THE WEAK COUPLING LIMIT
OF DISORDERED COPOLYMER MODELS

FRANCESCO CARAVENNA AND GIAMBATTISTA GIACOMIN

ABSTRACT. A copolymer is a chain of repetitive units (monomers) that are almost iden-
tical, but they differ in their degree of affinity for certain solvents. This difference leads
to striking phenomena when the polymer fluctuates in a non—-homogeneous medium, for
example made of two solvents separated by an interface. One may observe, for instance,
the localization of the polymer at the interface between the two solvents. A discrete
model of such system, based on the simple symmetric random walk on Z, has been inves-
tigated in [9], notably in the weak polymer—solvent coupling limit, where the convergence
of the discrete model toward a continuum model, based on Brownian motion, has been
established. This result is remarkable because it strongly suggests a universal feature of
copolymer models. In this work we prove that this is indeed the case. More precisely,
we determine the weak coupling limit for a general class of discrete copolymer models,
obtaining as limits a one-parameter (a € (0,1)) family of continuum models, based on
a-stable regenerative sets.

1. INTRODUCTION

1.1. The discrete model. Let S := {S;,}n=01,... be the simple symmetric random walk
on Z, that is Sp = 0 and {Sy+1 — Sp}tn=0,1,... is an IID sequence of random variables, each
taking values +1 or —1 with probability 1/2. If P is the law of S, we introduce a new
probability measure Py, = Py, on the random walk trajectories defined by

dPNM( ) =
dP " N
where N € N:= {1,2,...}, A, h € [0,00), we have set A(:) := 1(_ 0)(-) and w := {wp }nen

is a sequence of real numbers. Of course Zy ., = Zn A is the normalization constant,
called partition function and given by

N
exp [ =20 Y A (Sp_1+Sn) (wn+h) |, (1.1)

n=1

N
Znw = B lexp | =20 A (Sp-14Sn) (wa+h) || - (1.2)

n=1
We could have used A(S,,) instead of A(S,,—1 +.5,,), but this apparently unnatural choice

actually has a nice interpretation, explained in the caption of Figure

We are interested in the case when w, called the sequence of charges, is chosen as
a typical realization of an IID sequence (call P its law). We assume that w and S are
independent, so that the relevant underlying law is P ® P, but in reality we are interested
in quenched results, that is, we study Py, (in the limit N — oo) for a fixed choice of w.
In the literature, the charge distribution is often chosen Gaussian or of binary type, for
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example P(w; = +1) = P(w; = —1) = 1/2. We invite the reader to look at Figure [1| in
order to have a quick intuitive view of what this model describes (a polymer model).

Figure [I] also schematizes an aspect of the model which is particularly relevant to us.
Namely that the Hamiltonian of the model, i.e. the quantity appearing at the exponent in
the right-hand side of , does not depend on the full trajectories of .S, but only on the
random set 7 := {n € NU{0} : S,, = 0} (that we may also look at as an increasing random
sequence T =: {79, T1,T2,...}) and on the signs & = {{;};en, defined by &; := A(S,) for
n € {7;+1,7j41 — 1} (that is £ = 0 or 1 if the j-th excursion of S is positive or negative).
In fact it is easily seen that A(Sp—1+ Sn) = 2272, & 1(r,_, 7,)(n) is a function of 7 and
¢ only, and this suffices to reconstruct the Hamiltonian (see (1.1])). Note that we call the
variables &, signs even if they take the values {0, 1} instead of {—1,+1}.

Under the simple random walk law P, the two random sequences 7 and £ are inde-
pendent. Moreover, £ is just an IID sequence of B(1/2) (i.e., Bernoulli of parameter 1/2)
variables, while 7 is a renewal process, that is, 7o = 0 and {7; — 7j_1};en is IID. Let us
also point out that for every j € N

n—oo ]-

- 2/Tn3/2’

where we have introduced the notation f(z) ~ g(x) for lim, o f(z)/g(z) = 1 (in the
sequel we will also use ~ to denote equality in law: for example wy ~ ws ~ N(0,1)).

P(Tj—Tj_1:2n) = P(7'1:2n) (1.3)

This discussion suggests a generalized framework in which to work, that has been already
introduced in [7, [I7]. We start from scratch: let us consider a general renewal process
T = {7Tn}n>0 on the non-negative integers N U {0} such that

~Y
nlta ’

K(n) == P(r =n) (1.4)
where @ > 0 and L : (0,00) — (0,00) a slowly varying function, i.e., a (strictly) positive
measurable function such that lim,_, L(cz)/L(z) = 1, for every ¢ > 0 (see Remark
below for more details). We assume that 7 is a persistent renewal, i.e., P(1; < o0) =
> nen K (n) = 1, which is equivalent to P(|7| = co) = 1, where |7| denotes the cardinality
of 7, viewed as a (random) subset of NU {0}. We will switch freely from looking at 7 as a
sequence of random variables or as a random set.

Let £ = {&, }nen denote an IID sequence of B(1/2) variables, independent of 7, that we
still call signs. With the couple (7, &) in our hands, we build a new sequence A = {A,, },en
by setting A, = >°72, & 1(5,_, r;)(n), in analogy with the simple random walk case. In
words, the signs A,, are constant between the epochs of 7 and they are determined by &.

We are now ready to introduce the general discrete copolymer model, as the probability
law Py, = P}\V}ZJ for the sequence A defined by

Prowny = L —2)\§:A (wn + R) (1.5)
P = I exp nlwn , .

n=1

where N € N, A, h € [0,00) and w = {wp}nen is a sequence of real numbers (a typical
realization of an IID sequence, see below). The partition function Zy ,, = Z])\‘,’Z is given by

N
exp (—2)\ Z Ay (wp, + h))

n=1

ZN,w = E . (16)
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FIGURE 1. The polymer model we deal with has been introduced in the mathematical
literature, see for example [24], as a modification of the law of the simple symmetric
random walk { Sy }»>0 on Z, with a density proportional to exp[A 3°"_, (wn +h) sign(Sy)]
(Boltzmann factor). Each bond (Sn—_1,S») is interpreted as a monomer and by definition
sign(Sy) is the sign of (Sn—1,Sn), Le., it is +1 (resp. —1) if the monomer (Sn—1,Sn)
lies in the upper (resp. lower) half plane. In a quicker way, sign(S,) is just the sign
of Sp,—1 + Sn. The Boltzmann factor is somewhat different from the one appearing in
(L), but this is not a problem: in fact AN (wn + h)sign(S,) can be rewritten as
—2X ij:l A(Sn—1+ Sn)(wn + h) + cn, where cy 1= )‘22]:1(5% + h) does not depend
on S, therefore the quenched probability Py ., is not affected by such a change. It is clear
that the trajectories of the walk, that are interpreted as configurations of a polymer chain,
have an energetic gain (that is, a larger Boltzmann factor) if positively charged monomers
[(wn + h) > 0] lie in the upper half plane and negatively charged ones [(wn + h) < 0] lie
in the lower one. The fulfillment of this requirement, even if only in a partial way, entails
however an entropic loss: in fact the trajectories have to stick very close to the horizontal
axis (the interface) and there are only few such random walk trajectories. The issue is
precisely to understand who is the winner in this energy-entropy competition. The lower
part of the figure stresses the fact that the Boltzmann factor does not depend on the full
trajectory S, but only on the lengths and the signs of the successive excursions, described
by the variables 7,£. In the figure it is also represented an example of the sequence of
charges attached to the copolymer, in the binary case (wn, € {—1,+1}).

In order to emphasize the value of « in , we will sometimes speak of a discrete a-
copolymer model, but we stress that Py, depends on the full law K(-).

Note that the new model only describes the sequence of signs A, while the simple
random walk model records the full trajectory S. However, once we project the
probability law on the variables A, := A(S,—1 + Sp), it is easy to check that the
simple random walk model becomes a particular case of and its partition function
coincides with the general one given by , provided we choose K (-) as the law of
the first return to zero of the simple random walk (corresponding to o = %, see and
(1.4)). As a matter of fact, since we require that K(n) > 0 for all large n € N (cf. (L.4)),
strictly speaking the case of the simple random walk is not covered. We stress, however,
that our arguments can be adapted in a straightforward way to treat the cases in which
there exists a positive integer T' such that K(n) = 0 if n/T ¢ N and relation holds

restricting n € TN (of course T' = 2 for the simple random walk case).

To complete the definition of the discrete copolymer model, let us state precisely our
hypotheses on the disorder variables w = {wy, }nen. We assume that the sequence w is IID
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and that w; has locally finite exponential moments, that is there exists ¢y > 0 such that
M(t) = Elexp(twi)] < oo for every t € [—tg, o] . (1.7)

We also fix
Efw)) =0 and Ewi] =1, (1.8)
which entails no loss of generality (it suffices to shift A\ and h). In particular, these as-
sumptions guarantee that there exists ¢y > 0 such that
max M(t) < exp (co t2) . (1.9)
te[*to,to]

Although it only keeps track of the sequence of signs A, we still interpret the probability
law Py, defined in (1.5 as a model for an inhomogeneous polymer (this is the meaning
of copolymer) that interacts with two selective solvents (the upper and lower half planes)
separated by a flat interface (the horizontal axis), as it is explained in the caption of
Figure |1} In particular, A,, = 0 (resp. 1) means that the n-th monomer of the chain lies
above (resp. below) the interface. To reinforce the intuition, we will sometimes describe
the model in terms of full trajectories, like in the simple random walk case.

Remark 1.1. We refer to [4] for a full account on slowly varying functions. Here we just
recall that the asymptotic behavior of L(-) is weaker than any power, in the sense that,
as r — 00, L(x) z* tends to oo for a > 0 and to zero if a < 0. The most basic example of
a slowly varying function is any positive measurable function that converges to a positive
constant at infinity (in this case we say that the slowly varying function is trivial). Other
important examples are positive measurable functions which behave asymptotically like
the power of a logarithm, that is L(z) ~ log(1 + x)?, a € R.

1.2. The free energy: localization and delocalization. This work focuses on the
properties of the free energy of the discrete copolymer, defined by

1
F(A\h) = A}gnoo Fy (A h), where Fn(A h) = NE[log ZNw) - (1.10)

The existence of such a limit follows by a standard argument, see for example [I7, Ch. 4],
where it is also proven that for every A and h

1
F(\,h) = lim —logZy.,,  P(dw)-a.s. and in L'(P). (1.11)
N—oo N ’
Equations (1.10)—(1.11) are telling us that the limit in (1.11)) does not depend on the

(typical) realization of w. Nonetheless it is worthwhile to stress that it does depend on P,
that is on the law of wi, as well as on the renewal process on which the model is built,
namely on the inter-arrival law K (-). This should be kept in mind, even if we omit P and
K(-) from the notation F(A,h).

An elementary, but crucial observation is:

FOLR) >0,  YAA>0. (1.12)
This follows simply by restricting the expectation in (1.6]) to the event {r; > N,& = 0},
on which we have Ay = 0, ..., Ay = 0, hence we obtain Zy,, > %P(Tl > N) and it

suffices to observe that N~!logP(7; > N) vanishes as N — oo, thanks to . Notice
that the event {r; > N,& = 0} corresponds to the set of trajectories that never visit the
lower half plane, therefore the right hand side of may be viewed as the contribution
to the free energy given by these trajectories. Based on this observation, it is customary to
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FIGURE 2. In the figure, on the left, a sketch of the phase diagram of the discrete copoly-
mer model. The critical curve A — h.(\) separates the localized regime £ from the delo-
calized one D. This is a free energy characterization of the notion of (de)localization, but
this characterization does correspond the to sharply different path behaviors, sketched
on the right side of the figure. In a nutshell, if (A, k) € L then, for N — oo, the typical
paths intersect the interface (the horizontal axis) with a positive density, while in the
interior of D the path strongly prefers not to enter the lower half plane. In this work we
just focus on properties of the free energy and for details on the link with path properties,
including a review of the literature and open problems, we refer to [I7, Ch. 7 and Ch. 8].

say that (A, h) € D (delocalized regime) if F(\, h) = 0, while (A, h) € L (localized regime)
if F(A\, h) > 0 (see also Figure |2/ and its caption).
We have the following:

Theorem 1.2. If we set he(\) :=sup{h: F(A\, h) > 0}, then h.(\) = inf{h: F(A\,h) = 0}
and the function h. : [0,00) — [0, 00] is strictly increasing and continuous as long as it is
finite. Moreover we have the explicit bounds

1 1
———log M (—2)/(1 < he(N) < —logM (=2)\), 1.13
ST PR M2V ) € h(h) € GlrM(2). (L13)
where the left inequality is strict when o > 0.801 (at least for X\ small) and the right
inequality is strict as soon as o > 0 (for every A\ < sup{t : log M(—2t) < o0} ).

The first part of Theorem is proven in [9] and [6] (see also [I7, Ch. 6]). In [6] one
also finds the quantitative estimates (1.13|), except for the strict inequalities proven in [7]
(see also [25]). From (|1.13)) one directly extracts

he(N) he(A)

< liminf < i <1 >0. 1.14
Tta = 1&11\1(1)1 S 1I>I\I\S:)1p <1, Ya >0 ( )
For a > 0, this result has been sharpened to
1 1 he(A he
max <, 9(e) , > < liminf %) < limsup () <1, (1.15)
2 Vi+a 1+« ANO A AN0 A

where ¢(+) is a continuous function such that g(a) = 1 for @ > 1 and for which one can
show that g(a)/v1+a > 1/(1+«) for a > 0.801 (by evaluating ¢(-) numerically one can
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go down to « > 0.65). In particular, the lower bound in (1.15)) reduces to 1/2 for o > 3
and to 1/y/1 + « for a € [1,3]. The bounds in (1.15)) are proven in [7] and [26]. We invite
the reader to look again at Figure

The focus on the behavior of the critical line h.(\) for A small has a reason that is at the
heart of this paper: our aim is to study the free energy F(\, h) of discrete copolymer models
in the weak coupling limit, i.e., when X and h are small. We will show that the behavior of
F(\, h) in this regime is captured by the exponent « appearing in , independently of
the finer details of the inter-arrival law K (-). In particular, we prove that h.(0) exists and
that it depends only on «. In order to state these results precisely, we need to introduce
a class of copolymer models in the continuum: in a suitable sense, they capture the limit
of discrete copolymer models as A, h 0.

