kN−1

N+1 X
(1)
N − c

)
≥ Nd/α

(
1

(logN)2
− 1

(logN)4
− (logN)ϑ+2/α

N
− c

Nd/α

)
=

Nd/α

(logN)2
(1 + o(1)) .

In particular, defining Γ
(2)
N := { 1

logNZ
(1)
N − X

(k+1)
N − k−1

N+1X
(1)
N − c > Nd/α/(logN)3}, we

have P(Γ
(2)
N ) → 1 as N → ∞. Setting ΓN := Γ

(1)
N ∩ Γ

(2)
N , we have P(ΓN ) → 1 as N → ∞;

furthermore, by the preceding steps we have that, for all ξ ∈ ΓN ,

PN,ξ

(
A1,N

)
= 1−PN,ξ

(
(A1,N )c

)
≥ 1− exp

(
(N + 1)

Nd/α

(logN)3

)
.

This completes the proof of (3.20).
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4. Almost sure localization at one point

In this section we prove Theorem 1.3. Relation (1.11) is obtained in two steps. First, we
refine the results of the previous section, showing that (3.12) still holds if we replace the
events Wi,N , i = 1, 2, that were introduced in (3.11), by

W̃i,N :=
{
S ∈ ΩS : βN (S) = Ji, SN = z

(i)
N , `N (z

(i)
N ) >

N−|z(i)N |
2

}
=
{
S ∈ ΩS : SN = z

(i)
N , `N (z

(i)
N ) >

N−|z(i)N |
2 ,

`N (x) = 0 ∀x ∈ BN such that ξ(x) > ξ(z
(i)
N )
}
,

(4.1)

that is, if we require that the random walk trajectories spend at z(i)
N at least (N − |z(i)

N |)/2
units of time (recall (3.3)). In the second step, we show that eventually P(dξ)-almost surely

(4.2) max
{
PN,ξ(W̃1,N ), PN,ξ(W̃2,N )

}
� min

{
PN,ξ(W̃1,N ), PN,ξ(W̃2,N )

}
,

which yields (1.11). Finally, we prove (1.12) in Section 4.3.

4.1. Step 1. In this step we refine (3.12), showing that

(4.3) lim
N→∞

(
PN,ξ(W̃1,N ) + PN,ξ(W̃2,N )

)
= 1 , P(dξ)-almost surely ,

where W̃i,N is defined in (4.1). Consider indeed S ∈ Wi,N \ W̃i,N , with i ∈ {1, 2}. Before
reaching z(i)

N , S must visit at least |z(i)
N | − 1 different sites at which, by definition of Wi,N ,

the field is smaller than ξ(z(i)
N ) = X

(Ji)
N (recall (3.1)), hence

HN (S) ≤ `N (z
(i)
N )X

(Ji)
N +

|z(i)N |−1∑
j=1

X
(Ji+j)
N +

(
N − `N (z

(i)
N )− (|z(i)

N | − 1)
)
X

(Ji+1)
N .

Since `N (z
(i)
N ) ≤ (N − |z(i)

N |)/2 on Wi,N \ W̃i,N , we obtain

HN (S) ≤ N−|z(i)N |
2 X

(Ji)
N +

|z(i)N |−1∑
j=1

X
(Ji+j)
N +

(
N−|z(i)N |

2 + 1
)
X

(Ji+1)
N .

Rewriting (3.17) as UN,ξ ≥ e(N+1−|z(i)N |)X
(Ji)
N −cN (recall (2.6)), we can write

PN,ξ

(
Wi,N \ W̃i,N

)
=

E(eHN (S)1{S∈Wi,N\W̃i,N}
)

UN

≤ ecN exp

(
−
N − |z(i)

N |
2

(X
(Ji)
N −X(Ji+1)

N ) +

|z(i)N |−1∑
j=1

X
(Ji+j)
N

)
.

(4.4)

Applying (2.7) with ε = 1/α and (2.2) with ε = ε/2, it follows that eventually P-a.s.

Z
(1)
N ≥ Z(2)

N ≥ Nd/α

(log logN)2/α
and max{X(J1)

N , X
(J2)
N } ≤ Nd/α (logN)1/α+ε/2 .

Since by definition Z(i)
N = (1− |z

(i)
N |

N+1)X
(Ji)
N , it follows that for both i ∈ {1, 2} and for every

ε > 0, eventually P-a.s.

(4.5) N − |z(i)
N | ≥

N

(logN)1/α+ε
.
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Next we observe that, by the upper bound in (2.2) and (2.4), we have
N∑
j=1

X
(j)
N ≤ (logN)X

(1)
N +

N∑
j=dlogNe

X
(j)
N ≤ N

d/α

(
(logN)1+3/2α +

N∑
j=dlogNe

1

j1/α

)
,

therefore there exists a constant c > 0 such that, eventually P-almost surely,

(4.6)
N∑
j=1

X
(j)
N ≤

{
cNd/α+1−1/α if α > 1

(logN)1+3/2αNd/α if α ≤ 1
.

Looking back at (4.4), we can apply (4.5) and (4.6) as well as Proposition 2.2 and
Corollary 3.1 to conclude that P(dξ)-a.s. the right hand side of (4.4) vanishes as N → ∞.
Recalling (3.12), it follows that (4.3) holds true, and the first step is completed.

4.2. Step 2. In this step we prove that

(4.7) lim
N→∞

∣∣ logPN,ξ(W̃1,N )− logPN,ξ(W̃2,N )
∣∣ =∞ , P(dξ)-almost surely .

Together with (4.3), this shows that

(4.8) lim
N→∞

max
{
PN,ξ(W̃1,N ), PN,ξ(W̃2,N )

}
= 1 , P(dξ)-almost surely ,

which yields (1.11) and, moreover, shows that

wN,ξ =

{
z

(1)
N if PN,ξ(W̃1,N ) > PN,ξ(W̃2,N )

z
(2)
N if PN,ξ(W̃2,N ) > PN,ξ(W̃1,N )

, eventually P(dξ)-almost surely .

It is convenient to introduce some further notation. Recalling (4.1), for N ∈ N and
x ∈ BN we define the following subsets of ΩS :

(4.9) W̃N (x) :=
{
S ∈ ΩS : SN = x, `N (x) > N−|x|

2 , `N (z) = 0 ∀z s.t. ξ(z) > ξ(x)
}
,

so that W̃i,N = W̃N (z
(i)
N ). Next we set

(4.10) CN (x) := log E
[
eHN (S) 1{S∈W̃N (x)}

]
,

so that we can write

(4.11)
∣∣ logPN,ξ(W̃1,N )− logPN,ξ(W̃2,N )

∣∣ =
∣∣CN (z

(1)
N )− CN (z

(2)
N )
∣∣ .

Finally, given an arbitrary ε ∈ (0, d/α) and setting Nk := bk2/εc, we introduce the event
Hk ⊆ Ωξ defined by

Hk :=
{
ξ ∈ Ωξ : ∃x, y ∈ BNk+1

, x 6= y, ∃n ∈ {max{|x|, |y|}, . . . , Nk+1} such that

ξ(x) > (Nk)d/α

(logNk+1)2/α
, ξ(y) > (Nk)d/α

(logNk+1)2/α
, |Cn(x)− Cn(y)| ≤ Nd/α−ε

k

}
.

(4.12)

We are going to show that

(4.13)
∑
k∈N

P(Hk) <∞ .

We claim that this implies (4.7) and completes the step. Indeed, by the Borel-Cantelli
lemma it follows from (4.13) that for P-almost every ξ ∈ Ωξ there exists k = k(ξ) <∞ such
that ξ 6∈ Hk for all k ≥ k. For any N ≥ Nk, let k ∈ N, k ≥ k be such that Nk < N ≤ Nk+1
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and note that, plainly, z(1)
N , z

(2)
N ∈ BN ⊆ BNk+1

. Recalling the lower bound in (2.7) and
(4.11), since ξ 6∈ Hk for all k ≥ k we conclude that eventually P(dξ)-almost surely∣∣ logPN,ξ(W̃1,N )− logPN,ξ(W̃2,N )

∣∣ ≥ Nd/α−ε ,

which is a stronger statement than (4.7).
We are left with proving (4.13), for which we have to estimate

(4.14) P
(
ξ(x) > t, ξ(y) > t, |Cn(x)− Cn(y)| ≤M

)
,

for suitable t and M . Recalling (4.9) and (4.10), it is useful to set

(4.15) CN (y;x) := log E
[
eHN (S) 1

S∈W̃N (y)
1{`N (x)=0}

]
.

