SCALING LIMITS OF (1+1)-DIMENSIONAL PINNING MODELS
WITH LAPLACIAN INTERACTION

FRANCESCO CARAVENNA AND JEAN-DOMINIQUE DEUSCHEL

ABSTRACT. We consider a random field ¢ : {1,..., N} — R with Laplacian interaction
of the form }°, V(Ag;), where A is the discrete Laplacian and the potential V(-) is
symmetric and uniformly strictly convex. The pinning model is defined by giving the
field a reward £ > 0 each time it touches the x—axis, that plays the role of a defect line.
It is known that this model exhibits a phase transition between a delocalized regime
(e < e.) and a localized one (¢ > ¢.), where 0 < €. < co. In this paper we give a precise
pathwise description of the transition, extracting the full scaling limits of the model.
We show in particular that in the delocalized regime the field wanders away from the
defect line at a typical distance N®/2, while in the localized regime the distance is just
O((log N)?). A subtle scenario shows up in the critical regime (¢ = e.), where the field,
suitably rescaled, converges in distribution toward the derivative of a symmetric stable
Lévy process of index 2/5. Our approach is based on Markov renewal theory.

1. INTRODUCTION

1.1. The model. The main ingredient of our model is a function V(:) : R — RU {+o0},
that we call the potential. Our assumptions on V (-) are the following:
e Symmetry: V(x) =V(—x), Vo € R.
e Uniform strict convexity: there exists 4 > 0 such that z +— V(z) —~yx2/2 is convex.
e Regularity: since V (-) is symmetric and convex, it is continuous and finite on some
maximal interval (—a, a) (possibly a = +00). We assume that a > 0 and we further
require that V(z) — +o0o as © — =a, so that the function = +— exp(—V(x)) is
continuous on the whole real line.
Notice that, if V(-) is of class C? on (—a,a), the uniform strict convexity assumption
amounts to requiring that
v = inf V"(z) > 0. (1.1)
z€(—a,a)
It follows from the above assumptions that [pexp(—V(z))dz < oo. Since adding a
global constant to V() is immaterial for our purposes, we impose the normalization
Jzexp(=V(z))dz = 1. In this way we can interpret exp(—V(z)) as a probability den-
sity, that has zero mean (by symmetry) and finite variance:

o? = /xZG_V(x)dx < 0. (1.2)
R

The most important example is of course the Gaussian case: V (x) = 2% /202 +log(ov/27).
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Next we define the Hamiltonian, by setting

b—1
Hiay () = > V(Apn), (1.3)

n=a+1
for a,b € Z with b —a > 2 and for ¢ : {a,...,b} — R, where A is the discrete Laplacian:
App = (Pnt1 = ¢n) = (Pn — Pn-1) = Pnt1+ Pn-1— 2¢n . (1.4)

We can now define our model: given N € N := {1,2,...} and £ > 0, we introduce the
probability measure P. y on RN1 defined by

exp (= M (@) Yo
P, n(dgr - den_1) = = N H (g 00(dep;) + de;) (1.5)
& i=1

where dy; is the Lebesgue measure on R, dp(-) is the Dirac mass at zero and Z. y is the
normalization constant (partition function). To complete the definition, in order to make

sense of H_1 n41)(p) = H[—1,n+1](P-1, P0, P1,- - -, PN—1, PN, PN+1) We have to specify:
the boundary conditions ¢_1 =¢g=¢nN = on+1 =0. (1.6)

The choice of zero boundary conditions is made only for simplicity, but our approach and
results go through for general choices (provided they are, say, bounded in V).

1.2. The phase transition. The law P, y is what is called a pinning model and can be
viewed as a (14 1)-dimensional model for a linear chain of length N attracted to a defect
line, namely the z—axis. The parameter € > 0 tunes the strength of the attraction and one
wishes to understand its effect on the field, in the large N limit.

The basic properties of this model (and of the closely related wetting model, in which
the field is also constrained to stay non-negative) were investigated in a first paper [6], to
which we refer for a detailed discussion and for a survey of the literature. In particular, it
was shown that there is a critical threshold 0 < g, < co that determines a phase transition
between a delocalized regime (¢ < €.), in which the reward is essentially ineffective, and a
localized regime (¢ > €.), in which on the other hand the reward has a macroscopic effect
on the field. More precisely, defining the contact number £ by

In == #{ie{l,...,N}: ¢; =0}, (1.7)
we have the following dichotomy:
o if ¢ < g, then for every § > 0 and N € N

0
IP’57N<WN > 5) < el (1.8)

where ¢ is a positive constant;
o if € > ., then there exists D(g) > 0 such that for every § >0 and N € N

l
]P’&N< ~ P

where ¢y is a positive constant.

>5> < el (1.9)

Roughly speaking, for ¢ < . we have ¢y = o(N), while for € > . we have {;y ~ D(¢) - N.
For an explicit characterization of €. and D(e) we refer to [6], where it is also proven that
the phase transition is exactly of second order.
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The aim of this paper is to go far beyond ([¥) and (CH) in the study of the path
properties of P, y. Our results, that include the scaling limits of the model on C(]0,1]),
provide strong path characterizations of (de)localization. We also show that the delocalized
regime (e < ¢.) and the critical one (¢ = ¢.) exhibit great differences, that are somewhat
hidden in relation (L. In fact, a closer look at the critical regime exposes a rich structure,
that we analyze in detail.

Remark 1.1. We point out that the hypothesis on V(+) in the present paper are stronger
than those of [6] (where essentially only the second moment condition () was required).
This is a price to pay in order to obtain precise path results, like for instance Theorem [
below, that would not hold in the general setting of [6]. Although for some other results
our assumptions could have been weakened, we have decided not to do it, both to keep us
in a unified setting, and because, with the uniform strict convexity assumption on V'(-),
one can apply general powerful tools, notably the Brascamp-Lieb inequality [4, B], that
allow to give streamlined versions of otherwise rather technical proofs.

Also notice that the analysis of this paper does not cover the wetting model, that was
also considered in [6]. The reason for this exclusion is twofold: on the one hand, the basic
estimates derived in [6] in the wetting case are not sufficiently precise as those obtained in
the pinning case; on the other hand, for the scaling limits of the wetting model one should
rely on suitable invariance principles for the integrated random walk process conditioned to
stay non-negative, but this issue seems not to have been investigated in the literature. [J

1.3. Path results and the scaling limits. Let us look first at the free case ¢ = 0, where
the pinning reward is absent. It was shown in [6] that the law Py x enjoys the following
random walk interpretation (for more details see Section B). Let ({Yn}nEZ+::NU{O}aP)
denote a real random walk starting at zero and with step law P(Y; € dz) = exp(—V (z)) dz,
and let {Z,,},cz+ be the corresponding integrated random walk process:

Zy:=0, Zn =Y14+...+Y,, neN.

The basic fact is that Py coincides with the law of the vector (Z,. .., Zn_1) conditionally
on (Zn,Zn+1) = (0,0), i.e. the free law Py n is nothing but the bridge of an integrated
random walk. By our assumptions on V'(-), see §L1 the walk {Y},}, has zero mean and
finite variance o2, hence for large k the variable Zj scales like k3/2. It is therefore natural
to consider the following rescaled and linearly-interpolated version of the field {¢y, }n:

~ PNt PINt]+1 — PNt
Pn(t) = U]{fg /J2 L JUN?’/? Nt
and to study the convergence in distribution of {Pn (t)}ejo,1) as N — oo on C([0, 1]), the
space of real valued, continuous functions on [0, 1] (equipped as usual with the topology
of uniform convergence). To this purpose, we let {B;};c[o,1] denote a standard Brownian
motion on the interval [0, 1], we define the integrated Brownian motion process {1 }cjo 1]

+ (Nt —[Nt])

NeN, te0,1], (1.10)

by I := fot B, ds and we introduce the conditioned process
{(By, ft)}te[o,l] = {(Bt, It) }scj0,1) conditionally on (Bi, 1) = (0,0). (1.11)

Exploiting the random walk description of Py, it is not difficult to show that the

process {Pn (t)}1eo,1] under Py x converges in distribution as N — oo toward {Tt}te[o,l]-
The emergence of a non-trivial scaling limit for {$n(t)}e[0,1] is a precise formulation of
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the statement that the typical height of the field under Py y is of order N 3/2 1t is natural
to wonder what happens of this picture when € > 0: the answer is given by our first result.

Theorem 1.2 (Scaling Limits). The rescaled field {Pn(t) }iejo,1) under P. n converges in
distribution on C([0,1]) as N — oo, for every e > 0. The limit is:

o Ife < e, the law of the process {ft}te[o,l] ;

o [fe =¢. ore > g, the law concentrated on the constant function f(t) = 0,t € [0,1].

Thus the pinning reward ¢ is ineffective for € < ., at least for the large scale properties
of the field, that are identical to the free case ¢ = 0. On the other hand, if ¢ > ¢, the
reward is able to change the macroscopic behavior of the field, whose height under P, n
scales less than N3/2. We are now going to strengthen these considerations by looking at
path properties on a finer scale. However, before proceeding, we stress that, from the point
of view of the scaling limits, the critical regime ¢ = ¢, is close to the localized one ¢ > &,
rather than to the delocalized one € < e, in contrast with (LX) and (L3).

We start looking at the delocalized regime (¢ < &.). It is convenient to introduce the
contact set T of the field {¢;};icz+, that is the random subset of Z* defined by

Ti={ielZt: =0} C Z", (1.12)
where we set by definition g := 0 so that 0 € 7. We already know from (L) that for
e < e. we have #{7 N[0, N]} = ¢nx + 1 = o(N) under P, n. The next theorem shows that

in fact 7 N [0, N] consists of a finite number of points (i.e. the variable /x under P, y is
tight) and all these points are at finite distance from the boundary.

Theorem 1.3. For every € < g, the following relation holds:
lim liminf P.y(7N[L, N=L] =0) = 1. (1.13)

L—oo N—oo

We will see that the scaling limit of {@n(f)}¢ejo,1) under Py, for e € (0,¢.), is a direct
consequence of relation (CI3)) and of the scaling limit for ¢ = 0. The reason for this lies in
the following crucial fact: conditionally on the contact set, the excursion of the field under
P. v between two consecutive contact points, say 73 and 7541, is distributed according to
the free law Pg 7, -, with suitable boundary conditions (see §Z3] for more details).

Next we focus on the localized and critical regimes (¢ > ¢.) and (¢ = e.). The first
question left open by Theorem is of course if one can obtain a more precise estimate
on the height of the field than just o(IN%/2). We have the following result.

Theorem 1.4. For every € > €. the following relation holds:

. .. < 2 _ .
lim liminf P57N<OI§I}€8éXN’@k‘ < K (log N) > 1, (1.14)

K—o0o N—oo

while for e = e, the following relation holds:

1 1 fP L N2 K N2 1 1.15
o 1N ; ., |
pm lmind Peonv | 7 Gogvyaz < o342 ol < Kooy (1.15)

The fact that {&n(t)}1eo,1)) under Py has, for € > &, a trivial scaling limit, is of course

an immediate consequence of the upper bounds on maxg<i<n |¢g| in (CI4) and (CIH).
We believe that the optimal scaling of maxo<i<n |¢k| for € = €. is given by the lower

bound in ([CTH) (to lighten the exposition, we do not investigate this problem deeper).
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(e <ec) (e =¢c) (e > &)
oy |k N3/2 (lofg\f;;ﬂ =s 1](::2\2[ O((log N)?)
AN N lngVN O(log N)
v o) IOgN N

TABLE 1. A schematic representation of the order of growth as N — oo
of the three quantities maxo<r<n |¢x|, An and £x under P, y.