1.3. The continuum model: Brownian case. E. Bolthausen and F. den Hollander
introduced in [9] the Brownian copolymer model, whose partition function is given by

ZE = E [exp <—2A/OtA(§(u))(dB(u)+hdu)>} : (1.16)

where once again A\, h > 0, A(z) 1= 1(_ ) (7) and B(-) (the polymer), 8(-) (the medium)
are independent standard Brownian motions with laws P and P respectively. B

The corresponding free energy Fgnm(A, h) is defined as the limit as ¢t — oo of 1E[log Zfév[]
and one has Fgy(A, h) > 0 for every A\, h > 0, in analogy with the discrete case. Therefore,
by looking at the positivity of Fgyr, one can define also for the Brownian copolymer model
the localized and delocalized regimes, that are separated by the critical line h.(A) :=
sup{h : Fpm(A,h) > 0}. Now a real novelty comes into the game: the scaling properties
of the two Brownian motions yield easily that for every a > 0

1. ~
EFBM(CL)H ah) = FBM()\, h) . (1.17)

In particular, the critical line is a straight line: %C()\) = mpum A, for every A > 0, with
mpym = sup {c >0: Fpm(l,¢) >0} . (1.18)
We are now ready to state the main result in [9]:

Theorem 1.3. For the simple random walk model (1.1)), with wy such that P(w; = +1) =
P(w; = —1) = 1/2, we have

.1 ~
21{1% EF(a)\,ah) = Fpm(A, h), VYA, h >0, (1.19)
and BV
/l\l{‘% 3 = mpy € (0,1]. (1.20)

The great interest of this result is that it provides a precise formulation for the fact that
the Brownian copolymer model is the weak coupling scaling limit of the simple random
walk copolymer model . At the same time, the fact that such a result is proven only
for the simple random walk model and only for a single choice of the charges distribution
appears to be a limitation. In fact, since Brownian motion is the scaling limit of many
discrete processes, it is natural to guess that Theorem should hold for a large class of
discrete copolymer models and for a vast choice of charge distributions (remaining of course
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in the domain of attraction of the Gaussian law and adding some technical assumptions).
This would show that the Brownian copolymer model has indeed a universal character.

In fact, Theorem has been generalized in [I§] to a large class of disorder random
variables (including all bounded random variables). A further generalization has been
obtained in [22], in the case when, added to the copolymer interaction, there is also a
pinning interaction at the interface, that is an energy reward in touching the interface. We
stress however that these generalizations are always for the copolymer model built over
the simple random walk: going beyond the simple random walk case appears indeed to be
a very delicate (albeit natural) step.

The main result of this paper is that Theorem can be generalized to any discrete
a-copolymer model with a € (0,1) and to any disorder distribution satisfying f
(see Theorem below). For o = % the scaling limit is precisely the Brownian copolymer
model , like in the simple random walk case, while for o # % the continuum copoly-
mer model is defined in the next subsection. We stress from now that the scaling limit
depends only on «: in particular, there is no dependence on the slowly varying function
L(-) appearing in and no dependence on P (7 = n) for any finite n.

1.4. The continuum o-copolymer model. Let us start by recalling that, for § > 0,
the square of 6-dimensional Bessel process (started at 0) is the process X = {X;}>0 with
values in [0, 00) that is the unique strong solution of the following equation:

t
X, = 2/ VX, dw, + 6t (1.21)
0

where {w;}+>0 is a standard Brownian motion. The d-dimensional Bessel process is by
definition the process Y = {Y; := v/X;}+>0: it is a Markov process on [0, 00) that enjoys
the standard Brownian scaling [23, Ch. XI, Prop. (1.10)]. We focus on the case ¢ € (0, 2),
when a.s. the process Y visits the origin infinitely many times [23, Ch. XI, Prop. (1.5)].
We actually use the parametrization 6 = 2(1 — «) and we then restrict to a € (0,1).

It is easily checked using It6’s formula that for o = % (i.e. 6 = 1) the process Y has the
same law as the absolute value of Brownian motion on R. Since to define the Brownian
copolymer model we have used the full Brownian motion process, not only its
absolute value, we need a modification of the Bessel process in which each excursion from
zero may be either positive or negative, with the sign chosen by fair coin tossing. Such a
process, that we denote by B := {B*(t)}+>0, has been considered in the literature for
example in [3] and is called Walsh process of index « (in [3] a more general case is actually
considered: in their notations, our process corresponds to the choices k = 2, Ey = [0, 00),
Ey = (—00,0] and p; = pa = 1/2). It is easy to see that the process B® inherits the
Brownian scaling. We denote by P its law.

We are now ready to generalize the Brownian copolymer model (1.16)): given o € (0, 1),
we define the partition function of the continuum a-copolymer model through the formula

~ t ~
i = BEexp (—2)\/0 A(B*(u)) (dﬁ(u)—!—hdu)) , (1.22)

where 5 = {5(t) }+>0 always denotes a standard Brownian motion with law P, independent
of BY, and A(z) = 1(_ o) (7). Since for a = % the process B'/2 is just a standard Brownian
motion, Ztl 22 coincides with ZP%VI defined in (|1.16]). For the sake of simplicity, in ((1.22)) we
have only defined the partition function of the continuum a-copolymer model: of course,
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one can easily introduce the corresponding probability measure P; g on the paths of E“,
in analogy with the discrete case, but we will not need it.

Let us stress that the integral in , as well as the one in , does not really
depend on the full path of the process BY: in fact, being a function of A(Ea(~)), it only
matters to know, for every u € [0,¢], whether B(u) < 0 or B(u) > 0. For this reason it is
natural to introduce (much like in the discrete case) the zero level set 7* of B(-):

7 = {s€[0,00): B%(s) = 0}. (1.23)

The set 7% contains almost all the information we need, because, conditionally on 7%,
the sign of B inside each excursion is chosen just by tossing an independent fair coin.
Moreover, the random set 7% is a much studied object: it is in fact the a—stable regenerative
set [23, Ch. XI, Ex. (1.25)]. Regenerative sets may be viewed as the continuum analogues
of renewal processes: we discuss them in some detail in Section 2] also because it will come
very handy to restate the model in terms of regenerative sets for the proofs.

The free energy for the continuum a-copolymer model is defined in close analogy to the
discrete case, but proving its existence turns out to be a highly non-trivial task. For this
reason, we state it as a result in its own:

Theorem 1.4. The limit of + E[log Zf"ﬂ] as t — oo exists and we call it Fo (N, h). For all
a € (0,1) and A\, h € [0,00) we have 0 < Fo(\, h) < 0o and furthermore

I
tli%loE log Z'5 = Fa(\ h), (1.24)
both P(dB)-a.s. and in L'(P). The function (\,h) = Fo(X\, h) is continuous.

Like before, the non-negativity of the free energy leads to exploiting the dichotomy
Fo(\, h) =0 and Fo (A, h) > 0 in order to define, respectively, the delocalized and localized
regimes of the continuum a-copolymer model. The monotonicity of Fu (), ) guarantees
that if we set h%(\) := sup{h > 0 : Fo(\,h) > 0}, then we also have h®(\) := inf{h >
0 : Fo(\, h) = 0}. Moreover, the scaling properties of 3 and B® imply that holds
unchanged for Fo(-,-) so that the critical line is again a straight line: h%(\) = M\ for
every A > 0, with

Mg = sup{c>0: Fa(l,¢) >0}, (1.25)

in direct analogy with (1.18). Plainly, m;, = mpum.

1.5. The main result. We can finally state the main result of this paper:

Theorem 1.5. Consider an arbitrary discrete a-copolymer model satisfying the hypotheses

11.4), (1.7) and (1.8), with o € (0,1). For all \,h > 0 we have

.1 ~
il{‘% EF(a/\,ah) = Fa(\ ). (1.26)

Moreover
RN -
/1\1{‘1%7 = M,. (1.27)
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Theorem shows that the continuum a-copolymer is the universal weak interaction
limit of arbitrary discrete a-copolymer models. Although the phase diagram of a discrete
copolymer model does depend on the details of the inter-arrival law K (), it nevertheless
exhibits universal features for weak coupling. In particular, the critical line close to the
origin is, to leading order, a straight line of slope m,. It is therefore clear that computing
m,, or, at least, being able of improving the known bounds on m,, would mean a substantial
progress in understanding the phase transition in this model. Note that, of course, given
, the bounds in are actually bounds on m, (and they represent the state of
the art on this important issue, to the the authors’ knowledge).

It is remarkable that in the physical literature there is, on the one hand, quite some
attention on the slope at the origin of the critical curve, see for example [14], but, on the
other hand, its universal aspect has not been appreciated (some of the physical predictions
are even in contradiction with the universality of the slope). We refer to [7, [17, [I5] for
overviews of the extensive physical literature on copolymer models.

We do not expect a generalization of T heoremto a ¢ (0,1). To be more precise, the
case o = 0 is rather particular: the critical curve is known explicitly by Theorem the
slope at the origin is universal and its value is one. The case o = 1 with E[rj| = oo may
still be treatable, but the associated regenerative set is the full line, so Theorem [1.5| cannot
hold as stated. An even more substantial problem arises whenever E[r]] < oo (in particular
for every o > 1): apart from the fact that the regenerative set becomes trivial, there is a
priori no reason why universality should hold. The rationale behind Theorem [I.5]is that at
small coupling the renewal trajectories are not much perturbed by the interaction with the
charges. If E[r1] = 0o, one may then hope that long inter-arrival gaps dominate, as they
do when there is no interaction with the charges: since the statistics of long gaps depends
only on the tail of K(-) and within long gaps the disorder can be replaced by Gaussian
disorder, Theorem is plausible. This is of course not at all the case if E[rj] < cc.

Remark 1.6. One may imagine that (1.27) is a consequence of ([1.26), but this is not

true. In fact, it is easy to check that ([1.26)) directly implies

he(A) > My, (1.28)

lim inf
AN
but the opposite bound (for the superior limit) does not follow automatically. We obtain
it as a corollary of our main technical result (Theorem [3.1)).

1.6. Outline of the paper. We start, in Section [2] by taking a closer look at the con-
tinuum model and by giving a proof of the existence of the free energy (Theorem [I.4]).
Such an existence result had been overlooked in [9]. A proof was proposed in [16], in the
Brownian context, giving for granted a suitable uniform boundedness property that is not
straightforward (this is the issue addressed in Appendix |[A| below). The proof that we give
here therefore generalizes (from o = 1/2 to a € (0,1)) and completes the proof in [16]. We
follow the general scheme of the proof in [16], that is, we first define a suitably modified
partition function, that falls in the realm of Kingman’s super-additive ergodic Theorem
[20], and then we show that such a modified partition function has the same Laplace as-
ymptotic behavior as the original one. Roughly speaking, the modified partition function
is obtained by relaxing the condition that B*(0) = 0: one takes rather the infimum over
a finite interval of starting points. If introducing such a modified partition function is a
standard procedure, a straightforward application of this idea does not seem to lead far.
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Such an infimum procedure has to be set up in a careful way in order to be able to per-
form the second step of the proof, that is stepping back to the original partition function.
With respect to the proof in [16], that exploits the full path of the Brownian motion B(+),
the one we present here is fully based on the regenerative set. Overall, establishing the
existence of the continuum free energy is very much harder than the discrete counterpart
case and it appears to be remarkably subtle and complex when compared to the analogous
statement for close relatives of our model (see, e.g., [11]).

In Section [3| we give the proof of our main result, Theorem following the scheme
set forth in [9] (we refer to it as the original approach), which is based on a four step
procedure. We outline it here, in order to give an overview of the proof and to stress the
points at which our arguments are more substantially novel.

(1) Coarse graining of the renewal process. In this step we replace the Boltzmann factor
by a new, coarser one, which does not depend on the short excursions of the renewal
process (in the sense that these excursions inherit the sign of a neighbor long gap).
This step is technically, but not substantially different from the one in the original
approach.

(2) Switching to Gaussian charges. The original approach exploits the well-known, and
highly non-trivial, coupling result due to J. Komlés, P. Major and G. Tusnady [21].
We take instead a more direct, and more elementary, approach. In doing so we get
rid of any assumption, beyond local exponential integrability, on the disorder.

(3) From the renewal process to the regenerative set. This is probably the crucial step.
The original approach exploits heavily the underlying simple random walk and the
exact formulas available for such a process. Our approach necessarily sticks to the
renewal process and, in a sense, the point is showing that suitable local limit theo-
rems (crucial here are results by R. Doney [12]) suffice to perform this step. There is
however another issue that makes our general case different from the simple random
walk case. In fact this step, in the original approach, is based on showing that a suit-
able Radon-Nikodym derivative, comparing the renewal process and the regenerative
set, is uniformly bounded. In our general set-up, this Radon-Nikodym derivative is
not bounded and a more careful estimate has to be carried out.

(4) Inverse coarse graining of the regenerative set. We are now left with a model based on
the regenerative set, but depending only on the large excursions. We have therefore
to show that putting back the dependence on the small excursions does not modify
substantially the quantity we are dealing with. This is parallel to the first step: it
involves estimates that are different from the ones in the original approach, because
we are sticking to the regenerative set formulation and because « is not necessarily
equal to 1/2, but the difference is, essentially, just technical.

Let us finally mention that our choice of focusing on discrete copolymer models built over
renewal processes leaves out another possible (and perhaps more natural) generalization
of the simple random walk copolymer model (I.1)): namely, the one obtained by replacing
the simple random walk with a more general random walk. A general random walk crosses
the interface without necessarily touching it, therefore the associated point process is a
Markov renewal process [2], because one has to carry along not only the switching-sign
times, but also the height of the walk at these times (sometimes called the overshoot).
This is definitely an interesting and non-trivial problem that goes in a direction which is
complementary to the one we have taken. However two remarks are in order:
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(1) Symmetric random walks with IID increments in {—1,0, 1} touch the interface when
they cross it, hence they are covered by our analysis: their weak coupling limit is the
continuum 1/2-copolymer, because K (n) "~ (const.) n=3/2 (e.g., [IT, App. A.5]).

(2) While one definitely expects an analog of Theorem to hold for rather general
random walks with increments in the domain of attraction of the normal law (with
the continuum 1/2-copolymer as weak coupling limit), it is less clear what to expect
when the increments of the walk are in the domain of attraction of a non Gaussian
stable law. In our view, working with generalized copolymer models has, in any case,
a considerable flexibility with respect to focusing on the random walk set-up.

2. A CLOSER LOOK AT THE CONTINUUM MODEL

In this section we prove the existence of the continuum free energy Fo (A, k), that is we
prove Theorem In § we define a modified partition function, to which Kingman’s
super-additive ergodic theorem can be applied, and then in § 2.4 we show that this modified
partition function yields the same free energy as the original one. Before starting with the
proof, in § . we redefine the partition function Z {5 more directly in terms of the a-stable
regenerative set 7, whose basic properties are recalled in § 2| (cf. also the appendix §-
We are going to drop some dependence on « for short, writing, e.g., F(A, h).

2.1. Preliminary considerations. As explained in §|1.4] the process B is introduced
just to help visualizing the copolymer but the underlylng relevant process is A(BO‘) =
1(_0070)( @). So let us re-introduce Zt g more explicitly, in terms of the random set 7% (cf.

(1.23])) and of the signs of the excursions, that are sufficient to determine A(Bo‘).

There is no need to pass through the process B® to introduce 7% we can define it
directly as the stable regenerative set of index «, that is, the closure of the image of the
stable subordinator of index a, cf. [I3]. Some basic properties of regenerative sets are
recalled in § and in the appendix § we mention in particular the scale invariance
property: 7% ~ ¢7%, for every ¢ > 0. Since 7% is a closed set, we can write the open
set (7o) = Unen In as the disjoint union of countably many (random) open intervals
I,,, the connected components (i.e., maximal open intervals) of (7*)t. Although there is
no canonical way of numbering these intervals, any reasonable rule is equivalent for our
purpose. As an example, one first numbers the intervals that start (i.e., whose left endpoint
lies) in [0, 1) in decreasing order of width, obtaining {.J!},en; then one does the same with
the intervals that start in [1,2), getting {J2},en; and so on. Finally, one sets I, := Jyr,
where n — (ay, by,) is any fixed bijection from N to N x N.