Note in fact that, on the event ξ(x) > ξ(y), we have CN (y) = CN (y;x), by the definition
(4.9) of W̃N (y). Therefore, splitting (4.14) on {ξ(x) > ξ(y)} and {ξ(x) < ξ(y)} and using
the symmetry between x and y, we can easily estimate

P
(
ξ(x) > t, ξ(y) > t, |Cn(x)− Cn(y)| ≤M

)
≤ 2P

(
ξ(x) > t, ξ(y) > t, |Cn(x)− Cn(y;x)| ≤M

)
≤ 2E

[
1{ξ(y)>t} P

(
ξ(x) > t, |Cn(x)− Cn(y;x)| ≤M

∣∣Gx)] ,(4.16)

where Gx := σ({ξ(z)}z∈Zd\{x}). We stress that Cn(y;x) is Gx-measurable, because by defi-
nition it does not depend on ξ(x) (recall (4.15)).

We now need to study the dependence of Cn(x) on ξ(x) conditionally on Gx, i.e., when
all the other field variables {ξ(z), z 6= x} are fixed. Recalling (4.10), (4.9) and summing
over the values of the variable `N (x), we can write Cn(x) = g(ξ(x)), where

g(s) := log

n−|x|∑
k= 1

2
(n−|x|+1)

eks cn,k and cn,k := E
[
eHn(S)−kξ(x) 1

S∈W̃n(x)
1{`N (x)=k}

]
.

We stress that, on the event {`n(x) = k}, the term Hn(S)−kξ(x) does not depend on ξ(x).
Therefore the coefficients cn,k (and, hence, the function g(·)) only depend on {ξ(z), z 6= x},
i.e., they are Gx-measurable. Also note that the function g(·) is smooth and Lipschitz, since

g′(s) =

∑n−|x|
k= 1

2
(n−|x|+1)

k eks cn,k∑n−|x|
k= 1

2
(n−|x|+1)

eks cn,k
≥ 1

2
(n− |x|+ 1) .

Therefore, by the change of variables formula, from (1.2) we obtain

P
(
ξ(x) > t, Cn(x) ∈ dv

∣∣Gx) = P
(
ξ(x) > t, g(ξ(x)) ∈ dv

∣∣Gx)
= 1{g−1(v)>max{1,t}}

1

|g′(g−1(v))|
α

(g−1(v))1+α
dv ≤ 2

(n− |x|+ 1)

α

t1+α
dv ,

hence
P
(
ξ(x) > t, |Cn(x)− Cn(y;x)| ≤M

∣∣Gx)
= P

(
ξ(x) > t, Cn(x) ∈ [Cn(y;x)−M,Cn(y;x) +M ]

∣∣Gx) ≤ 2α

(n− |x|+ 1)t1+α
· 2M .

Coming back to (4.16), since P(ξ(y) > t) ≤ t−α, we conclude that

(4.17) P
(
ξ(x) > t, ξ(y) > t, |Cn(x)− Cn(y)| ≤M

)
≤ 8αM

(n− |x|+ 1)t1+2α
.



16 FRANCESCO CARAVENNA, PHILIPPE CARMONA, AND NICOLAS PÉTRÉLIS

We are finally ready to estimate P(Hk). Recalling the definition (4.12) and the fact that
Nk = bk2/εc, applying (4.17) we obtain

P(Hk) ≤ 2
∑

x 6=y∈BNk+1

|x|≥|y|

Nk+1∑
n=|x|

P
(
ξ(x), ξ(y) > (Nk)d/α

(logNk+1)2/α
, |Cn(x)− Cn(y)| ≤ Nd/α−ε

k

)

≤ 2 (const.) (Nk+1)2d 8αN
d/α−ε
k

{(Nk)d/α/(logNk+1)2/α}(1+2α)

Nk+1∑
n=|x|

1

n− |x|+ 1

≤ (const.′)
(logNk+1)2/α+5

N ε
k

≤ (const.′′)
(log k2/ε)2/α+5

k2
,

from which (4.13) follows. This completes the step.

4.3. Proof of (1.12). In view of (1.16), it is sufficient to prove that

(4.18)
z

(1)
N

N
=⇒ w , where P(w ∈ dx) = cα (1− |x|)α 1{|x|≤1} dx ,

and we recall that cα := (
∫
|y|≤1(1− |y|)αdy)−1.

Setting ϕN (x) := 1− |x|
N+1 and recalling (1.2), for x ∈ BN and t ∈ (1,∞) we have

P
(
z

(1)
N = x , ξ(x) ∈ dt

)
= P

(
ξ(z) < t ∀z ∈ BN \ {x} , ξ(x) ∈ dt

)
=

∏
z∈BN , z 6=x

(
1− ϕN (z)α

tαϕN (x)α

)
α

t1+α
dt ,

therefore for all function f : Rd → R we can write

E

[
f

(
z

(1)
N

N

)]
=
∑
x∈BN

f
( x
N

)∫ ∞
1

dt
∏

z∈BN , z 6=x

(
1− ϕN (z)α

tαϕN (x)α

)
α

t1+α
.(4.19)

Now set t = Nd/αs and note that as N → ∞, uniformly in s ∈ (ε,∞) and x ∈ B(1−ε)N ,
where ε > 0 is arbitrary but fixed, by a Riemann sum approximation we have∑
z∈BN , z 6=x

log

(
1− ϕN (z)α

tαϕN (x)α

)
= − 1

sα(1− |x|
N+1)αNd

∑
z∈BN , z 6=x

(
1− |z|

N + 1

)α
(1 + o(1))

= − c−1
α

sα (1− |x|
N+1)α

(1 + o(1)) .

Coming back at (4.19) and noting that
∫∞

0
α

s1+α
e−A/s

α ds =
∫∞

0 e−Au du = A−1, by a simple
change of variables, it follows again by a Riemann sum argument that if f is continuous
and bounded we have

lim
N→∞

E

[
f

(
z

(1)
N

N

)]
= lim

N→∞

1

Nd

∑
x∈BN

f
( x
N

)
cα

(
1− |x|

N + 1

)α
= cα

∫
|y|≤1

f(y) (1− |y|)α dy ,

proving (4.18).
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5. Proof of Proposition 1.6

We want to prove, for d = 1, that

(5.1) P
(

wN,ξ = z
(2)
N,ξ for infinitely many N

)
= 1 .

To simplify notation, we only consider the case α > 1 and we setmα = E(ξ1) = α/(α−1), cf.
(1.2). Recalling (1.1), we set κ = P(S1 = 0) and κ̂ = P(S1 = 1). For the sake of simplicity,
we also assume that log(κ̂/κ) > −mα. The cases log(κ̂/κ) < −mα and log(κ̂/κ) = −mα

are controlled with analogous arguments.
For α, η > 0 and for n ∈ N and ε > 0 we define the event Bε,η,n ⊆ Ωξ by

Bε,η,n :=
{
∃!x ∈ [n, (1 + ε)n] : ξ(x) ∈ (1, 1 + ε)n1/α ,

∃!y ∈ [3n, (1 + ε)3n] : ξ(y) ∈ (1, 1 + ε)5
3n

1/α ,

∀z ∈ [−7n, (1 + ε)7n] \ {x, y} : ξ(z) < 1
2n

1/α ,∑y−1
i=x+1 ξ(i) > (mα − η)(y − x)

}
,

(5.2)

where we set [a, b] := [a, b] ∩ Z for short. By direct computation, one checks easily that
limn→∞ P(Bε,η,n) > 0 for all fixed ε, η > 0. In what follows, we denote by x, y the (random)
points appearing in the definition of Bε,η,n.

Recalling (2.6), for all N ∈ N we have(
1− n

N (1 + ε)
)
n1/α < ψN (x) <

(
1− n

N

)
(1 + ε)n1/α,(

1− 3n
N (1 + ε)

)
5
3n

1/α < ψN (y) <
(
1− 3n

N

)
(1 + ε)5

3n
1/α .

