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Abstract. We consider a random field ϕ : {1, . . . , N} → R with Laplacian interaction
of the form

P

i V (∆ϕi), where ∆ is the discrete Laplacian and the potential V (·) is
symmetric and uniformly strictly convex. The pinning model is defined by giving the
field a reward ε ≥ 0 each time it touches the x–axis, that plays the role of a defect line.
It is known that this model exhibits a phase transition between a delocalized regime
(ε < εc) and a localized one (ε > εc), where 0 < εc < ∞. In this paper we give a precise
pathwise description of the transition, extracting the full scaling limits of the model.
We show in particular that in the delocalized regime the field wanders away from the
defect line at a typical distance N3/2, while in the localized regime the distance is just
O

`

(log N)2
´

. A subtle scenario shows up in the critical regime (ε = εc), where the field,
suitably rescaled, converges in distribution toward the derivative of a symmetric stable
Lévy process of index 2/5. Our approach is based on Markov renewal theory.

1. Introduction

1.1. The model. The main ingredient of our model is a function V (·) : R → R ∪ {+∞},
that we call the potential. Our assumptions on V (·) are the following:

• Symmetry: V (x) = V (−x) , ∀x ∈ R.
• Uniform strict convexity: there exists γ > 0 such that x 7→ V (x)−γ x2/2 is convex.
• Regularity: since V (·) is symmetric and convex, it is continuous and finite on some

maximal interval (−a, a) (possibly a = +∞). We assume that a > 0 and we further
require that V (x) → +∞ as x → ±a, so that the function x 7→ exp(−V (x)) is
continuous on the whole real line.

Notice that, if V (·) is of class C2 on (−a, a), the uniform strict convexity assumption
amounts to requiring that

γ := inf
x∈(−a,a)

V ′′(x) > 0 . (1.1)

It follows from the above assumptions that
∫

R
exp(−V (x)) dx < ∞. Since adding a

global constant to V (·) is immaterial for our purposes, we impose the normalization∫
R

exp(−V (x)) dx = 1. In this way we can interpret exp(−V (x)) as a probability den-
sity, that has zero mean (by symmetry) and finite variance:

σ2 :=

∫

R

x2 e−V (x) dx < ∞ . (1.2)

The most important example is of course the Gaussian case: V (x) = x2/2σ2 + log(σ
√

2π).
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Next we define the Hamiltonian, by setting

H[a,b](ϕ) :=
b−1∑

n=a+1

V
(
∆ϕn

)
, (1.3)

for a, b ∈ Z with b − a ≥ 2 and for ϕ : {a, . . . , b} → R, where ∆ is the discrete Laplacian:

∆ϕn := (ϕn+1 − ϕn) − (ϕn − ϕn−1) = ϕn+1 + ϕn−1 − 2ϕn . (1.4)

We can now define our model: given N ∈ N := {1, 2, . . .} and ε ≥ 0, we introduce the
probability measure Pε,N on RN−1 defined by

Pε,N

(
dϕ1 · · · dϕN−1

)
=

exp
(
−H[−1,N+1](ϕ)

)

Zε,N

N−1∏

i=1

(
ε δ0(dϕi) + dϕi

)
(1.5)

where dϕi is the Lebesgue measure on R, δ0(·) is the Dirac mass at zero and Zε,N is the
normalization constant (partition function). To complete the definition, in order to make
sense of H[−1,N+1](ϕ) = H[−1,N+1](ϕ−1, ϕ0, ϕ1, . . . , ϕN−1, ϕN , ϕN+1) we have to specify:

the boundary conditions ϕ−1 = ϕ0 = ϕN = ϕN+1 = 0 . (1.6)

The choice of zero boundary conditions is made only for simplicity, but our approach and
results go through for general choices (provided they are, say, bounded in N).

1.2. The phase transition. The law Pε,N is what is called a pinning model and can be
viewed as a (1 + 1)–dimensional model for a linear chain of length N attracted to a defect
line, namely the x–axis. The parameter ε ≥ 0 tunes the strength of the attraction and one
wishes to understand its effect on the field, in the large N limit.

The basic properties of this model (and of the closely related wetting model, in which
the field is also constrained to stay non-negative) were investigated in a first paper [6], to
which we refer for a detailed discussion and for a survey of the literature. In particular, it
was shown that there is a critical threshold 0 < εc < ∞ that determines a phase transition

between a delocalized regime (ε < εc), in which the reward is essentially ineffective, and a
localized regime (ε > εc), in which on the other hand the reward has a macroscopic effect
on the field. More precisely, defining the contact number ℓN by

ℓN := #
{
i ∈ {1, . . . , N} : ϕi = 0

}
, (1.7)

we have the following dichotomy:

• if ε ≤ εc, then for every δ > 0 and N ∈ N

Pε,N

(
ℓN

N
> δ

)
≤ e−c1N , (1.8)

where c1 is a positive constant;

• if ε > εc, then there exists d(ε) > 0 such that for every δ > 0 and N ∈ N

Pε,N

(∣∣∣∣
ℓN

N
− d(ε)

∣∣∣∣ > δ

)
≤ e−c2N , (1.9)

where c2 is a positive constant.

Roughly speaking, for ε ≤ εc we have ℓN = o(N), while for ε > εc we have ℓN ∼ d(ε) · N .
For an explicit characterization of εc and d(ε) we refer to [6], where it is also proven that
the phase transition is exactly of second order.
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The aim of this paper is to go far beyond (1.8) and (1.9) in the study of the path
properties of Pε,N . Our results, that include the scaling limits of the model on C([0, 1]),
provide strong path characterizations of (de)localization. We also show that the delocalized
regime (ε < εc) and the critical one (ε = εc) exhibit great differences, that are somewhat
hidden in relation (1.8). In fact, a closer look at the critical regime exposes a rich structure,
that we analyze in detail.

Remark 1.1. We point out that the hypothesis on V (·) in the present paper are stronger
than those of [6] (where essentially only the second moment condition (1.2) was required).
This is a price to pay in order to obtain precise path results, like for instance Theorem 1.4
below, that would not hold in the general setting of [6]. Although for some other results
our assumptions could have been weakened, we have decided not to do it, both to keep us
in a unified setting, and because, with the uniform strict convexity assumption on V (·),
one can apply general powerful tools, notably the Brascamp–Lieb inequality [4, 5], that
allow to give streamlined versions of otherwise rather technical proofs.

Also notice that the analysis of this paper does not cover the wetting model, that was
also considered in [6]. The reason for this exclusion is twofold: on the one hand, the basic
estimates derived in [6] in the wetting case are not sufficiently precise as those obtained in
the pinning case; on the other hand, for the scaling limits of the wetting model one should
rely on suitable invariance principles for the integrated random walk process conditioned to
stay non-negative, but this issue seems not to have been investigated in the literature. �

1.3. Path results and the scaling limits. Let us look first at the free case ε = 0, where
the pinning reward is absent. It was shown in [6] that the law P0,N enjoys the following
random walk interpretation (for more details see Section 2). Let

(
{Yn}n∈Z+:=N∪{0},P

)

denote a real random walk starting at zero and with step law P(Y1 ∈ dx) = exp(−V (x)) dx,
and let {Zn}n∈Z+ be the corresponding integrated random walk process:

Z0 := 0 , Zn := Y1 + . . . + Yn , n ∈ N .

The basic fact is that P0,N coincides with the law of the vector (Z1, . . . , ZN−1) conditionally
on (ZN , ZN+1) = (0, 0), i.e. the free law P0,N is nothing but the bridge of an integrated
random walk. By our assumptions on V (·), see §1.1, the walk {Yn}n has zero mean and

finite variance σ2, hence for large k the variable Zk scales like k3/2. It is therefore natural
to consider the following rescaled and linearly-interpolated version of the field {ϕn}n:

ϕ̂N (t) :=
ϕ⌊Nt⌋
σN3/2

+
(
Nt − ⌊Nt⌋

) ϕ⌊Nt⌋+1 − ϕ⌊Nt⌋
σN3/2

, N ∈ N, t ∈ [0, 1] , (1.10)

and to study the convergence in distribution of {ϕ̂N (t)}t∈[0,1] as N → ∞ on C([0, 1]), the
space of real valued, continuous functions on [0, 1] (equipped as usual with the topology
of uniform convergence). To this purpose, we let {Bt}t∈[0,1] denote a standard Brownian
motion on the interval [0, 1], we define the integrated Brownian motion process {It}t∈[0,1]

by It :=
∫ t
0 Bs ds and we introduce the conditioned process

{(B̂t, Ît)}t∈[0,1] := {(Bt, It)}t∈[0,1] conditionally on (B1, I1) = (0, 0) . (1.11)

Exploiting the random walk description of P0,N , it is not difficult to show that the

process {ϕ̂N (t)}t∈[0,1] under P0,N converges in distribution as N → ∞ toward {Ît}t∈[0,1].
The emergence of a non-trivial scaling limit for {ϕ̂N (t)}t∈[0,1] is a precise formulation of
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the statement that the typical height of the field under P0,N is of order N3/2. It is natural
to wonder what happens of this picture when ε > 0: the answer is given by our first result.

Theorem 1.2 (Scaling Limits). The rescaled field {ϕ̂N (t)}t∈[0,1] under Pε,N converges in
distribution on C([0, 1]) as N → ∞, for every ε ≥ 0. The limit is:

• If ε < εc, the law of the process {Ît}t∈[0,1];

• If ε = εc or ε > εc, the law concentrated on the constant function f(t) ≡ 0, t ∈ [0, 1].

Thus the pinning reward ε is ineffective for ε < εc, at least for the large scale properties
of the field, that are identical to the free case ε = 0. On the other hand, if ε ≥ εc the
reward is able to change the macroscopic behavior of the field, whose height under Pε,N

scales less than N3/2. We are now going to strengthen these considerations by looking at
path properties on a finer scale. However, before proceeding, we stress that, from the point
of view of the scaling limits, the critical regime ε = εc is close to the localized one ε > εc

rather than to the delocalized one ε < εc, in contrast with (1.8) and (1.9).

We start looking at the delocalized regime (ε < εc). It is convenient to introduce the
contact set τ of the field {ϕi}i∈Z+ , that is the random subset of Z+ defined by

τ :=
{
i ∈ Z+ : ϕi = 0

}
⊆ Z+ , (1.12)

where we set by definition ϕ0 := 0 so that 0 ∈ τ . We already know from (1.8) that for
ε < εc we have #{τ ∩ [0, N ]} = ℓN + 1 = o(N) under Pε,N . The next theorem shows that
in fact τ ∩ [0, N ] consists of a finite number of points (i.e. the variable ℓN under Pε,N is
tight) and all these points are at finite distance from the boundary.

Theorem 1.3. For every ε < εc the following relation holds:

lim
L→∞

lim inf
N→∞

Pε,N

(
τ ∩ [L, N − L] = ∅

)
= 1 . (1.13)

We will see that the scaling limit of {ϕ̂N (t)}t∈[0,1] under Pε,N , for ε ∈ (0, εc), is a direct
consequence of relation (1.13) and of the scaling limit for ε = 0. The reason for this lies in
the following crucial fact: conditionally on the contact set, the excursion of the field under
Pε,N between two consecutive contact points, say τk and τk+1, is distributed according to
the free law P0,τk+1−τk

with suitable boundary conditions (see §2.3 for more details).

Next we focus on the localized and critical regimes (ε > εc) and (ε = εc). The first
question left open by Theorem 1.2 is of course if one can obtain a more precise estimate
on the height of the field than just o(N3/2). We have the following result.

Theorem 1.4. For every ε > εc the following relation holds:

lim
K→∞

lim inf
N→∞

Pε,N

(
max

0≤k≤N
|ϕk| ≤ K (log N)2

)
= 1 , (1.14)

while for ε = εc the following relation holds:

lim
K→∞

lim inf
N→∞

Pεc,N

(
1

K

N3/2

(log N)3/2
≤ max

0≤k≤N
|ϕk| ≤ K

N3/2

log N

)
= 1 . (1.15)

The fact that {ϕ̂N (t)}t∈[0,1] under Pε,N has, for ε ≥ εc, a trivial scaling limit, is of course
an immediate consequence of the upper bounds on max0≤k≤N |ϕk| in (1.14) and (1.15).

We believe that the optimal scaling of max0≤k≤N |ϕk| for ε = εc is given by the lower
bound in (1.15) (to lighten the exposition, we do not investigate this problem deeper).
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(ε < εc) (ε = εc) (ε > εc)

max
0≤k≤N

|ϕk| N3/2 N3/2

(log N)3/2
÷ N3/2

log N
O
(
(log N)2

)

∆N N
N

log N
O
(
log N

)

ℓN O(1)
N

log N
N

Table 1. A schematic representation of the order of growth as N → ∞
of the three quantities max0≤k≤N |ϕk|, ∆N and ℓN under Pε,N .

Remark 1.5. Another interesting quantity is the maximal gap ∆N , defined as

∆N := max
{
τk − τk−1 : 0 ≤ k ≤ ℓN

}
. (1.16)

We already know from (1.13) that ∆N ∼ N in the delocalized regime (ε < εc). It turns
out that in the localized regime (ε > εc) we have ∆N = O(log N), while in the critical
regime (ε = εc) ∆N ≈ N/ log N , meaning by this that

lim
K→∞

lim inf
N→∞

Pεc,N

(
1

K

N

log N
≤ ∆N ≤ K

N

log N

)
= 1 .

For ε = εc we also have ℓN ≈ N/ log N . For conciseness, we omit a detailed proof of these
relations (though some partial results will be given in the proof of Theorem 1.4, see also
Appendix A). Table 1 summarizes the results described so far. �

1.4. A refined critical scaling limit. Relation (1.15) shows that the field in the critical

regime has very large fluctuations, almost of the order N3/2. This may suggest the possi-
bility of lowering the scaling constants N3/2 in the definition (1.10) of the rescaled field
ϕ̂N (t), in order to make a non-trivial scaling limit emerge under Pεc,N . However some care
is needed: in fact ∆N/N → 0 as N → ∞ under Pεc,N and this means that, independently

of the choice of the scaling constants, the zero level set of the rescaled field becomes dense
in [0, 1]. This fact rules out the possibility of getting a non-trivial scaling limit in C([0, 1]),
or even in the space of càdlàg functions D([0, 1]).

