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Abstract. We consider a random field ϕ : {1, . . . , N} → R as a model for a linear chain
attracted to the defect line ϕ = 0, i.e. the x–axis. The free law of the field is specified
by the density exp

`

−
P

i V (∆ϕi)
´

with respect to the Lebesgue measure on R
N , where

∆ is the discrete Laplacian and we allow for a very large class of potentials V (·). The
interaction with the defect line is introduced by giving the field a reward ε ≥ 0 each
time it touches the x–axis. We call this model the pinning model. We consider a second
model, the wetting model, in which, in addition to the pinning reward, the field is also
constrained to stay non-negative.

We show that both models undergo a phase transition as the intensity ε of the pinning
reward varies: both in the pinning (a = p) and in the wetting (a = w) case, there exists
a critical value εa

c such that when ε > εa
c the field touches the defect line a positive

fraction of times (localization), while this does not happen for ε < εa
c (delocalization).

The two critical values are non-trivial and distinct: 0 < εp
c < εw

c < ∞, and they are
the only non-analyticity points of the respective free energies. For the pinning model the
transition is of second order, hence the field at ε = εp

c is delocalized. On the other hand,
the transition in the wetting model is of first order and for ε = εw

c the field is localized.
The core of our approach is a Markov renewal theory description of the field.

1. Introduction and main results

1.1. Definition of the models. We are going to define two distinct but related models
for a (1+1)–dimensional random field. These models depend on a measurable function
V (·) : R → R ∪ {+∞}, the potential. We require that x 7→ exp(−V (x)) is bounded and
continuous and that

∫
R

exp(−V (x)) dx < ∞. Since a global shift on V (·) is irrelevant for
our purposes, we will actually impose the stronger condition∫

R

e−V (x) dx = 1 . (1.1)

The last assumptions we make on V (·) are that V (0) <∞, i.e. exp(−V (0)) > 0, and that
∫

R

x2e−V (x) dx =: σ2 < ∞ and

∫

R

x e−V (x) dx = 0 . (1.2)

The most typical example is of course V (x) ∝ x2, but we stress that we do not make any
convexity assumption on V (·). Next we introduce the Hamiltonian H[a,b](ϕ), defined for
a, b ∈ Z, with b− a ≥ 2, and for ϕ : {a, . . . , b} → R by

H[a,b](ϕ) :=
b−1∑

n=a+1

V
(
∆ϕn

)
, (1.3)
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where ∆ denotes the discrete Laplacian:

∆ϕn := (ϕn+1 − ϕn) − (ϕn − ϕn−1) = ϕn+1 + ϕn−1 − 2ϕn . (1.4)

We are ready to introduce our first model, the pinning model (p-model for short) P
p
ε,N ,

that is the probability measure on R
N−1 defined by

P
p
ε,N

(
dϕ1 · · · dϕN−1

)
:=

exp
(
−H[−1,N+1](ϕ)

)

Zp
ε,N

N−1∏

i=1

(
ε δ0(dϕi) + dϕi

)
(1.5)

where N ∈ N, ε ≥ 0, dϕi is the Lebesgue measure on R, δ0(·) is the Dirac mass at zero
and Zp

ε,N is the normalization constant, usually called partition function. To complete the

definition, in order to make sense of H[−1,N+1](ϕ), we have to specify:

the boundary conditions ϕ−1 = ϕ0 = ϕN = ϕN+1 := 0 . (1.6)

We fix zero boundary conditions for simplicity, but our approach works for arbitrary
choices (as long as they are bounded in N).

The second model we consider, the wetting model (w-model for short) P
w
ε,N , is a variant

of the pinning model defined by

P
w
ε,N

(
dϕ1 · · · dϕN−1

)
:= P

p
ε,N

(
dϕ1 · · · dϕN−1

∣∣ϕ1 ≥ 0, . . . , ϕN−1 ≥ 0
)

=
exp

(
−H[−1,N+1](ϕ)

)

Zw
ε,N

N−1∏

i=1

(
ε δ0(dϕi) + dϕi 1(ϕi≥0)

)
,

(1.7)

i.e. we replace the measure dϕi by dϕi1(ϕi≥0) and Zp
ε,N by a new normalization Zw

ε,N .

Both P
p
ε,N and P

w
ε,N are (1+1)–dimensional models for a linear chain of length N which

is attracted to a defect line, the x–axis, and the parameter ε ≥ 0 tunes the strength
of the attraction. By ‘(1+1)–dimensional’ we mean that the configurations of the linear
chain are described by the trajectories {(i, ϕi)}0≤i≤N of the field, so that we are dealing
with directed models (see Figure 1 for a graphical representation). We point out that
linear chain models with Laplacian interaction appear naturally in the physical literature
in the context of semiflexible polymers, cf. [6, 21] (however the scaling they consider is
different from the one we look at in this paper). An interesting interpretation of P

w
ε,N as a

model for the DNA denaturation transition will be discussed below. One note about the
terminology: while ‘pinning’ refers of course to the attraction terms ε δ0(dϕi), the use of
the term ‘wetting’ is somewhat customary in the presence of a positivity constraint and
refers to the interpretation of the field as an effective model for the interface of separation
between a liquid above a wall and a gas, cf. [13].

The purpose of this paper is to investigate the behavior of P
p
ε,N and P

w
ε,N in the large N

limit: in particular we wish to understand whether and when the reward ε ≥ 0 is strong
enough to pin the chain at the defect line, a phenomenon that we will call localization. We
point out that this kind of questions have been answered in depth in the case of gradient
interaction, i.e. when the Laplacian ∆ appearing in (1.3) is replaced by the discrete gradient
∇ϕn := ϕn − ϕn−1, cf. [17, 15, 18, 13, 11, 1]: we will refer to this as the gradient case. As
we are going to see, the behavior in the Laplacian case turns out to be sensibly different.
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Figure 1. A graphical representation of the pinning model P
p
ε,N (top)

and of the wetting model P
w
ε,N (bottom), for N = 25 and ε > 0. The

trajectories {(n,ϕn)}0≤n≤N of the field describe the configurations of a
linear chain attracted to a defect line, the x–axis. The grey circles represent
the pinned sites, i.e. the points in which the chain touches the defect line,
which are energetically favored. Note that in the pinning case the chain can
cross the defect line without touching it, while this does not happen in the
wetting case due to the presence of a wall, i.e. of a constraint for the chain
to stay non-negative: the repulsion effect of entropic nature that arises is
responsible for the different critical behavior of the models.

1.2. The free energy and the main results. A convenient way to define localization
for our models is by looking at the Laplace asymptotic behavior of the partition function
Za

ε,N as N → ∞. More precisely, for a ∈ {p,w} we define the free energy fa(ε) by

fa(ε) := lim
N→∞

fa
N (ε) , fa

N (ε) :=
1

N
logZa

ε,N , (1.8)

where the existence of this limit (that will follow as a by-product of our approach) can be
proven with a standard super-additivity argument. The basic observation is that the free
energy is non-negative. In fact, setting Ωp := [0,∞) and Ωw := R, we have ∀N ∈ N

Za
ε,N =

∫
exp

(
−H[−1,N+1](ϕ)

) N−1∏

i=1

(
ε δ0(dϕi) + dϕi 1(ϕi∈Ωa)

)

≥
∫

exp
(
−H[−1,N+1](ϕ)

) N−1∏

i=1

dϕi 1(ϕi∈Ωa) = Za
0,N ≥ c1

N c2
,

(1.9)
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where c1, c2 are positive constants and the polynomial bound for Za
0,N (analogous to what

happens in the gradient case, cf. [13]) is proven in (2.14). Therefore fa(ε) ≥ fa(0) = 0 for
every ε ≥ 0. Since this lower bound has been obtained by ignoring the contribution of the
paths that touch the defect line, one is led to the following

Definition 1.1. For a ∈ {p,w}, the a-model {Pa
ε,N}N is said to be localized if fa(ε) > 0.

The first problem is to understand for which values of ε (if any) there is localization.
Some considerations can be drawn easily. We introduce for convenience for t ∈ R

f̃
a
N (t) := fa

N (et) f̃
a
(t) := fa(et) . (1.10)

It is easy to show (see Appendix A) that f̃
a
N (·) is convex, therefore also f̃

a
(·) is convex. In

particular, the free energy fa(ε) = f̃
a
(log ε) is a continuous function, as long as it is finite.

fa(·) is also non-decreasing, because Za
ε,N is increasing in ε (cf. the first line of (1.9)). This

observation implies that, for both a ∈ {p,w}, there is a critical value εac ∈ [0,∞] such that
the a-model is localized if and only if ε > εac . Moreover εpc ≤ εwc , since Zp

ε,N ≥ Zw
ε,N .

However it is still not clear that a phase transition really exists, i.e. that εac ∈ (0,∞).
Indeed, in the gradient case the transition is non-trivial only for the wetting model, i.e.

0 < εw,∇
c < ∞ while εp,∇

c = 0, cf. [13, 17]. Our first theorem shows that in the Laplacian
case both the pinning and the wetting model undergo a non-trivial transition, and gives
further properties of the free energy fa(·).

Theorem 1.2 (Localization transition). The following relations hold:

εpc ∈ (0,∞) εwc ∈ (0,∞) εpc < εwc .

We have fa(ε) = 0 for ε ∈ [0, εac ], while 0 < fa(ε) <∞ for ε ∈ (εac ,∞), and as ε→ ∞
fa(ε) = log ε (1 + o(1)) a ∈ {p,w} . (1.11)

Moreover the function fa(ε) is real analytic on (εac ,∞).

One may ask why in the Laplacian case we have εpc > 0, unlike in the gradient case.
Heuristically, we could say that the Laplacian interaction (1.3) describes a stiffer chain,
more rigid to bending with respect to the gradient interaction, and therefore Laplacian
models require a stronger reward in order to localize. Note in fact that in the Gaussian case
V (x) ∝ x2 the ground state of the gradient interaction is just the horizontally flat line,
whereas the Laplacian interaction favors rather affine configurations, penalizing curvature
and bendings.

It is worth stressing that the free energy has a direct translation in terms of some path
properties of the field. Defining the contact number ℓN by

ℓN := #
{
i ∈ {1, . . . , N} : ϕi = 0

}
, (1.12)

a simple computation (see Appendix A) shows that for every ε > 0 and N ∈ N

da
N (ε) := E

a
ε,N

(
ℓN
N

)
= (f̃

a
N )′(log ε) = ε · (fa

N )′(ε) . (1.13)

Then, introducing the non-random quantity da(ε) := ε · (fa)′(ε) (which is well-defined
for ε 6= εac by Theorem 1.2), a simple convexity argument shows that da

N (ε) → da(ε) as
N → ∞, for every ε 6= εac . Indeed much more can be said (see Appendix A):
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• When ε > εac we have that da(ε) > 0, and for every δ > 0 and N ∈ N

P
a
ε,N

( ∣∣∣∣
ℓN
N

− da(ε)

∣∣∣∣ > δ

)
≤ exp(−c3N) , (1.14)

where c3 is a positive constants. This shows that, when the a-model is localized
according to Definition 1.1, its typical paths touch the defect line a positive fraction
of times, equal to da(ε). Notice that, by (1.11) and convexity arguments, da(ε)
converges to 1 as ε→ ∞, i.e. a strong reward pins the field at the defect line in a
very effective way (observe that ℓN/N ≤ 1).

• On the other hand, when ε < εac we have da(ε) = 0 and for every δ > 0 and N ∈ N

P
a
ε,N

(
ℓN
N

> δ

)
≤ exp(−c4N) , (1.15)

where c4 is a positive constants. Thus for ε < εac the typical paths of the a-model
touch the defect line only o(N) times: when this happens it is customary to say
that the model is delocalized.

What is left out from this analysis is the critical regime ε = εac . The behavior of the
model in this case is sharply linked to the way in which the free energy fa(ε) vanishes as
ε ↓ εac . If fa(·) is differentiable also at ε = εac (second order transition), then (fa)′(εac ) = 0
and relation (1.15) holds, i.e. the a-model for ε = εac is delocalized. The other possibility is
that fa(·) is not differentiable at ε = εac (first order transition), which happens when the
right-derivative is positive: (fa)′+(εac ) > 0. In this case the behavior of P

a
ε,N for large N

depends strongly on the choice of the boundary conditions.

We first consider the critical regime for the wetting model, where the transition turns
out to be of first order. Recall the definition (1.13) of da

N (ε).

Theorem 1.3 (Critical wetting model). For the wetting model we have:

lim inf
N→∞

dw
N

(
εwc
)
> 0 . (1.16)

Therefore (fw)′+(εwc ) > 0 and the phase transition is of first order.

Notice that equations (1.13) and (1.16) yield

lim inf
N→∞

E
w
εw
c ,N

(
ℓN
N

)
> 0 ,

and in this sense the wetting model at the critical point exhibits a localized behavior. This
is in sharp contrast with the gradient case, where it is well known that the wetting model
at criticality is delocalized and in fact the transition is of second order, cf. [15, 18, 13, 11].
The emergence of a first order transition in the case of Laplacian interaction is particularly
interesting in view of the possible applications of P

w
ε,N as a model for the DNA denaturation

transition, where the non-negative field {ϕi}i describes the distance between the two DNA
strands. In fact for the DNA denaturation something close to a first order phase transition
is experimentally observed: we refer to [17, §1.4] for a detailed discussion (cf. also [27, 19]).

Finally we consider the critical pinning model, where the transition is of second order.

Theorem 1.4 (Critical pinning model). For the pinning model we have:

lim sup
ε↓εp

c

lim sup
N→∞

d
p
N (ε) = 0 . (1.17)

Then fp(ε) is differentiable at ε = εpc , (fp)′(εpc ) = 0 and the transition is of second order.
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Although the relation (fp)′(εpc ) = 0 yields ℓN = o(N), in a delocalized fashion, the pinning
model at ε = εpc is actually somewhat borderline between localization and delocalization,
as we point out in the next paragraph.