(5.3)

It follows that for all N ∈ [11
2 n,

13
2 n] we have ψN (x) > (1 − 1+ε

11/2)n1/α = ( 9
11 + O(ε))n1/α,

ψN (y) > (1 − 3(1+ε)
11/2 )5

3n
1/α = (25

33 + O(ε))n1/α, while ψN (z) < 1
2n

1/α for all z ∈ [−N,N ] \
{x, y}. Therefore, by choosing ε small enough, we can state that on the event Bε,η,n and
for all n ∈ N, N ∈ [11

2 n,
13
2 n] we have

(5.4) {z(1)
N , z

(2)
N } = {x, y}.

For N = 11
2 n we have ψN (x) = ( 9

11 +O(ε))n1/α and ψN (y) = (25
33 +O(ε))n1/α, uniformly

in n; on the other hand, for N = 13
2 n we have ψN (x) = (11

13 + O(ε))n1/α and ψN (y) =

(35
39 +O(ε))n1/α, always uniformly in n. It follows that, if ε > 0 is chosen small enough we

have for all n ∈ N,

(5.5) ψ 11
2
n(y)− ψ 11

2
n(x) < 0 but ψ 13

2
n(y)− ψ 13

2
n(x) > 0.

At this stage, we pick ε0 > 0 such that (5.4) and (5.5) are satisfied. Next observe that

(5.6) (N + 1)(ψN (y)− ψN (x)) = xξ(x)− yξ(y) + (N + 1)(ξ(y)− ξ(x))

is increasing in N , because by construction (ξ(y) − ξ(x)) > 0. It follows that there is
N∗n ∈ (11

2 n,
13
2 n) such that:

• for 11
2 n < N ≤ N∗n we have (ψN (y)− ψN (x)) < 0, hence x = z

(1)
N and y = z

(2)
N ;

• for N∗n < N < 13
2 n we have (ψN (y)− ψN (x)) > 0, hence x = z

(2)
N and y = z

(1)
N .
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By (5.6) (N + 1)(ψN (y)− ψN (x)) increases by (ξ(y)− ξ(x)) when N increases by 1. Since
(N∗n + 1)(ψN∗n(y) − ψN∗n(x)) < 0 and ((N∗n + 1) + 1)(ψN∗n+1(y) − ψN∗n+1(x)) > 0, it then
follows that (N∗n + 1)(ψN∗n(y)− ψN∗n(x)) > −(ξ(y)− ξ(x)), that is

(N∗n + 1)(Z
(1)
N∗n
− Z(2)

N∗n
) = (N∗n + 1)(ψN∗n(x)− ψN∗n(y)) ≤ (ξ(y)− ξ(x))

≤
(

2

3
+

5

3
ε0

)
n1/α =: c0 n

1/α ,
(5.7)

by the definition of the event Bε0,η,n.
Consider now the contributions of the two N -steps random walk trajectories S(N,x) and

S(N,y) that reach respectively x and y in the minimal number of steps and stick there until
time N , i.e.,

PN,ξ(S(N,x)) = κNe
∑x−1
i=1 ξ(i)+(N+1)ψN (x)+x log(

κ̂
κ ),

PN,ξ(S(N,y)) = κNe
∑y−1
i=1 ξ(i)+(N+1)ψN (y)+y log(

κ̂
κ ),

so that

(5.8)
PN,ξ(S(N,y))

PN,ξ(S(N,x))
= e

∑y−1
i=x ξ(i)−(N+1)(ψN (x)−ψN (y))+(y−x) log(

κ̂
κ ).

We apply this relation for N = N∗n on the event Bε0,η0,n, with 2 η0 := mα+log(κ̂/κ) (which
is strictly positive, by our initial assumtion). Then x = z

(1)
N∗n

, y = z
(2)
N∗n

and (5.8) becomes

PN∗n,ξ

(
S(N∗n,z

(2)

N∗n
))

PN∗n,ξ

(
S(N∗n,z

(1)

N∗n
)) ≥ e∑y−1

i=x+1 ξ(i)−(N∗n+1)(Z
(1)

N∗n
−Z(2)

N∗n
)+(y−x) log(

κ̂
κ )
,

≥ e(mα−η+log(
κ̂
κ ))(y−x)−c0n1/α

≥ eηn−c0n1/α
,

(5.9)

where we have used (5.7), the last condition in (5.2) and the fact that y − x ≥ n, again by
(5.2). Since α > 1 by assumption, we have shown that on the event Bε0,η0,n

PN∗n,ξ(S
(N∗n,z

(2)

N∗n
)
)� PN∗n,ξ(S

(N∗n,z
(1)

N∗n
)
) .

If PN,ξ(S(N,z
(2)
N ))+PN,ξ(S(N,z

(1)
N )) > 3

4 , this shows that wN,ξ = z
(2)
N . To sum up, there exists

n0 ∈ N such that for n ≥ n0

Bε0,η0,n ⊆ {∃N ∈ (11
2 n,

13
2 n) : wN,ξ = z

(2)
N }

∪
{
∃N ∈ (11

2 n,
13
2 n) : PN,ξ(S(N,z

(2)
N )) + PN,ξ(S(N,z

(1)
N )) ≤ 3

4

}
.

Recalling that PN,ξ(S(N,z
(2)
N )) + PN,ξ(S(N,z

(1)
N ))→ 1 as N →∞, P(dξ)-almost surely when

d = 1, cf. Remark 1.8, it follows that almost surely

lim sup
n→∞

Bε0,η0,n := {Bε0,η0,n for infinitely many n} ⊆ {wN,ξ = z
(2)
N for infinitely many N} .

Finally, note that P(lim supn→∞Bε0,η0,n) ≥ limn→∞ P(Bε0,η0,n) > 0, and it is not difficult
to realize that indeed P(lim supn→∞Bε0,η0,n) = 1, because when m� n the event Bε0,η0,m
is asymptotically independent of Bε0,η0,n. This completes the proof.
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6. Path properties

In this section we prove Theorem 1.7, i.e., we show that limN→∞PN,ξ(CN,ξ) = 1, P(dξ)-
almost surely, where the set CN,ξ is defined in (1.18).

For i = 1, 2, we denote for simplicity by τi := inf{n ∈ N : Sn = z
(i)
N } the first time at

which the random walk visits the site z(i)
N and we set

Di,N :=
{
S ∈ ΩS : τi ≤ N , Sm 6= Sn ∀m < n ≤ τi , Sn = z

(i)
N ∀n ∈ {τi, . . . , N}

}
Ki,N :=

{
S ∈ ΩS : τi ≤ |z(i)

N |+ hN

}
,

(6.1)

where we recall that hN := (log logN)2/αN1−1/α if α > 1 and hN := (logN)1+2/α if α ≤ 1.
Recalling the definition (4.1) of the set W̃i,N , we are going show that for both i = 1, 2

lim
N→∞

PN,ξ

(
W̃i,N \ Di,N

)
= 0 , P(dξ)-almost surely ,(6.2)

lim
N→∞

PN,ξ

(
(W̃i,N ∩ Di,N ) \ Ki,N

)
= 0 , P(dξ)-almost surely .(6.3)

Recalling relation (4.8), proved in the last section, Theorem 1.7 is a consequence of (6.2)
and (6.3). The rest of this section is therefore devoted to proving these relations.

6.1. Step 1: proof of (6.2). We fix i ∈ {1, 2} throughout the section. By definition, a
random walk trajectory S ∈ Wi,N \Di,N makes either some loops before time τi (i.e., before
reaching z(i)

N ) or some excursions outside z(i)
N between time τi and time N . We need to set

up some notation to account for such loops and excursions.
We set i0 = j0 := −1 and, for k ∈ N, we denote by ik = ik(S), jk = jk(S) the extremities

of the k-th loop made by a trajectory S ∈ ΩS before reaching z(i)
N :

ik := inf
{
n ∈ {jk−1 + 1, . . . , τi − 1} : ∃m ∈ {n+ 1, . . . , τi − 1} s.t. Sm = Sn

}
,

jk := max{n < τi : Sn = Sik} ,
(6.4)

with the usual convention inf ∅ :=∞. We also set Ik := {ik + 1, . . . , jk} and |Ik| := jk − ik
for conciseness. Then we denote by N = N (S) := max{k ∈ N : ik <∞} the total number
and by L = L(S) :=

∑N
k=1 |Ik| the total length of the loops of the trajectory S. Note that

N = L = 0 if i1 =∞, i.e., if the trajectory S has no loops. Finally, we denote by π(S) the
injective skeleton of S before reaching z(i)

N , i.e., the random walk trajectory of τi −L steps
defined (with some abuse of notation) by

(6.5) π(S) = {π(S)n}n∈{0,...,τi−L} := {Sn}n∈{0,...,τi}\∪Nk=1Ik
.

