PINNING AND WETTING TRANSITION FOR
(141)-DIMENSIONAL FIELDS WITH LAPLACIAN INTERACTION

FRANCESCO CARAVENNA AND JEAN-DOMINIQUE DEUSCHEL

ABSTRACT. We consider a random field ¢ : {1,..., N} — R as a model for a linear chain
attracted to the defect line ¢ = 0, i.e. the z—axis. The free law of the field is specified
by the density exp (— >, V(A¢;)) with respect to the Lebesgue measure on RY, where
A is the discrete Laplacian and we allow for a very large class of potentials V'(-). The
interaction with the defect line is introduced by giving the field a reward € > 0 each
time it touches the z—axis. We call this model the pinning model. We consider a second
model, the wetting model, in which, in addition to the pinning reward, the field is also
constrained to stay non-negative.

We show that both models undergo a phase transition as the intensity € of the pinning
reward varies: both in the pinning (a = p) and in the wetting (a = w) case, there exists
a critical value €2 such that when & > £¢ the field touches the defect line a positive
fraction of times (localization), while this does not happen for ¢ < ¢ (delocalization).
The two critical values are non-trivial and distinct: 0 < €f < e} < oo, and they are
the only non-analyticity points of the respective free energies. For the pinning model the
transition is of second order, hence the field at € = £ is delocalized. On the other hand,
the transition in the wetting model is of first order and for ¢ = &} the field is localized.
The core of our approach is a Markov renewal theory description of the field.

1. INTRODUCTION AND MAIN RESULTS

1.1. Definition of the models. We are going to define two distinct but related models
for a (141)-dimensional random field. These models depend on a measurable function
V() : R = RU {400}, the potential. We require that = — exp(—V(z)) is bounded and
continuous and that [ exp(—V(z))dx < oo. Since a global shift on V(-) is irrelevant for
our purposes, we will actually impose the stronger condition

/ e V@ dr=1. (1.1)
R

The last assumptions we make on V(-) are that V' (0) < oo, i.e. exp(—V(0)) > 0, and that
/ e V@ dr =02 < oo and / ze V@ dr = 0. (1.2)
R R

The most typical example is of course V (z) oc 22, but we stress that we do not make any
convexity assumption on V'(-). Next we introduce the Hamiltonian H, (¢), defined for
a,b € Z, with b—a > 2, and for ¢ : {a,...,b} - R by

b—1
Hiap (@) = Y V(Apn), (1.3)

n=a+1
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where A denotes the discrete Laplacian:

App = (Pnt1 — Yn) = (Pn = Pn-1) = Png1 + Pn-1 — 2¢n . (1.4)

We are ready to introduce our first model, the pinning model (p-model for short) ]P’ap N
that is the probability measure on RY~! defined by

b exp (— Hi—1,n+41)(9)) =
]P’&N(d(pl <-don_1 ) = =P ! H (E 0o (dep;) + d(pi) (1.5)
e,N

=1

where N € N, ¢ > 0, dy; is the Lebesgue measure on R, dy(-) is the Dirac mass at zero
and ZE’ y is the normalization constant, usually called partition function. To complete the
definition, in order to make sense of H|_; ny41j(¢), we have to specify:

the boundary conditions ¢_1 = ¢y = ¢on = @on11:=0. (1.6)

We fix zero boundary conditions for simplicity, but our approach works for arbitrary
choices (as long as they are bounded in N).

The second model we consider, the wetting model (w-model for short) PY . is a variant
of the pinning model defined by

PZV,N(d%'“dSDN—l) = PE,N(d@l"‘dSDN—l“PI >0,...,pN-1 2> 0)

— N1 1.7
_ exp( 72;17N+1}(90)) H (an(d%) +dcpi1(%20)), (1.7)
&N i=1

i.e. we replace the measure dy; by dp;1(,,>0) and Zg n by a new normalization ZFy.

Both PP ; and PY y are (14-1)—dimensional models for a linear chain of length N which
is attracted to a defect line, the r—axis, and the parameter ¢ > 0 tunes the strength
of the attraction. By ‘(1+1)-dimensional’ we mean that the configurations of the linear
chain are described by the trajectories {(7, ;) }o<i<n of the field, so that we are dealing
with directed models (see Figure 1 for a graphical representation). We point out that
linear chain models with Laplacian interaction appear naturally in the physical literature
in the context of semiflexible polymers, cf. [6, 21] (however the scaling they consider is
different from the one we look at in this paper). An interesting interpretation of PYy asa
model for the DNA denaturation transition will be discussed below. One note about the
terminology: while ‘pinning’ refers of course to the attraction terms e dy(dep;), the use of
the term ‘wetting’ is somewhat customary in the presence of a positivity constraint and
refers to the interpretation of the field as an effective model for the interface of separation
between a liquid above a wall and a gas, cf. [13].

The purpose of this paper is to investigate the behavior of ]P’ep’ N and ]P’Zf y in the large N
limit: in particular we wish to understand whether and when the reward € > 0 is strong
enough to pin the chain at the defect line, a phenomenon that we will call localization. We
point out that this kind of questions have been answered in depth in the case of gradient
interaction, i.e. when the Laplacian A appearing in (1.3) is replaced by the discrete gradient
Von := pn — @n-1, cf. [17, 15, 18, 13, 11, 1]: we will refer to this as the gradient case. As
we are going to see, the behavior in the Laplacian case turns out to be sensibly different.
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FIGURE 1. A graphical representation of the pinning model IP’ep’ N (top)
and of the wetting model P}y (bottom), for N = 25 and € > 0. The
trajectories {(n,n)}o<n<n of the field describe the configurations of a
linear chain attracted to a defect line, the z—axis. The grey circles represent
the pinned sites, i.e. the points in which the chain touches the defect line,
which are energetically favored. Note that in the pinning case the chain can
cross the defect line without touching it, while this does not happen in the
wetting case due to the presence of a wall, i.e. of a constraint for the chain
to stay non-negative: the repulsion effect of entropic nature that arises is
responsible for the different critical behavior of the models.

1.2. The free energy and the main results. A convenient way to define localization
for our models is by looking at the Laplace asymptotic behavior of the partition function
Z¢\ as N — oo. More precisely, for a € {p, w} we define the free energy ¥(¢) by

1

Fi(e) == lim F%(e), F(e) == —=log 22y, (1.8)
—00 N ’

where the existence of this limit (that will follow as a by-product of our approach) can be

proven with a standard super-additivity argument. The basic observation is that the free

energy is non-negative. In fact, setting QP := [0, 00) and Q% := R, we have VN € N

N—1
N = /GXP(—H[—LNH}(‘P)) [ (e00(dpi) + dpi 1 s e00)
i=1
& (1.9)
a €1
> /exp(—H[—l,N+1}(90)) ' dpilipene = Zon 2 Ne2’

1

~
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where cq, co are positive constants and the polynomial bound for 25N (analogous to what
happens in the gradient case, cf. [13]) is proven in (2.14). Therefore r%(¢) > r%(0) = 0 for
every € > 0. Since this lower bound has been obtained by ignoring the contribution of the
paths that touch the defect line, one is led to the following

Definition 1.1. For a € {p,w}, the a-model {P¢ \}n is said to be localized if ¥*(e) > 0.

The first problem is to understand for which values of ¢ (if any) there is localization.
Some considerations can be drawn easily. We introduce for convenience for t € R

FU() = ¥ (e!) L) = F(e). (1.10)

It is easy to show (see Appendix A) that Fiy(-) is convex, therefore also *(-) is convex. In
particular, the free energy F%(¢) = F*(log¢) is a continuous function, as long as it is finite.
F(-) is also non-decreasing, because Z¢  is increasing in € (cf. the first line of (1.9)). This
observation implies that, for both a € {p, w}, there is a critical value €% € [0, co] such that
the a-model is localized if and only if € > £%. Moreover f < ¥, since Zg N = Z;’:’N.

However it is still not clear that a phase transition really exists, i.e. that €2 € (0, 00).
Indeed, in the gradient case the transition is non-trivial only for the wetting model, i.e.
0 < eV < 0o while e2Y =0, cf. [13, 17]. Our first theorem shows that in the Laplacian
case both the pinning and the wetting model undergo a non-trivial transition, and gives
further properties of the free energy r%(-).

Theorem 1.2 (Localization transition). The following relations hold:
el € (0, 00) ey € (0,00) el <ell.
We have ¥%(g) = 0 for e € [0,e%], while 0 < F*(¢) < 0o for e € (¢%,00), and as € — o0
F'(e) = loge (1+0(1)) ac{p,w}. (1.11)

Moreover the function ¥*(e) is real analytic on (2, 00).

One may ask why in the Laplacian case we have - > 0, unlike in the gradient case.
Heuristically, we could say that the Laplacian interaction (1.3) describes a stiffer chain,
more rigid to bending with respect to the gradient interaction, and therefore Laplacian
models require a stronger reward in order to localize. Note in fact that in the Gaussian case
V(z) oc 22 the ground state of the gradient interaction is just the horizontally flat line,
whereas the Laplacian interaction favors rather affine configurations, penalizing curvature
and bendings.

It is worth stressing that the free energy has a direct translation in terms of some path
properties of the field. Defining the contact number £ by

In = #{ie{l,...,N}: ¢; =0}, (1.12)
a simple computation (see Appendix A) shows that for every ¢ > 0 and N € N
a o a EN _(a N\ _ a \/
DRy () = EZ v N/ = (Fy)'(loge) = e-(ry) (e). (1.13)

Then, introducing the non-random quantity D*(e) := ¢ - (F%)’(¢) (which is well-defined
for € # €2 by Theorem 1.2), a simple convexity argument shows that D, (¢) — D%(¢) as
N — o0, for every e # €2. Indeed much more can be said (see Appendix A):
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e When € > % we have that D*(¢) > 0, and for every § >0 and N € N
IN
~ — D)

Pl |5

where c3 is a positive constants. This shows that, when the a-model is localized
according to Definition 1.1, its typical paths touch the defect line a positive fraction
of times, equal to D%(e). Notice that, by (1.11) and convexity arguments, D%(¢)
converges to 1 as € — oo, i.e. a strong reward pins the field at the defect line in a
very effective way (observe that £ /N < 1).

>5> < exp(—cs3 N), (1.14)

e On the other hand, when ¢ < €2 we have D*(¢) = 0 and for every § > 0 and N € N

?,N(iifv > 6) < exp(—ca N), (1.15)

where ¢4 is a positive constants. Thus for ¢ < ¢ the typical paths of the a-model
touch the defect line only o(/V) times: when this happens it is customary to say
that the model is delocalized.

What is left out from this analysis is the critical regime € = 2. The behavior of the
model in this case is sharply linked to the way in which the free energy F%(¢) vanishes as
e | €2 If r%(+) is differentiable also at ¢ = €% (second order transition), then (F%)'(%) =0
and relation (1.15) holds, i.e. the a-model for ¢ = €2 is delocalized. The other possibility is
that ¥(-) is not differentiable at ¢ = €2 (first order transition), which happens when the
right-derivative is positive: (F?)! (e¢) > 0. In this case the behavior of P¢ y for large N
depends strongly on the choice of the boundary conditions.