1.3. Further path results. A direct application of the techniques that we develop in
this paper yields further path properties of the field. Let us introduce the maximal gap

∆N := max
{
n ≤ N : ϕk+1 6= 0, ϕk+2 6= 0, . . . , ϕk+n 6= 0 for some k ≤ N − n

}
.

One can show that, for both a ∈ {p,w} and for ε > εac , the following relations hold:

∀δ > 0 : lim
N→∞

P
a
ε,N

(
∆N

N
≥ δ

)
= 0

lim
L→∞

lim sup
N→∞

max
i=1,...,N−1

P
a
ε,N

(
|ϕi| ≥ L

)
= 0 .

(1.18)

In particular for ε > εac each component ϕi of the field is at finite distance from the defect
line and this is a clear localization path statement. On the other hand, in the pinning case
a = p we can strengthen (1.15) to the following relation: for every ε < εpc

lim
L→∞

lim sup
N→∞

P
p
ε,N

(
∆N ≤ N − L

)
= 0 , (1.19)

i.e. for ε < εpc the field touches the defect line at a finite number of sites, all at finite

distance from the boundary points {0, N}. We expect that the same relation holds true
also in the wetting case a = w, but at present we cannot prove it: what is missing are more
precise estimates on the entropic repulsion problem, see §1.5 for a detailed discussion. It
is interesting to note that we can prove that the first relation in (1.18) holds true also in
the pinning case a = p at the critical point ε = εpc , and this shows that the pinning model
at criticality has also features of localized behavior.

We do not give an explicit proof of the above relations in this paper, both for conciseness
and because in a second paper [9] we focus on the scaling limits of the pinning model,
obtaining (de)localization path statements that are much more precise than (1.18) and
(1.19) (under stronger assumptions on the potential V (·)). We show in particular that for
all ε ∈ (0, εpc ) the natural rescaling of P

p
ε,N converges in distribution in C([0, 1]) to the

same limit that one obtains in the free case ε = 0, i.e. the integral process of a Brownian
bridge. On the other hand, for every ε ≥ εpc the natural rescaling of P

p
ε,N yields the trivial

process which is identically zero. We stress that ε = εpc is included in the last statement:
this is in sharp contrast with the gradient case, where the pinning model at criticality has
a non-trivial scaling limit, namely the Brownian bridge (as one can prove arguing as in
[13, 11]). This shows again the peculiarity of the critical pinning model in the Laplacian
case. Indeed, by lowering the scaling constants with suitable logarithmic corrections, we
are able to extract a non-trivial scaling limit (in a distributional sense) for the law P

p
εp
c ,N

in terms of a symmetric stable Lévy process with index 2/5. We stress that the techniques
and results of the present paper play a crucial role for [9].

1.4. Outline of the paper: approach and techniques. Although our main results
are about the free energy, the core of our approach is a precise pathwise description of
the field based on Markov renewal theory. In analogy to [13, 11] and especially to [10],
we would like to stress the power of (Markov) renewal theory techniques for the study of
(1 + 1)–dimensional linear chain models. The other basic techniques that we use are local
limit theorems, an infinite-dimensional version of the Perron-Frobenius Theorem and the
FKG inequality. Let us describe more in detail the structure of the paper.
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In Section 2 we study the pinning and wetting models in the free case ε = 0, showing
that these models are sharply linked to the integral of a random walk. More precisely,
let {Yn}n≥0 denote a random walk starting at zero and with step law P(Y1 ∈ dx) =
exp(−V (x)) dx (the walk has zero mean and finite variance by (1.2)) and let us denote by
Zn := Y1 + . . .+Yn the corresponding integrated random walk process. In Proposition 2.2
we show that the law P

a
0,N is nothing but a bridge of length N of the process {Zn}n, with

the further conditioning to stay non-negative in the wetting case a = w. Therefore we focus
on the asymptotic properties of the process {Zn}n, obtaining a basic local limit theorem,
cf. Proposition 2.3, and some polynomial bounds for the probability that {Zn}n stays
positive (connected to the problem of entropic repulsion that we discuss below, cf. §1.5).

In Section 3, which is in a sense the core of the paper, we show that for ε > 0 the law P
a
ε,N

admits a crucial description in terms of Markov renewal theory. More precisely, we show
that the zeros of the field {i ≤ N : ϕi = 0} under P

a
ε,N are distributed according to the law

of a (hidden) Markov renewal process conditioned to hit {N,N + 1}, cf. Proposition 3.1.
We thus obtain an explicit expression for the partition function Za

ε,N in terms of this
Markov renewal process, which is the key to our main results.

Section 4 is devoted to proving some analytical results that underlie the construc-
tion of the Markov renewal process appearing in Section 3. The main tool is an infinite-
dimensional version of the classical Perron-Frobenius Theorem, cf. [33], and a basic role is
played by the asymptotic estimates obtained in Seciton 2. A by-product of this analysis is
an explicit formula, cf. (4.10), that links fa(·) and εac to the spectral radius of a suitable
integral operator and that will be exploited later.

Sections 5, 6 and 7 contain the proofs of Theorems 1.2, 1.3 and 1.4 respectively. In view of
the description given in Section 3, all the results to prove can be rephrased in the language
of Markov renewal theory. The proofs are then carried out exploiting the asymptotic
estimates derived in Sections 2 and 4 together with some algebraic manipulation of the
kernel that gives the law of the hidden Markov renewal process (we refer to §1.6 for
notation on kernels). Finally, the Appendixes contain the proof of some technical results.

1.5. Entropic repulsion. We recall that
(
{Yn}n≥0,P

)
is the random walk with step

P
(
Y1 ∈ dx

)
= e−V (x) dx and that Zn = Y1 + . . . + Yn. The analysis of the wetting model

requires estimating the decay as N → ∞ of the probabilities P
(
Ω+

N

)
and P

(
Ω+

N

∣∣ZN+1 =

0, ZN+2 = 0
)
, where we set Ω+

N :=
{
Z1 ≥ 0, . . . , ZN ≥ 0

}
. This type of problem is known

in the literature as entropic repulsion and it has received a lot of attention, see [32] for a
recent overview. In the Laplacian case that we consider here, this problem has been solved
in the Gaussian setting (i.e. when V (x) ∝ x2) in (d+1)–dimension with d ≥ 5, cf. [28, 22].
Little is known in the (1+1)–dimensional setting, apart from the following result of Sinai’s
[30] in the special case when {Yn}n is the simple random walk on Z:

c

N1/4
≤ P

(
Ω+

N

)
≤ C

N1/4
, (1.20)

where c, C are positive constants. The proof of this bound relies on the exact combinatorial
results available in the simple random walk case and it appears difficult to extend it to our
situation. We point out that the same exponent 1/4 appears in related continuous models
dealing with the integral of Brownian motion, cf. [23, 24]. Based on Sinai’s result, which
we believe to hold for general random walks with zero mean and finite variance, we expect
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that for the bridge case one should have the bound

c

N1/2
≤ P

(
Ω+

N

∣∣ZN+1 = 0, ZN+2 = 0
)

≤ C

N1/2
. (1.21)

We cannot derive precise bounds as (1.20) and (1.21), however for the purpose of this
paper the following weaker result suffices:

Proposition 1.5. There exist positive constants c, C, c−, c+ such that for every N ∈ N

c

N c−
≤ P

(
Ω+

N

)
≤ C

N c+
(1.22)

c

N c−
≤ P

(
Ω+

N

∣∣ZN+1 = 0, ZN+2 = 0
)

≤ C

N c+
. (1.23)

We prove this proposition in Appendix C. We point out that the most delicate point is
the proof of the upper bound in (1.22): the idea is to dilute the system on exponentially
spaced times and then to combine FKG arguments with a suitable invariance principle.
While the value of c+ that we obtain is non-optimal, our approach has the advantage of
being quite robust: in view of the possible interest, we carry out the proof in a very general
setting, namely we only assume that the random walk {Yn}n is in the domain of attraction
of a stable law with positivity parameter ρ ∈ (0, 1). We point out that the same kind of
arguments have found a recent application in [29].

1.6. Some recurrent notations. Throughout the paper, generic positive and finite con-
stants will be denoted by (const.), (const.′). For us N = {1, 2, . . .}, Z

+ = N ∪ {0} and
R

+ := [0,∞). Given two positive sequences (an), (bn), by an ∼ bn we mean that an/bn → 1
as n→ ∞. For x ∈ R we denote as usual by ⌊x⌋ := max{n ∈ Z : n ≤ x} its integer part.

In this paper we deal with kernels of two kinds. Kernels of the first kind are just σ–finite
kernels on R, i.e. functionsA·,· : R×B(R) → R

+, where B(R) denotes the Borel σ–field of R,
such that Ax,· is a σ–finite Borel measure on R for every x ∈ R and A·,F is a Borel function
for every F ∈ B(R). Given two such kernels Ax,dy, Bx,dy, their composition is denoted as

usual by (A ◦ B)x,dy :=
∫
z∈R

Ax,dz Bz,dy and A◦k
x,dy denotes the k-fold composition of A

with itself, where A◦0
x,dy := δx(dy). We also use the standard notation

(1 −A)−1
x,dy :=

∞∑

k=0

A◦k
x,dy ,

which of course in general may be infinite.
The second kind of kernels is obtained by letting a kernel of the first kind depend on

the further parameter n ∈ Z
+, i.e. we consider objects of the form Ax,dy(n) with x, y ∈ R

and n ∈ Z
+. Given two such kernels Ax,dy(n), Bx,dy(n), we define their convolution by

(A ∗ B)x,dy(n) :=
n∑

m=0

(
A(m) ◦ B(n−m)

)
x,dy

=
n∑

m=0

∫

z∈R

Ax,dz(m) · Bz,dy(n−m) ,

and the k-fold convolution of the kernel Ax,dy(n) with itself will be denoted by A
∗k
x,dy(n),

where by definition A
∗0
x,dy(n) := δ0(dy)1(n=0). Finally, given two kernels Ax,dy(n) and Bx,dy

and a positive sequence (an), we will write

Ax,dy(n) ∼ Bx,dy

an
(n→ ∞)

to mean Ax,F (n) ∼ Bx,F/an as n→ ∞, ∀x ∈ R and for every bounded Borel set F ⊂ R.
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2. The free case ε = 0 : a random walk viewpoint

In this section we study in detail the free laws P
p
0,N and P

w
0,N and their link with the

integral of a random walk. The main results are a basic local limit theorem and some
asymptotic estimates.

2.1. Integrated random walk. Given a, b ∈ R, let (Ω,F ,P = P(a,b)) be a probability
space on which are defined the processes {Xi}i∈N, {Yi}i∈Z+ and {Zi}i∈Z+ with the following
properties:

• {Xi}i∈N is a sequence of independent and identically distributed random variables,
with marginal laws X1 ∼ exp(−V (x)) dx. We recall that by our assumptions on
V (·) it follows that E(X1) = 0 and E(X1

2) = σ2 ∈ (0,∞), cf. (1.2).

• {Yi}i∈Z+ is the random walk associated to {Xi}, with starting point a, that is

Y0 = a Yn = a+X1 + . . .+Xn (2.1)

• {Zi}i∈Z+ is the integrated random walk process with initial value b: that is Z0 = b
and for n ∈ N

Zn = b+ Y1 + . . .+ Yn = b+ na+ nX1 + (n− 1)X2 + . . . +Xn . (2.2)

From (2.1) and (2.2) it follows that
{(
Yn, Zn

)}
n

under P(a,b) d
=

{(
Yn + a , Zn + b+ na

)}
n

under P(0,0) . (2.3)

The marginal distributions of the process {Zn}n are specified in the following lemma.

Lemma 2.1. For every n ∈ N, the law of the vector (Z1, . . . , Zn) under P(a,b) is given by

P(a,b)
(
(Z1, . . . , Zn) ∈ (dz1, . . . ,dzn)

)
= exp

(
−H[−1,n](z−1, z0, z1, . . . , zn)

) n∏

i=1

dzi , (2.4)

where we set z−1 := b− a and z0 := b.

Proof. By definition Yn = Zn −Zn−1 for n ≥ 1 under P(a,b). Then, setting yi := zi − zi−1

for i ≥ 2 and y1 := z1 − b, it suffices to show that, under the measure given by the
r.h.s. of (2.4), the variables (yi)i=1,...,n are distributed like the first n steps of a random
walk starting at a and with step law exp(−V (x)) dx. But for this it suffices to rewrite the
Hamiltonian as

H[−1,n](z) = V
(
(z1 − b) − (b− (b− a))

)
+

n−1∑

i=1

V
(
(zi+1 − zi) − (zi − zi−1)

)

= V
(
y1 − a

)
+

n−1∑

i=1

V
(
yi+1 − yi

)
,

and the proof is completed. �

By construction {(Yn, Zn)}n∈Z+ under P(a,b) is a Markov process with starting values
Y0 = a,Z0 = b. On the other hand, the process {Zn}n alone is not a Markov process: it is
rather a process with finite memory m = 2, i.e. for every n ∈ N

P(a,b)
(
{Zn+k}k≥0 ∈ ·

∣∣Zi, i ≤ n
)

= P(a,b)
(
{Zn+k}k≥0 ∈ ·

∣∣Zn−1, Zn

)

= P(Zn−Zn−1,Zn)
(
{Zk}k≥0 ∈ ·

)
,

(2.5)
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as it follows from Lemma 2.1. For this reason the law P(a,b) may be viewed as

P(a,b) = P
(
·
∣∣Z−1 = b− a,Z0 = b

)
. (2.6)

2.2. The link with P
a
0,N . In the r.h.s. of (2.4) we see exactly the same density appearing

in the definitions (1.5) and (1.7) of our models P
a
0,N . As an immediate consequence we have

the following proposition, which states that P
a
0,N is nothing but a bridge of the process

{Zn}n for a = p, with the further constraint to stay non-negative for a = w.