Let 5 = {En}neN be an IID sequence of Bernoulli random variables of parameter 1/2,
defined on the same probability space as 7* and independent of 7%, that represent the signs
of the excursions of B®. We then define the process A®(u) := >on €n 11, (u), which takes
values in {0, 1} and is a continuum analogue of the discrete process {A, }nen introduced
in § ﬁa(u) = 1 (resp. 0) means that the continuum copolymer in u is below (resp.
above or on) the interface. With this definition, we have the equality in law

{Aa } u>0 " {A(Ba )} w>0" (2.1)
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so that we can use A(-) instead of A(EO‘()) More precisely, for 0 < s <t < co we set
=z ZAh o Y
Zstip = Zgpp = B [exp (Hs1,5(A%))]

~ t_ (2.2)
Houp(A%) = WY L(BY) = —2) / R (u)(dB(u) + hdu)

so that the partition function Zf‘ﬂ defined in ([1.22)) coincides with 207,5;5. For later conve-
nience, we introduce the finite-volume free energy:

_ 1 -
Fi(\h) == JE [10g 20,5 (2.3)

To be precise, for ZNS’t; 5 and F¢(A, h) to be well defined we need to use a measurable version

of Hsyt;ﬁ(ﬁo‘) (we build one in Remark [2.1| below).
Notice that we have the following additivity property:

/Hr,t;ﬂ(ﬁa) = /HT,S;ﬁ(KQ) + Hs,t;ﬁ(ﬁa)a (2.4)

for every r < s < t and P ® P-a.e. (ﬁo‘, B). Another important observation is that, for any
fixed realization of A*(-), the process {Hs1,3(A%)}s under P is Gaussian.

Remark 2.1. Some care is needed for definition to make sense. The problem is that
Hsyt;/g(ﬁo‘), being a stochastic (Wiener) integral, is defined (for every fixed realization of
5‘1) through an L? limit, hence it is not canonically defined for every 3, but only P(d3)-
a.s.. However, in order to define Z~S +:8, we need H ;. 5(50‘) to be a measurable function of
AO‘ for every (or at least P—almost every) fixed B. For this reason, we now show that it is
possible to define a version of H . B(Ao‘) that is a measurable function of (8, A%, s, ¢, \, h).

Let us fix a realization of the process {A%(u ) Yuefo,00)- We build a sequence of approxi-
mating functions as follows: for £ € N we set

Ag(u) = Z & 11, (u), (2.5)

that is we only keep the excursion intervals of width at least +. Note that 52‘ (u) = A%(u)
as k — oo, for every u € RT. By dominated convergence we then have 5"‘ — A% in
L3((s, 1), da:) for all 0 < s <t < 0o, hence by the theory of Wiener mtegratlon it follows
that limy_soo H57t75(A ) = Hstﬂ(Aa) in L?(dP). Note that, for any k € N, we have

HorgB) = =20 3 & (Branen + Al (5,8)]), (2.6)

neN: |I,[>+
where we have set B, := By — o and By := 0 (note that the right hand side of .
is a finite sum). This shows that ;. ﬁ(AO‘) is a measurable function of (3, A%, s, t,\, h).
Therefore, if we prove that hmk%OO 7—[57,5;5(A ) = Hs,m(Aa) P(df)-a.s., we can redefine
Hstg(A"‘) = liminfj_ o Hstg(Aa) and get the measurable version we are aiming at.

However, for any fixed realization of A®, it is clear from ([2-6) that ({Hsrs(AY) ken, P)
is a supermartingale (it is a process with independent Gaussian increments of negative
mean) bounded in L2, hence it converges P(dj3)-a.s..
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2.2. On the a-stable regenerative set. We collect here a few basic formulas on 7¢.
For z € R, we denote by P, the law of the regenerative set started at z, that is
P, (7" € -) := P(7*+4x € -). Analogously, the process {A®(u)},>, under Py is distributed
like the process {A%(u — x) }y>, under P =: Py. Two variables of basic interest are
g = @(7*) = sup{z € T*N(—o00,t]}, di = de(7*) = inf {x € TN (t,00)}. (2.7)
The joint density of (g, d;) under P, is

P.(g: € da, dy € db) asin(ra)  1an(a) 1geo(b)

= 2.
dadb T (@ —z)l=(b—a)lte’ (28)
from which we easily obtain the marginal distribution of g;: for y € [z, ]
sin(ra) [Y 1
Gy = P.(g: < = da. 2.9
+(Y) (Qt y) T /x (a— )= (t — a)® a (2.9)

Observing that & (2%/(1 —2)®) = a (z!17%(1 —2)'7*) ™!, one obtains also the distribution
of dy: for y € [t,0)

: y e
Dasly) = Palde<y) = 2 | 0 fi)afg . (2.10)
Let us denote by F,, the o-field generated by 7N[0, u]. The set 7* enjoys the remarkable
regenerative property, the continuum analogue of the well-known renewal property, that
can be stated as follows: for every {F,},>0-stopping time ~ such that P(y € 7%) = 1,
the portion of 7 after v, i.e. the set (7% —~) N[0, 00), under P is independent of F, and
distributed like the original set 7*. Analogously, the translated process {A®(y +u) }y>o is
independent of ¥, and distributed like the original process A,

2.3. A modified partition function. In order to apply super-additivity arguments, we
introduce a modification of the partition function. We extend the Brownian motion 3(t) to
negative times, setting 5(t) := 3'(—t) for t < 0, where 3'(-) is another standard Brownian
motion independent of 3, so that 8(t) — 8(s) ~ N(0,t — s) for all s,t € R with s <¢.

Observe that {d, < b} = {7 N (a,b) # 0}, where the random variable d; has been
defined in . Then for 0 < s < t we set

Zi5 = inf Eg[exp (Hed, ,8(A%)), dio1 <t]. (2.11)

z€[s—1,s]
In words: we take the smallest free energy among polymers starting at = € [s — 1, s] and
coming back to the interface at some point in (¢t — 1,¢). Notice that the Hamiltonian looks
at the polymer only in the interval (z,d;—1). Also notice that for t < s+1 the expression is
somewhat degenerate, because for z > t—1 we have d;_1; = = and therefore ’Hx’dtfl;g(ﬁo‘) =

wa;g(ﬁo‘) = 0. Therefore we may restrict the infimum over x € [s — 1, min{s, ¢t — 1}], and
for clarity we state it explicitly:

;k,t;ﬁ = g;e[s—l,gilrt;{s,t—l}] Ex[eXp (Hmjdtil;ﬂ(za)) s t] ' (2.12)

Let us stress again that {d;—1 <t} ={7*N (¢t — 1,t) # 0}.
It is sometimes more convenient to use E = Eq instead of E,. To this purpose, by
a simple change of variables we have H; 4.3(AY) = Ho,q—2.0,8(0A%), where 0, f(-) =
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f(z+-), as it follows easily from the definition (2.2)) of the Hamiltonian. Since by definition
the process 0, A® under P, is distributed like A® under P = Py, we can write
E, [exp (Hx,y;ﬁ(ﬁa))] = E[exp (’H()’y_x;gzg(ﬁa)ﬂ . (2.13)

Analogously, since the random variable d;_; under P, is distributed like  + d;_1_, under
P, we can rewrite the term appearing in (2.12)) as

E, [exp (%x,dt,l;ﬁ(ﬁa)) , di1 < t] = E[exp (”H(),dtflﬂ;gwﬁ(ﬁa)) y A1 <t — x]

(2.14)
These alternative expressions are very useful to get uniform bounds. In fact, if we set
@T(ﬁa Ea) = sup ‘HO,y;Ozﬁ(za)’ ) (215)
—1<z<T, 0<y<T+1
from (2.12)) and (2.14)) we have the following upper bound:
sup Z~:’t;6 < Elexp (07(8, ﬁa))] . (2.16)
0<s<t<T
In a similar fashion, from the relation (2.13)) we obtain the lower bound
inf E, [exp (’Hx,y;/g(ﬁa))} > E[exp (- 07(8, &O‘))] . (2.17)

—1<a<T, 0<y<T+1
We finally state a very useful result, that we prove in Appendix for every n € (0,00)
there exists D(n) € (0,00) such that

E[E[exp (nO07(8, 50‘))]] < D(n)ePMT < o, for every T'> 0. (2.18)

2.4. Proof of Theorem |[1.4] -. We start by proving the existence of the limit in (|1.24))
when the partition function Z g = ZO t:3 is replaced by Zo e

Proposition 2.2. For all A\, h > 0, the following limit exists P(d3)-a.s. and in L'(dP):
1 ~ ~

lim ; lOg 26(775;5 = F()\, h), (219)

where F(\, h) is finite and non-random.

Proof. We are going to check that, for all fixed A\,h > 0, the process {log Zv:’t;ﬁ}ogKt@o
under PP satisfies the four hypotheses of Kingman'’s super-additive ergodic theorem, cf. [20)].
This entails the existence of the limit in the 1.h.s. of , both P-a.s. and in L!(dP), as
well as the fact that the limit is a function of 8 which is invariant under time translation
B() = 0,6(:) := B(t + -), for every t > 0. Therefore the limit must be measurable w.r.t.
the tail o-field of 3(-), hence non-random by Kolmogorov 0-1 law for Brownian motion.

The first of Kingman’s conditions is that for every k € N, any choice of {(s;,t;)}ren,
with 0 < s; < t;, and for every a > 0 we have

d

(Z;klvtl;ﬁ v Z;kk,tkﬁ) = (Z:1+a7t1+a;ﬁ 1 Z;kk+avtk+a§/8) ’ (2.20)

However this is trivially true, because ZS tat +a = gg,t;eaﬁv as it follows from (2.12)),
recalling the definition of the Hamiltonian in

The second condition is the super—additivity property: forall 0 <r < s <t
Z*tﬁ > er B Zatp - (2.21)
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To this purpose, for any fixed « € [r — 1, 7] the inclusion bound yields
Ex(exp (Hm7dt71;g) , di1 < t)
> Em(exp (Hx,ds_l;,b’) exp (Hds_l,dt_l;,b’) , ds1 <8, di 1 < t) ,

where we have used the additivity of the Hamiltonian, see ([2.4). We integrate over the
possible values of ds_1 and, using the regenerative property, we rewrite the right hand side

of as follows:
/ ( )Ez(exp (Hw,y;ﬁ) ; ds—1 € dy) Ey(exp (Hy,dt—l;ﬁ) ; di1 < t)
ye(s—1,s

> Ex(eXp (/Hx,ds,uﬁ) ) dS—l < S) . /szt;ﬁv

(2.22)

(2.23)

where the inequality is just a consequence of taking the infimum over y € [s— 1 s] and

recalling the definition of Z*t - Putting together the relation (2.22)) and (2.23)) and
taking the infimum over x € [r — 1, ] we have proven (2.21)).

The third condition to check is

1 -
sup — E(log Z5,.5) < 0. (2.24)
>0 t 7

Recalling (2.12) and applying Jensen’s inequality and Fubini’s theorem, we can write
E(log ZN&‘tﬂ) < log E(E[exp (Ho, dt_l;g(ﬁo‘))] ,diq < t). (2.25)

Since the Hamiltonian is a stochastic 1ntegral cf. . for fixed a < b and A® we have
Haps(A%) ~ N(u,02), where ,u = —2)\hf A%(u)du and o2 = 4)\2f |A%(w)|2 du. In
particular |p| < 2Ah(b — a) and o2 < 4X%(b — a), hence on the event {d;—1 < t}, we have
E[exp (Hgdtﬂ;g(ﬁa))} < exp(2Aht 4 2)0?t), and follows.

Finally, the fourth and last condition is that for some (hence every) 7" > 0

E( sup ‘loggit;d) < 00. (2.26)
0<s<t<T

We need both a lower and an upper bound on 2; 8" For the upper bound, directly from

(2.16]) we have

sup 1ogz~;ﬁt;5 < logE(exp (@T(B,ﬁo‘))). (2.27)
0<s<t<T

The lower bound is slightly more involved. The additivity of the Hamiltonian yields
Hz,dt_l,ﬁ(A ) = Moo Lﬂ(A )+ Hi—1.d, 1”g(AO‘) Observing that AO‘( ) is constant for
s € (t—1,di—1(7)), from the definition of the Hamiltonian we can write

Hy—1,d, 1:5(A%) > —2X|Ba, , — Biei1| — 2M\h(diey — (t — 1))

> =2\ sup |B—Bs| — 2ART = —Cr(f). (2.28)
0<s<t<T

Recalling (2.12), we can therefore bound g;"’t; 5 from below by

5y > e Ol (xe[s_l,ﬁr{}fl{s,t_l}] B, (exp (Moo 15(A%) | di 1<t)) P, (d1 < 1)
(2.29)
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From ([2.10)) it follows easily that, for fixed T,

inf inf P, (di— t 0. 2.30
OSSIEtST xe[s—l,l%nI}n{s,t—l}] :):( 1S ) ~ ( )

Furthermore, we now show that we can replace the law P,(-|d;—1 < t) with P,(-) by
paying a positive constant. In fact, the laws of the set 7 N [z,¢ — 1] under these two
probability measures are mutually absolutely continuous. The Radon-Nikodym derivative,

which depends only on g;—1, is computed with the help of (2.8)), (2.9)), (2.10) and equals
dPx( : ‘ di—1 < t) Px(gt_l € dy, di—1 < t)
dPx( ) Px(gtfl (S dy) Px(dtfl < t) y=gs_1 (2'31)

- - (t—l—gtfl)a . 1
a (1 (t —gr—1)* ) Dyy-a(t)

Using ([2.10), it is straightforward to check that, for every fixed T', the infimum of this
expression over 0 < s <t < T and x € [s — 1,min{s, ¢ — 1}] is strictly positive. Therefore,
uniformly in the range of parameters, we have

o> t. —Cr(B) inf E, z,t—1; Aa
s,t8 = (COTLS )6 xe[s—l,rlnI}n{s,t—l}] (eXP (H ! 176( ))) (232)

> (const.) e~ Cr(B) E(exp ( — O7(8, z0‘))) )
where we have applied (2.17)). By Jensen’s inequality we then obtain
inf logZl.5 > —E(0r(8,A%) — Cr(B) + (const.). (2.33)

0<s<t<T

Putting together and we then get
sup ‘logZN;t;M < log E(exp (67(5, ﬁa))) + E(@T(ﬂ,ﬁo‘)) + Cr(B) + (const.).

0<s<t<T

(2.34)
It is clear from that E(Cr(5)) < oo, for every T > 0. Moreover, by Jensen’s
inequality and we have Elog Elexp(©7(8, A%))] < log E[E[exp(©7(8, A%))]] < oo,
so that E[E[O7(8, AY)]] < co. Therefore is proven. O

TNz, t—1]) =

We finally show that Proposition still holds if we replace the modified partition
function Zj,. 3 with the original partition function Z;g; in particular, the free energy
F(A, h) is well-defined and coincides with F(A, h). We first need a technical lemma.

Lemma 2.3. For every fived h > 0, the function F(\, h) appearing in Proposition 18
a non-decreasing and continuous function of \.