We first consider the critical regime for the wetting model, where the transition turns
out to be of first order. Recall the definition (1.13) of D% (¢).

Theorem 1.3 (Critical wetting model). For the wetting model we have:
liminf DY (e 0. 1.16
}\Ifri)lilo N({—:C) > ( )
Therefore (FV) (ef) > 0 and the phase transition is of first order.

Notice that equations (1.13) and (1.16) yield

lim inf E€WN<€<TV> > 0,

N—oo

and in this sense the wetting model at the critical point exhibits a localized behavior. This
is in sharp contrast with the gradient case, where it is well known that the wetting model
at criticality is delocalized and in fact the transition is of second order, cf. [15, 18, 13, 11].
The emergence of a first order transition in the case of Laplacian interaction is particularly
interesting in view of the possible applications of PY  as a model for the DNA denaturation
transition, where the non-negative field {¢; }; descrlbes the distance between the two DNA
strands. In fact for the DNA denaturation something close to a first order phase transition
is experimentally observed: we refer to [17, §1.4] for a detailed discussion (cf. also [27, 19]).

Finally we consider the critical pinning model, where the transition is of second order.
Theorem 1.4 (Critical pinning model). For the pinning model we have:

limsup limsup DR (e) = 0. (1.17)

eled N—o0

Then ¥P(e) is differentiable at € = ek, (FP)'(ef) = 0 and the transition is of second order.
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Although the relation (FP)/(el) = 0 yields £y = o(N), in a delocalized fashion, the pinning
model at € = £F is actually somewhat borderline between localization and delocalization,
as we point out in the next paragraph.

1.3. Further path results. A direct application of the techniques that we develop in
this paper yields further path properties of the field. Let us introduce the maximal gap

AN ::max{nSN: Wrt1 0, Ypao 0, ... Qkan #0 forsomekSN—n}.
One can show that, for both a € {p,w} and for ¢ > &2, the following relations hold:

Yé>0: lim ]P’ZN<ﬂ25>:0
Noeo =7\ N (1.18)
Jim limsup  max Py (il > L) = 0.
In particular for € > €% each component ; of the field is at finite distance from the defect
line and this is a clear localization path statement. On the other hand, in the pinning case
a = p we can strengthen (1.15) to the following relation: for every e < &
lim limsup P? \ (Ay <N -L) = 0, (1.19)
L—oo Nooo ’
i.e. for ¢ < € the field touches the defect line at a finite number of sites, all at finite
distance from the boundary points {0, N}. We expect that the same relation holds true
also in the wetting case a = w, but at present we cannot prove it: what is missing are more
precise estimates on the entropic repulsion problem, see §1.5 for a detailed discussion. It
is interesting to note that we can prove that the first relation in (1.18) holds true also in
the pinning case a = p at the critical point € = €&, and this shows that the pinning model
at criticality has also features of localized behavior.

We do not give an explicit proof of the above relations in this paper, both for conciseness
and because in a second paper [9] we focus on the scaling limits of the pinning model,
obtaining (de)localization path statements that are much more precise than (1.18) and
(1.19) (under stronger assumptions on the potential V'(-)). We show in particular that for
all ¢ € (0,e) the natural rescaling of IP’S y converges in distribution in C([0,1]) to the
same limit that one obtains in the free case € = 0, i.e. the integral process of a Brownian
bridge. On the other hand, for every ¢ > €¥ the natural rescaling of ]P’z y Vvields the trivial
process which is identically zero. We stress that e = &£ is included in the last statement:
this is in sharp contrast with the gradient case, where the pinning model at criticality has
a non-trivial scaling limit, namely the Brownian bridge (as one can prove arguing as in
[13, 11]). This shows again the peculiarity of the critical pinning model in the Laplacian
case. Indeed, by lowering the scaling constants with suitable logarithmic corrections, we
are able to extract a non-trivial scaling limit (in a distributional sense) for the law ]P’?g, N
in terms of a symmetric stable Lévy process with index 2/5. We stress that the techniques
and results of the present paper play a crucial role for [9].

1.4. Outline of the paper: approach and techniques. Although our main results
are about the free energy, the core of our approach is a precise pathwise description of
the field based on Markov renewal theory. In analogy to [13, 11] and especially to [10],
we would like to stress the power of (Markov) renewal theory techniques for the study of
(14 1)-dimensional linear chain models. The other basic techniques that we use are local
limit theorems, an infinite-dimensional version of the Perron-Frobenius Theorem and the
FKG inequality. Let us describe more in detail the structure of the paper.
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In Section 2 we study the pinning and wetting models in the free case ¢ = 0, showing
that these models are sharply linked to the integral of a random walk. More precisely,
let {Y,,}n>0 denote a random walk starting at zero and with step law P(Y; € dx) =
exp(—V(x)) dz (the walk has zero mean and finite variance by (1.2)) and let us denote by
Zpn =Y1+ ...+ Y, the corresponding integrated random walk process. In Proposition 2.2
we show that the law Pf y is nothing but a bridge of length N of the process {Z,}n, with
the further conditioning to stay non-negative in the wetting case a = w. Therefore we focus
on the asymptotic properties of the process {Z, },, obtaining a basic local limit theorem,
cf. Proposition 2.3, and some polynomial bounds for the probability that {Z,}, stays
positive (connected to the problem of entropic repulsion that we discuss below, cf. §1.5).

In Section 3, which is in a sense the core of the paper, we show that for € > 0 the law P2y
admits a crucial description in terms of Markov renewal theory. More precisely, we show
that the zeros of the field {t < N : ¢; = 0} under IP’; y are distributed according to the law
of a (hidden) Markov renewal process conditioned to hit {N, N + 1}, cf. Proposition 3.1.
We thus obtain an explicit expression for the partition function Z¢, in terms of this
Markov renewal process, which is the key to our main results. 7

Section 4 is devoted to proving some analytical results that underlie the construc-
tion of the Markov renewal process appearing in Section 3. The main tool is an infinite-
dimensional version of the classical Perron-Frobenius Theorem, cf. [33], and a basic role is
played by the asymptotic estimates obtained in Seciton 2. A by-product of this analysis is
an explicit formula, cf. (4.10), that links F%(-) and €% to the spectral radius of a suitable
integral operator and that will be exploited later.

Sections 5, 6 and 7 contain the proofs of Theorems 1.2, 1.3 and 1.4 respectively. In view of
the description given in Section 3, all the results to prove can be rephrased in the language
of Markov renewal theory. The proofs are then carried out exploiting the asymptotic
estimates derived in Sections 2 and 4 together with some algebraic manipulation of the
kernel that gives the law of the hidden Markov renewal process (we refer to §1.6 for
notation on kernels). Finally, the Appendixes contain the proof of some technical results.

1.5. Entropic repulsion. We recall that ({Yn}nzo,P) is the random walk with step
P(Y1 € dx) = ¢ V() dz and that Z, = Y; + ...+ Y,. The analysis of the wetting model
requires estimating the decay as N — oo of the probabilities P(Q;\r,) and P(QE ‘ ZNy1 =
0, ZNy2 = 0), where we set Qj\r, = {Zl >0,...,Zny > 0}. This type of problem is known
in the literature as entropic repulsion and it has received a lot of attention, see [32] for a
recent overview. In the Laplacian case that we consider here, this problem has been solved
in the Gaussian setting (i.e. when V(z) o 22) in (d+ 1)-dimension with d > 5, cf. [28, 22].
Little is known in the (14 1)-dimensional setting, apart from the following result of Sinai’s
[30] in the special case when {Y},}, is the simple random walk on Z:

c < Pp C

N S f) < N (1.20)

where ¢, C' are positive constants. The proof of this bound relies on the exact combinatorial
results available in the simple random walk case and it appears difficult to extend it to our
situation. We point out that the same exponent 1/4 appears in related continuous models
dealing with the integral of Brownian motion, cf. [23, 24]. Based on Sinai’s result, which
we believe to hold for general random walks with zero mean and finite variance, we expect
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that for the bridge case one should have the bound
c C
W < P(QE | ZN+1 = 07ZN+2 = 0) < W
We cannot derive precise bounds as (1.20) and (1.21), however for the purpose of this
paper the following weaker result suffices:

(1.21)

Proposition 1.5. There exist positive constants ¢, C,c_,cy such that for every N € N

c n C
Nc, S P(QN) S NC+

Nccf < PO | Znvi1=0,Zy42=0) < NCc+ .

We prove this proposition in Appendix C. We point out that the most delicate point is
the proof of the upper bound in (1.22): the idea is to dilute the system on exponentially
spaced times and then to combine FKG arguments with a suitable invariance principle.
While the value of ¢y that we obtain is non-optimal, our approach has the advantage of
being quite robust: in view of the possible interest, we carry out the proof in a very general
setting, namely we only assume that the random walk {Y},},, is in the domain of attraction
of a stable law with positivity parameter p € (0,1). We point out that the same kind of
arguments have found a recent application in [29].

(1.22)

(1.23)

1.6. Some recurrent notations. Throughout the paper, generic positive and finite con-
stants will be denoted by (const.), (const.”). For us N = {1,2,...}, Z* = NU {0} and
R™ := [0, 00). Given two positive sequences (a,,), (by), by a,, ~ b, we mean that a, /b, — 1
as n — oo. For € R we denote as usual by |z] := max{n € Z: n < x} its integer part.
In this paper we deal with kernels of two kinds. Kernels of the first kind are just o—finite
kernels on R, i.e. functions A. . : RxB(R) — R*, where B(R) denotes the Borel c—field of R,
such that A, . is a o—finite Borel measure on R for every x € R and A. r is a Borel function
for every F' € B(R). Given two such kernels A, dy, By 4y, their composition is denoted as
usual by (Ao B); 4y := fzeR Az 4z B 4y and Aw "ty denotes the k-fold composition of A

with itself, where A;Ody := 0, (dy). We also use the standard notation

(1 gpdy . ZAxdgp

which of course in general may be infinite.

The second kind of kernels is obtained by letting a kernel of the first kind depend on
the further parameter n € Z*, i.e. we consider objects of the form A, 4,(n) with z,y € R
and n € Z*. Given two such kernels A, g, (n), By ay(n), we define their convolution by

(A*B)eay(n) == > (A(m)oB(n—m))_ . Z / Asa-(m) - B, ay(n —m),

m=0
and the k-fold convolution of the kernel A, 4,(n) with itself will be denoted by A% dy( n),
where by definition A;,?dy (n) := do(dy) 1(n—0)- Finally, given two kernels A; g, (n) and B, qy
and a positive sequence (a,,), we will write

B,
A:Lndy(n) ~ 22l

2 ()
to mean A, p(n) ~ By r/a, as n — oo, Vo € R and for every bounded Borel set F' C R.
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2. THE FREE CASE € = 0: A RANDOM WALK VIEWPOINT

In this section we study in detail the free laws Pg ~ and Pg' 5 and their link with the
integral of a random walk. The main results are a basic local limit theorem and some
asymptotic estimates.

