ON CONSTRAINED ANNEALED BOUNDS
FOR PINNING AND WETTING MODELS

FRANCESCO CARAVENNA AND GIAMBATTISTA GIACOMIN

ABSTRACT. The free energy of quenched disordered systems is bounded above by the
free energy of the corresponding annealed system. This bound may be improved by ap-
plying the annealing procedure, which is just Jensen inequality, after having modified the
Hamiltonian in a way that the quenched expressions are left unchanged. This procedure
is often viewed as a partial annealing or as a constrained annealing, in the sense that the
term that is added may be interpreted as a Lagrange multiplier on the disorder variables.

In this note we point out that, for a family of models, some of which have attracted
much attention, the multipliers of the form of empirical averages of local functions cannot
improve on the basic annealed bound from the viewpoint of characterizing the phase
diagram. This class of multipliers is the one that is suitable for computations and it is
often believed that in this class one can approximate arbitrarily well the quenched free
energy.

1. THE FRAMEWORK AND THE MAIN RESULT

1.1. The set—up (I): linear chain models. A number of disordered models of linear
chains undergoing localization or pinning effects can be put into the following general
framework. Let S := {S,},_o;  be a process with 5, taking values in Z% d € N :=
{1,2,...} and law P.

The disorder in the system is given by a sequence w := {wy}, of IID random variables
of law P, with w, taking values in I' C R. As a matter of fact we could simply set I' = R,
however several examples that we will present deal with the case in which I is a finite set
and in this situation our results require no measurability conditions. The disorder acts on
the paths of S via an Hamiltonian that, for a system of size IV, is a function Hy, of the
trajectory S, but depending only on Sy, S1,...,Sy. One is interested in the properties of
the probability measures Py, defined by giving the density with respect to P:

dPy ., B
dP () = ZNw

exp (Hyw (5)), (1.1)

where Zy, := E [exp (Hn (5))] is the normalization constant. Our attention focuses on
the asymptotic behavior of log Zn .

In the sequel we will assume:
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Basic Hypothesis. There exists a sequence {D,}, of subsets of Z¢ such that P(S,, €

D, forn=1,2,...,N) Nee 1, namely

) 1
A;EnooﬁlogP(SneDn forn=1,2,...,N) =0, (1.2)
and such that Hy,(S)=01if S, € D, forn=1,2,...,N.
One sees directly that this hypothesis implies
1 1
im inf — > lim — = = .
l}\l;rilglof N log Zn . > ]\;Enoo N logP (S, € D, forn=1,2,...,N) = 0, (1.3)

P(dw)-a.s.. We will assume that {(1/N)log Zn .}, is a sequence of integrable random
variables that converges in the L' (P(dw)) sense and P(dw)-almost surely to a constant,
the free energy, that we will call f. These assumptions are verified in the large majority of
the interesting situations, for example whenever super/sub—additivity tools are applicable.

Of course (1.3) says that f > 0 and one is lead to the natural question of whether f =0
or f > 0. In the instances that we are going to consider the free energy may be zero or
positive according to some parameters from which Hy,(S) depends: f =0 and f > 0 are
associated to sharply different behaviors of the system.

In order to establish upper bounds on f one may apply directly Jensen inequality
(annealed bound) obtaining

1
f = lim NE[logZN,w]

N=eo . N (1.4)
< liminf < logE[Znw] =: f €[0,00],
and, in our context, if f: 0 then f = 0. The annealed bound may be improved by adding
to Hy,,(S) an integrable function Ay : TN — R such that E[Ay(w)] = 0: in fact f as
defined in the first line of (1.4) is unchanged by such transformation, while the second line
of (1.4) may depend on the choice of {Ax}x. We stress that not only f is left unchanged
by Hnw(S) — Hnw(S) + An(w), but Py, itself is left unchanged (for every IN). Notice
moreover that the optimal choice Ay (w) = —log Zn ., + E [log Zn ] yields the equality in
(1.4).

In the sequel when we refer to f we mean that Zy,, is defined with respect to Hy,
satisfying the Basic Hypothesis (no Ay term added).

1.2. The result. What we prove in this note is that

Proposition 1.1. Iff> 0 then for every local bounded measurable function F : TN — R
such that E[F(w)] = 0 one has

1
liminf ~ log EE

N—oo

exp <HN,W(S) + ZF(@nw)>] > 0, (1.5)

n=0

where (0,w)m = Wntm.