Remark 1.5. Another interesting quantity is the maximal gap Ay, defined as
Ay = maX{Tk—’Tk_l : O§k:§€N}. (1.16)

We already know from (T3] that Ay ~ N in the delocalized regime (¢ < £.). It turns
out that in the localized regime (¢ > e.) we have Ay = O(log N), while in the critical
regime (¢ = e.) Ay = N/log N, meaning by this that

1 N N
lim liminf P — < Ay < K =1
Koo Neoo EC’N<K logN — °N = logN>
For ¢ = . we also have ¢ =~ N/log N. For conciseness, we omit a detailed proof of these

relations (though some partial results will be given in the proof of Theorem [l see also
Appendix [A]). Table [l summarizes the results described so far. O

1.4. A refined critical scaling limit. Relation (LI0]) shows that the field in the critical
regime has very large fluctuations, almost of the order N3/2. This may suggest the possi-
bility of lowering the scaling constants N3/2 in the definition (CIT) of the rescaled field
PN (t), in order to make a non-trivial scaling limit emerge under P, n. However some care
is needed: in fact Ay /N — 0 as N — oo under P,y and this means that, independently
of the choice of the scaling constants, the zero level set of the rescaled field becomes dense
in [0, 1]. This fact rules out the possibility of getting a non-trivial scaling limit in C'([0, 1]),
or even in the space of cadlag functions D(]0, 1]).

We are going to show that a non-trivial scaling limit can indeed be extracted in a
distributional sense, i.e. integrating the field against test functions, and to this purpose
the right scaling constants turn out to be N3?2/(log N)/? (see below for an heuristic
explanation). Therefore we introduce the new rescaled field {pn (t)}ejo,1 (this time with
no need of linear interpolation) defined by

(log N)/2

Viewing @y (t) as a density, we introduce the signed measure p, on [0, 1] defined by

pn(dt) == Gn(t)dt. (1.18)

on(t) =
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FicURE 1. A graphical representation of Theorem For large N, the
excursions of the rescaled field under the critical law IP., x contribute to the
measure py(dt), see ([LIF), approximately like Dirac masses, with intensity
given by their (signed) area. The width and height of the relevant excursions
are of order (1/log N) and log N respectively. We warn the reader that the
x- and y-axis in the picture have different units of length, and that the field
can actually cross the z-axis without touching it (though this feature has
not been evidenced in the picture for simplicity).

We look at g under the critical law P, n as a random element of M([0, 1]), the space of
all finite signed Borel measures on the interval [0, 1], that we equip with the topology of
vague convergence and with the corresponding Borel o—field (v, — v vaguely if and only
if [ fdv, — [ fdv for all bounded and continuous functions f : [0,1] — R). Our goal is
to show that the sequence {py}n has a non-trivial limit in distribution on M([0, 1]).

To describe the limit, let {L;};>0 denote the stable symmetric Lévy process of index 2/5
(a standard version with cadlag paths). More explicitly, {L:}+>0 is a Lévy process with zero
drift, zero Brownian component and with Lévy measure given by II(dz) = ¢g |z|~7/°dz,
where the positive constant ¢y, is defined explicitly in equation (G25]). Since the index is
less than 1, the paths of L are a.s. of bounded variation, cf. [2], hence we can define path
by path the (random) finite signed measure dL in the Steltjes sense:

dL((a,b]) = Ly — Lq.

We stress that dL is a.s. a purely atomic measure, i.e., a sum of Dirac masses (for more
details and for an explicit construction of dL, see Remark [ below).

We are now ready to state our main result (see Figure [l for a graphical description).

Theorem 1.6. The random signed measure py under P., N converges in distribution on
M([0,1]) as N — oo toward the the random signed measure dL.
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This result describes in a quantitative way the rich structure of the field for ¢ = ..
Let us try to give an heuristic description. Roughly speaking, for large N the profile of
the unrescaled field {p; }o<i<n under P,  n is dominated by the large excursions over the
contact set, i.e., by those excursions whose width is of the same order ~ N/log N as
the maximal gap Ay (see Table [Ml). As already observed, each excursion is distributed
according to the free law (with suitable boundary conditions), hence by Theorem the
height of these excursions is of order ~ (N/log N)?/2. When the field is rescaled according
to (CID), the width of these excursions becomes of order ~ 1/log N and their height of
order = log N, hence for large IV they contribute to the measure p, approximately like
Dirac masses (see Figure [l). Therefore the properties of these large excursions, for large
N, can be read from the structure of the Dirac masses that build the limit measure dL,

see (ICI9) below.

Remark 1.7. The measure dL can be constructed in the following explicit way, cf. [2].
Let S denote a Poisson point process on the space X := [0, 1] x R with intensity measure
v :=dz ® cr, |y|~7/°dy (where dz and dy denote the Lebesgue measure on [0, 1] and R).
We recall that S is a random countable subset of X with the following properties:
- for every Borel set A C X, the random variable #(SNA) has a Poisson distribution
with parameter v(A) (the symbol # denotes the cardinality of a set and in case
v(A) = +00 we mean that #(S N A) = 400, a.s.);
- for any k£ € N and for every family of pairwise disjoint Borel sets A1,..., A C X,
the random variables #(S N Ay),...,#(S N Ag) are independent.
Since v is a o—finite measure, the random set S is a.s. countable: enumerating its points
in some (arbitrary) way, say S = {(x;,¥:) }ien, we can write

dL() £ 3 i b, (). (1.19)

1€N
where 0,(-) denotes the Dirac mass at « € R. Notice that since [, (|y| A 1)dy < oo, the
r.h.s. of (CTY) is indeed a finite measure, that is ),y [yi| < oo a.s., cf. [[2]. O

1.5. Outline of the paper. The exposition is organized as follows:

e In section B we recall some basic properties of P. y that have been proven in [6].
In particular, we develop a renewal theory description of the model, which is the
cornerstone of our approach.

e In section Bl we prove a part of Theorem [[L4] more precisely equation ([LI4]) and the
upper bound on maxp<i<n |¢x| in (CID)), exploiting the Brascamp-Lieb inequality.
These results also prove Theorem for € > e..

e Section Hl is devoted to the proof of Theorem and of Theorem for € < e..

e In section Bl we complete the proof of Theorem [[4], obtaining the lower bound on
maxo<k<n k| in equation (LIH).

e Section [l is devoted to the proof of Theorem

e Finally, some technical points are treated in the Appendixes [Al and

2. SOME BASIC FACTS

This section is devoted to a detailed description of P, y, taking inspiration from [6]. We
show in §2T1 that, conditionally on the contact set 7, cf. (LI2), the pinning model P, y is
linked to the integral of a random walk. Then in §22 we focus on the law of the contact set
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itself, which admits a crucial description in terms of Markov renewal theory. We conclude
by putting together these results in §£3, where we show that the full measure P; y is the
conditioning of an explicit infinite-volume law P..

2.1. Integrated random walk. One of the key features of the model P, y is its link with
the integral of a random walk, described in Section 2 of [6], that we now recall.

Given a,b € R, we define on some probability space (2, F,P = P(“’b)) a sequence
{X.}ien of independent and identically distributed random variables, with marginal laws
X1 ~ exp(—V(z))dz. By our assumptions on V(-) it follows that

E(X;) = 0, E(X,%) = 0% € (0,00).
We denote by {Y;},cz+ the associated random walk starting at a, that is
Yo =a, Y,=a+X1+...+X,, n€N, (2.1)
while {Z;};cz+ denotes the integrated random walk starting at b, i.e., Zp = b and forn € N
Zy, =b+YV1+...4Y, =b+na+nXi+(n—-1)Xo+...+2X, 1+ X,. (2.2)
Notice that

{(YTHZn)}n under P(avb) i

{(Yn +a, Z, —i—b—i—na)}n under P(©:0) (2.3)
The marginal distributions of the process {Z,},, are easily computed [0, Lemma 4.2]:

PO ((Zy,...,Z,) € (dz1,. .. d2y)) = e Mmtmbmabziem) gy dy, | (2.4)
where H|_1 () is exactly the Hamiltonian of our model, defined in (3.

We are ready to make the link with our model P, n. In the free case ¢ = 0, it is
rather clear from (Z4]) and (X)) that Py v is nothing but the law of (Z1,..., Zy_1) under
P(O’O)(-|ZN = 0,Zn4+1 = 0), i.e., the polymer measure Py is just the bridge of the
integral of a random walk, cf. [6, Prop. 4.1].

To deal with the case € > 0, we recall the definition of the contact set 7, given in (ICI2):

7= {i€Zt: p=0} C Z".

We also set for conciseness 745 := 7 M [a,b]. Then, again comparing 4) with (LH), we
have the following basic relation: for € > 0, N € N and for every subset A C {1,..., N—1},

Pon(-|munyy=A) = POO((Zy,....Zy1) €| Zi =0, Vi € AU{N,N+1}). (2.5)

In words: once we fix the contact set 71 y_1] = A, the field (p1,...,n—1) under P, y is

distributed like the integrated random walk (Z1,...,Zy_1) under P9 conditioned on
being zero at the epochs in A and also at N and N+1 (because of the boundary conditions,
cf. ([CH)). A crucial aspect of ([ZI) is that the r.h.s. is independent of €. Therefore all the
dependence of € of P y is contained in the law of the contact set.

Notice that in the Lh.s. of ([ZH) we are really conditioning on an event of positive
probability, while the conditioning in the r.h.s. of ([ZH) is to be understood in the sense of
conditional distributions (which can be defined unambiguously, because we have assumed
that the density 2 — e~V is continuous).

We conclude this paragraph observing that the joint process {(Y,, Zn)}, under P9 is
a Markov process on R2. On the other hand, the process {Z,}, alone is not Markov, but
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it rather has finite memory m = 2, i.e., for every n € N

PO ((Z o1 €[ Zivi<n) = POY({Zju st €| Znoa, Zy)

(2.6)
— P(ZTL_ZR*17Z7L) ({Zk;}k21 c ) X
In fact, from () it is clear that
plab) _— P( ) ‘Z_lzb_a, Zo:b)- (2.7)

2.2. Markov renewal theory. It is convenient to identify the random set 7 with the
increasing sequence of variables {7y }rcz+ defined by

T0 = 0’ Tk+1 ‘= inf{i>Tk: QOZ:O} (28)

Observe that the contact number ¢y, introduced in ([7), can be also expressed as
N
Iy = max{keZ": 7, <N} = Zl{ker}- (2.9)
k=1

We also introduce the process {Jy }rcz+ that gives the height of the field just before the
contact points:

Jo = 0, Jp = Pre—1 5 keN. (2.10)

Of course, under the law IP. ; we look at the variables 73, Jj, only for k& < /. The crucial
fact, proven in Section 3 of [6], is that the vector {{x, (Tk)k<en, (Jk)k<ey } under the law
P. v admits an explicit description in terms of Markov renewal theory, that we now recall.