We let Vi,N,r denote the set of all r-steps injective paths, starting at 0 and ending at z(i)
N ,

which do not visit any site x ∈ BN with ξ(x) > ξ(z
(i)
N ) (recall (3.3)):

(6.6) Vi,N,r :=
{

(Sn)n≤r : Sr = z
(i)
N , Sn 6= Sm for m 6= n, `r(x) = 0 when ξ(x) > ξ(z

(i)
N )
}
.

Note that for S ∈ Wi,N \ Di,N we have π(S) ∈ Vi,N,τi−L(S).
Next we deal with the excursions outside z(i)

N . Set i′0 = j′0 = τi − 1 and for k ∈ N denote
by i′k = i′k(S), j′k = j′k(S) the extremities of the kth excursion outside z(i)

N made by the
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trajectory S between time τi and time N :

i′k := min
{
n ∈ {jk−1 + 1, . . . , N − 1} : Sn 6= z

(i)
N

}
,

j′k := min{n > i′k : Sn = z
(i)
N } .

(6.7)

We also set I ′k := {i′k + 1, . . . , j′k} and |I ′k| := j′k − i′k; furthermore, we denote by N ′ =

N ′(S) := max{k ≥ 0: i′k <∞} the total number and by L′ = L′(S) :=
∑N ′

k=1 |I ′k| the total
length of the excursions of the trajectory S. Note that N ′ = L′ = 0 if i′1 =∞, i.e., if there
are no excursions.

We can now start with the proof of (6.2). Recalling the definition (1.3) of our model and
using the notation we have just introduced, we obtain the decomposition

(6.8) PN,ξ

(
W̃i,N \ Di,N

)
=

1

UN,ξ

N∑
r=|z(i)N |

∑
S∗∈Vi,N,r

E
(
eHN,ξ(S) 1{S∈W̃i,N\Di,N}

1{π(S)=S∗}
)
.

We bound the partition function UN,ξ from below by considering the trajectories that reach
z

(i)
N through an injective path, avoiding the sites x with ξ(x) > ξ(z

(i)
N ), and stick at z(i)

N
afterwards, getting

(6.9) UN,ξ ≥
N∑

r=|z(i)N |

∑
S∗∈Vi,N,r

e
∑r−1
n=1 ξ(S

∗
n)+(N+1−r)ξ(z(i)N ) P(S∗)κN−r ,

where for simplicity we set P(S∗) := P(S1 = S∗1 , . . . , Sr = S∗r ) and we recall (1.1).
Next we estimate the double sum in the right hand side of (6.8). Observe that for S ∈

W̃i,N \ Di,N we have L + L′ ≥ 1, because S must make at least one loop before reaching
z

(i)
N or one excursion outside z(i)

N before time N . By definition of Wi,N , cf. (4.1), any site
x visited by S in the loops or excursions has an associated potential ξ(x) < ξ(z

(i)
N ), hence

ξ(x) ≤ X(Ji+1)
N = ξ(z

(i)
N )− (X

(Ji)
N −X(Ji+1)

N ), cf. (3.1). It follows that on {L = l,L′ = l′} we
have HN (S) ≤

∑r−1
n=1 ξ(S

∗
n) + (N + 1− r)ξ(z(i)

N )− (l + l′)(X
(Ji)
N −X(Ji+1)

N ), hence

E
(
eHN,ξ(S) 1{S∈W̃i,N\Di,N}

1{π(S)=S∗}
)

≤
∑

l,l′∈N0, l+l′≥1

e
∑r−1
n=1 ξ(S

∗
n)+(N+1−r)ξ(z(i)N )−(l+l′)(X

(Ji)
N −X(Ji+1)

N ) P(L = l,L′ = l′, π(S) = S∗) .

Looking back at (6.8) and (6.9), we conclude that

PN,ξ

(
W̃i,N \ Di,N

)
≤ sup

r∈{|z(i)N |,...,N}
S∗∈Vi,N,r

∑
l,l′∈N0, l+l′≥1

e−(l+l′)(X
(Ji)
N −X(Ji+1)

N ) P(L = l,L′ = l′, π(S) = S∗)

P(S∗)κN−r
.(6.10)

We are left with estimating the ratio in the right hand side of (6.10). It is convenient
to disintegrate the event {L = l} (resp. {L′ = l′}) by summing on the total number N
and the locations I = {Ik}k≤N of the loops (resp. the total number N ′ and the locations
I ′ = {I ′k}k≤N of the excursions). Using the Markov property and bounding the probability
of each loop and excursion (trivially) by 1, for all n, I = {Ik}k≤n, n′, I ′ = {I ′k}k≤n and for
all injective trajectories S∗ ∈ Vi,N,r we have

P(N = n, I = I,N ′ = n′, I ′ = I ′, π(S) = S∗) ≤ P(S∗)κN−r−l−l
′
,
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because |{n ∈ {τi, . . . , N−1} : Sn = Sn+1}| = N−τi−L′, by definition of L′, and τi = r+L
when π(S) = S∗ ∈ Vi,N,r, by definition of L. It follows that

P(L = l,L′ = l′, π(S) = S∗)

P(S∗)κN−r
≤ κ−l−l′ ·

∣∣{(n, I, n′, I ′) :
∑n

k=1 |Ik| = l,
∑n′

k=1 |I ′k| = l′
}∣∣ .

It remains to bound the cardinality of the set in the right hand side. For fixed n ∈ {0, . . . , l},
the intervals I = {Ik}k≤n consist of 2n points in {0, . . . , τi} ⊆ {0, . . . , N}, therefore the
number of possible choices for I is bounded from above by (N + 1)2n ≤ (N + 1)2l. Anal-
ogously, for every n′ ∈ {0, . . . , l′}, the number of choices for I ′ is bounded from above by
(N + 1)2n′ ≤ (N + 1)2l′ . Looking back at (6.10), we can write

PN,ξ

(
W̃i,N \ Di,N

)
≤

∑
l,l′∈N0, l+l′≥1

e−(l+l′)(X
(Ji)
N −X(Ji+1)

N +log κ−2 log(N+1)) (l + 1) (l′ + 1)

≤ (const.)
∞∑
m=1

e−m(X
(Ji)
N −X(Ji+1)

N +log κ−2 log(N+1))m3

≤ (const.′)
e−(X

(Ji)
N −X(Ji+1)

N +log κ−2 log(N+1))(
1− e−(X

(Ji)
N −X(Ji+1)

N +log κ−2 log(N+1))
)4 ,

where in the second inequality we have used that
∑

l,l′∈N0: l+l′=m(l+1)(l′+1) ≤ (const.)m3.
It then follows from Corollary 3.1 and Proposition 2.2 that relation (6.2) holds true, com-
pleting the first step.

6.2. Step 2: proof of (6.3). Throughout the section we fix i ∈ {1, 2}. We recall that
τi := inf{n ∈ N : Sn = z

(i)
N } denotes the first time at which the random walk visits z(i)

N .
A random walk trajectory S ∈ W̃i,N ∩ Di,N (cf. (4.1) and (6.1)) reaches z(i)

N through an
injective path, avoiding sites where the potential is larger than ξ(z

(i)
N ), and sticks at z(i)

N
afterwards (from time τi to time N). Therefore the corresponding Hamiltonian (cf. (1.3))
is bounded from above by

HN,ξ(S) ≤
τi−1∑
n=1

ξ(Si) + (N + 1− τi)ξ(z(i)
N ) ≤

N∑
j=1

X
(j)
N + (N + 1− τi)ξ(z(i)

N ) .

Recalling the definition (6.1) of the set Ki,N , for S ∈ (W̃i,N ∩ Di,N ) \ Ki,N we obtain

HN,ξ(S) ≤
N∑
j=1

X
(j)
N +

(
N + 1− |z(i)

N | − hN
)
ξ(z

(i)
N ) ,

therefore, cf. (1.3),

PN,ξ

(
(W̃i,N ∩ Di,N ) \ Ki,N

)
≤ 1

UN,ξ
e
∑N
j=1X

(j)
N + (N+1−|z(i)N |−hN )ξ(z

(i)
N ) .