Proof. Note that sending A — ¢ is the same as multiplying the Hamiltonian by c. By
Jensen’s inequality, for every € > 0 we have

Ex(exp (Hmvdtfﬁﬂ) 1{dt71<t})1+‘E = Ex(exp ((1 + 6)7_[737dt—1;5) 1{dt71<t}) ) (2.35)

hence, taking the infimum over z € [—1,0], then +Elog(-) and letting ¢ — oo, we obtain
F((1+ &)X\, h) > (14 €)F(A, h). In particular, A — F(A, h) is non-decreasing for fixed h.
To prove the continuity, we use Holder’s inequality with p = l—ie and ¢ = L, getting

€
E, (e(l—i-a)?-lx,dt,l;ﬁ 1{dt,1<t}) = E, (e(l—a)Hx,dtflhﬁ e2Ma,dy_q38 l{dt71<t})

2.36)
| - | (
< E, (e'Hz,dtfbﬁ 1{dt71<t}) € E., (62Hz,dt71,ﬁ 1{dt71<t})8 .
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Now observe that by (2.14]) and (2.15)) we can write
B (Mt 1y, ) < B0 (AM)7, (2.37)

Taking %JE inf,e(_1,0 log(+) in (2.36)), applying Jensen’s inequality to the last term, using
(2.18) and letting ¢ — oo then yields

F((14+e)\,h) < (1—e)F(\h) +eD(2), for every A\,h > 0 and every € > 0. (2.38)

Since A — F(A, h) is non-decreasing, this shows that A — F(), k) is continuous. O

We now pass from 26‘ + to the original partition function go,t;ﬁ in three steps: first we
remove the infimum over x € [—1,0], then we replace Ho 4, ;3 With Ho;—1,5 and finally
we remove the event {d;—; < t}. From now till the end of the proof we assume ¢t > 1.

Step 1. It follows from the regenerative property of 7¢ that the laws of the random set 7%N
[1,00) under the probabilities P = Py and P,, with x € [—1,0], are mutually absolutely
continuous, with Radon-Nikodym derivative depending only on dy, given by

dP(?O‘ N [1, OO) S ) B P(d1 € dZ) 1 dq

PNl )  Paldicd)., 0 oid-z >

It is clear that, uniformly on = € [—1, 0], this expression is bounded from above by some
constant 0 < C' < oo. Therefore, for every € > 0, by the Holder inequality with p = 1%
and ¢ = 1 4 ¢ we can write

E(eﬂo,dtﬂ;ﬁ l{dt,1<t}) = E(eHo’l;’B—’—Hl’dt*l;B 1{dt—1<t})

E(e 145rE Ho,l;,@) Tre E(e(lJrs)HLdt,l;ﬁ 1{dt_1<t}) 1/(1+¢€)

IN

(2.40)

E(e 146rs7-L0,1;B) 18? Cl/(1+5) mel[l_lfi ) E, (6(14—6)7{17%_1;3 1{dt,1<t})1/(1+6) '

IN

Analogously, again by the Holder inequality, we have

Em (6(14_5)’}-[1’(11&71;,3 1{dt_1<t}) — Ez (e(1+€)(Hm,dtfﬁﬁ_Hx,l;B) 1{dt_1<t}) (2 41)
)2 € .
S Em (e_ (1+E ) Hx,l;ﬁ) [ Ew (e(1+€)2Hx,dt71§f3 1{dt_1<t})1/(1+6) .

o)y (1te)?

However E(e™ ™ ¢ 5) <E(e 62('87&1)), by (2.14) and (2.15)). Putting together
these relations, Proposition and (2.18)), we get P(df)-a.s.

1
lim sup n log E(eHO’dt*“’B 1{dt,1<t})

t—o00

. 1 . 2 F((1+¢)2)\,h)
< - = f B,y (0T Hedie g = A TE AN
>~ (1+5)2 I?l)igp t 0g zel[l_ll’o} (6 ‘ {dt71<t}) (1+5)2

)

(2.42)

and since ¢ > 0 is arbitrary, by Lemma the left-hand side in (2.42)) does not exceed
F(A, h). By the definition (2.12) of Z; 15> we have immediately an analogous lower bound
for the lim inf, hence we have proven that P(dj)-a.s.

.1 2 ‘ ~
tliglo n log E(e™ 41810, ) = F(\h). (2.43)

Furthermore, the convergence holds also in L'(P), because the sequence in the Lh.s. is
uniformly integrable, as it follows from the bounds we have obtained.
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Step 2. With analogous arguments, we now show that we can replace Hg g4, .3 with
Ho -1 in (2.43)), that is, the following limit holds, P(d8)-a.s. and in L!(dP):
o1 ~
Jim — log E(eMo-18 1, o) = F(AR). (2.44)
Since Ho 4, .8 = Ho,1—1.8 + Hi—1,4,_,:3, for every € > 0 we can write
—e)H . l=eqy, . . 1—
E(e(l e)Ho,dy_1:8 1{dt—1<t}) < E(e —~Ht—1,d,_1:8 1{dt—1<t})€ E(eHo,tq,ﬂ 1{dt—1<t}) 57
(2.45)

and analogously

B(e0 10 1, <) (2.46)
€ _€ _1 ‘
< E(e—%’}-{tq,dt,l;ﬁ 1{dt,1<t}) T+e E(e(l-l-e)Ho,dt,l;ﬁ l{dt71<t}) T+e

Now notice that, by the definition (2.2)), since 7* N (t — 1,d;—1) = 0, we can write
‘,Htfl,dt—hﬁ‘ < 2 (‘6dt—1 - /Bt—ly + h’(dt—l - (t - 1))) ) (247)
from which it follows easily that P(d3)-a.s. and in L' (dP)

1
Jim — log E("Mraiely, ) =0,  wy>o0. (2.48)

From (2.45)), (2.46)) and (2.43]) we then have P(d)-a.s.
F((1—¢&)\ h)

| Hot—1:
1—c¢ < htlggolf t log E(e e 1{dt71<t})

. 1 F((L+e)\h)
1 Z log E(eHot-151 < —
imsup - log (e (di1<t}) < T
Letting € — 0 and using Lemma we see that (2.44)) holds P(dj3)-a.s. and also in L!(dP),
thanks to the bounds (2.45)), (2.46)) and (2.47) that ensure the uniform integrability.

IN

Step 3. We finally show that we can remove the indicator function 144, | <4 from equation
. We have already observed that the laws of 7¢ N [0,¢ — 1] under the two probabil-
ities P(-|d;—1 < t) and P are mutually absolutely continuous: the corresponding Radon-
Nikodym derivative f; = f;(g;—1) is given by (2.31]), from which we extract the bound

fi(gi-1) > 1_w > 1_ﬂ > a (2.49)

(t—gi—1)* ~ e Tt
where the last inequality holds for large t. Therefore for large ¢
E(eMo-18 10y, o) = BE(eM018|diy <t)P(diy < t) > %E(eﬂo’t—l%ﬂ) P(di—1 <),

(2.50)
and note that P(d;—1 < t) = Go—1(t) ~ (const.)/t!1=* as t — oo, by (2.10). Therefore

E(eHO»“l‘ﬁ 1{dt,1<t}) < E(eHO»t*W) < (const.) 2« E(eHva*“B 1{dt,1<t}) ,  (2.51)
for large ¢, hence by (2.44) it follows that, P(d/3)-a.s. and in L'(dP), we have
1 Ho o1, ~
tll)nélo n log E(e’0t=18) = F(X, h). (2.52)

Replacing % with ﬁ in the Lh.s. shows that the free energy F(\, h), defined as the limit
in , does exist and coincides with F()\, h) (we recall that Ztaﬁ = g@yt;g).
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To complete the proof of Theorem [1.4] it only remains to show that the free energy
F(\, k) is non-negative and continuous. By restricting, for ¢ > 1, the expectation that
defines Zy 45 to the event E; := {d; > t,A®(L) = 0} = {dy > ¢, B*(“4L) > 0} and by
using Jensen inequality, we have

1 ~ 1 ~ 1 2\ 1
SElog Zy,5 > SE [E[Ho,l;g(Aa)]‘Et] + 7 logP(E) > —== + T log P(Ey).  (2:53)

By we have P(Ey) bgo (const.)t™ so that the right-most side in vanishes
as t — oo and therefore F(\, h) > 0.

For the continuity, it is convenient to use a different parametrization. For ¢ > 0 and
a,b € R we set

Gila,b) = %E [logE {exp (-2/; Aa(u)(adﬁ(u)mdu)) } L (254

Since the argument of the exponential is a bilinear function of (a,b), it is easily checked,
using Holder’s inequality, that for every fixed ¢ > 0 the function (a,b) — G¢(a, b) is convex
on R?. By a straightforward adaptation of the results proven in this section, the limit

Ga(a,b) = ,}g&gt(a’b) (2.55)

exists and is finite, for all a,b € R. For instance, for ¢ > 0 and b > 0, by and
we have G¢(a,b) = F¢(a,b/a), therefore the limit in exists and equals F(a,b/a); the
restriction to a > 0 and b > 0 is however not necessary for the existence of such a limit.
Being the pointwise limit of convex functions, G(a, b) is convex too on R?, hence contin-
uous (because finite). Therefore F(\, h) = G(A, Ah) is continuous too on [0, 00) x [0, 00). [

3. THE PROOF OF THE MAIN RESULT

We fix an arbitrary value of a € (0,1) and an arbitrary discrete a-copolymer model
(and we omit « in most of the notations of this section). We aim at proving an analogue
of Theorem 6 in [9]. More precisely, we want to show:

Theorem 3.1. For every choice of A > 0 and h > 0, and for every choice of p € (0,1)
there exists ag > 0 such that for every a € (0, ag] we have

- < A h >
Fl——, ——
1+p'1—p
Theorem implies Theorem In fact notice that it directly yields ([1.26]) when both
A and h are positive (by continuity of F(-,-)). If A = 0, there is nothing to prove, because
F(0,h) =F(0,h) = 0. If A > 0 and h = 0 instead (1.26) follows because for h > 0 we have
F(A,0) — 2\ < F(A\, h) < F(A0) by (L.5) and (1.11)), hence for every h > 0

IN

% Flah,ah) < F((1+p)A, (1 - p)h). (3.1)

- .1 |
F(\h) = il{% ;F(a)\,ah) < hfln\l(r)lfﬁF(a)\,O) <

1 1 ~
hril\s(l)lp EF(CL)\, 0) < ilg(l) EF(a)\, ah) + 2 h = F(A\, h) +2\h (3.2)

so that (1.26]) for h = 0 follows by continuity of F(\,-). For (1.27), in view of (1.28]) it

suffices to show that
imsup

AN A

< filg, (3.3)
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and Theorem [3.1| does yield (3.3)). In fact if ¢ > m,, then F((1 + p)A, (1 — p)cA) = 0 for p
sufficiently small and every A > 0; the upper bound in (3.1]) then yields F(a), ac\) = 0 for
a small, that is h.(A) < e for A small, which implies (3.3).

In order to carry out the proof Theorem it is convenient to introduce the following
basic order relation.

Definition 3.2. Let fi.5(a, A\, h) and gi. 5(a, A\, h) be two real functions. We write f < g
if for all fited \,h > 0 and p € (0,1) there exists o9 > 0 such that for every 0 < § < dy
there exists eg = €9(d) > 0 such that for every 0 < € < €g there exists agp = ag(d,€) > 0
such that for every 0 < a < ag

limsup fics(a,A\,h) < Hmsup gies (a, (1+p)A, (11— p)h) . (3.4)

t—o00 t—00

The values &g, €0, ap may also depend on A, h, p. If both f < g and g < f, we write f ~ g.

Recalling the definitions (1.10) and (1.24]) of the discrete and continum finite-volume
free energies Fy (A, h) and F¢(\, h), we set

1 _
Fesla, A h) = ?FLt/azj(a)\,ah), flosla, A h) = Fy(\ h), (3.5)

(that in fact do not depend on €, and on ¢, d, a). Thanks to Definition we see imme-
diately that proving Theorem is equivalent to showing that fO ~ f%. Since the relation
~ is symmetric and transitive, we proceed by successive approximations: more precisely,
we are going to prove that

frefefPef e (3.6)

where fi = fti,a’a(a, A, h) for i = 1,2,3 are suitable intermediate quantities.

The proof is divided into four steps, corresponding to the equivalences in . In each
step we will make statements that hold when 4, ¢ and a are small in the sense prescribed
by Definition ie., when 0 < § < dg, 0 < e < gp(d) and 0 < a < ag(d, ), for a suitable
choice of dy, €o(+) and ag(-, -). For brevity, we will refer to this notion of smallness by saying
that €, §, a are small in the usual sense. It is important to keep in mind that

tl<a<xexd <1, (3.7)

At times, we will commit abuse of notation by writing ag(¢) or ag(d) to stress the parameter
that enters the specific computation. In order to simplify notationally the proof, we also
assume that all the large numbers built with §, ¢, a, t that we encounter, such as /a2, § /¢,
t/8 (hence §/a?, t/e, t/a?, ...), are integers.

Before starting with the proof, let us describe a general scheme that is common to all
the four steps. The functions f* that we consider will always be of the form

i 1 i
ft7675(a, ANh) = . E log E[exp ( — 2a\ Hm’(g(a, h))] , (3.8)
for a suitable Hamiltonian Hz,a,é(% h). Now, for p € (0,1), let us write

islah) = H]_s(a,(1-p)h) + AH)(a,h,p) (3.9)
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(this relation is the definition of AH). Applying Hélder, Jensen and Fubini, we get

i 1 ;
fiesla, A\ h) < T+, ftj,a,(;(a, (L+p)A, (1= p)h)
(3.10)
1 B y
+ (e logEEexp (— 2a(1 + p DX AH;‘E”](;)(CL, h,p)) -

Therefore to prove f* < f7 it suffices to show that for every positive constant A we can
choose the parameters d, £, a small in the usual sense such that

1 i
lim sup n log EE exp ( —aAAH' ’])(a, h,p)) < 0. (3.11)

t,e,0
t—o00

Replacing AH @) by AHU" in this relation, we prove that f7 < f* and therefore fi ~ fJ.

3.1. Step 1: coarse-graining of the renewal process. We recall that by definition,

see (B5), (L.10) and (LG), /° is given by

1 1
fosla, A h) = ﬁFt/az(a)\,ah) = EIE log E[exp ( — 2a\ HY, 5(a,h))] (3.12)
where HY is defined by
t/a?
HY. 5(a,h) = Y (wi+ah)A; . (3.13)
=1

The purpose of this section is to define a first intermediate approximation f! and to show
that fO ~ f!, in the sense of Definition following the general scheme f.

We recall that the sequence A; € {0,1} is constant for ¢ € {r; + 1,7, +2,..., 711}
and it is chosen by flipping a fair coin. We start by defining, for 7 € N U {0}, the basic
coarse-grained blocks

I :== ((j — De/a®, je/a?] . (3.14)
Then we set 0p := 0 and for kK > 1
o = inf{j > o041+ (0/e) : TNI; # 0}, (3.15)

thus introducing a coarse-grained version o of the underlying renewal 7 that has a resolu-
tion of €/a? > 1. We say that the block I ;j is visited if there exists k such that o}, = 5. We
stress that o is built in such a way that if I; is visited, we disregard the content of the next
(6/e) —1 > 1 blocks, that is we dub them as not visited (even if they may contain renewal
points). Since we are interested only in the blocks that fall inside the interval [0,t/a?], we
set my/q2 1= min{k : oy > t/e}. Moreover for k € N we give a notation for the union of
blocks between visited sites (that should be interpreted as coarse-grained excursions):

Ok

I = ( U Ij> N (0,t/a?] . (3.16)
J=0k—1+1

Note that Iy # 0 if and only if k < 0,  ,; furthermore (0,t/a?] = Zl:t/l'ﬂ I;. Each coarse-

B t/a2’
grained excursion [}, with 1 < k < my /42 contains exactly one visited block, namely I,,,

at its right extremity. The last coarse-grained excursion I, may or may not end with

t/a?

a visited block, depending on whether o, , , =t/ or o, a2 t/e.

t/a?