Following [6, §3.2], for £ > 0 we denote by P. the law under which the joint process
{(7k, Jk) }rez+ is a Markov process on Z*+ U {oo} x RU{oc}, with starting point (7, Jy) =
(0,0) and with transition kernel given by

P&((Tk-f—la Jk‘-i—l) € ({’I’L}, dy) | (Tk‘, Jk;) = (m,x)) = K;dy(n - m)? (211)
where K2 (n) is defined for z,y € R and n € N by

—F(e)n UE(y) P(iLO) (anl edy, Z, € dz)

ray(n) 1= €€ ve () dz

2, dy (2.12)

z=0
The function F(e) is the free energy of the model P, y, while v.(-) is a suitable positive
function connected to an infinite dimensional Perron-Frobenius eigenvalue problem (we
refer to Sections 3 and 4 of [6] for a detailed discussion). We stress that F(e) =0 if ¢ < &,
while F(e) > 0 if € > ..

The dependence of the r.h.s. of [ZII]) on n—m implies that under P. the process {Jx }«
alone is itself a Markov chain on R U {oco}, with transition kernel

Pe(Jrsr €dy|Jr =2) = Dig, = > K54,(n). (2.13)
neN

On the other hand, the process {7x }x is not a Markov chain, but rather a Markov renewal
process, cf. [I]: in fact its increments {7511 — 7k} are independent conditionally on the
modulating chain {Jj }pcz+, as it is clear from (ZITI).

From (ZI2) it follows that, as a measure in dy, the kernel K¢  (n) is absolutely continu-
ous for n > 2, while K¢ dy(l) is a multiple of the Dirac mass at zero dp(dy). The properties
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of the kernel K¢ dy( n) depend strongly on the value of €. First, the kernel is defective if
€ < g, while it is proper if € > €, since

Z/ 2dy(n / D34y = mln{i, 1},
yeR Ec

neN

so that the probability that 7, = oo for some k is one if € < e, while it is zero if € > e..
Moreover, as n — oo for fixed z,y € R we have
Ke ., (n) Lf(z,y)
z,dy _ Y)  —Fe)n
= e 1+ o(1 2.14

for a suitable function L®(x,y), cf. 6, §3.2 and §4.1].
To summarize: the kernel K dy( n) is defective with heavy tails in the delocalized regime
(e < &¢), it is proper with heavy tails in the critical regime (¢ = ¢.), while it is proper
with exponential tails in the localized regime (¢ > e.). We also note that when ¢ > &,
the modulating chain {Ji}.cz+ on R is positive recurrent, i.e., it admits an invariant
probability law ve: [ p ve(dz)D5 4, = ve(dy), with v:({0}) > 0 and no other atoms.

We are now ready to link the law P, to our model P, y. Introducing the event
Ay = {{N N+1}CT} = {Tk:N TkH:N—i—lforsomekeN}

Proposition 3.1 of [6] states that the vector {{n, (Tk)r<ey, (Jk)k<ey } has the same distribu-
tion under the law Py and under P.(-|.Ay). More precisely, for all k € N, {t;}1<;<x € N¥
and {y; h<i<k € RF we have

Pen(In =k, 7=t Ji€dy;, i <k)=P-(In =k, i =t;, J; €dy;, i < k| Ay). (2.15)

In words: the contact set 7N [0, N] under the law P, y is distributed like a Markov renewal
process, of law P, and modulating chain {Ji }x, conditioned to visit N and N + 1.

2.3. The infinite-volume measure. The purpose of this paragraph is to extend P,
introduced in §Z2 to a law for the whole field {y;};cz+.

Consider first the regime ¢ > &, in which case 7, < oo for every k € N, P.-a.s.. We
introduce the excursions {ey }ren of the field over the contact set by

€ = {ek(i)}0<i<ﬂc*7’k 1 = {@Tk71+i}0<i<Tk7Tk L (2-16)

The variables ey, take values in the space [ J7,_, R™. It is clear that the whole field {; };cz+
is in one-to-one correspondence with the process {(7k, Jis €x) }rez+- Pe has already been
defined as a law for { (7%, Ji) trez+, see (ZI1]), and we now extend it to a law for {¢; };cz+ in
the following way: conditionally on {(7x, Ji) }rez+, we declare that the excursions {ex }ren
under P, are independent, with marginal laws given by

e, under P. (- [{(7i, J) ezt ) £ (Zoy---, 7)) under PO (|2 =b, 2 =

) (2.17)
where | =7, — 11, a = Jp_1, b= Jg.

In words: ej under P; is distributed like a bridge of the integrated random walk {Z,},
of length [ = 7, — 7,_1, with boundary conditions Z_1 = Jp_1, Zyp =0, Z;_1 = Ji and
Z; = 0. Recall in fact that by ) we have P-4 = P(.| Z_| = a, Zy = 0), and this is
the reason for the minus sign.

Next we consider the regime £ < ., in which the process {7x}x is P--a.s. terminating,
i.e. there is some random index k* € N such that 7, < oo for k < k* while 13+ = o0.
Conditionally on {(7, Jk) }rez+, the law of the variables {ej}1<k<p+ under P; is still given
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by (1), and to reconstruct the full field {¢;};cz+ it remains to define the law of the last
excursion egx41 := {SDTk*+i}0§i<oo, which we do in the following way:

d —Jp*
CL* 41 under 7)5( . H(Ti, Ji)}i€Z+) = {Zi}0§i<oo under P( L ’0)( . ) .
This completes the definition of P, as a law for {¢;};cz+.

Now notice that, conditionally on {{x, (7%, Jk)k<ty }, the excursions {ej }r<s, under the
pinning model P, y are independent and their marginal laws are given exactly by (ZI1).
To see this, it suffices to condition equation (Z3l) on {Jk}r<¢,, obtaining

Pon( - | On, (T Jedkeey) = POO((Z1,... 2y 1) €| 2y, =0, Znyoy = i, Vi < Uy) .

Then, using the fact that the process {Z,},cz+ has memory m = 2, see (1), this equa-
tion yields easily that the excursions {ey}r</, are indeed conditionally independent and
distributed according to (ZI).

These observations have the following important consequence: the basic relation (ZI5)
can be now extended to hold for the whole field, i.e.

]P’&N(d(pl, e, d(pN_l) = Pg(d(p17 oo, don—1 |.AN) . (2.18)

(Of course, the extension of P. has been given exactly with this purpose.) Thus the polymer
measure P; n is nothing but the conditioning of an explicit law P. with respect to the
event Apy. We stress that P. does not have any dependence on N: in this sense, the law
P. n depends on N only through the conditioning on the event Ax. This fact plays a
fundamental role in the rest of the paper.

Remark 2.1. Although the law P. has been introduced in a somewhat artificial way, it
actually has a natural interpretation: it is the infinite volume limit of the pinning model,
i.e., as N — oo the law IP; y converges weakly on RZ" to P-. This fact provides another
path characterization of the phase transition, because the process {¢y, }neny under P. is
positive recurrent, null recurrent or transient respectively when € > g., e = ¢, or € < €.
We also note that the field {; }i>o under the law P, is not a Markov process, but it rather
is a time-homogeneous process with finite memory m = 2, like {Z,, },,>0 under P, cf. (Z0).
Although we do not prove these results, it may be helpful to keep them in mind. O

3. PrROOF OoF THEOREM [[LZ} FIRST PART

In this section we prove a first half of Theorem [, more precisely (LI4]) and the upper
bound on maxo<k<n |¢k| in (LIH). Note that these results yield as an immediate corollary
the proof of Theorem for € > €, (the case € < ¢, is deferred to Section H).

The basic tools we use are the description of the pinning law P, x given in Section B
that we further develop in §8.11to extract a genuine renewal structure, and a bound based
on the Brascamp-Lieb inequality, that we recall in §3.21

3.1. From Markov renewals to true renewals. It is useful to observe that, in the
framework of Markov renewal theory described in §21 one can isolate a genuine renewal
process. To this purpose, we introduce the (random) set x of the adjacent contact points,
defined by

X = {Z VAR Yi—1 = p; = 0}, (31)
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and we set by definition ¢_; = g = 0, so that x > 0. We identify x with the sequence of
random variables {x}rez+ defined by

X0 = 07 Xk+1 = lnf{Z>Xk @i_1:@i:0}7 k€Z+, (32)

and we denote by ¢y the number of adjacent contact points occurring before N:
v = #{xN[,N]} = sup{keZ": xyy <N}. (3.3)

The first observation is that, for every € > 0, the process {xx}rez+ under the law P
is a genuine renewal process, i.e. the increments {xx+1 — Xk }rez+ are independent and
identically distributed random variables, taking values in N U {oco}, as it is proven in
Proposition 5.1 in [6]. Denoting by ¢-(n) the law of x1,

¢=(n) == P-(x1=n), (3.4)

it turns out that the properties of ¢.(n) resemble closely those of K . dy(n), given in §22
In fact g-(-) is defective for ¢ < e, (3 ,en¢:(n) < 1) while it is proper for ¢ > &,
(> _nend:(n) = 1). About the asymptotic behavior of g.(-), there exists a > 0 such that
for every € € (0,e. + a] as n — oo

ge(n) = % exp (= F(e) -n) (14 0(1)), (3.5)

where C. > 0, cf. Proposition 7.1 in [6] (which is stated for € € [e., e + @], but its proof
goes true without changes also for ¢ € (0,e.)). We stress that F(e) = 0 for ¢ < ¢, while
F(e) > 0 for € > .. When € > ¢, + a, we content ourselves with the rougher bound

g=(n) < Cexp(—a(e)-n), Vn € N, (3.6)

for a suitable G(¢) > 0, which can also be extracted from the proof of Proposition 7.1 in [6]
(we have G(g) > F(e) for large €).

To summarize: the renewal process {xx}r under P; is defective with heavy tails in the
delocalized regime (e < &.), it is proper with heavy tails in the critical regime (¢ = &.),
while it is proper with exponential tails in the localized regime (¢ > ¢.).

Coming back to the pinning model P, y, by projecting the basic relation (ZIH) on the set
X we obtain that the vector {¢n, (Xk)kr<.y } has the same distribution under P. y and under
P-(-| An), where we can express the event Ay in terms of y, since Ay = {N+1 € x}.In
words: the adjacent contact points {xy, }» under the polymer measure P, y are distributed
like a genuine renewal process conditioned to hit N + 1.

3.2. The Brascamp-Lieb inequality. Let H : R” — RU {+0o0} be a function that can
be written as

H(z) = %A(:c) + R(x), (3.7)

where A(x) is a positive definite quadratic form and R(z) is a convex function. Consider
the probability laws ur and pa on R™ defined by

e~ H(@) (det A)1/?

MH(dm) = cH d.%', MA(dx) = (27‘(’)"/2

e~ 34@ dx,

where dx denotes the Lebesgue measure on R™ and cg is the normalizing constant. Of
course, /14 is a Gaussian law with zero mean and with A~! as covariance matrix.
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We denote by Ep and E4 respectively the expectation with respect to uy and pa.
The Brascamp-Lieb inequality reads as follows (cf. [, Cor. 6]): for any convex function
I': R — R and for all a € R", such that E4[['(a - x)] < oo, we have

Eg[T(a-x—Eg(a-z))] < Ex[l(a-x)], (3.8)
where a - © denotes the standard scalar product on R™.
A useful observation is that ([BF]) still holds true if we condition ppy through linear
constraints. More precisely, given m < n and b; € R", ¢; € R for 1 < ¢ < m, we set
py(dz) = pg(de|b; -z =¢,¥Vi <m).