We can sum up this result by saying that when f = 0 but fv > 0 it is of no use
modifying the Hamiltonian by adding the empirical average of a (centered) local (bounded
measurable) function.
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Notice that requiring F'(-) to be bounded and measurable is superfluous if I" is a finite
set. From now on the reader should read local as a short—cut for local, measurable and
bounded. We take this occasion also to observe that in principle one should be able to
extend the result in the direction of unbounded F(-) or of non IID disorder: this however
requires additional assumptions and leads far from the spirit of this note.

On a mathematical level it is not obvious that the free energy may be approximated
via empirical averages of a local function of the disorder, because we are playing with
an exchange of limits (recall the optimal choice of Ay above). But we remark that in
the physical literature the approach of approximating the free energy via what can be
viewed as a constrained annealed computation, the term Zg:o F(0,w) being interpreted
as a Lagrange multiplier, is often considered as an effective way of approximating the
quenched free energy. Here we mention in particular [20] and [16] in which this point of
view is taken up in a systematic way: the aim is to approach the quenched free energy by
constrained annealing via local functions F' that are more and more complex, the most
natural example being linear combinations of correlations of higher and higher order.

The proof of Proposition 1.1 is based on the simple observation that whenever Ay is
centered

% log EE [exp (Hn o(S) + An(@))] >

1 1
N log E [exp (An(w))] + N logP (S, € Dy, forn=1,2,...,N) = Qn + Pn. (1.6)

By hypothesis Py = o(1) so one has to consider the asymptotic behavior of Qu. If
liminfy Qn > 0 there is nothing to prove. So let us assume that liminfy Qx = 0: in
this case the inferior limit of the left-hand side of (1.6) may be zero and we want to
exclude this possibility when f > 0 and Ay(w) = Zg:o F(0,w), F local and centered (of
course in this case limy @y does exist). And in Proposition 2.1 below in fact we show that
if logE [exp (An(w))] = o(NN), then sup,, |An(w)| = o(N) and therefore the corresponding
constrained annealing is just the standard annealing.

Remark 1.2. We stress that our Basic Hypothesis is more general than it may look at
first. As already observed, one has the freedom of adding to the Hamiltonian Hy,(S)
any term that does not depend on S (but possibly does depend on w and N) without
changing the model Py . It may therefore happen that the natural formulation of the
Hamiltonian does not satisfy our Basic Hypothesis, but it does after a suitable additive
correction. This happens for example in §1.2.3 below: the additive correction in that case
is linear in w and it corresponds to what in [21] is called first order Morita approximation.
In these terms, Proposition 1.1 is saying that higher order Morita approximations cannot
improve the bound on the critical curve found with the first order computation.

Remark 1.3. In the Morita approach of [16, 20], when applied to spin systems, it was
also taken for granted in the physics literature that the infinite volume measure describing
the joint distribution of disorder variables and spin variables can be described as Gibbs
measure with a proper (absolutely summable) Hamiltonian. This was shown to be false
in general, and potentials with weaker summability properties are needed [7, 17]. This
phenomenon underlines from a different perspective that local dependence of the Morita
potential on the disorder variables is not enough.

Let us now look at applications of Proposition 1.1.
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1.2.1. Random rewards or penalties at the origin. Let S, Sy = 0 € Z%, be a random walk
with centered IID non degenerate increments { Xy, }n, (X5); € {—1,0,1} for j =1,2,...,4,
and

N
Hyw =8 (1+ewn) 1(s,—0}- (1.7)
n=1
for > 0 and € > 0. The random variable w; is chosen such that Elexp(Aw;)] < oo for
every A € R, and centered. We write f(3,¢) for f: by super—additive arguments f exists
and it is self-averaging (this observation is valid for all the models we consider and will
not be repeated). We note that for ¢ = 0 the model can be solved, see e.g. [12], and
in particular f(3,0) = 0 if and only if 5 < (.(d) := —log(l — P(S never comes back
to 0)). Adding the disorder makes this model much more complex: the annealed bound
yields f(8,e) = 0if 8 < [.(d) — logE [exp(ew1)] =: ﬁc It is an open question whether
ﬂ~c coincides with the quenched critical value or not, that is whether f(3,e) = 0 implies
3 < f. or not. For references about this issue we refer to [2] and [23], see however also
the next paragraph: the model we are considering can in fact be mapped to the wetting
problem ([2, 12]). Proposition 1.1 applies to this context with D, = {0}C for every n [8,
Ch. 3] and says that one cannot answer this question via constrained annealed bounds.