As usual, we obtain a lower bound on UN,ξ by considering a single trajectory that reaches
the site z(i)

N in |z(i)
N | steps and sticks there afterwards, getting

UN,ξ ≥ e(N+1−|z(i)N |)ξ(z
(i)
N ) cN ,
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for a suitable c > 0, cf. (1.1). Note that ξ(z(i)
N ) ≥ Z

(i)
N ≥ Nd/α/(log logN)3/2α eventually

P(dξ)-almost surely, for both i ∈ {1, 2}, by relation (2.7). Therefore

PN,ξ

(
(W̃i,N ∩ Di,N ) \ Ki,N

)
≤ e

∑N
j=1X

(j)
N −hN Nd/α/(log logN)3/2α .

Since hN := (log logN)2/αN1−1/α if α > 1 and hN := (logN)1+2/α if α ≤ 1, it follows from
(4.6) that PN,ξ

(
(W̃i,N ∩ Di,N ) \ Ki,N

)
→ 0 as N → ∞, P(dξ)-almost surely. This proves

that (6.3) holds true and completes the second step.

Appendix A. Order statistics for the field

This section is devoted to the order statistics X(1)
N , . . . , X

(|BN |)
N of the field {ξ(x)}x∈BN .

We first give some basic probability estimates, from which the proofs of Lemma 2.1 and
Proposition 2.2 will be deduced.

A.1. Basic estimates. We start comparing the relative sizes of X(k)
N and X(p)

N .

Lemma A.1. For all N, p, k ∈ N with 1 ≤ p < k ≤ |BN | and for all δ ∈ (0, 1) we have

(A.1) P
(
X

(k)
N ≥ (1− δ)X(p)

N

)
≤
(
k − 1

k − p

)
(1− (1− δ)α)k−p .

In the special case p = 1 the equality holds:

(A.2) P
(
X

(k)
N ≥ (1− δ)X(1)

N

)
= (1− (1− δ)α)k−1 .

Proof. We introduce the shortcuts MA := supx∈A ξ(x), {X(m)···(n)
N } := {X(m)

N , . . . , X
(n)
N }

and Ac := BN \A for convenience. We recall that BN = {z ∈ Zd : |z| ≤ N}. Summing over
the location of the subsets {X(1)···(k−1)

N } = A and {X(p)···(k−1)
N } = B, so that X(k)

N = MAc

and X(p)
N = M(A\B)c , we can write

P(X
(k)
N ≥ (1− δ)X(p)

N )

=
∑

A⊆BN , |A|=k−1
B⊆A, |B|=k−p

P
(
X

(k)
N ≥ (1− δ)X(p)

N , {X(1)···(k−1)
N } = A, {X(p)···(k−1)

N } = B
)

=
∑

A⊆BN , |A|=k−1
B⊆A, |B|=k−p

P
(
MAc < ξ(y) <

1

1− δ
MAc ∀y ∈ B , ξ(z) > MB ∀z ∈ A \B

)
.

Since MB ≥MAc on the event we are considering, we can replace MB by MAc and obtain
the upper bound

P(X
(k)
N ≥ (1− δ)X(p)

N ) ≤
∑

A⊆BN , |A|=k−1
B⊆A, |B|=k−p

P
(

(1− δ)α

(MAc)α
<

1

ξ(y)α
<

1

(MAc)α
∀y ∈ B ,

1

ξ(z)α
<

1

(MAc)α
∀z ∈ A \B

)
.

We stress that in the special case p = 1 we have A = B, so that A \ B = ∅ and therefore
the above inequality is an equality.



DISCRETE-TIME PAM WITH HEAVY TAILED POTENTIAL 23

By assumption the field ξ(·) has a Pareto distribution with parameter α > 0, cf. (1.2),
therefore 1

ξα is uniformly distributed on the interval (0, 1): P(a < 1
ξ < b) = b − a for all

0 < a < b < 1. It follows that

P(X
(k)
N ≥(1− δ)X(p)

N ) ≤ (1− (1− δ)α)k−p
∑

A⊆BN , |A|=k−1
B⊆A, |B|=k−p

E
(

1

(MAc)α(k−1)

)

≤
(
k − 1

k − p

)
(1− (1− δ)α)k−p

∑
A⊆BN , |A|=k−1

E
(

1

(MAc)α(k−1)

)
,

and again all these inequalities are equalities if p = 1. It only remains to check that the last
sum equals one. To this purpose, note that for all ` ∈ N, summing on the location of the
set {X(1)···(`)

N }, we can write

1 =
∑

A⊆BN , |A|=`

P({X(1)···(`)
N } = A) =

∑
A⊆BN , |A|=`

P(ξ(x) > MAc ∀x ∈ A)

=
∑

A⊆BN , |A|=`

P
(

1

ξ(x)α
<

1

(MAc)α
∀x ∈ A

)
=

∑
A⊆BN , |A|=`

E
(

1

(MAc)α`

)
. �

Next we give some bounds on the absolute size of X(k)
N .

Lemma A.2. Let c, C > 0 be such that c ≤ |BN |
Nd ≤ C. Then for all k ∈ {1, . . . , |BN |} and

t ∈ (0,∞) the following relations hold:

P(X
(k)
N > Nd/αt) ≤ Ck

(k − 1)!

1

tkα
,(A.3)

P(X
(k)
N ≤ tNd/α) ≤ e−

c
tα

k−1∑
m=0

1

m!

(
eC

tα

)m
.(A.4)

Proof. Throughout the proof we shall assume that t ≥ N−d/α. In fact, for t < N−d/α there
is nothing to prove, because the left hand side of (A.4) is zero (recall that the field ξ(·) is
bounded from below by one, cf. (1.2)) and the right hand side of (A.3) is greater than one:
in fact, for k ≤ |BN | we have (k− 1)! ≤ kk ≤ |BN |k ≤ (CNd)k and therefore for t < N−d/α

Ck

k!

1

tkα
≥ Ck

(CNd)k
1

tkα
=

1

(Nd/αt)α
≥ 1 .

We start proving (A.3). The case k = 1 is easy:

P(X
(1)
N ≤ Nd/αt) = P(ξ(x) ≤ Nd/αt ∀x ∈ BN ) =

(
1− 1

tαNd

)|BN |
,

and since (1− z)a ≥ 1− az for a ≥ 1 and z ∈ [0, 1] we obtain

(A.5) P(X
(1)
N > Nd/αt) = 1−

(
1− 1

tαNd

)|BN |
≤ |BN |

Nd

1

tα
≤ C

tα
.
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For the general case, summing over the location of the set {X(1)···(k−1)
N } := {X(1)

N , . . . , X
(k−1)
N }

and recalling the shortcuts MA := supx∈A ϕ(x) and Ac := BN \A we get

P(X
(k)
N > Nd/αt) =

∑
A⊆BN , |A|=k−1

P(X
(k)
N > Nd/αt, {X(1)···(k−1)

N } = A)

=
∑

A⊆BN , |A|=k−1

P(MAc > Nd/αt, ξ(x) > MAc ∀x ∈ A)

=
∑

A⊆BN , |A|=k−1

P
(
MAc > Nd/αt,

1

ξ(x)α
<

1

Mα
Ac
∀x ∈ A

)
.

We have already remarked that the random variables 1/ξ(x)α are uniformly distributed
over the interval (0, 1), that is P( 1

ξ(x)α ≤ s) = s for s ∈ (0, 1). Then with some easy bounds
we obtain

P(X
(k)
N > Nd/αt) =

∑
A⊆BN
|A|=k−1

E

(
1

M
α(k−1)
Ac

,MAc > Nd/αt

)

≤ 1

Nd(k−1)tα(k−1)

∑
A⊆BN
|A|=k−1

P(MAc > Nd/αt) ≤ 1

Nd(k−1)tα(k−1)

∑
A⊆BN
|A|=k−1

P(X
(1)
N > Nd/αt) .

where we have used that P(MAc > Nd/αt) ≤ P(X
(1)
N > Nd/αt) for all A ⊆ BN . Since(

n
m

)
≤ nm/m! and |BN | ≤ CNd, we obtain

P(X
(k)
N > Nd/αt) ≤ 1

Nd(k−1)tα(k−1)

(
|BN |
k − 1

)
P(X

(1)
N > Nd/αt)

≤ 1

Nd(k−1)tα(k−1)

|BN |k−1

(k − 1)!

