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Abstract. A copolymer is a chain of repetitive units (monomers) that are almost iden-
tical, but they differ in their degree of affinity for certain solvents. This difference leads
to striking phenomena when the polymer fluctuates in a non–homogeneous medium, for
example made of two solvents separated by an interface. One may observe, for instance,
the localization of the polymer at the interface between the two solvents. A discrete
model of such system, based on the simple symmetric random walk on Z, has been inves-
tigated in [9], notably in the weak polymer–solvent coupling limit, where the convergence
of the discrete model toward a continuum model, based on Brownian motion, has been
established. This result is remarkable because it strongly suggests a universal feature of
copolymer models. In this work we prove that this is indeed the case. More precisely,
we determine the weak coupling limit for a general class of discrete copolymer models,
obtaining as limits a one–parameter (α ∈ (0, 1)) family of continuum models, based on
α-stable regenerative sets.

1. Introduction

1.1. The discrete model. Let S := {Sn}n=0,1,... be the simple symmetric random walk
on Z, that is S0 = 0 and {Sn+1− Sn}n=0,1,... is an IID sequence of random variables, each
taking values +1 or −1 with probability 1/2. If P is the law of S, we introduce a new
probability measure PN,ω = PN,ω,λ,h on the random walk trajectories defined by

dPN,ω

dP
(S) :=

1

ZN,ω
exp

(
−2λ

N∑
n=1

∆ (Sn−1 + Sn) (ωn + h)

)
, (1.1)

where N ∈ N := {1, 2, . . .}, λ, h ∈ [0,∞), we have set ∆(·) := 1(−∞,0)(·) and ω := {ωn}n∈N
is a sequence of real numbers. Of course ZN,ω = ZN,ω,λ,h is the normalization constant,
called partition function and given by

ZN,ω := E

[
exp

(
−2λ

N∑
n=1

∆ (Sn−1 + Sn) (ωn + h)

)]
. (1.2)

We could have used ∆(Sn) instead of ∆(Sn−1 +Sn), but this apparently unnatural choice
actually has a nice interpretation, explained in the caption of Figure 1.

We are interested in the case when ω, called the sequence of charges, is chosen as
a typical realization of an IID sequence (call P its law). We assume that ω and S are
independent, so that the relevant underlying law is P⊗P, but in reality we are interested
in quenched results, that is, we study PN,ω (in the limit N →∞) for a fixed choice of ω.
In the literature, the charge distribution is often chosen Gaussian or of binary type, for

Date: March 5, 2010.
2000 Mathematics Subject Classification. 82B44, 60K37, 60K05, 82B41.
Key words and phrases. Copolymer, Renewal Process, Regenerative Set, Phase Transition, Coarse-

Graining, Weak Coupling Limit, Universality.

1



2 FRANCESCO CARAVENNA AND GIAMBATTISTA GIACOMIN

example P(ω1 = +1) = P(ω1 = −1) = 1/2. We invite the reader to look at Figure 1 in
order to have a quick intuitive view of what this model describes (a polymer model).

Figure 1 also schematizes an aspect of the model which is particularly relevant to us.
Namely that the Hamiltonian of the model, i.e. the quantity appearing at the exponent in
the right-hand side of (1.1), does not depend on the full trajectories of S, but only on the
random set τ := {n ∈ N∪{0} : Sn = 0} (that we may also look at as an increasing random
sequence τ =: {τ0, τ1, τ2, . . .}) and on the signs ξ = {ξj}j∈N, defined by ξj := ∆(Sn) for
n ∈ {τj + 1, τj+1−1} (that is ξj = 0 or 1 if the j-th excursion of S is positive or negative).
In fact it is easily seen that ∆(Sn−1 + Sn) =

∑∞
j=1 ξj 1(τj−1,τj ](n) is a function of τ and

ξ only, and this suffices to reconstruct the Hamiltonian (see (1.1)). Note that we call the
variables ξn signs even if they take the values {0, 1} instead of {−1,+1}.

Under the simple random walk law P, the two random sequences τ and ξ are inde-
pendent. Moreover, ξ is just an IID sequence of B(1/2) (i.e., Bernoulli of parameter 1/2)
variables, while τ is a renewal process, that is, τ0 = 0 and {τj − τj−1}j∈N is IID. Let us
also point out that for every j ∈ N

P (τj − τj−1 = 2n) = P (τ1 = 2n)
n→∞∼ 1

2
√
π n3/2

, (1.3)

where we have introduced the notation f(x) ∼ g(x) for limx→∞ f(x)/g(x) = 1 (in the
sequel we will also use ∼ to denote equality in law: for example ω1 ∼ ω2 ∼ N (0, 1)).

This discussion suggests a generalized framework in which to work, that has been already
introduced in [7, 17]. We start from scratch: let us consider a general renewal process
τ = {τn}n≥0 on the non-negative integers N ∪ {0} such that

K(n) := P (τ1 = n)
n→∞∼ L(n)

n1+α
, (1.4)

where α ≥ 0 and L : (0,∞) → (0,∞) a slowly varying function, i.e., a (strictly) positive
measurable function such that limx→∞ L(cx)/L(x) = 1, for every c > 0 (see Remark 1.1
below for more details). We assume that τ is a persistent renewal, i.e., P(τ1 < ∞) =∑

n∈NK(n) = 1, which is equivalent to P(|τ | =∞) = 1, where |τ | denotes the cardinality
of τ , viewed as a (random) subset of N∪ {0}. We will switch freely from looking at τ as a
sequence of random variables or as a random set.

Let ξ = {ξn}n∈N denote an IID sequence of B(1/2) variables, independent of τ , that we
still call signs. With the couple (τ, ξ) in our hands, we build a new sequence ∆ = {∆n}n∈N
by setting ∆n =

∑∞
j=1 ξj 1(τj−1,τj ](n), in analogy with the simple random walk case. In

words, the signs ∆n are constant between the epochs of τ and they are determined by ξ.
We are now ready to introduce the general discrete copolymer model, as the probability

law PN,ω = Pλ,h
N,ω for the sequence ∆ defined by

dPN,ω

dP
(∆) :=

1

ZN,ω
exp

(
−2λ

N∑
n=1

∆n(ωn + h)

)
, (1.5)

where N ∈ N, λ, h ∈ [0,∞) and ω = {ωn}n∈N is a sequence of real numbers (a typical

realization of an IID sequence, see below). The partition function ZN,ω = Zλ,hN,ω is given by

ZN,ω := E

[
exp

(
−2λ

N∑
n=1

∆n(ωn + h)

)]
. (1.6)



WEAK COUPLING LIMIT FOR COPOLYMER MODELS 3

+

+ + +

+ +

+
+

+ +

+ + +
+

+

+ −
−

−

+
−

−

−− −

−

− −

−
−

− −

+
−

−

+

−

+ + +
+ + + + + + +

+ +
+ + + + + +

− − −
− − − − − − − −

− −
− − − − − ++

+

ξ1=0 ξ2=0 ξ3=1 ξ4=0 ξ5=1 ξ6=1

τ0 τ1 τ2 τ3 τ4 τ5

N

Figure 1. The polymer model we deal with has been introduced in the mathematical
literature, see for example [24], as a modification of the law of the simple symmetric

random walk {Sn}n≥0 on Z, with a density proportional to exp[λ
∑N
n=1(ωn+h) sign(Sn)]

(Boltzmann factor). Each bond (Sn−1, Sn) is interpreted as a monomer and by definition
sign(Sn) is the sign of (Sn−1, Sn), i.e., it is +1 (resp. −1) if the monomer (Sn−1, Sn)
lies in the upper (resp. lower) half plane. In a quicker way, sign(Sn) is just the sign
of Sn−1 + Sn. The Boltzmann factor is somewhat different from the one appearing in
(1.1), but this is not a problem: in fact λ

∑N
n=1(ωn + h) sign(Sn) can be rewritten as

−2λ
∑N
n=1 ∆(Sn−1 + Sn)(ωn + h) + cN , where cN := λ

∑N
n=1(ωn + h) does not depend

on S, therefore the quenched probability PN,ω is not affected by such a change. It is clear
that the trajectories of the walk, that are interpreted as configurations of a polymer chain,
have an energetic gain (that is, a larger Boltzmann factor) if positively charged monomers
[(ωn + h) > 0] lie in the upper half plane and negatively charged ones [(ωn + h) < 0] lie
in the lower one. The fulfillment of this requirement, even if only in a partial way, entails
however an entropic loss: in fact the trajectories have to stick very close to the horizontal
axis (the interface) and there are only few such random walk trajectories. The issue is
precisely to understand who is the winner in this energy-entropy competition. The lower
part of the figure stresses the fact that the Boltzmann factor does not depend on the full
trajectory S, but only on the lengths and the signs of the successive excursions, described
by the variables τ, ξ. In the figure it is also represented an example of the sequence of
charges attached to the copolymer, in the binary case (ωn ∈ {−1,+1}).

In order to emphasize the value of α in (1.4), we will sometimes speak of a discrete α-
copolymer model, but we stress that PN,ω depends on the full law K(·).

Note that the new model (1.5) only describes the sequence of signs ∆, while the simple
random walk model (1.1) records the full trajectory S. However, once we project the
probability law (1.1) on the variables ∆n := ∆(Sn−1 + Sn), it is easy to check that the
simple random walk model becomes a particular case of (1.5) and its partition function
(1.2) coincides with the general one given by (1.6), provided we choose K(·) as the law of
the first return to zero of the simple random walk (corresponding to α = 1

2 , see (1.3) and
(1.4)). As a matter of fact, since we require that K(n) > 0 for all large n ∈ N (cf. (1.4)),
strictly speaking the case of the simple random walk is not covered. We stress, however,
that our arguments can be adapted in a straightforward way to treat the cases in which
there exists a positive integer T such that K(n) = 0 if n/T 6∈ N and relation (1.4) holds
restricting n ∈ TN (of course T = 2 for the simple random walk case).

To complete the definition of the discrete copolymer model, let us state precisely our
hypotheses on the disorder variables ω = {ωn}n∈N. We assume that the sequence ω is IID
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and that ω1 has locally finite exponential moments, that is there exists t0 > 0 such that

M(t) := E[exp(tω1)] < ∞ for every t ∈ [−t0, t0] . (1.7)

We also fix
E [ω1] = 0 and E

[
ω2

1

]
= 1 , (1.8)

which entails no loss of generality (it suffices to shift λ and h). In particular, these as-
sumptions guarantee that there exists c0 > 0 such that

max
t∈[−t0,t0]

M(t) ≤ exp
(
c0 t

2
)
. (1.9)

Although it only keeps track of the sequence of signs ∆, we still interpret the probability
law PN,ω defined in (1.5) as a model for an inhomogeneous polymer (this is the meaning
of copolymer) that interacts with two selective solvents (the upper and lower half planes)
separated by a flat interface (the horizontal axis), as it is explained in the caption of
Figure 1. In particular, ∆n = 0 (resp. 1) means that the n-th monomer of the chain lies
above (resp. below) the interface. To reinforce the intuition, we will sometimes describe
the model in terms of full trajectories, like in the simple random walk case.

Remark 1.1. We refer to [4] for a full account on slowly varying functions. Here we just
recall that the asymptotic behavior of L(·) is weaker than any power, in the sense that,
as x→∞, L(x)xa tends to ∞ for a > 0 and to zero if a < 0. The most basic example of
a slowly varying function is any positive measurable function that converges to a positive
constant at infinity (in this case we say that the slowly varying function is trivial). Other
important examples are positive measurable functions which behave asymptotically like
the power of a logarithm, that is L(x) ∼ log(1 + x)a, a ∈ R.

1.2. The free energy: localization and delocalization. This work focuses on the
properties of the free energy of the discrete copolymer, defined by

f(λ, h) := lim
N→∞

fN (λ, h) , where fN (λ, h) :=
1

N
E [logZN,ω] . (1.10)

The existence of such a limit follows by a standard argument, see for example [17, Ch. 4],
where it is also proven that for every λ and h

f(λ, h) = lim
N→∞

1

N
logZN,ω , P(dω)-a.s. and in L1(P) . (1.11)

Equations (1.10)–(1.11) are telling us that the limit in (1.11) does not depend on the
(typical) realization of ω. Nonetheless it is worthwhile to stress that it does depend on P,
that is on the law of ω1, as well as on the renewal process on which the model is built,
namely on the inter-arrival law K(·). This should be kept in mind, even if we omit P and
K(·) from the notation f(λ, h).

An elementary, but crucial observation is:

f(λ, h) ≥ 0 , ∀λ, h ≥ 0 . (1.12)

This follows simply by restricting the expectation in (1.6) to the event {τ1 > N, ξ1 = 0},
on which we have ∆1 = 0, . . . , ∆N = 0, hence we obtain ZN,ω ≥ 1

2P(τ1 > N) and it

suffices to observe that N−1 log P(τ1 > N) vanishes as N → ∞, thanks to (1.4). Notice
that the event {τ1 > N, ξ1 = 0} corresponds to the set of trajectories that never visit the
lower half plane, therefore the right hand side of (1.12) may be viewed as the contribution
to the free energy given by these trajectories. Based on this observation, it is customary to
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Figure 2. In the figure, on the left, a sketch of the phase diagram of the discrete copoly-
mer model. The critical curve λ 7→ hc(λ) separates the localized regime L from the delo-
calized one D. This is a free energy characterization of the notion of (de)localization, but
this characterization does correspond the to sharply different path behaviors, sketched
on the right side of the figure. In a nutshell, if (λ, h) ∈ L then, for N → ∞, the typical
paths intersect the interface (the horizontal axis) with a positive density, while in the
interior of D the path strongly prefers not to enter the lower half plane. In this work we
just focus on properties of the free energy and for details on the link with path properties,
including a review of the literature and open problems, we refer to [17, Ch. 7 and Ch. 8].

say that (λ, h) ∈ D (delocalized regime) if f(λ, h) = 0, while (λ, h) ∈ L (localized regime)
if f(λ, h) > 0 (see also Figure 2 and its caption).

We have the following:

Theorem 1.2. If we set hc(λ) := sup{h : f(λ, h) > 0}, then hc(λ) = inf{h : f(λ, h) = 0}
and the function hc : [0,∞)→ [0,∞] is strictly increasing and continuous as long as it is
finite. Moreover we have the explicit bounds

1

2λ/(1 + α)
log M (−2λ/(1 + α)) ≤ hc(λ) ≤ 1

2λ
log M (−2λ) , (1.13)

where the left inequality is strict when α ≥ 0.801 (at least for λ small) and the right
inequality is strict as soon as α > 0 (for every λ < sup{t : log M(−2t) <∞}).

The first part of Theorem 1.2 is proven in [9] and [6] (see also [17, Ch. 6]). In [6] one
also finds the quantitative estimates (1.13), except for the strict inequalities proven in [7]
(see also [25]). From (1.13) one directly extracts

1

1 + α
≤ lim inf

λ↘0

hc(λ)

λ
≤ lim sup

λ↘0

hc(λ)

λ
≤ 1 , ∀α ≥ 0 . (1.14)

For α > 0, this result has been sharpened to

max

(
1

2
,
g(α)√
1 + α

,
1

1 + α

)
≤ lim inf

λ↘0

hc(λ)

λ
≤ lim sup

λ↘0

hc(λ)

λ
< 1 , (1.15)

where g(·) is a continuous function such that g(α) = 1 for α ≥ 1 and for which one can
show that g(α)/

√
1 + α > 1/(1 +α) for α ≥ 0.801 (by evaluating g(·) numerically one can
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go down to α ≥ 0.65). In particular, the lower bound in (1.15) reduces to 1/2 for α ≥ 3
and to 1/

√
1 + α for α ∈ [1, 3]. The bounds in (1.15) are proven in [7] and [26]. We invite

the reader to look again at Figure 2.

The focus on the behavior of the critical line hc(λ) for λ small has a reason that is at the
heart of this paper: our aim is to study the free energy f(λ, h) of discrete copolymer models
in the weak coupling limit, i.e., when λ and h are small. We will show that the behavior of
f(λ, h) in this regime is captured by the exponent α appearing in (1.4), independently of
the finer details of the inter-arrival law K(·). In particular, we prove that h′c(0) exists and
that it depends only on α. In order to state these results precisely, we need to introduce
a class of copolymer models in the continuum: in a suitable sense, they capture the limit
of discrete copolymer models as λ, h↘ 0.