For 1 <k < my/q2 we assign a sign si to the kM coarse-grained excursion by stipulating
that it coincides with the sign just before the first renewal point in I, (that we call t,
and tp := 0), that is we set s := Ay, . When k = M2 We need to make a distinction: if
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2
ela
to =0 1 / 1 131 12
L o L I I | L
~—L(si=1) 3 I (52 =0) —=+——1I3 (51 = 0)—
- e N
\ /

Full trajectory

Coarse-grained trajectory

FIicUure 3. A full trajectory, on top, and the corresponding coarse-grained trajectory,
below. The visited blocks are surrounded by a box and the first renewal point inside
such blocks is marked by a vertical arrow: a coarse-grained excursion is everything that
lies between visited blocks. One stipulates that there is a visited block to the left of the
origin, containing the origin. The visited block on the right belongs to the coarse-grained
excursion, while the one on the left does not. The sign of the excursion is just the sign of
the full trajectory just before the vertical arrow (except possibly for the last excursion).
In this example 0/ = 4, so the first three blocks to the right of a visited block (that is,
up to the vertical dotted lines) cannot be visited blocks.

the coarse-grained excursion I ends with a visited block (o, , , = t/€) we set sp, := Ay,

_ t/a
as before; if the coarse-grained excursion Iy is truncated (om, a2 > t/e) we set s = Ay /q2.

We refer to Figure 3] for a graphical description of the quantities introduced so far.

We are now ready to introduce the first intermediate approximation f!. According to
(3.8), it suffice to define the corresponding Hamiltonian:

t/a ,rnt/a2
Ht55 a, h) Z Z (wi +ah)s, = Z sk (Zk(w) + ah|Iy]) | (3.17)
k=1 4eI, k=1

where Zi(w) := Y_;c7, wi- Note that we may rewrite HY, see (3.13), as

t/a

H,?E(; (a,h) Z Z w; + ah)A (3.18)

k=1 ZGIk

Passing from H° to H' we are thus replacing the renewal 7 by its coarse-grained version.
Applying the general scheme (3.8)(3.10), to prove that f° ~ f! we have to establish
(B.11) for AHOD and AH10) | defined by

AH£70€7716)(CL, h/, p) = 15075,6((1’ h) - Ht1,875(a”(1 —p)h)
& Ry (3.19)
= aphd Bt 3D (witall=ph) (Bi—se),
k=1 lG]k

and

—~

1,0
AHt,E,5)(a7h7 p) = Htlglg(a h) — 056( (1= p)h)
L s (3.20)

:aphZA + Z Z wi + ah) (s, — A;) .

k=1 zelk
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Formulas (3.19) and (3.20) are minimally different: in particular we are going to estimate
the second term in the right-hand side by taking the absolute value. For this reason, we
detail only the case of (3.19)).

In order to establish (3.11]) for AH D) we observe that for a < to/A? (tg is the constant

i (@)

t/a? My /a2
Ee~AcAH®Y Eexp | —Aa phZA — Aa Z Z wi +a(l —p)h) (A; — sg)
k=1 eI,
t/a? My /a2 My /a2
= exp —AaphZA —Ad*(1—p hzz i — Sk) H HM(Aa(A,;—sk))
k=1 el k=1 iel,
t/a? My /a2
= exp CCLQZA + Ba? Z Z|A —sil |, (3.21)
k=1 eI,

|A; — si|? = |A; — si| because |A; — si| € {0,1}. This shows that is proven if we
can show that for any given B, C > 0 we have

where C' := Aph and B := A(1 — p)h + coA?. Here we have used (1.9) and the fact that
(3-11)

t/CL mt/a
: 1 2 2
hiisogpglogEexp —Ca E A; + Ba kg 1 EI |A; —sk] | <0, (3.22)
i€l

for 4, £, a small in the usual sense (recall the discussion before (3.7)).

Let us re-express explicitly in terms of the renewal process 7 and of the signs
§ = {&}jen, where §; = A... This notation has been already introduced in § here
we need also Ny := |7 N [0,s]] = min{k > 1: 7, > s} (s € N). Observe that ¢ is an IID
sequence, as well as the sequence of the inter-arrivals {n; := 7; — 7j_1}en. First of all

t/a2 ‘A/t/a271 '/\/t/a271

Sai= Y g tbn, (W) -mv,a) 2 Y G (3.23)
i=1 j=1 j=1

Concerning the second addendum in the exponent in (3.22), we use the fact that if n; = 7;—
7j—1 > (6/¢)(e/a*) = §/a” then necessarily the inter- arrlval 7; determines a coarse-grained
excursion (say, I). We can then distinguish two cases: either 7;_1 € Iy, or 7j_1 € Ij_;. If
Tj_1 € Iy, we know that A; = sy for every i € {7;_1+1,...,7;}, by our definition of the sign
of the coarse-grained excursions. If on the other hand 7j_1 € I;_1, which happens if and
only if 7j_1 € I, ,, we can only be sure that A; = sy, for every i € {Tj_1+1,...,7}\ 15, _,-
Since |I5,_,| = ;7 and there are m, 42 visited blocks, we are lead to the bound

mt/a ‘A/;t/a2 1
DD lAi-sl < Z Milyy<ofar + —5Mujac (3.24)
k=1 ZEIk

This step of the proof is therefore completed by applying the following lemma:
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Lemma 3.3. For every B,C > 0 we have

1 '/V’t/a271 ‘/\/t/a,Qi1
liinsupglogEexp Ba? g Nily <602 + Bemy2 — Ca? E &ni | <0,
—00 . -
7=1 J=1

(3.25)
for 6, € and a small in the usual sense.

Proof. Since ¢ and n are independent and since ¢ is an IID sequence of B(1/2) variables

'/V’t/a271 ‘/\/t/a,Qi1
Eexp Ba? Z 77j1nj<5/a2 + Bamt/az — Ca? Z Eni | =
j=1 J=1
N’t/a271 '/\/t/a,zi1 1 1
2 2
Eexp | Ba z; Ny, <sja2 + Bemye2 + z; log <2 + 3 &Xp (—Ca Uj)) ,
J= j=

(3.26)

The proof now proceeds in two steps: first we will show that if §, € and a are small in the
usual sense

Nt/a27
1 1
Bemyjq2 + B JZI log (2 + 5 &XP (_CCLQm)) < Be, (3.27)
uniformly in 7, and then that
1 Nt/a2_1 ‘/\/t/cl,Q_1 1 1
. 2 2
h?LSololpglogE Ba Z; Ny <602 + 5 Zl log <2 + 5 eXPp (—C'a Uj)) < 0.
j= j=
(3.28)
For the proof of (3.27), recall first that 5 is the first contact in I,, for k < my a2,
ie tp := min{n € I, : n € 7}. Now let us consider the intervals (tx_1,t;] for k =
L...,myq2 — 1 (to := 0): given a value of k

(1) either in (t5_1, ] there is a long excursion, that is there exists j* such that (7j«_1, 7] C
(tg—1,t] with 7« — 751 > §/a?, so that

1 1 1
Be + 5 Z log (2 + 5 &XP (—Ca277j)>

Ji (1j—1,75]C(tk—1,tk]

1 11 ) 1 11 g
< B£+§log <2+2exp (—Ca Uj*)) < B€+§log <2+2€ > <0, (3.29)
where the last inequality holds for e < gq(6);
(2) or in (tg_1,t] there are only short excursions, that is n; = 7; — 7j_1 < §/a?

for every j such that (7j_1,7;] C (tg—1,tx). In this case we bound from above
log (% + %exp (—Caznj)) by —%Caznj for § < dp, so that

1 1 1 1
Be+§ Z log (2 + 5 oxp (—Ca277j)> < BE—§CG2(tk—tk—1) <0, (3.30)
7 (11,751 C(te—1,tx]

where the last inequality holds for e < £¢(d) and it follows by observing that ¢, —

te—1 > ((0/2) — 1)(e/a®) = (6 — &) /a®.
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Summing (3.29) and (3.30)) from k =1 to k = my /.2 — 1, we see that (3.27) holds true.
Let us therefore turn to (3.28)): note that we need to estimate
'/\/15/11271

1 , 1 11 g
ZlogEexp Z g(a’n;) with g(x) == Brly<s + §log <2 + 3¢ ¢ ) . (3.31)

j=1

Since g(-) > —% log 2, we can add the term j = /\/t/az by paying at most v/2, that is

‘A/t/a2_1 n
Eexp Z gla*n;) | < QE[GNt/a?], where G, := exp Zg(a277j) . (3.32)
j=1 j=1

Let us set Go := 1 and v := E[exp(g(a®n;))] for convenience. Since G,, is the product
of n IID random variables, the process {G,, /7" }n>0 is a martingale (with respect to the
natural filtration of the sequence {7, }n>0). Assume now that v < 1: the process {Gy, }n>0
is a supermartingale and, since N /a2 18 & bounded stopping time, the optional sampling
theorem yields E[G )y, /a2] < 1. Then from (3.32) it follows immediately that (3.28]) holds,

completing thus the proof.
We are left with showing that v < 1, that is E[exp(g(a®m)] < 1, when §, € and a are
small in the usual sense (actually € does not appear in this quantity). Note that

Elexp(g(a®m)] =1 = ) [exp(g(a®n)) — 1] K(n), (3.33)
neN
and recall that K (n) ~ L(n)/n'*® as n — oo, with L(-) slowly varying at infinity. Then
it follows by Riemann sum approximation that

. Elexp(g(a®m)] — 1 /°° 1 1 1 _¢ dz

1 = Bzrl, —log(=+=e ")) = 1| —.

a0 a2 L(1/a?) .|\ Prlecotglos| g T ae pl+a
(3.34)

The Riemann sum approximation is justified since L(cn)/L(n) — 1 as n — oo uniformly
for ¢ in compact sets of (0,00) [4, Th. 1.2.1] and since for every € > 0 there exists b > 0
such that L(n) < bn® for every n (the latter property is used to deal with very large
and small values of n). A simple look at suffices to see that the right-hand side is
negative if § < dy. d

3.2. Step 2: switching to Gaussian charges. In this step we introduce the second
intermediate approximation f2: following , we define the corresponding Hamiltonian
H? by

My/a2

HE_s(a,h) = > s (Zp(@) + ah| L), (3.35)

k=1
where @ = {©; }ien is an IID sequence of standard Gaussian random variables and we
recall that Zj (W) := .7, @;. We stress that, with respect to the preceding Hamiltonian
H', f. , we have just changed the charges w; — ;.

In order to apply the general scheme 7, we build the two sequences of disorder
variables w = {w; }ieny and & = {@; };en on the same probability space (2, F,P), that is we
define a coupling. Actually, the disorder does not appear any longer in terms of the individ-
ual charges w;, but it is by now summed over the coarse-grained blocks I; = ((j—1) 3, j 2],
so we just need to couple the two IID sequences {Zielj w;}jen and {Zielj Wi }jen. The



26 FRANCESCO CARAVENNA AND GIAMBATTISTA GIACOMIN

coupling is achieved via the standard Skorohod representation in the following way: given
the IID sequence {&;};en of N(0,1) variables, if we set F(t) := P(@&; < t) and n := |4,
then F <ZZ€ I w;/ \/ﬁ> =: U; is uniformly distributed over (0,1). Therefore if we set
F.(t) = P(Eigj wi/vn < t) and F;1(s) := inf{t € R : F,(t) > s}, that is ;!
is the generalized inverse of F,, then the sequence {F, '(U;)};en has the same law as
{Zielj w;i/y/n}jen and we have built a coupling. For short we set X](-n) := F,;1(U;) and
Y; = ﬁ_l(Uj) = Zz‘elj wi/+/n. Moreover we observe that, by the Central Limit Theorem,

lim,, o0 F(t) = F (t) for every t € R and therefore lim,,_, oo X j(n) =Y, in P-probability.

Lemma 3.4. For every C' > 0

lim E [exp (C‘Xf") —Ylm - 1. (3.36)

Proof. Since lim,,_, an) = Y1 in probability it suffices to prove that the sequence of

random variables {exp(C|X 1(n) —Y1|) Jneno+n is bounded in L? (hence uniformly integrable)
for a given ny € N. We choose ng to be the smallest integer number larger than 16C2/t2,
with ¢o the constant in (1.9). By the triangle and Cauchy-Schwarz inequalities we get

sup E [exp (20 ‘X}n) — YlD} < \/(sup E [exp <4C ’an) )}) E[exp (4C\Y1| )] < 00,

n>ng n>no

(3.37)
where the second inequality follows from ((1.9) and the choice of ng, recalling that X fn) ~
Yo wi/y/nand Y1 ~ N(0,1). O

Let us see why Lemma implies f! ~ f2. First of all

min (Htl,e,é(av h) - Ht%s,é(% (1 - p)h) ’ th,s,é(a7 h) - Htl,e,zi(av (1 - p)h))

My )02 My )02
> = Y sl Ze(w) = Ze@)] + aph > s | I

k=1 k=1

mt/a2 oL Tnt/a,2 B
Z—Zsk Z Zwi—Z@i—i—apthk’Ik,

k=1  j=ox_1+1|i€l; i€l k=1

where we redefine oy, a2 T t/e for notational convenience (otherwise we should treat the

last term j = my 42 separately). In view of (3.9)—(3.11)), it suffices to show that for a,e
and 0 small in the usual sense (recall the discussion before (3.7))) we have

Tnt/a2
exp ( — Ad’ph Z Sk ‘Iﬂ) X

k=1

E(exp<Aan§23k i <\f> ‘que/f)_)/j‘))

Jj=ok—1+1

1
limsup — log E

t—00 t

<0. (3.38)
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By independence

My /a2 o
E | exp (Aa Z Sk Zk <\£‘g> )XJ(E/GQ) _ Yj‘>
k=1

Jj=0k—1+1

mt/a2

H E {exp (A\/gsk. ’Xl(e/a2) - Yl‘)}gk_okil , (3.39)
k=1

and since a?|I| = ¢ (o) — ox_1) the term between square brackets in (3.38) is equal to

mt/G«Q Ok—0k—
H (exp(—Aphske) E [exp (A\@sk XfE/GQ) — HD]) SR (3.40)
k=1
Since s € {0,1}, (3.38)) is implied by
exp (—Aphe) E {exp <A\/E ‘X{E/GQ) — YID] <1, (3.41)
which holds for a < ag(e) by Lemma The proof of f1 ~ f? is complete. O

3.3. Step 3: from the renewal process to the regenerative set. In this crucial step
we replace the discrete renewal process 7 = {7, }nen with the continuum regenerative set

@ (both processes are defined under the law P). Recall that for the renewal process T
we have defined the coarse-grained returns {oy }ren as well as the coarse-grained signs s,
and my .2 = inf{k : oy > t/e}. Henceforth we set m := my 42 for short and we redefine
for notational convenience o, := t/e (as in the previous step).