C

tα
≤ Ck

(k − 1)!

1

tαk
,

having applied (A.5). Equation (A.3) is proved.
To prove (A.4), note that the random variable Y := #{z ∈ BN : ξ(z) > tNd/α} is

binomial B(n, p) with parameters n = |BN | and p = P(ξ > tNd/α) = 1/(tαNd), therefore

P(X
(k)
N ≤ tNd/α) = P(Y ≤ k − 1) =

k−1∑
m=0

(
n

m

)
pm (1− p)n−m

=

k−1∑
m=0

(
|BN |
m

)(
1

tαNd

)m (
1− 1

tαNd

)|BN |−m
.

(A.6)

Using the estimates (1− x)a ≤ e−ax and
(
n
m

)
≤ nm/m! we get

P(X
(k)
N ≤ tNd/α) ≤ e

− |BN |
Nd

1
tα

k−1∑
m=0

1

m!

1

tαm

(
|BN |
Nd

e
1

tαNd

)m
,

from which (A.4) follows, recalling that |BN | ≥ cNd and 1/(tαNd) ≤ 1 by assumption. �

We are finally ready for the proof of Lemma 2.1 and Proposition 2.2, to which the next
subsections are devoted.
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A.2. Proof of Lemma 2.1. We start considering equation (2.2). Let us set Nk := 2k. By
(A.3) we have∑

k∈N
P(X

(1)
Nk

> (Nk)
d/α (logNk)

1/α+ε/2) ≤ C

(log 2)1+αε/2

∑
k∈N

1

k1+αε/2
<∞ ,

and by (A.4)∑
k∈N

P(X
(1)
Nk
≤ (Nk)

d/α (log logNk)
−1/α−ε/2) ≤

∑
k∈N

exp
(
−c(log logNk)

1+εα/2
)

=
∑
k∈N

1

(k log 2)c(log log 2+log k)εα/2
<∞ ,

because for large k the exponent c(log log 2 + log k)εα/2 exceeds 1. By the Borel-Cantelli
lemma, it follows that eventually (in k) P-a.s.

(A.7)
(Nk)

d/α

(log logNk)1/α+ε/2
≤ X(1)

Nk
≤ (Nk)

d/α (logNk)
1/α+ε/2 .

Now take a generic N ∈ N and set k := blog2(N)c, so that Nk ≤ N < Nk+1. Observe
that X(1)

Nk
≤ X

(1)
N ≤ X

(1)
Nk+1

, because X(1)
N is increasing in N . Plainly, one has Nk+1 ≤ 2N ,

Nk ≥ 1
2N , logNk ≤ logN and logNk+1 ≤ log 2 + logN ≤ 2 logN (for large N). Then it

follows from (A.7) that for large N

2−d/α
Nd/α

(log logN)ε/2
≤ X(1)

Nk
≤ X(1)

N ≤ X(1)
Nk+1

≤ 2d/α+1/α+ε/2Nd/α (logN)1/α+ε/2 .

Equation (2.2) follows observing that 2d/α ≤ (log logN)ε/2 and 2d/α+1/α+ε/2 ≤ (logN)ε/2

for large N .
Next we focus on the lower bound in equation (2.3). By (A.4) we can write

P

(
X

((logN)ϑ)
N ≤ Nd/α

(logN)ϑ/α+ε

)
≤ e−c (logN)ϑ+αε

b(logN)ϑc−1∑
m=0

1

m!

(
eC (logN)ϑ+αε

)m
.

Observe that, for fixed x > 0, the sequence m 7→ xm/m! is increasing for m ≤ x, therefore
for k ≤ x we have

∑k−1
m=0 x

m/m! ≤ kxk/k! ≤ k(ex/k)k, becausem! ≥ (m/e)m for allm ∈ N.
It follows that for some constant C ′ > 0 and for large N we can write

P
(
X

((logN)ϑ)
N ≤ Nd/α

(logN)ϑ/α+ε

)
≤ e−c (logN)ϑ+αε (logN)ϑ

(
C ′ (logN)αε

)(logN)ϑ

≤ (logN)ϑ e−c (logN)ϑ+αε + (logN)ϑ[αε log logN+logC′]

≤ (logN)ϑ e−
1
2
c (logN)ϑ+αε ≤ N−2 ,

(A.8)

because by assumption ϑ > 1 and ε > 0 (the −2 could be replaced by any negative number).
The Borel-Cantelli lemma then yields directly the lower bound in (2.3).

Finally, we prove together the upper bound in (2.3) and (2.4). By Stirling’s formula we
have (k − 1)! ≥ (k−1

e )k−1 ≥ (k3 )k for large k. Applying (A.3), we can then write

P

(
X

(k)
N > A

Nd/α

k1/α

)
≤ Ck

(k − 1)!

(
k1/α

A

)αk
≤
(

3C

Aα

)k
≤ e−2k ,
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provided A is chosen larger than (e2/3C)1/α. By the inclusion bound,

P

(
∃k ∈ {(logN), . . . , |BN |} : X

(k)
N > A

Nd/α

k1/α

)
≤

∑
k≥logN

e−2k ≤ (const.)

N2
,

therefore by the Borel-Cantelli lemma it follows that, eventually P-almost surely in N , one
has X(k)

N ≤ A Nd/α

k1/α
for all k ≥ logN . This yields immediately (2.4), as well as the upper

bound in (2.3), because by assumption ϑ > 1. �

A.3. Proof of Proposition 2.2. Since the relation (2.5) becomes stronger as β increases,
we can safely assume that β > 1. Then by (2.3) we have that, eventually P-a.s.,

(A.9) X
(k)
N ≥ X((logN)β)

N ≥ Nd/α

(logN)2β/α
, ∀k ≤ (logN)β .

Since a more quantitative control will be needed later, we observe that for large N

(A.10) P(CN ) ≤ 1

N
, where CN :=

⋃
m≥N

{
X((logm)β)
m ≤ md/α

(logm)2β/α

}
,

as it follows from (A.8).
Thanks to (A.9), in order to prove (2.5) it suffices to show that for every β > 1 there

exists γ > 0 such that, eventually P-a.s., the following event holds:

VN :=

{
∀k ≤ (logN)β : X

(k)
N −X

(k+1)
N ≥

X
(k)
N

(logN)γ

}
.

In order to apply the Borel-Cantelly lemma, it is convenient to group the events VN together.
More precisely, for n ∈ N0 we set Nn := benrc, where the constant r ∈ (0, 1) will be fixed
later, and we define

Ṽn :=
⋂

Nn<m≤Nn+1

Vm .

The proof is then completed once we show that the event Ṽn holds eventually P-a.s. (in n).
It only remains to show that P(Ṽcn) decays fast enough as n → ∞. By construction, if

Ṽn does not hold, there must exist m ∈ {Nn + 1, . . . , Nn+1} and k ≤ (logm)β such that
0 < X

(k)
m −X(k+1)

m < (logm)−γX
(k)
m . Let y, z ∈ Bm be the two points at which the values

X
(k)
m and X(k+1)

m are attained, that is ξ(y) = X
(k)
m and ξ(z) = X

(k+1)
m . It is convenient to

distinguish three cases, according to whether y and z are in BNn or not.

(1) If both y, z ∈ BNn , we can write ξ(y) = X
(k′)
Nn

and ξ(z) = X
(k′′)
Nn

for some k′ < k′′.
Since by construction ξ(z) = X

(k+1)
m and Bm ⊇ BNn , we must have k′′ ≤ k+1, whence

k′ ≤ k ≤ (logm)β ≤ (logNn+1)β . Also note that

X
(k′)
Nn
−X(k′+1)

Nn
≤ X(k′)

Nn
−X(k′′)

Nn
= X(k)

m −X(k+1)
m

< (logm)−γX(k)
m = (logm)−γX

(k′)
Nn
≤ (logNn)−γX

(k′)
Nn

.

This shows that, if Ṽn does not hold and both y, z ∈ BNn , there must exist k′ ≤
(logNn+1)β such that X(k′)

Nn
−X(k′+1)

Nn
≤ (logNn)−γX

(k′)
Nn

.
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(2) To handle the case when y, z ∈ Bm \ BNn ⊆ BNn+1 \ BNn , it is sufficient to observe
that ξ(y) and ξ(z) must take large values, because of (A.9). More precisely, on the
event CcNn , cf. (A.10), both ξ(y) and ξ(z) must be larger than md/α/(logm)2β/α ≥
N
d/α
n /(logNn+1)2β/α.