We assume that the set of solutions of the linear system {b;-x = ¢; ,Vi < m} has nonempty
intersection with the support of g and that z — e~ (*) is continuous on the whole R™, so
that there is no problem in defining the conditional measure p7;. Let us proceed through
an approximation argument: for k£ € N we set

m
Hi(z) = H(x)—i—k:Z(b, r—c)?, pip, (dx) = = dx,

i=1 Hy,
where cj‘qk is the normalizing constant that makes ,uj‘qk a probability. Since we have added
convex terms, H; (x) is still of the form [B7), with the same A(z), hence equation (E3J))
holds true with Ep replaced by Ej; . However it is easy to realize that u’qu converges

weakly to pj; as k — oo, hence (B8) holds true also for E};, i.e.
EiT(a-z—Ef(a-z))] < Exll(a-2)]. (3.9)

3.3. A preliminary bound. Before passing to the proof of Theorem [[4l we derive a
useful bound based on the Brascamp-Lieb inequality. We recall that by the uniform strict
convexity assumption on the potential we can write V(t) = 3t + r(t), where v > 0 (cf.
CI) and r(-) : R - RU {400} is a convex function, see §LI1

By @), the law of the vector (Zi,...,Z,) under P9 has the form pg(dz) =
e @ dz, x € R", where H(z) = £ A(x) + R(z) with

n—1
Azy,... 1) = - <(w1)2 + (22 = 201)* + ) (@i + @it — 2$i)2>
=2
- (3.10)
R(z1,...,2n) = (1) +7(22 — 221) + ZT(%H + @i — 2x).
=2
Since r(-) is convex on R, R(:) is convex on R™ and therefore we are in the Brascamp-
Lieb framework described in 82 Fix arbitrarily m < n and ty,...,t, € {1,...,n} and
consider p3;(dz) = pg(dz |z, = 0,... 24, = 0). Applying @) with I'(z) = ¥, for
A€ R and k € {1,...,n}, and noting that E};(x;) = 0 by symmetry, we obtain

E(070) (6)\Z}C | Zt1 = Oa ) Ztm = 0) = E}k{ (BAIk)

Ea(e™) = exp (;ik(k+1)6(2k+1)>’

where the last equality is the result of a straightforward Gaussian computation, because
in this context pa is just the law of the integral of a random walk with Gaussian steps

IN
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~ N0, 1) (cf. @2) and Z4)). Applying Markov’s inequality and optimizing over A
yields for s € R

2
5
PO (12| > 5|2, =0,...,2,,, =0) < 2exp ( - % E) : (3.11)
The crucial aspect is that this bound is uniform over the choices of the points ¢; (that do
not appear in the r.h.s.). In a sense, this is no surprise, because conditioning on Z;, = 0

should decrease the probability of the event {|Z;| > t}.
3.4. Proof of Theorem [[L4: upper bounds. Recalling the basic relation (ZI), for
m <N —1and t,...,t, € {1,...,N — 1} we have

Pen(lorl > s | v =m, 7 =t;, VI <i<m) (3.12)
= POO( |z >s|Z;=0, Vj € {ti,ta,....tm} U{N,N +1}). '

We now observe that the process {Z,}, under PO s a process with finite memory
m = 2, see (Z0), hence its excursions between adjacent zeros are independent. For this
reason, we identify the adjacent zeros that are close to k, in the following way: we first set
for convenience

t_1:=—-1, t:=0, tymy1 =N, tmio:=N+1,
and we define
l:=max{i >0: t; <kandt; —t;-1 =1}, r:=min{i >0:¢ >kandt,—t,_; =1}.

In words, t; (resp. t,) is the closest adjacent zero at the left (resp. at the right) of k. Note
that 0 <1 < r <m + 1. Then the above mentioned finite memory property yields

POY( (2> 5| Z;=0, Vi€ {tr,....tm} U{N,N +1})
= POO(|Z > 5| 2, =0, Vi€ {1ty .. tr}) (3.13)
— P(O’O)(‘Zkftl’>3‘zj:07 Vje{tl+1_tl7tl+2_tl7"'7t7‘_tl})7

where the second inequality follows by time homogeneity. Putting together (B12)), (I3
and [BII), we get

. 52
P v ( x| > | In=m, T;=1t;, V1<i<m) < 2exp < RTIsE jtz)?’ €> . (3.14)
We denote by dy the maximal gap in the adjacent contact set x until N, i.e.,

oN = max{Xk—Xk,l : O<k§LN}, (3.15)

where the variable ¢ was introduced in ([B3]). Then the bound BId) yields finally

2 2

P > NO,N)) < 2 — . 3.16
vl > 5| T M) < 20w (- g ) (3.16)

This is the key estimate to prove the upper bounds in (LI4) and (CIH). In fact the
inclusion bound yields

IP’E,N( k:nllaXN]cpk\ > s ‘ Tﬂ(O,N)) < 2N exp(— 6(57]\[)3 s2>. (3.17)

It is now clear the importance of studying the asymptotic behavior of the variable dy.
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We start considering the critical regime (¢ = ¢.). As we prove in Appendix [A], there
exists a positive constant ¢; and a sequence (ay,), such that for all N > 3 and ¢ € [1,00)

N
IP’ECN<5NZt—> < c—l—i—aN, with ay — 0 as N — 00. (3.18)
’ log N t

Combining this relation with [BI7) we get

Poo ( el > 5) < Pep( lon] > 5<tN)+Cl+
m _ -1
€e,N k:ﬁ?fN Pk S| = Fe N k:ff)fN Pk S, ON log N 7 an
Y 2 !
S 2NE507N|:GXP<—WS ) 1{6N<tloIgVN}:| + 7 + anN
Y (IOgN)?’ 2 a
SQNGXP<_6?7N3 s +7+GN,

and setting s = K N*/2/log N and t = (35)'/3 K?/3 we finally obtain

N3/2 2 o (L2
P K < = Ny
emN< k:HfaXN |80k| > log N) - N + K?2/3

)1/3

+ an.

Since ay — 0 as N — oo, see (BIH), the upper bound in equation (CIH) is proven.

Then we consider the localized regime (¢ > ;). As we prove in Appendix [A3 there
exists a positive constant ¢y such that

]P),g’N((SNzcg logN) — 0 as N — 0. (3.19)

Then, in analogy with the preceding lines, we combine this relation with BI1), getting

<
IP’E,N< k:nllaxN]cpk\ > s) < P&N( k:rrllaxN\gok] >3, 0y < Co 10gN> + o(1)
v
S 2NE€,N |:eXp < - 6 (5N)3 82> 1{5N<62 10gN}:| + 0(1)
2
<

v s
2N exp < AL (logN)3> + o(1).

Setting s = K (log N)?, for K sufficiently large we obtain

2 ——’]ﬁ—kl
PEC,N< knllaXN|90k| > K (log N) > < 2N 6e2)3

+ o(l) — 0 as N — oo,

hence also ([LT4) is proven. O

4. PROOF OF THEOREMS AND

In this section we focus on the delocalized regime ¢ < e., proving Theorem and the
corresponding part of Theorem We recall that the proof of Theorem for € > e,
follows immediately from the upper bound on maxo<x<n |k | given by relations (LI4]) and
(CIH), that have already been proven in Section Bl
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4.1. The free case ¢ = 0. We start proving Theorem in the case € = 0, when there
is no interaction between the field and the defect line. The main ingredient is the random
walk interpretation outlined in §ZT1 We recall from I3 that {B; },¢[,1) denotes a standard

Brownian motion on R and I; = fg B, ds denotes its integral, while (B\t, E) denotes (By, It)
conditionally on (By,I;) = (0,0), see (ILITI).

We first state a local limit theorem for the process {Z,, },en, proven in Proposition 2.3
of [6]. We note that the vector (Y,, Z,) = (Z, — Z,—1, Zy,) has an absolutely continuous
law under P(®?) for n > 2, and we introduce its density

P ((Yy, Z,) € (dy,d2))
dy dz '

PV (y,z) =

Notice that @gza’b) (y,2) = 80%0’0) (y —a,z —b—mna) by @3), hence we can focus on 901(10’0).

The local limit theorem reads as follows:

sup ‘ o?n? p00) (ov/ny, an3/2z) — g(y,2) ‘ — 0 (n — 00), (4.1)
(y,2)ER?

where g(y, z) := S exp(—2y* — 622 + 6yz) is the law of the Gaussian vector (B, I).
We are ready to prove a somewhat general invariance principle, from which Theorem [[2
for e = 0 follows as a corollary, because Py y coincides with the law of the integrated

random walk (Z1,...,Zn_1) under P(O’O)( | Yny1 =0,Zn41 =0), cf.§ 201 For notational
convenience, we simply denote by Z ) and Yy the linear interpolation of the processes.

Proposition 4.1. Uniformly for a,c in compact sets of R, we have as N — oo:

Y, Z ~ ~
(Nt)  Z(Nt) (—a,0) _(_ d
der P - (YN, ZN) = 0 By, I,
{<U\/N’UN3/2>}tE[O,1} under (- [ (v, Zn) = (=¢,0)) {(Be, t)}te[o,ll’
(4.2)

where —% denotes convergence in distribution on C([0,1]) x C([0,1]).

Ying 2o
O'\/N ) o N3/2

law P9 (.) converges in distribution as N — oo toward {(B;, It) }+e(0,1), uniformly for
a in compact sets of R. This is an easy consequence of Donsker’s Invariance Principle
and the Continuous Mapping Theorem, because {Y}, },cz+ under p(-a0)
finite-variance real random walk starting at —a and moreover

iy /t (Yine +a) ds
O'N3/2 0 J\/N

(we recall that (&) — f(f &sds is a continuous functional on D([0,1])).
Next it is convenient to restrict the parameter ¢ to [0, 1 — 7], where n > 0 is fixed. Since

. Ying  Zivy ) }
{(Yn, Zn) }nez+ is a Markov process, the law of the process { <0—\/ﬁ YoNE ) f 010y under

P(fa’o)( : { (Yn, Zn) = (—¢,0)) is absolutely continuous w.r.t. the law of the same process
under P(fa’o)( . ), with Radon-Nikodym derivative f ](\;7) given by

Proof. We start noting that the process { < ) } 1) under the unconditioned
telo,

is a zero-mean,

(U\/Nyl_n,aN?’/Qzl_n)

¥ N (—C,O)

fz(\?)((yt,zt)te[o,kn]) = 1 1y 21-n) = oY) o) :
YN (—C,O)
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The local limit theorem (E]) yields the uniform convergence on compact sets of the func-
tion f](\?) as N — oo toward an explicit limit function £ uniformly for a, ¢ in compact
sets, and one checks directly that f(" is indeed the Radon-Nikodym derivative of the law of
{(Et, ft)}te[o,l—n] w.r.t. the law of {(By, It)}1c[0,1—ry- This shows that equation (E2)) holds
when ¢t is restricted to [0,1 — n]. Since this is true for every n > 0, the proof is completed
with a standard tightness argument. ([l

4.2. Proof of Theorem In this paragraph we focus on the regime 0 < ¢ < g.. We
start proving a slightly stronger version of equation (CI3]). We denote by Ix (resp. ry)
the index of the last point in the contact set before N/2 (resp. after N/2), that is

Iy == max{i>0: 5, <N/2}, ry:=mn{i>0: 7>N/2} =Iy+1. (43)
Equation (CI3) says that both 7;,, and N — 7, are O(1). It turns out that also |J;, | and
|Jry | are O(1). More precisely, we are going to prove that

LETOO %rginf Pen(riy <L, oy =N =L, |Jiy| <L, |Jry| <L) = 1. (4.4)

As a matter of fact, it is not difficult to further strengthen this relation, by showing that

also maxo<i<r,  |¢i| and max;,  <i<n |¢;] are O(1), but we omit the details for conciseness.