2.1. Integrated random walk. Given a,b € R, let (0, F,P = P(“’b)) be a probability
space on which are defined the processes { X; }ien, {Yi}iez+ and {Z; };ez+ with the following
properties:
e {X,}ien is a sequence of independent and identically distributed random variables,
with marginal laws X; ~ exp(—V(z))dx. We recall that by our assumptions on
V(-) it follows that E(X7) = 0 and E(X;2) = 02 € (0,00), cf. (1.2).
o {Yi}icz+ is the random walk associated to {X;}, with starting point a, that is

Yo=a Y,=a+X1+...+ X, (2.1)
o {Z;}icz+ is the integrated random walk process with initial value b: that is Zyg = b
and for n € N
Ty = b+Yi+...4Y, =b+tna+nXi+n—-DXo+...+X,. (2.2)
From (2.1) and (2.2) it follows that

{(Yn, Zn) }n under P 2 {(Yn +a, Z,+b+ na)}n under P00 (2.3)

The marginal distributions of the process {Z,}, are specified in the following lemma.

Lemma 2.1. For every n € N, the law of the vector (Zy,...,Zy,) under Pt g given by
P(a,b) ((Zl, ey Zn) € (le, o ,dzn)) = exp (—H[_l,n](z_l, 205 Ry« - -y Zn)) Hdz,- , (2.4)
i=1

where we set z_1 :=b—a and zy := b.

Proof. By definition Y,, = Z,, — Z,,_1 for n > 1 under pab), Then, setting y; := 2z; — 21
for i > 2 and y; := z — b, it suffices to show that, under the measure given by the
r.h.s. of (2.4), the variables (y;)i=1,.., are distributed like the first n steps of a random
walk starting at a and with step law exp(—V (z)) da. But for this it suffices to rewrite the
Hamiltonian as

n—1
Hioim(2) = V((z1=b) = (b= (b—0a)) + Y V((zix1 — z) = (2 — 2i-1))
i=1

n—1
= V(y—a)+ ZV(yz‘H —vi),

i=1
and the proof is completed. O
By construction {(Yy,, Zn)}nez+ under P is a Markov process with starting values
Yy = a, Zp = b. On the other hand, the process {Z,}, alone is not a Markov process: it is

rather a process with finite memory m = 2, i.e. for every n € N

P ({Zyiihiso €[ Ziy i <n) = POY({Zyihiso € | Znoa, Z2)

2.5
= P ((Zi s € 1), >
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as it follows from Lemma 2.1. For this reason the law P(®? may be viewed as

P = P(.|Zy=b-a,Zy=b). (2.6)

2.2. The link with P{ 5. In the r.h.s. of (2.4) we see exactly the same density appearing
in the definitions (1.5) and (1.7) of our models P§ . As an immediate consequence we have
the following proposition, which states that Pf  is nothing but a bridge of the process
{Z,}n for a = p, with the further constraint to stay non-negative for a = w.

Proposition 2.2. The following statements hold:

(1) The pinning model IP’IO)’N is the law of the vector (Z1,...,Zn_1) under the measure
P(O’O)( | Zny =0, Znys+1 = 0). The partition function Z&N is the value at (0,0) of
the density of the vector (Yni1, Zn+1) under the law PO,

(2) Setting Qf :={S1 >0,...,S, >0}, the wetting model Py ; is the law of the vector
(Z1,...,ZNn_1) under the measure P©0) (. | Q% 1. Zn =0, Zy11 = 0). The parti-
tion function Zy y is the value at (0,0) of the density of the vector (Yni1, ZN+1)
under the law PO (. k).

For the statement on the partition function, observe that the density at (0, 0) of the vector
(Yn41,ZNn+1) coincides with the one of the vector (Zyn, Zn+1), since Yni11 = Zy+1 — ZN.

2.3. A local limit theorem. In view of Proposition 2.2, we study the asymptotic be-
havior as n — oo of the vector (Yy,, Z,) under the law P(@%),
Let us denote by {B;}c[0,1) a standard Brownian motion and by {I;},c(,1) its integral

process I; := fot Bgds. A simple application of Donsker’s invariance principle shows that the

vector (Yy,/(ov/n), Zy/ (on®/?)) under P09 converges in distribution as n — oo toward
the law of the centered Gaussian vector (B, 1), whose density g(y, z) is

6
9(y,z) = —exp(— 2y? — 622 + 6yz) . (2.7)
7T
We want to reinforce this convergence in the form of a local limit theorem. To this purpose,
we introduce the density of (Y, Z,) under P setting for n > 2
P ((Y,, Z,) € (dy,dz))

2.
dydz (28)

o (y,2) =
From (2.3) it follows that
o (y,2) = ¢y —a, z—b—na), (2.9)

hence it suffices to focus on cpglo’ )( -). We set for short 4,0(0 0 R,2) == [p (p(oo ,2) dy,

i.e. the density of Z, under P00 and g(R,2) ng y,z) dy. We are ready to state the
main result of this section.

Proposition 2.3 (Local limit theorem). The following relations hold as n — oco:

sup | o* 2ol (ov/ny, on®?z) — g(y,2)| — 0
(y,2)€R2

sup |0n3/2<,0510’0) (R, on®/? z) — g(R, z)| — 0.
z€R

(2.10)
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The proof, based on Fourier analysis, is deferred to Appendix B. We stress that this result
retains a crucial importance in the rest of the paper. Notice that an analogous local limit
theorem holds also for gpﬁ?’o’ (y,R), i.e. the density of Y,,, but we do not state it explicitly

because we will not need it.

2.4. The positivity constraint. To deal with the wetting model we need to study the
law of the random vector (Y,,, Z,), or equivalently of (Z,_1, Z,), conditionally on the event
Qf ,={2,>0,...,Z,_9 > 0}. To this purpose we set for r,y € R and n > 3

w%y(n) = 1(:(:20, yzo) . P(_x’o) (Q:{_Q ‘ Zn—l =Y, Zn = O) s (211)

while for n = 1,2 we simply set wy y(n) = 1z>0,>0)- We are interested in the rate of
decay of wy ,(n) as n — oco. To this purpose we claim that there exists a positive constant

¢, such that the following upper bound holds: for all n € N and z,y € R
Wgy(n) < (const.). ! : (2.12)
net P00 (Zn-1 =2 y+ (n—1)z, Z, > nx)

Moreover we have the following lower bound for z,y = 0 and Vn € N:

(const.)

wo,o(n) > ) (2.13)

nC,
for some positive constant c_. Notice that by Proposition 2.2 we have Z(Ii N= 905832)1(0, 0)

and Z§'y = 2§ - wo,o(N + 1), hence by (2.10) and (2.13) we have for every N € N

(2.14)

so that the last inequality in (1.9) is proven.

We prove the lower bound (2.13) in Appendix C.1: the idea is to restrict the expectation
that defines wg o(n) on a suitable subset of paths, whose probability can be estimated. On
the other hand, the upper bound (2.12) follows directly combining the following Lemma
with the upper bound in (1.22) (which is proven in Appendix C.2).

Lemma 2.4. For every z,y € R* and n € N we have
1

p0.0) (Zn—l >y+(n—1zx, Z, > n:r) '

wey(n) < POO(Q)- (2.15)
Proof. Tt is convenient to denote by p,, the image law on R™ of the vector (X1,...,X},)
under PO je. p,(dty,....dt,) = [l e~V () d¢;. With some abuse of notation, for
t=(t1,...,tn) € R" and z € R we set Z;(t) := —ix +it1 + (i — 1)ta + ... +¢;, so that the
process {Z;(t)}1<i<n under p,, (dt) is distributed like the process {Z;}1<i<pn under P(-2:0),
Since p,, is an i.i.d. law and the event {Z,,_1(t) > y, Z,(t) > 0} is increasing in ¢, the
conditioned law p! = p,, (‘| Zn—1 > y, Z, > 0) satisfies the FKG inequality, cf. [26]. This
means that for Borel sets A, B C R" such that A is increasing and B is decreasing, we
have p%(A|B) < p’(A). The choices A =Qf and B:={Z, 1 <y+e¢,7Z, <&} yield

PEEONQF | Zny € [y +el Zn €[0,¢]) < POROQS | Zyy 2y, 20 2 0).

The conclusion follows letting € | 0 and noting that P(_I’O)(Zl >0,...,4, > 0) is
decreasing in x and P(_x’o)(Zn_l >y, Z, >0) = P00 (Zn_l >y+(n—1z, Z, > n:r)
by relation (2.3). O
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3. THE INTERACTING CASE € > 0: A RENEWAL THEORY DESCRIPTION

In this section we study in detail the laws PP\, and PY y in the case € > 0. The crucial

result is that the contact set {i € ZT : p; = 0} can be described in terms of a Markov
renewal process. Throughout the section we assume that € > 0.

3.1. The law of the contact set. We introduce the contact set T by:
Ti={i€eZt: =0} C Z", (3.1)

where we set by definition g = 0, so that 0 € 7. It is practical to identify the set 7 with
the increasing sequence of random variables {7 }>¢ defined by

Observe that the random variable ¢, introduced in (1.12), may be expressed as {y :=
max{k : 7, < N}. Next we introduce the process {J; },>0 that gives the height of the field
before the contact points:

Jo:=0 Jg = Qr—1. (3.3)

The basic observation is that the joint law of the process {¢n, (Tk)k<rty » (Jk )<ty } under
]P’g’N can be written in the following ‘product form’ for k € N, for (¢;)i=1.. r € N with
0<t; <...<tp—1 <tg:=N and for (y;)i=1,.. 1 € R we have

Pg,N(EN:ka =t J €dy;, 1 =1, ,k‘)

1 ~ (3.4)
- 2N e F&dyl (t1) - FZhdyz (tz—=t1) ... FZk—hdyk (N = tp-1)- szv{o}(l) ’
&,
for a suitable kernel F§ ; (n) that we now define. For a = p we have
e M= 0E00) o (dy) = eV gy(dy) ifn=1
e_H[fl,Z] (IE,O,y,O) dy — e—V(m+y)—V(—2y) dy lf n=2
FP . (n) = (3.5)
z,dy —H_1 ] (P—1,eern) ) ’
e [—1,n](P=15--r d d _ d
</]R”2 ¥1 Pn—2 Yy ifn >3
where Y 1=2,00=0, 1=y, pp =0

and the definition of dey(n) is analogous: we just have to impose that z,y > 0 and for
n > 3 we also have to restrict the integral in (3.5) on (RT)"~2. Although these formulas
may appear quite involved, they follow easily from the definition of P2 v In fact it suffice
to expand the product of measures in the r.h.s. of (1.5) and (1.7) as a sum of ‘monomials’,
according to the elementary formula (where we set QP := R and QY := R™)

N-1
(650((1(,02') —I—d(pil(%ega)) = Z €‘A| H 50(d<,0m) H d(pnl(apnefla) .
i=1 Ac{1,..,N—1} meA neAL
It is then clear that A = {7y,..., 7,1} and integrating over the variables ¢; with index

i AU(A—1) one gets to (3.4). We stress that the algebraic structure of (3.4) retains a
crucial importance, that we are going to exploit in the next paragraph.
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From (3.5) it follows that the kernel Ff ; (n) is a Dirac mass in y for n = 1 while it is
absolutely continuous for n > 2. Then it is convenient to introduce the o—finite measure
w(dz) := dp(dx) + dz, so that we can write

Foay(n) = f7,(n) u(dy). (3.6)
The interesting fact is that the density fgy(n) can be rephrased explicitly in terms of
the process {Zx}r introduced in §2.1. Let us start with the pinning case a = p: from
Lemma 2.1 and from equation (3.5) it follows that, for n > 2, ff,(n) is nothing but the
density of (Z,_1,Z,) at (y,0), under P"%9. Recalling the definition (2.8) of cp%")(-, )
and the fact that Z,,_1 = Z,, — Y,,, we can write

eV 1, ifn=1
£ (n) = { oy, 00) (3.7)

on 7 (=y,0)1yzo) = @n (Y +x,nT) Lz ifn>2
where we have used relation (2.9). Analogously, recalling the definition (2.11) of w 4(n),
in the wetting case we have

fry(n) = f2,(n) wey(n). (3.8)
Equations (3.6), (3.7) and (3.8) provide a description of the kernel F} 4 (n) which is both
simpler and more useful than the original definition (3.5).