1.2.2. Wetting models in 1 + d dimensions. Let S and w be as in the previous example
and

(1.8)

—00 otherwise.

N .
Hy — {ﬁ Yot (L +ewn) 1ys,y,=0y i (Sp)a >0forn=1,2,...,N

with 8 > 0 and € > 0. If one takes the directed walk viewpoint, that is if one considers
the walk {(n, Sp)}n, then this is a model of a walk constrained above the (hyper—)plane
zq = 0 and rewarded (3, on the average, when touching this plane. If d = 1 then this is
an effective model for a (141)—dimensional interface above a wall which mostly attracts
it. As a matter of fact in this case there is essentially no loss of generality in considering
d = 1, since localization is measured in terms of orthogonal displacements of the walk with
respect to the wall and we may restrict ourselves to this coordinate. Once again if € = 0
the model can be solved in detail, see e.g. [12]. Computing the critical 5 and deciding
whether the annealed bound is sharp, at least for small ¢, is an unresolved and disputed
question in the physical literature, see e.g. [9, 6, 26]. Proposition 1.1 applies with the choice
D, = 7%t x N.

1.2.3. Copolymer with adsorption models. For definiteness choose S to be a one dimen-
sional simple random walk and take the directed walk viewpoint. Imagine that the space
above the horizontal axis is filled with a solvent A, while below there is a solvent B. We
choose wy € {A, B} and for example

N
HJ@EJ(S) = Z (al{sign(Sn):—i—l,wn:A} + bl{sign(Sn):—l,wn:B} + C]-{Sn:()}) (19)

n=1
with a, b and c real parameters and sign(S,) = sign(S,—1) if S, = 0 (this is just a trick
to reward the bonds rather than the sites). In order to apply Proposition 1.1 one has to
subtract a disorder dependent term, cf. Remark 1.2: if a > b we change the Hamiltonian

N
Hyo(S) == HYZ(S) = > aly, 4. (1.10)
n=1
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without changing the measure Py, while the free energy has the trivial shift from f to
f —aP (wy = A). One can therefore choose D, = Z%~! x N and Proposition 1.1 applies.
This model has been considered for example in [21].

Note that if ¢ = 0 the model can be cast in a form that has been considered by a variety
of authors (see e.g. [15, 24, 1, 4, 25, 27, 19, 3]):

N
Hyw(S) = A (wn + h)sign(Sy), (1.11)

n=1

with w taking values in R. Once again the Hamiltonian has to be corrected by subtracting
the term A ), (wn, + k) in order to apply Proposition 1.1. One readily sees that (1.10) and
(1.11) are the same model when in the second case w takes only the values +£1, A = +1
and B=—1,and h=(a—b)/(a+b), A\ = (a+b)/4.

Proposition 1.1 acquires some interest in this context given the fact that the physical
literature is rather split on the precise value of the critical curve and on whether the
annealed bound is sharp or not, see [3] for details on this issue. In [5] we present numerical
evidence on the fact that the annealed curve does not coincide with the quenched one, and
in view of Proposition 1.1 this would mean that constrained annealing via local functions
cannot capture the phase diagram of the quenched system.

1.2.4. Further linear chain models and observations. In spite of substantial numerical ev-
idence that in several instances f = 0 but f > 0, we are unaware of an interesting

model for which this situation is rigorously known to happen. Consider however the case
Plw; = +1) =P(w; = —1) = 1/2 and

N
Hyw(S) =8 (1+ewn) 1(s,—n}, (1.12)
n=1

with 8 and e real numbers and S the standard simple symmetric random walk on Z. We
observe that Proposition 1.1 applies to this case with D, = {n}D and that the model
is solvable in detail. In particular f(3,¢) = (8 — log2) V 0, regardless of the value of e.
The annealed computation instead yields f(8,¢) = (3 4 log cosh(e) — log 2) V 0. Notice in
particular that the critical values of (3, respectively log 2 and log 2 — log cosh(e), differ as
long as there is disorder in the system (¢ # 0). It is interesting to see in this toy model
how the optimal choice of Ay, mentioned at the end of § 1.1, is rather far from being the
empirical average of a local function, when N is large.

