PHASE TRANSITIONS FOR SPATIALLY EXTENDED PINNING

FRANCESCO CARAVENNA AND FRANK DEN HOLLANDER

ABSTRACT. We consider a directed polymer of length N interacting with a linear interface.
The monomers carry i.i.d. random charges (w;)X, taking values in R with mean zero and
variance one. Each monomer ¢ contributes an energy (Sw; — h)@(S;) to the interaction
Hamiltonian, where S; € Z is the height of monomer ¢ with respect to the interface,
¢: Z — [0,00) is the interaction potential, 5 € [0,00) is the inverse temperature, and
h € R is the charge bias parameter. The configurations of the polymer are weighted
according to the Gibbs measure associated with the interaction Hamiltonian, where the
reference measure is given by a Markov chain on Z. We study both the quenched and the
annealed free energy per monomer in the limit as N — oco. We show that each exhibits
a phase transition along a critical curve in the (8, h)-plane, separating a localized phase
(where the polymer stays close to the interface) from a delocalized phase (where the polymer
wanders away from the interface). We derive variational formulas for the critical curves,
and show that the quenched phase transition is at least of second order. We derive upper
and lower bounds on the quenched critical curve in terms of the annealed critical curve.
In addition, for the special case where the reference measure is given by a Bessel random
walk, we derive the scaling limit of the annealed free energy as 3, h | 0 in three different
regimes for the tail exponent of ¢.

1. INTRODUCTION

1.1. Motivation. Homogeneous pinning models, where a directed polymer receives a reward
for every monomer that hits an interface, have been the object of intense study. Both discrete
and continuous models have been analysed in detail, and a full understanding is available of
the free energy, the phase diagram and the typical polymer configurations as a function of
the underlying model parameters. Disordered pinning models, where the reward depends
on random weights attached to the interface or where the shape of the interface is random
itself, are much harder to analyse. Still, a lot of progress has been made in past years,
in particular, the effect of the disorder on the scaling properties of the polymer has been
elucidated to considerable depth. For an overview the reader is referred to the monographs
by Giacomin [22], [23] and den Hollander [25], the review paper by Caravenna, Giacomin
and Toninelli [14], and references therein.

Spatially extended pinning, where the interaction of the monomers depends on their
distance to the interface, remains largely unexplored. For a discrete model with an interaction
potential that decays sufficiently rapidly with the distance (at least polynomially fast with
a sufficiently large exponent), pinning-like results have been obtained in Lacoin [26]. A
continuum model for which the interaction potential is non-zero only in a finite window
around the interface was analysed in Cranston, Koralov, Molchanov and Vainberg [19].
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The goal of the present paper is to investigate what happens for more general interaction
potentials, both for discrete and for continuous models with disorder.

The remainder of this section is organised as follows. In Section [I.2) we define our model,
which consists of a directed polymer carrying random charges that interact with a linear
interface at a strength that depends on their distance. In Sections [I.3 and [I.4] we look at the
quenched, respectively, the annealed free energy, and discuss the qualitative properties of
the phase diagram. In Section [I.5] we recall certain scaling properties of the Bessel random
walk and its relation to the Bessel process, both of which play an important role in our
analysis. In Section [1.6] we state three theorems when the underlying reference measure
(describing the polymer without interaction) is a Markov chain. In Section we state three
theorems for the limit of weak interaction when the reference measure is the Bessel random
walk, and show that this limit is related to the continuum version of our model when the
reference measure is the Bessel process. In Section [1.8| we place the theorems in their proper
perspective. In Section [I.9 we list some open problems and explain how the proofs of the
theorems are organised.

1.2. The model. Let Ny = NU {0}. Our model has three ingredients:

(1) An irreducible nearest-neighbour recurrent Markov chain S := (Sp)nen, on Z starting
at Sop = 0, with law P = Py.

(2) An ii.d. sequences of random charges w := (wp)nen on R, with law P.

(3) A non-negative function ¢: Z — [0, 00), playing the role of an interaction potential,
such that

0 < |l¢lloo < 00, li_>m e(x) =0, lim ¢(z) exists. (1.1)

T—r—00
Our model is defined through the quenched partition function
Zjp =B [f TSI N e N, (1.2)

which describes a directed polymer chain n — (n,S,) of length N carrying charges n — wy,
that interact with a linear interface according to the interaction potential x — ¢(z) at
inverse temperature [ € [0, 00). Without loss of generality we may replace fw, by Sw, — h,
with h € R the charge bias parameter, and assume that w is standardized, i.e.,

Elwy] =0, Var[w,] = 1, (1.3)
after which becomes
Z g =B [eZnmGonelS] - N e N, (1.4)
Throughout the sequel we assume that
M(t) == E[e""] < 0 VteR. (1.5)

Moreover, defining 71 := inf{n € N: S, = 0} to be the first return time of .S to 0, we assume
that there exists an a € [0, 00) such that

ZP(Tl =n) =1, P(r =n) = n*(HO‘)*O(l), n — 00. (1.6)
neN

Note that E(71) = oo for all @ € (0,1). If S has period 2, then the last asymptotics is
assumed to run along 2N.
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Remark 1.1. [Bessel random walk] An example of a Markov chain S satisfying (1.6)
that will receive special attention in this paper is the one with transition probabilities

P(Sppy1=2x1|S,=z)=:1[1+d(z)], z€Z, (1.7)
where
d(z) = —d(-z), z€Z, dz)=—(a—3az " +0(a|"M)), |z| 500, (18)

for some a € (0,1) and € > 0. This choice, which is referred to as the Bessel random walk,
has a drift away from the origin (a < %) or towards the origin (o > %) that decays inversely
proportional to the distance. The case d(z) =0 (a = 1) corresponds to simple random walk.
The Bessel random walk was studied by Lamperti [27] and, more recently, by Alexander [2]
(who actually considered the one-sided version (|Sy|)nen,)- It is known that holds in a

sharp form |2, Theorem 2.1|, namely,

P(ri =n) ~ cn~ 0+, n — 0o, (1.9)

along 2N for some ¢ € (0, 00). More refined asymptotics are available as well (see Section
below).

Remark 1.2. The model defined in (1.4) provides a natural interpolation between the
pinning model and the copolymer model, which correspond to the choices

PP(2) = 1oy, 97P(2) = <o) (1.10)

See Giacomin [22], [23] and den Hollander [25] for details. Actually, in the copolymer model
the interaction is via the bonds rather than the sites of the path, i.e., *P((x,¥)) = 1{z4y<o},
but we will ignore such refinements. Moreover, the standard parametrisation of the disorder
in the copolymer model is —2/3(w,, + h) rather than Sw, — h. Again, this is the same after a
change of parameters. Our choice has the advantage that the free energy is jointly convex in
(B,h) and that the critical curve is non-negative (see Fig. [1]).

1.3. The quenched free energy. The quenched free energy is defined by
1

FIU(B, h) = A}gnoo N log Z§ 3, P-a.s. and in LY(P). (1.11)
For the constrained partition function

255, = B [eZnm Bonhe(S,) 1{5N=0}} ,  NeN, (1.12)
the existence of the limit

. 1 w,C . . 1
A}gnoo N log Zy'5), P-as. and in L'(P) (1.13)

follows by standard super-additivity arguments. Since ¢ is bounded and P has finite expo-
nential moments (recall (1.5)), the limit is finite. We will show in Appendix that

w,C

Z
“NBRh — 0 P-as. and in L'(P), (1.14)

so that ([1.11]) follows.
By (1.1)), for every € > 0 there is an M € Ny such that 0 < p(z) < € for z > M. Therefore

M—-1

Zﬁ%jh > e llellos 30 (Blwn|+h)—e 320 pr (Blwn+[A]) P(S,>MVYM <n<N) VM e N.
(1.15)
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We will show in Appendix that, by (1.6]),

1
lim logP(S, > MYM <n<N)=0 VMeN, (1.16)

N—o0

and so it follows that F4"¢(3, h) > —e(SE[|w1|] + |h|). Since € > 0 is arbitrary, we obtain
the important inequality

FI%(B,h) >0 VB e[0,00),heR. (1.17)

It is therefore natural to define the two phases
LA = {(8,h): F(8,h) > O},
DY :={(B,h): F*"(B,h) = 0},
which we refer to as the quenched localized phase, respectively, the quenched delocalized
Ph%S; ., (B, h) — FIU¢(3, h) is the pointwise limit of jointly convex functions. Moreover,
h = Z% 5, is non-increasing, so that h — FAU(3, h) is non-increasing as well. Furthermore,

B+ Ellog Z%; 5] is convex and (by direct computation) has zero derivative at 3 = 0, so
that 8 — F9"¢(j3, h) is non-decreasing on [0, 00).

(1.18)

h(c,lue (ﬁ)

PDAue
[aue

FIGURE 1. Qualitative plot of 8 — h3" ().

From the monotonicity of h — FI¢(8, h) it follows that £ and D" are separated by
a quenched critical curve h"®: [0,00) — [0, 00) whose graph is 9D (see Fig. [1):

£9% .= {(B,h): h < h®(B)},
DU = {(8,h): h > hI(B)}.

From the convexity of (8,h) — FI¢(3,h) it follows that the lower level set DI =
{(B,h): FI¢(3, h) < 0} is convex. Since DI is the upper graph of hd", it follows that hd"
is convex and hence continuous. In Sectionwe will see that hd"® is finite everywhere. Since
S is recurrent, it follows from the theory of the homogeneous pinning model (Giacomin [22],
[23], den Hollander [25]) that F4"¢(0,h) > 0 for A < 0 and F4"¢(0,h) = 0 for h > 0. Hence
he"®(0) = 0. (Note that ¢(z) > ¢(24)1f,,}(z) for any z, € Z with o(x.) > 0. Therefore we
can dominate the quenched free energy for § = 0 by the free energy of the homogeneous
pinning model with a strictly positive pinning reward.)

Finally, from the monotonicity of g +— F4%¢(3, h) on [0, 00) it follows that F1"¢(3, h) >
F9U¢(0, h) > 0 for h < 0, so that hd"*(8) > he"°(0) = 0 for B > 0. Since hd"® is convex, this
implies that ha"® is non-decreasing, and is strictly increasing as soon as it leaves zero. In

Section [1.6] we will see that hd"*(8) > 0 for all 8 > 0 (see Fig. [1)).