3.2. A Markov renewal theory interpretation. Equation (3.4) expresses the law of
{(7, Jk) }x under PZ  in terms of an explicit kernel Ff 4 (n). The crucial point is that the
algebraic structure of the equation (3.4) allows to modify the kernel, in order to give this
formula a direct renewal theory interpretation. In fact we set
Ka,e ( ) L Fa ( ) —F%(e)n U?(y) (3 9)
cdy(n) = eFg g (n)e —vg(x) ; .
where the number F*(¢) € [0,00) and the positive real function v¢(-) will be defined
explicitly in Section 4. Of course this is an abuse of notation, because the symbol F%(¢)
was already introduced to denote the free energy, cf. (1.8), but we will show in §5.2 that
the two quantities indeed coincide. We denote by kgl (n) the density of Ki’fiy(n) with
respect to u(dy), i.e.
K€ — cf@ —F%(e)n Ug(y) 3.10
x,y(n) = ¢ x,y(n)e m : ( : )
The reason for introducing the kernel KZ’Zy (n) lies is the following fundamental fact: the
number F(e) and the function v¢(-) appearing in (3.9) can be chosen such that:

9
yeR neN ¢

where €2 € (0,00) is a fixed number. A detailed proof and discussion of this fact, with an
explicit definition of €2, F%(¢) and vZ(-), is deferred to Section 4: for the moment we focus
on its consequences.

Thanks to (3.11), we can define the law P¢ under which the joint process {(7%, Jk) }x>0
is a (possibly defective) Markov chain on Z* x R, with starting value (79, Jy) = (0,0) and
with transition kernel given by

PE( (1, 1) € ({n},dy) | (ks Ji) = (myz) ) = Kig, (n —m). (3.12)

An alternative (and perhaps more intuitive) definition is as follows:
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e First sample the process {Ji}r>0 as a (defective if ¢ < %) Markov chain on R,
with Jy = 0 and with transition kernel

Pl e €dyl Sy =) = D KIS (n) = Dy . (3.13)
neN

In the defective case we take co as cemetery.

e Then sample the increments {1} := 7x — Tk—1}ken as a sequence of independent,
but not identically distributed, random variables, according to the conditional law:

Ko 0, (M) Ln>2)

P(Ti =n|{Ji}iz0) =

if Jp #0, Ji # o0 -

Zm22 f}:,l,(]k (m)

1(n:oo) if Jk =0

We stress that the process {(7x,Ji)}r>0 is defective if ¢ < €% and proper if ¢ > &9,
cf. (3.11). The process {7 }x>0 under P? is what is called a Markov renewal process and
{Jk}r>0 is its modulating chain. This is a generalization of classical renewal processes,
because 7, = T1 + ... + T,, where the variables {T}}ren are allowed to have a special
kind of dependence, namely they are independent conditionally on the modulating chain
{Jk}k>0. For a detailed account on Markov renewal processes we refer to [3].

Now let us come back to equation (3.4). We perform the substitution Fg ; (n) —
K;”Zy(n), defined in (3.9): the boundary terms vZ(y)/vZ(z) get simplified and the ex-

ponential term e~ F(e)n factorizes, so that we get
]P)g,N(eN =k, =1, Jiedy, i=1, ,k:>
PN (3.14)

€ a,e a,e a,e a,e
- g2 Ze N Kovdyl (t1) - Kyl,dyz (b2 —t1) ... Kyk—lydyk (N =tp-1)- Kyk’{o}(l) ’

Moreover, since the partition function ZiNis the normalizing constant that makes P2y
a probability, it can be expressed as

N N k . ,
eN T T Z Z /Rk H Ky;flydyi (ti —tiz1) | - Ky;m{o}(l)' (3.15)

k=1 t;eN,i=1,...,k i=1
o<t1<..<tp:=N

We are finally ready to make explicit the link between the law P and our model P¢ .
Let us introduce the event

Av = {{N\N+1}cr} = {3k >0: =N, 7a =N+1}. (3.16)

The following proposition is an immediate consequence of (3.12), (3.14) and (3.15).

Proposition 3.1. For any N € N and ¢ > 0, the vector {{y, (7;)i<ey, (Ji)i<ey } has the
same law under P2 - and under the conditional law P2(-| An): for all k,{t;}; and {y:};

IP’;N@N:IC, =t Ji € dy, z'gk:) - Pg(zN:k, 7=t Ji € dy;, igk(AN).

Moreover the partition function can be expressed as Z2 y = ("N /e2) P (Ay).
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Thus we have shown that the contact set 7 N [0, N] under the pinning law P2y is
distributed like a Markov renewal process (of law PZ) conditioned to visit { N, N +1}. The
crucial point is that P¢ does not have any dependence on IV, therefore all the dependence
on N of P¢ v is contained in the conditioning on the event Apn. As it will be clear in the
next Sectlons this fact is the key to all our results.

4. AN INFINITE DIMENSIONAL PERRON-FROBENIUS PROBLEM

In this section we prove that for every € > 0 the non-negative number F%(¢) and the
positive real function v2(-) : R — (0,00) appearing in the definition of K’ dy( n), cf. (3.9),
can be chosen in such a way that equation (3.11) holds true.

4.1. Some analytical preliminaries. We recall that the kernel F;’dy(n) and its density
fg ,(n) are defined in equations (3.6), (3.7) and (3.8), and that p(dz) = do(dz) + dz. In
particular we have 0 < f}Y, (n) < 2 ,(n). We first list some important properties of fz,(n):

e Uniformly for x,y in compact sets we have:

Ry ~ = (=), (4.1)

where ¢ := 6/(mo?); moreover there exists C' > 0 such that Vz,y € R and n € N

C C C
foy(n) < — / d=f.(n) < —75 /R dzf2,(n) < —7. (4.2)

Both the above relations follow comparing (3.7) with Proposition 2.3.

e For n > 2 we have:

1
- dzdyfy ,(n) = e (4.3)
as it follows from (3.7) recalling that 4,0(0 (+,-) is a probability density.
For A > 0 we introduce the kernel

A _

Bz dy - : Z € )\nFm dy (44)
neN

which induces the integral operator: (B**h)(x fR . dy ). Note that for every x € R

the kernel B;’fi‘y is absolutely continuous w1th respect to the measure 4, so that we can
write Bx 4y = bv¥Mx,y) u(dy), where the density b®*(z,y) is given by (cf. (3.7))

Mz, y) = e ML) 1gmgy + e ML (1) Liypg) - (4.5)
n>2

The following result is of basic importance.
Lemma 4.1. For every A > 0, B* is a compact operator on the Hilbert space L2(R,du).

Proof. We are going to check the stronger condition that B®?* is Hilbert-Schmidst, i.e.

[ b ) ) < . (4.6)
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Since 0 < Y, (n) < f2,(n) it suffices to focus on the case a = p. Setting A = 0 in the r.h.s.
of (4.5) we obtain

bp’)\(x,y)2 < fp ( y =0) + Z )1(y;£0)7
hence

n,m>2
/2 P (z, y)? p(da / fyo(1)? pu(dz) / 5, (n) f5,(m) dy
R n,m>2

+ > /szp (n) 2, (m)dzdy.

n,m>2

(4.7)

From the definition (3.7) of fgo(l) it is immediate to check that the first term in the r.h.s.
is finite. For the second term, we can apply the two relations in (4.2), getting

S (B mdy < o [ fmd < 3 55 < w0
n,m>2 n m>2 n,m>2

For the third term, it is convenient first to exploit the symmetry between n and m,
restricting the sum on the set n > m :

> / m)dzdy < 2> > / m)dzdy.
n,m>2 R? m>2n>m
Then applying relations (4.2) and (4.3) we get
1 C 1 1
Y [ mmemdedy < 3 S5 -0 L
m>2n>m m>2n>m m>2 n>m

However the last sum is bounded by (const.)/m, hence the r.h.s. is finite. O

4.2. A formula for the free energy. Lemma 4.1 allows us to apply an infinite dimen-

sional analogue of the classical Perron-Frobenius Theorem. We first introduce the function
d*(N\) € [0,00) defined for A > 0 by

6%(\) := spectral radius of the operator B®* . (4.8)

We observe that by [25] one can define 6%(\) more explicitly as
Ba )\ on

0%(A\) := inf {R >0: Z )o {0} } , (4.9)

where the convolution o between kernels is defined in §1.6. One checks directly that indeed
d*(N\) € (0,00) for every A > 0. By Theorem 1 in [33], 6%()) is an isolated and simple
eigenvalue of B4}, The function §%(-) is non-increasing, continuous on [0, c0) and analytic
on (0,00), because the operator B** has these properties and 6*(\) is simple and isolated,
cf. [20, Ch.VII-§1.3]. The analyticity and the fact that d(-) is not constant (because
§%(\) — 0 as A — +oo) force §%(-) to be strictly decreasing. Denoting by (6%)7!(-) the
inverse function, defined on the domain (0,0%(0)], we can now define €? and F%(¢) by

o m 2 () = {(5a)_1(1/5) fe=e (4.10)

0 ife <l
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From now on we focus on the operator B“*(€)  that is on B®* for A = F%(¢), whose
spectral radius equals 1/ A 1/e% by construction. Notice that b%**()(z,y) > 0 for every
x,y € Q% where QP = R and Q% = R*. Then Theorem 1 in [33] gives the existence of the
so-called right and left Perron—Frobenius eigenfunctions of B***(€) i.e. of two functions
ve(+),ws(-) € L?(R,dp) such that v¢(z) > 0 and w?(z) > 0, for p-a.e. x € Q% and such

that
ar (o) _ (Lt 1
[ ew = (20 %)

Leng(x)ngy<> p(dz) = (lAi> ) uldy).

e &2

(4.11)

Notice that in the wetting case vY(z) = wY (z) = 0 for all < 0. Spelling out the first
equation in (4.11) we have

o) = S SO [ 0w uia), (4.12)

This yields easily that v?(z) > 0 for every z € Q% (and not only p—a.e.). One shows
analogously that w?(z) > 0 for every z € Q°.