Proposition 2.2. The following statements hold:

(1) The pinning model P
p
0,N is the law of the vector (Z1, . . . , ZN−1) under the measure

P(0,0)( · |ZN = 0, ZN+1 = 0). The partition function Zp
0,N is the value at (0, 0) of

the density of the vector (YN+1, ZN+1) under the law P(0,0).

(2) Setting Ω+
n := {S1 ≥ 0, . . . , Sn ≥ 0}, the wetting model P

w
0,N is the law of the vector

(Z1, . . . , ZN−1) under the measure P(0,0)( · |Ω+
N−1, ZN = 0, ZN+1 = 0). The parti-

tion function Zw
0,N is the value at (0, 0) of the density of the vector (YN+1, ZN+1)

under the law P(0,0)( · |Ω+
N−1).

For the statement on the partition function, observe that the density at (0, 0) of the vector
(YN+1, ZN+1) coincides with the one of the vector (ZN , ZN+1), since YN+1 = ZN+1 −ZN .

2.3. A local limit theorem. In view of Proposition 2.2, we study the asymptotic be-
havior as n→ ∞ of the vector (Yn, Zn) under the law P(a,b).

Let us denote by {Bt}t∈[0,1] a standard Brownian motion and by {It}t∈[0,1] its integral

process It :=
∫ t
0 Bsds. A simple application of Donsker’s invariance principle shows that the

vector
(
Yn/(σ

√
n), Zn/(σn

3/2)
)

under P(0,0) converges in distribution as n → ∞ toward
the law of the centered Gaussian vector (B1, I1), whose density g(y, z) is

g(y, z) =
6

π
exp

(
− 2y2 − 6z2 + 6yz

)
. (2.7)

We want to reinforce this convergence in the form of a local limit theorem. To this purpose,
we introduce the density of (Yn, Zn) under P(a,b), setting for n ≥ 2

ϕ(a,b)
n (y, z) =

P(a,b)
(
(Yn, Zn) ∈ (dy,dz)

)

dy dz
. (2.8)

From (2.3) it follows that

ϕ(a,b)
n (y, z) = ϕ(0,0)

n

(
y − a , z − b− na

)
, (2.9)

hence it suffices to focus on ϕ
(0,0)
n (·, ·). We set for short ϕ

(0,0)
n (R, z) :=

∫
R
ϕ

(0,0)
n (y, z) dy,

i.e. the density of Zn under P(0,0), and g(R, z) :=
∫

R
g(y, z) dy. We are ready to state the

main result of this section.

Proposition 2.3 (Local limit theorem). The following relations hold as n→ ∞:

sup
(y,z)∈R2

∣∣σ2n2ϕ(0,0)
n

(
σ
√
n y , σn3/2 z

)
− g(y, z)

∣∣ → 0

sup
z∈R

∣∣ σn3/2ϕ(0,0)
n

(
R , σn3/2 z

)
− g(R, z)

∣∣ → 0 .
(2.10)
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The proof, based on Fourier analysis, is deferred to Appendix B. We stress that this result
retains a crucial importance in the rest of the paper. Notice that an analogous local limit

theorem holds also for ϕ
(0,0)
n (y,R), i.e. the density of Yn, but we do not state it explicitly

because we will not need it.

2.4. The positivity constraint. To deal with the wetting model we need to study the
law of the random vector (Yn, Zn), or equivalently of (Zn−1, Zn), conditionally on the event
Ω+

n−2 = {Z1 ≥ 0, . . . , Zn−2 ≥ 0}. To this purpose we set for x, y ∈ R and n ≥ 3

wx,y(n) := 1(x≥0, y≥0) · P(−x,0)
(
Ω+

n−2

∣∣Zn−1 = y, Zn = 0
)
, (2.11)

while for n = 1, 2 we simply set wx,y(n) := 1(x≥0,y≥0). We are interested in the rate of
decay of wx,y(n) as n→ ∞. To this purpose we claim that there exists a positive constant
c+ such that the following upper bound holds: for all n ∈ N and x, y ∈ R

+

wx,y(n) ≤ (const.)

nc+
· 1

P(0,0)
(
Zn−1 ≥ y + (n − 1)x, Zn ≥ nx

) . (2.12)

Moreover we have the following lower bound for x, y = 0 and ∀n ∈ N:

w0,0(n) ≥ (const.)

nc−
, (2.13)

for some positive constant c−. Notice that by Proposition 2.2 we have Zp
0,N = ϕ

(0,0)
N+1(0, 0)

and Zw
0,N = Zp

0,N · w0,0(N + 1), hence by (2.10) and (2.13) we have for every N ∈ N

Zp
0,N ≥ Zw

0,N ≥ (const.)

N2+c−
, (2.14)

so that the last inequality in (1.9) is proven.

We prove the lower bound (2.13) in Appendix C.1: the idea is to restrict the expectation
that defines w0,0(n) on a suitable subset of paths, whose probability can be estimated. On
the other hand, the upper bound (2.12) follows directly combining the following Lemma
with the upper bound in (1.22) (which is proven in Appendix C.2).

Lemma 2.4. For every x, y ∈ R
+ and n ∈ N we have

wx,y(n) ≤ P(0,0)
(
Ω+

n

)
· 1

P(0,0)
(
Zn−1 ≥ y + (n− 1)x, Zn ≥ nx

) . (2.15)

Proof. It is convenient to denote by pn the image law on R
n of the vector (X1, . . . ,Xn)

under P(0,0), i.e. pn(dt1, . . . ,dtn) =
∏n

i=1 e
−V (ti) dti. With some abuse of notation, for

t = (t1, . . . , tn) ∈ R
n and x ∈ R we set Zi(t) := −ix+ it1 + (i− 1)t2 + . . .+ ti, so that the

process {Zi(t)}1≤i≤n under pn(dt) is distributed like the process {Zi}1≤i≤n under P(−x,0).
Since pn is an i.i.d. law and the event {Zn−1(t) ≥ y, Zn(t) ≥ 0} is increasing in t, the

conditioned law p∗
n := pn( · |Zn−1 ≥ y, Zn ≥ 0) satisfies the FKG inequality, cf. [26]. This

means that for Borel sets A,B ⊆ R
n such that A is increasing and B is decreasing, we

have p∗
n(A |B) ≤ p∗

n(A). The choices A = Ω+
n and B := {Zn−1 ≤ y + ε, Zn ≤ ε} yield

P(−x,0)
(
Ω+

n

∣∣Zn−1 ∈ [y, y + ε], Zn ∈ [0, ε]
)

≤ P(−x,0)(Ω+
n |Zn−1 ≥ y, Zn ≥ 0) .

The conclusion follows letting ε ↓ 0 and noting that P(−x,0)
(
Z1 ≥ 0, . . . , Zn ≥ 0

)
is

decreasing in x and P(−x,0)(Zn−1 ≥ y, Zn ≥ 0) = P(0,0)
(
Zn−1 ≥ y + (n − 1)x, Zn ≥ nx

)

by relation (2.3). �
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3. The interacting case ε > 0: a renewal theory description

In this section we study in detail the laws P
p
ε,N and P

w
ε,N in the case ε > 0. The crucial

result is that the contact set {i ∈ Z
+ : ϕi = 0} can be described in terms of a Markov

renewal process. Throughout the section we assume that ε > 0.

3.1. The law of the contact set. We introduce the contact set τ by:

τ :=
{
i ∈ Z

+ : ϕi = 0
}

⊂ Z
+ , (3.1)

where we set by definition ϕ0 = 0, so that 0 ∈ τ . It is practical to identify the set τ with
the increasing sequence of random variables {τk}k≥0 defined by

τ0 := 0 τk+1 := inf{i > τk : ϕi = 0} . (3.2)

Observe that the random variable ℓN , introduced in (1.12), may be expressed as ℓN :=
max{k : τk ≤ N}. Next we introduce the process {Jk}k≥0 that gives the height of the field
before the contact points:

J0 := 0 Jk := ϕτk−1 . (3.3)

The basic observation is that the joint law of the process {ℓN , (τk)k≤ℓN
, (Jk)k≤ℓN

} under
P

a
ε,N can be written in the following ‘product form’: for k ∈ N, for (ti)i=1,...,k ∈ N with

0 < t1 < . . . < tk−1 < tk := N and for (yi)i=1,...,k ∈ R we have

P
a
ε,N

(
ℓN = k, τi = ti, Ji ∈ dyi, i = 1, . . . , k

)

=
1

Za
ε,N

εk−1
F

a
0,dy1

(t1) · Fa
y1,dy2

(t2 − t1) · . . . · Fa
yk−1,dyk

(N − tk−1) · Fa
yk,{0}(1) ,

(3.4)

for a suitable kernel F
a
x,dy(n) that we now define. For a = p we have

F
p
x,dy(n) :=





e−H[−1,1](x,0,0) δ0(dy) = e−V (x) δ0(dy) if n = 1

e−H[−1,2](x,0,y,0) dy = e−V (x+y)−V (−2y) dy if n = 2
(∫

Rn−2

e−H[−1,n](ϕ−1,...,ϕn) dϕ1 · · · dϕn−2

)
dy

where ϕ−1 = x, ϕ0 = 0, ϕn−1 = y, ϕn = 0





if n ≥ 3

, (3.5)

and the definition of F
w
x,dy(n) is analogous: we just have to impose that x, y ≥ 0 and for

n ≥ 3 we also have to restrict the integral in (3.5) on (R+)n−2. Although these formulas
may appear quite involved, they follow easily from the definition of P

a
ε,N . In fact it suffice

to expand the product of measures in the r.h.s. of (1.5) and (1.7) as a sum of ‘monomials’,
according to the elementary formula (where we set Ωp := R and Ωw := R

+)

N−1∏

i=1

(
εδ0(dϕi) + dϕi1(ϕi∈Ωa)

)
=

∑

A⊂{1,...,N−1}
ε|A| ∏

m∈A

δ0(dϕm)
∏

n∈A∁

dϕn1(ϕn∈Ωa) .

It is then clear that A = {τ1, . . . , τℓN−1} and integrating over the variables ϕi with index
i 6∈ A ∪ (A− 1) one gets to (3.4). We stress that the algebraic structure of (3.4) retains a
crucial importance, that we are going to exploit in the next paragraph.
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From (3.5) it follows that the kernel F
a
x,dy(n) is a Dirac mass in y for n = 1 while it is

absolutely continuous for n ≥ 2. Then it is convenient to introduce the σ–finite measure
µ(dx) := δ0(dx) + dx, so that we can write

F
a
x,dy(n) = f

a
x,y(n)µ(dy) . (3.6)

The interesting fact is that the density f
a
x,y(n) can be rephrased explicitly in terms of

the process {Zk}k introduced in §2.1. Let us start with the pinning case a = p: from
Lemma 2.1 and from equation (3.5) it follows that, for n ≥ 2, f

p
x,y(n) is nothing but the

density of (Zn−1, Zn) at (y, 0), under P(−x,0). Recalling the definition (2.8) of ϕ
(·,·)
n (·, ·)

and the fact that Zn−1 = Zn − Yn, we can write

f
p
x,y(n) =

{
e−V (x) 1(y=0) if n = 1

ϕ
(−x,0)
n (−y, 0)1(y 6=0) = ϕ

(0,0)
n (−y + x, nx)1(y 6=0) if n ≥ 2

, (3.7)

where we have used relation (2.9). Analogously, recalling the definition (2.11) of wx,y(n),
in the wetting case we have

f
w
x,y(n) = f

p
x,y(n) · wx,y(n) . (3.8)

Equations (3.6), (3.7) and (3.8) provide a description of the kernel F
a
x,dy(n) which is both

simpler and more useful than the original definition (3.5).

3.2. A Markov renewal theory interpretation. Equation (3.4) expresses the law of
{(τk, Jk)}k under P

a
ε,N in terms of an explicit kernel F

a
x,dy(n). The crucial point is that the

algebraic structure of the equation (3.4) allows to modify the kernel, in order to give this
formula a direct renewal theory interpretation. In fact we set

K
a,ε
x,dy(n) := εF

a
x,dy(n) e−fa(ε)n v

a
ε (y)

va
ε (x)

, (3.9)

where the number fa(ε) ∈ [0,∞) and the positive real function va
ε (·) will be defined

explicitly in Section 4. Of course this is an abuse of notation, because the symbol fa(ε)
was already introduced to denote the free energy, cf. (1.8), but we will show in §5.2 that
the two quantities indeed coincide. We denote by k

a,ε
x,y(n) the density of K

a,ε
x,dy(n) with

respect to µ(dy), i.e.

k
a,ε
x,y(n) := ε f

a
x,y(n) e−fa(ε)n v

a
ε (y)

va
ε (x)

. (3.10)

The reason for introducing the kernel K
a,ε
x,dy(n) lies is the following fundamental fact: the

number fa(ε) and the function va
ε (·) appearing in (3.9) can be chosen such that:

∀x ∈ R :

∫

y∈R

∑

n∈N

K
a,ε
x,dy(n) =

ε

εac
∧ 1 ≤ 1 , (3.11)

where εac ∈ (0,∞) is a fixed number. A detailed proof and discussion of this fact, with an
explicit definition of εac , fa(ε) and va

ε (·), is deferred to Section 4: for the moment we focus
on its consequences.

Thanks to (3.11), we can define the law Pa
ε under which the joint process {(τk, Jk)}k≥0

is a (possibly defective) Markov chain on Z
+ ×R, with starting value (τ0, J0) = (0, 0) and

with transition kernel given by

Pa
ε

(
(τk+1, Jk+1) ∈ ({n},dy)

∣∣ (τk, Jk) = (m,x)
)

= K
a,ε
x,dy(n−m) . (3.12)

An alternative (and perhaps more intuitive) definition is as follows:
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• First sample the process {Jk}k≥0 as a (defective if ε < εac ) Markov chain on R,
with J0 = 0 and with transition kernel

Pa
ε (Jk+1 ∈ dy |Jk = x ) =

∑

n∈N

K
a,ε
x,dy(n) =: Da,ε

x,dy . (3.13)

In the defective case we take ∞ as cemetery.