(1.19)
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1.4. The annealed free energy. The annealed partition function associated with ((1.4) is
Zypn i =ElZNpn] =E [ezg:lw"’h(s")] , N eN,, (1.20)

where
Vpn(x) :=logM(Bep(z)) — he(x). (1.21)
This is the partition function of the homogeneous pinning model with potential ¥g . A
delicate point is that v5; does not have a sign: it may be a mixture of attractive and
repulsive interactions. This comes from the fact that both the charge distribution and the
interaction potential are general.
The annealed free energy is defined by

. 1
FU(B ) = A}gl(l)o N log Z\'5 1 (1.22)
For the constrained partition function

Zi,rlg’z =FE [ezgil 8,1 (5n) 1{SN:0}:| , N € Ny, (1.23)

the existence of the limit )
. ann,c
A}gnooﬁlog ZNgh (1.24)
again follows by standard super-additivity arguments. Since 13, is bounded, the limit is
finite. The analogue of (|1.14]), which will be proved in Appendix , reads
1 Zann,c
. N,B,h
| —1 =0 1.25
NBee N Bz T (1.25)

so that ([1.22)) follows.

The annealed localized phase, annealed delocalized phase and annealed critical curve are

defined as
£ = {(B,h): F*"(B,h) >0} ={(B,h): h <hZ(B)},
D= {(B,h): F*(B,h) = 0} ={(B,h): h = he™(B)}.
As is clear from and the fact that ¢ is non-negative, F*""(/3, h) is non-increasing and
convex as a function of h, and non-decreasing as a function of 8 but not necessarily convex.
Later we will see that nonetheless § — h2""(/3) has a shape that is qualitatively similar to
that of 8+ hd"*(B) (see Fig. ).
An important property of the annealed free energy is that it provides an upper bound

for the quenched free energy: by Jensen’s inequality we have F4"¢(3, h) < r*"(j3, h) for all
B € 10,00) and h € R. Recalling ([1.17)), we therefore see that

0< h3™(8) < h2™(8) VB >0. (1.27)

Unlike for the pinning model and the copolymer model, for general potentials ¢ the annealed
free energy and the annealed critical curve are not known explicitly.

(1.26)

1.5. Scaling properties of the Bessel random walk. Part of our results below involve
the annealed free energy and the annealed critical curve associated with a Brownian version
of the model, where the reference measure is based on the Bessel process X := (X)¢>0 of
dimension 2(1 — «) defined by

1

dX; =dB; — aX 2dt  on [0,00) with reflection at 0, (1.28)
t
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he™ (B)

Dal’ll’l
Lann

FIGURE 2. Qualitative plot of 8 — h2"™(5).

where (Bi)>0 is standard Brownian motion on R We write P = Py to denote its law when
X = 0. Informally, we may say that this process makes infrequent visits to 0 when a < %
and frequent visits to 0 when o > % The case a = % is standard Brownian motion.
The marginal law of X2/t is X%(lfa) = Gamma(l — a, 3), and so X; has density
P(X; € dz) 200 pl72a 2

gi(x) == o = o) 7 e 2, z € [0,00), t > 0. (1.29)

The relation with the Bessel random walk defined in Remark [[.1] is that the latter satisfies
the invariance principle (see Lamperti [27])

(|SLNtJ|/\/N)t20 = (Xt)1>0, N — oo. (1.30)
Note that, for fixed ¢ > 0, (|1.29) gives

204—1 62(1—04)

P(X = . 1.31
The local time of X at 0 up to time T' > 0 is defined as the following limit in probability:
T
. . Ca I'2-a)
LT(O) = lelﬁ)l&m_a)/(; dt 1(075)(Xt)7 Co — ﬁ (132)
The constant ¢, ensures that E[Lz(0)] = (;‘F tld_ta = 1 7% We will informally write
A~ T A
L7(0) =: / dt 0p(Xy). (1.33)
0

Local limit theorems for the Bessel random walk have been established in [2, Theorem 2.4].
The following formulas hold in the limit as n — oo, uniformly in a specified range of k € Z.
We assume that k — n is even, because otherwise P(S,, = k) = 0.

e Low ending heights: For any k, = o(y/n ), uniformly in |k| < k,,

c(k
RS =)~ AL 1y, 00, (134

TFormally, the squared Bessel process (Y1)i>0 is defined by dY; = 21/Y; dB; + 2(1 — &) dt on [0, 00) with
reflection at 0, and (X¢):>0 is defined by setting X; = /Y.
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where ¢: Z — (0, 00) is an explicit function (which depends on the function d: Z — R
in (1.7))) such that

2CY
I'l—«)
e Intermediate ending heights: For any x € (0, 1), uniformly in x/n < |k| < /n/x,

c(k) ~ k12, k— oo (1.35)

1 k
P(Sn = k) ~ %gl (\|/7|ﬁ7) 1{k—n is even}> n — o9, (136)

where g; is the density in ((1.29) at time 1.
e High ending heights: There exists a C' = C'(«) < oo such that, for all |k| > /n,

C _&2
P(Sn = k) < ﬁ e 8n 1{k—n is even}- (1'37)

Note that (1.36]) refines the weak convergence statement in ((1.30). The factor 2% in (|1.29))
and (1.35) differs from the factor 2'7¢ in [2, Theorem 2.4] because our random walk is

two-sided, i.e., k € Z rather than k € Ny. It follows from 11.34: —(|1.37)) that, for some C' < oo,

1 k 1—2a 2
¢67§7 1{kfnis even}- (138)

VneN VkeZ: P(S,=k)<C

nl—o
This uniform bound will be important to control scaling computations.

1.6. General properties. Our first set of three theorems concerns the quenched and the
annealed critical curve.

Theorem 1.3. 3+ hd"“(B) and B — h2™(B) can be characterized in terms of variational

formulas (see Theorems below).

Theorem 1.4. For every 3 > 0,

oy () < heeis) < o), (1.39)
Theorem 1.5. For every 5 > 0 there exist C(8) < oo and 6(8) > 0 such that
0 < FI%(3, h9"(3) — §) < C(B)6* V0 <4 <48, (1.40)

i.e., the quenched phase transition is at least of second order.

The left inequality in , which is known as the Monthus-Bodineau-Giacomin bound,
was previously shown to hold for the copolymer model [10], [12]. We show that it holds for
the general class of potentials satisfying .

In Section [3.3|we will show that F#*(3,0) > 0 for all 3 > 0. This implies that h2™*(8) > 0
for all 8 > 0, which via settles the claim made at the end of Section[L.3]that hd"(3) > 0
for all g > 0.

1.7. Scaling for weak interaction. Our second set of three theorems looks at the scaling
of the annealed free energy in the limit of weak interaction, for the special case where S is
the Bessel random walk with parameter a € (0, 1) defined in Remark We consider three
different regimes for the tail behaviour of the interaction potential , namely,

lim |z|’¢(z) = ¢ € (0,00) (1.41)

|x|—o00
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with
Y€ (0,1 —-a),
ve(l—a,2(1—aw), (1.42)
¥ e (2(1 —a),00).

Theorem 1.6. Suppose that a € (0,1) and ¥ € (0,1 — a). For every § € (0,00) and
h € (0,00),

: —1 pann (5 ¢(1-9)/2 [ s(2-9)/2\ _ frann 3 7
lim 5 F (55 B ) (B f, (1.43)
where
. . 1 . R T R T
FA (B 1) = lim — logk [exp (;5%2/ dt Xt_w—hc/ dt X;ﬂ)] (1.44)
T—oo T 0 0

with ¢ the constant in (|1.41)).

Theorem 1.7. Suppose that v € (0,1) and 9 € (1 — o, 2(1 — ). For every 3 € (0,00) and
h e (0,00),

: —1 gpann (5 ca/2 7 §(2—9)/2) _ pann 5 7
lim 571 F (55 B ) Fam (3 p), (1.45)
where
. IR 1 . . . . T
F*™(B,h) ;== lim —logk [exp (;ﬁz c*? Lr(0) — hc/ dt Xlt_ﬁ)] (1.46)
T—o0 T’ 0

with ¢ the constant in (L41) and c*[@?] =3, cp 0% (@) c(x), where © — c(x) is the function
in (L.34) ~(L.35).

Theorem 1.8. Suppose that oo € (0,1) and ¥ € (2(1 — ), 00). For every f € (0,00) and
h e (0,00),

: —1 ppann (5 ¢a/2 7 sa\ _ pranngp 1
lim 57! F (55 ho ) a3, b, (1.47)
where )
rann 2 1\ . 13 - " 1292 %7, 21 7 % T
P h) = lim —logE exp ({357 ¢ (6% = he'lel } Lr(0))] (1.48)

with c*[¢] = Y cq p(x)c(x), where x +— c(x) is the function in (1.34) ~(L.35)).

Note that, because of (1.35)) and (T.41)), c¢*[p?] < oo when ¥ > 1 — a and c*[p] < oo
when 9 > 2(1 — «). In Appendix we will show that the annealed partition functions
associated with the Bessel process appearing in Theorems [1.6 are finite, and so are the
corresponding annealed free energies.

The annealed free energy EF200 (ﬁ, ﬁ) appearing in Theorems has its own phase
diagram, with phases

£ = {(B,h): F*™(B,h) > 0},

Aann A7 frann/ 3 1. (149)
DM = {(B,h): F*(B,h) =0},

and with a critical curve that is a perfect power law (see Fig. |3), namely,
e (B) = CB”, B e (0,00), (1.50)

where

(2-9)/(1-9), 9€(0,1—a),
E=E(9) =< (2-19)/a, ve(l—a,2(1—a)), (1.51)
2, ¥ e (2(1 - a),o00),



PHASE TRANSITIONS FOR SPATIALLY EXTENDED PINNING 9

FIGURE 3. Plot of 3 — h2™ () in (T.50).

plays the role of a critical exponent (see Fig. . The scaling of the annealed critical curve
in Theorems can be summarised as saying that h2""(3) ~ h2™(53), B 4 0.