Having defined the quantities €%, F%(e) and vZ(-), it remains to check that equation
(3.11) indeed holds true. But this is a straightforward consequence of (4.11): in fact by
the definition (3.9) of Kg’fdy(n) we have

K5 = oo [ (R meOm o
/yER dy yeR <Z dy

€ are(e) a 1 1 €
— B — (A=) =1rZ.
ve(2) /yeR ray V) E<e = =

We note that the functions v¢(-) and w?(-) are uniquely defined up to a multiplicative
constant and we use this degree of freedom to fix (v2, w?) = [z v wgdp = 1. In other
words, the measure ¢ defined by

vi(da) = wf(@) ol () u(da) (4.13)

is a probability measure: v¢(R) = 1. An important observation is that for ¢ > €% the
probability measure v is invariant for the kernel D} ay» @s it follows from (3.13) and (3.9).
This means that the Markov chain {J } is positive recurrent, cf. [25].

We conclude this section with a simple perturbation result that will be useful later.
Let A;qy and C gy be two non-negative kernels that induce two compact operators on
L%*(R,dyu). Assume that the spectral radius of Cj gy is strictly positive. For ¢ € [0, 00) we
set y(t) := spectral radius of A, q, +t - Cy qy- Then we have the following:

Lemma 4.2. The function t — ~(t) is strictly increasing: in particular v(0) < y(1).

Proof. The function ~(+) is clearly non-decreasing. It follows by Theorem 1 in [33] that
v(t) is a simple and isolated eigenvalue of A, g, + ¢ - Cy gy for every ¢ > 0, therefore by
perturbation theory [20, Ch.VII-§1.3] the function ~(-) is analytic. Since y(t) > (const.) -t
(here we use the hypothesis that the spectral radius of C, g, is strictly positive), the
function v(-) is non-constant and therefore it must be strictly increasing. O
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5. PROOF OF THEOREM 1.2

We apply the content of the preceding sections to prove Theorem 1.2. Before that, we
show that from the Markov renewal structure described in Section 3 one can extract a
genuine renewal process, which will be a basic technical tool.

5.1. From Markov renewals to true renewals. Recalling the definition (3.1) of the
contact set 7, we introduce the subset x of the adjacent contact points defined by

X ={i€eZ":pi1=p;=0} C 7 CZ", (5.1)

where we set by definition p_; = ¢p = 0, so that 0 € x. Note that x = 7N (7 + 1) and
that the point of yx are the random variables {xj }x>0 defined by
Xo = 0 Xk+1 = inf{i > xx : pi—1 = p; =0}. (5.2)
By (3.16) the event Ay can be written as Ay = {N + 1 € x}, therefore by Proposi-
tion 3.1 the partition function can be written as

eFa(a)N
Iv= T PEN+1ex). (5.3)

The reason for focusing on the process {xx } is explained by the following proposition.

Proposition 5.1. The process {xx}x>0 under P¢ is a classical (i.e. not Markov) renewal
process, which is non terminating for € > 2.

Proof. We introduce the epochs {(;}; of return to zero of the process {J }x:
Co:=0 Cnt1 :=1nf{k > (, : Jp = 0}. (5.4)

It is clear that the variables {(x — (x—1}ken are i.i.d. under PZ, because {Ji }1 is a Markov
chain. Observe that xj = 7¢,, for every k > 0, as it follows by (3.2), (3.3) and (5.2). This
fact implies that also the variables {xx — Xx—1}ren = {7¢, — 7¢,_, tren are ii.d. under PZ,
because the transition kernel of the process {(7%, Ji)}x>0 is a function of (n —m), cf. the
r.h.s. of (3.12). Therefore {x}r>0 under P2 is a genuine renewal process.

We have already observed that for e > €% the Markov chain {Jj } ;>0 is positive recurrent,
because for ¢ > €2 the probability measure v¢ defined in (4.13) is by construction an
invariant measure for its transition kernel D;:Zy, cf. (3.13) and (3.9). Since v2({0}) > 0,
the state 0 is an atom for {Ji}r>0 and then it is a classical result that the returns of
{Jk}k>0 to 0 are not only PZ-a.s. finite, but also integrable:

1
ve({0})

cf. [25, Ch. 5]. Therefore also x1 = 7¢, is P¢-a.s. a finite random variable for e > 2. O

Pg(Cl < oo) =1 Eg(Cl) = < o0 (e >¢ed), (5.5)

5.2. Proof of Theorem 1.2. We start showing that the quantities ¥%(¢) and &%, that
were defined in (4.10) and appear in the definition (3.9) of the kernel K;’sdy(n), indeed
coincide with the corresponding quantities defined in the introduction. By (5.3) we have

1 . . 2 1 .
v 82y = FUe) — yloge + L logPI(N +1€X).
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Since by (1.9) we have liminfy_ ., N~!log 22N > 0, when F%(e) = 0 the trivial bound
PIN 4+ 1 € x) < 1 shows that equation (1.8) holds true. Therefore to complete the
identification of F* it suffices to show that when F%(e) > 0, i.e. when € > ¢, we have

1 a
A}gnooﬁlogpa (N+1eyx) = 0. (5.6)

However it is well-known (and easy to prove) that this relation is true in complete general-
ity for any non-terminating aperiodic renewal process, and Proposition 5.1 shows that for
e > £ the process {x}r under P? is indeed a genuine non-terminating renewal process,
which is aperiodic because P%(x1 = 1) > 0. This completes the identification of F%(g), as
defined in (4.10), with the free energy defined by (1.8).

Completing the proof of Theorem 1.2 is now easy. By definition we have B;”gy > B;Vé)y

and one checks easily that the non-negative kernel Bg’gy — B;Vé)y has strictly positive
spectral radius. Then Lemma 4.2 with A, 4, = B;V’doy and Cy gy = Bg’gy - B;Vé)y yields

§%(0) < 6P(0), i.e. €Y > € by (4.10). The analiticity of F?(-) on (¢%,00) has been already
discussed in §4.2. It remains to prove (1.11). Note that e_’\F%dy(l) < Bgﬁy < e_)‘BZ:gy
by (4.4), hence ce™ < §%()\) < ¢ e by (4.9), with ¢, ¢ > 0. Taking A\ = (§%)~(1/e) and

using (4.10) we finally obtain F%(¢) ~ log(e) as ¢ — oc. O

6. PROOF OF THEOREM 1.3

In this section we prove Theorem 1.3, i.e. we show that equation (1.16) holds true:

lim inf EZVZVN<£—N> > 0,

N—oo N
where we have used (1.13). We introduce the quantity
LN = #{XO[O,N]} = max{kEO:XkSN}, (6.1)

and since £y > ¢y, by Proposition 3.1 it is sufficient to show that

.. w LN .. w [ LN
1}\?2£OfEEXV7N<N> = 1}\1{11111f €?<W AN> > 0, (6.2)

—00

We recall that the process {x}r under Ty s a classical aperiodic renewal process

by Proposition 5.1. Moreover we claim that b := Eevgy(xl) < o0. Then by the Strong
Law of Large Numbers we have ty/N — 1/b, sw—a.s., and by the Renewal Theorem

%(AN): %(N+1ex)—>1/b>0asN—>oo. It follows that
1
AN>—>—>O (N — o0),

w [ LN
Eer <N b

and equation (6.2) follows. It only remains to check that £ (x1) < occ.

6.1. A formula for £%(x1). The dependency on &7 will be omitted from now on for
notational convenience. We recall that x1 := 71+...+7¢,, where (1 := inf{n >0: J, =0}.
We introduce the kernel Ky (n) := KY 3 (n) 1,20 (= K 4,(n) 1(,>2)) that gives the
transition probabilities of the process {(7x, Ji)}xr before the chain {J;}r comes back to
zero. Summing over the possible values of the variable (;, we obtain the expression

PY(x1=n) = D T (K™)ih, (= 1) - K oy (1), (6.3)
YER ko
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where the convolution * of kernels is defined in §1.6. Now observe that

> m ZKWOdy ZZ Yoo At (K)o oK () g g,

meN k=1m=1 t1,...,t,€N
t1+...+tx=m
o k R . R . N
ZZ Dw o(i—1) OMW (DW)o(k—z))Qdy — ((1 _ DW)—I oMY o (1 _ Dw)_l)(),dy?
k=1 i=1
where DY, := >, en KY g, (n) = DY 4, 1(y0) and Mx "y = Donen ™ Km ay(n). Notice that

K‘;{O}(l) = D}y by (3.13), therefore by (6.3) we have

EVx1) = Zn-PW(Xlzn) = 1—|—Z(n—1)-73w(x1:n)

neN neN
= 1+ (1-D") "'oMY o (1-DV)"'oD"

)0,{0} ’
We recall that DY is the transition kernel of the Markov chain {.J; }; under P", which
is positive recurrent with invariance probability measure vV (-) = ngxév() defined in (4.13).
Since vV ({0}) > 0, the state 0 is an atom for {J;}, and therefore by [25] the following

formulas hold: for all z,y € R
(1= D"k = Sk = S ude) (1= D) e DY)

Then we finally come to the expression

EVx1) = 1+¢&Y /x,yeR+ p(da) u( wwg (an ) w0)° (6.4)

neN

y.{0} — 1

\_/

6.2. Finiteness of £ (x1). First we state two relations that we prove below: for both
a € {p,w} and for all € > 0:

/u(dx) v (x) log(z* V1) < o0 /u(dx) w(x) log(z?> V1) < 0o, (6.5)
R R

We aim at showing that the r.h.s. of (6.4) is finite. We start considering the terms in
the sum with n > (22 V 3?): applying (3.8), (2.12) and (4.2) we obtain

> ot Y (eonst.) < (const.)

n>(2vy?) > (22vy?) nlte p(0,0) (Zn—l >y+(n—1zx, Z, > ng;)

because in the range of summation n > (22 V 3?) we have
PO Z, 1 >y+ (n— 1z, Z, >nz) > PO (7, >n2 7, >n*?)
> p0) (Yn <vn, Z, > 2n3/2) > (const.) > 0,

having used the weak convergence of (Yn /N, Zn /03 2) as n — oo, cf. §2.3. Therefore the
contribution to the r.h.s. of (6.4) of the terms with n > (22 V ¢?) is bounded by

w™(z) v™(y) w o™ ][ [lw™ [l

&% (const.)) /MIE]R+ p(dx) p(dy) w0 (0) 5%(0) < &y (const.”) o (0) w(0)

where || - ||; denotes the norm in L'(R, dp). Notice that ||[v%||; < oo, [[w™|1 < oo by (6.5).
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Next we deal with the terms in the r.h.s. of (6.4) with n < (22 Vv y?). From the bound
fay(n) < foy(n) < C/n?, cf. (4.2), we have

Z nfy,(n) < C Z

n<(x2Vy?) n<(z2vy?)