Remark 1.4. We point out that we restricted our examples only to cases in which S is
a simple random walk, but in principle our approach goes through for much more general
models, like walks with correlated increments or self-interacting walks, see [22] for an
example. And of course S, takes values in Z¢ only for ease of exposition and can be
easily generalized. Another important class of models to which our arguments apply is the
disordered Poland—Scheraga one [10].

1.3. The set—up (II): interface pinning models. It is natural to wonder whether one
can go beyond the linear chain set—up. The answer is positive and we give the example of
(d+1)-dimensional effective interface models, d > 1, natural generalization of the (1+1)-
dimensional interfaces considered in the previous section. By this we mean for example
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the case of S := {S,},cz¢ with S, € R and the law of S is P = Py:

1
P (dy) x exp D) Z U (¢n — onr) H den H do(depn), (1.13)
n,n’:;ln—n’|=1 neVy nEV]E:,
where Viy = [-N/2, N/2]¢ N Z% and U(-) is a measurable function such lim, 4. U(r) =

+oo sufficiently rapidly to make the right—hand side of (1.13) integrable (note that we may
assume U(-) to be even). As a matter of fact, in order to have a treatable model one has
to restrict rather strongly the choice of U(-): interface models are extremely challenging
even without introducing pinning potentials (or, of course, disorder). Connected to that
is also the reason why we have chosen the continuous set—up for interface models: discrete
models are even more challenging [13].

The disorder in the system this time is given by an IID field w := {wp },,cz¢ and Hy ., (5)
depends only upon S,, with n € Viy: wy takes once again values in I'. The definition (1.1) of
Py, is unchanged and the Basic Hypothesis varies in the obvious way, that is we assume
that there exists { Dy}, cza such that

. 1
A}gnoo Ne logP (S, € D,, forn e Vy) = 0, (1.14)

and such that Hy,,(S) = 0if S,, € D,, for every n € V. Like for linear chains we assume
the existence of the quenched free energy, that is of the L' (P(dw)) and P(dw)-a.s. limit of
the sequence {N ~dlog Z N,W}  and like in the linear chain case we have 0 < f < f, where

f is again the annealed free energy defined in analogy with (1.4).

The punch-line of this section is that Proposition 1.1 holds in this new set—up and it is
proven exactly in the same way:

Proposition 1.5. Iff> 0 then for every local bounded measurable function F' : rz R
such that E[F(w)] = 0 one has

1

N—oo

> 0. (1.15)

exp <HN,W(5) + > F(an)>

neA N

In order to give examples of applications we may consider the d + 1 dimensional model
of random rewards and penalties near the origin, that is the case of

Hy, = 0 Z (1 + ewn) 1(g,e(-1,1)} (1.16)

neVy

but one can write natural straightforward generalizations of the wetting models and of
the copolymer with adsorption. The Basic Hypothesis in all these cases is a probability
estimate on what is known as an entropic repulsion event, that is, for example, the event
that S, > 1 for every n € Viy and one can for example show that such a probability is
bounded below by exp (—eN¢1), ¢ > 0, if U(:) is C? and inf, U”(r) > 0, see [13] and
references therein. So in this case one may apply Proposition 1.1 to conclude that one
cannot improve on the annealed bound by constraining via local functions.

Two comments, of opposite spirit, are however in order (for details see the lecture notes
[13]):

(1) The Basic Hypothesis requires a substantially weaker estimate and it is reasonable
to expect that one is able to verify it in greater generality.
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(2) The understanding of the associated deterministic models (¢ = 0 for random re-
wards and wetting models and the annealed models in general) is still extremely
partial. Somewhat satisfactory results are available for quadratic U(-), that is P is
Gaussian, but even in this case one has to give up the precise estimates available
for the linear chain case (like computing exactly (3.) and basic questions are still
open. So the application of Proposition 1.5, while being relevant on a conceptual
level, yields a result that has little quantitative content.

2. ON ZERO FREE ENERGY AND NULL POTENTIALS

In this Section d > 1. Let {wy},,cze be an IID family of random variables under the
probability measure P, taking values in I' = R. The law of w; is denoted by v.