1.3. The continuum model: Brownian case. E. Bolthausen and F. den Hollander
introduced in [9] the Brownian copolymer model, whose partition function is given by

Z̃BM
t,β := E

[
exp

(
−2λ

∫ t

0
∆
(
B̃(u)

)(
dβ(u) + hdu

))]
, (1.16)

where once again λ, h ≥ 0, ∆(x) := 1(−∞,0)(x) and B̃(·) (the polymer), β(·) (the medium)
are independent standard Brownian motions with laws P and P respectively.

The corresponding free energy f̃BM(λ, h) is defined as the limit as t→∞ of 1
tE[log Z̃BM

t,β ]

and one has f̃BM(λ, h) ≥ 0 for every λ, h ≥ 0, in analogy with the discrete case. Therefore,
by looking at the positivity of f̃BM, one can define also for the Brownian copolymer model

the localized and delocalized regimes, that are separated by the critical line h̃c(λ) :=
sup{h : f̃BM(λ, h) > 0}. Now a real novelty comes into the game: the scaling properties
of the two Brownian motions yield easily that for every a > 0

1

a2
f̃BM(aλ, ah) = f̃BM(λ, h) . (1.17)

In particular, the critical line is a straight line: h̃c(λ) = m̃BM λ, for every λ ≥ 0, with

m̃BM := sup
{
c ≥ 0 : f̃BM(1, c) > 0

}
. (1.18)

We are now ready to state the main result in [9]:

Theorem 1.3. For the simple random walk model (1.1), with ω1 such that P(ω1 = +1) =
P(ω1 = −1) = 1/2, we have

lim
a↘0

1

a2
f(aλ, ah) = f̃BM(λ, h) , ∀λ, h ≥ 0 , (1.19)

and

lim
λ↘0

hc(λ)

λ
= m̃BM ∈ (0, 1]. (1.20)

The great interest of this result is that it provides a precise formulation for the fact that
the Brownian copolymer model is the weak coupling scaling limit of the simple random
walk copolymer model (1.1). At the same time, the fact that such a result is proven only
for the simple random walk model and only for a single choice of the charges distribution
appears to be a limitation. In fact, since Brownian motion is the scaling limit of many
discrete processes, it is natural to guess that Theorem 1.3 should hold for a large class of
discrete copolymer models and for a vast choice of charge distributions (remaining of course
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in the domain of attraction of the Gaussian law and adding some technical assumptions).
This would show that the Brownian copolymer model has indeed a universal character.

In fact, Theorem 1.3 has been generalized in [18] to a large class of disorder random
variables (including all bounded random variables). A further generalization has been
obtained in [22], in the case when, added to the copolymer interaction, there is also a
pinning interaction at the interface, that is an energy reward in touching the interface. We
stress however that these generalizations are always for the copolymer model built over
the simple random walk: going beyond the simple random walk case appears indeed to be
a very delicate (albeit natural) step.

The main result of this paper is that Theorem 1.3 can be generalized to any discrete
α-copolymer model with α ∈ (0, 1) and to any disorder distribution satisfying (1.7)–(1.8)
(see Theorem 1.5 below). For α = 1

2 the scaling limit is precisely the Brownian copolymer

model (1.16), like in the simple random walk case, while for α 6= 1
2 the continuum copoly-

mer model is defined in the next subsection. We stress from now that the scaling limit
depends only on α: in particular, there is no dependence on the slowly varying function
L(·) appearing in (1.4) and no dependence on P(τ1 = n) for any finite n.

1.4. The continuum α-copolymer model. Let us start by recalling that, for δ ≥ 0,
the square of δ-dimensional Bessel process (started at 0) is the process X = {Xt}t≥0 with
values in [0,∞) that is the unique strong solution of the following equation:

Xt = 2

∫ t

0

√
Xs dws + δt , (1.21)

where {wt}t≥0 is a standard Brownian motion. The δ-dimensional Bessel process is by
definition the process Y = {Yt :=

√
Xt}t≥0: it is a Markov process on [0,∞) that enjoys

the standard Brownian scaling [23, Ch. XI, Prop. (1.10)]. We focus on the case δ ∈ (0, 2),
when a.s. the process Y visits the origin infinitely many times [23, Ch. XI, Prop. (1.5)].
We actually use the parametrization δ = 2(1− α) and we then restrict to α ∈ (0, 1).

It is easily checked using Itô’s formula that for α = 1
2 (i.e. δ = 1) the process Y has the

same law as the absolute value of Brownian motion on R. Since to define the Brownian
copolymer model (1.16) we have used the full Brownian motion process, not only its
absolute value, we need a modification of the Bessel process in which each excursion from
zero may be either positive or negative, with the sign chosen by fair coin tossing. Such a

process, that we denote by B̃α := {B̃α(t)}t≥0, has been considered in the literature for
example in [3] and is called Walsh process of index α (in [3] a more general case is actually
considered: in their notations, our process corresponds to the choices k = 2, E1 = [0,∞),

E2 = (−∞, 0] and p1 = p2 = 1/2). It is easy to see that the process B̃α inherits the
Brownian scaling. We denote by P its law.

We are now ready to generalize the Brownian copolymer model (1.16): given α ∈ (0, 1),
we define the partition function of the continuum α-copolymer model through the formula

Z̃αt,β := E exp

(
−2λ

∫ t

0
∆
(
B̃α(u)

)(
dβ(u) + hdu

))
, (1.22)

where β = {β(t)}t≥0 always denotes a standard Brownian motion with law P, independent

of B̃α, and ∆(x) = 1(−∞,0)(x). Since for α = 1
2 the process B̃1/2 is just a standard Brownian

motion, Z̃
1/2
t,β coincides with Z̃BM

t,β defined in (1.16). For the sake of simplicity, in (1.22) we

have only defined the partition function of the continuum α-copolymer model: of course,
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one can easily introduce the corresponding probability measure Pt,β on the paths of B̃α,
in analogy with the discrete case, but we will not need it.

Let us stress that the integral in (1.22), as well as the one in (1.16), does not really

depend on the full path of the process B̃α: in fact, being a function of ∆(B̃α(·)), it only
matters to know, for every u ∈ [0, t], whether B(u) < 0 or B(u) ≥ 0. For this reason it is

natural to introduce (much like in the discrete case) the zero level set τ̃α of B̃α(·):

τ̃α :=
{
s ∈ [0,∞) : B̃α(s) = 0

}
. (1.23)

The set τ̃α contains almost all the information we need, because, conditionally on τ̃α,

the sign of B̃α inside each excursion is chosen just by tossing an independent fair coin.
Moreover, the random set τ̃α is a much studied object: it is in fact the α–stable regenerative
set [23, Ch. XI, Ex. (1.25)]. Regenerative sets may be viewed as the continuum analogues
of renewal processes: we discuss them in some detail in Section 2, also because it will come
very handy to restate the model in terms of regenerative sets for the proofs.

The free energy for the continuum α-copolymer model is defined in close analogy to the
discrete case, but proving its existence turns out to be a highly non-trivial task. For this
reason, we state it as a result in its own:

Theorem 1.4. The limit of 1
t E
[

log Z̃αt,β
]

as t→∞ exists and we call it f̃α(λ, h). For all

α ∈ (0, 1) and λ, h ∈ [0,∞) we have 0 ≤ f̃α(λ, h) <∞ and furthermore

lim
t→∞

1

t
log Z̃αt,β = f̃α(λ, h) , (1.24)

both P(dβ)-a.s. and in L1(P). The function (λ, h) 7→ fα(λ, h) is continuous.

Like before, the non-negativity of the free energy leads to exploiting the dichotomy
f̃α(λ, h) = 0 and f̃α(λ, h) > 0 in order to define, respectively, the delocalized and localized
regimes of the continuum α-copolymer model. The monotonicity of f̃α(λ, ·) guarantees

that if we set h̃αc (λ) := sup{h ≥ 0 : f̃α(λ, h) > 0}, then we also have h̃αc (λ) := inf{h ≥
0 : f̃α(λ, h) = 0}. Moreover, the scaling properties of β and B̃α imply that (1.17) holds

unchanged for f̃α(·, ·) so that the critical line is again a straight line: h̃αc (λ) = m̃αλ for
every λ ≥ 0, with

m̃α := sup
{
c ≥ 0 : f̃α(1, c) > 0

}
, (1.25)

in direct analogy with (1.18). Plainly, m̃1/2 = m̃BM.

1.5. The main result. We can finally state the main result of this paper:

Theorem 1.5. Consider an arbitrary discrete α-copolymer model satisfying the hypotheses
(1.4), (1.7) and (1.8), with α ∈ (0, 1). For all λ, h ≥ 0 we have

lim
a↘0

1

a2
f(aλ, ah) = f̃α(λ, h) . (1.26)

Moreover

lim
λ↘0

hc(λ)

λ
= m̃α. (1.27)
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Theorem 1.5 shows that the continuum α-copolymer is the universal weak interaction
limit of arbitrary discrete α-copolymer models. Although the phase diagram of a discrete
copolymer model does depend on the details of the inter-arrival law K(·), it nevertheless
exhibits universal features for weak coupling. In particular, the critical line close to the
origin is, to leading order, a straight line of slope m̃α. It is therefore clear that computing
m̃α or, at least, being able of improving the known bounds on m̃α would mean a substantial
progress in understanding the phase transition in this model. Note that, of course, given
(1.27), the bounds in (1.15) are actually bounds on m̃α (and they represent the state of
the art on this important issue, to the the authors’ knowledge).

It is remarkable that in the physical literature there is, on the one hand, quite some
attention on the slope at the origin of the critical curve, see for example [14], but, on the
other hand, its universal aspect has not been appreciated (some of the physical predictions
are even in contradiction with the universality of the slope). We refer to [7, 17, 15] for
overviews of the extensive physical literature on copolymer models.

We do not expect a generalization of Theorem 1.5 to α 6∈ (0, 1). To be more precise, the
case α = 0 is rather particular: the critical curve is known explicitly by Theorem 1.2, the
slope at the origin is universal and its value is one. The case α = 1 with E[τ1] = ∞ may
still be treatable, but the associated regenerative set is the full line, so Theorem 1.5 cannot
hold as stated. An even more substantial problem arises whenever E[τ1] <∞ (in particular
for every α > 1): apart from the fact that the regenerative set becomes trivial, there is a
priori no reason why universality should hold. The rationale behind Theorem 1.5 is that at
small coupling the renewal trajectories are not much perturbed by the interaction with the
charges. If E[τ1] = ∞, one may then hope that long inter-arrival gaps dominate, as they
do when there is no interaction with the charges: since the statistics of long gaps depends
only on the tail of K(·) and within long gaps the disorder can be replaced by Gaussian
disorder, Theorem 1.5 is plausible. This is of course not at all the case if E[τ1] <∞.

Remark 1.6. One may imagine that (1.27) is a consequence of (1.26), but this is not
true. In fact, it is easy to check that (1.26) directly implies

lim inf
λ↘0

hc(λ)

λ
≥ m̃α , (1.28)

but the opposite bound (for the superior limit) does not follow automatically. We obtain
it as a corollary of our main technical result (Theorem 3.1).

1.6. Outline of the paper. We start, in Section 2, by taking a closer look at the con-
tinuum model and by giving a proof of the existence of the free energy (Theorem 1.4).
Such an existence result had been overlooked in [9]. A proof was proposed in [16], in the
Brownian context, giving for granted a suitable uniform boundedness property that is not
straightforward (this is the issue addressed in Appendix A below). The proof that we give
here therefore generalizes (from α = 1/2 to α ∈ (0, 1)) and completes the proof in [16]. We
follow the general scheme of the proof in [16], that is, we first define a suitably modified
partition function, that falls in the realm of Kingman’s super-additive ergodic Theorem
[20], and then we show that such a modified partition function has the same Laplace as-
ymptotic behavior as the original one. Roughly speaking, the modified partition function

is obtained by relaxing the condition that B̃α(0) = 0: one takes rather the infimum over
a finite interval of starting points. If introducing such a modified partition function is a
standard procedure, a straightforward application of this idea does not seem to lead far.
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Such an infimum procedure has to be set up in a careful way in order to be able to per-
form the second step of the proof, that is stepping back to the original partition function.
With respect to the proof in [16], that exploits the full path of the Brownian motion B(·),
the one we present here is fully based on the regenerative set. Overall, establishing the
existence of the continuum free energy is very much harder than the discrete counterpart
case and it appears to be remarkably subtle and complex when compared to the analogous
statement for close relatives of our model (see, e.g., [11]).

In Section 3 we give the proof of our main result, Theorem 1.5, following the scheme
set forth in [9] (we refer to it as the original approach), which is based on a four step
procedure. We outline it here, in order to give an overview of the proof and to stress the
points at which our arguments are more substantially novel.

(1) Coarse graining of the renewal process. In this step we replace the Boltzmann factor
by a new, coarser one, which does not depend on the short excursions of the renewal
process (in the sense that these excursions inherit the sign of a neighbor long gap).
This step is technically, but not substantially different from the one in the original
approach.

(2) Switching to Gaussian charges. The original approach exploits the well-known, and
highly non-trivial, coupling result due to J. Komlós, P. Major and G. Tusnády [21].
We take instead a more direct, and more elementary, approach. In doing so we get
rid of any assumption, beyond local exponential integrability, on the disorder.

(3) From the renewal process to the regenerative set. This is probably the crucial step.
The original approach exploits heavily the underlying simple random walk and the
exact formulas available for such a process. Our approach necessarily sticks to the
renewal process and, in a sense, the point is showing that suitable local limit theo-
rems (crucial here are results by R. Doney [12]) suffice to perform this step. There is
however another issue that makes our general case different from the simple random
walk case. In fact this step, in the original approach, is based on showing that a suit-
able Radon-Nikodym derivative, comparing the renewal process and the regenerative
set, is uniformly bounded. In our general set-up, this Radon-Nikodym derivative is
not bounded and a more careful estimate has to be carried out.

(4) Inverse coarse graining of the regenerative set. We are now left with a model based on
the regenerative set, but depending only on the large excursions. We have therefore
to show that putting back the dependence on the small excursions does not modify
substantially the quantity we are dealing with. This is parallel to the first step: it
involves estimates that are different from the ones in the original approach, because
we are sticking to the regenerative set formulation and because α is not necessarily
equal to 1/2, but the difference is, essentially, just technical.

Let us finally mention that our choice of focusing on discrete copolymer models built over
renewal processes leaves out another possible (and perhaps more natural) generalization
of the simple random walk copolymer model (1.1): namely, the one obtained by replacing
the simple random walk with a more general random walk. A general random walk crosses
the interface without necessarily touching it, therefore the associated point process is a
Markov renewal process [2], because one has to carry along not only the switching-sign
times, but also the height of the walk at these times (sometimes called the overshoot).
This is definitely an interesting and non-trivial problem that goes in a direction which is
complementary to the one we have taken. However two remarks are in order:
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(1) Symmetric random walks with IID increments in {−1, 0, 1} touch the interface when
they cross it, hence they are covered by our analysis: their weak coupling limit is the

continuum 1/2–copolymer, because K(n)
n→∞∼ (const.)n−3/2 (e.g., [17, App. A.5]).

(2) While one definitely expects an analog of Theorem 1.5 to hold for rather general
random walks with increments in the domain of attraction of the normal law (with
the continuum 1/2–copolymer as weak coupling limit), it is less clear what to expect
when the increments of the walk are in the domain of attraction of a non Gaussian
stable law. In our view, working with generalized copolymer models has, in any case,
a considerable flexibility with respect to focusing on the random walk set-up.

2. A closer look at the continuum model

In this section we prove the existence of the continuum free energy f̃α(λ, h), that is we
prove Theorem 1.4. In § 2.3 we define a modified partition function, to which Kingman’s
super-additive ergodic theorem can be applied, and then in § 2.4 we show that this modified
partition function yields the same free energy as the original one. Before starting with the

proof, in § 2.1 we redefine the partition function Z̃αt,β more directly in terms of the α-stable

regenerative set τ̃α, whose basic properties are recalled in § 2.2 (cf. also the appendix §A.1).
We are going to drop some dependence on α for short, writing, e.g., f̃(λ, h).