0 l-a  2(1-a)

FIGURE 4. Plot of the critical exponent E in (1.51)) as a function of ¥ for fixed «.
The three regimes for ¥ are indicated. No information is available at the two
crossover points.

The constant C' depends on «, ¢ and can be characterized as the unique solution Ce (0, 00)
of the equation F#"(1, ') = 0. This constant is hard to identify in the first two regimes. In
the third regime ¢ € (2(1 — a), 00) it is found by inserting (1.50]) into the equation

A(BRE™(B)) =0 with  A(B,h) == §8° ¢ [%] — he*[g), (1.52)
which gives
¢l (1.53)
2c*(¢]

We show in Appendix that, for the the third regime ¥ € (2(1 — a), 00), the annealed
free energy F*" (3, h) can be computed explicitly, namely,

(3, h) = (F(a) [0V A8, iz)})l/“. (1.54)

Remark 1.9. In view of the scaling limit for the annealed free energies described in
Theorems [1.6 it is natural to expect a scaling limit for the corresponding annealed
critical curves as well. Indeed, the continuum critical curve is the perfect power law in ,
where C and E depend on « and ¢ (and hence on ). We conjecture that captures
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the asymptotic behaviour for weak interaction of the discrete critical curve h2™® () as well,
in the sense that in all three regimes we should have

. —F jpann A
lim 7 h (B) =C. (1.55)

This scaling relation cannot be simply deduced from Theorems [I.6HI.8] because pointwise
convergence of the free energies does not imply convergence of their zero-level sets, of
which the critical curves are the boundaries. However, half of follows because if the
continuum free energy is strictly positive, then the rescaled discrete free energy eventually
becomes strictly positive too in the weak interaction limit, which leads to

lim inf 3~ F p2™(8) > C. 1.56
Hélﬁ)nﬁ ang) = (1.56)

In order to prove ([1.55]) extra work is needed: the scaling of the free energies in 11.43: , (1.45))
and ([1.47) must be strengthened to a perturbative scaling, as shown in [11] and [I3] for the
copolymer model and in [I7] for the pinning model.

1.8. Discussion. We comment on the results in Sections [L.6HI. 7.

1. The results in Theorems [1.3 are known for the special case where the interaction
potential is that of the pinning model or the copolymer model defined in . However,
the techniques used for these two cases do not carry over to the general class of potentials
considered in . Intuitively, the reason why extension is possible is that the conditions
stated in ((1.1)) say that, outside a large interval around the origin in Z, the interaction
potential is controlled by a multiple of that of the copolymer model.

2. As we will see in Section [2} the variational formula for k¢ °(3) mentioned in Theorem
involves a supremum over the space of all shift-invariant probability distributions on the set
of infinite sequences of words of arbitrary length drawn from an infinite sequence of letters
taking values in R x Z. The supremum involves a quenched rate function that captures the
complexity of the interplay between the disorder of the charges and the excursions of the
polymer away from the interface. This variational formula is hard to manipulate, but it is
the starting point for the proofs of Theorems The variational formula for A2""(j3)
mentioned in Theorem is simpler, but still not easy to manipulate (see below).

3. Note that for h = 0 and > 0 the annealed partition function N g 1S bounded from
below by the partition function of a homogenous pinning model with a strictly positive
reward, which is localized. The lower bound in Theorem [1.4 therefore shows that hd"*(3) > 0
for every 8 > 0. Since 3 — hd"®(B) is convex, it must therefore be strictly increasing (see

Fig. [1)).

4. Theorem shows that the disorder smoothens the phase transition, and is a special
case of a general smoothing inequality derived in Caravenna and den Hollander [15] (a proof
is therefore not included). Both g +— C(3) and 5+ §(f3) are continuous functions satisfying
limgw C(B) = C(O) > 0, hmg\w 5(ﬁ) =: (5(0) > 0, limg_wo C(ﬁ) =0 and limﬁ_mo 5(,8) =0.

5. Theorems [1.6H1.8| give detailed information about the scaling of the annealed free energy
and the annealed critical curve in the limit of weak interaction. The scaling limits correspond
to annealed free energies and annealed critical curves for Brownian versions of the model
involving the Bessel process X¢, which are interesting in their own right. The result is only
valid for the Bessel random walk, and shows a trichotomy depending on the parameters «

and 1.
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e The regime ¥ € (0,1 — «) corresponds to a long-range interaction potential and is
not pinning-like. When localized, the continuum polymer spends a positive fraction of
the time near any height € R, and this fraction tends to zero as |z| L 0 or |z]| — oo.
Away from 0 it does not behave like the Bessel process conditioned to return to 0.

e The regime ¥ € (1 — a,2(1 — «)) corresponds to an intermediate-range interaction
potential and exhibits some pinning-like features. When localized, the continuum
polymer visits 0 a positive fraction of the time. Away from 0 it does not behave like
the Bessel process conditioned to return to 0.

e The regime ¥ € (2(1 — a),00) corresponds to a short-range interaction potential and
is pinning-like. When localized, the continuum polymer visits 0 a positive fraction of
the time. Away from 0 it behaves like the Bessel process conditioned to return to 0.

In the last regime the behaviour is similar to that of the homogeneous pinning model with
¢(z) = clyz—qy, for which it is known that A2 (3) ~ 3¢B2, 810 (see Giacomin [22], [23],
den Hollander [25]). In fact, the proof of Theorem |1.8 will show that the scaling in the last
regime is valid for any ¢ such that c*[p?] and c¢*[p] are finite, i.e., may be replaced
by the weaker condition p(z) = O(|z|~20~%)~¢) for some & > 0.

6. The three regimes for ¥ represent three universality classes. The critical cases ¥ =1 — «
and ¥ = 2(1 — «) are more delicate and we have skipped them. Also, we have not investigated
what happens when the scaling of the interaction potential in is modulated by a
slowly varying function. For the same reason we have assumed that the error term in
is O(|z|~(+9)) with & > 0 rather than o(|z|~!), since the latter may give rise to modulation
by slowly varying functions in (1.34]) and ([1.35) (see Alexander [2]).

7. By the considerations made in Section 3| the annealed model defined in (1.20)(L.21)) is
localized (i.e., F*"(5,h) > 0, h < h2"*(3)) if and only if

Y E {eZT—WWSn) Lin—my| > 1, (1.57)
meN

where we recall that 7 denotes the first return time of S to 0. Although the starting point 0
seems to play a special role in , it can be shown that the criterion in is invariant
under spatial shifts of 1g, (see Appendix |C)).

A natural question is what happens when the random walk S is transient, i.e., P(1 <
) = >, enK(n) =:7 < 1. For the constrained partition function Z]f,’fg’h, working with
a transient renewal process with law K is equivalent to working with a recurrent renewal
process with law K/r and adding a depinning term ZnNzl(log 7)1{s,—0} in the exponential
in . This amounts to replacing g n(z) by g n(z) + (logr)1l1,—0y, and so instead of
(1.57)) the localization condition for the annealed model becomes

m 1
Z E [eanl ¥3.n(Sn) 1{71:7”}] > - (1.58)
meN "

(I) For the copolymer model we have p(z) = ¢°P(x) = L<oy (recall (L.10))) and ¢ 5 (x) =
(3% — h)1(—oo,0(x). Therefore A" (B) = 16? and, in fact, the left-hand side of (L.57)
is <1 for h < h2™(B) and is = oo for h > h2"*(f). This means that the annealed
critical curve h2"™ does not depend on 7, and hence neither do the bounds in (1.39). In
other words, making the underlying renewal process transient or, equivalently, adding
a homogeneous depinning term at zero, does not modify the annealed critical curve of
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the copolymer model. In essence this is due to the fact that the copolymer potential is
long range (i.e., g p(x) does not vanish as x — —o0).

(IT) For the pinning model, adding a depinning term at zero amounts to shifting h and
this may have an effect. In essence this is due to the fact that the pinning potential
p(x) = P (z) = 11z—gy is short range.

1.9. Open problems and outline.

1. Are the inequalities in (1.39) strict for all 5 > 07 For the copolymer model (p(z) =
L{z<0y) the answer is yes for all a > 0 (Bolthausen, den Hollander and Opoku [12]).
Moreover, it is known that (Bolthausen and den Hollander [II], Caravenna and
Giacomin [13])

lim 12 (B) =1,  lm B 'hd(B) = C(a), 1.59

i 57142 (5) i 571(8) = C(a) (159
with C(a) € (1/(1+ «),1) for 0 < a < 1 (Bolthausen, den Hollander and Opoku [12])
and C(a) = 1/(1 + «) for @ > 1 (Berger, Caravenna, Poisat, Sun and Zygouras [5]).
For the pinning model (¢(x) = 1{;—0}) the answer depends on a: no for 0 < a < %
(the upper bound is an equality), yes for o > % Moreover, it is known that

lim B2 (8) = 8, lim B2 (8) = C'(a), (1.60)

with C’(a) = £ for 0 < a < 1 and C’(a) € (0, 1) for a > 1. As a matter of fact, refined
estimates are available:

e a€(0,1): B2 (B) = hd"(B) for B > 0 small enough (Alexander [I], see also
Cheliotis and den Hollander [18]);

e a € (3,1): ham(B) — h"(B) ~ co 82*/(22=1) as B | 0 for a universal constant
¢o € (0,00) (Caravenna, Toninelli and Torri [I7], and previously Alexander and

Zygouras [3], Derrida, Giacomin, Lacoin and Toninelli [21]).

e a = 5 B3 (B) — hd(B) = exp(—ﬁ[l + o(1)]) (Berger and Lacoin [7], and

C
previously Giacomin, Lacoin and Toninelli [24]).

For an overview, we refer the reader to Giacomin [23].

2. Determine whether the quenched phase transition is second order or higher order. For
the copolymer model it is known that the phase transition is of infinite order when
a = 0 (Berger, Giacomin and Lacoin [6]). The same is conjectured to be true for
a € (0,1).

3. Identify the scaling for weak interaction of the annealed model in the critical cases
9=1—caand ¥ =2(1 — a).

4. Identify the scaling for weak interaction of the quenched model. Because of Theorem
the same exponent F as in (1.51)) applies.