We are going to show that a non-trivial scaling limit can indeed be extracted in a
distributional sense, i.e. integrating the field against test functions, and to this purpose
the right scaling constants turn out to be N3/2/(log N)5/2 (see below for an heuristic
explanation). Therefore we introduce the new rescaled field {ϕ̃N (t)}t∈[0,1] (this time with
no need of linear interpolation) defined by

ϕ̃N (t) :=
(log N)5/2

N3/2
ϕ⌊Nt⌋ . (1.17)

Viewing ϕ̃N (t) as a density, we introduce the signed measure µN on [0, 1] defined by

µN (dt) := ϕ̃N (t) dt . (1.18)



6 FRANCESCO CARAVENNA AND JEAN–DOMINIQUE DEUSCHEL

0

0 1

1

ϕ̃N (t)

dL

O

(
1

log N

) O
(
log N

)

Figure 1. A graphical representation of Theorem 1.6. For large N , the
excursions of the rescaled field under the critical law Pεc,N contribute to the
measure µN (dt), see (1.18), approximately like Dirac masses, with intensity
given by their (signed) area. The width and height of the relevant excursions
are of order (1/ log N) and log N respectively. We warn the reader that the
x- and y-axis in the picture have different units of length, and that the field
can actually cross the x-axis without touching it (though this feature has
not been evidenced in the picture for simplicity).

We look at µN under the critical law Pεc,N as a random element of M([0, 1]), the space of
all finite signed Borel measures on the interval [0, 1], that we equip with the topology of
vague convergence and with the corresponding Borel σ–field (νn → ν vaguely if and only
if
∫

fdνn →
∫

fdν for all bounded and continuous functions f : [0, 1] → R). Our goal is
to show that the sequence {µN}N has a non-trivial limit in distribution on M([0, 1]).

To describe the limit, let {Lt}t≥0 denote the stable symmetric Lévy process of index 2/5
(a standard version with càdlàg paths). More explicitly, {Lt}t≥0 is a Lévy process with zero

drift, zero Brownian component and with Lévy measure given by Π(dx) = cL |x|−7/5dx,
where the positive constant cL is defined explicitly in equation (6.25). Since the index is
less than 1, the paths of L are a.s. of bounded variation, cf. [2], hence we can define path
by path the (random) finite signed measure dL in the Steltjes sense:

dL
(
(a, b]

)
:= Lb − La .

We stress that dL is a.s. a purely atomic measure, i.e., a sum of Dirac masses (for more
details and for an explicit construction of dL, see Remark 1.7 below).

We are now ready to state our main result (see Figure 1 for a graphical description).

Theorem 1.6. The random signed measure µN under Pεc,N converges in distribution on
M([0, 1]) as N → ∞ toward the the random signed measure dL.
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This result describes in a quantitative way the rich structure of the field for ε = εc.
Let us try to give an heuristic description. Roughly speaking, for large N the profile of
the unrescaled field {ϕi}0≤i≤N under Pεc,N is dominated by the large excursions over the
contact set, i.e., by those excursions whose width is of the same order ≈ N/ log N as
the maximal gap ∆N (see Table 1). As already observed, each excursion is distributed
according to the free law (with suitable boundary conditions), hence by Theorem 1.2 the

height of these excursions is of order ≈ (N/ log N)3/2. When the field is rescaled according
to (1.17), the width of these excursions becomes of order ≈ 1/ log N and their height of
order ≈ log N , hence for large N they contribute to the measure µN approximately like
Dirac masses (see Figure 1). Therefore the properties of these large excursions, for large
N , can be read from the structure of the Dirac masses that build the limit measure dL,
see (1.19) below.

Remark 1.7. The measure dL can be constructed in the following explicit way, cf. [2].
Let S denote a Poisson point process on the space X := [0, 1] × R with intensity measure

γ := dx ⊗ cL |y|−7/5dy (where dx and dy denote the Lebesgue measure on [0, 1] and R).
We recall that S is a random countable subset of X with the following properties:

- for every Borel set A ⊆ X, the random variable #(S∩A) has a Poisson distribution
with parameter γ(A) (the symbol # denotes the cardinality of a set and in case
γ(A) = +∞ we mean that #(S ∩ A) = +∞, a.s.);

- for any k ∈ N and for every family of pairwise disjoint Borel sets A1, . . . , Ak ⊆ X,
the random variables #(S ∩ A1), . . . ,#(S ∩ Ak) are independent.

Since γ is a σ–finite measure, the random set S is a.s. countable: enumerating its points
in some (arbitrary) way, say S = {(xi, yi)}i∈N, we can write

dL(·) d
=
∑

i∈N

yi · δxi(·) , (1.19)

where δx(·) denotes the Dirac mass at x ∈ R. Notice that since
∫
X
(|y| ∧ 1) dγ < ∞, the

r.h.s. of (1.19) is indeed a finite measure, that is
∑

i∈N
|yi| < ∞ a.s., cf. [12]. �

1.5. Outline of the paper. The exposition is organized as follows:

• In section 2 we recall some basic properties of Pε,N that have been proven in [6].
In particular, we develop a renewal theory description of the model, which is the
cornerstone of our approach.

• In section 3 we prove a part of Theorem 1.4, more precisely equation (1.14) and the
upper bound on max0≤k≤N |ϕk| in (1.15), exploiting the Brascamp-Lieb inequality.
These results also prove Theorem 1.2 for ε ≥ εc.

• Section 4 is devoted to the proof of Theorem 1.3 and of Theorem 1.2 for ε < εc.
• In section 5 we complete the proof of Theorem 1.4, obtaining the lower bound on

max0≤k≤N |ϕk| in equation (1.15).
• Section 6 is devoted to the proof of Theorem 1.6.
• Finally, some technical points are treated in the Appendixes A and B.

2. Some basic facts

This section is devoted to a detailed description of Pε,N , taking inspiration from [6]. We
show in §2.1 that, conditionally on the contact set τ , cf. (1.12), the pinning model Pε,N is
linked to the integral of a random walk. Then in §2.2 we focus on the law of the contact set
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itself, which admits a crucial description in terms of Markov renewal theory. We conclude
by putting together these results in §2.3, where we show that the full measure Pε,N is the
conditioning of an explicit infinite-volume law Pε.

2.1. Integrated random walk. One of the key features of the model Pε,N is its link with
the integral of a random walk, described in Section 2 of [6], that we now recall.

Given a, b ∈ R, we define on some probability space (Ω,F ,P = P(a,b)) a sequence
{Xi}i∈N of independent and identically distributed random variables, with marginal laws
X1 ∼ exp(−V (x)) dx. By our assumptions on V (·) it follows that

E(X1) = 0 , E(X1
2) = σ2 ∈ (0,∞) .

We denote by {Yi}i∈Z+ the associated random walk starting at a, that is

Y0 = a , Yn = a + X1 + . . . + Xn , n ∈ N , (2.1)

while {Zi}i∈Z+ denotes the integrated random walk starting at b, i.e., Z0 = b and for n ∈ N

Zn = b + Y1 + . . . + Yn = b + na + nX1 + (n − 1)X2 + . . . + 2Xn−1 + Xn . (2.2)

Notice that
{(

Yn, Zn

)}
n

under P(a,b) d
=

{(
Yn + a , Zn + b + na

)}
n

under P(0,0) . (2.3)

The marginal distributions of the process {Zn}n are easily computed [6, Lemma 4.2]:

P(a,b)
(
(Z1, . . . , Zn) ∈ (dz1, . . . ,dzn)

)
= e−H[−1,n](b−a,b,z1,...,zn) dz1 · · · dzn , (2.4)

where H[−1,n](·) is exactly the Hamiltonian of our model, defined in (1.3).

We are ready to make the link with our model Pε,N . In the free case ε = 0, it is
rather clear from (2.4) and (1.5) that P0,N is nothing but the law of (Z1, . . . , ZN−1) under

P(0,0)( · |ZN = 0, ZN+1 = 0), i.e., the polymer measure P0,N is just the bridge of the
integral of a random walk, cf. [6, Prop. 4.1].

To deal with the case ε > 0, we recall the definition of the contact set τ , given in (1.12):

τ :=
{
i ∈ Z+ : ϕ = 0

}
⊆ Z+ .

We also set for conciseness τ[a,b] := τ ∩ [a, b]. Then, again comparing (2.4) with (1.5), we
have the following basic relation: for ε > 0, N ∈ N and for every subset A ⊆ {1, . . . , N−1},
Pε,N

(
·
∣∣ τ[1,N−1] = A

)
= P(0,0)

(
(Z1, . . . , ZN−1) ∈ ·

∣∣Zi = 0 , ∀i ∈ A∪{N,N +1}
)
. (2.5)

In words: once we fix the contact set τ[1,N−1] = A, the field (ϕ1, . . . , ϕN−1) under Pε,N is

distributed like the integrated random walk (Z1, . . . , ZN−1) under P(0,0) conditioned on
being zero at the epochs in A and also at N and N+1 (because of the boundary conditions,
cf. (1.6)). A crucial aspect of (2.5) is that the r.h.s. is independent of ε. Therefore all the
dependence of ε of Pε,N is contained in the law of the contact set.

Notice that in the l.h.s. of (2.5) we are really conditioning on an event of positive
probability, while the conditioning in the r.h.s. of (2.5) is to be understood in the sense of
conditional distributions (which can be defined unambiguously, because we have assumed

that the density x 7→ e−V (x) is continuous).

We conclude this paragraph observing that the joint process {(Yn, Zn)}n under P(a,b) is
a Markov process on R2. On the other hand, the process {Zn}n alone is not Markov, but
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it rather has finite memory m = 2, i.e., for every n ∈ N

P(a,b)
(
{Zn+k}k≥1 ∈ ·

∣∣Zi, i ≤ n
)

= P(a,b)
(
{Zn+k}k≥1 ∈ ·

∣∣Zn−1, Zn

)

= P(Zn−Zn−1,Zn)
(
{Zk}k≥1 ∈ ·

)
.

(2.6)

In fact, from (2.4) it is clear that

P(a,b) = P
(
·
∣∣Z−1 = b − a, Z0 = b

)
. (2.7)

2.2. Markov renewal theory. It is convenient to identify the random set τ with the
increasing sequence of variables {τk}k∈Z+ defined by

τ0 := 0 , τk+1 := inf
{
i > τk : ϕi = 0

}
. (2.8)

Observe that the contact number ℓN , introduced in (1.7), can be also expressed as

ℓN = max
{
k ∈ Z+ : τk ≤ N

}
=

N∑

k=1

1{k∈τ} . (2.9)

We also introduce the process {Jk}k∈Z+ that gives the height of the field just before the
contact points:

J0 := 0 , Jk := ϕτk−1 , k ∈ N . (2.10)

Of course, under the law Pε,N we look at the variables τk, Jk only for k ≤ ℓN . The crucial
fact, proven in Section 3 of [6], is that the vector {ℓN , (τk)k≤ℓN

, (Jk)k≤ℓN
} under the law

Pε,N admits an explicit description in terms of Markov renewal theory, that we now recall.

Following [6, §3.2], for ε > 0 we denote by Pε the law under which the joint process
{(τk, Jk)}k∈Z+ is a Markov process on Z+ ∪{∞}×R∪{∞}, with starting point (τ0, J0) =
(0, 0) and with transition kernel given by

Pε

(
(τk+1, Jk+1) ∈ ({n},dy)

∣∣ (τk, Jk) = (m,x)
)

:= K
ε
x,dy(n − m) , (2.11)

where K
ε
x,dy(n) is defined for x, y ∈ R and n ∈ N by

K
ε
x,dy(n) := ε e−f(ε) n vε(y)

vε(x)
· P(−x,0)

(
Zn−1 ∈ dy, Zn ∈ dz

)

dz

∣∣∣∣
z=0

. (2.12)

The function f(ε) is the free energy of the model Pε,N , while vε(·) is a suitable positive
function connected to an infinite dimensional Perron-Frobenius eigenvalue problem (we
refer to Sections 3 and 4 of [6] for a detailed discussion). We stress that f(ε) = 0 if ε ≤ εc

while f(ε) > 0 if ε > εc.
The dependence of the r.h.s. of (2.11) on n−m implies that under Pε the process {Jk}k

alone is itself a Markov chain on R ∪ {∞}, with transition kernel

Pε

(
Jk+1 ∈ dy

∣∣Jk = x
)

= Dε
x,dy :=

∑

n∈N

K
ε
x,dy(n) . (2.13)

On the other hand, the process {τk}k is not a Markov chain, but rather a Markov renewal

process, cf. [1]: in fact its increments {τk+1 − τk}k are independent conditionally on the
modulating chain {Jk}k∈Z+ , as it is clear from (2.11).

From (2.12) it follows that, as a measure in dy, the kernel K
ε
x,dy(n) is absolutely continu-

ous for n ≥ 2, while K
ε
x,dy(1) is a multiple of the Dirac mass at zero δ0(dy). The properties
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of the kernel K
ε
x,dy(n) depend strongly on the value of ε. First, the kernel is defective if

ε < εc while it is proper if ε ≥ εc, since
∑

n∈N

∫

y∈R

K
ε
x,dy(n) =

∫

y∈R

Dε
x,dy = min

{ ε

εc
, 1
}

,

so that the probability that τk = ∞ for some k is one if ε < εc while it is zero if ε ≥ εc.
Moreover, as n → ∞ for fixed x, y ∈ R we have

K
ε
x,dy(n)

dy
=

Lε(x, y)

n2
e−f(ε)·n (1 + o(1)

)
, (2.14)

for a suitable function Lε(x, y), cf. [6, §3.2 and §4.1].
To summarize: the kernel K

ε
x,dy(n) is defective with heavy tails in the delocalized regime

(ε < εc), it is proper with heavy tails in the critical regime (ε = εc), while it is proper
with exponential tails in the localized regime (ε > εc). We also note that when ε ≥ εc

the modulating chain {Jk}k∈Z+ on R is positive recurrent, i.e., it admits an invariant
probability law νε:

∫
x∈R

νε(dx)Dε
x,dy = νε(dy), with νε({0}) > 0 and no other atoms.