< C(log(z® v 1) + log(y* Vv 1)),

S

and using again (6.5) we see that the r.h.s. of (6.4) is indeed finite.

6.3. Proof of equation (6.5). We focus on the first relation, the second one being anal-
ogous. By (4.12) we have for both a € {p,w}

o(z) < (const) S / )12 (),
ye

neN

because fYY, (n) < {2, (n). Setting un(y) := [, g Fy(n) log(z? v 1) u(dz) and applying the
Cauchy-Schwarz inequality we get

z) v (z) log(z? const. m v
/xem“(d Jui(x) log(z? V1) < ( t)ZLER”<dy) () (1)

neN

(6.6)
< (const.) ||[vZ]2 - <Z||Un”2>

neN

where [[v2]2 := ([ (v2(2))? ,u(da:))l/2 and likewise for |luy||2. Setting for short fﬂ%y(n) =
Jg fiy(n) p(dz), by Jensen’s inequality we have

2
lun |2 = / () ) = / Ru(dy)< / 2,0 log(:c2V1)u(dw)>
ye ye xE
< /ERMdy)(fu%,y(n))z [ 5 g2t v 1 i),

Tz€R fp ( )
and since f]%y(n) < C/n®/? by (4.2), Fubini’s Theorem yields

[, ) ) < 7 [ el g v 1) (o).

Observe that fﬂ%R(n) = [ier fﬁR( )u(dz) = 1/n by (4.3), therefore z — n - fiR(n) is a

probability density: in fact it is the density of the random variable Z,, /n under POO) as
it follows from (3.7). Since log?(z% Vv 1) < log?(2? V ) and the function z — log?(z) is
concave on the half-line [e, 00), by Jensen’s inequality we get

/ n -2 (n) log?(2® v 1) u(de) < 1og2< / n-fﬁ,R<n><x2ve>u<dx>>
zeR z€R

Z2
< log? (E(O’O) <n—g v e>> < log? (e + (const.) - n) ,

because by (2.2) we have E(0) (22) ~ 0?-n?/3 as n — oo. It follows that

/yeR (un(y))2 u(dy) < % log? (e + (const.) - n)
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and therefore

Dl = Z\// (un(y))” p(dy) < oo.

neN neN
Looking back to (6.6), equation (6.5) is proven.
7. PROOF OF THEOREM 1.4

In this section we prove Theorem 1.4, i.e. we show that equation (1.17) holds true:

l
limsup limsup &P (WN .AN> =0, (7.1)

eled N—o0

where we have used equation (1.13) and Proposition 3.1. The idea is to focus first on the
variable ¢y, which is easier to handle, and then to make the comparison with .

7.1. From (y to fy. We recall that the process {xx}x under the law P! is a classical
aperiodic renewal process, see Proposition 5.1. We introduce the step law

g:(n) = PP(x1=n), (7.2)

whose asymptotic behavior as n — oo, when ¢ is close to €&, is given by the following:
Proposition 7.1. There exists a > 0 such that for every e € [e2, el + o] we have
C
G(n) ~ = exp(—FP(E) ) (n — o), (7.3)
where C; € (0,00) is a continuous function of €.

We postpone the proof to the next paragraphs: for the moment we focus on the conse-
quences. We assume in the following that el < e < ef + .

Let us set G. := EX(x1) < oo by Proposition 7.1. A standard Tauberian theorem, cf.
[5, Th. 1.7.1], gives the asymptotic behavior of G. as ¢ | ek:

1
G: ~ (const.) log ) (eled). (7.4)
Notice that the classical Renewal Theorem yields
1
PP(An) = PP(N+1lex) — o >0 (N — ). (7.5)
€

Therefore by the Weak Law of Large Numbers for the process {xx}x we have
Pg(XLQN/GsJ < GE

PP LN A _ P (XL2N/GEJ < N) _ [2N/G:] = 7) N—oo0
N = G N PE(AN) P2(AN)
We recall that (i denotes the epoch of the k-th return of the process {Ji }x to the state

zero, cf. (5.4), and that {(;}x>0 under P! is a non-terminating renewal process with finite
mean m. := EX(¢1) = 1/vE({0}) < oo, cf. (5.5). Then by the Weak Law of Large Numbers

0. (7.6)

PP (@ > 2m€> — 0 (k — 00). (7.7)

k
We are finally ready to estimate fp. A trivial bound yields
AN>

%% 4m, 2 In dme N 2
Pl =X > < P —_ > p > —_ —
P€<N—G€ AN) P(N el AN>+P<N_G€’N el
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The first term in the r.h.s. vanishes as N — oo by (7.6). For the second term we observe
that by definition /x = (,, on the event Ay, hence by an inclusion argument we have

{n 4m€ N Cl2n/G. |
7) = > A < PP E=LEEl m
<N = G.' N G N> - €<L2N/G€j > 2me

having used (7.7) and (7.5). Since £5/N < 1, we can finally write

. In 4m, In _ dm,
1% < 1% >
lljrélsup &l <N ‘AN> < G hjrélsup Pk <N a

AN>M>0

4m,
ay) - e

Now observe that as ¢ | e¢ we have m. — 1/v5, ({0}) < oo and moreover G — 400 by
(7.4). Then we let ¢ | F in the last equation and (7.1) is proven. O

7.2. A Markov Renewal Theorem with infinite mean. Before proving Proposi-
tion 7.1, we derive a generalized Renewal Theorem in our Markovian setting. Since the
steps are more transparent if carried out in a general setting, we assume that we are given
a kernel A, 4y(n) satisfying the following assumptions:

(1) the spectral radius of Gy gy = D, cny Asz,dy(n) is strictly less than one;

(2) we have A, g4,(n) ~ Lgay/n* as n — oo, for some kernel L, q, (for the precise
meaning of this relation we refer to §1.6), and moreover A, qy(n) < cLyqy/n? for
every n € N, where c is a positive constant;

(3) there exists 3 > 1 such that ((1—3G) ' oLo(1 —ﬁG)_l)x p < oo for every z € R
and for every bounded Borel set F' C R.

The result we are going to prove is the following asymptotic relation:

e 1-G) ltoLo(1-G)!
ZAx dy( ) - (( ) nz( ) ):c,dy (’I’L N OO) . (78)
k=0

The path we follow is close to [10, §3.4]. We start proving by induction the following
bound: for all k,n € N and z,y € R

Zk 1 (Goz oLo Go[(k 1)— z])

n2

Ak (n) < ck? ody (7.9)

The k = 1 case holds by assumption (2). Then we consider the even-k case: by the definition
of the convolution * we have
(2%) [n/2]
Am,dy (n) < Z / R (Am dz(h) Az dy( h’) Am dz( h) Az dy(h’))
h=1 Y %€

Observing that ), A% dy( ) = Gk ‘ay and applying the inductive step we get

AT () < ck? [(Gok o (TG o Lo Go[(k—l)—i}))

z,dy

(n/2)2 z,dy
+ <(Zk—1Goi oL o Go[(k—l)—i}) o Gok) _ ¢ (2]{3)2 2kz_:1 (GOi oL o GO[@IC_I)_H)
=0 x,dy N n? z,dy’

i=0
so that (7.9) is proven, the odd-k case being analogous. Note that, choosing a constant
¢ > 0 such that k% < ¢/3* for every k, assumption (3) yields that for every z € R and for
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every bounded Borel set F' C R

oo k—1 oo k—1
ZZkQ Goz oL o Go[(k 1)— < C/Z oL o (ﬁG)o[(k—l)—i})xF
k=1 i=0 k=1 i=0 " (7.10)
= d((1-BG) " oLo(1-8G)™"), , < oo.
Next we claim that
S (G o Lol i)
Ak, () ~ = — (n — 00). (7.11)
We proceed by induction: the k£ = 1 case holds by assumption (1), while for general k
n/2
*(k—1
Ay n) = > / (A0 A=) AL 00 ) Ay (B)
h—=1"%€

Applying the induction step and using Dominated Convergence, thanks to (7.9) and (7.10),
we have (observe that 3,y Ay, (R) = G3Ty,)
2Ax k() n—00 <Go(k—1) ol + (Zf:—gGoi oL o Go[(k—2)—i}) o G) )
a,dy
k—1
— Z (Goi oLo GO[(k)—l)—’i])

=0

z,dy’
and (7.11) is proven. Finally we can write as n — oo

k-1
QZAm () — ZZ (G°'o Lo G"Kk—l)_ﬂ)%dy = (1-G)'oLo(1~ G)‘l)xvdy,

k>0 k>0 i=0

where we have applied (7.11) and again Dominated Convergence, using (7.9) and (7.10).
This completes the proof of equation (7.8).

7.3. Proof of Proposition 7.1. We start from a close analog of equation (6.3), namely

ge(n) = /yeR <Z(Rp’€)8?dy(n )) Kly)7{0}( )

k=0
o)

_ 5.6—F(e>n./
yER(Z

k=0

(7.12)
(F)ity (n 1)) (D),

where we have set Rgz (n) = KJg, (1) 1(yz0) and Fg,dy( ) == F} 4,(n) 1(y0). What we
need is the asymptotic behav10r as n — oo of the r.h.s. of (7. 12) and to this purpose we
are going to apply the results of §7.2 to the kernel A, 4y(n) = ¢ - Fg ay(n)-
We need to check that the assumptions (1)—(3) are satisfied. The asymptotic behavior
of Eidy(”) is obtained by (4.1):
P2, (n) ~ % dy (n — 00), (7.13)

and from (4.2) we see that assumption (2) is ok. We set for simplicity

:cdy Z xdy = xdyl(?ﬁéo) ’
neN
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was defined in equation (4.4). The spectral radius of €& - B*"

where the kernel BP Pady

z,dy

equals one by the very definition of e¢. Then applying Lemma 4.2 with A, 4, = &t - Bfg dy

and Cypay = €¢ - BY gy er . Eidy (it is easily seen that the spectral radius of Cy 4y =

£ B> Syl(y:()) = el - e V®)§(dy) is strictly positive) we have that the spectral radius
of el - Bp y s strictly smaller than one. By continuity there exists o > 0 such that the
spectral radlus of € - Bp gy is strictly smaller than one for every e € [eR,el + a]. Then

assumption (1) is Verlﬁed and it only remains to check assumption (3), i.e.