5. The qualitative shape of the critical curve in Fig. [I| depends on our assumption in
(1.1) that ¢ > 0. A reflected picture holds when ¢ < 0. It appears that for ¢ with

mixed signs there are two critical curves 8 +— h11°(8) and 8 — hl5’(B), separating a

single quenched delocalized phase D from two quenched localized phases £]"¢ and
L3 that lie above DI, respectively, below D9"¢. What are the properties of these
critical curves?
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6. What happens when 8 = Sy and h = hy with Sy, hny L 0 as N — oco.

7. Is it possible to include non-nearest-neighbour random walks?

Outline. The remainder of this paper is organized as follows. Theorem is proved in
Section [2] Theorem [I.4]in Section [3] and Theorems [1.6 in Section [5} Appendices [A]and [B]
collect a few technical facts that are needed along the way.

2. PROOF OF THEOREM

In Section we formulate annealed and quenched large deviation principles (LDPs)
that are an adaptation to our model of the LDPs developed in Birkner [8] and Birkner,
Greven and den Hollander [9]. The latter concern LDPs for random sequences of words cut
out from random sequences of letters according to a renewal process. In Section [2.2] we
formulate variational characterizations of the annealed and quenched critical curves that are
an adaptation of the characterizations derived for the pinning model in Cheliotis and den
Hollander [I8] and for the copolymer model in Bolthausen, den Hollander and Opoku [12].
In Section 2.3 we explain how the variational characterizations follow from the LDPs via
Varadhan’s lemma.

2.1. Annealed and quenched LDP. Our starting observation is that the partition func-
tion in (1.4) depends on the sequence of words Y = (Y;);en determined by the disorder and
by the excursions of the polymer, namely,

Vi =Yi(w,9) = ((wr_ 415 wr,), (Sri_141,---,57)), i €N, (2.1)

where 7 = (7;);en is the sequence of epochs of the successive visits of the polymer to zero
(70 = 0). Note that the random variables Y; take their values in the space I' := [ J,,cy I
with I' := R x Z.
To capture the role of Y, we introduce its empirical process,
] M-l
_ - _ inv N

Bar = Rir = 47 Y Sgicvi,yayper € PPN, (2:2)

i=0
where P (I'N) denotes the set of probability measures on I'V that are invariant under the
left-shift ¥ acting on T'N. The superscript w reminds us that the random variables Y; are
functions of w. We must average over .S while keeping w fixed. Note that, under the annealed

law P® P, Y is i.i.d. with the following marginal law ¢g on I':

go((dz1,...,dzy) X {(s1,...,5n)})
= (P@P)(Y; € (dz1,...,dzy) x {(s1,...,50)})

(2.3)
= K(n)v(dzy)---v(dzy,) P ((Sl, cesSp) = (815, 8n) ‘ T = n),
neN x,...,xp €ER, s1,...,8, € Z,
where K(n) := P(m; =n) and v(dz) := P(w; € dz).
The specific relative entropy of QQ w.r.t. qgQN is defined by
1
QNY . 13 K~ N

H(@lqy") = lim —h(TnQ[qp), (2.4)

where 7xQ € P(I'V) denotes the projection of Q onto the first N words, h(- | -) denotes
relative entropy, and the limit is non-decreasing. The following annealed LDP is standard
(see Dembo and Zeitouni [20, Section 6.5]).
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Proposition 2.1. [Annealed LDP]| The family (P ® P)(RY, € -), M € N, satisfies the
LDP on P (I'N) with rate M and with rate function I*™ given by

Iann(Q) — H(Q | qSZJN)’ Q e PinV(f\N>. (2.5)
This rate function is lower semi-continuous, has compact level sets, has a unique zero at
ngN, and is affine.

The quenched LDP is more delicate and requires extra notation. The reverse operation of
cutting words out of a sequence of letters is glueing words together into a sequence of letters.
Formally, this is done by defining a concatenation map & from I'N to I'N. This map induces
in a natural way a map from P(I'N) to P(I'N), the sets of probability measures on TV and
I'N (endowed with the topology of weak convergence). The concatenation q(?N or™1 of qggN
equals v®Y, as is evident from .

For Q € P™(T'N), let mq := Eg(m1) € [1,00] be the average word length under Q (Eq
denotes expectation under the law @ and 7y is the length of the first word). Let

,Pinv,ﬁn(wa) = {Q c Pil’lV(f‘N): mQ < oo} (2.6)
For Q € fpinv,ﬁn(f‘N), define

1 = inv
k=0

Think of ¥¢, as the shift-invariant version of Qo x~! obtained after randomizing the location
of the origin. This randomization is necessary because a shift-invariant ) in general does
not give rise to a shift-invariant Q o k71,

The following quenched LDP is a straight adaptation of the one derived in Birkner, Greven

and den Hollander [9].

Proposition 2.2. [Quenched LDP]| For P-a.e. w the family P(RY; € -), M € N, satisfies
the LDP on P™ (I'N) with rate M and with rate function given by

puegg o | H@IGE") +amgH(¥q [v),  Qepmini®),
T hma\LO ian/EB(S (Q)O'Pinv,ﬁn(f‘N) IClue(Q’)? Q € Pan(PN) \ ,Plnv’ﬁn(FN)7

where a is the exponent in (1.6) and Bs(Q) is the d-ball around Q (in any appropriate
metric). This rate function is lower semi-continuous, has compact level sets, has a unique
zero at qgm, and is affine.

Remark 2.3. In [9] a formula was claimed for 19% on P™v(I'N) \ Pirvfin(PN) based on a
truncation approximation for the average word length. As pointed out by Jean-Christophe
Mourrat (private communication), the proof of this formula in [9] is flawed. The formula
itself may still be correct, but no proof is currently available. In the present paper we will

only need to know I on Pivfin(PNy,

(2.8)

2.2. Variational criterion for localization. For NV € N, let /5 be the number of returns
to zero of the polymer before epoch IV, i.e.,

(N :=max{i € Ng: 7; <N} (2.9)
Let ®: T' — R be defined by

n

(1, wn), (51,0 80)) = > (Bom — h)p(sm). (2.10)

m=1
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Then the constrained quenched partition function defined in (1.12]) can be written as
e " ~ w
235, =E [eziﬁl oY) 1 SN:O}] _ B [eew Jr ®s,nd@RE) I{SN:O}] ’ (2.11)
while the constrained annealed partition function defined in ((1.23)) can be written as
2 ' ~ Thw
Z?\?g:; = (E (%9 E) |:ezi1:V1 Q5.1(Ys) 1{SN=O}] = (E ® E) [efN J5®s.n d(ﬂ'leN) l{SN=O}:| 7 (2.12)

where 71Q denotes the projection of @ onto the space I' of the first word.

With the help of Propositions 2.IH2.2] we can derive the following variational characteri-
zation of the annealed and the quenched critical curve. Note that F*"*(5,h) > 0 if and only
if h < h2™(B) and F9"°(8, k) > 0 if and only if h < hd™(8).

Theorem 2.4. [Annealed localization| For every 3,h > 0,

FBR) S0 e sup {/(I)gﬁd(frlQ) —Jann(Q)} >0, (2.13)
Qepinv(PNy, r
mQ<oo,Iann(Q)<oo

Theorem 2.5. [Quenched localization] For every §,h > 0,

FIU(B,h) >0 <= sup { /~ ®spd(MQ) — Iq“e(Q)} > 0. (2.14)
Qepinv(PN)y: r
mg<oo, Iann(Q)<oco
As we will see below, the role of the conditions mg < oo and I*"(Q)) < oo under the two
suprema is to ensure that ff‘ ®g 1, d(7T1Q) < 00, so that the suprema are well defined. The
condition mg < oo under the second supremum allows us to use the representation in ([2.8).
We will see in Section [3[ how the variational formulas in (2.13)—(2.14]) can be exploited.

2.3. Proof of Theorems The proof uses arguments developed in Bolthausen,
den Hollander and Opoku [12]. Theorems [2.4H2.5| follow from Propositions with the
help of Varadhan’s lemma applied to (2.11)—(2.12]). The only difficulty we need to deal with
is the fact that both @ — mq and Q — @3 ,(Q) = J7 @, d(71Q) are neither bounded nor
continuous in the weak topology. Therefore an approximation argument is required, which
is worked out in detail in [I2, Appendix A-D] for the case of the copolymer interaction
potential in . This approximation argument shows why the restriction to mg < oo
and I*""(Q) < oo may be imposed, a key ingredient being that I*""(Q) < oo implies
<I>}§7h(Q) < 00. The proof in [12, Appendix A-D| readily carries over because our condition
on the interaction potential in reflects the properties of the copolymer interaction
potential. We sketch the main line of thought. Throughout the sequel 5, h > 0 are fixed.

Proof of Theorem[2.5 Following the argument in [12, Appendix A], we show that
(1) For every g >0, M — Wg ,(R) — gmpg, is bounded w-a.s.

(2) For every ¢ € P(N), v € P(R) and p = (pn)nen with p, € P(Z"), there exist v > 0 and
K = K(o,v,p;7) > 0 such that ®% ,(Q) < yh(T1Q | qoup) + K for all Q € P™(TN)
with h(T1Q | gou,p) < 00, where (compare with (2.3)))

q@,,,p((d:cl, vy day) x {(s1, ... ,sn)}) =o(n)v(dzy) - v(dzy) pr(si, ..., Sn),

(2.15)
neN, x,...,xp €R, s1,...,8, € Z.
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The proof uses the fact that the conditions in allow us to approximate ¢ by a multiple
of ¢ (recall (L.10)) uniformly on Z \ [~L, L] at arbitrary precision as L — oo. The
proof also uses a concentration of measure estimate for the disorder, which is proved in [12]
Appendix D].

For g > 0, define the quenched free energy

. 1
FUU(3 h; g) := A}gnoo ¥ log Z'5 1.4+ (2.16)
where
Z]C{,lj;’h’g — R [eN{ég,h(Rﬂ)—ngf/f}} (2.17)

is the quenched partition function in which every letter gets an energetic penalty —g.
Following the argument in [I2l Appendix B], we use (1) and (2) to show that, for every
9>0,

QER:
mQ<oo, 1ann(Q)<oo

FU(B, h; g) = sup {/ 5,(Q) — gmg — Iann(Q)} (2.18)

IR
where R is the set of shift-invariant probability measures under which the concatenation
of words produces a letter sequence that has the same asymptotic statistics as a typical

realisation of Y, i.e.,

1

M-1
. inv /Ny . : _ ,,®N
R := {QEP () w—]\}l_rflooﬂ ;}dgkn(y) =L Q—a.s.} (2.19)

(w — lim means weak limit). The proof of (2.18) carries over verbatim. What (2.18) says is
that Varadhan’s lemma applies to (2.16)—(2.17)) because of the control enforced by (1) and

(2).