The proof of Q) is based on relation ([ZI8]) (or more directly on (ZIH)). Recalling
the definition (ZT) of the transition kernel K , (n), we introduce the associated renewal

kernel U 4 (n) by

o0

Say(n) = D (KK (n) = Pe(ner, pnaedy|Jo=1), (4.5)
k=0

where (K%)** denotes the k-fold convolution of the kernel K® with itself: by definition

(Ke)zody( n) := 6,(dy) 1g,—0y and given the kernels A, g, (n), Bz qy(n) we set

n

(A * B)a&,dy(n) = Z /GR Ax,dz(m) : Bz,dy(n - m) :

m=0

In particular P (Ay) = Up 103 (N + 1). With this notation, by I8 we can write
PE,N(TIN S L7 TT’N 2 N - L7 ‘JlN’ S L7 ’JTN‘ S L)

T U . (N+1) 0.az(@) - KZ g —a—b)- U _
Ug,{o}(N +1) ab—0 JuYE-L.L] Y y,{0}

By [ZI2)) and EI) it follows that for bounded z,y and as n — oo

£ o % Ué(y) d
wdy - m ve(x)

g Liydy
J:dy( ) ~ n2

(4.7)

, where

To determine the asymptotic behavior of Uy (o3 (N + 1) as N — oo, we apply the Markov
Renewal Theorem given by equation (7.9) in [0, §7.2] (it is easily checked that all the
assumptions are verified). We set

[e.e]

J:dy : Zdey (1_B€)a}dy = Z(Be)xdy’ (48)

neN k=0



18 FRANCESCO CARAVENNA AND JEAN-DOMINIQUE DEUSCHEL

where (B%)°* denotes the k-fold composition of the kernel B® with itself: by definition
(Be)g?dy = 0y(dy) and (Ao B)yay := [,cg Az.dz Bz,ay- Then by equation (7.9) in [6] we
can write as n — oo

((1 — Ba)_l oLo(l— BE)_l)

n2

0.{0}

Ua{o}(”) ~
and therefore
lim PE,N(TIN S L7 Try Z N_L7 ‘JlN‘ S L7 ‘JT‘N‘ S L)
N—oo

Fevetrn (200 Usaa(@) L gy (2020 U5 10y )
(1=B%)"toLso(1-B5)1) '

Since by definition >, .y UZ 4,(n) = BS 4,

converges to 1 and equation (4]) is proven. O

0,{0}
letting L — oo the r.h.s. of the last relation

4.3. Proof of Theorem The proof of Theorem [LZ for 0 < € < &, follows by putting
together the results proven so far. For conciseness, we just sketch the main arguments and
leave the details to the reader.

It is convenient to split the field {¢; }o<i<n in three parts: the beginning {‘Pi}OSiSTLN , the
bulk {%Oi}nNSiSTrN and the end {%’}TTN <i<N, where we recall that the indexes [y, ry have
been introduced in (3)). By (H), both 7, and N —7,.,, are O(1) as N — oo. Furthermore,
as we already mention, one can show that also maxo<;<r, |¢i| and max,, <i<n |@;| are
O(1) as N — oo. Therefore both the beginning and the end of the field are irrelevant for
the scaling limit (remember the definition (LI) of the rescaled field px(¢)) and it suffices
to focus on the bulk.

We recall that the polymer measure P, y coincides with the law P. conditioned on
Ap, cf. (ZI8). In particular, by the construction of P. given in §Z2ZHZJl it follows that
if we fix 71, = m, pm—1 = a, 7oy = N —n, on_n_1 = ¢ (of course ¢, = pn_pn = 0),
the bulk {¢;}m<i<n—n under P, y is distributed like the process {Z;}o<j<nN—n—m under
P(fa’o)( : { (YN—n—ms ZN-n-m) = (—¢,0)). Since all the parameters m,n, a, ¢ are O(1) by
(4D, we can apply Proposition Bl and Theorem is proven. O

5. PROOF OF THEOREM [[L4 SECOND PART

In this section we complete the proof of Theorem [[4 by showing that also the lower
bound on maxo<k<n |¢x| in (CID) holds true.
The first basic ingredient, that we prove in Appendix[A.2] is a lower bound counterpart

of equation (BIX):

N
lim liminf IP’EON((SN ZtlogN) =1. (5.1)

t—0T N—oo
The second ingredient is given by the following lemma, proven in §5.71 that will be used also
in the proof of Theorem [[l Recall the definition ([CTM) of the rescaled field {&n () }iepo,1)-

Lemma 5.1. Under the conditional law Pe,(-|x1 = N + 1), the process {pn(t)}iefo]

converges in distribution on C([0,1]) as N — oo toward the process {Tt}te[o,l]-

The idea to complete the proof of Theorem [[4is now quite simple. We first notice that,
given a gap (Xk, Xx+1) in the set x of width m = xx+1 — X%, the law of the field inside this
gap is nothing but P._(-| x1 = m). In particular, by Lemma [Tl the scaling behavior of the
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}/O((N/ log N)3/2) ] ——— = tN/log N \

FIGURE 2. A typical trajectory of the field {¢, }o<n<n under the critical
law P, n. The variables xg_1 and xg are the extremities of the first large
gap in the set x of adjacent contact points, cf. ([Bd]). For simplicity, the
distinction between simple and adjacent contact points (i.e., between the
sets 7 and ) is not evidenced in the picture.

field in this gap is of order m®/2. By (ETD), the width of the largest gap in the set y before
N is of order ~ N/log N, hence inside this gap the field scales like (N/log N)3/2, from
which the lower bound in (LT3 follows. Let us now make these considerations precise (it
may be helpful to look at Figure B).
For m € N and s € R" we introduce the event A,, s := {maxogkgm lok| > sm3/2},
and we note that by Lemma Bl we have
lim liminf P., (Ams { X1 = m) = 1. (5.2)

s—0t m—oo

By &10), for every n > 0 we can fix ¢ > 0 and Ny € N such that for all N > N

We denote by [ the index of the first long gap in the set x (cf. Figure B):

. ) N
ﬂ = Inf {Z Z 1: Xi — Xi—1 Z thgN} . (54)

The law of the field inside the gap admits the following explicit description, that follows
from relation ([ZI8)): for all a,b € N with 0 <a <b< N and b —a > tN/log N

Pec,N({SDi}agng € ‘Xﬂ—l =0, Xg = b) = Pec({%}ogigbfa € ‘Xl =b- a) - (59)

Observing that {ox > tN/log N} = {xg < N} and applying the inclusion bound we get

P 1 N3/2 b 1 N3/2 N
> —— | > P — <
P L N2 N

> D ——— <

Z Le,N XB—Ilngalg{SX5|SDk| - K (logN)3/2’ XB =

= Z P max |@g| > 1 L/Q =a =b

= el | aisy PF = K (log N2 AL T X =R )

0<a<b<N

b—a>tN/log N
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Combining this relation with (&3l and recalling the definition of A,, s yields

P 1 N3/2
> - -
e | max [kl = 5 (log N Y372

> Z Pe. Ab—a L NB/2 1

0<a<b<N 'K (log N)3/2 (b—a)3/2

b—a>tN/log N

X1 = b—a) 'Psc,N<Xﬁ—1 =a, Xg= b) .

1 N3/2 1 1
F(logN)g/Q ° (b_a)3/2 S Kt3/2 and that- the

event A, s is decreasing in s. Since t > 0 is fixed, it follows from ([&.2) that for K and N
sufficiently large, when b — a > tN/log N, we have
Pe“(Ab—ai N3/2 X1 :b—a> > 73€C<Ab7a7 1 ‘Xl :b—a> > 1-—9.

'K (log N)3/2 (b—a)3/2 Kt3/2

Now observe that in the range of summation

Therefore, for the same K and N we get

1 N3/2 >
> _—— > — = =
PE@N <Or§1}€aéXN ‘gok’ — K (log N)3/2> il (1 77) PE@N (Xﬁ*l a/7 X,@ b>
0<a<b<N

b—a>tN/log N
= 1-nPn(xs<N) = Q-0

where the last inequality is just (&3). Since n > 0 was arbitrary, the proof of the lower
bound in (CTH) is completed. O

5.1. Proof of Lemma Arguing as in §3, it suffices to show that under the law
P..(-|x1 = N + 1) the contact set is concentrated near the boundary points, and the
invariance principle will follow from Proposition EZIl Recalling the definition ([E3]) of the
indexes [ and rpy, we prove that

LETOO ggijg Pee(tiy <L, 7oy 2 N=L, |Jj | <L, |Jyy| < L|x1=N+1) = 1. (5.6)

Some notation first. We set R‘;’dy(n) = KS g, (M) 1yz0y = KS g, (0) (59, of. 1),
that gives the law of the jumps occurring before y1, and we introduce the corresponding

renewal kernel
o0

Usgy(n) == D (K (n) = Pe(ner, x1>n, po1 €dy| Jo=2).
k=0

Then, recalling that ¢. (N + 1) := P..(x1 = N + 1), we can write, in analogy with (E8l),
Pe(tiy <Ly 7oy 2 N = L, [Diy| < Ly [Ty < Lxa = N +1)
1 L

— . {jce . KEe _ _ . {jce . KEc
(N +1) ;0 /xyE[—L L), z€R Uoias (@) - Kylgy (W + 1= a = 0) - Uy/q, (0) - K.y (1)

Applying relations (7)) and ([B3H) we obtain
lim P. (ry <L, 7oy >N =L, |Jiy| <L, |Joy| <L|x1=N)

N—oo
L {jec c L {jec e .
_ fx,ye[fL,L],zeR (Za Ug,dx(a)> Li,dy ( b=0 Uz,dz(b)> Ki,{O}(l) (5 7)
= CEC .
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However the precise value of C, is shown in [6l, §7.3] to be

Ce. = ((1—B%) Lol o(1— B*) oK)

0,{0}”
where of course B\;,dy =) heN R;dy(n). Since ) oy G;dy(n) =(1- Ee);éy, by letting
L — oo the r.h.s. of ([EX) converges to 1 and equation (B8) is proven. O

6. PROOF OF THEOREM

In this section we prove Theorem [l We start discussing the topological and measurable
structure of the space M([0,1]) (for more details we refer to [13]).

6.1. Finite signed measures. We denote by M(]0,1]) the space of finite signed Borel
measures on the interval [0,1], that is of those set functions v that can be written as
v = v1 — vy, where vy and v are finite non-negative Borel measures on [0, 1] (since all the
measures we deal with are Borel and finite, these adjectives will be dropped henceforth).
According to the Hahn—Jordan decomposition [1], every v € M([0,1]) can be written in
a unique way as v = v — v, where v and v~ are non-negative measures supported by
disjoint Borel sets. Given v € M(]0, 1]), the non-negative measure |v| := v + v~ is called
the total variation of v. For K € RT we set

M ([0,1]) = {v e M([0,1]) : [v|([0,1]) < K}
Notice that Mg ([0,1]) € Mgk41([0,1]) and that

M([0,1)) = | Mx([0,1]). (6.1)

KeN

We recall that C'([0,1]) denotes the space of continuous real functions defined on [0, 1].
We equip the space M([0,1]) with the topology of vague convergence, that is the smallest
topology on M([0, 1]) under which the map v — [ fdv is continuous for every f € C([0,1]),
and with the corresponding Borel o—field. We recall that v, — v in M(][0, 1]) if and only
if [ fdv, — [ fdv for all f € C(]0,1]) (see 10, [[T] for a more explicit characterization).