We are now ready to link the law Pε to our model Pε,N . Introducing the event

AN :=
{
{N,N + 1} ⊆ τ

}
=
{
τk = N, τk+1 = N + 1 for some k ∈ N

}
,

Proposition 3.1 of [6] states that the vector {ℓN , (τk)k≤ℓN
, (Jk)k≤ℓN

} has the same distribu-
tion under the law Pε,N and under Pε( · | AN ). More precisely, for all k ∈ N, {ti}1≤i≤k ∈ Nk

and {yi}1≤i≤k ∈ Rk we have

Pε,N

(
ℓN = k, τi = ti, Ji ∈ dyi, i ≤ k

)
= Pε

(
ℓN = k, τi = ti, Ji ∈ dyi, i ≤ k

∣∣AN

)
. (2.15)

In words: the contact set τ ∩ [0, N ] under the law Pε,N is distributed like a Markov renewal
process, of law Pε and modulating chain {Jk}k, conditioned to visit N and N + 1.

2.3. The infinite-volume measure. The purpose of this paragraph is to extend Pε,
introduced in §2.2, to a law for the whole field {ϕi}i∈Z+ .

Consider first the regime ε ≥ εc, in which case τk < ∞ for every k ∈ N, Pε-a.s.. We
introduce the excursions {ek}k∈N of the field over the contact set by

ek =
{
ek(i)

}
0≤i≤τk−τk−1

:=
{
ϕτk−1+i

}
0≤i≤τk−τk−1

. (2.16)

The variables ek take values in the space
⋃∞

m=2 Rm. It is clear that the whole field {ϕi}i∈Z+

is in one-to-one correspondence with the process {(τk, Jk, ek)}k∈Z+ . Pε has already been
defined as a law for {(τk, Jk)}k∈Z+ , see (2.11), and we now extend it to a law for {ϕi}i∈Z+ in
the following way: conditionally on {(τk, Jk)}k∈Z+ , we declare that the excursions {ek}k∈N

under Pε are independent, with marginal laws given by

ek under Pε

(
·
∣∣{(τi, Ji)}i∈Z+

) d
= (Z0, . . . , Zl) under P(−a,0)

(
·
∣∣Zl−1 = b, Zl = 0

)

where l = τk − τk−1, a = Jk−1, b = Jk .
(2.17)

In words: ek under Pε is distributed like a bridge of the integrated random walk {Zn}n

of length l = τk − τk−1, with boundary conditions Z−1 = Jk−1, Z0 = 0, Zl−1 = Jk and

Zl = 0. Recall in fact that by (2.7) we have P(−a,0) = P( · |Z−1 = a,Z0 = 0), and this is
the reason for the minus sign.

Next we consider the regime ε < εc, in which the process {τk}k is Pε-a.s. terminating,
i.e. there is some random index k∗ ∈ N such that τk < ∞ for k ≤ k∗ while τk∗+1 = ∞.
Conditionally on {(τk, Jk)}k∈Z+ , the law of the variables {ek}1≤k≤k∗ under Pε is still given
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by (2.17), and to reconstruct the full field {ϕi}i∈Z+ it remains to define the law of the last
excursion ek∗+1 := {ϕτk∗+i}0≤i<∞, which we do in the following way:

ek∗+1 under Pε

(
·
∣∣{(τi, Ji)}i∈Z+

) d
= {Zi}0≤i<∞ under P(−Jk∗ ,0)

(
·
)
.

This completes the definition of Pε as a law for {ϕi}i∈Z+ .

Now notice that, conditionally on {ℓN , (τk, Jk)k≤ℓN
}, the excursions {ek}k≤ℓN

under the
pinning model Pε,N are independent and their marginal laws are given exactly by (2.17).
To see this, it suffices to condition equation (2.5) on {Jk}k≤ℓN

, obtaining

Pε,N

(
·
∣∣ ℓN , (τk, Jk)k≤ℓN

)
= P(0,0)

(
(Z1, . . . , ZN−1) ∈ ·

∣∣Zτi = 0, Zτi−1 = Jk, ∀i ≤ ℓN

)
.

Then, using the fact that the process {Zn}n∈Z+ has memory m = 2, see (2.6), this equa-
tion yields easily that the excursions {ek}k≤ℓN

are indeed conditionally independent and
distributed according to (2.17).

These observations have the following important consequence: the basic relation (2.15)
can be now extended to hold for the whole field, i.e.

Pε,N

(
dϕ1, . . . , dϕN−1

)
= Pε

(
dϕ1, . . . , dϕN−1

∣∣AN

)
. (2.18)

(Of course, the extension of Pε has been given exactly with this purpose.) Thus the polymer
measure Pε,N is nothing but the conditioning of an explicit law Pε with respect to the
event AN . We stress that Pε does not have any dependence on N : in this sense, the law
Pε,N depends on N only through the conditioning on the event AN . This fact plays a
fundamental role in the rest of the paper.

Remark 2.1. Although the law Pε has been introduced in a somewhat artificial way, it
actually has a natural interpretation: it is the infinite volume limit of the pinning model,

i.e., as N → ∞ the law Pε,N converges weakly on RZ
+

to Pε. This fact provides another
path characterization of the phase transition, because the process {ϕn}n∈N under Pε is
positive recurrent, null recurrent or transient respectively when ε > εc, ε = εc or ε < εc.
We also note that the field {ϕi}i≥0 under the law Pε is not a Markov process, but it rather
is a time-homogeneous process with finite memory m = 2, like {Zn}n≥0 under P, cf. (2.6).
Although we do not prove these results, it may be helpful to keep them in mind. �

3. Proof of Theorem 1.4: first part

In this section we prove a first half of Theorem 1.4, more precisely (1.14) and the upper
bound on max0≤k≤N |ϕk| in (1.15). Note that these results yield as an immediate corollary
the proof of Theorem 1.2 for ε ≥ εc (the case ε < εc is deferred to Section 4).

The basic tools we use are the description of the pinning law Pε,N given in Section 2,
that we further develop in §3.1 to extract a genuine renewal structure, and a bound based
on the Brascamp-Lieb inequality, that we recall in §3.2.

3.1. From Markov renewals to true renewals. It is useful to observe that, in the
framework of Markov renewal theory described in §2.2, one can isolate a genuine renewal
process. To this purpose, we introduce the (random) set χ of the adjacent contact points,
defined by

χ :=
{
i ∈ Z+ : ϕi−1 = ϕi = 0

}
, (3.1)
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and we set by definition ϕ−1 = ϕ0 = 0, so that χ ∋ 0. We identify χ with the sequence of
random variables {χk}k∈Z+ defined by

χ0 := 0 , χk+1 := inf
{
i > χk : ϕi−1 = ϕi = 0

}
, k ∈ Z+ , (3.2)

and we denote by ιN the number of adjacent contact points occurring before N :

ιN := #
{
χ ∩ [1, N ]

}
= sup

{
k ∈ Z+ : χk ≤ N

}
. (3.3)

The first observation is that, for every ε > 0, the process {χk}k∈Z+ under the law Pε

is a genuine renewal process, i.e. the increments {χk+1 − χk}k∈Z+ are independent and
identically distributed random variables, taking values in N ∪ {∞}, as it is proven in
Proposition 5.1 in [6]. Denoting by qε(n) the law of χ1,

qε(n) := Pε

(
χ1 = n

)
, (3.4)

it turns out that the properties of qε(n) resemble closely those of Kε
x,dy(n), given in §2.2.

In fact qε(·) is defective for ε < εc (
∑

n∈N
qε(n) < 1) while it is proper for ε ≥ εc

(
∑

n∈N
qε(n) = 1). About the asymptotic behavior of qε(·), there exists α > 0 such that

for every ε ∈ (0, εc + α] as n → ∞

qε(n) =
Cε

n2
exp

(
− f(ε) · n

) (
1 + o(1)

)
, (3.5)

where Cε > 0, cf. Proposition 7.1 in [6] (which is stated for ε ∈ [εc, εc + α], but its proof
goes true without changes also for ε ∈ (0, εc)). We stress that f(ε) = 0 for ε ≤ εc while
f(ε) > 0 for ε > εc. When ε > εc + α, we content ourselves with the rougher bound

qε(n) ≤ C exp
(
− g(ε) · n

)
, ∀n ∈ N , (3.6)

for a suitable g(ε) > 0, which can also be extracted from the proof of Proposition 7.1 in [6]
(we have g(ε) > f(ε) for large ε).

To summarize: the renewal process {χk}k under Pε is defective with heavy tails in the
delocalized regime (ε < εc), it is proper with heavy tails in the critical regime (ε = εc),
while it is proper with exponential tails in the localized regime (ε > εc).

Coming back to the pinning model Pε,N , by projecting the basic relation (2.15) on the set
χ we obtain that the vector {ιN , (χk)k≤ιN } has the same distribution under Pε,N and under
Pε( · | AN ), where we can express the event AN in terms of χ, since AN = {N +1 ∈ χ}. In
words: the adjacent contact points {χn}n under the polymer measure Pε,N are distributed
like a genuine renewal process conditioned to hit N + 1.

3.2. The Brascamp-Lieb inequality. Let H : Rn → R ∪ {+∞} be a function that can
be written as

H(x) =
1

2
A(x) + R(x) , (3.7)

where A(x) is a positive definite quadratic form and R(x) is a convex function. Consider
the probability laws µH and µA on Rn defined by

µH(dx) :=
e−H(x)

cH
dx , µA(dx) :=

(det A)1/2

(2π)n/2
e−

1
2
A(x) dx ,

where dx denotes the Lebesgue measure on Rn and cH is the normalizing constant. Of
course, µA is a Gaussian law with zero mean and with A−1 as covariance matrix.
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We denote by EH and EA respectively the expectation with respect to µH and µA.
The Brascamp-Lieb inequality reads as follows (cf. [5, Cor. 6]): for any convex function
Γ : R → R and for all a ∈ Rn, such that EA[Γ(a · x)] < ∞, we have

EH

[
Γ
(
a · x − EH(a · x)

)]
≤ EA

[
Γ
(
a · x

)]
, (3.8)

where a · x denotes the standard scalar product on Rn.

A useful observation is that (3.8) still holds true if we condition µH through linear
constraints. More precisely, given m ≤ n and bi ∈ Rn, ci ∈ R for 1 ≤ i ≤ m, we set

µ∗
H(dx) := µH(dx | bi · x = ci ,∀i ≤ m) .

We assume that the set of solutions of the linear system {bi ·x = ci ,∀i ≤ m} has nonempty

intersection with the support of µH and that x 7→ e−H(x) is continuous on the whole Rn, so
that there is no problem in defining the conditional measure µ∗

H . Let us proceed through
an approximation argument: for k ∈ N we set

H∗
k(x) := H(x) + k

m∑

i=1

(bi · x − ci)
2 , µ∗

Hk
(dx) :=

e−Hk(x)

c∗Hk

dx ,

where c∗Hk
is the normalizing constant that makes µ∗

Hk
a probability. Since we have added

convex terms, H∗
k(x) is still of the form (3.7), with the same A(x), hence equation (3.8)

holds true with EH replaced by E∗
Hk

. However it is easy to realize that µ∗
Hk

converges

weakly to µ∗
H as k → ∞, hence (3.8) holds true also for E∗

H , i.e.

E∗
H

[
Γ
(
a · x − E∗

H(a · x)
)]

≤ EA

[
Γ
(
a · x

)]
. (3.9)

3.3. A preliminary bound. Before passing to the proof of Theorem 1.4, we derive a
useful bound based on the Brascamp-Lieb inequality. We recall that by the uniform strict
convexity assumption on the potential we can write V (t) = γ

2 t2 + r(t), where γ > 0 (cf.
(1.1)) and r(·) : R → R ∪ {+∞} is a convex function, see §1.1.

By (2.4), the law of the vector (Z1, . . . , Zn) under P(0,0) has the form µH(dx) =

e−H(x) dx, x ∈ Rn, where H(x) = 1
2A(x) + R(x) with

A(x1, . . . , xn) = γ ·
(

(x1)
2 + (x2 − 2x1)

2 +

n−1∑

i=2

(xi+1 + xi−1 − 2xi)
2

)

R(x1, . . . , xn) = r(x1) + r(x2 − 2x1) +

n−1∑

i=2

r(xi+1 + xi−1 − 2xi) .

(3.10)

Since r(·) is convex on R, R(·) is convex on Rn and therefore we are in the Brascamp-
Lieb framework described in §3.2. Fix arbitrarily m ≤ n and t1, . . . , tm ∈ {1, . . . , n} and
consider µ∗

H(dx) = µH(dx |xt1 = 0, . . . , xtm = 0) . Applying (3.9) with Γ(x) = eλxk , for
λ ∈ R and k ∈ {1, . . . , n}, and noting that E∗

H(xk) = 0 by symmetry, we obtain

E(0,0)
(
eλZk

∣∣Zt1 = 0, . . . , Ztm = 0
)

= E∗
H

(
eλxk

)

≤ EA

(
eλxk

)
= exp

(
λ2

2γ
· k(k + 1)(2k + 1)

6

)
,

where the last equality is the result of a straightforward Gaussian computation, because
in this context µA is just the law of the integral of a random walk with Gaussian steps
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∼ N (0, γ−1) (cf. (2.2) and (2.4)). Applying Markov’s inequality and optimizing over λ
yields for s ∈ R+

P(0,0)
(
|Zk| > s

∣∣Zt1 = 0, . . . , Ztm = 0
)

≤ 2 exp

(
− γ

k3

s2

6

)
. (3.11)

The crucial aspect is that this bound is uniform over the choices of the points ti (that do
not appear in the r.h.s.). In a sense, this is no surprise, because conditioning on Zti = 0
should decrease the probability of the event {|Zk| > t}.