Following the argument in [I2, Appendix C|, we show that
i (5, 1 ) = F(5, ) (2.20)
g

with
ST § R ORIl (221)

Qepinv(FN)y.
mg <oo, IANN (Q) < oo

Here, in the passage from to , the constraint in R disappears from the variational
characterization, while 12" (Q) is replaced by I1"¢(Q). The reason is that for every @ €
PV (TN there exists a sequence (Qn)nen in R such that Q = w — limy, 0o Qn = Q and
limy, 00 I2"(Qr) = I19"°(Q). The proof of carries over verbatim. The supremum
in the right-hand side of is the same as the supremum in the right-hand side of
(12.14]). O

Proof of Theorem[2.4 Varadhan’s lemma also applies to
Z305 = B [N a0 (2.22)
and yields

: 1 ann
Fann(ﬁ,h) = ]\}gnooﬁlog ZNvah (223)
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with i . { /fN 55,(Q) - Iann(@)}‘ (2.24)

erinV(fN) .
meg<oo, 13NN (Q)<oco

Again, this works because of the control enforced by (2). The supremum in the right-hand
side of ([2.24)) is the same as the supremum in the right-hand side of (2.13)). O

3. PROOF OF THEOREM [L.4]

The upper bound in (1.39) is immediate from Theorems [2.4 and the inequality
Iaue > 2 (see also ([1.27))). In Sections we prove the lower bound in (1.39). This

lower bound is the analogue of what for the copolymer model is called the Monthus-Bodineau-
Giacomin lower bound (see Giacomin [22], den Hollander [25]).

3.1. A sufficient criterion for quenched localization. The quenched rate function can
be written as

Q) = 1+ ) I™(Q) —a R(Q),  mq < oo, (3.1)

with
R(Q) :==H(Q | ¢5") — mq H(¥q | v*). (3.2)
It can be shown that R(Q) > 0 for all Q € P™(I'N): R(Q) has the meaning of a concatenation

entropy (see Birkner, Greven and den Hollander [9]). Therefore, dropping this term in (2.14)
we obtain the following sufficient criterion for quenched localization:

P3RS0 e  sup {/ﬁ@d(an) - (1+a)1ann(Q)} >0, (33)

Qepinv(INy:
meg<oo, 1201 (Q)<oo

The right-hand side resembles the necessary and sufficient criterion for annealed localization
in (2.13), the only difference being the extra factor 1 + «.

3.2. Reduction. Among the laws Q € P (I'N) with a given marginal law ¢ € P(I'), the

product law Q = ¢V is the unique minimizer of the specific relative entropy H(Q | q(?N).
Therefore the right-hand side of (3.3) reduces to

o | [@di—+amiaa)f >0 a4
gePinv(T): T
mg<oo, h(glqg)<oco

where h(- | -) denotes relative entropy.
We next show that (3.3) reduces to an even simpler criterion. To that end, let Cn :=
Ui:/:1 I'™ be the subset of words of length at most N. Consider the law ¢y € P(I") defined
by
R 1 p
dgn e 1oy
dQO ' Na,N ’

(3.5)

where
Non = ﬁ eT+a® 1o, dgo < o0 (3.6)
I

is the normalizing constant. The latter is finite because, by (2.10)), ® restricted to C is the
sum of at most N random variables with finite exponential moments. Note that also

/ Bea® 10, dgo < oo, (3.7)
I
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which yields h(gn | qo) < oo. Trivially, mg, < N < co. Therefore we are allowed to pick

q = q4n in (3.4)), so that (3.4)) is satisfied when

(1+ a)logNgn > 0. (3.8)
Since N is arbitrary, this in turn is satisfied when
No>1 with Ny :=supNyn = ﬁ eTHa?® dqo, (3.9)
NeEN r

where N, = oo is allowed. Conversely, if N, < 1, then (3.4) is not satisfied. Indeed, as soon
as N, < 0o we may introduce the law ¢ € P(T") defined by

dg  ema®
q S
— = , 3.10
dQO Na ( )
and rewrite h(q | go) = h(q | §) — 45 Jr ® dg + log Na, so that

[ @ 1+ )hla ) = (1 + @) log A —hiq | ) <0 (3.11)

where the last inequality holds for any g because N, < 1, and so (3.4)) fails. Thus, ((3.3])
reduces to

FUC(B R >0 =  Ny> 1 (3.12)

3.3. Application. As we remarked below (3.3)), (2.13) resembles (3.3), the only difference
being the factor 1 + « instead of 1 in front of I*"(Q) = H(Q | qu)). Therefore, repeating
the above steps and recalling (2.14]), we conclude that

F(B,h) >0 = No > 1. (3.13)

It follows from (2.10), (2.12) and (3.9)) that the condition N, > 1 is equivalent to
(256, ah) > 0, (3.14)
ie., oah < hi™ (135 6), which by (8.12) implies F"°(5,h) > 0, i.e,, h < h¢"*(3). This

completes the proof of the lower bound in (|1.39).
Recalling (2.3), (2.10) and the function g, defined in (1.21]), we may write Ny as

r meN

fd Z E [QZT—I "l’B,h(Sn) 1{7_1m}:| .

meN

(3.15)

We will analyse this expression in Section [5|in the weak interaction limit 3, | O for the
Bessel random walk.
Note that for h = 0 the expression in (3.15]) reduces to

> E[E [eZ?l Bne(Sn) 1{ﬁm}” : (3.16)

meN

By Jensen and the fact that ¢ # 0, this sum is > 1 for all 5 > 0. Hence F**(3,0) > 0 for
all 8 > 0, which settles the claim made at the end of Section [1.6]
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4. WEAK DISORDER AND CONTINUUM LIMIT

This section is a preparation for the proof of Theorems [I.6HI.§ in Section 5] We explain
the main line of reasoning and highlight the key points, focusing on a slightly simpler setting.
We recall from (|1.20)—(1.21]) that the annealed partition function is defined by

2305 = El i) = B [E o S0] N € N, (4.1)

where
V() = log M(Bp(z)) — heo(z). (42)

Note that (4.1]) is the partition function of a homogeneous pinning model with potential ¥z,
and reference measure the Bessel random walk S defined in . Since we assume

that (recall ( -

lim |z[%p(z) = ¢ € (0, 00), (4.3)

|z| =00

we see that for large = we have 1 ,(2) ~ 38%¢* |z|~2Y — he|z|~?. Both terms will turn out
to be relevant, because 5 and h will be scaled differently.
In this section we look at each term separately. Therefore we focus on the simplified model

Zns —E[ Sz 05(Sn >}, N € Ny, 6 € (0,1), (4.4)

where p5: Z — R is a potential with the following properties:

e There is a function ¢: Z — R such that
os(x) ~ dp(x), 010, wuniformlyin z € Z. (4.5)

e There are a € R and v > 0 such that

a

o(x) ~

We emphasize that these assumptions are satisfied for gs(z) = log M(B¢(z)) (with § = 32,

o(z) = p(x)? and a = ¢?/2) and for g5(x) = —hp(x) (with § = h, o(x) = p(x) and a = —c).
We start from an expansion of the partition function. Namely, we set

xs(x) = e®® — 1, (4.7)
so that
N
Zns =B |]] 1 +x(Sn)]| =1+ Cwak; (4.8)
n=1 keN

where we define

Cnsk = Z

0<ni<...<np <N

k k
eTluso| = 5 offTutsw].  ao
/=1 /=1

0<t) <...<tp<l:
€ &N, 1<i<k

In what follows we distinguish between two regimes for the exponent ~.
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e 0 <7 <2(1—a): Recall from (L.30)) that (|Sn¢|/v'N )i converges in distribution to the

Bessel process (X)i>0. Fix 6 = 0n | 0, so that g5, ~ dno(x) in (4.5) and x5, () ~ dno(x)
in (4.7). In view of (4.6)), for fixed k € N, 0 < t; < ... <ty and N — oo, we claim that

k k
E LHlxaN(Sth) E Hxaw (\/Ns%ﬂ ~ <N /2> H |th|'y] . (4.10)

because small values of Xy,, i.e., Sy, = 0(\/N), give a negligible contribution, as we show
next. Indeed, by and ([4.7), we can bound x;(z) < C1 6 o(z) < C28 (14 |z])~7 for all
x € 7, for some constants C7,Cy < co. Since P(S,, € :|Sy = m) stochastically dominates
P(S,, € -|Sp = 0) for m > 0 (as can be seen via a coupling argument), it follows from the
uniform upper bound in that

k
< CEOKE [H (1 +[Sne,])™ ]

< C’éf 55“\/ H E [(1 + ’SN(tgftefl)‘)_’y}
/=1

k
E HX5N (SNte)

(=1

(4.11)

2

(1 + |re)! 2 ~ SN S
<C35NHZ Nt —te1))—=© o
erEZ

<Ck N ﬁl /|x |1_2a_76_§ dz
= Oy N7/2 ot (tg_tz_l)»y/z " 14 2

where the last inequality holds by Riemann approximation with xy = ry,/v/N. The last
integral is finite because v < 2(1 — «), and so we have shown that

<ok (v kﬁ ! (4.12)
>~ Yy N»y/z gil(te_tg_l)fy/g‘ .