2.1. Preliminary considerations. As explained in § 1.4, the process B̃α is introduced

just to help visualizing the copolymer, but the underlying relevant process is ∆(B̃α) :=

1(−∞,0)(B̃
α). So let us re-introduce Z̃t,β more explicitly, in terms of the random set τ̃α (cf.

(1.23)) and of the signs of the excursions, that are sufficient to determine ∆(B̃α).

There is no need to pass through the process B̃α to introduce τ̃α: we can define it
directly as the stable regenerative set of index α, that is, the closure of the image of the
stable subordinator of index α, cf. [13]. Some basic properties of regenerative sets are
recalled in § 2.2 and in the appendix § A.1; we mention in particular the scale invariance
property: τ̃α ∼ c τ̃α, for every c > 0. Since τ̃α is a closed set, we can write the open

set (τ̃α){ =
⋃
n∈N In as the disjoint union of countably many (random) open intervals

In, the connected components (i.e., maximal open intervals) of (τ̃α){. Although there is
no canonical way of numbering these intervals, any reasonable rule is equivalent for our
purpose. As an example, one first numbers the intervals that start (i.e., whose left endpoint
lies) in [0, 1) in decreasing order of width, obtaining {J1

n}n∈N; then one does the same with
the intervals that start in [1, 2), getting {J2

n}n∈N; and so on. Finally, one sets In := Janbn ,

where n 7→ (an, bn) is any fixed bijection from N to N× N.

Let ξ̃ = {ξ̃n}n∈N be an IID sequence of Bernoulli random variables of parameter 1/2,
defined on the same probability space as τ̃α and independent of τ̃α, that represent the signs

of the excursions of B̃α. We then define the process ∆̃α(u) :=
∑

n ξ̃n 1In(u), which takes
values in {0, 1} and is a continuum analogue of the discrete process {∆n}n∈N introduced

in § 1.1: ∆̃α(u) = 1 (resp. 0) means that the continuum copolymer in u is below (resp.
above or on) the interface. With this definition, we have the equality in law{

∆̃α(u)
}
u≥0
∼
{

∆
(
B̃α(u)

)}
u≥0

, (2.1)
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so that we can use ∆̃α(·) instead of ∆
(
B̃α(·)

)
. More precisely, for 0 ≤ s ≤ t <∞ we set

Z̃s,t;β = Z̃λ,hs,t;β := E
[

exp
(
Hs,t;β(∆̃α)

)]
,

Hs,t;β(∆̃α) = Hλ,hs,t;β(∆̃α) := −2λ

∫ t

s
∆̃α(u)

(
dβ(u) + hdu

)
,

(2.2)

so that the partition function Z̃αt,β defined in (1.22) coincides with Z̃0,t;β. For later conve-
nience, we introduce the finite-volume free energy:

f̃t(λ, h) :=
1

t
E
[
log Z̃0,t;β

]
. (2.3)

To be precise, for Z̃s,t;β and f̃t(λ, h) to be well defined we need to use a measurable version

of Hs,t;β(∆̃α) (we build one in Remark 2.1 below).
Notice that we have the following additivity property:

Hr,t;β(∆̃α) = Hr,s;β(∆̃α) + Hs,t;β(∆̃α) , (2.4)

for every r < s < t and P⊗P-a.e. (∆̃α, β). Another important observation is that, for any

fixed realization of ∆̃α(·), the process {Hs,t;β(∆̃α)}s,t under P is Gaussian.

Remark 2.1. Some care is needed for definition (2.2) to make sense. The problem is that

Hs,t;β(∆̃α), being a stochastic (Wiener) integral, is defined (for every fixed realization of

∆̃α) through an L2 limit, hence it is not canonically defined for every β, but only P(dβ)–

a.s.. However, in order to define Z̃s,t;β, we need Hs,t;β(∆̃α) to be a measurable function of

∆̃α, for every (or at least P–almost every) fixed β. For this reason, we now show that it is

possible to define a version of Hs,t;β(∆̃α) that is a measurable function of (β, ∆̃α, s, t, λ, h).

Let us fix a realization of the process {∆̃α(u)}u∈[0,∞). We build a sequence of approxi-
mating functions as follows: for k ∈ N we set

∆̃α
k (u) :=

∑
n∈N: |In|≥ 1

k

ξ̃n 1In(u) , (2.5)

that is we only keep the excursion intervals of width at least 1
k . Note that ∆̃α

k (u)→ ∆̃α(u)

as k → ∞, for every u ∈ R+. By dominated convergence we then have ∆̃α
k → ∆̃α in

L2((s, t),dx), for all 0 ≤ s ≤ t < ∞, hence by the theory of Wiener integration it follows

that limk→∞Hs,t;β(∆̃α
k ) = Hs,t;β(∆̃α) in L2(dP). Note that, for any k ∈ N, we have

Hs,t;β(∆̃α
k ) = −2λ

∑
n∈N: |In|≥ 1

k

ξ̃n

(
βIn∩(s,t) + h |In ∩ (s, t)|

)
, (2.6)

where we have set β(a,b) := βb − βa and β∅ := 0 (note that the right hand side of (2.6)

is a finite sum). This shows that Hs,t;β(∆̃α
k ) is a measurable function of (β, ∆̃α, s, t, λ, h).

Therefore, if we prove that limk→∞Hs,t;β(∆̃α
k ) = Hs,t;β(∆̃α) P(dβ)-a.s., we can redefine

Hs,t;β(∆̃α) := lim infk→∞Hs,t;β(∆̃α
k ) and get the measurable version we are aiming at.

However, for any fixed realization of ∆̃α, it is clear from (2.6) that ({Hs,t;β(∆̃α
k )}k∈N,P)

is a supermartingale (it is a process with independent Gaussian increments of negative
mean) bounded in L2, hence it converges P(dβ)-a.s..
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2.2. On the α-stable regenerative set. We collect here a few basic formulas on τ̃α.
For x ∈ R, we denote by Px the law of the regenerative set started at x, that is

Px(τ̃α ∈ ·) := P(τ̃α+x ∈ ·). Analogously, the process {∆̃α(u)}u≥x under Px is distributed

like the process {∆̃α(u− x)}u≥x under P =: P0. Two variables of basic interest are

gt = gt(τ̃
α) := sup

{
x ∈ τ̃α∩(−∞, t]

}
, dt = dt(τ̃

α) := inf
{
x ∈ τ̃α∩(t,∞)

}
. (2.7)

The joint density of (gt, dt) under Px is

Px

(
gt ∈ da , dt ∈ db

)
da db

=
α sin(πα)

π

1(x,t)(a) 1(t,∞)(b)

(a− x)1−α (b− a)1+α
, (2.8)

from which we easily obtain the marginal distribution of gt: for y ∈ [x, t]

Gx,t(y) := Px

(
gt ≤ y

)
=

sin(πα)

π

∫ y

x

1

(a− x)1−α (t− a)α
da . (2.9)

Observing that d
dx(xα/(1−x)α) = α (x1−α(1−x)1+α)−1, one obtains also the distribution

of dt: for y ∈ [t,∞)

Dx,t(y) := Px

(
dt ≤ y

)
=

sin(πα)

π

∫ y

t

(t− x)α

(b− t)α (b− x)
db . (2.10)

Let us denote by Fu the σ-field generated by τ̃α∩[0, u]. The set τ̃α enjoys the remarkable
regenerative property, the continuum analogue of the well-known renewal property, that
can be stated as follows: for every {Fu}u≥0–stopping time γ such that P(γ ∈ τ̃α) = 1,
the portion of τ̃α after γ, i.e. the set (τ̃α − γ) ∩ [0,∞), under P is independent of Fγ and

distributed like the original set τ̃α. Analogously, the translated process {∆̃α(γ+u)}u≥0 is

independent of Fγ and distributed like the original process ∆̃α.

2.3. A modified partition function. In order to apply super-additivity arguments, we
introduce a modification of the partition function. We extend the Brownian motion β(t) to
negative times, setting β(t) := β′(−t) for t < 0, where β′(·) is another standard Brownian
motion independent of β, so that β(t)− β(s) ∼ N (0, t− s) for all s, t ∈ R with s ≤ t.

Observe that {da < b} = {τ̃α ∩ (a, b) 6= ∅}, where the random variable dt has been
defined in (2.7). Then for 0 ≤ s < t we set

Z̃∗s,t;β := inf
x∈[s−1,s]

Ex

[
exp

(
Hx,dt−1;β(∆̃α)

)
, dt−1 < t

]
. (2.11)

In words: we take the smallest free energy among polymers starting at x ∈ [s − 1, s] and
coming back to the interface at some point in (t− 1, t). Notice that the Hamiltonian looks
at the polymer only in the interval (x, dt−1). Also notice that for t < s+1 the expression is

somewhat degenerate, because for x > t−1 we have dt−1 = x and thereforeHx,dt−1;β(∆̃α) =

Hx,x;β(∆̃α) = 0. Therefore we may restrict the infimum over x ∈ [s− 1,min{s, t− 1}], and
for clarity we state it explicitly:

Z̃∗s,t;β := inf
x∈[s−1,min{s,t−1}]

Ex

[
exp

(
Hx,dt−1;β(∆̃α)

)
, dt−1 < t

]
. (2.12)

Let us stress again that {dt−1 < t} = {τ̃α ∩ (t− 1, t) 6= ∅}.
It is sometimes more convenient to use E = E0 instead of Ex. To this purpose, by

a simple change of variables we have Hx,a;β(∆̃α) = H0,a−x;θxβ(θx∆̃α), where θxf(·) :=
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f(x+·), as it follows easily from the definition (2.2) of the Hamiltonian. Since by definition

the process θx∆̃α under Px is distributed like ∆̃α under P = P0, we can write

Ex

[
exp

(
Hx,y;β(∆̃α)

)]
= E

[
exp

(
H0,y−x;θxβ(∆̃α)

)]
. (2.13)

Analogously, since the random variable dt−1 under Px is distributed like x+dt−1−x under
P, we can rewrite the term appearing in (2.12) as

Ex

[
exp

(
Hx,dt−1;β(∆̃α)

)
, dt−1 < t

]
= E

[
exp

(
H0,dt−1−x;θxβ(∆̃α)

)
, dt−1−x < t− x

]
.

(2.14)
These alternative expressions are very useful to get uniform bounds. In fact, if we set

ΘT (β, ∆̃α) := sup
−1≤x≤T , 0≤y≤T+1

∣∣H0,y;θxβ(∆̃α)
∣∣ , (2.15)

from (2.12) and (2.14) we have the following upper bound:

sup
0≤s<t≤T

Z̃∗s,t;β ≤ E
[

exp
(
ΘT (β, ∆̃α)

)]
. (2.16)

In a similar fashion, from the relation (2.13) we obtain the lower bound

inf
−1≤x≤T , 0≤y≤T+1

Ex

[
exp

(
Hx,y;β(∆̃α)

)]
≥ E

[
exp

(
−ΘT (β, ∆̃α)

)]
. (2.17)

We finally state a very useful result, that we prove in Appendix A: for every η ∈ (0,∞)
there exists D(η) ∈ (0,∞) such that

E
[
E
[

exp
(
ηΘT (β, ∆̃α)

)]]
≤ D(η) eD(η)T < ∞ , for every T > 0 . (2.18)

2.4. Proof of Theorem 1.4. We start by proving the existence of the limit in (1.24)

when the partition function Z̃αt,β = Z̃0,t;β is replaced by Z̃∗0,t;β.

Proposition 2.2. For all λ, h ≥ 0, the following limit exists P(dβ)–a.s. and in L1(dP):

lim
t→∞

1

t
log Z̃∗0,t;β =: f̂(λ, h) , (2.19)

where f̂(λ, h) is finite and non-random.

Proof. We are going to check that, for all fixed λ, h ≥ 0, the process {log Z̃∗s,t;β}0≤s<t<∞
under P satisfies the four hypotheses of Kingman’s super-additive ergodic theorem, cf. [20].
This entails the existence of the limit in the l.h.s. of (2.19), both P–a.s. and in L1(dP), as
well as the fact that the limit is a function of β which is invariant under time translation
β(·) 7→ θtβ(·) := β(t + ·), for every t ≥ 0. Therefore the limit must be measurable w.r.t.
the tail σ-field of β(·), hence non-random by Kolmogorov 0–1 law for Brownian motion.

The first of Kingman’s conditions is that for every k ∈ N, any choice of {(sj , tj)}k∈N,
with 0 ≤ sj < tj , and for every a > 0 we have(

Z̃∗s1,t1;β , . . . , Z̃∗sk,tk;β

) d
=
(
Z̃∗s1+a,t1+a;β , . . . , Z̃∗sk+a,tk+a;β

)
. (2.20)

However this is trivially true, because Z̃∗s+a,t+a;β = Z̃∗s,t;θaβ, as it follows from (2.12),

recalling the definition of the Hamiltonian in (2.2).

The second condition is the super-additivity property: for all 0 ≤ r < s < t

Z̃∗r,t;β ≥ Z̃∗r,s;β · Z̃∗s,t;β . (2.21)
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To this purpose, for any fixed x ∈ [r − 1, r] the inclusion bound yields

Ex

(
exp

(
Hx,dt−1;β

)
, dt−1 < t

)
≥ Ex

(
exp

(
Hx,ds−1;β

)
exp

(
Hds−1,dt−1;β

)
, ds−1 < s , dt−1 < t

)
,

(2.22)

where we have used the additivity of the Hamiltonian, see (2.4). We integrate over the
possible values of ds−1 and, using the regenerative property, we rewrite the right hand side
of (2.22) as follows:∫

y∈(s−1,s)
Ex

(
exp

(
Hx,y;β

)
, ds−1 ∈ dy

)
Ey

(
exp

(
Hy,dt−1;β

)
, dt−1 < t

)
≥ Ex

(
exp

(
Hx,ds−1;β

)
, ds−1 < s

)
· Z̃∗s,t;β ,

(2.23)

where the inequality is just a consequence of taking the infimum over y ∈ [s − 1, s] and

recalling the definition (2.12) of Z̃∗s,t;β. Putting together the relation (2.22) and (2.23) and

taking the infimum over x ∈ [r − 1, r] we have proven (2.21).

The third condition to check is

sup
t>0

1

t
E
(

log Z̃∗0,t;β
)
< ∞ . (2.24)

Recalling (2.12) and applying Jensen’s inequality and Fubini’s theorem, we can write

E
(

log Z̃∗0,t;β
)
≤ log E

(
E
[

exp
(
H0,dt−1;β(∆̃α)

)]
, dt−1 < t

)
. (2.25)

Since the Hamiltonian is a stochastic integral, cf. (2.2), for fixed a < b and ∆̃α we have

Ha,b;β(∆̃α) ∼ N (µ, σ2), where µ = −2λh
∫ b
a ∆̃α(u) du and σ2 = 4λ2

∫ b
a |∆̃α(u)|2 du. In

particular |µ| ≤ 2λh(b− a) and σ2 ≤ 4λ2(b− a), hence, on the event {dt−1 < t}, we have

E
[

exp
(
H0,dt−1;β(∆̃α)

)]
≤ exp(2λht+ 2λ2t), and (2.24) follows.

Finally, the fourth and last condition is that for some (hence every) T > 0

E

(
sup

0≤s<t≤T

∣∣ log Z̃∗s,t;β
∣∣) < ∞ . (2.26)

We need both a lower and an upper bound on Z̃∗s,t;β. For the upper bound, directly from

(2.16) we have

sup
0≤s<t≤T

log Z̃∗s,t;β ≤ log E
(

exp
(
ΘT (β, ∆̃α)

))
. (2.27)

The lower bound is slightly more involved. The additivity of the Hamiltonian yields

Hx,dt−1;β(∆̃α) = Hx,t−1;β(∆̃α) + Ht−1,dt−1;β(∆̃α). Observing that ∆̃α(s) is constant for
s ∈ (t− 1, dt−1(τ̃α)), from the definition (2.2) of the Hamiltonian we can write

Ht−1,dt−1;β(∆̃α) ≥ −2λ |βdt−1 − βt−1| − 2λh(dt−1 − (t− 1))

≥ −2λ sup
0≤s<t≤T

|βt − βs| − 2λhT =: −CT (β) . (2.28)

Recalling (2.12), we can therefore bound Z̃∗s,t;β from below by

Z̃∗s,t;β ≥ e−CT (β)

(
inf

x∈[s−1,min{s,t−1}]
Ex

(
exp

(
Hx,t−1;β(∆̃α)

) ∣∣ dt−1 < t
))

Px

(
dt−1 < t

)
.