• Then sample the increments {Tk := τk − τk−1}k∈N as a sequence of independent,
but not identically distributed, random variables, according to the conditional law:

Pa
ε (Tk = n | {Ji}i≥0 ) =





1(n=1) if Jk = 0

k
a,ε
Jk−1,Jk

(n)1(n≥2)

P

m≥2 k
a,ε
Jk−1,Jk

(m)
if Jk 6= 0, Jk 6= ∞

1(n=∞) if Jk = ∞

.

We stress that the process {(τk, Jk)}k≥0 is defective if ε < εac and proper if ε ≥ εac ,
cf. (3.11). The process {τk}k≥0 under Pa

ε is what is called a Markov renewal process and
{Jk}k≥0 is its modulating chain. This is a generalization of classical renewal processes,
because τn = T1 + . . . + Tn where the variables {Tk}k∈N are allowed to have a special
kind of dependence, namely they are independent conditionally on the modulating chain
{Jk}k≥0. For a detailed account on Markov renewal processes we refer to [3].

Now let us come back to equation (3.4). We perform the substitution F
a
x,dy(n) →

K
a,ε
x,dy(n), defined in (3.9): the boundary terms va

ε (y)/va
ε (x) get simplified and the ex-

ponential term e−fa(ε)n factorizes, so that we get

P
a
ε,N

(
ℓN = k, τi = ti, Ji ∈ dyi, i = 1, . . . , k

)

=
ef

a(ε)N

ε2 Za
ε,N

K
a,ε
0,dy1

(t1) · Ka,ε
y1,dy2

(t2 − t1) · . . . · Ka,ε
yk−1,dyk

(N − tk−1) · Ka,ε
yk,{0}(1) .

(3.14)

Moreover, since the partition function Za
ε,N is the normalizing constant that makes P

a
ε,N

a probability, it can be expressed as

Za
ε,N =

ef
a(ε)N

ε2

N∑

k=1

∑

ti∈N, i=1,...,k
0<t1<...<tk :=N

∫

Rk

(
k∏

i=1

K
a,ε
yi−1,dyi

(ti − ti−1)

)
· Ka,ε

yk,{0}(1) . (3.15)

We are finally ready to make explicit the link between the law Pa
ε and our model P

a
ε,N .

Let us introduce the event

AN :=
{
{N,N + 1} ⊂ τ

}
=
{
∃k ≥ 0 : τk = N, τk+1 = N + 1

}
. (3.16)

The following proposition is an immediate consequence of (3.12), (3.14) and (3.15).

Proposition 3.1. For any N ∈ N and ε > 0, the vector
{
ℓN , (τi)i≤ℓN

, (Ji)i≤ℓN

}
has the

same law under P
a
ε,N and under the conditional law Pa

ε ( · | AN ): for all k, {ti}i and {yi}i

P
a
ε,N

(
ℓN = k, τi = ti, Ji ∈ dyi, i ≤ k

)
= Pa

ε

(
ℓN = k, τi = ti, Ji ∈ dyi, i ≤ k

∣∣∣AN

)
.

Moreover the partition function can be expressed as Za
ε,N = (ef

a(ε)N/ε2) · Pa
ε (AN ).
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Thus we have shown that the contact set τ ∩ [0, N ] under the pinning law P
a
ε,N is

distributed like a Markov renewal process (of law Pa
ε ) conditioned to visit {N,N+1}. The

crucial point is that Pa
ε does not have any dependence on N , therefore all the dependence

on N of P
a
ε,N is contained in the conditioning on the event AN . As it will be clear in the

next sections, this fact is the key to all our results.

4. An infinite dimensional Perron-Frobenius problem

In this section we prove that for every ε > 0 the non-negative number fa(ε) and the
positive real function va

ε (·) : R → (0,∞) appearing in the definition of K
a,ε
x,dy(n), cf. (3.9),

can be chosen in such a way that equation (3.11) holds true.

4.1. Some analytical preliminaries. We recall that the kernel F
a
x,dy(n) and its density

f
a
x,y(n) are defined in equations (3.6), (3.7) and (3.8), and that µ(dx) = δ0(dx) + dx. In

particular we have 0 ≤ f
w
x,y(n) ≤ f

p
x,y(n). We first list some important properties of f

p
x,y(n):

• Uniformly for x, y in compact sets we have:

f
p
x,y(n) ∼ c

n2
(n→ ∞) , (4.1)

where c := 6/(πσ2); moreover there exists C > 0 such that ∀x, y ∈ R and n ∈ N

f
p
x,y(n) ≤ C

n2

∫

R

dz f
p
x,z(n) ≤ C

n3/2

∫

R

dz f
p
z,y(n) ≤ C

n3/2
. (4.2)

Both the above relations follow comparing (3.7) with Proposition 2.3.

• For n ≥ 2 we have: ∫

R2

dxdy f
p
x,y(n) =

1

n
, (4.3)

as it follows from (3.7) recalling that ϕ
(0,0)
n (·, ·) is a probability density.

For λ ≥ 0 we introduce the kernel

Ba,λ
x,dy :=

∑

n∈N

e−λn
F

a
x,dy(n) , (4.4)

which induces the integral operator: (Ba,λh)(x) :=
∫

R
Ba,λ

x,dy h(y). Note that for every x ∈ R

the kernel Ba,λ
x,dy is absolutely continuous with respect to the measure µ, so that we can

write Ba,λ
x,dy = ba,λ(x, y)µ(dy), where the density ba,λ(x, y) is given by (cf. (3.7))

ba,λ(x, y) = e−λ
f
a
x,0(1)1(y=0) +

∑

n≥2

e−λn
f
a
x,y(n)1(y 6=0) . (4.5)

The following result is of basic importance.

Lemma 4.1. For every λ ≥ 0, Ba,λ is a compact operator on the Hilbert space L2(R,dµ).

Proof. We are going to check the stronger condition that Ba,λ is Hilbert-Schmidt, i.e.
∫

R2

ba,λ(x, y)2 µ(dx)µ(dy) < ∞ . (4.6)
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Since 0 ≤ f
w
x,y(n) ≤ f

p
x,y(n) it suffices to focus on the case a = p. Setting λ = 0 in the r.h.s.

of (4.5) we obtain

bp,λ(x, y)2 ≤ f
p
x,0(1)

2 1(y=0) +
∑

n,m≥2

f
p
x,y(n) f

p
x,y(m)1(y 6=0) ,

hence∫

R2

bp,λ(x, y)2 µ(dx)µ(dy) ≤
∫

R

f
p
x,0(1)

2 µ(dx) +
∑

n,m≥2

∫

R

f
p
0,y(n) f

p
0,y(m) dy

+
∑

n,m≥2

∫

R2

f
p
x,y(n) f

p
x,y(m) dxdy .

(4.7)

From the definition (3.7) of f
p
x,0(1) it is immediate to check that the first term in the r.h.s.

is finite. For the second term, we can apply the two relations in (4.2), getting

∑

n,m≥2

∫

R

f
p
0,y(n) f

p
0,y(m) dy ≤

∑

n,m≥2

C

n2

∫

R

f
p
0,y(m) dy ≤

∑

n,m≥2

C

n2

C

m3/2
< ∞ .

For the third term, it is convenient first to exploit the symmetry between n and m,
restricting the sum on the set n ≥ m :

∑

n,m≥2

∫

R2

f
p
x,y(n) f

p
x,y(m) dxdy ≤ 2

∑

m≥2

∑

n≥m

∫

R2

f
p
x,y(n) f

p
x,y(m) dxdy .

Then applying relations (4.2) and (4.3) we get

∑

m≥2

∑

n≥m

∫

R2

f
p
x,y(n) f

p
x,y(m) dxdy ≤

∑

m≥2

∑

n≥m

1

m

C

n2
= C

∑

m≥2

1

m

∑

n≥m

1

n2
.

However the last sum is bounded by (const.)/m, hence the r.h.s. is finite. �

4.2. A formula for the free energy. Lemma 4.1 allows us to apply an infinite dimen-
sional analogue of the classical Perron-Frobenius Theorem. We first introduce the function
δa(λ) ∈ [0,∞) defined for λ ≥ 0 by

δa(λ) := spectral radius of the operator Ba,λ . (4.8)

We observe that by [25] one can define δa(λ) more explicitly as

δa(λ) := inf

{
R > 0 :

∞∑

n=0

(Ba,λ)◦n0,{0}
Rn

<∞
}
, (4.9)

where the convolution ◦ between kernels is defined in §1.6. One checks directly that indeed
δa(λ) ∈ (0,∞) for every λ ≥ 0. By Theorem 1 in [33], δa(λ) is an isolated and simple

eigenvalue of Ba,λ. The function δa(·) is non-increasing, continuous on [0,∞) and analytic
on (0,∞), because the operator Ba,λ has these properties and δa(λ) is simple and isolated,
cf. [20, Ch.VII-§1.3]. The analyticity and the fact that δa(·) is not constant (because
δa(λ) → 0 as λ → +∞) force δa(·) to be strictly decreasing. Denoting by (δa)−1(·) the
inverse function, defined on the domain (0, δa(0)], we can now define εac and fa(ε) by

εac :=
1

δa(0)
fa(ε) :=

{
(δa)−1(1/ε) if ε ≥ εac
0 if ε ≤ εac

. (4.10)



(1+1)–DIMENSIONAL FIELDS WITH LAPLACIAN INTERACTION 17

From now on we focus on the operator Ba,fa(ε), that is on Ba,λ for λ = fa(ε), whose

spectral radius equals 1/ε ∧ 1/εac by construction. Notice that ba,fa(ε)(x, y) > 0 for every
x, y ∈ Ωa, where Ωp = R and Ωw = R

+. Then Theorem 1 in [33] gives the existence of the

so-called right and left Perron–Frobenius eigenfunctions of Ba,fa(ε), i.e. of two functions
va
ε (·), wa

ε (·) ∈ L2(R,dµ) such that va
ε (x) > 0 and wa

ε (x) > 0, for µ–a.e. x ∈ Ωa, and such
that

∫

y∈R

B
a,fa(ε)
x,dy va

ε (y) =

(
1

ε
∧ 1

εac

)
va
ε (x)

∫

x∈R

wa
ε (x)B

a,fa(ε)
x,dy µ(dx) =

(
1

ε
∧ 1

εac

)
wa

ε (y)µ(dy) .

(4.11)

Notice that in the wetting case vw
ε (x) = ww

ε (x) = 0 for all x < 0. Spelling out the first
equation in (4.11) we have

va
ε (x) =

1
1
ε ∧ 1

εa
c

∑

n∈N

e−fa(ε)n

∫

y∈R

f
a
x,y(n) va

ε (y)µ(dy) . (4.12)

This yields easily that va
ε (x) > 0 for every x ∈ Ωa (and not only µ–a.e.). One shows

analogously that wa
ε (x) > 0 for every x ∈ Ωa.

Having defined the quantities εac , f
a(ε) and va

ε (·), it remains to check that equation
(3.11) indeed holds true. But this is a straightforward consequence of (4.11): in fact by
the definition (3.9) of K

a,ε
x,dy(n) we have

∫

y∈R

∑

n∈N

K
a,ε
x,dy(n) =

ε

va
ε (x)

∫

y∈R

(
∑

n∈N

F
a
x,dy(n) e−fa(ε)n

)
va
ε (y)

=
ε

va
ε (x)

∫

y∈R

B
a,fa(ε)
x,dy va

ε (y) = ε

(
1

ε
∧ 1

εac

)
= 1 ∧ ε

εac
.

We note that the functions va
ε (·) and wa

ε (·) are uniquely defined up to a multiplicative
constant and we use this degree of freedom to fix 〈va

ε , w
a
ε 〉 =

∫
R
va
ε w

a
ε dµ = 1. In other

words, the measure νa
ε defined by

νa
ε (dx) := wa

ε (x) va
ε (x)µ(dx) (4.13)

is a probability measure: νa
ε (R) = 1. An important observation is that for ε ≥ εac the

probability measure νa
ε is invariant for the kernel Da,ε

x,dy, as it follows from (3.13) and (3.9).

This means that the Markov chain {Jk}k is positive recurrent, cf. [25].

We conclude this section with a simple perturbation result that will be useful later.
Let Ax,dy and Cx,dy be two non-negative kernels that induce two compact operators on
L2(R,dµ). Assume that the spectral radius of Cx,dy is strictly positive. For t ∈ [0,∞) we
set γ(t) := spectral radius of Ax,dy + t · Cx,dy. Then we have the following:

Lemma 4.2. The function t 7→ γ(t) is strictly increasing: in particular γ(0) < γ(1).

Proof. The function γ(·) is clearly non-decreasing. It follows by Theorem 1 in [33] that
γ(t) is a simple and isolated eigenvalue of Ax,dy + t · Cx,dy for every t ≥ 0, therefore by
perturbation theory [20, Ch.VII-§1.3] the function γ(·) is analytic. Since γ(t) ≥ (const.) · t
(here we use the hypothesis that the spectral radius of Cx,dy is strictly positive), the
function γ(·) is non-constant and therefore it must be strictly increasing. �
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5. Proof of Theorem 1.2

We apply the content of the preceding sections to prove Theorem 1.2. Before that, we
show that from the Markov renewal structure described in Section 3 one can extract a
genuine renewal process, which will be a basic technical tool.

5.1. From Markov renewals to true renewals. Recalling the definition (3.1) of the
contact set τ , we introduce the subset χ of the adjacent contact points defined by

χ := {i ∈ Z
+ : ϕi−1 = ϕi = 0} ⊂ τ ⊂ Z

+ , (5.1)

where we set by definition ϕ−1 = ϕ0 = 0, so that 0 ∈ χ. Note that χ = τ ∩ (τ + 1) and
that the point of χ are the random variables {χk}k≥0 defined by

χ0 := 0 χk+1 := inf{i > χk : ϕi−1 = ϕi = 0} . (5.2)

By (3.16) the event AN can be written as AN = {N + 1 ∈ χ}, therefore by Proposi-
tion 3.1 the partition function can be written as

Za
ε,N =

ef
a(ε)N

ε2
· Pa

ε

(
N + 1 ∈ χ

)
. (5.3)

The reason for focusing on the process {χk}k is explained by the following proposition.