3.4. Proof of Theorem 1.4: upper bounds. Recalling the basic relation (2.5), for
m ≤ N − 1 and t1, . . . , tm ∈ {1, . . . , N − 1} we have

Pε,N

(
|ϕk| > s

∣∣ ℓN = m, τi = ti, ∀1 ≤ i ≤ m
)

= P(0,0)
(
|Zk| > s

∣∣ Zj = 0 , ∀j ∈ {t1, t2, . . . , tm} ∪ {N,N + 1}
)
.

(3.12)

We now observe that the process {Zn}n under P(0,0) is a process with finite memory
m = 2, see (2.6), hence its excursions between adjacent zeros are independent. For this
reason, we identify the adjacent zeros that are close to k, in the following way: we first set
for convenience

t−1 := −1, t0 := 0, tm+1 := N, tm+2 := N + 1 ,

and we define

l := max{i ≥ 0 : ti ≤ k and ti − ti−1 = 1} , r := min{i ≥ 0 : ti > k and ti − ti−1 = 1} .

In words, tl (resp. tr) is the closest adjacent zero at the left (resp. at the right) of k. Note
that 0 ≤ l < r ≤ m + 1. Then the above mentioned finite memory property yields

P(0,0)
(
|Zk| > s

∣∣ Zj = 0 , ∀j ∈ {t1, . . . , tm} ∪ {N,N + 1}
)

= P(0,0)
(
|Zk| > s

∣∣ Zj = 0 , ∀j ∈ {tl−1, tl, . . . , tr}
)

= P(0,0)
(
|Zk−tl | > s

∣∣ Zj = 0 , ∀j ∈ {tl+1 − tl, tl+2 − tl, . . . , tr − tl}
)
,

(3.13)

where the second inequality follows by time homogeneity. Putting together (3.12), (3.13)
and (3.11), we get

Pε,N

(
|ϕk| > s

∣∣ ℓN = m, τi = ti, ∀1 ≤ i ≤ m
)

≤ 2 exp

(
− γ

(k − tl)3
s2

6

)
. (3.14)

We denote by δN the maximal gap in the adjacent contact set χ until N , i.e.,

δN := max
{
χk − χk−1 : 0 < k ≤ ιN

}
, (3.15)

where the variable ιN was introduced in (3.3). Then the bound (3.14) yields finally

Pε,N

(
|ϕk| > s

∣∣ τ ∩ (0, N)
)

≤ 2 exp

(
− γ

6 (δN )3
s2

)
. (3.16)

This is the key estimate to prove the upper bounds in (1.14) and (1.15). In fact the
inclusion bound yields

Pε,N

(
max

k=1,...,N
|ϕk| > s

∣∣∣ τ ∩ (0, N)
)

≤ 2N exp

(
− γ

6 (δN )3
s2

)
. (3.17)

It is now clear the importance of studying the asymptotic behavior of the variable δN .
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We start considering the critical regime (ε = εc). As we prove in Appendix A.1, there
exists a positive constant c1 and a sequence (an)n such that for all N ≥ 3 and t ∈ [1,∞)

Pεc,N

(
δN ≥ t

N

log N

)
≤ c1

t
+ aN , with aN → 0 as N → ∞ . (3.18)

Combining this relation with (3.17) we get

Pεc,N

(
max

k=1,...,N
|ϕk| > s

)
≤ Pεc,N

(
max

k=1,...,N
|ϕk| > s, δN < t

N

log N

)
+

c1

t
+ aN

≤ 2N Eεc,N

[
exp

(
− γ

6 (δN )3
s2

)
1{δN <t N

log N
}

]
+

c1

t
+ aN

≤ 2N exp

(
− γ

6 t3
(log N)3

N3
s2

)
+

c1

t
+ aN ,

and setting s = K N3/2/ log N and t = ( γ
12 )1/3 K2/3 we finally obtain

Pεc,N

(
max

k=1,...,N
|ϕk| > K

N3/2

log N

)
≤ 2

N
+

c1

(
12
γ

)1/3

K2/3
+ aN .

Since aN → 0 as N → ∞, see (3.18), the upper bound in equation (1.15) is proven.

Then we consider the localized regime (ε > εc). As we prove in Appendix A.3, there
exists a positive constant c2 such that

Pε,N

(
δN ≥ c2 log N

)
−→ 0 as N → ∞ . (3.19)

Then, in analogy with the preceding lines, we combine this relation with (3.17), getting

Pε,N

(
max

k=1,...,N
|ϕk| > s

)
≤ Pε,N

(
max

k=1,...,N
|ϕk| > s, δN < c2 log N

)
+ o(1)

≤ 2N Eε,N

[
exp

(
− γ

6 (δN )3
s2

)
1{δN <c2 log N}

]
+ o(1)

≤ 2N exp

(
− γ

6 (c2)3
s2

(log N)3

)
+ o(1) .

Setting s = K (log N)2, for K sufficiently large we obtain

Pεc,N

(
max

k=1,...,N
|ϕk| > K (log N)2

)
≤ 2N

− γK2

6(c2)3
+1

+ o(1) −→ 0 as N → ∞ ,

hence also (1.14) is proven. �

4. Proof of Theorems 1.3 and 1.2

In this section we focus on the delocalized regime ε < εc, proving Theorem 1.3 and the
corresponding part of Theorem 1.2. We recall that the proof of Theorem 1.2 for ε ≥ εc

follows immediately from the upper bound on max0≤k≤N |ϕk| given by relations (1.14) and
(1.15), that have already been proven in Section 3.
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4.1. The free case ε = 0. We start proving Theorem 1.2 in the case ε = 0, when there
is no interaction between the field and the defect line. The main ingredient is the random
walk interpretation outlined in §2.1. We recall from §1.3 that {Bt}t∈[0,1] denotes a standard

Brownian motion on R and It =
∫ t
0 Bs ds denotes its integral, while (B̂t, Ît) denotes (Bt, It)

conditionally on (B1, I1) = (0, 0), see (1.11).
We first state a local limit theorem for the process {Zn}n∈N, proven in Proposition 2.3

of [6]. We note that the vector (Yn, Zn) = (Zn − Zn−1, Zn) has an absolutely continuous

law under P(a,b) for n ≥ 2, and we introduce its density

ϕ(a,b)
n (y, z) :=

P(a,b)
(
(Yn, Zn) ∈ (dy,dz)

)

dy dz
.

Notice that ϕ
(a,b)
n (y, z) = ϕ

(0,0)
n (y − a, z − b − na) by (2.3), hence we can focus on ϕ

(0,0)
n .

The local limit theorem reads as follows:

sup
(y,z)∈R2

∣∣ σ2 n2 ϕ(0,0)
n

(
σ
√

ny, σn3/2z
)
− g(y, z)

∣∣ −→ 0 (n → ∞) , (4.1)

where g(y, z) := 6
π exp(−2y2 − 6z2 + 6yz) is the law of the Gaussian vector (B1, I1).

We are ready to prove a somewhat general invariance principle, from which Theorem 1.2
for ε = 0 follows as a corollary, because P0,N coincides with the law of the integrated

random walk (Z1, . . . , ZN−1) under P(0,0)( · |YN+1 = 0, ZN+1 = 0), cf.§ 2.1. For notational
convenience, we simply denote by Z〈Nt〉 and Y〈Nt〉 the linear interpolation of the processes.

Proposition 4.1. Uniformly for a, c in compact sets of R, we have as N → ∞:
{(

Y〈Nt〉

σ
√

N
,

Z〈Nt〉
σN3/2

)}

t∈[0,1]

under P(−a,0)
(
·
∣∣ (YN , ZN ) = (−c, 0)

) d−→
{
(B̂t, Ît)

}
t∈[0,1]

,

(4.2)

where
d−→ denotes convergence in distribution on C([0, 1]) × C([0, 1]).

Proof. We start noting that the process
{(

Y〈Nt〉

σ
√

N
,

Z〈Nt〉

σN3/2

)}
t∈[0,1]

under the unconditioned

law P(−a,0)( · ) converges in distribution as N → ∞ toward {(Bt, It)}t∈[0,1], uniformly for
a in compact sets of R. This is an easy consequence of Donsker’s Invariance Principle
and the Continuous Mapping Theorem, because {Yn}n∈Z+ under P(−a,0) is a zero-mean,
finite-variance real random walk starting at −a and moreover

Z〈Nt〉
σN3/2

=

∫ t

0

(Y⌈Ns⌉ + a)

σ
√

N
ds

(we recall that (ξt)t 7→
∫ t
0 ξs ds is a continuous functional on D([0, 1])).

Next it is convenient to restrict the parameter t to [0, 1− η], where η > 0 is fixed. Since

{(Yn, Zn)}n∈Z+ is a Markov process, the law of the process
{(

Y〈Nt〉

σ
√

N
,

Z〈Nt〉

σN3/2

)}

t∈[0,1−η]
under

P(−a,0)
(
·
∣∣ (YN , ZN ) = (−c, 0)

)
is absolutely continuous w.r.t. the law of the same process

under P(−a,0)
(
·
)
, with Radon-Nikodym derivative f

(η)
N given by

f
(η)
N

(
(yt, zt)t∈[0,1−η]

)
= f

(η)
N (y1−η, z1−η) =

ϕ
(σ

√
Ny1−η , σN3/2z1−η)

⌊ηN⌋ (−c, 0)

ϕ
(−a,0)
N (−c, 0)

.
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The local limit theorem (4.1) yields the uniform convergence on compact sets of the func-

tion f
(η)
N as N → ∞ toward an explicit limit function f (η), uniformly for a, c in compact

sets, and one checks directly that f (η) is indeed the Radon-Nikodym derivative of the law of

{(B̂t, Ît)}t∈[0,1−η] w.r.t. the law of {(Bt, It)}t∈[0,1−η]. This shows that equation (4.2) holds
when t is restricted to [0, 1 − η]. Since this is true for every η > 0, the proof is completed
with a standard tightness argument. �

4.2. Proof of Theorem 1.3. In this paragraph we focus on the regime 0 < ε < εc. We
start proving a slightly stronger version of equation (1.13). We denote by lN (resp. rN )
the index of the last point in the contact set before N/2 (resp. after N/2), that is

lN := max
{
i ≥ 0 : τi ≤ N/2

}
, rN := min

{
i ≥ 0 : τi > N/2

}
= lN + 1 . (4.3)

Equation (1.13) says that both τlN and N − τrN
are O(1). It turns out that also |JlN | and

|JrN
| are O(1). More precisely, we are going to prove that

lim
L→+∞

lim inf
N→+∞

Pε,N

(
τlN ≤ L, τrN

≥ N − L, |JlN | ≤ L, |JrN
| ≤ L

)
= 1 . (4.4)

As a matter of fact, it is not difficult to further strengthen this relation, by showing that
also max0≤i≤τlN

|ϕi| and maxτrN
≤i≤N |ϕi| are O(1), but we omit the details for conciseness.

The proof of (4.4) is based on relation (2.18) (or more directly on (2.15)). Recalling
the definition (2.11) of the transition kernel K

ε
x,dy(n), we introduce the associated renewal

kernel U
ε
x,dy(n) by

U
ε
x,dy(n) :=

∞∑

k=0

(Kε)∗kx,dy(n) = Pε

(
n ∈ τ, ϕn−1 ∈ dy

∣∣ J0 = x
)
, (4.5)

where (Kε)∗k denotes the k-fold convolution of the kernel K
ε with itself: by definition

(Kε)∗0x,dy(n) := δx(dy)1{n=0} and given the kernels Ax,dy(n),Bx,dy(n) we set

(A ∗ B)x,dy(n) :=
n∑

m=0

∫

z∈R

Ax,dz(m) · Bz,dy(n − m) .

In particular Pε(AN ) = U0,{0}(N + 1). With this notation, by (2.18) we can write

Pε,N

(
τlN ≤ L, τrN

≥ N − L, |JlN | ≤ L, |JrN
| ≤ L

)

=
1

U ε
0,{0}(N + 1)

·
L∑

a,b=0

∫

x,y∈[−L,L]
U

ε
0,dx(a) · Kε

x,dy(N + 1 − a − b) · Uε
y,{0}(b) .

(4.6)

By (2.12) and (4.1) it follows that for bounded x, y and as n → ∞

K
ε
x,dy(n) ∼

Lε
x,dy

n2
, where Lε

x,dy :=
6 ε

π

vε(y)

vε(x)
dy . (4.7)

To determine the asymptotic behavior of U0,{0}(N + 1) as N → ∞, we apply the Markov
Renewal Theorem given by equation (7.9) in [6, §7.2] (it is easily checked that all the
assumptions are verified). We set

Bε
x,dy :=

∑

n∈N

K
ε
x,dy(n) , (1 − Bε)−1

x,dy :=

∞∑

k=0

(Bε)◦kx,dy , (4.8)
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where (Bε)◦k denotes the k-fold composition of the kernel Bε with itself: by definition
(Bε)◦0x,dy := δx(dy) and (A ◦ B)x,dy :=

∫
z∈R

Ax,dz Bz,dy. Then by equation (7.9) in [6] we
can write as n → ∞

U ε
0,{0}(n) ∼

(
(1 − Bε)−1 ◦ L ◦ (1 − Bε)−1

)
0,{0}

n2
,

and therefore

lim
N→∞

Pε,N

(
τlN ≤ L, τrN

≥ N − L, |JlN | ≤ L, |JrN
| ≤ L

)

=

∫
x,y∈[−L,L]

(∑L
a=0 U

ε
0,dx(a)

)
Lε

x,dy

(∑L
b=0 U

ε
y,{0}(b)

)

(
(1 − Bε)−1 ◦ Lε ◦ (1 − Bε)−1

)
0,{0}

.