(2.29)
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From (2.10) it follows easily that, for fixed T ,

inf
0≤s<t≤T

inf
x∈[s−1,min{s,t−1}]

Px

(
dt−1 < t

)
> 0 . (2.30)

Furthermore, we now show that we can replace the law Px( · | dt−1 < t ) with Px( · ) by
paying a positive constant. In fact, the laws of the set τ̃α ∩ [x, t − 1] under these two
probability measures are mutually absolutely continuous. The Radon-Nikodym derivative,
which depends only on gt−1, is computed with the help of (2.8), (2.9), (2.10) and equals

dPx( · | dt−1 < t )

dPx( · ) (τ̃α ∩ [x, t− 1]) =
Px(gt−1 ∈ dy, dt−1 < t)

Px(gt−1 ∈ dy) Px(dt−1 < t)

∣∣∣∣
y=gt−1

=

(
1− (t− 1− gt−1)α

(t− gt−1)α

)
· 1

Dx,t−1(t)
.

(2.31)

Using (2.10), it is straightforward to check that, for every fixed T , the infimum of this
expression over 0 ≤ s < t ≤ T and x ∈ [s− 1,min{s, t− 1}] is strictly positive. Therefore,
uniformly in the range of parameters, we have

Z̃∗s,t;β ≥ (const.) e−CT (β) inf
x∈[s−1,min{s,t−1}]

Ex

(
exp

(
Hx,t−1;β(∆̃α)

))
≥ (const.) e−CT (β) E

(
exp

(
−ΘT (β, ∆̃α)

))
,

(2.32)

where we have applied (2.17). By Jensen’s inequality we then obtain

inf
0≤s<t≤T

log Z̃∗s,t;β ≥ −E
(
ΘT (β, ∆̃α)

)
− CT (β) + (const.′) . (2.33)

Putting together (2.27) and (2.33) we then get

sup
0≤s<t≤T

∣∣ log Z̃∗s,t;β
∣∣ ≤ log E

(
exp

(
ΘT (β, ∆̃α)

))
+ E

(
ΘT (β, ∆̃α)

)
+ CT (β) + (const.) .

(2.34)
It is clear from (2.28) that E(CT (β)) < ∞, for every T > 0. Moreover, by Jensen’s

inequality and (2.18) we have E log E[exp(ΘT (β, ∆̃α))] ≤ log E[E[exp(ΘT (β, ∆̃α))]] < ∞,

so that E[E[ΘT (β, ∆̃α)]] <∞. Therefore (2.26) is proven. �

We finally show that Proposition 2.2 still holds if we replace the modified partition

function Z̃∗0,t;β with the original partition function Z̃0,t;β; in particular, the free energy

f̃(λ, h) is well-defined and coincides with f̂(λ, h). We first need a technical lemma.

Lemma 2.3. For every fixed h ≥ 0, the function f̂(λ, h) appearing in Proposition 2.2 is
a non-decreasing and continuous function of λ.

Proof. Note that sending λ → cλ is the same as multiplying the Hamiltonian by c. By
Jensen’s inequality, for every ε > 0 we have

Ex

(
exp

(
Hx,dt−1;β

)
1{dt−1<t}

)1+ε ≤ Ex

(
exp

(
(1 + ε)Hx,dt−1;β

)
1{dt−1<t}

)
, (2.35)

hence, taking the infimum over x ∈ [−1, 0], then 1
tE log(·) and letting t → ∞, we obtain

f̂((1 + ε)λ, h) ≥ (1 + ε)f̂(λ, h). In particular, λ 7→ f̂(λ, h) is non-decreasing for fixed h.
To prove the continuity, we use Hölder’s inequality with p = 1

1−ε and q = 1
ε , getting

Ex

(
e(1+ε)Hx,dt−1;β 1{dt−1<t}

)
= Ex

(
e(1−ε)Hx,dt−1;β e2εHx,dt−1;β 1{dt−1<t}

)
≤ Ex

(
eHx,dt−1;β 1{dt−1<t}

)1−ε
Ex

(
e2Hx,dt−1;β 1{dt−1<t}

)ε
.

(2.36)
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Now observe that by (2.14) and (2.15) we can write

Ex

(
e2Hx,dt−1;β 1{dt−1<t}

)ε ≤ E
(
e2Θt+1(β,∆̃α)

)ε
. (2.37)

Taking 1
t E infx∈[−1,0] log(·) in (2.36), applying Jensen’s inequality to the last term, using

(2.18) and letting t→∞ then yields

f̂((1+ε)λ, h) ≤ (1−ε) f̂(λ, h) + εD(2) , for every λ, h ≥ 0 and every ε > 0 . (2.38)

Since λ 7→ f̂(λ, h) is non-decreasing, this shows that λ 7→ f̂(λ, h) is continuous. �

We now pass from Z̃∗0,t;β to the original partition function Z̃0,t;β in three steps: first we

remove the infimum over x ∈ [−1, 0], then we replace H0,dt−1;β with H0,t−1;β and finally
we remove the event {dt−1 < t}. From now till the end of the proof we assume t ≥ 1.

Step 1. It follows from the regenerative property of τ̃α that the laws of the random set τ̃α∩
[1,∞) under the probabilities P = P0 and Px, with x ∈ [−1, 0], are mutually absolutely
continuous, with Radon-Nikodym derivative depending only on d1, given by

dP(τ̃α ∩ [1,∞) ∈ · )
dPx(τ̃α ∩ [1,∞) ∈ · ) =

P(d1 ∈ dz)

Px(d1 ∈ dz)

∣∣∣∣
z=d1

=
1

(1− x)α
d1

d1 − x
. (2.39)

It is clear that, uniformly on x ∈ [−1, 0], this expression is bounded from above by some
constant 0 < C < ∞. Therefore, for every ε > 0, by the Hölder inequality with p = 1+ε

ε
and q = 1 + ε we can write

E
(
eH0,dt−1;β 1{dt−1<t}

)
= E

(
eH0,1;β+H1,dt−1;β 1{dt−1<t}

)
≤ E

(
e

1+ε
ε
H0,1;β

) ε
1+ε E

(
e(1+ε)H1,dt−1;β 1{dt−1<t}

)1/(1+ε)

≤ E
(
e

1+ε
ε
H0,1;β

) ε
1+ε C1/(1+ε) inf

x∈[−1,0]
Ex

(
e(1+ε)H1,dt−1;β 1{dt−1<t}

)1/(1+ε)
.

(2.40)

Analogously, again by the Hölder inequality, we have

Ex

(
e(1+ε)H1,dt−1;β 1{dt−1<t}

)
= Ex

(
e(1+ε)(Hx,dt−1;β

−Hx,1;β) 1{dt−1<t}
)

≤ Ex

(
e−

(1+ε)2

ε
Hx,1;β

) ε
(1+ε) Ex

(
e(1+ε)2Hx,dt−1;β 1{dt−1<t}

)1/(1+ε)
.

(2.41)

However Ex

(
e−

(1+ε)2

ε
Hx,1;β

)
≤ E

(
e

(1+ε)2

ε
Θ2(β,∆̃α)

)
, by (2.14) and (2.15). Putting together

these relations, Proposition 2.2 and (2.18), we get P(dβ)-a.s.

lim sup
t→∞

1

t
log E

(
eH0,dt−1;β 1{dt−1<t}

)
≤ 1

(1 + ε)2
lim sup
t→∞

1

t
log inf

x∈[−1,0]
Ex

(
e(1+ε)2Hx,dt−1;β 1{dt−1<t}

)
=

f̂((1 + ε)2λ, h)

(1 + ε)2
,

(2.42)

and since ε > 0 is arbitrary, by Lemma 2.3 the left-hand side in (2.42) does not exceed

f̂(λ, h). By the definition (2.12) of Z̃∗0,t;β, we have immediately an analogous lower bound

for the lim inf, hence we have proven that P(dβ)-a.s.

lim
t→∞

1

t
log E

(
eH0,dt−1;β 1{dt−1<t}

)
= f̂(λ, h) . (2.43)

Furthermore, the convergence holds also in L1(P), because the sequence in the l.h.s. is
uniformly integrable, as it follows from the bounds we have obtained.
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Step 2. With analogous arguments, we now show that we can replace H0,dt−1;β with

H0,t−1;β in (2.43), that is, the following limit holds, P(dβ)-a.s. and in L1(dP):

lim
t→∞

1

t
log E

(
eH0,t−1;β 1{dt−1<t}

)
= f̂(λ, h) . (2.44)

Since H0,dt−1;β = H0,t−1;β +Ht−1,dt−1;β, for every ε > 0 we can write

E
(
e(1−ε)H0,dt−1;β 1{dt−1<t}

)
≤ E

(
e

1−ε
ε
Ht−1,dt−1;β 1{dt−1<t}

)ε
E
(
eH0,t−1;β 1{dt−1<t}

)1−ε
,

(2.45)

and analogously

E
(
eH0,t−1;β 1{dt−1<t}

)
≤ E

(
e−

1+ε
ε
Ht−1,dt−1;β 1{dt−1<t}

) ε
1+ε E

(
e(1+ε)H0,dt−1;β 1{dt−1<t}

) 1
1+ε .

(2.46)

Now notice that, by the definition (2.2), since τ̃α ∩ (t− 1, dt−1) = ∅, we can write∣∣Ht−1,dt−1;β

∣∣ ≤ 2λ
(
|βdt−1 − βt−1|+ h(dt−1 − (t− 1))

)
, (2.47)

from which it follows easily that P(dβ)-a.s. and in L1(dP)

lim
t→∞

1

t
log E

(
eγ |Ht−1,dt−1;β

| 1{dt−1<t}
)

= 0 , ∀γ ≥ 0 . (2.48)

From (2.45), (2.46) and (2.43) we then have P(dβ)-a.s.

f̂((1− ε)λ, h)

1− ε ≤ lim inf
t→∞

1

t
log E

(
eH0,t−1;β 1{dt−1<t}

)
≤ lim sup

t→∞

1

t
log E

(
eH0,t−1;β 1{dt−1<t}

)
≤ f̂((1 + ε)λ, h)

1 + ε
.

Letting ε→ 0 and using Lemma 2.3, we see that (2.44) holds P(dβ)-a.s. and also in L1(dP),
thanks to the bounds (2.45), (2.46) and (2.47) that ensure the uniform integrability.

Step 3. We finally show that we can remove the indicator function 1{dt−1<t} from equation
(2.44). We have already observed that the laws of τ̃α ∩ [0, t − 1] under the two probabil-
ities P( · |dt−1 < t) and P are mutually absolutely continuous: the corresponding Radon-
Nikodym derivative ft = ft(gt−1) is given by (2.31), from which we extract the bound

ft(gt−1) ≥ 1− (t− gt−1 − 1)α

(t− gt−1)α
≥ 1− (t− 1)α

tα
≥ α

t
, (2.49)

where the last inequality holds for large t. Therefore for large t

E
(
eH0,t−1;β 1{dt−1<t}

)
= E

(
eH0,t−1;β

∣∣dt−1 < t
)
P(dt−1 < t) ≥ α

t
E
(
eH0,t−1;β

)
P(dt−1 < t) ,

(2.50)
and note that P(dt−1 < t) = G0,t−1(t) ∼ (const.)/t1−α as t→∞, by (2.10). Therefore

E
(
eH0,t−1;β 1{dt−1<t}

)
≤ E

(
eH0,t−1;β

)
≤ (const.) t2−α E

(
eH0,t−1;β 1{dt−1<t}

)
, (2.51)

for large t, hence by (2.44) it follows that, P(dβ)-a.s. and in L1(dP), we have

lim
t→∞

1

t
log E

(
eH0,t−1;β

)
= f̂(λ, h) . (2.52)

Replacing 1
t with 1

t−1 in the l.h.s. shows that the free energy f̃(λ, h), defined as the limit

in (1.24), does exist and coincides with f̂(λ, h) (we recall that Z̃αt,β = Z̃0,t;β).
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To complete the proof of Theorem 1.4, it only remains to show that the free energy
f̃(λ, h) is non-negative and continuous. By restricting, for t > 1, the expectation that

defines Z̃0,t;β to the event Et := {d1 > t, ∆̃α( t+1
2 ) = 0} = {d1 > t, B̃α( t+1

2 ) > 0} and by
using Jensen inequality, we have

1

t
E log Z̃0,t;β ≥

1

t
E
[
E[H0,1;β(∆̃α)]

∣∣∣Et]+
1

t
log P(Et) ≥ −

2λh

t
+

1

t
log P(Et). (2.53)

By (2.10) we have P(Et)
t→∞∼ (const.) t−α so that the right-most side in (2.53) vanishes

as t→∞ and therefore f̃(λ, h) ≥ 0.
For the continuity, it is convenient to use a different parametrization. For t > 0 and

a, b ∈ R we set

gt(a, b) :=
1

t
E
[
log E

[
exp

(
−2

∫ t

0
∆̃α(u)

(
a dβ(u) + bdu

))]]
. (2.54)

Since the argument of the exponential is a bilinear function of (a, b), it is easily checked,
using Hölder’s inequality, that for every fixed t > 0 the function (a, b) 7→ gt(a, b) is convex
on R2. By a straightforward adaptation of the results proven in this section, the limit

g(a, b) := lim
t→∞

gt(a, b) (2.55)

exists and is finite, for all a, b ∈ R. For instance, for a > 0 and b ≥ 0, by (2.3) and (2.2)
we have gt(a, b) = f̃t(a, b/a), therefore the limit in (2.55) exists and equals f̃(a, b/a); the
restriction to a > 0 and b ≥ 0 is however not necessary for the existence of such a limit.

Being the pointwise limit of convex functions, g(a, b) is convex too on R2, hence contin-
uous (because finite). Therefore f̃(λ, h) = g(λ, λh) is continuous too on [0,∞)×[0,∞). �

3. The proof of the main result

We fix an arbitrary value of α ∈ (0, 1) and an arbitrary discrete α-copolymer model
(and we omit α in most of the notations of this section). We aim at proving an analogue
of Theorem 6 in [9]. More precisely, we want to show:

Theorem 3.1. For every choice of λ > 0 and h > 0, and for every choice of ρ ∈ (0, 1)
there exists a0 > 0 such that for every a ∈ (0, a0] we have

f̃

(
λ

1 + ρ
,

h

1− ρ

)
≤ 1

a2
f(aλ, ah) ≤ f̃

(
(1 + ρ)λ, (1− ρ)h

)
. (3.1)

Theorem 3.1 implies Theorem 1.5. In fact notice that it directly yields (1.26) when both
λ and h are positive (by continuity of f̃(·, ·)). If λ = 0, there is nothing to prove, because
f(0, h) = f̃(0, h) = 0. If λ > 0 and h = 0 instead (1.26) follows because for h ≥ 0 we have
f(λ, 0)− 2λh ≤ f(λ, h) ≤ f(λ, 0) by (1.5) and (1.11), hence for every h > 0

f̃(λ, h) = lim
a↘0

1

a2
f(aλ, ah) ≤ lim inf

a↘0

1

a2
f(aλ, 0) ≤

lim sup
a↘0

1

a2
f(aλ, 0) ≤ lim

a↘0

1

a2
f(aλ, ah) + 2λh = f̃(λ, h) + 2λh (3.2)

so that (1.26) for h = 0 follows by continuity of f̃(λ, ·). For (1.27), in view of (1.28) it
suffices to show that

lim sup
λ↘0

hc(λ)

λ
≤ m̃α, (3.3)
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and Theorem 3.1 does yield (3.3). In fact if c > m̃α, then f̃((1 + ρ)λ, (1− ρ)cλ) = 0 for ρ
sufficiently small and every λ ≥ 0; the upper bound in (3.1) then yields f(aλ, acλ) = 0 for
a small, that is hc(λ) ≤ cλ for λ small, which implies (3.3).