The space M([0, 1]) is Hausdorff and separable (a dense countable subset is given by the
measures » .-, a; 6, (), for n € Nand a;,b; € Q). The delicate point is that M([0, 1]) is not
metrizable. However we have the following result, proven in [I3, Th.9.8.7 and Th.9.8.10].

Lemma 6.1. For every K € R, the space Mk ([0,1]) with the vague topology is compact
and metrizable (and separable, hence Polish). Viceversa, if A C M([0,1]) is compact then
A C Mk (]0,1]) for some K € N.

By a random signed measure on [0,1] we mean a random element v, defined on some
probability space (2, F, P), and taking values in M([0, 1]). For instance, {p } nen defined
in (CI8) (under the law P, n) is a sequence of random signed measures. For notational
clarity, random signed measures will always be denoted by boldface symbols. The law of
a random signed measure v is the probability measure v o P~! on M([0,1]). Given the
random signed measures {v'y} nven and v, we say that {vn}yen converges in distribution
on M([0,1]) toward v if the law of vy converges weakly to the law of v, i.e. for every
bounded and continuous functional F': M([0,1]) — R we have E[F(vy)] — E[F(v)].

We are going to give sufficient conditions for convergence in distribution of random
signed measures, that will be applied in the next paragraphs. The path we follow is
close to the standard one of proving tightness and checking the ‘convergence of the



22 FRANCESCO CARAVENNA AND JEAN-DOMINIQUE DEUSCHEL

finite-dimensional distributions’, but some additional care is required, due to the non-
metrizability of M([0, 1]). We recall that a sequence {v'x }yen of random signed measures
on [0,1] is said to be tight if for every d > 0 there exist a compact set C' € M([0,1]) such
that P(vy € C) > 1 — ¢ for large N. Equivalently, {vy}nyen is tight if and only if for
every 0 > 0 there exist K, Ny € N such that

P(lenl([0,1)) <K) > 1-46 VN > Np. (6.2)

Although M(]0, 1]) is not Polish, the first half of Prohorov’s Theorem still holds:

Lemma 6.2. If the sequence of random signed measures {VN}Nen s tight, then there is
a subsequence {V N, }ken which converges in distribution on M([0,1]).

The proof of this lemma is given in Appendix Next for ¢t € [0,1] we define the
measurable map F; : M([0,1]) — R by

F(v) == v([0,1]).

For ke Nand 0 <a; <...<ag <1, arandom signed measure v determines the law on

R* defined by

(Fo,(v), ..., Fo,(v)) o P71 = (v([0,a1]), ¥([0,a2]), ..., v([0,ar])) o P,

where P is the underlying probability measure. These laws are called the finite dimensional
distributions of the random signed measure v. Notice that if 1 and v9 have the same
finite dimensional distributions, then they have the same law on M([0,1]), because the
o-field generated by the maps {F;}yc[o,1) coincides with the Borel o-field of M([0,1]). In
other terms, the finite dimensional distributions determine laws on M(]0, 1]).

We are ready to put together tightness and convergence of the finite-dimensional dis-
tributions, to yield convergence in distribution on M([0, 1]). The next proposition, proven
in Appendix [B] is sufficient for our purposes.

Proposition 6.3. Let {vn}nen be a tight sequence of random signed measures on [0,1].
Assume that the finite-dimensional distributions of v converge, i.e. Vk € N and for all

0<al <...<a <1 there is a probability measure )\g?@k() on R¥ such that

(v ([0, a1]), wx ([0, a2)), -, wn([0,ai))) = A, (N —00). (6.3)

Assume moreover that for every x € [0,1] and n > 0

%iﬂ(l) lim sup P(\I/N]([x—é,x—i-(ﬂ) >77> = 0. (6.4)

N—oo

Then {vn}nen converges in distribution on M([0,1]) toward a random signed measure

whose finite-dimensional distributions are Aa12,,,,ak.

The reason for requiring the extra condition (B4I) is that the map F} is not continuous
on M([0,1]) and therefore the convergence in distribution on M([0,1]) does not imply
automatically the convergence of the finite-dimensional distributions.
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6.2. Preparation. Remember the definition ([CIS) of the random signed measure gy
under P._y, that we look at as a random element of the space M([0,1]). Our goal is
to show that p, under P., y converges in distribution as N — oo toward the random
measure dL, defined in L4 using Proposition

We start restating for pp the convergence of the finite-dimensional distributions and
the extra-condition (4]), which are interesting by themselves.

Theorem 6.4. For every k € N and for all ay,...,ax € (0,1) with a; < aj41,1=1,...,k,
we have as N — 00

(;LN((O,al]), ;LN((al,ag]),...,HN((ak_l,ak])> under P, n

4 (6.5)
— (La17 La2 - Lala ceey Lak - Lak_1) )
where — denotes convergence in distribution on R*. Moreover Va € [0,1], Vi > 0
lim limsup P., n (]uN\([x—dx—i-(S]) > 77) = 0. (6.6)
=0 Nooco

Notice that the vectors in (E3) differ from those in (@3]) just by a linear transformation,
because it is simpler to work with gy ((a;—1,a;]) than with gy ((0,a;]) = py ([0, ai]).

The proof of Theorem [64 is given in §6.3] while the tightness of the sequence {py}n
under P,y is proven in 6.4l Thanks to Proposition B3 this completes the proof of
Theorem The rest of this paragraph is devoted to a basic lemma.

Lemma 6.5. Fiz any § € (0,1). Given any sequence of events { Bn}nen such that By €
o({@ito<i<sn), i.e., By depends on the field of length SN, the following relation holds:

P, .n(Bn) = P-.(Bn) + o(1), (N — o).
Proof. Thanks to relation (I8, it suffices to prove that
P-.(Bn|N+1€x) = P-.(Bn) + o(1), (N — c0). (6.7)
Introducing the variable {5 := min {X N[ON, oo)} — max {X N 1o, 5N]}, we claim that

P62y | Vriex) = o, P62 my) —em. 09

In fact, these relations are proven in Appendix [A] with explicit bounds, cf. ([(A7)-([AS)-
([(E3) and ([AIJ), in the special case § = %, but the proof carries over to the general case
with no change. We introduce the variable ds := min {x N [6N,00)} — [N ], and we note
that ds < &s. Thanks to (6.8]), we can rephrase (E1) as

N
B
P ( N7d5_1 e N

N

We recall from §81] that the process {x,}n under P, is a renewal process with step
law ., (n) = Pe.(x1 = n). Denoting by u._(n) := >~ ¢:¥(n) the corresponding renewal
mass function, we can write the Lh.s. of (63 as

[N/ log NJ

N Ue, (N +1—|0N]| — k)
P B ds < ——— — c
5C< N, 5_1 N‘N+_1€X> E BN,d(;—k‘)

Ue, (N +1)
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Since q._(n) ~ C. /n? as n — oo, see ([BH), by Theorem 8.7.5 of [3] we have u., (n) ~
1/(C;, logn). Therefore u. (N+1—|6N|—k)/u.,(N+1) =140(1) as N — oo, uniformly
for k in the range of summation, and (63 is proven. O

Corollary 6.6. To prove equations [63) and @8l), one can replace the law P., n by Pe,.
6.3. Proof of Theorem We introduce the sequences {Ay}ren and {Zk}keN that

give the area respectively under the processes {¢;}; and {|p;|}; between two consecutive
adjacent contact points:

Xk Xk
A = Z Vi s A = Z loi - (6.10)
1=Xk—1+1 i=Xp_1+1

We also introduce the corresponding partial sum processes:
S, = A +...+A,, S, = A1 +...+A,. (6.11)

Note that the variables { A }ren are i.i.d. under P., and hence {S,},>0 is a real random

walk, and analogous statements hold for {gk}keN and {gn}nZO- In fact the epochs {xx }x>0
cut the field into independent segments, because {x}x>0 under P_ is a genuine renewal
process, cf. §811 and furthermore the excursions {ej}ren are independent conditionally

on {(7x, Ji) trez+, cf. 3
The crucial fact is that the random walk {S,, },, under P._ is in the domain of attraction

of the symmetric stable Lévy process of index 2/5, and analogously {gn}n is in the domain
of attraction of the stable subordinator of index 2/5. In fact we have the following:

Proposition 6.7. There exist positive constants C, C such that

C

ch(Al >.’E) ~ W’

Pe (AL > @) ~ (x — +00).  (6.12)

2275

Proof. By Lemma [ and the Continuous Mapping Theorem, as n — oo we have that
1 11 & i [t=
/0 On(t)dt = p W Zzl w; under 7356( . ‘ X1 = n) — /0 I; dt, (6.13)

where % denotes convergence in distribution on R and the process {E}te[o,l} was intro-

duced in ([CII). Note that fol I, dt is a Gaussian random variable, whose variance equals
= (see Appendix [B3), hence

D(z) = P</01ftdt>z> = % /:Oe—?’ﬁo'fQ dt. (6.14)

For z ¢ R and n € N we set
A
0.2 = Pe( Sk > 2 =) (6.15)
on

and note that equation (E13)) yields ®,,(z) — ®(z) as n — oo, for every z € R.
Recalling the notation ¢, (n) = P:.(x1 = n), we can write

X
ch A1>x quc 51: A1>£C‘X1—’I’L — an:(n) ¢n<0n5/2>.

neN neN
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Let us rewrite the r.h.s. above by putting in evidence the factor s := %%
x

1 25 0.2/5 4/5 2/5 1
ch(A1>.%') = m g 1’2/5 Z |: 4/5q< 2/5 >:| ¢§§§28<@> . (616)

»2/5
n2/5

Since ®,(z) — ®(2) and q.,(n) ~ C-, /n? as n — oo, cf. ([BH), for every s > 0 we have

1 1 x5 (2?5 Ce..
¢§<5—/> - ‘D<5—/> mq<m> — e e
Moreover we claim that the following bound holds true (see below):

5

P..(A1 >z |x1=n) < (const.) o

- (6.17)

Then a Riemann-sum argument shows that the term in brackets in (EI6) does converge
toward the corresponding integral, that is as x — oo

2/5 4/5 2/5 1
25,9 __ (s —
o 22/5 22;5 [04/5 q<02/5 Sﬂ (I)ZZ?S(SS/Q)

s€ =N (6.18)
o
o [ Ca( ] Yas - 00D [Fpn ey
0 S §5/2

having used (EI4). This proves the first relation in (E:I:Z]), with an explicit formula for C.
The variable A; is treated in a similar way. In fact, in analogy with (EI3]), Lemma BT

and the Continuous Mapping Theorem yield as n — oo

A

o nd/2

1 ~
under P (- |x1=n) 4, / |I;| dt , (6.19)
0

and moreover the following bound holds (see below):
5

P-. (Zl > { x1=n) < (const.) o

- (6.20)

Then, arguing exactly as above, a Riemann-sum approximation shows that the second

relation in (GI2) holds true, with

~ 0, ~( 1 2 C
_ 2/5 el L _2/5 ee
C:=o0 /0 2 <I><85/2>ds o /0 = o (t)dt < oo, (6.21)

where, of course, ®(t) := P(fo1 I,|ds > t).