Since by definition
∑

n∈N
U

ε
x,dy(n) = Bε

x,dy, letting L → ∞ the r.h.s. of the last relation

converges to 1 and equation (4.4) is proven. �

4.3. Proof of Theorem 1.2. The proof of Theorem 1.2 for 0 < ε < εc follows by putting
together the results proven so far. For conciseness, we just sketch the main arguments and
leave the details to the reader.

It is convenient to split the field {ϕi}0≤i≤N in three parts: the beginning {ϕi}0≤i≤τlN
, the

bulk {ϕi}τlN
≤i≤τrN

and the end {ϕi}τrN
≤i≤N , where we recall that the indexes lN , rN have

been introduced in (4.3). By (4.6), both τlN and N−τrN
are O(1) as N → ∞. Furthermore,

as we already mention, one can show that also max0≤i≤τlN
|ϕi| and maxτrN

≤i≤N |ϕi| are

O(1) as N → ∞. Therefore both the beginning and the end of the field are irrelevant for
the scaling limit (remember the definition (1.10) of the rescaled field ϕ̂N (t)) and it suffices
to focus on the bulk.

We recall that the polymer measure Pε,N coincides with the law Pε conditioned on
AN , cf. (2.18). In particular, by the construction of Pε given in §2.2–2.3 it follows that
if we fix τlN = m, ϕm−1 = a, τrN

= N − n, ϕN−n−1 = c (of course ϕm = ϕN−n = 0),
the bulk {ϕi}m≤i≤N−n under Pε,N is distributed like the process {Zj}0≤j≤N−n−m under

P(−a,0)
(
·
∣∣ (YN−n−m, ZN−n−m) = (−c, 0)

)
. Since all the parameters m,n, a, c are O(1) by

(4.4), we can apply Proposition 4.1 and Theorem 1.2 is proven. �

5. Proof of Theorem 1.4: second part

In this section we complete the proof of Theorem 1.4, by showing that also the lower
bound on max0≤k≤N |ϕk| in (1.15) holds true.

The first basic ingredient, that we prove in Appendix A.2, is a lower bound counterpart
of equation (3.18):

lim
t→0+

lim inf
N→∞

Pεc,N

(
δN ≥ t

N

log N

)
= 1 . (5.1)

The second ingredient is given by the following lemma, proven in §5.1, that will be used also
in the proof of Theorem 1.6. Recall the definition (1.10) of the rescaled field {ϕ̂N (t)}t∈[0,1].

Lemma 5.1. Under the conditional law Pεc( · |χ1 = N + 1), the process {ϕ̂N (t)}t∈[0,1]

converges in distribution on C([0, 1]) as N → ∞ toward the process {Ît}t∈[0,1].

The idea to complete the proof of Theorem 1.4 is now quite simple. We first notice that,
given a gap (χk, χk+1) in the set χ of width m = χk+1 −χk, the law of the field inside this
gap is nothing but Pεc( · |χ1 = m). In particular, by Lemma 5.1 the scaling behavior of the
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0 N

ϕn O
(
(N/ logN)3/2

)
= tN/ logN

χβ−1 χβ

Figure 2. A typical trajectory of the field {ϕn}0≤n≤N under the critical
law Pεc,N . The variables χβ−1 and χβ are the extremities of the first large

gap in the set χ of adjacent contact points, cf. (5.4). For simplicity, the
distinction between simple and adjacent contact points (i.e., between the
sets τ and χ) is not evidenced in the picture.

field in this gap is of order m3/2. By (5.1), the width of the largest gap in the set χ before

N is of order ≈ N/ log N , hence inside this gap the field scales like (N/ log N)3/2, from
which the lower bound in (1.15) follows. Let us now make these considerations precise (it
may be helpful to look at Figure 2).

For m ∈ N and s ∈ R+ we introduce the event Am,s :=
{

max0≤k≤m |ϕk| ≥ s m3/2
}
,

and we note that by Lemma 5.1 we have

lim
s→0+

lim inf
m→∞

Pεc

(
Am,s

∣∣χ1 = m
)

= 1 . (5.2)

By (5.1), for every η > 0 we can fix t > 0 and N0 ∈ N such that for all N ≥ N0

Pεc,N

(
δN ≥ t

N

log N

)
≥ 1 − η . (5.3)

We denote by β the index of the first long gap in the set χ (cf. Figure 2):

β := inf

{
i ≥ 1 : χi − χi−1 ≥ t

N

log N

}
. (5.4)

The law of the field inside the gap admits the following explicit description, that follows
from relation (2.18): for all a, b ∈ N with 0 ≤ a ≤ b ≤ N and b − a ≥ tN/ log N

Pεc,N

({
ϕi

}
a≤i≤b

∈ ·
∣∣∣χβ−1 = a, χβ = b

)
= Pεc

({
ϕi

}
0≤i≤b−a

∈ ·
∣∣∣χ1 = b − a

)
. (5.5)

Observing that {δN ≥ tN/ log N} = {χβ ≤ N} and applying the inclusion bound we get

Pεc,N

(
max

0≤k≤N
|ϕk| ≥

1

K

N3/2

(log N)3/2

)
≥ Pεc,N

(
max

0≤k≤N
|ϕk| ≥

1

K

N3/2

(log N)3/2
, χβ ≤ N

)

≥ Pεc,N

(
max

χβ−1≤k≤χβ

|ϕk| ≥
1

K

N3/2

(log N)3/2
, χβ ≤ N

)

=
∑

0≤a≤b≤N
b−a≥tN/ log N

Pεc,N

(
max

a≤k≤b
|ϕk| ≥

1

K

N3/2

(log N)3/2
, χβ−1 = a , χβ = b

)
.
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Combining this relation with (5.5) and recalling the definition of Am,s yields

Pεc,N

(
max

0≤k≤N
|ϕk| ≥

1

K

N3/2

(log N)3/2

)

≥
∑

0≤a≤b≤N
b−a≥tN/ log N

Pεc

(
A

b−a, 1
K

N3/2

(log N)3/2
· 1

(b−a)3/2

∣∣∣χ1 = b − a
)
· Pεc,N

(
χβ−1 = a, χβ = b

)
.

Now observe that in the range of summation 1
K

N3/2

(log N)3/2 · 1
(b−a)3/2 ≤ 1

Kt3/2 and that the

event Am,s is decreasing in s. Since t > 0 is fixed, it follows from (5.2) that for K and N
sufficiently large, when b − a ≥ tN/ log N , we have

Pεc

(
A

b−a, 1
K

N3/2

(log N)3/2
· 1

(b−a)3/2

∣∣∣χ1 = b − a
)

≥ Pεc

(
Ab−a, 1

Kt3/2

∣∣∣χ1 = b − a
)

≥ 1 − η .

Therefore, for the same K and N we get

Pεc,N

(
max

0≤k≤N
|ϕk| ≥

1

K

N3/2

(log N)3/2

)
≥ (1 − η)

∑

0≤a≤b≤N
b−a≥tN/ log N

Pεc,N

(
χβ−1 = a, χβ = b

)

= (1 − η) Pεc,N

(
χβ ≤ N

)
≥ (1 − η)2 ,

where the last inequality is just (5.3). Since η > 0 was arbitrary, the proof of the lower
bound in (1.15) is completed. �

5.1. Proof of Lemma 5.1. Arguing as in §4.3, it suffices to show that under the law
Pεc( · |χ1 = N + 1) the contact set is concentrated near the boundary points, and the
invariance principle will follow from Proposition 4.1. Recalling the definition (4.3) of the
indexes lN and rN , we prove that

lim
L→+∞

lim inf
N→+∞

Pεc

(
τlN ≤ L, τrN

≥ N−L, |JlN | ≤ L, |JrN
| ≤ L

∣∣χ1 = N+1
)

= 1 . (5.6)

Some notation first. We set K̂
ε
x,dy(n) := K

ε
x,dy(n)1{y 6=0} = K

ε
x,dy(n)1{n≥2}, cf. (2.12),

that gives the law of the jumps occurring before χ1, and we introduce the corresponding
renewal kernel

Û
ε
x,dy(n) :=

∞∑

k=0

(K̂ε)∗kx,dy(n) = Pε

(
n ∈ τ, χ1 > n, ϕn−1 ∈ dy

∣∣ J0 = x
)
.

Then, recalling that qεc(N + 1) := Pεc(χ1 = N + 1), we can write, in analogy with (4.6),

Pεc

(
τlN ≤ L, τrN

≥ N − L, |JlN | ≤ L, |JrN
| ≤ L

∣∣χ1 = N + 1
)

=
1

qεc(N + 1)
·

L∑

a,b=0

∫

x,y∈[−L,L], z∈R

Û
εc
0,dx(a) · K̂εc

x,dy(N + 1 − a − b) · Ûεc
y,dz(b) · Kεc

z,{0}(1) .

Applying relations (4.7) and (3.5) we obtain

lim
N→∞

Pεc

(
τlN ≤ L, τrN

≥ N − L, |JlN | ≤ L, |JrN
| ≤ L

∣∣χ1 = N
)

=

∫
x,y∈[−L,L], z∈R

(∑L
a Û

εc
0,dx(a)

)
Lεc

x,dy

(∑L
b=0 Û

εc
y,dz(b)

)
K

εc

z,{0}(1)

Cεc

.

(5.7)
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However the precise value of Cεc is shown in [6, §7.3] to be

Cεc =
(
(1 − B̂εc)−1 ◦ Lεc ◦ (1 − B̂εc)−1 ◦ K

εc
)
0,{0} ,

where of course B̂ε
x,dy :=

∑
n∈N

K̂
ε
x,dy(n). Since

∑
n∈N

Û
ε
x,dy(n) = (1 − B̂ε)−1

x,dy, by letting

L → ∞ the r.h.s. of (5.7) converges to 1 and equation (5.6) is proven. �

6. Proof of Theorem 1.6

In this section we prove Theorem 1.6. We start discussing the topological and measurable
structure of the space M([0, 1]) (for more details we refer to [13]).

6.1. Finite signed measures. We denote by M([0, 1]) the space of finite signed Borel
measures on the interval [0, 1], that is of those set functions ν that can be written as
ν = ν1 − ν2, where ν1 and ν2 are finite non-negative Borel measures on [0, 1] (since all the
measures we deal with are Borel and finite, these adjectives will be dropped henceforth).
According to the Hahn–Jordan decomposition [7], every ν ∈ M([0, 1]) can be written in
a unique way as ν = ν+ − ν−, where ν+ and ν− are non-negative measures supported by
disjoint Borel sets. Given ν ∈ M([0, 1]), the non-negative measure |ν| := ν+ + ν− is called
the total variation of ν. For K ∈ R+ we set

MK([0, 1]) :=
{
ν ∈ M([0, 1]) : |ν|([0, 1]) ≤ K

}
.

Notice that MK([0, 1]) ⊂ MK+1([0, 1]) and that

M([0, 1]) =
⋃

K∈N

MK([0, 1]) . (6.1)

We recall that C([0, 1]) denotes the space of continuous real functions defined on [0, 1].
We equip the space M([0, 1]) with the topology of vague convergence, that is the smallest
topology on M([0, 1]) under which the map ν 7→

∫
fdν is continuous for every f ∈ C([0, 1]),

and with the corresponding Borel σ–field. We recall that νn → ν in M([0, 1]) if and only
if
∫

fdνn →
∫

fdν for all f ∈ C([0, 1]) (see [10, 11] for a more explicit characterization).
The space M([0, 1]) is Hausdorff and separable (a dense countable subset is given by the

measures
∑n

i=1 ai δbi
(·), for n ∈ N and ai, bi ∈ Q). The delicate point is that M([0, 1]) is not

metrizable. However we have the following result, proven in [13, Th.9.8.7 and Th.9.8.10].

Lemma 6.1. For every K ∈ R+, the space MK([0, 1]) with the vague topology is compact
and metrizable (and separable, hence Polish). Viceversa, if A ⊂ M([0, 1]) is compact then
A ⊂ MK([0, 1]) for some K ∈ N.

By a random signed measure on [0, 1] we mean a random element ν, defined on some
probability space (Ω,F , P ), and taking values in M([0, 1]). For instance, {µN}N∈N defined
in (1.18) (under the law Pεc,N ) is a sequence of random signed measures. For notational
clarity, random signed measures will always be denoted by boldface symbols. The law of
a random signed measure ν is the probability measure ν ◦ P−1 on M([0, 1]). Given the
random signed measures {νN}N∈N and ν, we say that {νN}N∈N converges in distribution
on M([0, 1]) toward ν if the law of νN converges weakly to the law of ν, i.e. for every
bounded and continuous functional F : M([0, 1]) → R we have E[F (νN )] → E[F (ν)].

We are going to give sufficient conditions for convergence in distribution of random
signed measures, that will be applied in the next paragraphs. The path we follow is
close to the standard one of proving tightness and checking the ‘convergence of the
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finite-dimensional distributions’, but some additional care is required, due to the non-
metrizability of M([0, 1]). We recall that a sequence {νN}N∈N of random signed measures
on [0, 1] is said to be tight if for every δ > 0 there exist a compact set C ∈ M([0, 1]) such
that P (νN ∈ C) ≥ 1 − δ for large N . Equivalently, {νN}N∈N is tight if and only if for
every δ > 0 there exist K,N0 ∈ N such that

P
(
|νN |([0, 1]) ≤ K

)
≥ 1 − δ ∀N ≥ N0 . (6.2)

Although M([0, 1]) is not Polish, the first half of Prohorov’s Theorem still holds:

Lemma 6.2. If the sequence of random signed measures {νN}N∈N is tight, then there is
a subsequence {νNk

}k∈N which converges in distribution on M([0, 1]).