Proposition 5.1. The process {χk}k≥0 under Pa
ε is a classical (i.e. not Markov) renewal

process, which is non terminating for ε ≥ εac .

Proof. We introduce the epochs {ζk}k of return to zero of the process {Jk}k:

ζ0 := 0 ζn+1 := inf{k > ζn : Jk = 0} . (5.4)

It is clear that the variables {ζk − ζk−1}k∈N are i.i.d. under Pa
ε , because {Jk}k is a Markov

chain. Observe that χk = τζk
, for every k ≥ 0, as it follows by (3.2), (3.3) and (5.2). This

fact implies that also the variables {χk −χk−1}k∈N = {τζk
− τζk−1

}k∈N are i.i.d. under Pa
ε ,

because the transition kernel of the process {(τk, Jk)}k≥0 is a function of (n −m), cf. the
r.h.s. of (3.12). Therefore {χk}k≥0 under Pa

ε is a genuine renewal process.
We have already observed that for ε ≥ εac the Markov chain {Jk}k≥0 is positive recurrent,

because for ε ≥ εac the probability measure νa
ε defined in (4.13) is by construction an

invariant measure for its transition kernel Da,ε
x,dy, cf. (3.13) and (3.9). Since νa

ε ({0}) > 0,

the state 0 is an atom for {Jk}k≥0 and then it is a classical result that the returns of
{Jk}k≥0 to 0 are not only Pa

ε –a.s. finite, but also integrable:

Pa
ε

(
ζ1 <∞

)
= 1 Ea

ε

(
ζ1
)

=
1

νa
ε ({0}) < ∞ (ε ≥ εac ) , (5.5)

cf. [25, Ch. 5]. Therefore also χ1 = τζ1 is Pa
ε –a.s. a finite random variable for ε ≥ εac . �

5.2. Proof of Theorem 1.2. We start showing that the quantities fa(ε) and εac , that
were defined in (4.10) and appear in the definition (3.9) of the kernel K

a,ε
x,dy(n), indeed

coincide with the corresponding quantities defined in the introduction. By (5.3) we have

1

N
logZa

ε,N = fa(ε) − 2

N
log ε +

1

N
logPa

ε (N + 1 ∈ χ) .
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Since by (1.9) we have lim infN→∞N−1 logZa
ε,N ≥ 0, when fa(ε) = 0 the trivial bound

Pa
ε (N + 1 ∈ χ) ≤ 1 shows that equation (1.8) holds true. Therefore to complete the

identification of fa it suffices to show that when fa(ε) > 0, i.e. when ε > εac , we have

lim
N→∞

1

N
logPa

ε (N + 1 ∈ χ) = 0 . (5.6)

However it is well-known (and easy to prove) that this relation is true in complete general-
ity for any non-terminating aperiodic renewal process, and Proposition 5.1 shows that for
ε > εac the process {χk}k under Pa

ε is indeed a genuine non-terminating renewal process,
which is aperiodic because Pa

ε (χ1 = 1) > 0. This completes the identification of fa(ε), as
defined in (4.10), with the free energy defined by (1.8).

Completing the proof of Theorem 1.2 is now easy. By definition we have Bp,0
x,dy ≥ Bw,0

x,dy

and one checks easily that the non-negative kernel Bp,0
x,dy − Bw,0

x,dy has strictly positive

spectral radius. Then Lemma 4.2 with Ax,dy = Bw,0
x,dy and Cx,dy = Bp,0

x,dy − Bw,0
x,dy yields

δw(0) < δp(0), i.e. εwc > εpc by (4.10). The analiticity of fa(·) on (εac ,∞) has been already

discussed in §4.2. It remains to prove (1.11). Note that e−λ
F

a
x,dy(1) ≤ Ba,λ

x,dy ≤ e−λBa,0
x,dy

by (4.4), hence c e−λ ≤ δa(λ) ≤ c′ e−λ by (4.9), with c, c′ > 0. Taking λ = (δa)−1(1/ε) and
using (4.10) we finally obtain fa(ε) ∼ log(ε) as ε→ ∞. �

6. Proof of Theorem 1.3

In this section we prove Theorem 1.3, i.e. we show that equation (1.16) holds true:

lim inf
N→∞

E
w
εw
c ,N

(
ℓN
N

)
> 0 ,

where we have used (1.13). We introduce the quantity

ιN := #
{
χ ∩ [0, N ]

}
= max

{
k ≥ 0 : χk ≤ N

}
, (6.1)

and since ℓN ≥ ιN , by Proposition 3.1 it is sufficient to show that

lim inf
N→∞

E
w
εw
c ,N

(
ιN
N

)
= lim inf

N→∞
Ew

εw
c

(
ιN
N

∣∣∣∣AN

)
> 0 , (6.2)

We recall that the process {χk}k under Pw
εw
c

is a classical aperiodic renewal process

by Proposition 5.1. Moreover we claim that b := Ew
εw
c
(χ1) < ∞. Then by the Strong

Law of Large Numbers we have ιN/N → 1/b, Pw
εw
c
–a.s., and by the Renewal Theorem

Pw
εw
c

(
AN

)
= Pw

εw
c

(
N + 1 ∈ χ

)
→ 1/b > 0 as N → ∞. It follows that

Ew
εw
c

(
ιN
N

∣∣∣∣AN

)
−→ 1

b
> 0 (N → ∞) ,

and equation (6.2) follows. It only remains to check that Ew
εw
c
(χ1) <∞.

6.1. A formula for Ew
εw
c
(χ1). The dependency on εwc will be omitted from now on for

notational convenience. We recall that χ1 := τ1+. . .+τζ1, where ζ1 := inf{n ≥ 0 : Jn = 0}.
We introduce the kernel K̂

w
x,dy(n) := K

w
x,dy(n)1(y 6=0) (= K

w
x,dy(n)1(n≥2)) that gives the

transition probabilities of the process {(τk, Jk)}k before the chain {Jk}k comes back to
zero. Summing over the possible values of the variable ζ1, we obtain the expression

Pw
(
χ1 = n

)
=

∫

y∈R

∞∑

k=0

(K̂w)∗k0,dy(n− 1) · Kw
y,{0}(1) , (6.3)
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where the convolution ∗ of kernels is defined in §1.6. Now observe that

∑

m∈N

m ·
∞∑

k=0

(K̂w)∗k0,dy(m) =

∞∑

k=1

∞∑

m=1

∑

t1,...,tk∈N

t1+...+tk=m

(t1 + . . .+ tk) ·
(
K̂

w(t1) ◦ . . . ◦ K̂
w(tk)

)
0,dy

=
∞∑

k=1

k∑

i=1

(
(D̂w)◦(i−1) ◦ M̂w ◦ (D̂w)◦(k−i)

)
0,dy

=
(
(1 − D̂w)−1 ◦ M̂w ◦ (1 − D̂w)−1

)
0,dy

,

where D̂w
x,dy :=

∑
n∈N

K̂
w
x,dy(n) = Dw

x,dy1(y 6=0) and M̂w
x,dy :=

∑
n∈N

n · K̂w
x,dy(n). Notice that

K
w
y,{0}(1) = Dw

y,{0} by (3.13), therefore by (6.3) we have

Ew(χ1) =
∑

n∈N

n · Pw
(
χ1 = n

)
= 1 +

∑

n∈N

(n− 1) · Pw
(
χ1 = n

)

= 1 +
(
(1 − D̂w)−1 ◦ M̂w ◦ (1 − D̂w)−1 ◦Dw

)
0,{0} .

We recall that Dw
x,dy is the transition kernel of the Markov chain {Jk}k under Pw, which

is positive recurrent with invariance probability measure νw(·) = νw
εw
c
(·) defined in (4.13).

Since νw({0}) > 0, the state 0 is an atom for {Jk}k and therefore by [25] the following
formulas hold: for all x, y ∈ R

(1 − D̂w)−1
0,dx =

νw(dx)

νw({0}) =
vw(x)ww(x)

vw(0)ww(0)
µ(dx)

(
(1 − D̂w)−1 ◦Dw

)
y,{0} = 1 .

Then we finally come to the expression

Ew(χ1) = 1 + εwc

∫

x,y∈R+

µ(dx)µ(dy)
ww(x)

ww(0)

(
∑

n∈N

n f
w
x,y(n)

)
vw(y)

vw(0)
. (6.4)

6.2. Finiteness of Ew
εw
c
(χ1). First we state two relations that we prove below: for both

a ∈ {p,w} and for all ε > 0:
∫

R

µ(dx) va
ε (x) log(x2 ∨ 1) < ∞

∫

R

µ(dx)wa
ε (x) log(x2 ∨ 1) < ∞ . (6.5)

We aim at showing that the r.h.s. of (6.4) is finite. We start considering the terms in
the sum with n ≥ (x2 ∨ y2): applying (3.8), (2.12) and (4.2) we obtain

∑

n≥(x2∨y2)

n f
w
x,y(n) ≤

∑

n≥(x2∨y2)

1

n1+c
· (const.)

P(0,0)
(
Zn−1 ≥ y + (n − 1)x, Zn ≥ nx

) ≤ (const.′) ,

because in the range of summation n ≥ (x2 ∨ y2) we have

P(0,0)
(
Zn−1 ≥ y + (n− 1)x, Zn ≥ nx

)
≥ P(0,0)

(
Zn−1 ≥ n3/2, Zn ≥ n3/2

)

≥ P(0,0)
(
Yn ≤

√
n, Zn ≥ 2n3/2

)
≥ (const.) > 0 ,

having used the weak convergence of
(
Yn/

√
n, Zn/n

3/2
)

as n→ ∞, cf. §2.3. Therefore the

contribution to the r.h.s. of (6.4) of the terms with n ≥ (x2 ∨ y2) is bounded by

εwc (const.′)
∫

x,y∈R+

µ(dx)µ(dy)
ww(x)

ww(0)

vw(y)

vw(0)
≤ εwc (const.′)

‖vw‖1 ‖ww‖1

vw(0)ww(0)
,

where ‖ · ‖1 denotes the norm in L1(R,dµ). Notice that ‖vw‖1 <∞, ‖ww‖1 <∞ by (6.5).



(1+1)–DIMENSIONAL FIELDS WITH LAPLACIAN INTERACTION 21

Next we deal with the terms in the r.h.s. of (6.4) with n < (x2 ∨ y2). From the bound
f
w
x,y(n) ≤ f

p
x,y(n) ≤ C/n2, cf. (4.2), we have

∑

n<(x2∨y2)

n f
w
x,y(n) ≤ C

∑

n<(x2∨y2)

1

n
≤ C

(
log(x2 ∨ 1) + log(y2 ∨ 1)

)
,

and using again (6.5) we see that the r.h.s. of (6.4) is indeed finite.

6.3. Proof of equation (6.5). We focus on the first relation, the second one being anal-
ogous. By (4.12) we have for both a ∈ {p,w}

va
ε (x) ≤ (const.)

∑

n∈N

∫

y∈R

f
p
x,y(n) va

ε (y)µ(dy) ,

because f
w
x,y(n) ≤ f

p
x,y(n). Setting un(y) :=

∫
x∈R

f
p
x,y(n) log(x2 ∨ 1)µ(dx) and applying the

Cauchy-Schwarz inequality we get
∫

x∈R

µ(dx) va
ε (x) log(x2 ∨ 1) ≤ (const.)

∑

n∈N

∫

y∈R

µ(dy)un(y) va
ε (y)

≤ (const.) ‖va
ε‖2 ·

(
∑

n∈N

‖un‖2

)
,

(6.6)

where ‖va
ε‖2 :=

( ∫
R
(va

ε (x))2 µ(dx)
)1/2

and likewise for ‖un‖2. Setting for short f
p
R,y(n) :=∫

R
f
p
x,y(n)µ(dx), by Jensen’s inequality we have

‖un‖2
2 =

∫

y∈R

(
un(y)

)2
µ(dy) =

∫

y∈R

µ(dy)

(∫

x∈R

f
p
x,y(n) log(x2 ∨ 1)µ(dx)

)2

≤
∫

y∈R

µ(dy)
(
f
p
R,y(n)

)2
∫

x∈R

f
p
x,y(n)

f
p
R,y(n)

log2(x2 ∨ 1)µ(dx) ,

and since f
p
R,y(n) ≤ C/n3/2 by (4.2), Fubini’s Theorem yields
∫

y∈R

(
un(y)

)2
µ(dy) ≤ C

n3/2

1

n

∫

x∈R

n · fpx,R(n) log2(x2 ∨ 1)µ(dx) .

Observe that f
p
R,R(n) :=

∫
x∈R

f
p
x,R(n)µ(dx) = 1/n by (4.3), therefore x 7→ n · fpx,R(n) is a

probability density: in fact it is the density of the random variable Zn/n under P(0,0), as
it follows from (3.7). Since log2(x2 ∨ 1) ≤ log2(x2 ∨ e) and the function z 7→ log2(z) is
concave on the half-line [e,∞), by Jensen’s inequality we get

∫

x∈R

n · fpx,R(n) log2(x2 ∨ 1)µ(dx) ≤ log2

(∫

x∈R

n · fpx,R(n) (x2 ∨ e)µ(dx)

)

≤ log2

(
E(0,0)

(
Z2

n

n2
∨ e
))

≤ log2
(
e+ (const.) · n

)
,

because by (2.2) we have E(0,0)
(
Z2

n

)
∼ σ2 · n3/3 as n→ ∞. It follows that

∫

y∈R

(
un(y)

)2
µ(dy) ≤ C

n5/2
log2

(
e+ (const.) · n

)
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and therefore
∑

n∈N

‖un‖2 =
∑

n∈N

√∫

y∈R

(
un(y)

)2
µ(dy) < ∞ .

Looking back to (6.6), equation (6.5) is proven.