In order to carry out the proof Theorem 3.1 it is convenient to introduce the following
basic order relation.

Definition 3.2. Let ft,ε,δ(a, λ, h) and gt,ε,δ(a, λ, h) be two real functions. We write f ≺ g
if for all fixed λ, h > 0 and ρ ∈ (0, 1) there exists δ0 > 0 such that for every 0 < δ < δ0

there exists ε0 = ε0(δ) > 0 such that for every 0 < ε < ε0 there exists a0 = a0(δ, ε) > 0
such that for every 0 < a < a0

lim sup
t→∞

ft,ε,δ(a, λ, h) ≤ lim sup
t→∞

gt,ε,δ
(
a, (1 + ρ)λ, (1− ρ)h

)
. (3.4)

The values δ0, ε0, a0 may also depend on λ, h, ρ. If both f ≺ g and g ≺ f , we write f ' g.

Recalling the definitions (1.10) and (1.24) of the discrete and continum finite-volume
free energies fN (λ, h) and f̃t(λ, h), we set

f0
t,ε,δ(a, λ, h) :=

1

a2
fbt/a2c(aλ, ah) , f4

t,ε,δ(a, λ, h) := f̃t(λ, h) , (3.5)

(that in fact do not depend on ε, δ and on ε, δ, a). Thanks to Definition 3.2, we see imme-
diately that proving Theorem 3.1 is equivalent to showing that f0 ' f4. Since the relation
' is symmetric and transitive, we proceed by successive approximations: more precisely,
we are going to prove that

f0 ' f1 ' f2 ' f3 ' f4 , (3.6)

where f i = f it,ε,δ(a, λ, h) for i = 1, 2, 3 are suitable intermediate quantities.

The proof is divided into four steps, corresponding to the equivalences in (3.6). In each
step we will make statements that hold when δ, ε and a are small in the sense prescribed
by Definition 3.2, i.e., when 0 < δ < δ0, 0 < ε < ε0(δ) and 0 < a < a0(δ, ε), for a suitable
choice of δ0, ε0(·) and a0(·, ·). For brevity, we will refer to this notion of smallness by saying
that ε, δ, a are small in the usual sense. It is important to keep in mind that

t−1 � a � ε � δ � 1 . (3.7)

At times, we will commit abuse of notation by writing a0(ε) or a0(δ) to stress the parameter
that enters the specific computation. In order to simplify notationally the proof, we also
assume that all the large numbers built with δ, ε, a, t that we encounter, such as ε/a2, δ/ε,
t/δ (hence δ/a2, t/ε, t/a2, . . . ), are integers.

Before starting with the proof, let us describe a general scheme that is common to all
the four steps. The functions f i that we consider will always be of the form

f it,ε,δ(a, λ, h) =
1

t
E log E

[
exp

(
− 2aλH i

t,ε,δ(a, h)
)]
, (3.8)

for a suitable Hamiltonian H i
t,ε,δ(a, h). Now, for ρ ∈ (0, 1), let us write

H i
t,ε,δ(a, h) = Hj

t,ε,δ

(
a, (1− ρ)h

)
+ ∆H

(i,j)
t,ε,δ (a, h, ρ) (3.9)
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(this relation is the definition of ∆H). Applying Hölder, Jensen and Fubini, we get

f it,ε,δ(a, λ, h) ≤ 1

1 + ρ
f jt,ε,δ

(
a, (1 + ρ)λ, (1− ρ)h

)
+

1

(1 + ρ−1)t
log EE exp

(
− 2a(1 + ρ−1)λ∆H

(i,j)
t,ε,δ (a, h, ρ)

)
.

(3.10)

Therefore to prove f i ≺ f j it suffices to show that for every positive constant A we can
choose the parameters δ, ε, a small in the usual sense such that

lim sup
t→∞

1

t
log EE exp

(
− aA∆H

(i,j)
t,ε,δ (a, h, ρ)

)
≤ 0 . (3.11)

Replacing ∆H(i,j) by ∆H(j,i) in this relation, we prove that f j ≺ f i and therefore f i ' f j .

3.1. Step 1: coarse-graining of the renewal process. We recall that by definition,
see (3.5), (1.10) and (1.6), f0 is given by

f0
t,ε,δ(a, λ, h) :=

1

a2
ft/a2(aλ, ah) =

1

t
E log E

[
exp

(
− 2aλH0

t,ε,δ(a, h)
)]
, (3.12)

where H0 is defined by

H0
t,ε,δ(a, h) =

t/a2∑
i=1

(ωi + ah)∆i . (3.13)

The purpose of this section is to define a first intermediate approximation f1 and to show
that f0 ' f1, in the sense of Definition 3.2, following the general scheme (3.8)–(3.11).

We recall that the sequence ∆i ∈ {0, 1} is constant for i ∈ {τj + 1, τj + 2, . . . , τj+1}
and it is chosen by flipping a fair coin. We start by defining, for j ∈ N ∪ {0}, the basic
coarse-grained blocks

Ij :=
(
(j − 1)ε/a2, jε/a2

]
. (3.14)

Then we set σ0 := 0 and for k ≥ 1

σk := inf {j ≥ σk−1 + (δ/ε) : τ ∩ Ij 6= ∅} , (3.15)

thus introducing a coarse-grained version σ of the underlying renewal τ that has a resolu-
tion of ε/a2 � 1. We say that the block Ij is visited if there exists k such that σk = j. We
stress that σ is built in such a way that if Ij is visited, we disregard the content of the next
(δ/ε)−1� 1 blocks, that is we dub them as not visited (even if they may contain renewal
points). Since we are interested only in the blocks that fall inside the interval [0, t/a2], we
set mt/a2 := min{k : σk ≥ t/ε}. Moreover for k ∈ N we give a notation for the union of
blocks between visited sites (that should be interpreted as coarse-grained excursions):

Īk :=

(
σk⋃

j=σk−1+1

Ij

)
∩
(
0, t/a2

]
. (3.16)

Note that Īk 6= ∅ if and only if k ≤ σmt/a2 ; furthermore (0, t/a2] =
⋃mt/a2

k=1 Īk. Each coarse-

grained excursion Īk with 1 ≤ k < mt/a2 contains exactly one visited block, namely Iσk ,

at its right extremity. The last coarse-grained excursion Īmt/a2 may or may not end with

a visited block, depending on whether σmt/a2 = t/ε or σmt/a2 > t/ε.

For 1 ≤ k < mt/a2 we assign a sign sk to the kth coarse-grained excursion by stipulating
that it coincides with the sign just before the first renewal point in Iσk (that we call tk,
and t0 := 0), that is we set sk := ∆tk . When k = mt/a2 we need to make a distinction: if
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I0 I1 I2 I7

t0 = 0 t1 t2
ε/a2

I11

Ī1 (s1 = 1) Ī2 (s2 = 0) Ī3 (s1 = 0)

Full trajectory

Coarse-grained trajectory

Figure 3. A full trajectory, on top, and the corresponding coarse-grained trajectory,
below. The visited blocks are surrounded by a box and the first renewal point inside
such blocks is marked by a vertical arrow: a coarse-grained excursion is everything that
lies between visited blocks. One stipulates that there is a visited block to the left of the
origin, containing the origin. The visited block on the right belongs to the coarse-grained
excursion, while the one on the left does not. The sign of the excursion is just the sign of
the full trajectory just before the vertical arrow (except possibly for the last excursion).
In this example δ/ε = 4, so the first three blocks to the right of a visited block (that is,
up to the vertical dotted lines) cannot be visited blocks.

the coarse-grained excursion Īk ends with a visited block (σmt/a2 = t/ε) we set sk := ∆tk

as before; if the coarse-grained excursion Īk is truncated (σmt/a2 > t/ε) we set sk = ∆t/a2 .

We refer to Figure 3 for a graphical description of the quantities introduced so far.

We are now ready to introduce the first intermediate approximation f1. According to
(3.8), it suffice to define the corresponding Hamiltonian:

H1
t,ε,δ(a, h) :=

mt/a2∑
k=1

∑
i∈Īk

(ωi + ah)sk =

mt/a2∑
k=1

sk
(
Zk(ω) + ah|Īk|

)
, (3.17)

where Zk(ω) :=
∑

i∈Īk ωi. Note that we may rewrite H0, see (3.13), as

H0
t,ε,δ(a, h) =

mt/a2∑
k=1

∑
i∈Īk

(ωi + ah)∆i . (3.18)

Passing from H0 to H1 we are thus replacing the renewal τ by its coarse-grained version.
Applying the general scheme (3.8)–(3.10), to prove that f0 ' f1 we have to establish

(3.11) for ∆H(0,1) and ∆H(1,0), defined by

∆H
(0,1)
t,ε,δ (a, h, ρ) := H0

t,ε,δ(a, h) − H1
t,ε,δ(a, (1− ρ)h)

= aρh

t/a2∑
i=1

∆i +

mt/a2∑
k=1

∑
i∈Īk

(ωi + a(1− ρ)h) (∆i − sk) ,
(3.19)

and

∆H
(1,0)
t,ε,δ (a, h, ρ) := H1

t,ε,δ(a, h) − H0
t,ε,δ(a, (1− ρ)h)

= aρh

t/a2∑
i=1

∆i +

mt/a2∑
k=1

∑
i∈Īk

(ωi + ah) (sk −∆i) .
(3.20)
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Formulas (3.19) and (3.20) are minimally different: in particular we are going to estimate
the second term in the right-hand side by taking the absolute value. For this reason, we
detail only the case of (3.19).

In order to establish (3.11) for ∆H(0,1) we observe that for a ≤ t0/A2 (t0 is the constant
in (1.9))

Ee−Aa∆H(0,1)
= E exp

−Aa2ρh

t/a2∑
i=1

∆i −Aa
mt/a2∑
k=1

∑
i∈Īk

(ωi + a(1− ρ)h) (∆i − sk)


= exp

−Aa2ρh

t/a2∑
i=1

∆i −Aa2(1− ρ)h

mt/a2∑
k=1

∑
i∈Īk

(∆i − sk)

mt/a2∏
k=1

∏
i∈Īk

M (Aa (∆i − sk))

= exp

−Ca2

t/a2∑
i=1

∆i + Ba2

mt/a2∑
k=1

∑
i∈Īk

|∆i − sk|

 , (3.21)

where C := Aρh and B := A(1 − ρ)h + c0A
2. Here we have used (1.9) and the fact that

|∆i − sk|2 = |∆i − sk| because |∆i − sk| ∈ {0, 1}. This shows that (3.11) is proven if we
can show that for any given B,C > 0 we have

lim sup
t→∞

1

t
log E exp

−Ca2

t/a2∑
i=1

∆i + Ba2

mt/a2∑
k=1

∑
i∈Īk

|∆i − sk|

 ≤ 0 , (3.22)

for δ, ε, a small in the usual sense (recall the discussion before (3.7)).
Let us re-express (3.22) explicitly in terms of the renewal process τ and of the signs

ξ = {ξj}j∈N, where ξj = ∆τj . This notation has been already introduced in § 1.1: here
we need also Ns := |τ ∩ [0, s]| = min{k ≥ 1 : τk > s} (s ∈ N). Observe that ξ is an IID
sequence, as well as the sequence of the inter-arrivals {ηj := τj − τj−1}j∈N. First of all

t/a2∑
i=1

∆i =

Nt/a2−1∑
j=1

ξjηj + ξNt/a2

(
(t/a2)− τNt/a2−1

)
≥
Nt/a2−1∑
j=1

ξjηj . (3.23)

Concerning the second addendum in the exponent in (3.22), we use the fact that if ηj = τj−
τj−1 ≥ (δ/ε)(ε/a2) = δ/a2 then necessarily the inter-arrival ηj determines a coarse-grained
excursion (say, Īk). We can then distinguish two cases: either τj−1 ∈ Īk, or τj−1 ∈ Īk−1. If
τj−1 ∈ Īk, we know that ∆i = sk for every i ∈ {τj−1+1, . . . , τj}, by our definition of the sign
of the coarse-grained excursions. If on the other hand τj−1 ∈ Īk−1, which happens if and
only if τj−1 ∈ Iσk−1

, we can only be sure that ∆i = sk for every i ∈ {τj−1+1, . . . , τj}\Iσk−1
.

Since |Iσk−1
| = ε

a2
and there are mt/a2 visited blocks, we are lead to the bound

mt/a2∑
k=1

∑
i∈Īk

|∆i − sk| ≤
Nt/a2−1∑
j=1

ηj1ηj<δ/a2 +
ε

a2
mt/a2 . (3.24)

This step of the proof is therefore completed by applying the following lemma:
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Lemma 3.3. For every B,C > 0 we have

lim sup
t→∞

1

t
log E exp

Ba2

Nt/a2−1∑
j=1

ηj1ηj<δ/a2 + Bεmt/a2 − Ca2

Nt/a2−1∑
j=1

ξjηj

 ≤ 0,

(3.25)
for δ, ε and a small in the usual sense.

Proof. Since ξ and η are independent and since ξ is an IID sequence of B(1/2) variables

E exp

Ba2

Nt/a2−1∑
j=1

ηj1ηj<δ/a2 + Bεmt/a2 − Ca2

Nt/a2−1∑
j=1

ξjηj

 =

E exp

Ba2

Nt/a2−1∑
j=1

ηj1ηj<δ/a2 + Bεmt/a2 +

Nt/a2−1∑
j=1

log

(
1

2
+

1

2
exp

(
−Ca2ηj

)) ,

(3.26)

The proof now proceeds in two steps: first we will show that if δ, ε and a are small in the
usual sense

Bεmt/a2 +
1

2

Nt/a2−1∑
j=1

log

(
1

2
+

1

2
exp

(
−Ca2ηj

))
≤ Bε, (3.27)

uniformly in η, and then that

lim sup
t→∞

1

t
log E

Ba2

Nt/a2−1∑
j=1

ηj1ηj<δ/a2 +
1

2

Nt/a2−1∑
j=1

log

(
1

2
+

1

2
exp

(
−Ca2ηj

)) ≤ 0.

(3.28)
For the proof of (3.27), recall first that tk is the first contact in Iσk for k < mt/a2 ,

i.e. tk := min{n ∈ Iσk : n ∈ τ}. Now let us consider the intervals (tk−1, tk] for k =
1, . . . ,mt/a2 − 1 (t0 := 0): given a value of k

(1) either in (tk−1, tk] there is a long excursion, that is there exists j∗ such that (τj∗−1, τj∗ ] ⊂
(tk−1, tk] with τj∗ − τj∗−1 ≥ δ/a2, so that

Bε+
1

2

∑
j: (τj−1,τj ]⊂(tk−1,tk]

log

(
1

2
+

1

2
exp

(
−Ca2ηj

))

≤ Bε+
1

2
log

(
1

2
+

1

2
exp

(
−Ca2ηj∗

))
≤ Bε+

1

2
log

(
1

2
+

1

2
e−Cδ

)
≤ 0 , (3.29)

where the last inequality holds for ε ≤ ε0(δ);

(2) or in (tk−1, tk] there are only short excursions, that is ηj := τj − τj−1 < δ/a2

for every j such that (τj−1, τj ] ⊂ (tk−1, tk]. In this case we bound from above
log
(

1
2 + 1

2 exp
(
−Ca2ηj

))
by −1

4Ca
2ηj for δ ≤ δ0, so that

Bε+
1

2

∑
j: (τj−1,τj ]⊂(tk−1,tk]

log

(
1

2
+

1

2
exp

(
−Ca2ηj

))
≤ Bε−1

8
Ca2(tk−tk−1) ≤ 0 , (3.30)

where the last inequality holds for ε ≤ ε0(δ) and it follows by observing that tk −
tk−1 > ((δ/ε)− 1)(ε/a2) = (δ − ε)/a2.
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Summing (3.29) and (3.30) from k = 1 to k = mt/a2 − 1, we see that (3.27) holds true.