The proof of this lemma is given in Appendix B.2. Next for t ∈ [0, 1] we define the
measurable map Ft : M([0, 1]) → R by

Ft(ν) := ν
(
[0, t]

)
.

For k ∈ N and 0 ≤ a1 ≤ . . . ≤ ak ≤ 1, a random signed measure ν determines the law on
Rk defined by

(
Fa1(ν), . . . , Fak

(ν)
)
◦ P−1 =

(
ν([0, a1]), ν([0, a2]), . . . , ν([0, ak])

)
◦ P−1 ,

where P is the underlying probability measure. These laws are called the finite dimensional

distributions of the random signed measure ν. Notice that if ν1 and ν2 have the same
finite dimensional distributions, then they have the same law on M([0, 1]), because the
σ–field generated by the maps {Ft}t∈[0,1] coincides with the Borel σ–field of M([0, 1]). In
other terms, the finite dimensional distributions determine laws on M([0, 1]).

We are ready to put together tightness and convergence of the finite-dimensional dis-
tributions, to yield convergence in distribution on M([0, 1]). The next proposition, proven
in Appendix B.1, is sufficient for our purposes.

Proposition 6.3. Let {νN}N∈N be a tight sequence of random signed measures on [0, 1].
Assume that the finite-dimensional distributions of νN converge, i.e. ∀k ∈ N and for all

0 < a1 < . . . < ak < 1 there is a probability measure λ
(k)
a1,...,ak(·) on Rk such that

(
νN ([0, a1]), νN ([0, a2]), . . . , νN ([0, ak])

) d−→ λ(k)
a1,...,ak

(N → ∞) . (6.3)

Assume moreover that for every x ∈ [0, 1] and η > 0

lim
δ→0

lim sup
N→∞

P
(
|νN |

(
[x − δ, x + δ]

)
> η

)
= 0 . (6.4)

Then {νN}N∈N converges in distribution on M([0, 1]) toward a random signed measure

whose finite-dimensional distributions are λ
(k)
a1,...,ak .

The reason for requiring the extra condition (6.4) is that the map Ft is not continuous
on M([0, 1]) and therefore the convergence in distribution on M([0, 1]) does not imply
automatically the convergence of the finite-dimensional distributions.
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6.2. Preparation. Remember the definition (1.18) of the random signed measure µN

under Pεc,N , that we look at as a random element of the space M([0, 1]). Our goal is
to show that µN under Pεc,N converges in distribution as N → ∞ toward the random
measure dL, defined in §1.4, using Proposition 6.3.

We start restating for µN the convergence of the finite-dimensional distributions and
the extra-condition (6.4), which are interesting by themselves.

Theorem 6.4. For every k ∈ N and for all a1, . . . , ak ∈ (0, 1) with ai ≤ ai+1, i = 1, . . . , k,
we have as N → ∞

(
µN

(
(0, a1]

)
, µN

(
(a1, a2]

)
, . . . ,µN

(
(ak−1, ak]

))
under Pεc,N

d−→
(
La1 , La2 − La1 , . . . , Lak

− Lak−1

)
,

(6.5)

where
d−→ denotes convergence in distribution on Rk. Moreover ∀x ∈ [0, 1], ∀η > 0

lim
δ→0

lim sup
N→∞

Pεc,N

(
|µN |

(
[x − δ, x + δ]

)
> η

)
= 0 . (6.6)

Notice that the vectors in (6.5) differ from those in (6.3) just by a linear transformation,
because it is simpler to work with µN

(
(ai−1, ai]

)
than with µN

(
(0, ai]

)
= µN

(
[0, ai]

)
.

The proof of Theorem 6.4 is given in §6.3, while the tightness of the sequence {µN}N

under Pεc,N is proven in §6.4. Thanks to Proposition 6.3, this completes the proof of
Theorem 1.6. The rest of this paragraph is devoted to a basic lemma.

Lemma 6.5. Fix any δ ∈ (0, 1). Given any sequence of events {BN}N∈N such that BN ∈
σ({ϕi}0≤i≤δN ), i.e., BN depends on the field of length δN , the following relation holds:

Pεc,N

(
BN

)
= Pεc

(
BN

)
+ o(1) , (N → ∞) .

Proof. Thanks to relation (2.18), it suffices to prove that

Pεc

(
BN

∣∣N + 1 ∈ χ
)

= Pεc

(
BN

)
+ o(1) , (N → ∞) . (6.7)

Introducing the variable ξδ := min
{
χ ∩ [δN,∞)

}
− max

{
χ ∩ [0, δN ]

}
, we claim that

Pεc

(
ξδ ≥ N

log N

∣∣∣∣N + 1 ∈ χ

)
= o(1) , Pεc

(
ξδ ≥ N

log N

)
= o(1) . (6.8)

In fact, these relations are proven in Appendix A with explicit bounds, cf. (A.7)-(A.8)-
(A.9) and (A.12), in the special case δ = 1

2 , but the proof carries over to the general case

with no change. We introduce the variable dδ := min
{
χ ∩ [δN,∞)

}
− ⌊δN⌋, and we note

that dδ ≤ ξδ. Thanks to (6.8), we can rephrase (6.7) as

Pεc

(
BN , dδ ≤ N

log N

∣∣∣∣N+1 ∈ χ

)
= Pεc

(
BN , dδ ≤ N

log N

)
+ o(1) , (N → ∞) . (6.9)

We recall from §3.1 that the process {χn}n under Pεc is a renewal process with step
law qεc(n) = Pεc(χ1 = n). Denoting by uεc(n) :=

∑
k≥0 q∗kεc

(n) the corresponding renewal

mass function, we can write the l.h.s. of (6.9) as

Pεc

(
BN , dδ ≤ N

log N

∣∣∣∣N +1 ∈ χ

)
=

⌊N/ log N⌋∑

k=0

Pεc

(
BN , dδ = k

)
· uεc(N + 1 − ⌊δN⌋ − k)

uεc(N + 1)
.
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Since qεc(n) ∼ Cεc/n
2 as n → ∞, see (3.5), by Theorem 8.7.5 of [3] we have uεc(n) ∼

1/(Cεc log n). Therefore uεc(N +1−⌊δN⌋−k)/uεc(N +1) = 1+o(1) as N → ∞, uniformly
for k in the range of summation, and (6.9) is proven. �

Corollary 6.6. To prove equations (6.5) and (6.6), one can replace the law Pεc,N by Pεc.

6.3. Proof of Theorem 6.4. We introduce the sequences {Ak}k∈N and {Ãk}k∈N that
give the area respectively under the processes {ϕi}i and {|ϕi|}i between two consecutive
adjacent contact points:

Ak :=

χk∑

i=χk−1+1

ϕi , Ãk :=

χk∑

i=χk−1+1

|ϕi| . (6.10)

We also introduce the corresponding partial sum processes:

Sn := A1 + . . . + An , S̃n := Ã1 + . . . + Ãn . (6.11)

Note that the variables {Ak}k∈N are i.i.d. under Pεc and hence {Sn}n≥0 is a real random

walk, and analogous statements hold for {Ãk}k∈N and {S̃n}n≥0. In fact the epochs {χk}k≥0

cut the field into independent segments, because {χk}k≥0 under Pεc is a genuine renewal
process, cf. §3.1, and furthermore the excursions {ek}k∈N are independent conditionally
on {(τk, Jk)}k∈Z+ , cf. §2.3.

The crucial fact is that the random walk {Sn}n under Pεc is in the domain of attraction

of the symmetric stable Lévy process of index 2/5, and analogously {S̃n}n is in the domain
of attraction of the stable subordinator of index 2/5. In fact we have the following:

Proposition 6.7. There exist positive constants C, C̃ such that

Pεc

(
A1 > x

)
∼ C

x2/5
, Pεc

(
Ã1 > x

)
∼ C̃

x2/5
, (x → +∞) . (6.12)

Proof. By Lemma 5.1 and the Continuous Mapping Theorem, as n → ∞ we have that
∫ 1

0
ϕ̂n(t) dt =

1

σ

1

n5/2

n∑

i=1

ϕi under Pεc

(
·
∣∣χ1 = n

) d−→
∫ 1

0
Ît dt , (6.13)

where
d−→ denotes convergence in distribution on R and the process {Ît}t∈[0,1] was intro-

duced in (1.11). Note that
∫ 1
0 Ît dt is a Gaussian random variable, whose variance equals

1
720 (see Appendix B.3), hence

Φ(z) := P

(∫ 1

0
Ît dt > z

)
=

6
√

10√
π

∫ ∞

z
e−360 t2 dt . (6.14)

For z ∈ R and n ∈ N we set

Φn(z) := Pεc

(
A1

σ n5/2
> z

∣∣∣∣χ1 = n

)
, (6.15)

and note that equation (6.13) yields Φn(z) → Φ(z) as n → ∞, for every z ∈ R.
Recalling the notation qεc(n) = Pεc(χ1 = n), we can write

Pεc

(
A1 > x

)
=
∑

n∈N

qεc(n) Pεc

(
A1 > x

∣∣χ1 = n
)

=
∑

n∈N

qεc(n) Φn

(
x

σ n5/2

)
.
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Let us rewrite the r.h.s. above by putting in evidence the factor s := nσ2/5

x2/5 :

Pεc

(
A1 > x

)
=

1

x2/5

{
σ2/5 · σ2/5

x2/5

∑

s∈σ2/5

n2/5
N

[
x4/5

σ4/5
q

(
x2/5

σ2/5
s

)]
· Φ x2/5

σ2/5
s

(
1

s5/2

)}
. (6.16)

Since Φn(z) → Φ(z) and qεc(n) ∼ Cεc/n
2 as n → ∞, cf. (3.5), for every s > 0 we have

Φ x2/5

σ2/5
s

(
1

s5/2

)
−→ Φ

(
1

s5/2

)
,

x4/5

σ4/5
q

(
x2/5

σ2/5
s

)
−→ Cεc

s2
(x → +∞) .

Moreover we claim that the following bound holds true (see below):

Pεc

(
A1 > x

∣∣χ1 = n
)

≤ (const.)
n5

x2
. (6.17)

Then a Riemann-sum argument shows that the term in brackets in (6.16) does converge
toward the corresponding integral, that is as x → ∞

σ2/5 · σ2/5

x2/5

∑

s∈σ2/5

n2/5
N

[
x4/5

σ4/5
q

(
x2/5

σ2/5
s

)]
· Φ x2/5

σ2/5
s

(
1

s5/2

)

−→ σ2/5

∫ ∞

0

Cεc

s2
Φ

(
1

s5/2

)
ds = Cεc σ2/5 6

√
10√
π

∫ ∞

0
t2/5 e−360 t2 dt =: C ,

(6.18)

having used (6.14). This proves the first relation in (6.12), with an explicit formula for C.

The variable Ã1 is treated in a similar way. In fact, in analogy with (6.13), Lemma 5.1
and the Continuous Mapping Theorem yield as n → ∞

Ã1

σ n5/2
under Pεc

(
·
∣∣χ1 = n

) d−→
∫ 1

0
|Ît|dt , (6.19)

and moreover the following bound holds (see below):

Pεc

(
Ã1 > x

∣∣χ1 = n
)

≤ (const.)
n5

x2
. (6.20)

Then, arguing exactly as above, a Riemann-sum approximation shows that the second
relation in (6.12) holds true, with

C̃ := σ2/5

∫ ∞

0

Cεc

s2
Φ̃

(
1

s5/2

)
ds = σ2/5

∫ ∞

0

2

5

Cεc

t3/5
Φ̃(t) dt < ∞ , (6.21)

where, of course, Φ̃(t) := P
( ∫ 1

0 |Îs|ds > t
)
.

To complete the proof, it remains to prove (6.20), which implies (6.17), because A1 ≤ Ã1.
To this purpose we exploit the Brascamp-Lieb inequality. We recall from §3.3 that the
law of the vector (Z1, . . . , Zn) under P(0,0) has the form µH(dx) = e−H(x) dx, x ∈ Rn,
where H(x) = 1

2A(x) + R(x) and A(·), R(·) are defined in (3.10). Fixing m ≤ n and
t1, . . . , tm ∈ {1, . . . , n}, the law µ∗

H(dx) := µH(dx |xt1 = 0, . . . , xtm = 0) satisfies the
Brascamp-Lieb inequality (3.9): choosing Γ(x) = x2

k, with 1 ≤ k ≤ n, we obtain

E(0,0)
(
Z2

k

∣∣Zt1 = 0, . . . , Ztm = 0
)

= E∗
H

(
x2

k

)
≤ EA

(
x2

k

)
=

k(k + 1)(2k + 1)

6γ
,

where we observe that E∗
H(xk) = 0 by symmetry and the last equality is just a straight-

forward Gaussian computation, because µA is nothing but the law of the integral of a
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random walk with Gaussian steps ∼ N (0, γ−1) (cf. (2.2) and (2.4)). Setting P
(0,0)
∗ ( · ) :=

P(0,0)( · |Zt1 = 0, . . . , Ztm = 0) for conciseness and using Chebychev’s and Cauchy-Schwarz
inequalities, we obtain

P(0,0)

(
n∑

k=1

|Zk| > x

∣∣∣∣∣Zt1 = 0, . . . , Ztm = 0

)
≤ 1

x2

n∑

k,l=1

E
(0,0)
∗

(
|Zk| · |Zl|

)

≤ 1

x2

(
n∑

k=1

(
E

(0,0)
∗

(
Z2

k

))1/2
)2

≤ 1

γx2

(
n∑

k=1

k3/2

)2

≤ (const.)
n5

x2
.