7. Proof of Theorem 1.4

In this section we prove Theorem 1.4, i.e. we show that equation (1.17) holds true:

lim sup
ε↓εp

c

lim sup
N→∞

Ep
ε

(
ℓN
N

∣∣∣∣AN

)
= 0 , (7.1)

where we have used equation (1.13) and Proposition 3.1. The idea is to focus first on the
variable ιN , which is easier to handle, and then to make the comparison with ℓN .

7.1. From ιN to ℓN . We recall that the process {χk}k under the law Pp
ε is a classical

aperiodic renewal process, see Proposition 5.1. We introduce the step law

qε(n) := Pp
ε (χ1 = n) , (7.2)

whose asymptotic behavior as n→ ∞, when ε is close to εpc , is given by the following:

Proposition 7.1. There exists α > 0 such that for every ε ∈ [εpc , ε
p
c + α] we have

qε(n) ∼ Cε

n2
exp(−fp(ε) · n) (n→ ∞) , (7.3)

where Cε ∈ (0,∞) is a continuous function of ε.

We postpone the proof to the next paragraphs: for the moment we focus on the conse-
quences. We assume in the following that εpc < ε ≤ εpc + α.

Let us set Gε := Ep
ε (χ1) < ∞ by Proposition 7.1. A standard Tauberian theorem, cf.

[5, Th. 1.7.1], gives the asymptotic behavior of Gε as ε ↓ εpc :

Gε ∼ (const.) log
1

fp(ε)
(ε ↓ εpc ) . (7.4)

Notice that the classical Renewal Theorem yields

Pp
ε

(
AN

)
= Pp

ε

(
N + 1 ∈ χ

)
→ 1

Gε
> 0 (N → ∞) . (7.5)

Therefore by the Weak Law of Large Numbers for the process {χk}k we have

Pp
ε

(
ιN
N

≥ 2

Gε

∣∣∣∣AN

)
=

Pp
ε

(
χ⌊2N/Gε⌋ ≤ N

)

Pp
ε (AN )

=
Pp

ε

(
χ⌊2N/Gε⌋

⌊2N/Gε⌋ ≤ Gε
2

)

Pp
ε (AN )

N→∞−−−−→ 0 . (7.6)

We recall that ζk denotes the epoch of the k-th return of the process {Jk}k to the state
zero, cf. (5.4), and that {ζk}k≥0 under Pp

ε is a non-terminating renewal process with finite
mean mε := Ep

ε (ζ1) = 1/νp
ε ({0}) <∞, cf. (5.5). Then by the Weak Law of Large Numbers

Pp
ε

(
ζk
k
> 2mε

)
−→ 0 (k → ∞) . (7.7)

We are finally ready to estimate ℓN . A trivial bound yields

Pp
ε

(
ℓN
N

≥ 4mε

Gε

∣∣∣∣AN

)
≤ Pp

ε

(
ιN
N

≥ 2

Gε

∣∣∣∣AN

)
+ Pp

ε

(
ℓN
N

≥ 4mε

Gε
,
ιN
N

<
2

Gε

∣∣∣∣AN

)
.
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The first term in the r.h.s. vanishes as N → ∞ by (7.6). For the second term we observe
that by definition ℓN = ζιN on the event AN , hence by an inclusion argument we have

Pp
ε

(
ℓN
N

≥ 4mε

Gε
,
ιN
N

<
2

Gε

∣∣∣∣AN

)
≤ Pp

ε

(
ζ⌊2N/Gε⌋
⌊2N/Gε⌋

> 2mε

∣∣∣∣AN

)
N→∞−−−−→ 0 ,

having used (7.7) and (7.5). Since ℓN/N ≤ 1, we can finally write

lim sup
N→∞

Ep
ε

(
ℓN
N

∣∣∣∣AN

)
≤ 4mε

Gε
+ lim sup

N→∞
Pp

ε

(
ℓN
N

≥ 4mε

Gε

∣∣∣∣AN

)
=

4mε

Gε
.

Now observe that as ε ↓ εpc we have mε → 1/νp
εp
c
({0}) < ∞ and moreover Gε → +∞ by

(7.4). Then we let ε ↓ εpc in the last equation and (7.1) is proven. �

7.2. A Markov Renewal Theorem with infinite mean. Before proving Proposi-
tion 7.1, we derive a generalized Renewal Theorem in our Markovian setting. Since the
steps are more transparent if carried out in a general setting, we assume that we are given
a kernel Ax,dy(n) satisfying the following assumptions:

(1) the spectral radius of Gx,dy :=
∑

n∈N
Ax,dy(n) is strictly less than one;

(2) we have Ax,dy(n) ∼ Lx,dy/n
2 as n → ∞, for some kernel Lx,dy (for the precise

meaning of this relation we refer to §1.6), and moreover Ax,dy(n) ≤ cLx,dy/n
2 for

every n ∈ N, where c is a positive constant;

(3) there exists β > 1 such that
(
(1−βG)−1 ◦L◦ (1−βG)−1

)
x,F

<∞ for every x ∈ R

and for every bounded Borel set F ⊂ R.

The result we are going to prove is the following asymptotic relation:

∞∑

k=0

A
∗k
x,dy(n) ∼

(
(1 −G)−1 ◦ L ◦ (1 −G)−1

)
x,dy

n2
(n→ ∞) . (7.8)

The path we follow is close to [10, §3.4]. We start proving by induction the following
bound: for all k, n ∈ N and x, y ∈ R

A
∗k
x,dy(n) ≤ c k2

∑k−1
i=0

(
G◦i ◦ L ◦G◦[(k−1)−i]

)
x,dy

n2
. (7.9)

The k = 1 case holds by assumption (2). Then we consider the even-k case: by the definition
of the convolution ∗ we have

A
∗(2k)
x,dy (n) ≤

⌈n/2⌉∑

h=1

∫

z∈R

(
A
∗k
x,dz(h) · A∗k

z,dy(n− h) + A
∗k
x,dz(n− h) · A∗k

z,dy(h)
)
.

Observing that
∑

h∈N
A
∗k
x,dy(h) = G◦k

x,dy and applying the inductive step we get

A
∗(2k)
x,dy (n) ≤ c k2

(n/2)2

[(
G◦k ◦

(∑k−1
i=0G

◦i ◦ L ◦G◦[(k−1)−i]
))

x,dy

+
((∑k−1

i=0G
◦i ◦ L ◦G◦[(k−1)−i]

)
◦G◦k

)
x,dy

]
=

c (2k)2

n2

2k−1∑

i=0

(
G◦i ◦ L ◦G◦[(2k−1)−i]

)
x,dy

,

so that (7.9) is proven, the odd-k case being analogous. Note that, choosing a constant
c′ > 0 such that k2 ≤ c′βk for every k, assumption (3) yields that for every x ∈ R and for
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every bounded Borel set F ⊂ R

∞∑

k=1

k−1∑

i=0

k2
(
G◦i ◦ L ◦G◦[(k−1)−i]

)
x,F

≤ c′
∞∑

k=1

k−1∑

i=0

(
(βG)◦i ◦ L ◦ (βG)◦[(k−1)−i]

)
x,F

= c′
(
(1 − βG)−1 ◦ L ◦ (1 − βG)−1

)
x,F

< ∞ .

(7.10)

Next we claim that

A
∗k
x,dy(n) ∼

∑k−1
i=0

(
G◦i ◦ L ◦G◦[(k−1)−i]

)
x,dy

n2
(n→ ∞) . (7.11)

We proceed by induction: the k = 1 case holds by assumption (1), while for general k

A
∗k
x,dy(n) =

n/2∑

h=1

∫

z∈R

(
A
∗(k−1)
x,dz (h) · Az,dy(n− h) + A

∗(k−1)
x,dz (n− h) · Az,dy(h)

)
.

Applying the induction step and using Dominated Convergence, thanks to (7.9) and (7.10),
we have (observe that

∑
h∈N

A
∗m
x,dy(h) = G◦m

x,dy)

n2
A
∗k
x,dy(n)

n→∞−−−→
(
G◦(k−1) ◦ L +

(∑k−2
i=0G

◦i ◦ L ◦G◦[(k−2)−i]
)
◦G
)

x,dy

=
k−1∑

i=0

(
G◦i ◦ L ◦G◦[(k−1)−i]

)
x,dy

,

and (7.11) is proven. Finally we can write as n→ ∞

n2
∑

k≥0

A
∗k
x,dy(n) →

∑

k≥0

k−1∑

i=0

(
G◦i ◦ L ◦G◦[(k−1)−i]

)
x,dy

=
(
(1 −G)−1 ◦ L ◦ (1 −G)−1

)
x,dy

,

where we have applied (7.11) and again Dominated Convergence, using (7.9) and (7.10).
This completes the proof of equation (7.8).

7.3. Proof of Proposition 7.1. We start from a close analog of equation (6.3), namely

qε(n) =

∫

y∈R

( ∞∑

k=0

(K̂p,ε)∗k0,dy(n− 1)

)
· Kp,ε

y,{0}(1)

= ε · e−f(ε) n ·
∫

y∈R

( ∞∑

k=0

εk (F̂p)∗k0,dy(n− 1)

)
· Fp

y,{0}(1) ,

(7.12)

where we have set K̂
p,ε
x,dy(n) := K

p,ε
x,dy(n)1(y 6=0) and F̂

p
x,dy(n) := F

p
x,dy(n)1(y 6=0). What we

need is the asymptotic behavior as n → ∞ of the r.h.s. of (7.12) and to this purpose we

are going to apply the results of §7.2 to the kernel Ax,dy(n) = ε · F̂p
x,dy(n).

We need to check that the assumptions (1)–(3) are satisfied. The asymptotic behavior

of F̂
p
x,dy(n) is obtained by (4.1):

F̂
p
x,dy(n) ∼ c

n2
dy (n→ ∞) , (7.13)

and from (4.2) we see that assumption (2) is ok. We set for simplicity

B̂p
x,dy :=

∑

n∈N

F̂ p
x,dy(n) = Bp,0

x,dy1(y 6=0) ,
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where the kernel Bp,0
x,dy was defined in equation (4.4). The spectral radius of εpc · Bp,0

x,dy

equals one by the very definition of εpc . Then applying Lemma 4.2 with Ax,dy = εpc · B̂p
x,dy

and Cx,dy = εpc · Bp,0
x,dy − εpc · B̂p

x,dy (it is easily seen that the spectral radius of Cx,dy =

εpc · Bp,0
x,dy1(y=0) = εpc · e−V (x)δ0(dy) is strictly positive) we have that the spectral radius

of εpc · B̂p
x,dy is strictly smaller than one. By continuity there exists α > 0 such that the

spectral radius of ε · B̂p
x,dy is strictly smaller than one for every ε ∈ [εpc , ε

p
c + α]. Then

assumption (1) is verified and it only remains to check assumption (3), i.e.
(∫

y∈R

(1 − βεB̂p)−1
x,dy

)(∫

z∈R

µ(dz)

∫

w∈A
(1 − βεB̂p)−1

z,dw v(w)

)
< ∞ , (7.14)

for some β > 1. Let us focus on the first integral: we can write
∫

y∈R

(1 − βεB̂p)−1
x,dy = 1 +

∑

n≥0

(βε)

∫

z∈R

(βεB̂p)◦nx,dz g(z) ,

where g(z) :=
∫
y∈R

B̂p
z,dy. We choose β sufficiently close to one so that the spectral radius

of βεB̂p, let us call it ρ, is strictly smaller than one. Denoting by ‖·‖ the operator norm in

L2(R,dµ), a classical result gives ‖(βεB̂p)◦n‖1/n → ρ < 1 as n → ∞, cf. [20, Ch.III-§6.2].
Therefore, if we show that g(·) ∈ L2(R,dµ), we obtain

∫

y∈R

(1 − βεB̂p)−1
x,dy ≤ 1 + (βε)

∑

n≥0

‖(βεB̂p)◦n‖ ‖g‖ < ∞ .

To prove that g(·) ∈ L2(R,dµ), we observe that g(z) =
∑

n∈N

∫
y∈R

F̂
p
z,dy(n) so that

∫

x∈R

g(x)2 µ(dx) =
∑

n∈N

∑

m∈N

∫

x∈R

(∫

y∈R

F̂
p
x,dy(n)

)(∫

z∈R

F̂
p
x,dz(m)

)
µ(dx) .

Using the symmetry in n,m and applying (4.2) and (4.3), we finally obtain
∫

x∈R

g(x)2 µ(dx) ≤ 2
∑

m∈N

∑

n≥m

C

n3/2m
< ∞ .

With similar arguments one shows that also the second integral term in (7.14) is finite.
We can finally apply (7.8) in our setting, getting

∞∑

k=0

εk(F̂p)∗k0,dy(n) ∼ c ε

n2

(∫

z∈R

(1 − εB̂p)−1
0,dz

)
·
(∫

x∈R

dx (1 − εB̂p)−1
x,dy

)
(n→ ∞) .

Coming back to equation (7.12), we can apply Dominated Convergence thanks to (7.9)
and (7.10): we thus obtain equation (7.3), with Cε given by

Cε := c ε2
(∫

z∈R

(1 − εB̂p)−1
0,dz

)
·
(∫

x,y∈R

dx (1 − εB̂p)−1
x,dye

−V (y)

)
,

and the proof is completed. �
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Appendix A. Convexity of the free energy

Recall the definition (1.12) of the contact number ℓN and observe that in any case
ℓN ≥ 1 under P

a
ε,N , because ϕN = 0. Setting Ωp := R and Ωw := R

+, from the definitions

(1.5) and (1.7) of our models we can write for k ∈ Z
+

P
a
ε,N(ℓN = k+1) =

εk

Za
ε,N

{
∑

A⊂{1,...,N−1}
|A|=k

∫
e−H[−1,N+1](ϕ)

∏

m∈A

δ0(dϕm)
∏

n∈A∁

dϕn1(ϕn∈Ωa)

}
.