To complete the proof, it remains to prove (.20), which implies (GI7), because A; < A;.
To this purpose we exploit the Brascamp-Lieb inequality. We recall from §8.3 that the
law of the vector (Z1,...,Z,) under P has the form pg(dz) = e H@) dz, z € R,
where H(z) = 3A(z) + R(z) and A(-), R(-) are defined in (B]:D]) Fixing m < n and
t1,....tm € {1,...,n}, the law pj,(dz) = (dx|xt1 = 0,. = 0) satisfies the

[z

HH tm
Brascamp-Lieb inequality ([8): choosing )= xk, with 1 < k: < n, we obtain

) (m%) _ E(k+1)(2k+1)
6y

where we observe that E7;(z)) = 0 by symmetry and the last equality is just a straight-

forward Gaussian computation, because p4 is nothing but the law of the integral of a

EO(Z2| 2, =0,...,2,, =0) =

)
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random walk with Gaussian steps ~ N(0,771) (cf. (Z2) and Z)). Setting P&Om( )=
POO(.|Z, =0,...,7,, =0) for conciseness and using Chebychev’s and Cauchy-Schwarz
inequalities, we obtain

}ﬂOp)(jZ:LZk‘>;t

1 n
Zy, =0,....2, = 0) < ST ECY (12 - 2))

k=1 k=1
) (6.22)
1 1/2 = n®
< F( < > ) <Zk3/2> < (const.) X
k=1 k=1
Now observe that P._,—1(:) = P-.(-|n € x), cf. @IF), hence P., ,—1(-|x1 = n) =

P-.(-|x1 =n). We set
Ao = {Ac{lin-2}: 1¢A n-2¢A {l,l+1} ¢ A, V1 <I<n-3},

and we use the notation 7(;,_9 = 7 N [l,n — 2]. Noting that A, 2 represents all the
possible values of the variable 71 ,,_o under P, (-|x1 = n), we can write

P€c<2|90k| > X1:n> = PEC,nI<Z|SDk|>x X1:n>
k=1 k=1
= Z Pac,n 1(2’@k’>x T;n—2] = ) Ee,n— 1( [17n—2}:A‘X1:n)-

A€eAn 2
However, combining (1)) with (E222), we have

Pe.n—1 <Z lok| > x| T g = A)
=1
= p©0) (Z | Z3| >

k=1
and the proof of (E20) is completed. O

x2’

Z; =0, WEAU{n—l,n}) < (const)n

We now denote by {zt}te[o,l] the stable subordinator of index %, normalized so that its
Lévy measure equals 2C~x_2/5_1 14;~0y dz, so that P(Ly > z) ~ Ca~ %% as  — oo. By
Proposition B.1 we have P, (A1 > x) ~ P(L1 > :U) as r — 00, hence by the standard
theory of stability [0, Ch. XVIL5] A} is in the domain of attraction of L; and we have

# = n5/2 ZA under P, 4 I (n — 00). (6.23)
Next let {L;}e[0,1] be the symmetric stable Lévy process of index 2 £, with Lévy measure
given by cr, |x|~ 2/5 Ldz, where cf, := C/C., (we recall that C._ is the constant appearing
in @3)). In particular we have P(L; > z) = P(I1 < —z) ~ cpa % as # — oo.
Then Proposition yields P., (A1 > z) ~ P((C€C)5/2L1 > x) as ¢ — oo, and since
Pe, (A1 > x) =P, (A1 < —x) by symmetry, it follows by the theory of stability that

1

1 n
SR = =n ZAZ- under P;, N (C..)°? Ly (n — 00). (6.24)
i=1
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Notice that by ([@I8]) the constant ¢z, := C/C;, equals

cr, = _6\/E o?/? /00 §2/5 730057 Qg — 73@ r ° o2/? (6.25)
Vi 7y Vr @60y \10) 7 |

where I'(z) := [;~ "~ e~" dt is the usual Gamma function and the second equality follows

by a simple change of variables. We also recall that L; < /21 and Et < t5/ 221.

We are ready to prove (), with the law P._ x replaced by P;_, thanks to Corollary 6.6
It is convenient to extend the definition of ¢y to non-integer argument, by setting ¢[t] :=
sup{k € ZT : xx <t} for t € R, cf. (B3)). By the definitions (CI7) and (X)) of px and

Ky, we immediately obtain the following upper bound:

log N 5/2 ~
luy|(fz =6,z +4]) < ( ~ > (SL[(;L«H)N}H - SL[(;L«*&)N}) : (6.26)

Since {xk}r>0 is a genuine renewal process with P, (x1 = n) ~ C.,/n?, Theorem 8.8.1
of [3] yields xx/(klogk) — C., as k — o0, Pe.~a.s., and since x,[ <t < X g4 it follows
that

Lt 1
v 1[0]gt — o ast — oo, P -as.. (6.27)

Therefore for every x > 0 we can choose N sufficiently large such that

73&({4(9@ FON] 41> Ci (f”ggii‘;vw} u {L[(x _5)N] < Ci (xlggiiiw}) < x

Then by (E2Z6) for any n > 0 and for large N we can write

Po. (Il = 6,2 +8) > n) < 5 + P€c<<lo;gVN>5/2<§LMJ i §LMJ) . n) |

Cee log N Ceo log N

i ~

However for a,b € N with a < b we have §b - §a Sp_q. Then letting N — oo and

recalling (623]) we have

45\ /2
lim sup P€c<\,uN]([x—5,x+5]) >n> < Kk + P<<—> Ly > n>.

N—oo CEC

Letting 6 — 0, the last term vanishes and since k was arbitrary equation (G.6) is proven.

Next we prove (3)), again with the law P._ x replaced by P, , thanks to Corollary
We claim that (B3 is equivalent to the following relation:

log N 5/2
< N ) (Stc;azm JCTIPEIE ) B O chtils;w))

d
under ch — (Lala La2 - La17 ceey Lak - Lak—l) :

(6.28)

To prove the claim, it suffices to show that the difference between the vectors in the first
lines of (B3] and (E28]) converges in P, —probability to zero as N — oo. It is sufficient to
focus on each component: so we need to prove that

2t = (5) " ()~ St ) [ 27) = 0 09
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for every n > 0 and for all a,b € [0,1) with a < b. Fix 6 > 0 and observe that, by (6Z1),

Tim P€C<L[CLN]€ L%J-(l—é,lqté), J[bN] € L@%J-(l—&lw)) = 1.

N—oo

Therefore we can restrict ourselves on this event, where using the definitions (LI7) and
([CIR) of on and pp we can write

log N 5/2
‘HN((CL’ b)) — ( N ) (SLCEbeXgNJ _SLcscaljngJ)‘
log N2 ( [~ 3 g S
< (%) {<SLMJ - Sasy)) * (e - Stzzz::im)}‘

However (S, — Sa) + (Sq — Se) g g(b,a)Jr(d,c) for a <b<e¢<d,and as N — oo by ([623)

we have
log N\ */? ~ > ((a+b)-25 )
P S| (astp). > Pl—————L > .
<< N ) [y =) c.. o

The last term vanishes as 6 — 0, hence ([E29) is proven.

It finally remains to prove equation (E28). Both the vector in the L.h.s. and the one in
the r.h.s. of that equation have independent components, therefore it suffices to prove the
convergence of each component, i.e. that for every a € (0,1) as N — oo

L%J
IOgN 5/2 B <1OgN>5/2 ec log | .
< N ) SlcgcaljngJ N N ; A; under P, — Lg.

However, recalling that L, 2 45/ 2L, this relation follows immediately from (E24]), so that
the proof of Theorem [6.4 is completed. O

6.4. Tightness of {ux}n. We finally prove the tightness of the sequence {py}nen, i-e.,
for every d > 0 there exist K, Ny € N such that

P, n(|lpyl(0,1]) < K) > 1-4, VN > Np. (6.30)
Since py({3}) = 0, we can write py([0,1]) = pn ([0, 3]) + pn([3,1]). However by sym-
metry py ([0, 1]) 4 pn([3,1]) under P._ n, hence it suffices to show that

Pe v (lnl([0,3]) < K/2) > 1-6/2, VN> No.

Now notice that the event {|px[([0, 1]) < £} belongs to the o-field o({wi}o<i<ny2), hence

we can apply Lemma B0 and we are left with showing that for every § > 0 there exist
K, Ny € N such that

P (lunl(0.3) < K/2) > 1-3/4, YN >N (6.31)
We recall that ([t] := sup{k € ZT : xi < t}, for t € R. From the definitions (CI7), (CLIS)),
1) of o, py and S, respectively, the inclusion bound yields

log N\ */2 ~ K
P03 > 572) < o ((55) S > )

1 N log N\ %%~ K
< N/2l+1 > — = ).
= ch (L[ / ] + > Cac 10gN> + ch << N ) SLClC IOJgVNJ > 2
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Letting N — oo, the first term in the second line of this equation vanishes because of

627, while for the second term by (623]) we have

log N\ */% K -~ K(C.)%?
7)60(( N ) S{Ciclo]ngJ > E) — P<L1 > 72 )

Since P(zl > t) — 0 as t — +00, equation (E31) is proven. O

APPENDIX A. SOME RENEWAL THEORY ESTIMATES

A.1l. Proof of equation [BIX). We are going to prove equation (BIF]), that can be
rewritten in terms of the law P, thanks to (2IJ), as

N
P |dn>t—=|N+1eyx §ﬂ—i—aN, with ay — 0 as N — oo, (A1)
log N t
where we recall that d has been defined in ([BI0]). We first need to recall some preliminary

relations. We are in the critical case, hence g..(n) = P..(x1 = n) ~ C../n? by B3,
because F(e.) = 0. Since {xx}x>0 is a genuine renewal process, Theorem 8.8.1 of 3] yields

klic)l;;k: — Cg, as k — 0o, P..-a.s..

By the definition B3] of the variable ¢y we have x,, < N < x,,+1, hence

LN

Nlog N — o as N — oo, P —as.. (A.2)

Introducing the renewal function u., (n) := P (n € X) = Y _peo(¢e.)™*(n), Theorem 8.7.4
of B] gives
1

_ A3
- Tozn as n — oo, (A.3)

Ue,, (n) ~

which implies
n

Uea(n) == ) ue, (k) ~ G logn  Sn— oo (A.4)
k=0 ce

We are ready to prove [Al). We denote by & the length of the excursion of y embracing
the point N/2:
¢ = min{xN[N/2,00)} — max{xN[0,N/2]}. (A.5)
Then the inclusion bound and the symmetry n — N — n yield

N
log N

N
P lon>t—=|N+1lex| < P, (&> N+1leyx
log N

v (A.6)

log N
Let us focus on the first term in the r.h.s. of ([A). We can write

N+1le x) > uli) gy ;&“f\l[;“ L=D) (a7

N

+ 27350 <5LN/2J > tlog

N
>
Pe. (5 ~ log N

0<i< T <j<N+1
j—i>N/log N
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where we have omitted for simplicity the dependence of ¢(-) and u(-) on e.. If we consider
the terms in the sum with i < N/4, then j —i > N/4 and therefore q(j —i) < (const.)/N?,
hence recalling [A3]) and (AZ4) the contribution of these terms is bounded above by

(const.) U(|N/2))? - (const.)
N2  w(N+1) — logN

(A.8)

By symmetry, the same bound holds for the contribution of the terms with j > 3N/4. It
remains to consider the terms where both ¢ > N/4 and j < 3N/4: applying [A3) to u(N),
u(i) and u(N 4 1 — j), the contribution of these terms is bounded above by

LIV/2]
(const.) 1 (const.) 1
> < I41). =
(log N) N N 3N (] B Z) B (log N) Z ( * ) [2
Zﬁiﬁfﬁjﬁ 1 I=[N/log N| (A 9)
j—i>N/log N .
log log N
< D=
< (const.") log N

We have thus shown that the first term in the r.h.s. of [AX) vanishes as N — oo, hence
it can be absorbed in the term ay, appearing in the r.h.s. of [AT]).