(6.22)

Now observe that Pεc,n−1( · ) = Pεc( · |n ∈ χ), cf. (2.18), hence Pεc,n−1( · |χ1 = n ) =
Pεc( · |χ1 = n). We set

An−2 :=
{
A ⊂ {1, n − 2} : 1 /∈ A, n − 2 /∈ A, {l, l + 1} 6⊂ A, ∀1 ≤ l ≤ n − 3

}
,

and we use the notation τ[1,n−2] := τ ∩ [1, n − 2]. Noting that An−2 represents all the
possible values of the variable τ[1,n−2] under Pεc( · |χ1 = n), we can write

Pεc

(
n∑

k=1

|ϕk| > x

∣∣∣∣∣χ1 = n

)
= Pεc,n−1

(
n∑

k=1

|ϕk| > x

∣∣∣∣∣χ1 = n

)

=
∑

A∈An−2

Pεc,n−1

(
n∑

k=1

|ϕk| > x

∣∣∣∣∣ τ[1,n−2] = A

)
· Pεc,n−1

(
τ[1,n−2] = A

∣∣χ1 = n
)
.

However, combining (2.5) with (6.22), we have

Pεc,n−1

(
n∑

k=1

|ϕk| > x

∣∣∣∣∣ τ[1,n−2] = A

)

= P(0,0)

(
n∑

k=1

|Zk| > x

∣∣∣∣∣Zi = 0, ∀i ∈ A ∪ {n − 1, n}
)

≤ (const.)
n5

x2
,

and the proof of (6.20) is completed. �

We now denote by {L̃t}t∈[0,1] the stable subordinator of index 2
5 , normalized so that its

Lévy measure equals 2
5 C̃ x−2/5−1 1{x>0} dx, so that P (L̃1 > x) ∼ C̃ x−2/5 as x → ∞. By

Proposition 6.7 we have Pεc

(
Ã1 > x

)
∼ P

(
L̃1 > x

)
as x → ∞, hence by the standard

theory of stability [9, Ch. XVII.5] Ã1 is in the domain of attraction of L̃1 and we have

1

n5/2
S̃n =

1

n5/2

n∑

i=1

Ãi under Pεc

d−→ L̃1 (n → ∞) . (6.23)

Next let {Lt}t∈[0,1] be the symmetric stable Lévy process of index 2
5 , with Lévy measure

given by cL |x|−2/5−1 dx, where cL := C/Cεc (we recall that Cεc is the constant appearing

in (3.5)). In particular we have P (L1 > x) = P (L1 < −x) ∼ cL x−2/5 as x → ∞.

Then Proposition 6.7 yields Pεc

(
A1 > x

)
∼ P

(
(Cεc)

5/2L1 > x
)

as x → ∞, and since

Pεc

(
A1 > x

)
= Pεc

(
A1 < −x

)
by symmetry, it follows by the theory of stability that

1

n5/2
Sn =

1

n5/2

n∑

i=1

Ai under Pεc

d−→ (Cεc)
5/2 L1 (n → ∞) . (6.24)
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Notice that by (6.18) the constant cL := C/Cεc equals

cL =
6
√

10√
π

σ2/5

∫ ∞

0
s2/5 e−360 s2

ds =
3
√

10√
π (360)7/10

Γ

(
7

10

)
σ2/5 , (6.25)

where Γ(x) :=
∫∞
0 tx−1 e−t dt is the usual Gamma function and the second equality follows

by a simple change of variables. We also recall that Lt
d
= t5/2L1 and L̃t

d
= t5/2L̃1.

We are ready to prove (6.6), with the law Pεc,N replaced by Pεc , thanks to Corollary 6.6.
It is convenient to extend the definition of ιN to non-integer argument, by setting ι[t] :=
sup{k ∈ Z+ : χk ≤ t} for t ∈ R, cf. (3.3). By the definitions (1.17) and (1.18) of ϕ̃N and
µN , we immediately obtain the following upper bound:

|µN |
(
[x − δ, x + δ]

)
≤
(

log N

N

)5/2(
S̃ι[(x+δ)N ]+1 − S̃ι[(x−δ)N ]

)
. (6.26)

Since {χk}k≥0 is a genuine renewal process with Pεc(χ1 = n) ∼ Cεc/n
2, Theorem 8.8.1

of [3] yields χk/(k log k) → Cεc as k → ∞, Pεc–a.s., and since χι[t] ≤ t ≤ χι[t]+1 it follows
that

ι[t]

t/ log t
−→ 1

Cεc

as t → ∞, Pεc–a.s. . (6.27)

Therefore for every κ > 0 we can choose N sufficiently large such that

Pεc

({
ι[(x + δ)N ] + 1 >

1

Cεc

(x + 2δ)N

log N

}
∪
{

ι[(x − δ)N ] <
1

Cεc

(x − 2δ)N

log N

})
≤ κ.

Then by (6.26) for any η > 0 and for large N we can write

Pεc

(
|µN |

(
[x − δ, x + δ]

)
> η

)
≤ κ + Pεc

((
log N

N

)5/2(
S̃j

(x+2δ)N
Cεc log N

k − S̃j

(x−2δ)N
Cεc log N

k

)
> η

)
.

However for a, b ∈ N with a ≤ b we have S̃b − S̃a
d
= S̃b−a. Then letting N → ∞ and

recalling (6.23) we have

lim sup
N→∞

Pεc

(
|µN |

(
[x − δ, x + δ]

)
> η

)
≤ κ + P

((
4δ

Cεc

)5/2

L̃1 > η

)
.

Letting δ → 0, the last term vanishes and since κ was arbitrary equation (6.6) is proven.

Next we prove (6.5), again with the law Pεc,N replaced by Pεc , thanks to Corollary 6.6.
We claim that (6.5) is equivalent to the following relation:
(

log N

N

)5/2(
Sj

a1N
Cεc log N

k ,
(
Sj

a2N
Cεc log N

k − Sj

a1N
Cεc log N

k

)
, . . . ,

(
Sj

akN

Cεc log N

k − Sj

ak−1N

Cεc log N

k

))

under Pεc

d−→
(
La1 , La2 − La1 , . . . , Lak

− Lak−1

)
.

(6.28)

To prove the claim, it suffices to show that the difference between the vectors in the first
lines of (6.5) and (6.28) converges in Pεc–probability to zero as N → ∞. It is sufficient to
focus on each component: so we need to prove that

lim
N→∞

Pεc

(∣∣∣∣µN

(
(a, b]

)
−
(

log N

N

)5/2(
Sj

bN
Cεc log N

k − Sj

aN
Cεc log N

k

) ∣∣∣∣ ≥ η

)
= 0 , (6.29)
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for every η > 0 and for all a, b ∈ [0, 1) with a < b. Fix δ > 0 and observe that, by (6.27),

lim
N→∞

Pεc

(
ι[aN ] ∈

⌊
aN

Cεc log N

⌋
·
(
1 − δ, 1 + δ

)
, ι[bN ] ∈

⌊
bN

Cεc log N

⌋
·
(
1 − δ, 1 + δ

))
= 1 .

Therefore we can restrict ourselves on this event, where using the definitions (1.17) and
(1.18) of ϕ̃N and µN we can write
∣∣∣∣µN

(
(a, b]

)
−
(

log N

N

)5/2(
Sj

bN
Cεc log N

k − Sj

aN
Cεc log N

k

) ∣∣∣∣

≤
(

log N

N

)5/2
{(

S̃j

a(1+δ)N
Cεc log N

k − S̃j

a(1−δ)N
Cεc log N

k

)
+

(
S̃j

b(1+δ)N
Cεc log N

k − S̃j

b(1−δ)N
Cεc log N

k

)}
.

However (S̃b − S̃a) + (S̃d − S̃c)
d
= S̃(b−a)+(d−c) for a ≤ b ≤ c ≤ d, and as N → ∞ by (6.23)

we have

Pεc

((
log N

N

)5/2

S̃j

(a+b)·2δN
Cεc log N

k ≥ η

)
−→ P

(
(a + b) · 2δ

Cεc

L1 ≥ η

)
.

The last term vanishes as δ → 0, hence (6.29) is proven.

It finally remains to prove equation (6.28). Both the vector in the l.h.s. and the one in
the r.h.s. of that equation have independent components, therefore it suffices to prove the
convergence of each component, i.e. that for every a ∈ (0, 1) as N → ∞

(
log N

N

)5/2

Sj

aN
Cεc log N

k =

(
log N

N

)5/2

j

aN
Cεc log N

k

∑

i=1

Ai under Pεc

d−→ La .

However, recalling that La
d
= a5/2L1, this relation follows immediately from (6.24), so that

the proof of Theorem 6.4 is completed. �

6.4. Tightness of {µN}N . We finally prove the tightness of the sequence {µN}N∈N, i.e.,
for every δ > 0 there exist K,N0 ∈ N such that

Pεc,N

(
|µN |([0, 1]) ≤ K

)
≥ 1 − δ , ∀N ≥ N0 . (6.30)

Since µN ({1
2}) = 0, we can write µN ([0, 1]) = µN ([0, 1

2 ]) + µN ([12 , 1]). However by sym-

metry µN ([0, 1
2 ])

d
= µN ([12 , 1]) under Pεc,N , hence it suffices to show that

Pεc,N

(
|µN |([0, 1

2 ]) ≤ K/2
)

≥ 1 − δ/2 , ∀N ≥ N0 .

Now notice that the event {|µN |([0, 1
2 ]) ≤ K

2 } belongs to the σ-field σ({ϕi}0≤i≤N/2), hence
we can apply Lemma 6.5 and we are left with showing that for every δ > 0 there exist
K,N0 ∈ N such that

Pεc

(
|µN |([0, 1

2 ]) ≤ K/2
)

≥ 1 − δ/4 , ∀N ≥ N0 . (6.31)

We recall that ι[t] := sup{k ∈ Z+ : χk ≤ t}, for t ∈ R. From the definitions (1.17), (1.18),

(6.11) of ϕ̃N , µN and S̃n respectively, the inclusion bound yields

Pεc

(
|µN |([0, 1

2 ]) > K/2
)

≤ Pεc

((
log N

N

)5/2

S̃ι[N/2]+1 >
K

2

)

≤ Pεc

(
ι[N/2] + 1 >

1

Cεc

N

log N

)
+ Pεc

((
log N

N

)5/2

S̃j

1
Cεc

N
log N

k >
K

2

)
.
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Letting N → ∞, the first term in the second line of this equation vanishes because of
(6.27), while for the second term by (6.23) we have

Pεc

((
log N

N

)5/2

S̃j

1
Cεc

N
log N

k >
K

2

)
−→ P

(
L̃1 >

K(Cεc)
5/2

2

)
.

Since P
(
L̃1 > t

)
→ 0 as t → +∞, equation (6.31) is proven. �

Appendix A. Some renewal theory estimates

A.1. Proof of equation (3.18). We are going to prove equation (3.18), that can be
rewritten in terms of the law Pε, thanks to (2.18), as

Pεc

(
δN ≥ t

N

log N

∣∣∣∣N + 1 ∈ χ

)
≤ c1

t
+ aN , with aN → 0 as N → ∞ , (A.1)

where we recall that δN has been defined in (3.15). We first need to recall some preliminary
relations. We are in the critical case, hence qεc(n) = Pεc(χ1 = n) ∼ Cεc/n

2 by (3.5),
because f(εc) = 0. Since {χk}k≥0 is a genuine renewal process, Theorem 8.8.1 of [3] yields

χk

k log k
−→ Cεc as k → ∞, Pεc–a.s. .

By the definition (3.3) of the variable ιN we have χιN ≤ N ≤ χιN+1, hence

ιN
N/ log N

−→ 1

Cεc

as N → ∞, Pεc–a.s. . (A.2)

Introducing the renewal function uεc(n) := Pεc(n ∈ χ) =
∑∞

k=0(qεc)
∗k(n), Theorem 8.7.4

of [3] gives

uεc(n) ∼ 1

Cεc log n
as n → ∞ , (A.3)

which implies

Uεc(n) :=

n∑

k=0

uεc(k) ∼ n

Cεc log n
as n → ∞ . (A.4)

We are ready to prove (A.1). We denote by ξ the length of the excursion of χ embracing
the point N/2:

ξ := min
{
χ ∩ [N/2,∞)

}
− max

{
χ ∩ [0, N/2]

}
. (A.5)

Then the inclusion bound and the symmetry n 7→ N − n yield

Pεc

(
δN ≥ t

N

log N

∣∣∣∣N + 1 ∈ χ

)
≤ Pεc

(
ξ ≥ N

log N

∣∣∣∣N + 1 ∈ χ

)

+ 2Pεc

(
δ⌊N/2⌋ ≥ t

N

log N
, ξ <

N

log N

∣∣∣∣N + 1 ∈ χ

)
.

(A.6)

Let us focus on the first term in the r.h.s. of (A.6). We can write

Pεc

(
ξ ≥ N

log N

∣∣∣∣N + 1 ∈ χ

)
=

∑

0≤i≤N
2
≤j≤N+1

j−i≥N/ log N

u(i) q(j − i)u(N + 1 − j)

u(N + 1)
, (A.7)
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where we have omitted for simplicity the dependence of q(·) and u(·) on εc. If we consider
the terms in the sum with i ≤ N/4, then j− i ≥ N/4 and therefore q(j− i) ≤ (const.)/N2,
hence recalling (A.3) and (A.4) the contribution of these terms is bounded above by

(const.)

N2

U(⌊N/2⌋)2
u(N + 1)

≤ (const.′)
log N

. (A.8)

By symmetry, the same bound holds for the contribution of the terms with j ≥ 3N/4. It
remains to consider the terms where both i > N/4 and j < 3N/4: applying (A.3) to u(N),
u(i) and u(N + 1 − j), the contribution of these terms is bounded above by

(const.)

(log N)

∑

N
4
≤i≤N

2
≤j≤ 3N

4
j−i≥N/ log N

1

(j − i)2
≤ (const.)

(log N)

⌊N/2⌋∑

l=⌈N/ log N⌉
(l + 1) · 1

l2

≤ (const.′)
log log N

log N
.