Via the same argument, if in (4.12]) we restrict the expectation in the left-hand side to the

event U?Zl{’Sth\ <ey/N(ty —ty—1)}, then we obtain a fraction of the right-hand side that
vanishes as € | 0, uniformly in N,k € N and 0 < t; < ... <ty < 1. This justifies (4.10).
We next set

k
E | TT x6n (Sne)
/=1

~

o

W, (4.13)

ON =

so that the prefactor in (4.10) equals (%)k, which is the right normalisation for the Riemann
sum in (4.9)) to converge to the corresponding integral. Indeed,

lim Cpgsyx = (ad)* / dt; ... dty E
N—o0 N 0<t1<..<tp<l H ‘thW

1 1 k
(/ dt)Q!“’)]’ keN,

where the convergence is justified by (4.12)), which shows that the values of ¢, for which the
gaps ty — ty_q1 are small are negligible, and the second equality follows by integrating over

(4.14)

~

_ (ad)*

k!E
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unordered variables and applying Fubini’s theorem. Looking back at (4.8)), we obtain
: (ad)*
lim Z =1
Ngnoo N.on + Z

P </ dtyxltyw>k :E[exp<a5/01dt‘Xlth)], (4.15)

where the limit and the sum can be exchanged by (4.12)).

e 2(1 — a) <y < oo: In this regime the last expected value in (4.10) will be seen to diverge,
because the main contribution comes from values of Sxy, that are O(1), rather than O(v/N).
We again fix 6 = dn | 0, so that gs, ~ dye(x) and x5, (z) ~ dnye(x). Then, as N — oo,

k
F E [H Q(SNte)
(=1

k
=00 > Tlave-rte) @1, ze) (),

T1,..., X €L I=1

k
E H Xén (SNte)

l=1

(4.16)

where we set ng := 0, xg := 0, and where ¢, (z, z) := P(S,, = x|Sy = 2) is the transition kernel
of the Bessel random walk. The asymptotic behaviour as n — oo of the latter is given by
also for any fixed z # 0, namely, g,,(z, z) ~ n~ (1= ¢(z) uniformly in x = o(\/n) (such
that z—x is even). This is proved in [2| Theorem 2.4] for z = 0, while for z # 0 it follows from
the decomposition ¢, (z,z) => ., _ P(ri =m | So = 2) ¢—m(0,2) + OP (11 > n | Sy = 2)).
If we set

(o) ==Y _ o(x)c(x), (4.17)

then we claim that
k 5N k k
k
E L_l_[l Xon (SNte>] ~ <N1_O‘> Zl:[l tz

because the contribution of large values of Sny,, i.e., Sni, > 1, is negligible, as we show next.
Indeed, we argue as in until the second last line, before the Riemann approximation.
The integral in the last line of diverges in the current regime v > 2(1 — «). For this
reason, we simply drop the exponential term and keep the simpler bound

k (1 4 [re|)t=20—
E HX6N (SNte <C3 5NHZ N(te —tyq) )1 a’ (4.19)

l=1 {=1ry GZ

_tg S (4.18)

Since >, o7 (1 + |r[)172*77 < oo for v > 2(1 — @), we have shown that, for some C' < oo,

<ok (N ' ﬁ ! . (4.20)
— leoz ey (tg _ té_1>lfa

Via the same argument, if in we restrict the expectation in the left-hand side to the
event U§:1{|5Nt[| > M}, then we obtain a fraction of the right-hand side that vanishes as
M — oo uniformly in N,k € N and 0 <t < ... <ty < 1. This justifies .

We next set

k
E H Xon (SNtz)
/=1

oy = — (4.21)



22 FRANCESCO CARAVENNA AND FRANK DEN HOLLANDER

so that the prefactor in (4.18) equals (%)k, which is the right normalisation for the Riemann
sum in (4.9)) to converge to the corresponding integral. Indeed, for any k € N

k

. 1

li = (c*(0) )" ———— | dt; ... dt

Ngnoo CN,&N,k‘ (C (Q) ) / (H (té _ té—l)l_a> 1 ks (4-22)
0<t1<...<tp<1 =1

where the convergence is justified by (4.20)), which shows that the values of ¢, for which the

gaps ty — ty—1 are small are negligible. Looking back at (4.8)), we obtain

k
R 1
lim Zygy =1+ (c*(0)0)" / I[I————)dt ... dty, (423)
N—00 L (te —tpq) e
keN O<ti<..<tp<1 ‘=1
where the limit and the sum can be exchanged because of (4.20]).
Recall the definition of the local time L;(0) in (1.32)). We show in Appendix |B| that

k
(H (te—tell)l—“> div... dtx = %E |L1(0)*] (4.24)

0<t1<...<tp<1 £=1

(see (B.8)), (B.16) and (B.20)). Consequently, we obtain
lim Zysy, =E [exp (c*(0) 5[:1(0))} . (4.25)

N—oo

5. PROOF OF THEOREMS [1.6H]1.§|

In Section we set up a weak disorder expansion for the annealed partition function. In
Sections [5.2) we look at the scaling behaviour of this partition function as N — oo, with
8 = pBn,h =hy | 0 chosen in a way that depends on the regime for 9 under consideration,
and we explain the scaling in Theorems [T.6HI.8] The key asymptotic computations are
justified by arguing as in Section [4

5.1. Weak disorder expansion. As already mentioned in ([1.30]), the Bessel random walk
(Sn)nen, satisfies the invariance principle

ISt/ VN ) g = (Xi)iz0, N = o, (5.1)
where the limit is the Bessel process defined in ((1.28). Recall (1.20)-(L.21)). Since ||%g 1 ||oo

tends to zero as B,h | 0, we can do a weak coupling expansion in the spirit of Caravenna,
Sun and Zygouras [16]. Namely, fix T' € (0, 00) and write (for easy of notation we pretend
that T'N is integer)

TN
Z# s =2 I1 {1 + (evan(Sn) — 1)}] =14+ [1+oW)]*Crae, B,h10, (52)
n=1 keN
with
k
Crnp = > . [H Xﬁ,h(sne)] o xpa(r)=er @ —10 (5.3)
1<ni < <nip<TN /=1

Under the assumption in (1.41]), we have

Xon(@) = [1+ o)) {38 ¢*(z) — h()}

A4
=[1+o(1)] {1582 |z| 72 — he ]x\_ﬁ}, |z| — oo. 54
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5.2. The case ¥ € (0,1 — a). Pick
B GN-G-0/2  p_ N0, (5.5)
Put nz =|N j 1 < i < N, and approximate the sum in (5.3)) by an integral with the help

of (5.1) and , to get
Cra = [1+o(0)* |

0<ty <<t <T

k
dt;---dt, B [H%,h(Xte)] , N = oo, (5.6)

(=1

with

@Z)B h(x) = %ﬁQCQ |x|_279 — hc|:n|_19, z € R. (5.7)
Inserting (5.6)) into (5.2)), we get

J\;gnoo Z;IJI\I;BN (1-9)/2 j, N—(2-9)/2 — Z;ng’h (5.8)

with

A T ~

Z;ngh =E [GXP </0 di %ZJB,;L(Xt))] ; T > 0. (5.9)

This shows that, under the scaling in , the partition function converges to a continuum
limit. A precise justification of the Riemann sum approximation and of the limits involved
follows from the analysis performed in Section [4, where each term 3 322 |72 and he x|~
in was considered separately. More precisely, note that both the exponents v = 29 and
~v = ¢ are such that v < 2(1 — «), so that we can apply (4.14) and (4.15).

The annealed free energy is obtained as

L 1
Fan (3 f) = TlgrgoflogZ;n;h (5.10)

This proves Theorem [I.6] because

. A 1
Fanﬂ(/@)h) = lim TlOg( lim Z;—,Izl\l;ﬁN (1—-9)/2 hN (2— 19)/2>

T—o00 N—o0
. . 1 5 11
= am N <T1520TN1°g 2N GN-=9)/2 N - (2 ﬂ>/2) (5.11)
— lim NFann(ﬁN (1-9)/2 hN_(2_79)/2)
N—oo ’ ’

where the interchange of the limits 7' — co and N — oo is justified in Appendix [A4]
5.3. The case ¥ € (1 — o, 2(1 — «)). Pick

B=BN"2 ph=hN-ED2 (5.12)
A Riemann sum approximation in now leads to
k
Crng =1+ 0(1)]k/ dty---dty B HQZ)B,B(XW) , N = oo, (5.13)
0<ty <<t <T =1
with
Dy 5(@) = 12 1p?bo(x) — helz| ™, z€R, (5.14)

where we recall that the “renormalized delta function” §() is an informal notation hat we
introduced in (1.32)-(1.33). To be more precise, note that the second term hc|z|™ is the
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same as in , but the first term is different and arises from the computation (recall
(11.34)))

E [38°0°(Sin))] = D 38%°(2) P(S)w) = )

TEZ
= [1+0(1)] Y §8%* () c(x) (tN) =)
TEZ (515)
=1+ o) N 132N "o (a
TEZ

= 1+ o)) NTH =9 132 [, N = os,

which gives

TN ) .
Y E[16%6%(Sn)] = [1+o(1)] 357 C*W]/O ) gy
n=1

(5.16)
= [L+0(1)] 35° ' [P?] E[Lr(0)], N — oo,
where we use that (recall and the line following it)
/0 " 400 Z B (0)] = /0 " dtho(x0), (5.17)

Note that ¢*[p?] < oo because of (1.3F)), and the fact that ¥ > 1 — a. Again, the
approximation can be justified by the arguments developed in Section 4] More precisely, the
exponent v = 2¢ of the first term is such that v > 2(1 — «), so that we can apply -
and (| -, Whlle he exponent ~v = ¥ of the second term is such that v < 2(1 — «), so that

we can apply ) and (| , as in the previous case.

Inserting (|5 ) 1nto 1 , we get
]\}Enoo Z;rll\rfl,BN a/2 fj N—(2=9)/ Z;nﬁnh (5.18)
with
. T
Zygg = E [GXP (/ dt w%ﬁ(Xt)ﬂ . T>0 (5.19)
0 )

This proves Theorem [I.7]

5.4. The case ¥ € (2(1 — «), 00). Pick
B=FN"2 h=hN (5.20)

to get

Crnp = [1 4 0(1)]F / dty B
0§t1<-"<tk§T

sz

(X, ] . N—ooo, (5.21)

with

Da(@) = (321 — helpl} dol), weR. (5.22)
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Here, we supplement (5.15)) with the computation
E [ho(Sien))] = Y he(@) P(Sjy) = 2)

DY hela) e(z) (tN) 707
TEZ (523)

=[1+ o) N h> " p(x) c(x)

TE€EZ
=1 +oM)]NUH =D he ], N — oo,

which gives

TN R T
S [he(S,)] = 1+ (el [0 ar

= [1+o(1)] h ' [p] E[Lr(0)], N — oo,

where we use (1.34]), and note c¢*[p] < oo because of (1.41), (1.35) and the fact that
¥ > 2(1 — ). Also in this case, the approximation is justified by Section {4} since both

exponents v = 20 and v = ¢ are such that v > 2(1 — «), we can apply (4.14) and (4.15]).