Since I, = (z0k—1, 220%], the second intermediate Hamiltonian H?, cf. (3.35)), can be
rewritten as

NE

1
Ht%s,é(% h) = -

Wi h — Of— . 3.42
oD sk > ai | +he(op —ox) (3.42)

k=1 Eak 1 Ecrk

<1<

We now introduce the rescaled returns g, := coy, and we let 5 = {f;}+>0 be a standard
Brownian motion, defined on the disorder probability space (€2, F,P). With some abuse
of notation, we can redefine H? as

B2 g0 ) =+ 3" st (B~ o, +hlox —341) | (3.43)

k:l

which has the same law as the quantity in (3.42)), hence through formula (3.8]) it yields the
same f2. Tt is clear that H? depends on the renewal process 7 = {7, }nen only through
the vector

Y= (M5 81, 8m; 1y O s (3.44)
whose definition depends of course on ¢, a, ¢, 9.

One can define an analogous vector X in terms of the regenerative set 7%, by looking at
the returns on blocks of width e, skipping (d/¢) blocks between successive returns. More

precisely, we set fj := ((j — 1)e, je] for j € N and define
g, :=0, o) = e-inf{j > (o,_1/e) + (0/e) : ?aﬁfj#@}, neN. (3.45)
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We then set m := inf{k € N : g, > t} and redefine g5 := t. The signs {s;}1<k<m
are defined in complete analogy with the discrete case, by looking at the sign A® at the
beginning of each visited block I5, . We have thus completed the definition of

Y= (7/77‘7 §17"'7§T%; Ela---a&m)- (346)

We are ready to introduce the third intermediate quantity f3, which, in agreement with
(3.8)), will be defined by the corresponding Hamiltonian H?3. We replace in the right hand
side of (3.43)) the quantities m, s, o) with their continuum analogues m, S, 7, that is we
set

1A L
Ht%s,&(aa h) = 4 Z Sk <5§k - 5§k_1 + h(o), — Qk—l)) . (3.47)
k=1
It is now convenient to modify slightly the definition (3.43) of H?. The laws of the

vectors ¥ and ¥ are mutually absolutely continuous (note that they are probability laws

on the same finite set) and we denote by 9= = 9Z(m; 5,,...,5) the corresponding

v~ d%
Radon-Nikodym derivative, which does not depend on (51,...,55): in fact, conditionally
on m, gy,...,0s, the signs s1,...,5y,, are IID variables that take the values {0,1} with

equal probability, and an analogous statement holds for sq, ..., s;,. We then redefine

1 log g .

2a\ ax

Note that this definition of H? yields the same f? as , according to (3.8)).
To prove that f2 ~ f3, we can now apply the general scheme f. Plainly,

min {th,e,é(av h) - ng’(;(a, (1 - p)h)v ng,é(aa h) - Hze,é(% (1 - p)h)}

[,
~  2a\ Ogdf}

Ht%e,é(avh) = 25,5(0’7 h) - (348)

m 3.49)
ph ~ o~ o~ (
‘ + . § $k(Tk — Tr—1) 5
k=1

therefore, in view of (3.11]), we are left with showing that for all A, B > 0 and for d,¢,a
small in the usual sense we have

1 U s

limsup — log E [exp [ —4 Zsk (6 — 0_1) + B|log— < 0. (3.50)
t—o0 t —1 d>

We have already observed that, conditionally on m,o,,...,d5, the variables s1,..., 55

are 11D, taking the values {0,1} with probability % each, hence 3—% does not depend on
these variables. Integrating over i, ..., S, we can rewrite the expectation in (3.50|) as

(ﬁ <; + %exp(—A(Ek —Ek_l))>> exp <B log j‘;D] : (3.51)

k=1
We need some bounds on %, that are given in the following lemma (whose proof is deferred

to Appendix . Since the result we are after at this stage is for fixed & > 0, for the sake
of simplicity we are going to fix § = 1: arbitrary values of ¢ lead to very similar estimates.

E

Lemma 3.5. Fiz 6 = 1. There ezists k(e,a) > 0 with the property that
lim limsup k(g,a) = 0, (3.52)

e=0 40
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such that, for all values of m, aq,... the following bound holds:

il m7

m

dX
log — = —(m;ay,... ,5m)‘ < k(g a) Z (log@i —0g,_1)+ 1) . (3.53)
i=1

Note that by definition (g; — g,_;) > § = 1 and therefore the right hand side of ([3.53])
is positive. By applying (3.53)) we now see that the expression in (3.51)) is bounded above

by E[Gf], where for n € N we set

i 1 —A(o.—0 . k(e,a) [~ ~ Kk(e,a
Gy = H§ <1+e Al 71_1)) P9 (G, — 5, ;)PrEe) (3.54)
i=1

To prove (3.50)), completing thus the proof that f2 ~ f3, it therefore suffices to show that

lim sup = log E[G] < 0. (3.55)
t—00 t

We recall that m = inf{k € N : g, > t} and that we had redefined g5, := t for notational
convenience. It is now convenient to switch back to the natural definition of .
This produces a minor change in G, see : in fact, only the last factor in the product
is modified, and since (1+e7*) < 2(1+e7Y) for all x,y > 0, the new Gz, is at most twice
the old one. The change is therefore immaterial for the purpose of proving

We introduce the filtration {F,},enufoy, defined by F, := o(ay, .. .,7,), and we note
that m is a bounded stopping time for this filtration. Let us set

1 5 ~

v = 7(g,a) := sup E; [ (1 +6_Agl) eBrEa) () BriEa) | (3.56)
z€[—¢,0] 2

where we recall that P, denotes the law of the regenerative set started at x, that is

P,(7* €:):=P(7*+ z € -). From (3.54) and the regenerative property of 7* we obtain

E[Gn1|Fn] < vGa. (3.57)

If v < 1, this relation shows that the process {Gy, }n>0, with Gy := 1, is a supermartingale.
Since m is a bounded stopping time, from the optional sampling theorem we deduce that
E[Gs] < E[Go] = 1, which clearly yields (3.55).

It only remains to show that indeed v < 1, provided £ and a are small in the usual
sense. Observe that 51, defined in , is a discretized version of the variable di_. =
dy— (T ) defined in (recall that § = 1): more precisely, o, = [d1_c/e]|, therefore
di—c <o, <dj_c+e. Setting k := k(g,a) for short and applying (2.10), we obtain

1 ~ _ 1
E, [2 (1 + e_Agl) eP" (Ul)BH} < E,; {2 (1 + e_Ad1_5> P (dy— +€)P"

sin(ra) [ [1 —At\ _Bx Bk (I—¢)—=x)*

- = e e i

Plainly, there exists kg > 0 such that the integral in is finite for k € [0, ko], for every
€ [—&,0], and it is in fact a continuous function of (z, k) € [—&,0] x [0, ko|. Furthermore,
the integral is strictly smaller than 1 for k = 0 and every x € [—¢, 0], as it is clear from the
first line of . Therefore, by continuity, there exists k1 € (0, kg) such that the integral
in is strictly smaller than one for (z, k) € [—¢,0] x [0, k1]. Looking back at (3.56]),
we see that indeed v < 1 provided x(e,a) < k1. Thanks to @ , it suffices to take ¢ and
a small in the usual sense, and the proof of f? ~ f3 is completed. O

(3.58)
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3.4. Step 4: inverse coarse-graining of the regenerative set. This step is the close
analog of step 1 (cf. § in the continuum set-up, and a straightforward modification of
step 4 in [9]. We will therefore be rather concise.

Recall that the function f* is nothing but the continuum finite-volume free energy, cf.

(3.5)), hence according to (3.8) it corresponds to the Hamiltonian (recall (2.2)) and ([2.3))

H}_ 5(a,h) : /A (dB(u) + hdu) = Z 8 w) (dB(u) + hdu) ,  (3.59)

1Uk1

where we have set A(u) := A*(u) for short. As in the third step, we redefine &, := ¢
for simplicity (otherwise the k¥ = m term in the sum in would require a separate
notation), but we will drop this convention later.

We now rewrite Hf’,e,é(a, h) by introducing the process

Aw) =Y Sl 5, (3.60)

so that by (3.47) we can write

H}. s(a,h) = %Z /~ ™ Aw) (dB(u) + hdu) - (3.61)

Our aim is to show that f3 ~ f4, but we prove only f* < f3, since the argument for the
opposite inequality is very similar. We have (recall (3.9)))

( )ahp —phz o Au du—l—Z/ 3(u))(dﬁ(u)—|—hdu),

k=1"%k—1
(3.62)
and therefore, arguing as in (3.21)—(3.22), it is sufficient to show that for every choice of
Aand B >0

1
limsup;logE <0, (3.63)

t—o00

exp (A/O |£(u) — A(U)‘du — Bzgk (Ek —513—1))

k=1

provided ¢ and e are small in the usual sense. Note that a has disappeared.

Let us now focus on the union of the excursions of B® whose length is shorter than §
and denote the intersection of such a set with [0,¢] by J; 5. Then, in analogy with (3.24)),
we have the bound

/Ot ‘A(u) — A(U)‘du < |Jis| + me. (3.64)

We now integrate out the s variables in (3.63)) (recall that they are IID B(1/2) variables)
and observe that, since g;, — g;,_; > 9, for every § > 0 there exists ¢ such that for ¢ < gg

O L 11 L
Ame + 2;1052; <2+2exp (—B (Uk—Ukl))> < 0. (3.65)
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Also notice that, by construction, |J;5 N (gp_1,04)] < (6 +¢) <26 forall k =1,...,m,
hence |J; 5| < 26m. Therefore it remains to show that

1 & 1 1
exp <2A(5ﬁ1 + §Zlog <2+2exp (—B (5k—5k_1))>>] <0.
k=1

(3.66)

At this point it is practical to go back to the original definition of g (cf. (3.45)): this

produces a change in the exponent of (3.66) which is smaller than (log2)/2 and this is
irrelevant for the estimate we are after. We then rewrite (3.66)) as

1
lim sup n logE

t—o00

t—00

1 - 1 5 5
lim sup n logE[Gm] <0, where G, := 1_[62‘4‘S \/2 (1 + e_B(Qk_Qkfl)) . (3.67)
i=1
Let us set
2A6 E,

v = v(0,e) = sup e
z€[—¢,0]

% (1+ 6_351)] , (3.68)

and introduce the filtration {F,, := o(gy,...,d,)}nen. By the regenerative property of
T, we can write

E[Gui1|F] < 7Ga, (3.69)

therefore if v < 1 the process {Gp,}n>0, With Gy := 0, is a supermartingale. Since m is
a bounded stopping time, the optional sampling theorem yields E[G] < 1, from which
follows. We are left with showing that v < 1 if § and € are small in the usual sense.

Recall that ds = ds(7) = inf{u > s : u € 7} (cf. (2.7)) and observe that, by definition,
o, = jeifand only if ds_. € ((j—1)e, je] (cf. (3.45)). Therefore we may write ; > ds_. >
ds_cyo for z <0, whence

E, %(1—1—6_351) < E, =E

\/; (1 + e~ Bds—cta) \/; (1+ eBd56)] . (3.70)

Looking back at (3.68), we see that v < 1 if we show that the right hand side of (3.70])
is less than exp(—2A0), when ¢ and ¢ are small in the usual sense. This condition can be
simplified by letting & \, 0: since ds_. — dg, P-a.s., it suffices to show that

E < exp(—2A49), for all 6 > 0 small enough. (3.71)

\/; (1 + exp(—Bdy))

The law of the variable ds is given in (2.10f), hence with a change of variables we may write

|
singzra) /000(15 1— \/;(1+exp(—35(1+v)))

Since the term between square brackets in the right-hand side is positive and asymptot-
ically equivalent, as § \, 0, to dB(1 + v)/4, Fatou’s Lemma guarantees that the limit as
0 \( 0 of the expression in is equal to 400 and this entails that holds.

This concludes the proof of step 4 and, hence, the proof of Theorem [3.1] O

\/; (1 + exp(—Bdy))

dv
v*(1+v)

(3.72)
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ApPPENDIX A. COMPLETING THE PROOF OF PROPOSITION

In this section we are going to prove (2.18]), that is, for every n € (0,00) there exists
D(n) € (0,00) such that

E[E[exp (nO©7(8, &O‘))H < D(n)ePMT for every T'> 0. (A1)

We first state some important estimates concerning the regenerative set 7¢.

A.1. Regenerative set, excursions and local time. We recall the basic link between
regenerative set and subordinators. Let (o = {o¢}+>0, P) denote the stable subordinator of
index «, that is the Lévy process with zero drift, zero Brownian component and with Lévy
measure given by II(dz) := :pl% 1(0,00)(z) dz with ' > 0. We choose as usual a right-
continuous version of . The value of the constant C' is quite immaterial (it corresponds
to rescaling time or space by a constant factor) and a useful normalization it to fix C
so that [;°(1 — e *)[I(dz) = 1. In this way, the Lévy exponent of o, defined by ®(X) :=
—log E[e 1] = [(¥(1 — e **)II(dx), equals exactly A* for all A > 0.

If we denote by Aoy := o4y — oy the size of the jump of ¢ at epoch ¢, it is well-known
that oy = > s€(0,] Ao, that is ¢ increases only by jumps. A remarkable property of o is

its scale invariance: {0 }+>0 has the same law as {cl/ «
estimates, cf. Theorems 8.2.1 and 8.2.2 in [4]:

ot }t>0. We also recall some basic

P(oy >xz) = (Coa:ft‘)(l—i-o(l)), as r — +00,
P(o1 <z) = exp < - fm(l + o(l))) , as ¢\, 0. (A.2)

If we set & := [0,00) x (0,00), the random set of points {(t, Aot)}icp,00) N E (nOte
that we only keep the positive jumps Aoy > 0) is a Poisson random measure (sometimes
simply called Poisson process) on £ with intensity measure dt ® II(dz), where of course
dt denotes the Lebesgue measure. The stochastic process {Aat}te[o,oo) is called a Poisson
point process on (0,00) with intensity measure II.

The basic link with regenerative sets is as follows: the random closed set of [0, c0)
defined as the closure of the image of the process o, that is {o}+>0, is precisely the a-
stable regenerative set 7* we are considering. Therefore the set of jumps { Aoy }+>0 coincides
with the set of widths {|I,|}nen U {0} of the excursions of 7.

Let us discuss an application of these results that will be useful later. If we denote by
L; = inf{u > 0: o, > t} the inverse of o, known as the local time of 7%, we may write

Z |~ = Z (Aoy)' =5 = Z f(Aoy), where f(z) = x'"° 1y (),

neN: I,,C(0,2) te(0,L2) te(0,L2)
(A.3)
therefore for A > 0 we have by Cauchy-Schwarz

exp ()\ Z |In|1€>] < Z E
(0,2)

neN: I,,C meN

E

exXp (A Z f(AUt)> Lim—1<ro<my

te(0,m)

<> \|E

meN

P[m—1<L2§m}.

exp (2)\ Z f(AUt))

te(0,m)
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By the definition of L, the scale invariance of o and (A.2]), we have for some ¢ > 0

Plm—-1<Ly<m| < Plog_1<2] = p[al _ 2] Py

(m — 1)t/

(A.4)

By Campbell’s Formula for Poisson processes (cf. equation (3.17) in [19]) we obtain

o0
E | exp (2)\ Z f(Ag't))] = exp (m/ (62Af($)1)n(dl.)> — eC’O\)ﬂL7
te(0,m) 0
2 62,\11*5 _

where C(\) = /0 de < oo for 0<e<l—a. (A.5)

From the last relations we then obtain, for some ¢; € (0, ),

o (A 2 |In|1_6>] < Y es@moclm=)VEED) g e (OO
(0,2)

neN: I,,C meN
(A.6)

where the last inequality can be checked, e.g., by approximating the sum with an integral

E

and developing the function e31CNz—et/ 0= o ound its maximum.