(A.9)

We have thus shown that the first term in the r.h.s. of (A.6) vanishes as N → ∞, hence
it can be absorbed in the term aN , appearing in the r.h.s. of (A.1).

Next we consider the second term in the r.h.s. of (A.6). We sum over the location m of
χι⌊N/2⌋

, i.e., the last point of χ before ⌊N/2⌋, and over the location l of χι⌊N/2⌋+1, i.e., the

first point of χ after ⌊N/2⌋. Recalling (3.15), for t > 1 the renewal property yields

Pεc

(
δ⌊N/2⌋ ≥ t

N

log N
, ξ <

N

log N

∣∣∣∣N + 1 ∈ χ

)

=
∑

m≤⌊N/2⌋, l>⌊N/2⌋
l−m<N/ log N

Pεc

(
δm ≥ t

N

log N
, m ∈ χ

)
· q(l − m) · u(N + 1 − l)

u(N + 1)
.

(A.10)

In the range of summation, by (A.3) the ratio u(N + 1 − l)/u(N + 1) is bounded above
by some positive constant A, hence the r.h.s. is bounded above by

A
∑

m≤⌊N/2⌋, l>⌊N/2⌋
l−m<N/ log N

Pεc

(
δm ≥ t

N

log N
, m ∈ χ

)
q(l − m) ≤ APεc

(
δ⌊N/2⌋ ≥ t

N

log N

)
.

We are finally reduced to estimating the last term. By (A.2) we can write as N → ∞

Pεc

(
δ⌊N/2⌋ ≥ t

N

log N

)
= Pεc

(
δ⌊N/2⌋ ≥ t

N

log N
, ι⌊N/2⌋ ≤

2

Cεc

N/2

log N

)
+ o(1) ,

and by (3.15) the first term in the r.h.s. is bounded above by

Pεc

(
max

{
χi − χi−1 : i ≤ N

Cεc log N

}
≥ t

N

log N

)
.

This probability is easily estimated. In fact the variables {χi − χi−1}i∈N under Pεc are
independent and identically distributed, hence for x > 0 and M ∈ N we have

Pεc

(
max

{
χi − χi−1 : i ≤ M

}
< x

)
= Pεc

(
χ1 < x

)M ≥
(

1 − B

x

)M

,
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where B is a suitable positive constant. Since (1 − t) ≥ e−2t for t ∈ [0, 1
2 ], it follows that

for N sufficiently large we have

Pεc

(
max

{
χi − χi−1 : i ≤ N

Cεc log N

}
≥ t

N

log N

)
≤ 1 − exp

(
− 2B

Cεc t

)
≤ 2B

Cεc t
,

and the proof of (A.1) is completed. �

A.2. Proof of equation (5.1). In this section we prove (5.1), that we can rewrite as

lim
t→0+

lim inf
N→∞

Pεc

(
δN ≥ t

N

log N

∣∣∣∣N + 1 ∈ χ

)
= 1 . (A.11)

We start observing that the inclusion bound yields

Pεc

(
δN ≥ t

N

log N

∣∣∣∣N + 1 ∈ χ

)
≥ Pεc

(
δ⌊N/2⌋ ≥ t

N

log N
, ξ <

N

log N

∣∣∣∣N + 1 ∈ χ

)
,

where we recall that the variable ξ has been defined in (A.5). We decompose the r.h.s.
according to (A.10) and we observe that the fraction u(N +1− l)/u(N +1) converges to 1
as N → ∞ uniformly in the range of summation, by (A.3). Therefore we can write

Pεc

(
δN ≥ t

N

log N
, ξ <

N

log N

∣∣∣∣N + 1 ∈ χ

)

≥
(
1 + o(1)

) ∑

m≤⌊N/2⌋, l>⌊N/2⌋
l−m<N/ log N

Pεc

(
δm ≥ t

N

log N
, m ∈ χ

)
qεc(l − m)

=
(
1 + o(1)

)
Pεc

(
δ⌊N/2⌋ ≥ t

N

log N
, ξ <

N

log N

)
, (N → ∞) .

Recalling that qεc(n) ∼ Cεc/n
2 and uεc(n) ∼ 1/(Cεc log n) as n → ∞, by (3.5) and (A.3),

we obtain

Pεc

(
ξ ≥ N

log N

)
=

∑

m≤⌊N/2⌋, l>⌊N/2⌋
l−m≥N/ log N

uεc(m) qεc(l − m) ≤ (const.)

log N
. (A.12)

Putting together the preceding relations we have

Pεc

(
δN ≥ t

N

log N

∣∣∣∣N + 1 ∈ χ

)
≥ Pεc

(
δ⌊N/2⌋ ≥ t

N

log N

)
+ o(1) , (N → ∞) ,

and we are left with estimating the r.h.s. of this relation. The inclusion bound, the defini-
tion (3.15) of δN and equation (A.2) yield

Pεc

(
δ⌊N/2⌋ ≥ t

N

log N

)
≥ Pεc

(
δ⌊N/2⌋ ≥ t

N

log N
, ι⌊N/2⌋ ≥

1

2Cεc

N/2

log N

)

≥ Pεc

(
max

{
χi − χi−1 : i ≤ 1

4Cεc

N

log N

}
≥ t

N

log N
, ι⌊N/2⌋ ≥

1

2Cεc

N/2

log N

)

= Pεc

(
max

{
χi − χi−1 : i ≤ 1

4Cεc

N

log N

}
≥ t

N

log N

)
− o(1) , (N → ∞) .
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The variables {χi −χi−1}i∈N under Pεc are independent and identically distributed, hence
for x > 0 and M ∈ N we have

Pεc

(
max

{
χi − χi−1 : i ≤ M

}
< x

)
= Pεc

(
χ1 < x

)M ≤
(

1 − D

x

)M

≤ e−
D
x

M ,

for some positive constant D. Therefore

Pεc

(
δ⌊N/2⌋ ≥ t

N

log N

)
≥ 1 − exp

(
− D

4Cεct

)
+ o(1) , (N → ∞) ,

and the proof of relation (A.11) is completed. �

A.3. Proof of equation (3.19). We are going to prove equation (3.19), that can be
rewritten using (2.18) as

Pε

(
δN ≥ c2 log N

∣∣N + 1 ∈ χ
)

−→ 0 as N → ∞ . (A.13)

Since we assume that ε > εc, we are in the localized regime and the step law qε(n) =
Pε(χ1 = n) has exponential tails, see (3.6). The renewal theorem then yields

Pε

(
N ∈ χ

)
−→ 1

Eε(χ1)
∈ (0,∞) as N → ∞ , (A.14)

and the weak law of large numbers gives

Pε

(
ιN ≥ 2

Eε(χ1)
N

)
−→ 0 as N → ∞ .

These relations yield

Pε

(
δN ≥ c2 log N

∣∣N + 1 ∈ χ
)

≤ (const.)Pε

(
δN ≥ c2 log N

)

= (const.)Pε

(
δN ≥ c2 log N, ιN ≤ 2N

Eε(χ1)

)
+ o(1) as N → ∞ .

The definition (3.15) of δN and the inclusion bound give

Pε

(
δN ≥ c2 log N, ιN ≤ 2N

Eε(χ1)

)
≤ Pε

(
max

{
χi − χi−1 : i ≤ 2N

Eε(χ1)

}
≥ c2 log N

)
.

Since the variables {χi − χi−1}i∈N under Pε are independent and identically distributed,
for x > 0 and M ∈ N we have

Pε

(
max

{
χi − χi−1 : i ≤ M

}
< x

)
= Pε

(
χ1 < x

)M ≥
(

1 − B e−g(ε)x

)M

,

for a suitable positive constant B. Since (1 − t) ≥ e−2t for t ∈ [0, 1
2 ], it follows that for N

sufficiently large we have

Pε

(
δN ≥ c2 log N, ιN ≤ 2N

Eε(χ1)

)
≤ 1 − exp

(
− 2B

2N

Eε(χ1)

1

Ng(ε)·c2

)
.

If we choose c2 > 1/g(ε), the r.h.s. vanishes as N → ∞ and equation (A.13) is proven. �
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Appendix B. Some technical proofs

B.1. Proof of Proposition 6.3. Take any subsequence {νNn}n∈N that converges in dis-
tribution toward some random signed measure ν. We are going to show that the finite

dimensional distributions of ν are necessarily given by the laws λ
(k)
a1,...,ak that appear in

(6.3). Since the finite-dimensional distributions determine laws on M([0, 1]), this means
that every convergent subsequence of {νN}N∈N must have the same limit. Then Lemma 6.2
and a standard sub-subsequence argument yield the convergence of the whole sequence
{νN}N∈N, and the proof is completed.

Therefore we assume that {νNn}n∈N converges in distribution toward ν. We introduce

the function f
(ε)
t : [0, 1] → R defined by

f
(ε)
t (x) :=





1 x ∈ [0, t]

−x
ε + 1 + t

ε x ∈ [t, t + ε]

0 x ∈ [t + ε, 1]

,

which may be viewed as a continuous approximation of 1[0,t]. Then we define the map

F
(ε)
t : M([0, 1]) → R by F

(ε)
t (ν) :=

∫
f

(ε)
t dν. Notice that |F (ε)

t (ν)−Ft(ν)| ≤ |ν|([t, t+ ε]).

Now let W : Rk → R be a bounded and Lipschitz function such that

∣∣W (x1, . . . , xk) − W (y1, . . . , yk)
∣∣ ≤

k∑

i=1

g(xi − yi) , where g(x) := |x| ∧ 1 . (B.1)

Therefore we can write∣∣∣E
[
W
(
F (ε)

a1
(νNn), . . . , F (ε)

ak
(νNn)

)]
− E

[
W
(
Fa1(νNn), . . . , Fak

(νNn)
)]∣∣∣

≤
k∑

i=1

E
[
g
(
|νNn |([ai, ai + ε])

)]
.

(B.2)

Let us take the n → ∞ limit. Since W (·) and F
(ε)
t (·) are continuous,

E
[
W
(
F (ε)

a1
(νNn), . . . , F (ε)

ak
(νNn)

)]
−→ E

[
W
(
F (ε)

a1
(ν), . . . , F (ε)

ak
(ν)
)]

,

and also E
[
W
(
Fa1(νNn), . . . , Fak

(νNn)
)]

−→
∫

W dλ
(k)
a1,...,ak by (6.3). Then we take the

limit ε → 0: the r.h.s. of (B.2) vanishes by (6.4) and by dominated convergence we have

E
[
W
(
Fa1(ν), . . . , Fak

(ν)
)]

=

∫
W dλ(k)

a1,...,ak
.

Since W (·) is an arbitrary function satisfying (B.1), this shows that the finite dimensional

distributions of ν are indeed λ
(k)
a1,...,ak , and the proof is completed. �

B.2. Proof of Lemma 6.2. Let us denote by νN := νN◦P−1 the law of the random signed
measure νN , so that νN is a probability measure on M([0, 1]). For every fixed K ∈ N,
the restriction of νN on the subspace MK([0, 1]) is a sub-probability measure on a Polish
space, cf. Lemma 6.1, hence one can apply the standard Prohorov’s Theorem. So we can
extract a subsequence {νN ′} that converges weakly toward a sub-probability law λ(1) on
M1([0, 1]); then from {νN ′} we extract a sub-subsequence {νN ′′} that converges weakly

toward a sub-probability law λ(2) on M2([0, 1]), and so on. With a standard diagonal
argument, we obtain a subsequence {νNk

}k that converges weakly on MK([0, 1]) toward

λ(K), for every K ∈ N. However, recalling (6.1), it is clear that the laws λ(K) are the
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restriction on MK([0, 1]) of a single law λ on M([0, 1]), and moreover λ
(
M([0, 1])

)
= 1

because the sequence {νN}N is tight, cf. (6.2). Then it is easy to check that the subsequence
{νNk

}k converges weakly on M([0, 1]) toward λ: in fact, given a continuous and bounded
functional G : M([0, 1]) → R, we can write

∣∣∣∣
∫

GdνNk
−
∫

Gdλ

∣∣∣∣ ≤
∣∣∣∣
∫

G1MK([0,1]) dνNk
−
∫

G1MK([0,1]) dλ

∣∣∣∣

+ ‖G‖∞ ·
(
νNk

(
MK([0, 1])∁

)
+ λ

(
MK([0, 1])∁

))
.

The first term in the r.h.s. vanishes as k → ∞, because by construction νNk
converges

weakly to λ = λ(K) on MK([0, 1]), and the second term vanishes as K → ∞ because of
the tightness of {νN}N , cf. (6.2). This completes the proof. �

B.3. Computing Φ(t). We recall that {Bt}t∈[0,1] is a standard Brownian motion on R

and It :=
∫ t
0 Bs ds. We also set Gt :=

∫ t
0 Is ds. The function Φ(t) was introduced in (6.14):

recalling the definition (1.11) of the conditioned process Ît, we can re-express it as

Φ(t) = P
(
G1 > t

∣∣B1 = 0, I1 = 0
)
.

Since the vector (G1, I1, B1) has a centered Gaussian distribution, the law of G1 under
P ( · |B1 = 0, I1 = 0) is centered Gaussian too and hence it suffices to identify its variance
to determine Φ(t). The covariance matrix A of (G1, I1, B1) is easily computed:

A :=




E(G2
1) E(G1I1) E(G1B1)

E(G1I1) E(I2
1 ) E(I1B1)

E(G1B1) E(I1B1) E(B2
1)


 =




1
20

1
8

1
6

1
8

1
3

1
2

1
6

1
2 1


 .

The variance of G1 conditionally on {I1 = 0, B1 = 0} is then given by 1/(A−1)1,1 = 1
720 .

Therefore

Φ(t) =

∫ ∞

t

e−360s2

√
2π/720

ds =
6
√

10√
π

∫ ∞

t
e−360 s2

ds .
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