Inserting (5.21)) into (5.2)), we get

(5.24)

N Z% N/ N = Z;n;h (5.25)
with
A T A~
Z;nélh =0 [exp </ dt wBﬁ(Xt)>:| s T>0. (526)
0

This proves Theorem [

APPENDIX A. EQUIVALENCE

In Appendices we prove ([1.16)), (1.14) and (1.25)), respectively. In Appendix

we show that the limits N — oo and T — oo encountered in Sections [5.2H5.4] may be
interchanged.

A.1. Proof of (1.16). For N € Ny and x € Ny, define
fo(N) =Py (S, >2V0<n<N,Sy=uz). (A1)
(If S has period 2, then replace N by 2N.) By superadditivity,

A}i_r)noo % log fz(N) =: Cy € (—00,0] exists. (A.2)
For z € [0,00) and = € Ny, define
Fu(z) =Y 2N fu(N). (A.3)
NeNg
Then, clearly,
Cr;=0 <= F,(1+e)=00Ve>0. (A4)

By (1.6]), we have Cyp = 0. Below we show that this implies C;, = 0 Vx € Ny. The proof is
by induction on x.
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Any path that starts at x, ends at  and does not go below z can be cut into pieces that
zig-zag between x and = + 1 and pieces that start at x + 1, end at x + 1 and do not go below
x + 1. Hence we have

r22Qz(2) 1 o
Fm(z) T 1_ F;H_l(Z)Qx(Z), Qx(z) T ZTz’ Ty = Dzao+1Pz+1,20 > 0, (A5)
where pg z11 :=P(S1 =2+ 1] Sy = x). We know that Fy(1 +¢) = oo Ve > 0. We show
that this implies F(1 4 ¢) = oo Ve > 0 for every x € N. The proof is by induction on x.

Fix z € Ny and suppose that F,(1+¢) = oo Ve > 0. We argue by contradiction. Suppose
that Fy11(1 +¢) < oo for € small enough. Because 7, > 0 and Q4(1 +¢) < oo for e
small enough, it follows that Fyyi(1 +¢)Qz(1 +¢) > 1 Ve > 0, and by continuity that
F,11(1)Q.(1) > 1. To get the contradiction it therefore suffices to show that F,11(1)Q.(1) <
1. Now, because (Sy)nen, is recurrent, we have Fy1(1) = pyt1,4+2. Because Qg (1) =
1/(1 —ry), it follows that

Fo(1)Qu(1) = Pttt . Petlet2  _p (g >aVneNy) <1, (A6)
1 -7y I = Prt1,2Prat1

where for both the last equality and the inequality we again use recurrence.
To prove (1.16]), note that for any 0 < M < N,

Po(Sp > MVM <n<N)=Pyo(S,=nvV0<n<M)Ppy(S,>MVM<n<N)

M-—1
> [H pw,m—i-l] fM(N_M)
o (A7)

Hence )
l}\rfninfﬁlogPo(SnZMVM<n§N)ZC’M VM e Ny. (A.8)
—00

Since Cyr = 0 for all M € Ny, this implies (1.16)).

A.2. Proof of (1.14]). Note that Z]“\)[’ycﬂh < Zy g for all N € Ny. Hence we only need to
show that Z% 5, < eo) ZR’,% , P-a.s. Define the constrained partition function

Z]u\)/%% = E, [ezgzl(ﬁwn—h)‘P(Sn) I{Sn=y}] , N € Ng, z,y € Z. (A.9)
Then
0, , 0,0
ZR50 =D ZN g Mo = ZN g (A.10)
YEL
By (1.1)), for every € > 0 there is an M € Ny such that
lp(z) =" <e, x2>2M,  Jp(z) 77| <6 oz <M. (A.11)

where we abbreviate 4 = lim, ;400 () and recall that y© = 0, v~ € [0, 00) according to
(1.1). For N > M, split

with
0, _ 0, _ 0,
=Y A =Y A wm= Y &N A
y>2M y<—2M —2M<y<2M

We will show that all three terms are bounded by e?™ )Z]“\’,’%Oh. For ease of notation we will

pretend that the Markov chain has period 1. This is easily7 fixed when the period is 2.
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Consider I. Let oy = max{0 <n < N: S, = M}, and split
I= Z Eo [ezg:l(ﬁwnfh)so(sn) 1{SN22M} 1{0N:m}] . (A.14)
M<m<N—M

Replace (Sp, ..., Sn) by an (N — M —m)-step path from M to M that is everywhere > M,
followed by an M-step downward path (M, ...,0). The cost of this replacement is at most
exp ([26(N = M = m) +2M||g]loc] (8 D (w) + 1)) (A.15)

for the weight factor, with Qy(w) = maxj<,<n wy, and at most

Py(Sn, >MVY0<n<N-—M,Sy>2M)

PM(Sn >MV0<n< N—M—m,SN_M_m :M)HM

for the path probability, with II; := Hi:  Pz,z—1- The probability in the denominator
equals fa/(N — M —m), and so we get

(A.16)

2eN+2M S Qn(w h H]T; w,0,0
I < el2eN+2M]lolloo] (B 2 (w)+] l)fM(N—M—m) ZN B (A.17)
Since M is fixed, IIps > 0, [|¢]leo < 00, @y = O(log N) P-a.s. and maxi<p<ny 1/fm(n) =
W) we get I = eO(N)Z;’[’%’Oh P-a.s.
The argument for II is similar. For III we replace (Sy—as,...,Sn) by an M-step path
from Sy_ps to 0 at a finite cost (depending on M and Qy).

A.3. Proof of (1.25). Copy the argument in Appendix starting from the analogue of
9

Zal”ll’l:]wl’y = T |:eZ'r]:’:1 wﬁ,h(s’n) 1{Sn:y}} 3 N c NO, .CC, y € Z (A18)
Use that || 1|lec < 00, and that for every e > 0 there is an M € Ny such that
Wen(@) —n'l<e, z>M, |hgp(@)—n|<e a<-M, (A.19)

with nF = g, (7F) = log M(B7F) — hy* (recall (L.21)).

A 4. Interchange of limits. The following two lemmas, which give us a sandwich for the
annealed free energies in the discrete and in the continuous model, are the key to showing
that the limits in (5.11) may be interchanged.

Lemma A.1. For M, N € Ny, 5 € (0,00) and h € R, define

lyl<M (A.20)
Zamt = sup max  Za,i3Y.
N.B,h vez i 0<N'<N Bk
Then, for all B € (0,00) and h € R,
1 _ 1
Jim g Zy = FU(5,h) = lim - log Zygn VM eN,. (A.21)

Proof. Note that Z]a\;r}\,% < Z?\?g;; for all M, N € Ny. Hence we only need to show that
Zi;r}\fﬁ L, < eo) Z?Vng’; as N — oo for all M € Ny. Indeed, this will imply (A.21)) because

Fa (B h) = limy 00 % log Z?Vng’%o, as proved in Appendix In what follows we fix 8, h
and abbreviate Hy(S) := 27]:[:1 Y3 1h(Sn).
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Recall (A.19). Define 737 := min{n € Ny: [S,| < M} and split
E, [eHN(S)} — 1, + 11,

with

L=F, [0 o], =B [ O, )]

For x > M and x < —M,
I, SeaNPr(TM > N) <N,

II{L‘ § Ex |:e€TM 1{7—MSN} 2111:%)]\(4 Ez |:eHN*"'M (S)] :|

< e max max E, [eHN’(S)] .
|z|<M 0<N'<N

Combining (A.22)) and (A.24]), we obtain

72 < (1 4+ V) max max E [eHN’(S)} )
Nan < )|z\§M0§N/§N ?

For every |z|, |y| < M we have
E, [GHN/<S>] > Iy e Mivsnle B {eHN/(S)}
with II; = Hy:__lM Drat+1 N H;i\/[]\}rl Pza—1. Since Iy > 0, it follows that

Zf{?E’Z < eNtoN) max  E {eHN’(S)} ) N — .
tag] OSN/SN

As shown in Appendix
Eo [e”N'(S>] = Z3pn, =N Z0 N .

ann,0,0 .

Since N + log Z gp s super-additive, it follows that

max Eg [eHN’(S)} =M g, [eHN(S)] N — oo.
0<N'<N ’
Combining (A.27) and (A.29), we obtain
Z < Nt 220 N — o,

But
ann,0,0 Hn (S
Zngn < Eo [e v )1{|SN|§M}} :
Appealing once more to ({A.26), we arrive at

ann,+ eN+o(N) ryann,—
ZMNBh S © IunNgn N 00

which proves the claim because € > 0 is arbitrary.
Lemma A.2. For S,T >0, 3 € (0,00) and h € R, define

A~ _ . T Do
o i= min E, [efo dt g (Xe)
STk |z|<s

T/ ~

2 (X

ZM0F . — sup max E, elo @5 (X0) ,
T.8,h zeR OST'<T

1{|XT|SS}] )

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)
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wz’th}%ﬁ given by , (5.14) and (5.22) in the three regimes. Then, for all B e (0, 00)
and h € R,

1 - - A 1 .
lim —log 2™ = fann = lim — log ZF : A.34
Thoe T 228180 (B.h) = fim 7 logZp 55 VS €(0,00) (A.34)
Proof. The proof is similar to that of Lemma [AT] O

What makes Lemma useful is that N — log Zﬁr}\fﬁ’h is superadditive for every
M € Ny, while N — log Zja\?g;{ is subadditive. Consequently,

1 nn,— 1 nn,-+
Nlog Z;/I,N,ﬁ,h < F(B h) < Nlog Zi,ﬂ’h VM,N e N. (A.35)
Let A, B be the pair of exponents appearing in part (a) of Theorems ie.,

((1_29)/27 (2_19)/2% (S (0,1—0&),
(4,B)={ (a/2,2-9)/2),  Ve(l-a,2(-a) (A.36)
(06/2701), (NS (2(1—(1),00)
Fix T,S € (0,00), in replace N by TN, and pick M = SVTN, 8 = BN~ 4,
h = iLN*B, to obtain

1 ann,— ann/ AnT—A 7 anr—B 1 ann,+
T 98 25 an pn-ajy-p = NEH BN ANTE) < plog 20 a s (A.37)
VNeEN, T,S € (0,00).