Next we consider the second term in the r.h.s. of [AZf). We sum over the location m of
Xi| )+ 1-€-, the last point of x before | N/2], and over the location [ of Xi|n/ay+1> 1€, the
first point of x after | IN/2]. Recalling (BIH), for ¢ > 1 the renewal property yields

N
>
’Psc<5LN/2J _tlogN’ £ < Tog N ‘N+1 €X>

i > P (5 >t1N meX)-q(l—m).M‘ (A.10)

m<|N/2], I>|N/2| u(N T 1)
l-m<N/log N

In the range of summation, by ([(A3)) the ratio u(N + 1 —1)/u(N + 1) is bounded above
by some positive constant A, hence the r.h.s. is bounded above by

N N
A Z Pe. <5m 2 tlog—N’ m e X) q(l—m) < AP, <5LN/2J > tlog—N> -
m<|N/2|, I>|N/2]
l—m<N/log N

We are finally reduced to estimating the last term. By ([AZ2) we can write as N — oo
N N 2 N/2
P- <5LN/2J t—N> = P, <5LN/2J > tlogN’ Ly < o logN> + o(1),
and by [BJH) the first term in the r.h.s. is bounded above by

P . . < N >t N
(VT X S E e N Tog N )

This probability is easily estimated. In fact the variables {x; — Xxi—1}ieny under P., are
independent and identically distributed, hence for z > 0 and M € N we have

M
Pe,(max {x; —xi-1: i< M} < z) = ch(X1<CC)M > (1—?) ,
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where B is a suitable positive constant. Since (1 —t) > e2! for ¢ € [0, 3], it follows that
for N sufficiently large we have

P < N >t N < 1 2B < 2B
max ] — i1+ 1 v a—— — — eX —
e Xim X2 P20 90g N [ "logN ) = P\Tec.t) = ot

and the proof of (Al is completed. O

A.2. Proof of equation (&1]). In this section we prove (B]), that we can rewrite as

N
lim liminf P, <5N >t— ‘ N+1e X> = 1. (A.11)
log N

t—0t N—ooo

We start observing that the inclusion bound yields

N N N
oy >t—— | N+1 > 1) >t N+1
7Jsc<N_ logN‘ + €X> > Pz—:c<|_N/2J_ logN’£<logN‘ + €X>,

where we recall that the variable ¢ has been defined in ([A). We decompose the r.h.s.
according to ((AZI0) and we observe that the fraction u(N 4+1—1)/u(N + 1) converges to 1
as N — oo uniformly in the range of summation, by ([AZ3]). Therefore we can write

N N
>t—— N+1
Pe. <5N - tlogN’ &< log N ' tiE X)
N
> (1+0(1)) Z Pe. <5m = tma m € X) Qe (I —m)
m<|N/2|, I>|N/2]
l—-m<N/log N
N N
= (1+0(1))P6c<5LN/2J Z Mg £ < 1ogN>’ W=l

Recalling that g.,(n) ~ C.,/n? and u.,(n) ~ 1/(C., logn) as n — oo, by ([EH) and ([A3),

we obtain

(const.)
> = — < . .
ch(g_logN) > el -m < S (A.12)
m<|N/2], I>[N/2]
l—m>N/log N

Putting together the preceding relations we have

N
log N

N
ch<5N2t 'N+1ex> > 7>€C<5W2J 2t—> + o(1), (N — ),

log N

and we are left with estimating the r.h.s. of this relation. The inclusion bound, the defini-
tion (BIH) of dx and equation (A2 yield

N N 1 NJ/2
P., <5LN/2J > t—logN> > Pe, <5LN/2J = t—logN’ LNj2| 2 2C.. logN>

- .1 N\ N .1 N2
Z Fe |l Max 4 X — Xi—1: S 4C. log N | = log N’ “vr2) = 2C;, log N

1 N N
= =it s 1 < >t — 1 N .
73€C<max {XZ Xim1t = 4C., logN} - logN> o(1), (N —00)
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The variables {x; — xi—1}ien under P., are independent and identically distributed, hence
for x > 0 and M € N we have

M
D D
P-.(max {x; — xi-1: i <M} < z) = P.(x1 < CU)M < <1 - —) < e M
for some positive constant D. Therefore

P 1) >t N > 1 D
e\ =N ) = TP T ao

and the proof of relation (A-I]) is completed. O

)ro. (¥ =),

A.3. Proof of equation ([BI9). We are going to prove equation (BIUl), that can be
rewritten using (ZI8) as

Pg(éNECQIOgN‘N—i—lex) — 0 as N — 0o. (A.13)

Since we assume that € > ¢., we are in the localized regime and the step law ¢.(n) =
P-(x1 = n) has exponential tails, see ([B0]). The renewal theorem then yields

P-(Nex) — € (0,00) as N — oo, (A.14)

b
E(x1)

and the weak law of large numbers gives

2
735<LN27N>—>0 as N — 00.
(Xl)

Ee
These relations yield
77,3(5N > o logN|N+ 1e X) < (const.)Pg(éN > o logN)
2N
£(x)
The definition BI0) of dx and the inclusion bound give

= (const.) 735<5N >cologN, 1y < > + o(1) as N — .

2N 2N
Pg(éN > ey log N, 1y < —) < ﬂ(max{xi—xil i< } > o 1ogN).
E(x1) E(x1)

Since the variables {x; — xi—1}ien under P, are independent and identically distributed,
for x > 0 and M € N we have

M
Pa(max{xi—xi_lz igM} < w) — Pe(X1<x)M > (1_Be—c(e)m> 7

for a suitable positive constant B. Since (1 —t) > e~ 2 for t € [0, 4], it follows that for N
sufficiently large we have

2N 2N 1
P Oy > o logN, 1y < < 1-—ex -2B—1——+—1.
‘f(N— OB &(xl)) p( &-(x1) NG(M)

If we choose c2 > 1/G(g), the r.h.s. vanishes as N — oo and equation ([AI3) is proven. [
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APPENDIX B. SOME TECHNICAL PROOFS

B.1. Proof of Proposition Take any subsequence {vy, }nen that converges in dis-
tribution toward some random signed measure v. We are going to show that the finite
dimensional distributions of v are necessarily given by the laws Ag’i)ak that appear in
E3). Since the finite-dimensional distributions determine laws on M(]0, 1]), this means
that every convergent subsequence of {vy } yeny must have the same limit. Then LemmalG2]
and a standard sub-subsequence argument yield the convergence of the whole sequence
{v~n}nen, and the proof is completed.

Therefore we assume that {vy, }nen converges in distribution toward v. We introduce
the function ft(g) : [0,1] — R defined by

1 z € 0,1
@) = -241+t zeltt+e],
0 x € [t+e,1]

which may be viewed as a continuous approximation of 1y ;. Then we define the map
F M([0,1]) > R by F9(v) := [ £ dv. Notice that |F° (v) — F(v)| < |v|([t.t+¢]).
Now let W : R¥ — R be a bounded and Lipschitz function such that

k
|W(x1,...,xk)—W(y1,...,yk)‘ < Zg(xz_yl)a where g(x) = |,I|/\1 (Bl)
i=1

Therefore we can write
E[W(FSwx,) o FQWn,)| = E[W(Fun), s Fay (o)

k (B.2)
< ZE[Q(IVNnI([a@-,aﬁs]))}.

i=1

Let us take the n — oo limit. Since W (+) and Ft(e)(-) are continuous,

B[W(FDwn,).... . FYwn,)| — E[W(EDW), ... FOw))].
and also E[W (F,, (vn,), ..., Fa,(vnN,))] — de)\gi)ak by (G3)). Then we take the
limit e — 0: the r.h.s. of (B) vanishes by 4] and by dominated convergence we have

E[W(Fal(u),...,Fak(u))} - / wak

Since W (+) is an arbitrary function satisfying (BJ), this shows that the finite dimensional

distributions of v are indeed )\g?...7ak, and the proof is completed. ]

B.2. Proof of LemmalG.2l Let us denote by vy := vyoP~! the law of the random signed
measure vy, so that vy is a probability measure on M([0,1]). For every fixed K € N,
the restriction of vy on the subspace Mg ([0,1]) is a sub-probability measure on a Polish
space, cf. Lemma [B.T], hence one can apply the standard Prohorov’s Theorem. So we can
extract a subsequence {vy/} that converges weakly toward a sub-probability law A1) on
M ([0,1]); then from {vn/} we extract a sub-subsequence {vy~} that converges weakly
toward a sub-probability law A on M5([0,1]), and so on. With a standard diagonal
argument, we obtain a subsequence {vy, }; that converges weakly on Mg([0,1]) toward
AE) | for every K € N. However, recalling (1), it is clear that the laws A5 are the
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restriction on Mg ([0,1]) of a single law A on M([0,1]), and moreover A(M([0,1])) =1
because the sequence {v y }y is tight, cf. (62)). Then it is easy to check that the subsequence
{vn, }i converges Weakly on M([0,1]) toward A: in fact, given a continuous and bounded
functional G : M(| — R, we can write

/GdVNk /GdA' < /GlMKao,u)dVNk - /Glmxao,m(”'

+1Gllse - (v (Mic([0,1)F) + A(Mue((0,1])F))

The first term in the r.h.s. vanishes as k — 00, because by construction vy, converges

weakly to A = M) on Mg ([0,1]), and the second term vanishes as K — oo because of
the tightness of {vn}n, cf. (@2). This completes the proof. O

B.3. Computing ®(t). We recall that {B;},c[,1) is a standard Brownian motion on R
and [; := f(f Bsds. We also set Gy := fg I ds. The function ®(¢) was introduced in (GI4I):
recalling the definition (CIT) of the conditioned process I;, we can re-express it as

®(t) = P(Gy>t|B=0,1;=0).
Since the vector (G1,I1, By) has a centered Gaussian distribution, the law of G; under

P(-|B1 =0, I =0) is centered Gaussian too and hence it suffices to identify its variance
to determine ®(¢). The covariance matrix A of (Gy, I1, B1) is easily computed:

E(G}) E(Gi) E(G1B) % & 3
A= | B(GiL) E(I}) BELB) |=| 5 3 3
E(G1B1) E(IB)) E(B}) : 31
The variance of Gy conditionally on {I; = 0, By = 0} is then given by 1/(A71);; = =

720"
Therefore

0 —3605 0
O(t) = = 6\/m / e300 g5
t A/ 27‘(‘/72 t
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