Let us therefore turn to (3.28): note that we need to estimate

1

t
log E exp

Nt/a2−1∑
j=1

g(a2ηj)

 with g(x) := Bx1x<δ +
1

2
log

(
1

2
+

1

2
e−Cx

)
. (3.31)

Since g(·) ≥ −1
2 log 2, we can add the term j = Nt/a2 by paying at most

√
2, that is

E exp

Nt/a2−1∑
j=1

g(a2ηj)

 ≤ √2 E
[
GNt/a2

]
, where Gn := exp

 n∑
j=1

g(a2ηj)

 . (3.32)

Let us set G0 := 1 and γ := E[exp(g(a2η1))] for convenience. Since Gn is the product
of n IID random variables, the process {Gn/γn}n≥0 is a martingale (with respect to the
natural filtration of the sequence {τn}n≥0). Assume now that γ ≤ 1: the process {Gn}n≥0

is a supermartingale and, since Nt/a2 is a bounded stopping time, the optional sampling
theorem yields E[GNt/a2 ] ≤ 1. Then from (3.32) it follows immediately that (3.28) holds,

completing thus the proof.
We are left with showing that γ ≤ 1, that is E[exp(g(a2η1)] ≤ 1, when δ, ε and a are

small in the usual sense (actually ε does not appear in this quantity). Note that

E[exp(g(a2η1)]− 1 =
∑
n∈N

[
exp(g(a2n))− 1

]
K(n) , (3.33)

and recall that K(n) ∼ L(n)/n1+α as n → ∞, with L(·) slowly varying at infinity. Then
it follows by Riemann sum approximation that

lim
a↘0

E[exp(g(a2η1)]− 1

a2αL(1/a2)
=

∫ ∞
0

[
exp

(
Bx1x<δ +

1

2
log

(
1

2
+

1

2
e−Cx

))
− 1

]
dx

x1+α
.

(3.34)
The Riemann sum approximation is justified since L(cn)/L(n) → 1 as n → ∞ uniformly
for c in compact sets of (0,∞) [4, Th. 1.2.1] and since for every ε > 0 there exists b > 0
such that L(n) ≤ bnε for every n (the latter property is used to deal with very large
and small values of n). A simple look at (3.34) suffices to see that the right-hand side is
negative if δ ≤ δ0. �

3.2. Step 2: switching to Gaussian charges. In this step we introduce the second
intermediate approximation f2: following (3.8), we define the corresponding Hamiltonian
H2 by

H2
t,ε,δ(a, h) :=

mt/a2∑
k=1

sk
(
Zk(ω̂) + ah|Īk|

)
, (3.35)

where ω̂ = {ω̂i}i∈N is an IID sequence of standard Gaussian random variables and we
recall that Zk(ω̂) :=

∑
i∈Īk ω̂i. We stress that, with respect to the preceding Hamiltonian

H1, cf. (3.17), we have just changed the charges ωi → ω̂i.
In order to apply the general scheme (3.8)–(3.11), we build the two sequences of disorder

variables ω = {ωi}i∈N and ω̂ = {ω̂i}i∈N on the same probability space (Ω,F ,P), that is we
define a coupling. Actually, the disorder does not appear any longer in terms of the individ-
ual charges ωi, but it is by now summed over the coarse-grained blocks Ij = ((j−1) ε

a2
, j ε

a2
],

so we just need to couple the two IID sequences {∑i∈Ij ωi}j∈N and {∑i∈Ij ω̂i}j∈N. The
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coupling is achieved via the standard Skorohod representation in the following way: given

the IID sequence {ω̂i}i∈N of N (0, 1) variables, if we set F̂ (t) := P(ω̂1 ≤ t) and n := |I1|,
then F̂

(∑
i∈Ij ω̂i/

√
n
)

=: Uj is uniformly distributed over (0, 1). Therefore if we set

Fn(t) := P(
∑

i∈Ij ωi/
√
n ≤ t) and F−1

n (s) := inf{t ∈ R : Fn(t) > s}, that is F−1
n

is the generalized inverse of Fn, then the sequence {F−1
n (Uj)}j∈N has the same law as

{∑i∈Ij ωi/
√
n}j∈N and we have built a coupling. For short we set X

(n)
j := F−1

n (Uj) and

Yj := F̂−1(Uj) =
∑

i∈Ij ω̂i/
√
n. Moreover we observe that, by the Central Limit Theorem,

limn→∞ Fn(t) = F̂ (t) for every t ∈ R and therefore limn→∞X
(n)
j = Yj , in P-probability.

Lemma 3.4. For every C > 0

lim
n→∞

E
[
exp

(
C
∣∣∣X(n)

1 − Y1

∣∣∣)] = 1. (3.36)

Proof. Since limn→∞X
(n)
1 = Y1 in probability it suffices to prove that the sequence of

random variables {exp(C|X(n)
1 −Y1|)}n∈n0+N is bounded in L2 (hence uniformly integrable)

for a given n0 ∈ N. We choose n0 to be the smallest integer number larger than 16C2/t20,
with t0 the constant in (1.9). By the triangle and Cauchy-Schwarz inequalities we get

sup
n>n0

E
[
exp

(
2C
∣∣∣X(n)

1 − Y1

∣∣∣)] ≤√( sup
n>n0

E
[
exp

(
4C
∣∣∣X(n)

1

∣∣∣)])E
[

exp
(
4C |Y1|

)]
<∞ ,

(3.37)

where the second inequality follows from (1.9) and the choice of n0, recalling that X
(n)
1 ∼∑n

i=1 ωi/
√
n and Y1 ∼ N (0, 1). �

Let us see why Lemma 3.4 implies f1 ' f2. First of all

min
(
H1
t,ε,δ(a, h)−H2

t,ε,δ(a, (1− ρ)h) , H2
t,ε,δ(a, h)−H1

t,ε,δ(a, (1− ρ)h)
)

≥ −
mt/a2∑
k=1

sk |Zk(ω)− Zk(ω̂)| + aρh

mt/a2∑
k=1

sk
∣∣Īk∣∣

≥ −
mt/a2∑
k=1

sk

σk∑
j=σk−1+1

∣∣∣∣∣∣
∑
i∈Ij

ωi −
∑
i∈Ij

ω̂i

∣∣∣∣∣∣ + aρh

mt/a2∑
k=1

sk
∣∣Īk∣∣ ,

where we redefine σmt/a2 := t/ε for notational convenience (otherwise we should treat the

last term j = mt/a2 separately). In view of (3.9)–(3.11), it suffices to show that for a, ε
and δ small in the usual sense (recall the discussion before (3.7)) we have

lim sup
t→∞

1

t
log E

[
exp

(
− Aa2ρh

mt/a2∑
k=1

sk
∣∣Īk∣∣

)
×

E

(
exp

(
Aa

mt/a2∑
k=1

sk

σk∑
j=σk−1+1

(√
ε

a

) ∣∣∣X(ε/a2)
j − Yj

∣∣∣))] ≤ 0 . (3.38)
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By independence

E

[
exp

(
Aa

mt/a2∑
k=1

sk

σk∑
j=σk−1+1

(√
ε

a

) ∣∣∣X(ε/a2)
j − Yj

∣∣∣)]

=

mt/a2∏
k=1

E
[
exp

(
A
√
εsk

∣∣∣X(ε/a2)
1 − Y1

∣∣∣)]σk−σk−1

, (3.39)

and since a2|Īk| = ε (σk − σk−1) the term between square brackets in (3.38) is equal to

mt/a2∏
k=1

(
exp (−Aρhskε) E

[
exp

(
A
√
εsk

∣∣∣X(ε/a2)
1 − Y1

∣∣∣)])σk−σk−1

. (3.40)

Since sk ∈ {0, 1}, (3.38) is implied by

exp (−Aρhε) E
[
exp

(
A
√
ε
∣∣∣X(ε/a2)

1 − Y1

∣∣∣)] ≤ 1 , (3.41)

which holds for a ≤ a0(ε) by Lemma 3.4. The proof of f1 ' f2 is complete. �

3.3. Step 3: from the renewal process to the regenerative set. In this crucial step
we replace the discrete renewal process τ = {τn}n∈N with the continuum regenerative set
τ̃α (both processes are defined under the law P). Recall that for the renewal process τ
we have defined the coarse-grained returns {σk}k∈N as well as the coarse-grained signs sk,
and mt/a2 := inf{k : σk ≥ t/ε}. Henceforth we set m := mt/a2 for short and we redefine
for notational convenience σm := t/ε (as in the previous step).

Since Īk = ( ε
a2
σk−1,

ε
a2
σk], the second intermediate Hamiltonian H2, cf. (3.35), can be

rewritten as

H2
t,ε,δ(a, h) =

1

a

m∑
k=1

sk


 ∑

εσk−1

a2
<i≤ εσk

a2

aω̂i

+ hε(σk − σk−1)

 . (3.42)

We now introduce the rescaled returns σk := εσk and we let β = {βt}t≥0 be a standard
Brownian motion, defined on the disorder probability space (Ω,F ,P). With some abuse
of notation, we can redefine H2 as

H2
t,ε,δ(a, h) =

1

a

m∑
k=1

sk

(
βσk − βσk−1

+ h(σk − σk−1)
)
, (3.43)

which has the same law as the quantity in (3.42), hence through formula (3.8) it yields the
same f2. It is clear that H2 depends on the renewal process τ = {τn}n∈N only through
the vector

Σ := (m; s1, . . . , sm; σ1, . . . , σm) , (3.44)

whose definition depends of course on t, a, ε, δ.

One can define an analogous vector Σ̃ in terms of the regenerative set τ̃α, by looking at
the returns on blocks of width ε, skipping (δ/ε) blocks between successive returns. More

precisely, we set Ĩj := ((j − 1)ε, jε] for j ∈ N and define

σ̃0 := 0 , σ̃k := ε · inf
{
j ≥ (σ̃k−1/ε) + (δ/ε) : τ̃α ∩ Ĩj 6= ∅

}
, n ∈ N . (3.45)
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We then set m̃ := inf{k ∈ N : σ̃k ≥ t} and redefine σ̃m̃ := t. The signs {s̃k}1≤k≤m
are defined in complete analogy with the discrete case, by looking at the sign ∆̃α at the

beginning of each visited block Ĩσ̃k . We have thus completed the definition of

Σ̃ := (m̃; s̃1, . . . , s̃m̃; σ̃1, . . . , σ̃m̃) . (3.46)

We are ready to introduce the third intermediate quantity f3, which, in agreement with
(3.8), will be defined by the corresponding Hamiltonian H3. We replace in the right hand
side of (3.43) the quantities m, sk, σk with their continuum analogues m̃, s̃k, σ̃k, that is we
set

H3
t,ε,δ(a, h) :=

1

a

m̃∑
k=1

s̃k

(
βσ̃k − βσ̃k−1

+ h(σ̃k − σ̃k−1)
)
. (3.47)

It is now convenient to modify slightly the definition (3.43) of H2. The laws of the

vectors Σ and Σ̃ are mutually absolutely continuous (note that they are probability laws
on the same finite set) and we denote by dΣ

dΣ̃
= dΣ

dΣ̃
(m̃; σ̃1, . . . , σ̃m̃) the corresponding

Radon-Nikodym derivative, which does not depend on (s̃1, . . . , s̃m̃): in fact, conditionally
on m̃, σ̃1, . . . , σ̃m̃, the signs s̃1, . . . , s̃m are IID variables that take the values {0, 1} with
equal probability, and an analogous statement holds for s1, . . . , sm. We then redefine

H2
t,ε,δ(a, h) := H3

t,ε,δ(a, h) − 1

2aλ
log

dΣ

dΣ̃
. (3.48)

Note that this definition of H2 yields the same f2 as (3.43), according to (3.8).

To prove that f2 ' f3, we can now apply the general scheme (3.8)–(3.11). Plainly,

min
{
H2
t,ε,δ(a, h) − H3

t,ε,δ(a, (1− ρ)h), H3
t,ε,δ(a, h) − H2

t,ε,δ(a, (1− ρ)h)
}

≥ − 1

2aλ

∣∣∣∣ log
dΣ

dΣ̃

∣∣∣∣ +
ρh

a

m̃∑
k=1

s̃k(σ̃k − σ̃k−1) ,
(3.49)

therefore, in view of (3.11), we are left with showing that for all A,B > 0 and for δ, ε, a
small in the usual sense we have

lim sup
t→∞

1

t
log E

[
exp

(
−A

m̃∑
k=1

s̃k (σ̃k − σ̃k−1) + B

∣∣∣∣ log
dΣ

dΣ̃

∣∣∣∣
)]
≤ 0 . (3.50)

We have already observed that, conditionally on m̃, σ̃1, . . . , σ̃m̃, the variables s̃1, . . . , s̃m̃
are IID, taking the values {0, 1} with probability 1

2 each, hence dΣ

dΣ̃
does not depend on

these variables. Integrating over s̃1, . . . , s̃m̃, we can rewrite the expectation in (3.50) as

E

[(
m̃∏
k=1

(
1

2
+

1

2
exp(−A(σ̃k − σ̃k−1))

))
exp

(
B

∣∣∣∣ log
dΣ

dΣ̃

∣∣∣∣)
]
. (3.51)

We need some bounds on dΣ

dΣ̃
, that are given in the following lemma (whose proof is deferred

to Appendix B). Since the result we are after at this stage is for fixed δ > 0, for the sake
of simplicity we are going to fix δ = 1: arbitrary values of δ lead to very similar estimates.

Lemma 3.5. Fix δ = 1. There exists κ(ε, a) > 0 with the property that

lim
ε→0

lim sup
a→0

κ(ε, a) = 0 , (3.52)
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such that, for all values of m̃, σ̃1, . . . , σ̃m̃, the following bound holds:∣∣∣∣ log
dΣ

dΣ̃
(m̃; σ̃1, . . . , σ̃m̃)

∣∣∣∣ ≤ κ(ε, a)

m̃∑
i=1

(
log(σ̃i − σ̃i−1) + 1

)
. (3.53)

Note that by definition (σ̃i − σ̃i−1) ≥ δ = 1 and therefore the right hand side of (3.53)
is positive. By applying (3.53) we now see that the expression in (3.51) is bounded above
by E[Gm̃], where for n ∈ N we set

Gn :=

n∏
i=1

1

2

(
1 + e−A(σ̃i−σ̃i−1)

)
eBκ(ε,a) (σ̃i − σ̃i−1)Bκ(ε,a) . (3.54)

To prove (3.50), completing thus the proof that f2 ' f3, it therefore suffices to show that

lim sup
t→∞

1

t
log E

[
Gm̃
]
≤ 0 . (3.55)

We recall that m̃ = inf{k ∈ N : σ̃k ≥ t} and that we had redefined σ̃m̃ := t for notational
convenience. It is now convenient to switch back to the natural definition (3.45) of σ̃m̃.
This produces a minor change in Gm̃, see (3.54): in fact, only the last factor in the product
is modified, and since (1 + e−x) ≤ 2(1 + e−y) for all x, y ≥ 0, the new Gm̃ is at most twice
the old one. The change is therefore immaterial for the purpose of proving (3.55).

We introduce the filtration {Fn}n∈N∪{0}, defined by Fn := σ(σ̃0, . . . , σ̃n), and we note
that m̃ is a bounded stopping time for this filtration. Let us set

γ = γ(ε, a) := sup
x∈[−ε,0]

Ex

[
1

2

(
1 + e−Aσ̃1

)
eBκ(ε,a) (σ̃1)Bκ(ε,a)

]
, (3.56)

where we recall that Px denotes the law of the regenerative set started at x, that is
Px(τ̃α ∈ ·) := P(τ̃α + x ∈ ·). From (3.54) and the regenerative property of τ̃α we obtain

E
[
Gn+1

∣∣Fn] ≤ γ Gn . (3.57)

If γ ≤ 1, this relation shows that the process {Gn}n≥0, with G0 := 1, is a supermartingale.
Since m̃ is a bounded stopping time, from the optional sampling theorem we deduce that
E[Gm̃] ≤ E[G0] = 1, which clearly yields (3.55).