Let N — oo to obtain

1 Zann, — s ann/2n7—A 7 a7—B
TIOgZS,T,B,BSI}\IfISO%fNF (BN™# AN™7)

A.38)
. . 1. (
< limsup NF*(BN~4 AN"B) < —log Z*"F  VT,S € (0,00).
N—oo T T>ﬂ7h
Here, the fact that
Zann,— 1. ann,—
Zsmph = N ZsUTN TN AN A NP (A.39)

Zan{l,:&— — hm Zann,:‘,— .
T)Bzh N—oo TN:ﬁNiAJ’I’NiB,

follows from the same argument as used in Section [f] to prove that

. ann __ Aann
]\}gnoo TNAN-AAN-B = L7 5 (A.40)

In particular, the scaling M = SVT'N fits well with the invariance principle in (5.1)). Finally,
let T — oo in (A.38)) and use Lemma [A.2] to obtain

Jim NE™ (BN~4 hN~B) = 2™ (3 1). (A.41)
—00

APPENDIX B. PROPERTIES OF THE ANNEALED SCALING LIMIT

In this appendix we show that the annealed partition functions and the corresponding
annealed free energies encountered in Theorems (1.6 are finite in each of the three regimes.
We also give an explicit characterization of the annealed free energy and the annealed critical
curve in the regime where ¥ € (2(1 — a), 00).
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B.1. Finite free energies for the Bessel process. For u, T, € [0,00), define

T
Z.1:=Eg [exp (u/ dt Xﬂﬂ : Zyu,r = Eo[ exp (uLr(0))] . (B.1)
0
We show that, for 0 < v < 2(1 — «), these quantities grow at most exponentially as 7" — oo:

1 - 1 ~
Vuel0,00),V0<y<2(1—-a): limsup— log Z,r < oo, limsup— log Z, 1 < oco.
T—o00 T T—o0 T
(B.2)

By Cauchy-Schwarz, this implies that all the free energies in Theorems [1.6H1.§| are finite.
We first focus on Z,, 7, which we rewrite as

Zyr=1+Y pFCer (B.3)
keN
with
k
ij = / dtq - - - dtg Eg HXt;'y . (B.4)
0<t1<--<tp <T —1
We use the Markov property at times t¢1,...,%; to estimate

k

k
n | _ B -
B |[[x0| = | []Pecs (Ximi,, € do)a
/—1 0<z1,...,x, <00 —1

. (B.5)

< / HpO(Xte—te—l € dmf) xé_’y
0<x1,...,x} <00 =1

where the inequality holds because Py (X; € -) stochastically dominates P, (X; € +) for any
x > 0 (by a standard coupling argument and the fact that X is a Markov process with
continuous paths) and because x — x~7 is non-increasing. We thus obtain

k
Crr < / dty - --dtg HEO [thztz—1:| (B.6)
0<t1<-<tx<T =1

with to = 0. By diffusive scaling we have Eg[X; "] = ¢t~7/2C, with C = Eq [X] 7] < oo for
0 <7y <2(1—a) (recall (1.29)). The change of variables t;, = T'sy, yields

Zr <14 Y (uC T2 14 /2) (B.7)
keN
where, for ¥ € (0, 1),
k
Ik(ﬁ) = / dsy---dsg H(Sg — 84_1)779 (B.S)
0<s1<---<sp<1 /=1

with sg = 0. Since

k
II - (
dU1 s duk (U@ — ’U,gfl) [t L A
/0<u1<...<uk_1<1 =1 F(k
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with ug = 1 and up = 1 is the normalization of the Dirichlet distribution, after setting
si=spu; fort=1,...,k—11in (B.8)) we obtain
_oy-1 T(1—0)F (1 —9)*
Iy(v) = / dsy. sh(1=9)-1 =
0<s,<1 F T(k(1-9))  T(k(1-9)+1) (B.10)
<T(1— ) exp( (1 — )k { log[(1 M]—1})
where we have used the bound T'(z + 1) > e*(°82=1) Substitute ¥ = /2 and set

A:=(1-7v/2), B:=log(pCT(1-~/2)), (B.11)

to obtain

Znw <1+ Y exp (= Ak[log (Ak) — 1] + Aklog T + Bk),

ke (B.12)
=1+ Zexp (T- %{ — A[log (A%) — 1] +B}).
keN
We now set x := k/T and note by direct computation that, with z := A~1eB/A
sup z{—A[log(Az) — 1] + B} = z{—A[log(Az) — 1] + B} = eB/A, (B.13)

x€[0,00)

Therefore the leading contribution to the sum in (B.12)) is given by k &~ ZT' (more precisely,
the sum restricted to 0 < k < 22T is at most 22 T exp(T eP/4), while the contribution of
the remaining terms with k& > 2zT is negligible). It follows that

1 1
lim sup — T log Z, 1 < eP/ = [WCT(1—7/2)] 772 < . (B.14)

T—o0

We next focus on Z#,T, which equals

ZmT =1+ Z/Lkékj (B.15)
keN
with
Chor = EE [LT(O) } . (B.16)
We recall from (T.32) that we can write L7 (0) = lim. o L5.(0) in probability, where
T
A Co, . I'2 -«
L%(O) = 62(104)/0 ds 1{Xs€(0,5)}’ with Co ‘= (2a_1) (Bl?)

Let us focus on ﬁ%(O) for a moment. By explicit computation, for any k € N

1.1 o
E[Leok]:a/ dt dtkP()( X 0€>
R B O = S o ﬂ w € (0,¢)
k (B.18)
C .
< % -
~ 21—k /OSt1<-~~<tk§T an o K—l_‘[PO(thtél © (0’6))’

with tg := 0, where the inequality holds because, as we already remarked, lso(Xt € )
stochastically dominates P, (X; € ) for any z > 0. We also remark that the inequality is
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asymptotically sharp as € | 0. Therefore it follows via (1.31)) that, as € | 0,

%E (2504 < (@ +o0(1))" /

0<t; <<t <T
< (14 o) T I(1 — ),

where I;(-) is defined in (B.8). This shows that L5 (0) is uniformly bounded in L, for any
k € N. By uniform integrability, we can therefore exchange lim.o and E to get, recalling

(B.19),

k
dtp - - - dig (te — tg_l)f(lfa)
ZHI (B.19)

_ 1.7

Crr = lim —E {LET(O)’“} =TI (1 —a), (B.20)

’ 10 k!
and hence
k
Z%T =1+ Z Mk/ dtq - - - dty, H(tg — tg_l)i(lfa)
keN 0<t1<--<tx <T =1 (le)
=14 (uT*)L(1 - ).

keN

The steps in (B-10)-(B.14) (with ¥ = 1 —a instead of ¥ = y/2) show that not only Z,, 7 < oo
for all p, T, but also limp_, % log Z,, 7 < oo for all p.

B.2. Formula for the annealed free energy. To compute the annealed free energy
F(B,h) in the regime ¥ € (2(1 — a),00), we use the first line in (B.21)) to compute the
Laplace transform of Z,, 7. Writing e M = (Héf:l e Mbe=te-1)y o= MT=t) for X\ > 0, we get

/OOdT/\e_ATZ T:I—i—Z(u/ooto‘_le_’\tdt)k:l. (B.22)
0 . o\ Jo 1—pA=*I(a) '
Hence

F(p) = lim % log Z,,7 = {é’fﬂa))w’ 5 i 8: (B.23)
which proves .

APPENDIX C. LOCALIZATION CRITERION FOR THE ANNEALED MODEL

In this appendix we take a closer look at the criterion in and show that it does not
depend on the starting point of the walk. For the purpose of this appendix, let S = (Sp)nen,
be any recurrent Markov chain on a countable space E, and let ¢v: E — R be an arbitrary
function. Denote by 7% := min{n € N: S, = x} the first return time of S to x. Define

A= By [em_m(s") l{Tz:m}] € (0,00 -
meN

We will prove the following property:
Va,y: Ay >1 = A, > 1L (C.2)

It is convenient to introduce the following shorthand notation, for (possibly random)
oceN:

H(o) =D ¥(Sh), (C.3)
n=1
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so that we may simply write A, = E, [eH(Tx)]. Given an arbitrary y, we can split this
expected value according to the two complementary events {7% < 7%} and {7¥ < 7%}:

Aw == Ez [eH(TI) 1{7-1<7-y}:| + EIE [eH(TI) 1{7-y<7—z}:| . (C4)

The second term can be expanded by summing over all visits of S to y that precede the
first return to x. If we define

By =B [e"™) 10 ny],  Coy = Eo [ 1000y ], (C.5)
then by the strong Markov property we get

- Cay C
Ay =Bay+ > Cay(Bys)' Cya = Buy + B, (C.6)
=0 Bt
with the convention that A, = oo if By, > 1. Exchanging the roles of x and y, we get
Cyy C,
A =B Y YT )
y yo T 1— By, (C.7)

We are now ready to prove . Fix z,y. We show that if A, <1, then also 4, < 1. To
simplify the notation, we abbreviate b := By, b’ := By, and ¢ := CpyCyy, so that
c c
Ax:b—kﬂ, Ay:b/+1—b’
with the convention that the ratios equal oo if & > 1, respectively, b > 1. Assume that
A, < 1. Then we must have ¥’ < 1 and the formula A, = b+ 1= applies, which shows that
also b < 1 (because ¢ > 0). Hence we can write

(C.8)

1-v ¢ 1-0 1-¥
A =W+ S —py 47 W+ (A =B <V +—"(1—b) =1, (CO
Y +1—b +1—b1—b’ +1—b( ) < +1—b( ) » (C9)
ie, A, <1
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