</yER(1 —ﬂeBP)xdy) (/ZERM(dz) /weAu — B=BP);}, v(w)) < o0, (7.14)

for some 3 > 1. Let us focus on the first integral: we can write

/yERu—gng 143 55/ (BeBPY. (=),

n>0

where g(z) = JeR BE Ay We choose 3 sufficiently close to one so that the spectral radius
of BeBP, let us call it p, is strictly smaller than one. Denoting by || - || the operator norm in

L2(R,dp), a classical result gives ||(8eBP)°"||'/" — p < 1 as n — oo, cf. [20, Ch.ITI-§6.2].
Therefore, if we show that g(-) € L?(R,du), we obtain

|- peBeh, < 1 (5 1B ol < oo
=

n>0

To prove that g(-) € L*(R,du), we observe that g(z) = >,y JeR Eidy(n) so that

o(a) [ () ([ P ).
/meR % % zeR yEeR -y z€R 4
Using the symmetry in n,m and applying (4.2) and (4.3), we finally obtain

[ s@ruan <23 Y S0 < .

zeR meN n>m

With similar arguments one shows that also the second integral term in (7.14) is finite.
We can finally apply (7.8) in our setting, getting

ce ~ ~
€ Fp ~—</ 1—sBp_1>-</ dx 1—€Bp_1> n — 00).
Z 0 dy n2 ZGR( )O7dz 2€R ( )x7dy ( )

Coming back to equation (7.12), we can apply Dominated Convergence thanks to (7.9)
and (7.10): we thus obtain equation (7.3), with C. given by

C. = cé? (/ (1- EEp)a’éZ> . (/ dz (1 —EEP);éye_v(y)> ,
z€R z,yeR

and the proof is completed. O
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APPENDIX A. CONVEXITY OF THE FREE ENERGY

Recall the definition (1.12) of the contact number ¢y and observe that in any case
£n > 1 under P2 v because oy = 0. Setting QP := R and Q¥ := R™, from the definitions
(1.5) and (1.7) of our models we can write for k € Z*

k

9
]P N(EN e kj—|— 1) e Za { Z / H[ 1N+1 H 50 d(pm H d('lpn]‘(QDneQa }

AC{l, 7 meA neAG
|A]= ko

The term in brackets in the r.h.s. is a positive number depending on a, k, N but not on &:
let us call it C%(k, N). Summing over £ =0,..., N — 1 we obtain

N-1 N-1
= ZEkCa(k,N) Fy(t) = —log(ZetkC“ (k N))
k=0 k=0
where Fy (t) := F% (e'), cf. (1.10). Differentiating it the variable ¢ we have
7@ 1 a ~a 1
(Fa)'(t) = NEet7N(€N) (Fy)"(t) = N Varee, ({n) >0,

which proves equation (1.13) and the convexity of Fiy ().
Now fix x € [0, 1]. For every a > 0 we have

]P’gN(BN/N > x) = IP’;N(eO‘EN > e‘mN) < em@N EgN(eaZN) . (A.1)
Using the above relations we can write
N-1 a
E CMN Z ea(k—i—l EN — k4 1 — v Z k Oa k,‘ N) _ o Z;ZE’N ’
=0 e,N

therefore by (1.8) we have N~!log Eg7N(ea£N) — F%(e%) — F%(e) as N — oo. If ¢ # &2
the free energy r® is differentiable at € by Theorem 1.2, therefore as « | 0 we have
F*(e%) — F%(e) = D%e) - a+ o(), where D%(e) = e - (F*)'(¢). Plugging x = D%(e) + ¢
(with > 0) and « small into (A.1) we obtain

P?,N(EN/N > Da(g) + 5) < e—(const.)N‘

With almost identical arguments one shows that P¢ ~v(In/N <D%e) —§) < e (const )N
therefore equations (1.14) and (1.15) are proven.

APPENDIX B. LLT FOR THE INTEGRATED RANDOM WALK

We are going to prove Proposition 2.3. We recall that the density of the random vector
(B1,I1) is given by (2.7). Then its characteristic function ¥(s,t) is given by

U(s,t) = exp(—s*/2—17/6— st/2).

We denote by ¥, (u, v) := E00) [exp (i(uYn4vZ,))] the characteristic function of (Y;,, Z,,).
An application of the Fourier-transform inversion formula gives

+oo t
‘02n2%(10,0) (J\/ﬁy, O'n3/2z) ‘ < o / ¢"<a = O"I’L3/2> — U(s,t) ‘ dsdt.
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The proof consists in showing that the r.h.s. vanishes as n — oo. More precisely, following
the proof of Theorem 2 in [16, §XV.5], we consider separately the three domains

Dy ={(s*+t) <A} Do={A<(s°+t’)<B*n} D3={(s*+t)>B*n},
and we show that, for a suitable choice of the positive constants A and B and for large n,

the integral in the r.h.s. above is less than ¢ on each domain, for every fixed ¢ > 0.

The domain D;. Denoting by &(u) := E[exp(iuX7)] the characteristic function of X7, from
(2.1) and (2.2) we have

n

H t(u+mu) Xny1— m] H f u_|_mv (B.l)

m=1

Un(u,v) = E(©0)

Since by hypothesis E(X1) = 0 and E(X1?) = 02 € (0,00), it follows that
o2
§(u) = 1= u’+o(u?) (u—0), (B.2)

hence, uniformly for (s,t) such that (s* 4+ t?) < A, we get from (B.1)

s t 1 — s t 2
w(ﬁW) = o —§Z<ﬁ+mm> + o(1)

m=1
Therefore, for every choice of the parameter A, we can find ng = ng(A) such that the
integral fDl Wn(ﬁ’ ﬁ) — U(s, t)‘ds dt is smaller than € for n > ng.

LIRS TN

The domain Dy. From (B.2) it follows that |£(u)| = 1 — 0?u?/2 + o(u?) and therefore we
can fix B > 0 such that

2
g% o 2B
|§(u)\ < exp<—zu> for |ul 37,

Using (B.1) and some rough bounds, we get for (s,t) € Dy and for all n € N

o5 _t _ 1 Z": St 2 _ L, 2 a
"\ovn ondz)| = P 4 vn SPETE = &P A\ T3
Then by the triangle inequality

m=1
t 2
/ %( vk z> _‘P<s,t>‘dsdt - / <6_1(82+%+8t) +‘P(s,t>> dsdt,
Dy a\/Nn O'n/ {s2+t2>A}

and note that the r.h.s. can be made smaller than ¢ by choosing A large (this fixes A).

The domain D3. By the triangle inequality we have

t
/DB ¢n< n O_n3/2> _\Il(37t)
s t
<
B /{s2+t2>B2n} On <J n’ on 3/2>

dsdt

dsdt + / U(s,t)dsdt.
{s24+t2>B?n}
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It is clear that the second integral in the r.h.s. vanishes as n — oo and it remains to show
that the same is true for the first integral I;. With the change of variables s/(cy/n) =
rcos(d), t/(oy/n) = rsin(f) and using (B.1), we can rewrite I as

Un (r cos(f), r siz(@) > rdrdé

L = a’n

/{66[0,27r), r>B}

_ 2 n m
= o°n /{06[072”)’T>B} { 3 |£‘<T<COS(0) + - Sm(ﬁ)))} rdrdf,

m=

(B.3)

where by [£|(-) we mean the function u +— |{(u)|. It is convenient to divide the domain of
integration over # in the two subsets

O, = {0 €0,2m): |cos(F)| > 1/2} O := {6 €[0,27m) : |cos(d)] < 1/2}
and to split accordingly the integral I1 = Iy 4 + I1 3, with obvious notation. We are going
to show that both I , and Iy ; vanish as n — oo.

Since £(-) is the characteristic function of the absolutely continuous random variables
X1, we have [£(u)| < 1 for all u # 0, cf. Lemma 4 in [16, §XV.1], and moreover |{(u)| — 0
as u — oo by the Riemann-Lebesgue Lemma, cf. Lemma 3 in [16, §XV.4]. Therefore

A = sup |E(u)] < 1.
{u€eR: |u|>B/10}

We are ready to bound I , and I; ;. For » > B, 6 € ©, and for m < |n/4] we have
m B B
oG > Z >
r‘cos(@) + p sm(@)‘ 272710
and therefore [¢](r(cos(d) + Zsin(f))) < A. Since |¢| < 1, coming back to (B.3) we can
bound I o from above (for n > 4) by

Lo < o?nAl/Al /{96@%03} {mg_g |§|<r(cos(9) + % sin(@)))} rdrdf
. (B.4)
n m
< anat/ [ ] |§‘<x+gy> dedy.

m=n—3
The bound for I j is analogous: for r > B, § € ©, and for m > |(3n)/4] we have

m B
T ‘ COS(G) + n Sln(@) ‘ B<4 B 2> 10 s

and therefore |£](r(cos(d) + Zsin())) < A. Since [¢| < 1, in analogy to (B.4) we can
bound I; ; from above by

< 2, Aln/d)—4 / m ,
< o“nA Rzml;[_?)‘{‘ a;+ny dx dy (B.5)
Combining (B.4) and (B.5), we can finally bound I; = I1 4 + I 5 from above by
I < za2nAW4J—4/ 11 \g\(w%) dzdy. (B.6)
R2 m=n—3 n

Since A < 1, if we prove that the integral in the r.h.s is bounded by C - n for some positive
constant C, then it follows that Iy — 0 as n — oo and the proof is completed.



(14+1)-DIMENSIONAL FIELDS WITH LAPLACIAN INTERACTION 29

Notice that [£]2(-) = &(-)€*(+) is the characteristic function of the random variable
X1 — X9, which has an absolutely continuous law with bounded density (this is because
the density of X1, that is exp(—V(-)), is bounded by hypothesis). Since |¢[2(-) > 0, it
follows from the Corollary to Theorem 3 in [16, §XV.3] that |£|?(-) is integrable over the
whole real line, that is ||¢]|3 = Jz |€]2(z) dz < oo. By Young’s inequality, we can bound
the integral in the r.h.s. of (B.6) by

/Rz 5_3‘5‘<“%y>d$dy < §/Rz‘ff(“y)'\é!Z(“"Ty)dwdy

+ %/RQ|§‘2<x+n;2y>.|§‘2<x+n;3y>dxdy.

However by a simple change of variables it is easy to see that both the integrals in the
r.h.s. equal n - (||£H%)2, and the proof is completed. d

APPENDIX C. ENTROPIC REPULSION

We are going to prove Proposition 1.5. Notice that the lower bound in (1.22) is easy:
P(Qf) > P(Ys > 0,...,Yy > 0) ~ (const.)/V'N, where the last asymptotic behavior
is a classical result of Fluctuation Theory for random walks with zero mean and finite
variance, cf. [16]. Moreover the upper bound in (1.23) follows from the upper bound in
(1.22) and Lemma 2.4 with = y = 0, because as n — o0

PO (Z,1>0,7,>0) > POY(z, >n32 Y, <\n) — (const.) > 0,

which follows by the weak convergence of (Y;,/v/1, Z,,/ n3/ 2), cf. §2.3. Therefore it remains
to prove the lower bound in (1.23), or equivalently (2.13), and the upper bound in (1.22).