It only remains to show that indeed γ ≤ 1, provided ε and a are small in the usual
sense. Observe that σ̃1, defined in (3.45), is a discretized version of the variable d1−ε =
d1−ε(τ̃

α), defined in (2.7) (recall that δ = 1): more precisely, σ̃1 = εdd1−ε/εe, therefore
d1−ε ≤ σ̃1 ≤ d1−ε + ε. Setting κ := κ(ε, a) for short and applying (2.10), we obtain

Ex

[
1

2

(
1 + e−Aσ̃1

)
eBκ (σ̃1)Bκ

]
≤ Ex

[
1

2

(
1 + e−Ad1−ε

)
eBκ (d1−ε + ε)Bκ

]
=

sin(πα)

π

∫ ∞
1−ε

[
1

2

(
1 + e−At

)
eBκ (t+ ε)Bκ

]
((1− ε)− x)α

(t− (1− ε))α (t− x)
dt .

(3.58)

Plainly, there exists κ0 > 0 such that the integral in (3.58) is finite for κ ∈ [0, κ0], for every
x ∈ [−ε, 0], and it is in fact a continuous function of (x, κ) ∈ [−ε, 0]× [0, κ0]. Furthermore,
the integral is strictly smaller than 1 for κ = 0 and every x ∈ [−ε, 0], as it is clear from the
first line of (3.58). Therefore, by continuity, there exists κ1 ∈ (0, κ0) such that the integral
in (3.58) is strictly smaller than one for (x, κ) ∈ [−ε, 0] × [0, κ1]. Looking back at (3.56),
we see that indeed γ ≤ 1 provided κ(ε, a) ≤ κ1. Thanks to (3.52), it suffices to take ε and
a small in the usual sense, and the proof of f2 ' f3 is completed. �
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3.4. Step 4: inverse coarse-graining of the regenerative set. This step is the close
analog of step 1 (cf. § 3.1) in the continuum set-up, and a straightforward modification of
step 4 in [9]. We will therefore be rather concise.

Recall that the function f4 is nothing but the continuum finite-volume free energy, cf.
(3.5), hence according to (3.8) it corresponds to the Hamiltonian (recall (2.2) and (2.3))

H4
t,ε,δ(a, h) :=

1

a

∫ t

0
∆̃(u) (dβ(u) + hdu) =

1

a

m̃∑
k=1

∫ σ̃k

σ̃k−1

∆̃(u) (dβ(u) + hdu) , (3.59)

where we have set ∆̃(u) := ∆̃α(u) for short. As in the third step, we redefine σ̃m̃ := t
for simplicity (otherwise the k = m̃ term in the sum in (3.59) would require a separate
notation), but we will drop this convention later.

We now rewrite H3
t,ε,δ(a, h) by introducing the process

∆̂(u) :=
m̃∑
k=1

s̃k1(σ̃k−1,σ̃k](u) , (3.60)

so that by (3.47) we can write

H3
t,ε,δ(a, h) =

1

a

m̃∑
k=1

∫ σ̃k

σ̃k−1

∆̂(u) (dβ(u) + hdu) . (3.61)

Our aim is to show that f3 ' f4, but we prove only f4 ≺ f3, since the argument for the
opposite inequality is very similar. We have (recall (3.9))

aH
(4,3)
t,ε,δ (a, h, ρ) = ρh

m̃∑
k=1

∫ σ̃k

σ̃k−1

∆̂(u) du +
m̃∑
k=1

∫ σ̃k

σ̃k−1

(
∆̃(u)− ∆̂(u)

)
(dβ(u) + hdu) ,

(3.62)
and therefore, arguing as in (3.21)–(3.22), it is sufficient to show that for every choice of
A and B > 0

lim sup
t→∞

1

t
log E

[
exp

(
A

∫ t

0

∣∣∆̃(u)− ∆̂(u)
∣∣du − B

m̃∑
k=1

s̃k
(
σ̃k − σ̃k−1

))]
≤ 0 , (3.63)

provided δ and ε are small in the usual sense. Note that a has disappeared.

Let us now focus on the union of the excursions of B̃α whose length is shorter than δ
and denote the intersection of such a set with [0, t] by Jt,δ. Then, in analogy with (3.24),
we have the bound ∫ t

0

∣∣∆̃(u)− ∆̂(u)
∣∣du ≤ |Jt,δ| + m̃ ε . (3.64)

We now integrate out the s̃ variables in (3.63) (recall that they are IID B(1/2) variables)
and observe that, since σ̃k − σ̃k−1 ≥ δ, for every δ > 0 there exists ε0 such that for ε ≤ ε0

Am̃ ε +
1

2

m̃∑
k=1

log

(
1

2
+

1

2
exp

(
−B

(
σ̃k − σ̃k−1

)))
≤ 0 . (3.65)
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Also notice that, by construction, |Jt,δ ∩ (σ̃k−1, σ̃k]| ≤ (δ + ε) ≤ 2δ for all k = 1, . . . , m̃,
hence |Jt,δ| ≤ 2δm̃. Therefore it remains to show that

lim sup
t→∞

1

t
log E

[
exp

(
2Aδ m̃ +

1

2

m̃∑
k=1

log

(
1

2
+

1

2
exp

(
−B

(
σ̃k − σ̃k−1

))))]
≤ 0 .

(3.66)
At this point it is practical to go back to the original definition of σ̃m̃ (cf. (3.45)): this

produces a change in the exponent of (3.66) which is smaller than (log 2)/2 and this is
irrelevant for the estimate we are after. We then rewrite (3.66) as

lim sup
t→∞

1

t
log E

[
Gm̃
]
≤ 0 , where Gn :=

n∏
i=1

e2Aδ

√
1

2

(
1 + e−B(σ̃k−σ̃k−1)

)
. (3.67)

Let us set

γ = γ(δ, ε) = sup
x∈[−ε,0]

e2Aδ Ex

[√
1

2

(
1 + e−Bσ̃1

)]
, (3.68)

and introduce the filtration {Fn := σ(σ̃0, . . . , σ̃n)}n∈N. By the regenerative property of
τ̃α, we can write

E
[
Gn+1

∣∣Fn] ≤ γ Gn , (3.69)

therefore if γ ≤ 1 the process {Gn}n≥0, with G0 := 0, is a supermartingale. Since m̃ is
a bounded stopping time, the optional sampling theorem yields E[Gm̃] ≤ 1, from which
(3.67) follows. We are left with showing that γ ≤ 1 if δ and ε are small in the usual sense.

Recall that ds = ds(τ̃) = inf{u > s : u ∈ τ̃α} (cf. (2.7)) and observe that, by definition,
σ̃1 = jε if and only if dδ−ε ∈ ((j−1)ε, jε] (cf. (3.45)). Therefore we may write σ̃1 ≥ dδ−ε ≥
dδ−ε+x for x ≤ 0, whence

Ex

[√
1

2

(
1 + e−Bσ̃1

)]
≤ Ex

[√
1

2

(
1 + e−Bdδ−ε+x

)]
= E

[√
1

2

(
1 + e−Bdδ−ε

)]
. (3.70)

Looking back at (3.68), we see that γ ≤ 1 if we show that the right hand side of (3.70)
is less than exp(−2Aδ), when δ and ε are small in the usual sense. This condition can be
simplified by letting ε↘ 0: since dδ−ε → dδ, P-a.s., it suffices to show that

E

[√
1

2
(1 + exp(−Bdδ))

]
< exp(−2Aδ) , for all δ > 0 small enough . (3.71)

The law of the variable dδ is given in (2.10), hence with a change of variables we may write

1

δ

(
1−E

[√
1

2
(1 + exp(−Bdδ))

])
=

sin(πα)

π

∫ ∞
0

1

δ

[
1−

√
1

2
(1 + exp(−Bδ(1 + v)))

]
dv

vα(1 + v)
. (3.72)

Since the term between square brackets in the right-hand side is positive and asymptot-
ically equivalent, as δ ↘ 0, to δB(1 + v)/4, Fatou’s Lemma guarantees that the limit as
δ ↘ 0 of the expression in (3.72) is equal to +∞ and this entails that (3.71) holds.

This concludes the proof of step 4 and, hence, the proof of Theorem 3.1. �



32 FRANCESCO CARAVENNA AND GIAMBATTISTA GIACOMIN

Appendix A. Completing the proof of Proposition 2.2

In this section we are going to prove (2.18), that is, for every η ∈ (0,∞) there exists
D(η) ∈ (0,∞) such that

E
[
E
[

exp
(
ηΘT (β, ∆̃α)

)]]
≤ D(η) eD(η)T , for every T > 0 . (A.1)

We first state some important estimates concerning the regenerative set τ̃α.

A.1. Regenerative set, excursions and local time. We recall the basic link between
regenerative set and subordinators. Let (σ = {σt}t≥0,P) denote the stable subordinator of
index α, that is the Lévy process with zero drift, zero Brownian component and with Lévy
measure given by Π(dx) := C

x1+α
1(0,∞)(x) dx with C > 0. We choose as usual a right-

continuous version of σ. The value of the constant C is quite immaterial (it corresponds
to rescaling time or space by a constant factor) and a useful normalization it to fix C
so that

∫∞
0 (1 − e−x)Π(dx) = 1. In this way, the Lévy exponent of σ, defined by Φ(λ) :=

− log E[e−λσ1 ] =
∫∞

0 (1− e−λx)Π(dx), equals exactly λα for all λ ≥ 0.
If we denote by ∆σt := σt+ − σt the size of the jump of σ at epoch t, it is well-known

that σt =
∑

s∈(0,t] ∆σs, that is σ increases only by jumps. A remarkable property of σ is

its scale invariance: {σct}t≥0 has the same law as {c1/ασt}t≥0. We also recall some basic
estimates, cf. Theorems 8.2.1 and 8.2.2 in [4]:

P(σ1 > x) =
(const.)

xα
(
1 + o(1)

)
, as x→ +∞ ,

P(σ1 < x) = exp

(
− (const′.)

xα/(1−α)

(
1 + o(1)

))
, as x↘ 0 . (A.2)

If we set E := [0,∞) × (0,∞), the random set of points {(t,∆σt)}t∈[0,∞) ∩ E (note
that we only keep the positive jumps ∆σt > 0) is a Poisson random measure (sometimes
simply called Poisson process) on E with intensity measure dt ⊗ Π(dx), where of course
dt denotes the Lebesgue measure. The stochastic process {∆σt}t∈[0,∞) is called a Poisson
point process on (0,∞) with intensity measure Π.

The basic link with regenerative sets is as follows: the random closed set of [0,∞)

defined as the closure of the image of the process σ, that is {σt}t≥0, is precisely the α-
stable regenerative set τ̃α we are considering. Therefore the set of jumps {∆σt}t≥0 coincides
with the set of widths {|In|}n∈N ∪ {0} of the excursions of τ̃α.

Let us discuss an application of these results that will be useful later. If we denote by
Lt := inf{u ≥ 0 : σu > t} the inverse of σ, known as the local time of τ̃α, we may write∑
n∈N: In⊆(0,2)

|In|1−ε =
∑

t∈(0,L2)

(∆σt)
1−ε =

∑
t∈(0,L2)

f(∆σt) , where f(x) := x1−ε 1[0,2](x) ,

(A.3)
therefore for λ > 0 we have by Cauchy-Schwarz

E

[
exp

(
λ

∑
n∈N: In⊆(0,2)

|In|1−ε
)]
≤
∑
m∈N

E

[
exp

(
λ
∑

t∈(0,m)

f(∆σt)

)
1{m−1<L2≤m}

]

≤
∑
m∈N

√√√√E

[
exp

(
2λ

∑
t∈(0,m)

f(∆σt)

)]
P
[
m− 1 < L2 ≤ m

]
.
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By the definition of L, the scale invariance of σ and (A.2), we have for some c > 0

P
[
m− 1 < L2 ≤ m

]
≤ P

[
σm−1 < 2

]
= P

[
σ1 <

2

(m− 1)1/α

]
≤ e−c (m−1)1/(1−α) .

(A.4)
By Campbell’s Formula for Poisson processes (cf. equation (3.17) in [19]) we obtain

E

[
exp

(
2λ

∑
t∈(0,m)

f(∆σt)

)]
= exp

(
m

∫ ∞
0

(e2λ f(x) − 1) Π(dx)

)
= eC(λ)m ,

where C(λ) :=

∫ 2

0

e2λx1−ε − 1

x1+α
dx < ∞ for 0 < ε < 1− α . (A.5)

From the last relations we then obtain, for some c1 ∈ (0,∞),

E

[
exp

(
λ

∑
n∈N: In⊆(0,2)

|In|1−ε
)]
≤
∑
m∈N

e
1
2

(C(λ)m− c (m−1)1/(1−α)) ≤ c1 e
c1 (C(λ))1/α ,

(A.6)
where the last inequality can be checked, e.g., by approximating the sum with an integral

and developing the function e
1
2

[C(λ)x−cx1/(1−α)] around its maximum.
Since e2λy − 1 ≤ 2λ e4λ y for y ∈ [0, 2], it follows from (A.5) that C(λ) ≤ (const.) e5λ.

By Markov’s inequality we then obtain

P

[ ∑
n∈N: In⊆(0,2)

|In|1−ε > x

]
≤ c1 e

c1 (C(λ))1/α−λx ≤ c1 e
c2 e5λ/α−λx , (A.7)

for some c2 ∈ (0,∞). Optimizing over λ yields, for every x > 0,

P

[ ∑
n∈N: In⊆(0,2)

|In|1−ε > x

]
≤ min

{
c1 e
−α

5
x [log( α

5c2
x)−1]

, 1
}
≤ c3 e

−c3 x , (A.8)

for a suitable c3 ∈ (0,∞). We can finally estimate the quantity we are interested in:

E

[
exp

(
γ
√
T

√ ∑
n∈N: In⊆(0,2)

|In|1−ε
)]

=

∫ ∞
0

P

[
exp

(
γ
√
T

√ ∑
n∈N: In⊆(0,2)

|In|1−ε
)

> t

]
dt

=

∫ ∞
0

P

[ ∑
n∈N: In⊆(0,2)

|In|1−ε >
(log t)2

γ2T

]
dt

≤ c3

∫ ∞
0

e−c3 (log t)2/(γ2T ) dt = c3

∫ ∞
−∞

ex e−c3 x
2/(γ2T ) dx ≤ c4 γ

√
T ec4 γ

2 T ,

for some c4 ∈ (0,∞), by a Gaussian integration. We have thus proven that, if ε < 1− α,
there exists c4 ∈ (0,∞) such that for all γ, T > 0

E

[
exp

(
γ
√
T

√ ∑
n∈N: In⊆(0,2)

|In|1−ε
)]
≤ c4 γ

√
T ec4 γ

2 T . (A.9)
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A.2. Proof of equation (A.1). We recall that

ΘT (β, ∆̃α) := sup
−1≤x≤T , 0≤y≤T+1

∣∣H0,y;θxβ(∆̃α)
∣∣ . (A.10)

Recalling (2.2), we can write

H0,y;θxβ(∆̃α) = −2λ

∫ y

0
∆̃α(u) d(θxβ)(u) − 2λh

∫ y

0
∆̃α(u) du ,

and note that the second term is bounded in absolute value by 2λhy. For the purpose of
proving (A.1) we may therefore focus on the first term: we set

γx,y(β, ∆̃
α) :=

∫ y

0
∆̃α(u) d(θxβ)(u) =

∫ x+y

x
∆̃α(u− x) dβ(u) , (A.11)

ΓT (β, ∆̃α) := sup
(x,y)∈ST

γx,y(β, ∆̃
α) , where ST := [−1, T ]× [0, T + 1] . (A.12)

We stress that ΓT is defined as the supremum of γx,y, not of |γx,y|. Notice however that, for

fixed ∆̃α, the process γ = {γx,y(β, ∆̃α)}x,y under P is gaussian and centered, in particular

it has the same law as −γ. Since e|x| ≤ ex + e−x, we may then write

E
[
E
[

exp
(
ηΘT (β, ∆̃α)

)]]
≤ 2 e2λh(T+1) E

[
E
[

exp
(
2ηλΓT (β, ∆̃α)

)]]
. (A.13)

Looking back at (A.1), we are left with showing that, for every η > 0, there exists (a
possibly different) D(η) ∈ (0,∞) such that

E
[
E
[

exp
(
η ΓT (β, ∆̃α)

)]]
≤ D(η) eD(η)T , ∀T > 0 . (A.14)

Let us set ΓT := ΓT (β, ∆̃α) for short. It is convenient to split

E
[
E
[

exp
(
η ΓT

)]]
= E

[
exp

(
η E[ΓT ]

)
· E
[

exp
(
η (ΓT − E[ΓT ])

)]]
. (A.15)

To prove (A.14) we use the powerful tools of the theory of continuity of gaussian processes.