The term in brackets in the r.h.s. is a positive number depending on a, k,N but not on ε:
let us call it Ca(k,N). Summing over k = 0, . . . , N − 1 we obtain

Za
ε,N =

N−1∑

k=0

εk Ca(k,N) f̃
a
N (t) =

1

N
log

(
N−1∑

k=0

etk Ca(k,N)

)
,

where f̃
a
N (t) := fa

N (et), cf. (1.10). Differentiating it the variable t we have

(f̃
a
N )′(t) =

1

N
E

a
et,N

(
ℓN
)

(f̃
a
N )′′(t) =

1

N
varPa

et,N

(
ℓN
)

≥ 0 ,

which proves equation (1.13) and the convexity of f̃
a
N (t).

Now fix x ∈ [0, 1]. For every α ≥ 0 we have

P
a
ε,N

(
ℓN/N > x

)
= P

a
ε,N

(
eαℓN > eαxN

)
≤ e−αxN

E
a
ε,N

(
eαℓN

)
. (A.1)

Using the above relations we can write

E
a
ε,N

(
eαℓN

)
=

N−1∑

k=0

eα(k+1)
P

a
ε,N(ℓN = k + 1) = eα

N−1∑

k=0

(eαε)k
Ca(k,N)

Za
ε,N

= eα
Za

eαε,N

Za
ε,N

,

therefore by (1.8) we have N−1 log E
a
ε,N

(
eαℓN

)
−→ fa(eαε) − fa(ε) as N → ∞. If ε 6= εac

the free energy fa is differentiable at ε by Theorem 1.2, therefore as α ↓ 0 we have
fa(eαε) − fa(ε) = da(ε) · α + o(α), where da(ε) = ε · (fa)′(ε). Plugging x = da(ε) + δ
(with δ > 0) and α small into (A.1) we obtain

P
a
ε,N

(
ℓN/N > da(ε) + δ

)
≤ e−(const.)N .

With almost identical arguments one shows that P
a
ε,N

(
ℓN/N < da(ε) − δ

)
≤ e−(const.′)N ,

therefore equations (1.14) and (1.15) are proven.

Appendix B. LLT for the integrated random walk

We are going to prove Proposition 2.3. We recall that the density of the random vector
(B1, I1) is given by (2.7). Then its characteristic function Ψ(s, t) is given by

Ψ(s, t) = exp
(
− s2/2 − t2/6 − st/2

)
.

We denote by ψn(u, v) := E(0,0)
[
exp

(
i(uYn+vZn)

)]
the characteristic function of (Yn, Zn).

An application of the Fourier-transform inversion formula gives

∣∣σ2n2ϕ(0,0)
n

(
σ
√
ny , σn3/2z

)
− g(y, z)

∣∣ ≤ 1

2π

∫ +∞

−∞

∣∣∣∣ψn

(
s

σ
√
n
,

t

σn3/2

)
− Ψ(s, t)

∣∣∣∣ ds dt .
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The proof consists in showing that the r.h.s. vanishes as n→ ∞. More precisely, following
the proof of Theorem 2 in [16, §XV.5], we consider separately the three domains

D1 =
{
(s2 + t2) ≤ A

}
D2 =

{
A < (s2 + t2) ≤ B2 n

}
D3 =

{
(s2 + t2) > B2 n

}
,

and we show that, for a suitable choice of the positive constants A and B and for large n,
the integral in the r.h.s. above is less than ε on each domain, for every fixed ε > 0.

The domain D1. Denoting by ξ(u) := E[exp(iuX1)] the characteristic function of X1, from
(2.1) and (2.2) we have

ψn(u, v) = E(0,0)

[
n∏

m=1

ei(u+mv)Xn+1−m

]
=

n∏

m=1

ξ(u+mv) . (B.1)

Since by hypothesis E(X1) = 0 and E(X1
2) = σ2 ∈ (0,∞), it follows that

ξ(u) = 1 − σ2

2
u2 + o(u2) (u→ 0) , (B.2)

hence, uniformly for (s, t) such that (s2 + t2) ≤ A, we get from (B.1)

ψn

(
s

σ
√
n
,

t

σn3/2

)
= exp

[
− 1

2

n∑

m=1

(
s√
n

+m
t

n3/2

)2

+ o(1)

]
n→∞−−−−−→ Ψ(s, t) .

Therefore, for every choice of the parameter A, we can find n0 = n0(A) such that the
integral

∫
D1

∣∣ψn

(
s

σ
√

n
, t

σn3/2

)
− Ψ(s, t)

∣∣ds dt is smaller than ε for n ≥ n0.

The domain D2. From (B.2) it follows that |ξ(u)| = 1 − σ2u2/2 + o(u2) and therefore we
can fix B > 0 such that

∣∣ξ(u)
∣∣ ≤ exp

(
− σ2

4
u2

)
for |u| ≤ 2B

σ
.

Using (B.1) and some rough bounds, we get for (s, t) ∈ D2 and for all n ∈ N

∣∣∣∣ψn

(
s

σ
√
n
,

t

σn3/2

)∣∣∣∣ ≤ exp

[
− 1

4

n∑

m=1

(
s√
n

+m
t

n3/2

)2
]

≤ exp

[
− 1

4

(
s2 +

t2

3
+ st

)]
.

Then by the triangle inequality
∫

D2

∣∣∣∣ψn

(
s

σ
√
n
,

t

σn3/2

)
− Ψ(s, t)

∣∣∣∣ ds dt ≤
∫

{s2+t2>A}

(
e−

1
4

(
s2+ t2

3
+st
)

+ Ψ(s, t)

)
ds dt ,

and note that the r.h.s. can be made smaller than ε by choosing A large (this fixes A).

The domain D3. By the triangle inequality we have
∫

D3

∣∣∣∣ψn

(
s

σ
√
n
,

t

σn3/2

)
− Ψ(s, t)

∣∣∣∣ ds dt

≤
∫

{s2+t2>B2n}

∣∣∣∣ψn

(
s

σ
√
n
,

t

σn3/2

)∣∣∣∣ds dt +

∫

{s2+t2>B2n}
Ψ(s, t) ds dt .
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It is clear that the second integral in the r.h.s. vanishes as n→ ∞ and it remains to show
that the same is true for the first integral I1. With the change of variables s/(σ

√
n) =

r cos(θ), t/(σ
√
n) = r sin(θ) and using (B.1), we can rewrite I1 as

I1 = σ2 n

∫

{θ∈[0,2π), r>B}

∣∣∣∣ψn

(
r cos(θ) ,

r sin(θ)

n

)∣∣∣∣ r dr dθ

= σ2 n

∫

{θ∈[0,2π), r>B}

{
n∏

m=1

∣∣ ξ
∣∣
(
r
(

cos(θ) +
m

n
sin(θ)

))}
r dr dθ ,

(B.3)

where by |ξ|(·) we mean the function u 7→ |ξ(u)|. It is convenient to divide the domain of
integration over θ in the two subsets

Θa :=
{
θ ∈ [0, 2π) : | cos(θ)| > 1/2

}
Θb :=

{
θ ∈ [0, 2π) : | cos(θ)| ≤ 1/2

}

and to split accordingly the integral I1 = I1,a + I1,b, with obvious notation. We are going
to show that both I1,a and I1,b vanish as n→ ∞.

Since ξ(·) is the characteristic function of the absolutely continuous random variables
X1, we have |ξ(u)| < 1 for all u 6= 0, cf. Lemma 4 in [16, §XV.1], and moreover |ξ(u)| → 0
as u→ ∞ by the Riemann-Lebesgue Lemma, cf. Lemma 3 in [16, §XV.4]. Therefore

∆ := sup
{u∈R: |u|≥B/10}

|ξ(u)| < 1 .

We are ready to bound I1,a and I1,b. For r > B, θ ∈ Θa and for m ≤ ⌊n/4⌋ we have

r
∣∣∣ cos(θ) +

m

n
sin(θ)

∣∣∣ ≥ B

4
≥ B

10
,

and therefore |ξ|
(
r(cos(θ) + m

n sin(θ))
)
≤ ∆. Since |ξ| ≤ 1, coming back to (B.3) we can

bound I1,a from above (for n ≥ 4) by

I1,a ≤ σ2 n∆⌊n/4⌋
∫

{θ∈Θa, r>B}

{
n∏

m=n−3

∣∣ ξ
∣∣
(
r
(

cos(θ) +
m

n
sin(θ)

))}
r dr dθ

≤ σ2 n∆⌊n/4⌋
∫

R2

n∏

m=n−3

∣∣ ξ
∣∣
(
x+

m

n
y

)
dxdy .

(B.4)

The bound for I1,b is analogous: for r > B, θ ∈ Θb and for m ≥ ⌊(3n)/4⌋ we have

r
∣∣∣ cos(θ) +

m

n
sin(θ)

∣∣∣ ≥ B

(
3

4

√
3

2
− 1

2

)
≥ B

10
,

and therefore |ξ|
(
r(cos(θ) + m

n sin(θ))
)

≤ ∆. Since |ξ| ≤ 1, in analogy to (B.4) we can
bound I1,b from above by

≤ σ2 n∆⌊n/4⌋−4

∫

R2

n∏

m=n−3

∣∣ ξ
∣∣
(
x+

m

n
y

)
dxdy . (B.5)

Combining (B.4) and (B.5), we can finally bound I1 = I1,a + I1,b from above by

I1 ≤ 2σ2 n∆⌊n/4⌋−4

∫

R2

n∏

m=n−3

∣∣ ξ
∣∣
(
x+

m

n
y

)
dxdy . (B.6)

Since ∆ < 1, if we prove that the integral in the r.h.s is bounded by C ·n for some positive
constant C, then it follows that I1 → 0 as n→ ∞ and the proof is completed.
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Notice that |ξ|2(·) = ξ(·) ξ∗(·) is the characteristic function of the random variable
X1 −X2, which has an absolutely continuous law with bounded density (this is because
the density of X1, that is exp(−V (·)), is bounded by hypothesis). Since |ξ|2(·) ≥ 0, it
follows from the Corollary to Theorem 3 in [16, §XV.3] that |ξ|2(·) is integrable over the
whole real line, that is ‖ξ‖2

2 :=
∫

R
|ξ|2(x) dx < ∞. By Young’s inequality, we can bound

the integral in the r.h.s. of (B.6) by
∫

R2

n∏

m=n−3

∣∣ ξ
∣∣
(
x+

m

n
y

)
dxdy ≤ 1

2

∫

R2

∣∣ ξ
∣∣2(x+ y) ·

∣∣ ξ
∣∣2
(
x+

n− 1

n
y

)
dxdy

+
1

2

∫

R2

∣∣ ξ
∣∣2
(
x+

n− 2

n
y

)
·
∣∣ ξ
∣∣2
(
x+

n− 3

n
y

)
dxdy .

However by a simple change of variables it is easy to see that both the integrals in the

r.h.s. equal n ·
(
‖ξ‖2

2

)2
, and the proof is completed. �

Appendix C. Entropic repulsion

We are going to prove Proposition 1.5. Notice that the lower bound in (1.22) is easy:

P(Ω+
N ) ≥ P(Y1 ≥ 0, . . . , YN ≥ 0) ∼ (const.)/

√
N , where the last asymptotic behavior

is a classical result of Fluctuation Theory for random walks with zero mean and finite
variance, cf. [16]. Moreover the upper bound in (1.23) follows from the upper bound in
(1.22) and Lemma 2.4 with x = y = 0, because as n→ ∞

P(0,0)
(
Zn−1 ≥ 0, Zn ≥ 0

)
≥ P(0,0)

(
Zn ≥ n3/2, Yn ≤

√
n
)

−→ (const.) > 0 ,

which follows by the weak convergence of
(
Yn/

√
n,Zn/n

3/2
)
, cf. §2.3. Therefore it remains

to prove the lower bound in (1.23), or equivalently (2.13), and the upper bound in (1.22).

C.1. Proof of equation (2.13). We want to get a polynomial lower bound for w0,0(N) as
N → ∞. The difficulty comes from the fact that the process {Zn}n is conditioned to come
back to zero and therefore the comparison with the process {Yn}n is not straightforward.

For simplicity we limit ourselves to the odd case N = 2n+ 1 with n ∈ N. Recalling the
definition Ω+

k := {Z1 ≥ 0, . . . , Zk ≥ 0}, by Lemma 2.1 we can write

w0,0(2n+ 1) = P(0,0)
(
Ω+

2n−1

∣∣Z2n = 0, Z2n+1 = 0
)

=

∫

(R+)2n−1

e−
P2n

k=0 V (∆ϕk)
2n−1∏

k=1

dϕk ,

where we fix ϕ−1 = ϕ0 = ϕ2n = ϕ2n+1 = 0. The first step is to restrict the integration on
the set Cn(ε) := (R+)2n−1 ∩ {|ϕn − ϕn−1| ≤ ε, |ϕn − ϕn+1| ≤ ε}, on which |∆ϕn| ≤ 2ε.
Since V (·) is continuous and V (0) < ∞, we can choose ε sufficiently small such that
V (x) ≤ V (0) + 1 for all |x| ≤ 2ε, so that in particular V (∆ϕn) ≤ V (0) + 1 on the event
Cn(ε). This observation yields the lower bound

w0,0(2n + 1) ≥ e−(V (0)+1)

∫

Cn(ε)
e−

Pn−1
k=0 V (∆ϕk) · e−

P2n
n+1 V (∆ϕk)

2n−1∏

k=1

dϕk .

Setting C′
n(ε) := (R+)n−1 ∩ {|ϕn − ϕn−1| ≤ ε}, the symmetry k → 2n− k gives

w0,0(2n + 1) ≥ e−(V (0)+1)

∫ ∞

0
dϕn

(∫

C′
n(ε)

e−
Pn−1

k=0 V (∆ϕk)
n−1∏

k=1

dϕk

)2

.
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Restricting the first integration on [0, n3/2] and applying Jensen’s inequality we get

w0,0(2n+ 1) ≥ e−(V (0)+1)

n3/2

(∫ n3/2

0
dϕn

∫

C′
n(ε)

e−
Pn−1

k=0 V (∆ϕk)
n−1∏

k=1

dϕk

)2

=
e−(V (0)+1)

n3/2

{
P
(
Ω+

n , Zn ≤ n3/2, |Zn − Zn−1| ≤ ε
)}2

.