(3) Consider finally the case when exactly one of the points y, z lies in BNn . If y ∈ BNn
and z ∈ Bm \ BNn , we have ξ(y) = X

(k′)
Nn

for some k′ ≤ (logm)β , as we have already

remarked, therefore 0 < X
(k′)
Nn
− ξ(z) < (logm)−γX

(k′)
Nn

. Viceversa, if z ∈ BNn and

y ∈ Bm\BNn , we may write 0 < ξ(y)−X(k′′)
Nn

< (logm)−γξ(y), for some k′′ ≤ (logm)β .
In either case, we can state that there exists some point x ∈ BNn+1 \ BNn and some
k̄ ≤ (logNn+1)β such that (1− (logNn)−γ) < ξ(x)/X

(k̄)
Nn

< (1− (logNn)−γ)−1.

These considerations lead us directly to the following basic decomposition:

Ṽcn ⊆ W(1)
n ∪

(
CNn ∪ W(2)

n

)
∪ W(3)

n ,

where the event CN has been introduced in (A.10) and we have set

W(1)
n :=

⋃
k′≤(logNn+1)β

{
X

(k′+1)
Nn

>

(
1− 1

(logNn)γ

)
X

(k′)
Nn

}
,

W(2)
n :=

⋃
y,z∈BNn+1

\BNn , y 6=z

{
ξ(y) ≥ N

d/α
n

(logNn+1)2β/α
, ξ(z) ≥ N

d/α
n

(logNn+1)2β/α

}
,

W(3)
n :=

⋃
x∈BNn+1

\BNn , k̄≤(logNn+1)β

{
1− 1

(logNn)γ
<
ξ(x)

X
(k̄)
Nn

<

(
1− 1

(logNn)γ

)−1
}
.

Note that, by (A.10),
∑

n∈N P(CNn) ≤
∑

n∈N
1
Nn
≤
∑

n∈N e
−nr+1 < ∞. By the Borel-

Cantelli lemma, it suffices to show that
∑

n∈N P(W(i)
n ) <∞ for i = 1, 2, 3 and it will follow

that Ṽn holds eventually P-a.s., that is what we want to prove.
Let us considerW(1)

n . By (A.1) we have P
(
X

(k+1)
N ≥ (1−ε)X(k)

N

)
≤ c k ε for some constant

c > 0. Recalling that Nn = en
r , for large n we have

P(W(1)
n ) ≤

b(logNn+1)βc∑
k=1

P
(
X

(k+1)
Nn

>

(
1− 1

(logNn)γ

)
X

(k)
Nn

)

≤ c
1

(logNn)γ

b(logNn+1)βc∑
k=1

k ≤ c′
(logNn+1)2β

(logNn)γ
≤ c′′

nr(γ−2β)
,

(A.11)

for suitable c, c′′ > 0. It follows that
∑

n∈N P(W(1)
n ) <∞ provided r(γ − 2β) > 1.

Next we consider W(2)
n . Observe that there exist constants c, c′ > 0 such that

(A.12) |BNn+1 \ BNn | ≤ c (Nn+1 −Nn) (Nn)d−1 ≤ c′
(Nn)d

n1−r ,
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because Nn+1 − Nn = be(n+1)rc − benrc = en
r
r nr−1(1 + o(1)) as n → ∞. Recalling that

P(ξ(x) > t) ≤ t−α by (1.2), for a suitable c′′ > 0 we can write

P(W(2)
n ) ≤

∑
y,z∈BNn+1

\BNn , y 6=z

P
(
ξ(y) >

N
d/α
n

(logNn+1)2β/α

)2

≤ (c′)2 (Nn)2d

n2(1−r)
(logNn+1)4β

(Nn)2d
≤ c′′

n4βr

n2(1−r) =
c′′

n2−(4β+2)r
.

Therefore
∑

n∈N P(W(2)
n ) <∞ provided 2− (4β + 2)r > 1.

We finally focus on W(3)
n . Note that by (1.2) for all t > 1 and ε < 1

2 we can write

(A.13) P
(

(1− ε) < ξ(x)

t
< (1− ε)−1

)
=

∫ (1−ε)−1t

(1−ε)t

α

s1+α
ds ≤ c α

ε

tα
,

for some universal constant c > 0. Note that ξ(x) is independent of X(k)
Nn

if x 6∈ BNn . If we
are on the event CcNn , cf. (A.10), X

(k)
Nn
≥ (Nn)d/α/(logNn)2β/α for k ≤ (logNn)β , hence

P

(
1− 1

(logNn)γ
<
ξ(x)

X
(k)
Nn

<

(
1− 1

(logNn)γ

)−1

, CcNn

)
≤ c α

1

(logNn)γ
(logNn)α

(Nn)d
.

Recalling (A.10), it follows that

P(W(3)
n ) ≤ P(CNn) + P(W(3)

n , CcNn) ≤ 1

Nn
+ (logNn+1)β |BNn+1 | · c α

(logNn)α−γ

(Nn)d

≤ c′
(

1

enr
+

1

nr(γ−α−β)

)
,

for a suitable constant c′ > 0. If r(γ − α− β) > 1 we then have
∑

n∈N P(W(3)
n ) <∞.

The proof is completed observing that the three relations we have found, namely

r(γ − 2β) > 1 , 2− (4β + 2)r > 1 , r(γ − α− β) > 1 ,

can be satisfied at the same time. In fact, for any fixed β, we can choose r ∈ (0, 1) small
enough such that the second relation holds (e.g. r := (4β + 3)−1) and then choose γ > 0
large enough so that the first and the third relations are satisfied (e.g. γ := 6β + α+ 3).

Appendix B. Order statistics for the modifed field

B.1. Proof of Lemma 2.4. We are going to prove the following stronger result.

Lemma B.1. For all k ≥ 2 and δ ∈ (0, 1) one has

P
(
Z

(k)
N ≥ (1− δ)Z(1)

N

)
≤ (1− (1− δ)α)k−1 .(B.1)

Proof. We set LA := supx∈A ψN (x) (recall (2.6)) and Ac := BN \ A for short. We also set
ϕN (x) := (1 − |x|

N+1), so that ψN (x) = ϕN (x)ξ(x). Summing over the location of the set
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A = {Z(1)
N , . . . , Z

(k−1)
N }, so that Z(k)

N = LAc , we can write

P(Z
(k)
N ≥ (1− δ)Z(1)

N ) =
∑

A⊆BN , |A|=k−1

P
(
{Z(1)

N , . . . , Z
(k−1)
N } = A, LAc ≥ (1− δ)Z(1)

N

)
=

∑
A⊆BN , |A|=k−1

P
(
LAc < ψN (x) ≤ (1− δ)−1LAc , ∀x ∈ A

)
(B.2)

=
∑

A⊆BN , |A|=k−1

P
(

(1− δ)α
(
ϕN (x)

LAc

)α
≤ 1

ξ(x)α
<

(
ϕN (x)

LAc

)α
, ∀x ∈ A

)
.

It follows from (1.2) that the variable 1/ξ(x)α is uniformly distributed on the interval (0, 1),
that is, its distribution function equals J(x) := (x ∧ 1)1(0,∞)(x), hence

P
(

(1− δ)αtα ≤ 1

ξ(x)α
< tα

)
= J(tα)− J((1− δ)αtα) .

One checks easily that J((1 − δ)αtα) ≥ (1 − δ)αJ(tα) for all δ ∈ (0, 1) and t ≥ 0 (the
inequality is strict for t > 1), therefore

(B.3) P(Z
(k)
N ≥ (1− δ)Z(1)

N ) ≤ (1− (1− δ)α)k−1
∑

A⊆BN , |A|=k−1

E

[ ∏
x∈A

J

(
ϕN (x)α

(LAc)α

)]
.