Since e — 1 < 2X ey for y € [0,2], it follows from (A ) that C(\) < (const.) ™.
By Markov’s inequality we then obtain

LT >

neN: 1, C(0,2)

P < ¢ ecl(C(A))l/a—)\m < ¢ 66265’\/6“—)\:67 (A?)

for some ¢y € (0,00). Optimizing over \ yields, for every = > 0,

P

Z |In|1_6 > ZL'] < min {61 e_%x[log(%x)_l], 1} < c3e BT, (A.8)
neN: I,,C(0,2)

for a suitable c3 € (0, 00). We can finally estimate the quantity we are interested in:

E | exp <'yﬁ Z |In|15>]
neN: I,,C(0,2)
:/ P | exp (fyﬁ Z \In\l—‘E) > t] dt
0 L neN: ,,£(0,2)

0 2
_ Z 1— (logt)
B /0 i > 2T

L neN: 1,,C(0,2)

dt

< c3 /OO e_CB(IOgt)Q/(’YQT) dt = c3 /Oo et 6—039:2/(72T) dz < 64’)/\/T604'72T7
0

—00
for some ¢4 € (0,00), by a Gaussian integration. We have thus proven that, if e < 1 — a,
there exists ¢4 € (0,00) such that for all v,7" > 0

exp <7\/T > !In\l‘*f)] < ey VT e’ T (A.9)
(0.2)

neN: I,,C

E
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A.2. Proof of equation ((A.1]). We recall that

Or(8,A%) = sup |Ho.4:0.5(A)] . (A.10)
—1<2<T, 0<y<T+1

Recalling (2.2)), we can write

Hoy0,5(A%) = —2X /0 ! A%(w)d(0,8)(u) — 2A\h /0 ! A%(u) du,

and note that the second term is bounded in absolute value by 2Ahy. For the purpose of
proving ({A.1)) we may therefore focus on the first term: we set

~ Yy . Tty
Yo (8,A) = /0 A% (u) d(0:8)(u) = / A%(u — ) dB(u), (A11)
(3, A%) = ( sglp Yey(B,A%),  where Sp = [-1,T] x[0,T+1]. (A.12)
z,y)EST

We stress that I'r is defined as the supremum of v, ,, not of |y, 4|. Notice however that, for
fixed A%, the process v = {v,y(8, A%)}+, under P is gaussian and centered, in particular
it has the same law as —v. Since e/l < e* + ™%, we may then write

E{]E[exp (n @T(B,ﬁa))ﬂ < 262’\"(T+1)E[E[exp (2nA FT(B,AQ))H . (A.13)

Looking back at (A.l), we are left with showing that, for every n > 0, there exists (a
possibly different) D(n) € (0,00) such that

E[E[exp (nTr(8,4%)]| < D)eP™7T, v >0, (A.14)

Let us set I'p := I'p (5, 50‘) for short. It is convenient to split
E[E[exp (an)H - E[exp (nE[T7]) - E[exp (n 'z —E[FT}))H . (A.15)

To prove ({A.14)) we use the powerful tools of the theory of continuity of gaussian processes.
Let us introduce (for a fixed realization of A®) the canonical metric associated to the

gaussian process 7, defined for (z,y), (',y) € Sp = [-1,T] x [0,T + 1] by
X Ko\ 2
U0, 1= B[O (8.30) 08, 5)7]. (A.16)
For ¢ > 0 we define N7(g) = N, x.(€) as the least number of open balls of radius ¢ (in

the canonical metric) needed to cover the parameter space Sp. The quantity log Np(e)
is called the metric entropy of ~. It is known [I, Corollary 4.15] that the finiteness of
fooo \/log N7 (g) de ensures the existence of a version of the process v which is continuous
in the parameter space. Moreover, there exists a universal constant K € (0, 00) such that

E[Lr(8,A%)] < K/Ooo,/logNT’za(g)ds. (A.17)

We show below that, for P-a.e. realization of A%, indeed Jo~ y/log N x4 (€) de < o0, so

we may (and will) choose henceforth a continuous version of the process ~.
. . . 2 _ 2 .
To estimate the right hand side of (A.15)), let us denote kiy 0F = 07 Xa the maximal
variance of the process v, that is 0% := SUP (3,4 sy Bz, (B; A%)2]. Since « is continuous,
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it follows easily by Borell’s inequality [I, Theorem 2.1] that

1

Blexp (o~ Ea])] < C'ar exp (5ot ).

where C’ € (0, 00) is an absolute constant. Now observe that o2 is uniformly bounded: by
(A.11) and the isometry property of the Wiener integral, since |[A%(-)] < 1 we can write

~ Tty
of = sup E[yy(8,A%?] = sup A%(u—2)*du < T+1. (A.18)
(z,y)€ST (z,9)eSr Ja

Looking back at (A.15]) and recalling (A.17)), we have proven that there exists C' € (0, 00)
such that

E{E[exp (nFT(ﬁ,AO‘))]] < CeCWZTE[eXp (Kn/ooo logNTAa(E)des)]. (A.19)

To complete the proof of (A.14)), it remains to estimate N, 3. (¢), which requires some
effort. For a fixed realization of A%, we introduce the function py : Rt — R defined by

pr(6) = sup d((z.y). (2", y)) (A.20)
(2y), (2" y")eST: |(2,y)—(2",y")|<6

where |(z,y) — (z/,¢)]* := (z — 2/)> + (y — ¥/)? denotes the Euclidean norm and we

recall that the canonical metric d is defined in . Note that pr(-) is a non-decreasing

function which is eventually constant: pr(8) = pr(v2(T + 1)) for every § > V2(T + 1),

simply because v/2(T + 1) is the diameter of the space Sy = [~1,T] x [0,T + 1].

Plainly, for every fixed 0 > 0, we can cover the square Sy with no more than (% +1)2
open squares of side §. Since the Fuclidean distance between a point in a square of side &
and the center of the square is at most 6/ V2, the corresponding distance in the canonical
metric is at most p7(6/+v/2), by the definition of pr. Therefore a square of side J can be
covered with a ball (in the canonical metric) of radius pz(§/v/2) centered at the center of
the square. If we set & := pr(§/V/2), this means that we need at most (£ +1)? balls (in
the canonical metric) of radius € to cover the whole parameter space Sp. Put otherwise,
we have shown that for every € > 0

T+1 \?
Nr(e) < <1+\%1(8)) , (A.21)

where p;l is well-defined because pr is non decreasing and continuous, as it will be clear

below. Since N7(¢) = 1 for € > pr((T + 1)/+v/2) (we can cover St with just one ball), we
obtain the estimate

S pr(T+1)/V2)
/ V0og Np(e)de < / \/2log<1+T+1 )de.
0

0 V27t (e)
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By a change of variables and integrating by parts, we obtain

T41
+1
log Np(e)de < 2log ( 14+ ——— | dpr(t
/ng /\/g \/it>,0T()

T+1

= 2log2pT< ) /f pT() i dt
2log T—H) T+1+ V2t (A.22)
V2t
T+1
< pr<T+1) /f pr(t) at.
T+1
\/21g 1+m>

where in the integration by parts we have used the fact that, for P-a.e. realization of ﬁ“,
we have ,/2log(1 + T}'l) 7(t) = 0 as t — 0, as we prove below.

To proceed with the estimates, we need to obtain bounds on pp, hence we start from
the definition (A.11)) of v, (8, A%). By the properties the Wiener integral we can write

d((‘T? y)? (xlv y/))2 = E[(7$’,y’(67 &a) - 790731(57 zO[))2]

2T+1 _ )
= /1 (A%(u — )L gy (u) — A%(u = 2)Lg 44y (w)” du
2T+1

= [ R = i () = A= )Ty ()]
where the last equality holds simply because ﬁ“() takes values in {0,1}. Incidentally,
this expression shows that the canonical metric d(-,-) is continuous on Sy (because the
translation operator is continuous in L'). Therefore pr(-) is a continuous function, as we
stated before.

By the triangle inequality, we get for 2’ < z

2T+1

d((x)y)v(xlay/))z < /1 Aa(u—x ‘1:10 x+y]( )_1[:v,z+y](u)‘du

2T+1 N
+ / |A%(u— ) = A%(u — )| 1y pyy (u) du
-1

2T+1 _
< |o'—af + r<:c'+y'>—<x+y>|+/ A% (u — o) — A%(u — 2)| du.

Recall that Aa( ) = ZnGN €n 11, (s), where {I,}nen are the connected components of the

open set (7*) and {fn}neN are IID Bernoulli variables of parameter 1/2. For every finite
interval I we have the bound [, [17(u—2') — 17(u — 2)| du < 2min{|I,|, |2’ — x|}, whence

2T+1 _
/ |AY(u—2') = A%u — )| du < Z min{|I,|,d} (A.23)
z neN: I,M(0,2(T+1))#0

Therefore, recalling the definition (A.20)), we can write

pr(6)? < 36 + > min{|1,|,d} . (A.24)
neN: InN(0,2(T+1))#£0
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Observe that the sum in the right hand side can be rewritten as § N5 + Ag, where Ny is
the number of excursions I,, that intersect (0,2(7 + 1)) with |I,| > § and As is the total
area covered by the excursions [, that intersect (0,2(7'+1)) with |I,,| < §. The asymptotic
behavior as 0 \, 0 of Ns and As is as follows: there exist a positive constant ¢ = ¢(«) such
that

A
lim N = lim 2= cLypyyy,  Peas., (A.25)

where {L;}+>0 is the local time associated to the regenerative set 7* (whose definition
is recalled in §[A.1)). The relations in (A.25)) are proven in [23], cf. Proposition XII-(2.9)
and Exercise XII-(2.14), in the special case o = %, but the proof is easily extended to

the general case. Looking back at (A.24), it follows that, for P-a.e. realization of A%, we
have pr(8) ~ v2c¢ /Lo 41) §(1=)/2 a5 § N\, 0. In particular, ,/log(1 + 7:;1) 7r(t) — 0 as
t \( 0, a property used in the integration by parts in (A.22]).

We are ready to bound the terms in the last line of (A.22)). Note that the first term is
easily controlled: by definition d((z,v), (z/,y’)) < 207, hence it follows by (A.18) that

\fsz<T+1> < 2V2VT +1. (A.26)

V2

Now observe that from (|A.24)) we have

pr(8) < Froa(8), where Fa(5) = \/35+ S min{|L),d}. (A27)
neN: I,

N(0,2M)#0

By the scale invariance of the regenerative set 7 it follows that, under P, { Fas(t) }+>0 has

the same law as {V'M Fi(37)}+>0. Therefore we can bound the second term in the last
line of (A.22) as follows:

T+1 T+1

/f \/ pr(t) i < /f Fria(t) at £ VT+1M, (A.28)
)

T+1 T+1
2log 1+ft 210g<1+ ft)

where, performing the change of variable t = (T'+ 1)s in the integral, we have introduced
the variable M defined by

l/v F1) (h _ /ﬂ%l 354 2 nen: 1,n(0,2)20 MIn{| In|, s} N
s 1
(A.29)

We can finally come back to (A.19): applying (A.22]), (A.26) and (A.28]) we obtain

E[exp <K77/ \/1og N xa(€) dg)] < E[GKW\/TH(?\@-FM)] ) (A.30)
0 )

It only remains to estimate the law of M. Let us fix an arbitrary ¢ € (0,1 —«): applying
the Cauchy-Schwarz inequality, we obtain

1
vz 1 vz (3 min{|1,|, s}
V2s

neN: I,,n(0,2)#£0

(A.31)
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The first integral being finite, we may focus on the second one, in particular on the

sum over the excursions {I, }neN Consider first the excursions such that |I,,| > \[, for
which min{|I,,|,s} = s: there are at most 2/(1/v/2) + 1 = 2y/2 + 1 such excursions with
I, N (0,2) # 0, therefore

1/\/5 . I 1/\[
> e s e [ Tas <o
nEN: 1,0(0.2) 0, 1] > 2 0

Plainly, also the last excursion I,, © 2 gives a finite contribution It remains to consider
the excursions I, included in (0, 2) such that || < \f for which we may write

1
7 min{|I,|, s} Il 1 vz |1
/ Tds = Z ; S—ads + 0 JTre ds

|1n|< 1nC(0,2), [In|< 75

L= 1 1 . 1 .
= Z <|1|_€ + - |n‘<|[|5_(\/§)>> Sm Z ’Lz’l :

We have thus shown that there exist constants 0 < a,b < co (depending on ) such that

M < a+b > IaftE (A.32)
neN: 1, C(0,2)

We can finally conclude the proof of (A.14). From (A.19)), (A.30) and (A.32) it follows
that equation (A.14)) is proven once we show that for every C' > 0 there exists D = D(C) €
(0, 00) such that for every T' > 0

E[exp (C\/T > \In\l—eﬂ < Dexp(DT). (A.33)

neN: I,,£(0,2)

But this is a direct consequence of equation (A.9)). O

APPENDIX B. PROOF OF LEMMA

We recall that 7 = {7, }nen and 7@ denote respectively the renewal process and the
regenerative set, both defined under the law P. For x > 0, we denote by P, the law of
the sets 7 and 7% started at z, that is Py(7 € ) == P(t + 2 = {7, + 2}nen € -) and
analogously for 7*. For the definition of the vectors ¥ := (m; SlyenvySmi Opye-v,0,,) and
Y = (m; S1,...,5m; O1,---,05), we refer to Section

In this section we fix § = 1. We have to estimate the Radon-Nikodym density g5 dE f the

laws of ¥ and % (which does not depend on the sign variables, see explanation between
(3.47) and (3.48])), namely the quantity

di(l x x) — P((T?L, &17,@%):([, l‘l,...,ﬂj‘l))

Note that by construction (¢;,; — o;) € [0,00) NeN, and since § = 1 we assume that
Ziy1 — i € [1,00) NeN. Using the regenerative property of 7¢ and the renewal property of

(B.1)
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7, the ratio in (B.1)) can be estimated in terms of the probability of the first coarse-grained
returns of 7% and T:
l

d l
Y
I | c(r;i —xi—1) < d—(l; T1y...,x7) < | | C(x; —xi—1), (B.2)
i=1 i=1

where we set for convenience xg := 0 and we have introduced, for z € [1,00) N eN,
Py(inf{u>1:ue7} € (2,2 +¢)
C(z) == sup S e
vgee Py (inf{i> 55 riert € (5, %5))

(B.3)

and c(z) is defined analogously, replacing the supremum (over y and y) by the infimum
(over the same variables and range). For the purpose of proving Lemma it is actually
more convenient to give a slightly different estimate than (B.2]), namely

I a5 I
exp <_ ZG(Q;Z - xi_ﬂ) < ﬁ(l; T1,...,11) < exp <Z G(x; — xz‘—l)) , (B4)

i=1
where G(z) = G o(%) is defined, always for z € [1,00) NeN, by

Py (inf{i> 5:ier} € (&, 25)
Geo(z) == su lo 2 — B.5
ea(2) y,ge(%,sl & Py(inf{u >1: uve 7} € (2,2 +¢]) (B-5)
Recalling the statement of Lemma we are left with showing that
Gea(2) < K(e,a) (logz+1), with lim limsup k(e,a) = 0. (B.6)

e=0 40

We claim that the rescaled renewal process a’1 = {CL2Tn}n€N, viewed as a random closed
subset of [0,00), converges in distribution as a — 0 toward the regenerative set 7%, where
we equip the family of closed subsets of [0, c0) with the topology of Matheron, as described
in [I3]. To check this claim, we recall from §[A.1] that 7 is the closure of the image of the
(stable) subordinator with Lévy exponent ®(\) := A®. If we denote by {N;}:>0 a standard
Poisson process on R of rate v > 0, independent of all the processes considered so far, the
random set a®7 can be viewed as the image of the subordinator {a?7y, }:>0, whose Lévy
exponent is given by

By(\) = —log E[e ™ ] = y(1-E[e ")) =73 (1 - K(®n). (B.7)
neN
If we fix v = ~y(a) so that ®,(1) = 1, as prescribed by Proposition (1.14) in [13], it
follows easily by our assumption that lim,—0 Pa(A) = ®(A) = A for every A > 0.
By Proposition (3.9) in [13], the pointwise convergence of the Lévy exponents entails the
convergence in distribution of the corresponding regenerative sets, which proves the claim.
From the convergence in distribution of a7 toward 7 it follows that the numerator in
the right hand side of converges as a — 0 toward the denominator with 3 replaced
by y, for all fixed € € (0,1), z € [1,00) NeN and y € (0,¢]. In the following Lemma we
provide a quantitative control on this convergence, as a function of z and y.