(C.1)

We are thus left with giving a polynomial lower bound for the probability appearing
inside the brackets. We observe that by definition Zn − Zn−1 = Yn and that we have the
inclusion Ω+

n ⊃ {Y1 ≥ 0, . . . , Yn ≥ 0} =: Λ+
n . Therefore

P
(
Ω+

n , Zn ≤ n3/2, |Zn − Zn−1| ≤ ε
)

≥ P
(
Λ+

n , Zn ≤ n3/2, Yn ≤ ε
)

= P
(
Λ+

n , Yn ≤ ε
)
· P
(
Zn ≤ n3/2

∣∣Λ+
n , Yn ≤ ε

)
.

(C.2)

For the second term an FKG argument yields

P
(
Zn ≤ n3/2

∣∣Λ+
n , Yn ≤ ε

)
≥ P

(
Zn ≤ n3/2

∣∣Λ+
n

)
. (C.3)

It is well-known that the rescaled random walk
{
Y⌊nt⌋/σ

√
n
}

t∈[0,1]
under P( · |Λ+

n ) con-

verges in distribution to the Brownian meander process {mt}t∈[0,1], cf. [7]. Then by the

Continuous Mapping Theorem P
(
Zn ≤ n3/2

∣∣Λ+
n

)
→ P

( ∫ 1
0 mtdt ≤ 1/σ

)
> 0 as n → ∞,

which shows that the r.h.s. of (C.3) is bounded from below by a positive constant.
For the first term in the second line of (C.2) we are going to use some results from Fluc-

tuation Theory. We denote by {(Tk,Hk)}k≥0 the weak ascending ladder process associated
to the random walk {Yk}k, i.e. (T0,H0) = (0, 0) and Tk+1 := inf{n > Tk : Yn ≥ YTk

},
Hk := YTk

. The celebrated Duality Lemma [16, Ch. XII] gives

P
(
Λ+

n , Yn ≤ ε
)

=

∞∑

k=0

P
(
Tk = n, Yn ≤ ε

)
,

and applying Alili and Doney’s combinatorial identity [2] we get

P
(
Λ+

n , Yn ≤ ε
)

=

∞∑

k=1

k

n
P
(
Hk−1 ≤ Yn < Hk, Yn ≤ ε

)
=

1

n

∞∑

k=1

P
(
Hk−1 ≤ Yn, Yn ≤ ε

)
.

Considering only the k = 1 term in the sum gives

P
(
Λ+

n , Yn ≤ ε
)

≥ 1

n
P
(
Yn ∈ [0, ε]

)
∼ 1

n
· (const.)√

n
(n → ∞) .

Coming back to (C.1), we have finally shown that w0,0(2n + 1) ≥ (const.)/n9/2 and the
proof of (2.13) is completed. �

C.2. Proof of the upper bound in (1.22). What we are going to show is that

P(0,0)
(
Z2m ≥ 0, 1 ≤ m ≤ n

)
≤ (const.) γn , (C.4)

for some constant γ ∈ (0, 1), since this result clearly implies the upper bound in (1.22).

We recall that Zn = Y1 + . . .+ Yn and that {Yn}n is a random walk under P := P(0,0).
We are going to carry out the proof in a very general setting, namely we only assume that
the random walk ({Yn}n,P) is in the domain of attraction (without centering) of a stable
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law with (arbitrary) index α ∈ (0, 2] and with positivity parameter ρ ∈ (0, 1). In other
words we have the convergence in distribution

Yn

ℓ(n)n1/α
under P =⇒ L1 under P (n→ ∞) , (C.5)

where ({L(t)}t, P ) is a (strictly) stable Lévy process of index α ∈ (0, 2] and positivity
parameter ρ ∈ (0, 1), and ℓ(·) is a positive function which is slowly varying at infinity,
cf. [5]. To lighten the exposition we will actually assume that ℓ(n) ≡ 1, i.e. that we are in
the domain of normal attraction, but everything goes through for the general case.

We denote by (Fn)n the natural filtration of the process {Yn}n and we introduce the

sequence of events Ak := {Y2k ≤ (2k)1/α, Z2k ≤ (2k)1/α+1} ∈ F2k . We define the random
times σ0 := 0 and for n ∈ N

σn := inf
{
k > σn−1 : Y2k ≤ (2k)1/α, Z2k ≤ (2k)1/α+1

}
= inf

{
k > σn−1 : Ak happens

}
.

Notice that 2σn is a (Fm)m–stopping time for every n ≥ 0. The basic point is that,
conditionally on {Z2m ≥ 0, 1 ≤ m ≤ n}, the events Ak happen a positive fraction of times
with positive probability, as the following lemma shows.

Lemma C.1. There exists δ > 0 such that

inf
n∈N

P
(
σ⌊δn⌋ ≤ n

∣∣Z2m ≥ 0, 1 ≤ m ≤ n
)

=: Cδ > 0 . (C.6)

The proof is given below. Equation (C.6) and inclusion bounds yield

P
(
Z2m ≥ 0, 1 ≤ m ≤ n

)
≤ 1

Cδ
P
(
Z2m ≥ 0, 1 ≤ m ≤ n, σ⌊δn⌋ ≤ n

)

≤ 1

Cδ
P
(
Z2m ≥ 0, 1 ≤ m ≤ σ⌊δn⌋

)
≤ 1

Cδ
P
(
Z2σk+1 ≥ 0, 1 ≤ k < δn

)
,

therefore to prove (C.4) it suffices to show that there exists γ ∈ (0, 1) such that ∀n ∈ N

P
(
Z2σk+1 ≥ 0, 1 ≤ k ≤ n

)
≤ (const.) γn .

We prove this by iteration, i.e. we show that for every n ∈ N with n ≥ n0, where n0 is
some fixed constant, we have

P
(
Z2σk+1 ≥ 0, 1 ≤ k ≤ n

)
≤ γ ·P

(
Z2σk+1 ≥ 0, 1 ≤ k ≤ n− 1

)
. (C.7)

Conditioning on the σ–field F2σn we get

P
(
Z2σk+1 ≥ 0, 1 ≤ k ≤ n

)
= E

(
P
(
Z2σn+1 ≥ 0

∣∣F2σn

)
· 1(Z

2σk+1≥0, 1≤k≤n−1)

)
. (C.8)

The strong Markov property, equation (2.3) and the fact that 2σn+1 − 2σn = 2σn yield

P
(
Z2σn+1 ≥ 0

∣∣F2σn

)
= P

(
Z2σn+1 ≥ 0

∣∣ 2σn , Y2σn , Z2σn

)

= P
(
Zt ≥ −z − ty

)∣∣
t=2σn , y=Y2σn , z=Z2σn

,

and since Y2σn ≤ (2σn)1/α and Z2σn ≤ (2σn)1/α+1 by the definition of σn, we get

P
(
Z2σn+1 ≥ 0

∣∣F2σn

)
≤ P

(
Zt ≥ −2 t1/α+1

)∣∣
t=2σn

. (C.9)

From the invariance principle corresponding to (C.5), cf. [31], and the Continuous Mapping
Theorem we obtain

P
(
Zt ≥ −2 t1/α+1

)
−→ P

(∫ 1

0
Lsds ≥ −2

)
< 1 (t → ∞) ,
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therefore there exist γ ∈ (0, 1) and n0 ∈ (0,∞) such that P
(
Zt ≥ −2 t1/α+1

)
≤ γ for every

t ≥ n0. Since 2σn ≥ 2n, equation (C.9) implies that P
(
Z2σn+1 ≥ 0

∣∣F2σn

)
≤ γ for n ≥ n0.

Looking back to (C.8) we see that equation (C.7) is proven, therefore we have completed
the proof of (C.4). �

Proof of Lemma C.1. Setting P∗
n := P( · |Z2m ≥ 0, 1 ≤ m ≤ n) for short, we have

P∗
n

(
σ⌊δn⌋ ≤ n

)
= P∗

n

(
n∑

i=1

1Ai ≥ δn

)
= 1 − P∗

n

(
n∑

i=1

1A∁
i
> (1 − δ)n

)

≥ 1 − 1

(1 − δ)n

n∑

i=1

P∗
n

(
A∁

i

)
= − δ

1 − δ
+

1

(1 − δ)n

n∑

i=1

P∗
n

(
Ai

)
.

If we prove that P∗
n

(
Ai

)
≥ c̃ > 0 for all n ∈ N and 1 ≤ i ≤ n, then we have

P∗
n

(
σ⌊δn⌋ ≤ n

)
≥ − δ

1 − δ
+

c̃

1 − δ
=

c̃− δ

1 − δ
,

and by choosing δ sufficiently small we are done.
Therefore we are left with estimating P∗

n

(
Ai

)
= P

(
Ai

∣∣Z2m ≥ 0, 1 ≤ m ≤ n
)

from
below. Notice that {Z2m ≥ 0, 1 ≤ m ≤ n} ⊃ {Yl ≥ 0, 1 ≤ l ≤ 2n} and that both events
are increasing in the {Xi}i variables. Since the event Ai is decreasing, the FKG inequality
[26] yields

P
(
Ai

∣∣Z2m ≥ 0, 1 ≤ m ≤ n
)
≥ P

(
Ai

∣∣Yl ≥ 0, 1 ≤ l ≤ 2n
)

=
P
(
Ai, Yl ≥ 0, 1 ≤ l ≤ 2n

)

P
(
Yl ≥ 0, 1 ≤ l ≤ 2n

) .
(C.10)

Now let us denote by P+ the law of the random walk ({Yn}n,P) conditioned to stay always

positive, as described in [4]. We recall that ({Yn}n,P
+) is a time-homogeneous Markov

process on R
+ that corresponds to an h-transform of the random walk ({Yn}n,P) killed

at the first time it enters the negative half-line. More explicitly, ∀m ∈ N and for A ⊂ Fm

P+
(
A
)

= E
(
U(Ym)1A 1{Yi≥0, 1≤i≤m}

)
, (C.11)

where the invariant function U(·) is nothing but the renewal function of the strict descend-
ing ladder heights process of the random walk ({Yn}n,P). Then we can rewrite (C.10) as

P
(
Ai

∣∣Z2m ≥ 0, 1 ≤ m ≤ n
)
≥ E+

(
1Ai · 1/U(Y2n)

)

P
(
Yl ≥ 0, 1 ≤ l ≤ 2n

) ,

and restricting the expectation on the event {Y2n ≤ (2n)1/α} we get

P
(
Ai

∣∣Z2m ≥ 0, 1 ≤ m ≤ n
)
≥ P+

(
Ai, Y2n ≤ (2n)1/α

)

U
(
(2n)1/α

)
· P
(
Yl ≥ 0, 1 ≤ l ≤ 2n

) , (C.12)

because U(·) is increasing. From [14] we have that U(x) ∼ (const.)xα(1−ρ) as x → ∞
and P

(
Yj ≥ 0, 1 ≤ j ≤ n

)
∼ (const.′)n−(1−ρ) as n → ∞, therefore the denominator is

bounded from above by a positive constant and we can focus on the numerator.
First we need a preliminary result. Let us set P+

m := P+( · |Y0 = m), so that P+ = P+
0 .

The main result in [8], cf. Theorem 1.1, is the following invariance principle: for every
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non-negative sequence (yN ) such that yN/N
1/α → c ∈ [0,∞) as N → ∞, we have

{
Y⌊Nt⌋
N1/α

}

t∈[0,∞)

under P+
yN

=⇒
{
Lt

}
t∈[0,∞)

under P+
c (N → ∞) , (C.13)

where =⇒ denotes convergence in distribution in the space D([0,∞)) and ({Lt}t, P
+
c )

denotes the Lévy process starting at c and conditioned to stay always positive, cf. [12]. As
a consequence of the Continuous Mapping Theorem we have

P+
(
An

)
= P+

(
Y2n ≤ (2n)1/α, Z2n ≤ (2n)1/α+1

) n→∞−−−→ P+
0

(
L1 ≤ 1,

∫ 1

0
Lsds ≤ 1

)
> 0 ,

hence infi∈N P+(Ai) > 0. Then we come back to (C.12): the Markov property yields

P+
(
Ai, Y2n ≤ (2n)1/α

)
= E+

(
1Ai · fi,n(Y2i)

)
, fi,n(y) := P+

y

(
Y2n−2i ≤ (2n)1/α

)
,

therefore, since Y2i ≤ (2i)1/α on the event Ai, we can write

P+
(
Ai, Y2n ≤ (2n)1/α

)
≥
(

inf
n∈N, 1≤i≤n, 0≤y≤(2i)1/α

fi,n(y)
)
·
(

inf
i∈N

P+(Ai)
)
.

We are finally left with showing that the first term in the r.h.s. is positive. We argue
by contradiction: assume that there exist two sequences (in) ∈ {1, . . . , n} and (yn) ∈
[0, (2in )1/α] such that fin,n(yn) → 0 as n→ ∞. Then it is easy to check from the definition
of fi,n(y) that we must have n−in → ∞ as n→ ∞. Setting Nn := 2n−2in , by an inclusion
bound we obtain

0 ≤ P+
yn

(
YNn ≤ (Nn)1/α

)
= P+

yn

(
Y2n−2in ≤ (2n − 2in)1/α

)
≤ fin,n(yn)

n→∞−−−−→ 0 ,

therefore P+
yn

(
YNn ≤ (Nn)1/α

)
→ 0 as n→ ∞. However

0 ≤ yn

(Nn)1/α
≤ (2in)1/α

(2n − 2in)1/α
=

1

(2n−in − 1)1/α
−→ 0 (n → ∞) ,

hence the invariance principle (C.13) yields

P+
yn

(
YNn ≤ (Nn)1/α

) n→∞−−−−→ P+
0

(
L1 ≤ 1

)
> 0 ,

which is a contradiction, and the proof is completed. �
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