Setting δ = 1 in (B.2) we see that the sum in the right hand side of the last equation equals
one, and the proof is completed. �

Remark B.2. One can refine the proof of Lemma B.1 to show that

P
(
Z

(k)
N ≥ (1− δ)Z(1)

N

)
≥
(
1− Ck e−ckN

d)
(1− (1− δ)α)k−1 ,

for suitable constants ck, Ck ∈ (0,∞) and for large N . In fact, restricting the expectations
in (B.2) to the event {Z(k)

N > 1}, one has ϕN (x)/LAc ≤ 1 and therefore (B.3) becomes

P
(
Z

(k)
N ≥ (1− δ)Z(1)

N , Z
(k)
N > 1

)
= (1− (1− δ)α)k−1 P(Z

(k)
N > 1) .

It then remains to check that P(Z
(k)
N > 1) ≤ Ck exp(−ckNd), which can be easily done by

direct computation.

B.2. Proof of Lemma 2.3. As already remarked, only the first inequality in (2.7) needs
to be proved, because Z(2)

N ≤ Z(1)
N ≤ X(1)

N (recall (2.2)). We start with an auxiliary lemma.

Lemma B.3. There exist constants c1, c2 such that for all N ∈ N and t ≥ 0

P(Z
(2)
N ≤ Nd/α t) ≤ c1 e

− c2
tα .(B.4)

Proof. Setting Ox := supx∈BN\{x} ψN (x) for short, we can write

P(Z
(2)
N ≤ Nd/α t) =

∑
x∈BN

P(Ox ≤ Nd/α t, ξ(x) > Ox)

=
∑
x∈BN

P
(

1

Oαx
≥ 1

Nd tα
,

1

ξ(x)α
<

1

Oαx

)
≤
∑
x∈BN

E
(

1

Oαx
1{ 1

Oαx
≥ 1

Nd tα

}) ,
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because 1/ξ(x)α is uniformly distributed on the interval (0, 1), as it follows from (1.2). We
then apply the basic formula E(Z 1{Z≥a}) = aP(Z ≥ a) +

∫∞
a P(Z ≥ s) ds, getting

P(Z
(2)
N ≤ Nd/α t) ≤ 1

Nd

∑
x∈BN

{
1

tα
P
(

1

Oαx
≥ 1

Nd tα

)
+

∫ ∞
t−α

P
(

1

Oαx
≥ u

Nd

)
du
}
.

We now claim that there exists c > 0 such that for all N ∈ N, x ∈ BN and u > 0

(B.5) P
(

1

Oαx
≥ u

Nd

)
≤ e−c u .

Since |BN | ≤ CNd for some constants C, we get

P(Z
(2)
N ≤ Nd/α t) ≤ C

tα
e−c t

−α
+ C

∫ ∞
t−α

e−c u du ≤ e−c t−α
(
C

tα
+
C

c

)
.

Since the function t 7→ t−α e−
1
2
c t−α is bounded on R+, it follows that (B.4) holds true with

c2 := 1
2c and for c1 large enough.

It remains to prove (B.5), for which we can write

P
(

1

Oαx
≥ u

Nd

)
=

∏
z∈BN\{x}

P

(
1

ξ(z)α
≥
(
1− |z|

N+1

)α
Nd

u

)

≤ exp

(
u

Nd

∑
z∈BN\{x}

(
1− |z|

N+1

)α)
,

because P(1/ξ(z)α ≥ a) = 1 − a ≤ e−a for a ∈ [0, 1] (recall (1.2)). By a Riemann sum
approximation, as N →∞ one has

1

Nd

∑
z∈BN\{x}

(
1− |z|

N+1

)α −→ ∫
|y|≤1

(1− |y|)α dy ∈ (0,∞) ,

from which it follows that (B.5) holds true for some c > 0. �

Proof of Lemma 2.3. Thanks to the inequality (B.4), the proof is identical to that of the
lower bound in (2.2), cf. Appendix A.2. More precisely, one first shows, through a standard
Borel-Cantelli argument, that the first inequality in (2.7) (with ε replaces by ε/2, say) holds
along the subsequence Nk := 2k; the extension to all values of N then follows easily, because
Z

(2)
N is increasing in N . We omit the details for conciseness. �

B.3. Further results. It may be useful to observe that if z(1)
N+1 6= z

(1)
N then

(B.6) |z(1)
N+1| > |z

(1)
N | and ξ(z

(1)
N+1) > ξ(z

(1)
N ) .

In fact, when z(1)
N+1 6= z

(1)
N we have by definition

(B.7) Z
(1)
N = ψN (z

(1)
N ) > ψN (z

(1)
N+1) , ψN+1(z

(1)
N ) < ψN+1(z

(1)
N+1) = Z

(1)
N+1 ,

from which we obtain, recalling the definition (2.6) of ψN ,

|z(1)
N | ξ(z

(1)
N )

(N + 1)(N + 2)
= ψN+1(z

(1)
N )− ψN (z

(1)
N ) < ψN+1(z

(1)
N+1)− ψN (z

(1)
N+1) =

|z(1)
N+1| ξ(z

(1)
N+1)

(N + 1)(N + 2)
,

hence |z(1)
N | ξ(z

(1)
N ) < |z(1)

N+1| ξ(z
(1)
N+1). This shows that at least one of the two inequalities in

(B.6) must hold. Two cases remain that need to be excluded:
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• if |z(1)
N+1| ≤ |z

(1)
N | and ξ(z

(1)
N+1) > ξ(z

(1)
N ), then

ψN (z
(1)
N+1) =

(
1−
|z(1)
N+1|

N + 1

)
ξ(z

(1)
N+1) >

(
1−

|z(1)
N |

N + 1

)
ξ(z

(1)
N ) = ψN (z

(1)
N ) = Z

(1)
N ,

which is absurd, because Z(1)
N is by definition the maximum of ψN ;

• analogously, if |z(1)
N+1| > |z

(1)
N | and ξ(z

(1)
N+1) ≤ ξ(z(1)

N ), then

Z
(1)
N+1 = ψN+1(z

(1)
N+1) =

(
1−
|z(1)
N+1|

N + 2

)
ξ(z

(1)
N+1) <

(
1−

|z(1)
N |

N + 2

)
ξ(z

(1)
N ) = ψN+1(z

(1)
N ) ,

which is again absurd, because Z(1)
N+1 is by definition the maximum of ψN+1.

Next we show that a statement analogous to (2.9) for the gap Z(1)
N −Z

(2)
N does not hold.

Let us fix any N̄ for which z(1)

N̄
6= z

(1)

N̄+1
(note that there are almost surely infinitely many

such values of N̄ , otherwise Z(1)
N = ψN (z

(1)
N ) would be eventually constant). We set x := z

(1)

N̄

and y := z
(1)

N̄+1
for short. Then Z(1)

N̄
= ψN (x) and Z(2)

N̄
≥ ψN (y), hence, recalling (2.6),

Z
(1)

N̄
− Z(2)

N̄
≤ ψN̄ (x)− ψN̄ (y) =

1

N̄ + 1

(
(N̄ + 1)

(
ξ(x)− ξ(y)

)
+ |y|ξ(y)− |x|ξ(x)

)
=

1

N̄ + 1

(
(N̄ + 2)

(
ξ(x)− ξ(y)

)
+ |y|ξ(y)− |x|ξ(x)

)
+
ξ(y)− ξ(x)

N̄ + 1

=
N̄ + 2

N̄ + 1

(
ψN̄+1(x)− ψN̄+1(y)

)
+
ξ(y)− ξ(x)

N̄ + 1
.

By construction y = z
(1)

N̄+1
and y 6= x, therefore ψN̄+1(y) = Z

(1)

N̄+1
> ψN̄+1(x). Recalling

(2.2), we infer that eventually P-a.s.

(B.8) Z
(1)

N̄
− Z(2)

N̄
≤
ξ(z

(1)

N̄+1
)− ξ(z(1)

N̄
)

N̄ + 1
≤
X

(1)

N̄+1

N̄ + 1
≤ N̄d/α−1 (log N̄)1/α+ε .

We stress that this bound differs from the one in (2.9) almost by a factor N−1. It turns
out that the bound (B.8) is quite sharp (up to logarithmic corrections): in fact, by the
first bound in (2.8), (2.7) and a Borel-Cantelli argument, it follows that for every ε > 0,
eventually P-almost surely,

(B.9) Z
(1)
N − Z

(2)
N ≥

Z
(1)
N

N(logN)1+ε/2
≥ Nd/α−1

(logN)1+ε
.

This implies in particular that N(Z
(1)
N − Z

(2)
N )→ +∞, P-almost surely.
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