C.1. Proof of equation (2.13). We want to get a polynomial lower bound for wg o(N) as
N — oo. The difficulty comes from the fact that the process {Z, },, is conditioned to come
back to zero and therefore the comparison with the process {Y,,}, is not straightforward.
For simplicity we limit ourselves to the odd case N = 2n + 1 with n € N. Recalling the
definition QZ’ ={Z1 >0,...,Z; > 0}, by Lemma 2.1 we can write
2n—1
w0,0(2n + 1) = P(O’O) (Q;_n—l ‘ Zgn = 0, Zgn+1 = 0) = / e ZiZO V(Agk) H d(pk s
(R+)2n—t k=1
where we fix ¢_1 = g = Yo, = Yant+1 = 0. The first step is to restrict the integration on
the set C,(e) :== (RT)2" 1N {lon — on_1| < & |on — @ni1] < €}, on which [Agp,| < 2e.
Since V(-) is continuous and V(0) < oo, we can choose ¢ sufficiently small such that
V(z) < V(0)+1 for all |z|] < 2¢, so that in particular V(Ap,) < V(0) + 1 on the event
Cn(g). This observation yields the lower bound

2n—1

woo(2n +1) > e~ VO+D / e~ Xioo V(Aer) L o= 200 V(Avk) H dey, -
’ Cn(e) k=1

Setting C.,(g) :== (RT)" 1N {|on — pn_1| < €}, the symmetry k — 2n — k gives

) n—1 2
0 Cr(e) k=1
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Restricting the first integration on |0, n3/ 2] and applying Jensen’s inequality we get

—(V(0)+1) n - n—1 2
woo(n+1) > g / do, / e~ T Vo0 [T dy
n 0 Ch(e) 1

—(V(0)41) 2
€ 3/2
We are thus left with giving a polynomial lower bound for the probability appearing
inside the brackets. We observe that by definition Z, — Z,,_1 = Y,, and that we have the
inclusion Q;F > {Y; >0,...,Y, >0} =: A;. Therefore

3/2

(C.1)

P(Q), Z, <n3?)|Zy — Zya| <) > P(AS, Z, <02V, <¢)

C.2
= P(A5Y, <¢) - P(Z, <n¥?|ALY, <¢). (©2)

For the second term an FKG argument yields
P(Z, <n®?|A} Yo <e) = P(Z, <n®?|A}). (C.3)
It is well-known that the rescaled random walk {Y|,;/ov/n}, cl0.1] under P(-|A;}") con-
verges in distribution to the Brownian meander process {my};cjo1], cf. [7]. Then by the
Continuous Mapping Theorem P (Z,, < n3/2 |AF) — P( fol mydt < 1/0) > 0 as n — oo,
which shows that the r.h.s. of (C.3) is bounded from below by a positive constant.
For the first term in the second line of (C.2) we are going to use some results from Fluc-
tuation Theory. We denote by {(T}, Hi) }x>0 the weak ascending ladder process associated

to the random walk {Yj}, i.e. (To, Ho) = (0,0) and Tyyq := inf{n > T} : Y, > Y7, },
Hy, := Y7, The celebrated Duality Lemma [16, Ch. XII] gives

e}
P(Af,Ya<e) =) P(Th=nY,<¢),
k=0

and applying Alili and Doney’s combinatorial identity [2] we get

oo oo
P(Aiyynge) = %P(Hk—1§Yn<Hk7Yn§€) = %ZP(Hk—léynaynge)
k=1 k=1

Considering only the &k = 1 term in the sum gives

(const.)

1 1
P(AL Y, <e) > —P(Y, ~ = :
(A7 <e) 2 TP(ae o) ~ o208 (n— o0)
Coming back to (C.1), we have finally shown that w(2n + 1) > (const.)/n%? and the
proof of (2.13) is completed. O

C.2. Proof of the upper bound in (1.22). What we are going to show is that
P(O’O)(ng >0,1<m<n) < (const.)y", (C4)

for some constant v € (0,1), since this result clearly implies the upper bound in (1.22).
We recall that Z, =Y, + ...+ Y, and that {Y,}, is a random walk under P := pO.0)

We are going to carry out the proof in a very general setting, namely we only assume that

the random walk ({Y},},,P) is in the domain of attraction (without centering) of a stable
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law with (arbitrary) index a € (0,2] and with positivity parameter p € (0,1). In other
words we have the convergence in distribution

Y
{(n) nt/

where ({L(t)}+, P) is a (strictly) stable Lévy process of index o € (0,2] and positivity
parameter p € (0,1), and ¢(-) is a positive function which is slowly varying at infinity,
cf. [5]. To lighten the exposition we will actually assume that ¢(n) = 1, i.e. that we are in
the domain of normal attraction, but everything goes through for the general case.

We denote by (F;,), the natural filtration of the process {Y,,}, and we introduce the
sequence of events Ay, = {Yyr < (2F)V/®, Z,. < (2F)V/o+1) € F,.. We define the random
times og := 0 and for n € N

on = inf {k>0p_1: Yo < 2"V Zy < (2k)1/°‘+1} = inf {k > 0p_1 : Aj, happens}.

Notice that 27" is a (F,)m—stopping time for every n > 0. The basic point is that,
conditionally on {Zym >0, 1 < m < n}, the events Ay happen a positive fraction of times
with positive probability, as the following lemma shows.

under P — L; under P (n — o), (C.5)

Lemma C.1. There exists § > 0 such that

iggP(ULMJ §n‘Z2m >0,1 §m§n) =: Cs5 > 0. (C.6)

The proof is given below. Equation (C.6) and inclusion bounds yield

P(Zyn >0, 1<m<n) < 2 P(Zon >0, 1<m<n, o5y <n)
4

1 1
< aSP(ZQm >0, 1<m<op,) < aSP(ZﬂH >0, 1<k<dn),
therefore to prove (C.4) it suffices to show that there exists v € (0,1) such that Vn € N
P(Z2ak+1 >0,1<k< n) < (const.)y™.

We prove this by iteration, i.e. we show that for every n € N with n > ng, where ng is
some fixed constant, we have

P(Zyy+120,1<k<n) < 7 P(Zyy+1 >0, 1<k<n-1). (C.7)
Conditioning on the o—field Faon we get

P(Zy 20, 1<k <n) = B(P(Zywsr 20| For) - 1 C.8)

Z 51,4120, 1§k§n—1)) -
The strong Markov property, equation (2.3) and the fact that 207! — 297 = 29% yield
P (Zyon+1 > 0| Faon) = P(Zgon+1 > 0|27, Yoou, Zoon)

= P(Zt 2 —z = ty) |t=2"n,y:Y20n ,2=Zoon ’

and since Yaon < (277)Y and Zoon < (277)1/*+! by the definition of o,,, we get
P(Zyons1 > 0| Foon) < P(Zy > —2t1/T) (C.9)

From the invariance principle corresponding to (C.5), cf. [31], and the Continuous Mapping
Theorem we obtain

[120n -

1
P(Z, > —2t/o+1) — P(/ Lyds > —2) <1 (t — o0),
0
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therefore there exist v € (0,1) and ng € (0, 00) such that P(Z; > —2t1/°‘+1) < ~ for every
t > ng. Since 277 > 2™ equation (C.9) implies that P(220n+1 >0 ‘ fgon) < « for n > nyg.
Looking back to (C.8) we see that equation (C.7) is proven, therefore we have completed
the proof of (C.4). O

Proof of Lemma C.1. Setting Py :=P(-| Zom >0, 1 < m < n) for short, we have

P} (0)5n < 1) = P:<§:1Ai26n> = 1—-P:<§:1Ag>(1—5ﬁJ
=1

i=1

1 - c 5 1 -
>1 - ——— P (A?) = — P’ (A4;).
21 g L) = o1 g 2P
If we prove that P;(Ai)z'cv>0f0r alln € Nand 1 <i <n, then we have

) c c—9

* < > — =
Paogm) <n) 2 —3—5 + 75 = 7=~

and by choosing § sufficiently small we are done.

Therefore we are left with estimating P (AZ) = P(AZ- ‘ Zom > 0,1 <m < n) from
below. Notice that {Zom > 0,1 <m <n} D {Y; > 0,1 <[ < 2"} and that both events
are increasing in the {X;}; variables. Since the event A; is decreasing, the FKG inequality
[26] yields

P(A;|Zom >0,1<m<n) > P(4]Y,>0,1<1<2")
P(4;,Y,>0,1<1<2m) (C.10)
P(Y,>0,1<1<27)

Now let us denote by P the law of the random walk ({Y, },,, P) conditioned to stay always
positive, as described in [4]. We recall that ({Y,},,P") is a time-homogeneous Markov
process on RT that corresponds to an h-transform of the random walk ({Y;,},,P) killed
at the first time it enters the negative half-line. More explicitly, Vm € N and for A C F,,

P (A) = E(U(Y;)1algy,50,1<i<m}) (C.11)

where the invariant function U(+) is nothing but the renewal function of the strict descend-
ing ladder heights process of the random walk ({Y},},,P). Then we can rewrite (C.10) as

E*(14,-1/U(Ysn))
Py, >0,1<1<2m)’

P(Ai|Zm 20,1 <m<n) >

and restricting the expectation on the event {Yon < (27)1/*} we get

Pt (Aw an < (2n)1/a)
P(Aj| Zym 20,1 <m<n) > ,
U(@2m)/e)-P(Y;>0,1<1<2)

(C.12)

because U(-) is increasing. From [14] we have that U(z) ~ (const.)z®=P) as 2 — oo
and P(Y] >0,1<5< n) ~ (const.’)n_(l_p) as n — oo, therefore the denominator is
bounded from above by a positive constant and we can focus on the numerator.

First we need a preliminary result. Let us set P\, := P (-|Yy = m), so that PT = P{.
The main result in [8], cf. Theorem 1.1, is the following invariance principle: for every
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non-negative sequence (yy) such that yy/N/® — ¢ € [0,00) as N — oo, we have

Y|
{ Ul\;ti } under PJN — {Lt}te[o 00) under P (N — ), (C.13)
N te[0,00) ’

where = denotes convergence in distribution in the space D([0,00)) and ({L¢}¢, P)
denotes the Lévy process starting at ¢ and conditioned to stay always positive, cf. [12]. As
a consequence of the Continuous Mapping Theorem we have

1
Pt (A,) = PT(Yan < (2M)Y%, Zgn < (27)V/oFl) 222, B <L1 < 1,/ Lyds < 1> >0,
0

hence inf;en PT(A;) > 0. Then we come back to (C.12): the Markov property yields

Pt (A, Yon < (2M)Y%) = ET (1, - fin(Ya)) fin(y) = P (Yan_oi < (2m)Ve),
therefore, since Yy < (2°)1/% on the event A;, we can write
Pt (A;, You < (2M)Y) > inf . (inf PT(4;)).
(i Yoo s @) 2 (it fin)) - (nf P (40)

We are finally left with showing that the first term in the r.h.s. is positive. We argue
by contradiction: assume that there exist two sequences (in) € {1,...,n} and (y,) €
[0, (2%)'/*] such that fi, »(yn) — 0 as n — co. Then it is easy to check from the definition
of f;n(y) that we must have n—i, — oo as n — co. Setting N,, := 2" —2% by an inclusion
bound we obtain

0 S P;_n (YNn S (NN)I/O{) = P;—n (Y2n_2in S (2n — 2Zn)1/a) < fin,n(yn) —>n—>oo 07

therefore P, (Y, < (Np)Y®) — 0 as n — oco. However

Un (2im)/e 1
< < _
V= (Nn)l/a - o(2n = Qin)l/a (2n—in — 1)1/a — 0 (n —oc0),
hence the invariance principle (C.13) yields
Py (Yn, < (Na)'/®) 7= Bf (L1 <1) >0,

which is a contradiction, and the proof is completed. O
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