Lemma B.1. Fize € (0,1/3). There exists (-(a) > 0 with limg_0 ((a) = 0 such that
Py (inf{i > % :iet} € (5, 2F]

(1 _ Cs(a)) Z—Ce(a) < az'( 2 ~ 2y o2 )

P,(influ>1:ue7} € (2,2 +¢)

for all a € (0,a9) (with ag >0), y € [0,1/3] and z € [1,00) NeN.

< (1+4¢(a) 2@ (B.8)
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We point out that Lemma|[B:1]is proved below through explicit estimates, without reference
to the convergence in distribution of a®t toward 7 stated above.
We now apply (B.g) to : since |log(1+z)| < 2|z| for x small, for small a we obtain

log <Py(inf{u >1:ue7} € (z,z+€])>

Gea(2) < 2((a)(logz+1) + sup P, (inf{lu>1:uer} e (zz+¢)

¥,J€(0,€]

(B.9)
Recalling the definition (2.7) of d¢(7*) and applying (2.10)), for z € [1,00) N eN we can
write
) - sin(ra) [*t€ (1 —y)~
P,(inf{lu>1:ue7} € (2,z2+¢]) = / ——dt. B.10
From this explicit expression it is easy to check that the second term in the right hand
side of vanishes as ¢ — 0 uniformly in z € [1,00) N &N, hence holds true. [

B.1. Proof of Lemma We have already obtained in (B.10]) an explicit expression for
the denominator in (B.8)). It is however more convenient to give an alternative expression:

recalling again the definition ([2.7)) of the variable d;(7%) and applying (2.8]), we can rewrite
the denominator in (B.8) as

« sin(wo 1 zte
I(y,2) = W()/y ds/z = 1(t—5)1+a‘ (B.11)

Recalling that K(n) := P(m; = n) and setting U(n ) P(n € 1), we can rewrite the
numerator in (B.8)) using the renewal property as
Jaly,2) = > Ulk—%)K(-k) = > U((s—y) K(&(t-s). (B.12)

<k g% s€[y,1]NaN
te(z,2+¢]Na’N

We now use [12, Theorem BJ, coupled with our basic assumption on the inter-arrival
distribution (|1.4]), to see that
(—oo @ sin(ma) 1

T L(f) -’
Using the asymptotic relations (1.4]) and (B.13]) and a Riemann sum argument (with some
careful handling of the slowly varying functions, see the details below), one can check that

(B.12) converges toward (B.11)) as a — 0, for all fixed € € (0,1/3), z € [1,00) NeN and

y € (0,¢]. However to obtain (B.8) a more attentive estimate is required. We set n := 1/a?
for notational convenience, so that, with some abuse of notation, we can rewrite (B.12]) as

Jn(y,z) = Z U(k—ny) K(I—k) = Z U(n(s—y)) K(n(t—s)). (B.14)
ny<k<n se[y,l}ﬂ%N
nz<l<n(z+e) te(z,z+eNLN

We can now rephrase (B.8) in the following way: for every fixed ¢ € (0,1/3), there exist
Ce(n) > 0, with limy,_,+ (- (n) = 0, and ng € N such that

o)) o) < In(y:2) ) G
(1 - ¢(n) < Tog ) < (1 + ¢(n)) : (B.15)

for all n > np, y € [0,1/3] and z € [1,00) NeN. We recall that I(y, z) is defined in (B.11)).
For convenience, we divide the rest of the proof in three steps.

U(e)

(B.13)
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Step 1. We first show that the terms in (B.14]) with & < ny + v/n, that is

Ap(y, 2) = Y Ulk—ny)K(1—Fk), (B.16)

ny<k<ny++/n
nz<l<n(z+e)

give a negligible contribution to .

By paying a positive constant, we can replace K(-) and U(-) by their asymptotic be-
haviors, cf. and . Note that & < ny + /n < n/2 for large n, because y < 1/3,
and therefore n(z —1/2) < (I — k) < n(z+ 1/3), because € < 1/3, for all [,k in the range
of summation. We thus obtain the upper bound

A <o Y oy Hm (B.17)
L(h)h m

0<h<y/n n(z—3)<m<n(z+3%)

for some absolute constant C7 > 0. We now show that, for some absolute constant Cy > 0
(not depending on z), we can write L(m) < CyL(nz) for every m in the range of summa-
tion. To this purpose, we recall the representation theorem of slowly varying functions:

T—00 T—00

L(z) = a(z) exp (/11" b(tt)dt> ,  with lim a(z) € (0,00) and lim b(z) =0, (B.18)

see Theorem 1.3.1 in [4]. Setting 7y, := supg>, /s [b(x)[, we have lim, v, = 0 and for
m € {n(z—1/2),n(z + 1/3)} we can write for z > 1

L(m) a(m) /n(z+§) 1 supy>n a(k) 41
< . - < “h2p Y 1 . (B.1
L(nz) ~— a(nz) P (-1 t i) =< infy>, a(k) XD\ T 108 3 (B.19)

n(z—3)
Since z > 1, it is clear that the right hand side of (B.19)) is bounded from above by some
absolute constant Cy (in fact, it even converges to 1 as n — oc). From (B.17)) we then
obtain

1 1
An(yaz) S C'2 L(nz) Z W Z W
0<h<y/n n(z—%)<m§n(z+%)

L(nz) 1 L(nz) n
< —_— — <
< G no Zlto 0<hz<:f L(h)hl=e — Ca nezlte o L(y/n)’

o2 (B.20)

where C3, Cy are absolute positive constant and the last inequality is a classical result
(Proposition 1.5.8 in [4]). Using again the representation (B.18)), in analogy with (B.19),

we can write
L(nz) a(nz) ( /”Z 1 > nz 9
< exp | —dt) < Csexp|ynlog— ) = Cs nn/2 Zm (B.21)
L(vn) ~ a(v/n) N BT
for some absolute constant Cs. Coming back to (B.20]), we have shown that there exists
absolute constants Cg and ng such that for all n > ng, z € [1,00) NeN and y € [0,1/3]
An(y,2) < a2 Jira

Let us now look back at the integral I(y, z), defined in (B.11)). It is easy to check that
for every fixed e € (0,1/3) there exists an absolute constant C7; = C7(g) > 0 such that

C
I5,2) > i (B.23)

(B.22)
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for all y € [0,1/3] and z € [1,00) NeN. If we set ¢'(n) := max{~,, Cs/(C7n(®=m)/2)} we
have lim,, o ¢'(n) = 0 and from (B.22)) and (B.23) we have shown that for every fixed
e € (0,1/3) there exists ng € N such that for n > ng we have
An(y, 2)
1(y, 2)
for all z € [1,00) NeN and y € [0,1/3]. This completes the first step.

< {(n) =24, (B.24)

Step 2. We now consider the terms in (B.14)) with k& > ny++/n, or equivalently s > y—i—ﬁ,
that is we introduce the quantity

Bn(y,z) = Z U(n(s —y)) K(n(t—s)), (B.25)
s€(y+—=1NgN
te(z,2+e]NiN

and we observe that J,(y,2) = An(y, 2) + Bn(y, 2), see (B.14) and (B.16). Our aim is to
prove (B.15)): in view of relation (B.24]), it remains to show that for every fixed ¢ € (0,1/3)

there exist ¢"(n) > 0, with lim,,_,o ¢"(n) = 0, and ng € N such that

Bu(y, 2) 1" ¢"(n)

T(y.2) < (14 ¢"(n) 5™, (B.26)
for all n > ng, y € [0,1/3] and z € [1,00) NeN = {1,1 +¢,1 + 2¢,...}. In this step we
prove that holds for z € [1 + €,00) NeN, that is we exclude the case z = 1, that
will be considered separately in the third step.

By construction, the arguments of the functions U(-) and K(-) appearing in
tend to oo as n — oo uniformly in the range of summation: in fact n(s —y) > y/n and
n(t —s) > en, because we assume that z > 1+ . We can therefore replace U(-) and K(-)
by their asymptotic behaviors, given in and , by committing an asymptotically
negligible error: more precisely, we can write

C, L(n(s — ) 1
B,(y,z) = (1 + 0(1)) 3 IZ 1 [L((n(t — s)))] GG (B.27)
se(y—i-ﬁ,l]ﬂ;N
tG(z,ers]ﬁ%N

(1= ¢"m) =" <

where we set C,, := asin(mwa) /7 for short and where, here and in the sequel, o(1) denotes
a quantity (possibly depending on e and varying from place to place) that vanishes as
n — oo uniformly in y € [0,1/3] and in z € [1 +,00) NeN.

We now estimate the ratio in square brackets in the right hand side of . Recalling
the representation theorem of slowly varying functions, see , uniformly for s,t in the
range of summation we can write

L(n(s —y)) = (1+0(1)) exp (/n(S—y) biw) dx) , (B.28)

L(n(t —s)) (t-s) T
with the convention f,;( S == ff( ..) if 8 > ~. Let us set
o= sup_ |b(z)], (B.29)
z>min{\/n,en}

so that 1, — 0 as n — oo. Uniformly for s,t in the range of summation, we can write

n(s—y) b(x) n(s—y) |
/ — d:c‘ < / —dz| < (| log(t — s)| + |log(s — y)]) . (B.30)
n(t—s) Z n(t—s) <L




WEAK COUPLING LIMIT FOR COPOLYMER MODELS 43

In the range of summation of (B.27) we have 0 < (s —y) < 1, hence |log(s — y)| =
—log(s—y),and € < (t —s) < z+¢, whence |log(t — s)| < —loge +1log(z +¢) (recall that
e <1< z). Coming back to (B.27)), from (B.28]) and (B.30]) we obtain the upper bound

(z4¢e)™ | Cy 1
R R A e i B
se(y+ﬁ,1]m%N
tE(z,z+5}ﬂ%N

Bn(y,z) < (1+0(1))

as well as the corresponding lower bound

g'n Ca 1
Bn(y, Z) Z (1 + 0(1)) m ﬁ Z (8 — y)l_a_"?n (t — 3)1+a] . (B32)
sE(y-l—%,l]ﬂ%N
te(z,z+€}ﬂ%N
(ZJ,_E)’HL 1

Observe that we can write “~—,— = cc . 27", With cc . = (% + )" = lasn — oo
(for fixed €) uniformly in z € [1,00). We can therefore incorporate ¢ ., in the (1 + o(1))
term in (B.31) and (B.32). Recalling that we aim at proving (B.26), it remains to show
that for every fixed ¢ € (0,1/3) the terms in square brackets in the right hand sides of
(B.31) and (B.32)), divided by the integral I(y, z) defined in (B.11)), converge to 1 as n — oo

uniformly in y € [0,1/3] and in z € [1 + ¢, 00).

Since the summand in the right hand side of (B.31) is decreasing in ¢, we can replace
the sum over ¢ by an integral over a slightly shifted domain, getting the following upper
bound on the term in square brackets in the right hand side of (B.31):

z+e Ca 1
[ gz < /Z_l (n > g (t_S)Ha) dt . (B.33)

sE(y—i—ﬁ,l]ﬂ%N

By direct computation one sees that the term in the right hand side of this relation, as a
(A—a+nn)t+(1+a)y
The precise value of sy is actually immaterial: the important point is that each term in

the sum in (B.33) can be bounded from above by an integral over [s — L, s] (if s < sp)
or over [s,s + %] (if s > sg). Therefore we get an upper bound replacing the sum by an
integral over a slightly enlarged domain:

function of s, is decreasing in (0, s¢) and increasing in (sg, 00), where s =

1
a sin(ma) /1+n /Z‘F‘E 1
. < asmre) ds dt - (B34)
[ } [B-31) T y+ﬁ—% ol (s —y)l-atimm (t — s5)lt+a

With almost identical arguments one obtains the following lower bound on the term in
square brackets in the right hand side of (B.32):

1 1
a sin(ra) 1w /z—i-s-‘rn 1
... > d dt . B.35
[ ](]B.32|) = . /y s . (s — y) o (t — 5)lta ( )

141
+ﬁ+n

One can now check directly that, for every fixed ¢ € (0,1/3), the ratio between the right
hand side of and the integral I(y, z) defined in converges to 1 as n — oo,
uniformly in y € [0,1/3] and in z € [1+¢,00). Since an analogous statement holds for the
right hand side of , the second step is completed.
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Step 8. To complete the proof of Lemma it only remains to prove that equation (B.26|)
holds true also for z = 1. More explicitly, we have to show that as n — oo

Bn(y,1)

),

I(y,1)
uniformly in y € [0,1/3]. We recall that

B,(y,1) = Z U(n(s—y)) K(n(t—s)), (B.37)
sE(y-&—ﬁ,Hﬂ%N
te(1,14e)NiN

while the integral I(y, z) is defined in (B.11]).

We only sketch the proof of , because the arguments are very similar to those used
in the preceding steps. Note that we cannot immediately replace K(-) by its asymptotic
behavior, because its argument n(t — s) can take small values. It is therefore convenient
to restrict the sum in tot € (1+1/y/n,1+ ¢]. For this restricted sum, call it
B! (y,1), one can write a formula analogous to (B.27): then, arguing as in the second step
(with several simplifications), one shows that (B.36]) holds true with B, replaced by BJ,.
It remains to deal with B, — B/, that is to control the terms in with ¢t <141/+/n.
In this case one can replace K (-) by its asymptotic behavior by paying a positive constant:
arguing as in the first step, one can show that (B, (y,1)— B, (y,1))/1(y,1) — 0 as n — oo,

(B.36)

uniformly in y € [0,1/3]. This completes the proof of (B.36]) and of Lemma O
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