We are interested in the family A = {An}nven of empirical averages of a local function
F, that is

An(w) = D F(0nw) , (2.1)
neVy

where F : ITZ" - R depends only on the variables indexed by a finite set A C Z9, that
is F(w) = F(v') if wy, = w], for every n € A. Notice that, by standard (super—additivity)
arguments, the limit

L(F) = ]\}iinwﬁlogE[exp(AN(w))], (2.2)

exists. Moreover, by Jensen’s inequality, L(F') > E [F(w)].
We will prove the following:

Proposition 2.1. Assume that E [F(w)] = 0. If L(F) = 0, then

1
lim —— A —0. 2.
Jim = sgp\ N(w)| =0 (2.3)

Of course, since the result is uniform in w, the proposition covers also the linear chain
set—up, where one considers 6| y/2)41 VN rather than Vi.

Proof. We consider the potential, in the sense of [11, Def. (2.2)], ® := {®p}g-za defined
by
F(0_,w if there exists n such that 6,B = A,
R . 24
0 otherwise.

Let v be the single spin reference measure [11, Def. (2.9)] and let us set

22 (w) = / exp (H3(@)) [ v(don) T bun(don), (2.5)
nevn nEV]E,
with Hy(o) == > p.rvy -0 2B(0). Note that Ay (-) differs from H%(-) only by boundary
terms so that sup,, |Ax(w) — Hy(w)] < CN! for some C > 0 (we recall that F(-) is
bounded). Therefore it suffices to show that (2.3) holds with A (-) replaced by Hy(-).

Let us consider the f—invariant Gibbs measure p associated to the potential ®, the
existence of which is established in a standard way by taking infinite volume limits with
periodic boundary conditions (if v has unbounded support tightness follows from the
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fact that F'(-) is bounded). By [11, Theorem (15.30)] the relative entropy density of v>°
(v>°(dw) := [ ,,eza v(dwy)) with respect to p exists and can be written as

lim %HVN (1/°°|,u> = lim ﬁlogZﬁ(w) - /F(w) v™(dw), (2.6)

N—oo N—oo

where Hy,, (v>°|u) is the relative entropy of v*>° with respect to p, when both measures
are restricted to the o—algebra generated by the variables {wy, }nev, . We have of course
used the standard definition of relative entropy, H(u1|p2) = [log(dui/dpa)dus for pq
and po two probability measures with p; absolutely continuous with respect to us. A last
remark on formula (2.6) is that it holds for any choice of w: this is just the independence
of the free energy on boundary conditions. This independence may be seen directly since
log(Zg(w)/Z%(w")) = O(N4~1) uniformly in w and w’ and this implies also that the first
term in the right-hand side of (2.6) may be replaced by L(F").

Notice now that both terms in the right-hand side of (2.6) are zero, respectively by
the hypotheses L(F) = 0 and E[F(w)] = 0, and therefore, as a consequence of the Gibbs
variational principle [11, Theorem (15.37)], > is a Gibbs measure with the same specifi-
cation of i, but of course v™ is the Gibbs measure with potential ®© identically equal to
zero and single spin measure v. This means that & — <I>(O)(: ®) is a negligible potential,
that is [11, Theorem (2.34)] the function

> (2sw) -2 w) (2.7)
B:BNVy#)
does not depend on the variables w,, for n € Vy. We can write
Hy(w) = > ®pw) = ) dpw)+ > Pp(w)
B:BNVyN#£0 B:BCVy B:BNVy#0, B¢V (2.8)
=: In(w) + Ry (w),
and since ’H%(w) does not depend on the wy,’s for n € Viy we may change in the right—hand

side the configuration w with @ defined by setting w, = w, for n € V]S and w, = ¢, ¢ an
arbitrary fixed constant, for n € V. Therefore, in random variable terms, we have

Hy(w) = cn + Ry (@), (2.9)

with ¢y = In(@) (notice that it is not random and it depends only on the choice of ¢).
From the immediate estimate sup,, |Ry(w)| < CN9! for some C = C(F) > 0 it follows
that for all w

ey —CNL < HY(w) < ey + CONYL (2.10)
and the hypothesis L(F) = 0 yields immediately limy_,oo ¢y /N¢ = 0. Therefore
sup|Hj{\);(w)| < ey + CNIt = o(N?), (2.11)

and the proof is complete.
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