Let us introduce (for a fixed realization of ∆̃α) the canonical metric associated to the
gaussian process γ, defined for (x, y), (x′, y′) ∈ ST = [−1, T ]× [0, T + 1] by

d((x, y), (x′, y′)) :=

√
E
[(
γx′,y′(β, ∆̃α)− γx,y(β, ∆̃α)

)2]
. (A.16)

For ε > 0 we define NT (ε) = N
T,∆̃α(ε) as the least number of open balls of radius ε (in

the canonical metric) needed to cover the parameter space ST . The quantity logNT (ε)
is called the metric entropy of γ. It is known [1, Corollary 4.15] that the finiteness of∫∞

0

√
logNT (ε) dε ensures the existence of a version of the process γ which is continuous

in the parameter space. Moreover, there exists a universal constant K ∈ (0,∞) such that

E[ΓT (β, ∆̃α)] ≤ K

∫ ∞
0

√
logN

T,∆̃α(ε) dε . (A.17)

We show below that, for P-a.e. realization of ∆̃α, indeed
∫∞

0

√
logN

T,∆̃α(ε) dε < ∞, so

we may (and will) choose henceforth a continuous version of the process γ.
To estimate the right hand side of (A.15), let us denote by σ2

T = σ2
T,∆̃α

the maximal

variance of the process γ, that is σ2
T := sup(x,y)∈ST E[γx,y(β, ∆̃

α)2]. Since γ is continuous,
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it follows easily by Borell’s inequality [1, Theorem 2.1] that

E
[

exp
(
η(ΓT − E[ΓT ])

)]
≤ C ′ σT exp

(
1

2
η2 σ2

T

)
,

where C ′ ∈ (0,∞) is an absolute constant. Now observe that σ2
T is uniformly bounded: by

(A.11) and the isometry property of the Wiener integral, since |∆̃α(·)| ≤ 1 we can write

σ2
T := sup

(x,y)∈ST
E
[
γx,y(β, ∆̃

α)2
]

= sup
(x,y)∈ST

∫ x+y

x
∆̃α(u− x)2 du ≤ T + 1 . (A.18)

Looking back at (A.15) and recalling (A.17), we have proven that there exists C ∈ (0,∞)
such that

E
[
E
[

exp
(
η ΓT (β, ∆̃α)

)]]
≤ C eC η

2 T E

[
exp

(
K η

∫ ∞
0

√
logN

T,∆̃α(ε) dε

)]
. (A.19)

To complete the proof of (A.14), it remains to estimate N
T,∆̃α(ε), which requires some

effort. For a fixed realization of ∆̃α, we introduce the function ρT : R+ → R+ defined by

ρT (δ) := sup
(x,y), (x′,y′)∈ST : |(x,y)−(x′,y′)|≤δ

d
(
(x, y), (x′, y′)

)
, (A.20)

where |(x, y) − (x′, y′)|2 := (x − x′)2 + (y − y′)2 denotes the Euclidean norm and we
recall that the canonical metric d is defined in (A.16). Note that ρT (·) is a non-decreasing
function which is eventually constant: ρT (δ) = ρT (

√
2(T + 1)) for every δ ≥

√
2(T + 1),

simply because
√

2(T + 1) is the diameter of the space ST = [−1, T ]× [0, T + 1].
Plainly, for every fixed δ > 0, we can cover the square ST with no more than (T+1

δ + 1)2

open squares of side δ. Since the Euclidean distance between a point in a square of side δ
and the center of the square is at most δ/

√
2, the corresponding distance in the canonical

metric is at most ρT (δ/
√

2), by the definition of ρT . Therefore a square of side δ can be
covered with a ball (in the canonical metric) of radius ρT (δ/

√
2) centered at the center of

the square. If we set ε := ρT (δ/
√

2), this means that we need at most (T+1
δ + 1)2 balls (in

the canonical metric) of radius ε to cover the whole parameter space ST . Put otherwise,
we have shown that for every ε > 0

NT (ε) ≤
(

1 +
T + 1√
2 ρ−1

T (ε)

)2

, (A.21)

where ρ−1
T is well-defined because ρT is non decreasing and continuous, as it will be clear

below. Since NT (ε) = 1 for ε > ρT ((T + 1)/
√

2) (we can cover ST with just one ball), we
obtain the estimate∫ ∞

0

√
logNT (ε) dε ≤

∫ ρT ((T+1)/
√

2)

0

√
2 log

(
1 +

T + 1√
2 ρ−1

T (ε)

)
dε .
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By a change of variables and integrating by parts, we obtain∫ ∞
0

√
logNT (ε) dε ≤

∫ T+1√
2

0

√
2 log

(
1 +

T + 1√
2 t

)
dρT (t)

=
√

2 log 2 ρT

(
T + 1√

2

)
+

∫ T+1√
2

0

ρT (t)

t

√
2 log

(
1 + T+1√

2 t

) T + 1

T + 1 +
√

2 t
dt

≤
√

2 ρT

(
T + 1√

2

)
+

∫ T+1√
2

0

ρT (t)

t

√
2 log

(
1 + T+1√

2 t

) dt ,

(A.22)

where in the integration by parts we have used the fact that, for P-a.e. realization of ∆̃α,

we have
√

2 log(1 + T+1√
2 t

) ρT (t)→ 0 as t→ 0, as we prove below.

To proceed with the estimates, we need to obtain bounds on ρT , hence we start from

the definition (A.11) of γx,y(β, ∆̃
α). By the properties the Wiener integral we can write

d
(
(x, y), (x′, y′)

)2
= E

[(
γx′,y′(β, ∆̃

α)− γx,y(β, ∆̃α)
)2]

=

∫ 2T+1

−1

(
∆̃α(u− x′)1[x′,x′+y′](u) − ∆̃α(u− x)1[x,x+y](u)

)2
du

=

∫ 2T+1

−1

∣∣∆̃α(u− x′)1[x′,x′+y′](u) − ∆̃α(u− x)1[x,x+y](u)
∣∣du ,

where the last equality holds simply because ∆̃α(·) takes values in {0, 1}. Incidentally,
this expression shows that the canonical metric d(·, ·) is continuous on ST (because the
translation operator is continuous in L1). Therefore ρT (·) is a continuous function, as we
stated before.

By the triangle inequality, we get for x′ ≤ x

d
(
(x, y), (x′, y′)

)2 ≤ ∫ 2T+1

−1
∆̃α(u− x′)

∣∣1[x′,x′+y′](u)− 1[x,x+y](u)
∣∣du

+

∫ 2T+1

−1

∣∣∆̃α(u− x′)− ∆̃α(u− x)
∣∣1[x,x+y](u) du

≤ |x′ − x| + |(x′ + y′)− (x+ y)| +

∫ 2T+1

x

∣∣∆̃α(u− x′)− ∆̃α(u− x)
∣∣du .

Recall that ∆̃α(s) =
∑

n∈N ξ̃n 1In(s), where {In}n∈N are the connected components of the

open set (τ̃α){ and {ξ̃n}n∈N are IID Bernoulli variables of parameter 1/2. For every finite
interval I we have the bound

∫
R |1I(u− x′)− 1I(u− x)| du ≤ 2 min{|In|, |x′− x|}, whence∫ 2T+1

x

∣∣∆̃α(u− x′)− ∆̃α(u− x)
∣∣du ≤ ∑

n∈N: In∩(0,2(T+1)) 6=∅

min{|In|, δ} (A.23)

Therefore, recalling the definition (A.20), we can write

ρT (δ)2 ≤ 3 δ +
∑

n∈N: In∩(0,2(T+1))6=∅

min{|In|, δ} . (A.24)
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Observe that the sum in the right hand side can be rewritten as δ Nδ + Aδ, where Nδ is
the number of excursions In that intersect (0, 2(T + 1)) with |In| > δ and Aδ is the total
area covered by the excursions In that intersect (0, 2(T+1)) with |In| ≤ δ. The asymptotic
behavior as δ ↘ 0 of Nδ and Aδ is as follows: there exist a positive constant c = c(α) such
that

lim
δ↘0

δαNδ = lim
δ↘0

Aδ
δ1−α = cL2(T+1) , P-a.s. , (A.25)

where {Lt}t≥0 is the local time associated to the regenerative set τ̃α (whose definition
is recalled in § A.1). The relations in (A.25) are proven in [23], cf. Proposition XII-(2.9)
and Exercise XII-(2.14), in the special case α = 1

2 , but the proof is easily extended to

the general case. Looking back at (A.24), it follows that, for P-a.e. realization of ∆̃α, we

have ρT (δ) ∼
√

2c
√
L2(T+1) δ

(1−α)/2 as δ ↘ 0. In particular,
√

log(1 + T+1√
2 t

) ρT (t)→ 0 as

t↘ 0, a property used in the integration by parts in (A.22).

We are ready to bound the terms in the last line of (A.22). Note that the first term is
easily controlled: by definition d((x, y), (x′, y′)) ≤ 2σT , hence it follows by (A.18) that

√
2 ρT

(
T + 1√

2

)
≤ 2
√

2
√
T + 1 . (A.26)

Now observe that from (A.24) we have

ρT (δ) ≤ FT+1(δ) , where FM (δ) :=

√
3δ +

∑
n∈N: In∩(0,2M)6=∅

min{|In|, δ} . (A.27)

By the scale invariance of the regenerative set τ̃α it follows that, under P, {FM (t)}t≥0 has

the same law as {
√
M F1( t

M )}t≥0. Therefore we can bound the second term in the last
line of (A.22) as follows:∫ T+1√

2

0

ρT (t)

t

√
2 log

(
1 + T+1√

2 t

) dt ≤
∫ T+1√

2

0

FT+1(t)

t

√
2 log

(
1 + T+1√

2 t

) dt
d
=
√
T + 1M , (A.28)

where, performing the change of variable t = (T + 1)s in the integral, we have introduced
the variable M defined by

M :=

∫ 1√
2

0

F1(s)

s

√
2 log

(
1 + 1√

2 s

) ds =

∫ 1√
2

0

1

s

√√√√3s+
∑

n∈N: In∩(0,2)6=∅min{|In|, s}
2 log

(
1 + 1√

2 s

) ds .

(A.29)
We can finally come back to (A.19): applying (A.22), (A.26) and (A.28) we obtain

E

[
exp

(
K η

∫ ∞
0

√
logN

T,∆̃α(ε) dε

)]
≤ E

[
eK η

√
T+1 (2

√
2+M)

]
. (A.30)

It only remains to estimate the law ofM. Let us fix an arbitrary ε ∈ (0, 1−α): applying
the Cauchy-Schwarz inequality, we obtain

M ≤

√√√√√∫ 1√
2

0

1

2 s1−ε log
(

1 + 1√
2 s

) ds ·

√√√√∫ 1√
2

0

(
3

sε
+

∑
n∈N: In∩(0,2)6=∅

min{|In|, s}
s1+ε

)
ds .

(A.31)
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The first integral being finite, we may focus on the second one, in particular on the
sum over the excursions {In}n∈N. Consider first the excursions such that |In| ≥ 1√

2
, for

which min{|In|, s} = s: there are at most 2/(1/
√

2) + 1 = 2
√

2 + 1 such excursions with
In ∩ (0, 2) 6= ∅, therefore∫ 1/

√
2

0

∑
n∈N: In∩(0,2)6=∅, |In|≥ 1√

2

min{|In|, s}
s1+ε

ds ≤ (2
√

2 + 1)

∫ 1/
√

2

0

1

sε
ds < ∞ .

Plainly, also the last excursion In 3 2 gives a finite contribution. It remains to consider
the excursions In included in (0, 2) such that |In| < 1√

2
, for which we may write∫ 1√

2

0

∑
In⊆(0,2), |In|< 1√

2

min{|In|, s}
s1+ε

ds =
∑

In⊆(0,2), |In|< 1√
2

(∫ |In|
0

1

sε
ds +

∫ 1√
2

|In|

|In|
s1+ε

ds

)

=
∑

In⊆(0,2), |In|< 1√
2

(
|In|1−ε
1− ε +

1

ε
|In|

(
1

|In|ε
− (
√

2)ε
))

≤ 1

ε(1− ε)
∑

In⊆(0,2)

|In|1−ε .

We have thus shown that there exist constants 0 < a, b <∞ (depending on ε) such that

M ≤ a + b

√ ∑
n∈N: In⊆(0,2)

|In|1−ε . (A.32)

We can finally conclude the proof of (A.14). From (A.19), (A.30) and (A.32) it follows
that equation (A.14) is proven once we show that for every C > 0 there exists D = D(C) ∈
(0,∞) such that for every T > 0

E

[
exp

(
C
√
T

√ ∑
n∈N: In⊆(0,2)

|In|1−ε
)]
≤ D exp(DT ) . (A.33)

But this is a direct consequence of equation (A.9). �

Appendix B. Proof of Lemma 3.5

We recall that τ = {τn}n∈N and τ̃α denote respectively the renewal process and the
regenerative set, both defined under the law P. For x ≥ 0, we denote by Px the law of
the sets τ and τ̃α started at x, that is Px(τ ∈ ·) := P(τ + x = {τn + x}n∈N ∈ ·) and
analogously for τ̃α. For the definition of the vectors Σ := (m; s1, . . . , sm; σ1, . . . , σm) and

Σ̃ := (m̃; s̃1, . . . , s̃m̃; σ̃1, . . . , σ̃m̃), we refer to Section 3.3.

In this section we fix δ = 1. We have to estimate the Radon–Nikodym density dΣ̃
dΣ of the

laws of Σ̃ and Σ (which does not depend on the sign variables, see explanation between
(3.47) and (3.48)), namely the quantity

dΣ̃

dΣ
(l; x1, . . . , xl) =

P
(
(m̃; σ̃1, . . . , σ̃m) = (l; x1, . . . , xl)

)
P
(
(m; σ1, . . . , σm) = (l; x1, . . . , xl)

) . (B.1)

Note that by construction (σi+1 − σi) ∈ [δ,∞) ∩ εN, and since δ = 1 we assume that
xi+1−xi ∈ [1,∞)∩ εN. Using the regenerative property of τ̃α and the renewal property of
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τ , the ratio in (B.1) can be estimated in terms of the probability of the first coarse-grained
returns of τ̃α and τ :

l∏
i=1

c(xi − xi−1) ≤ dΣ̃

dΣ
(l; x1, . . . , xl) ≤

l∏
i=1

C(xi − xi−1) , (B.2)

where we set for convenience x0 := 0 and we have introduced, for z ∈ [1,∞) ∩ εN,

C(z) := sup
y,ỹ∈(0,ε]

Pỹ

(
inf{u > 1 : u ∈ τ̃α} ∈ (z, z + ε]

)
P y

a2

(
inf{i > 1

a2
: i ∈ τ} ∈ ( z

a2
, z+ε
a2

]
) , (B.3)

and c(z) is defined analogously, replacing the supremum (over y and ỹ) by the infimum
(over the same variables and range). For the purpose of proving Lemma 3.5, it is actually
more convenient to give a slightly different estimate than (B.2), namely

exp

(
−

l∑
i=1

G(xi − xi−1)

)
≤ dΣ̃

dΣ
(l; x1, . . . , xl) ≤ exp

(
l∑

i=1

G(xi − xi−1)

)
, (B.4)

where G(z) = Gε,a(z) is defined, always for z ∈ [1,∞) ∩ εN, by

Gε,a(z) := sup
y,ỹ∈(0,ε]

∣∣∣∣∣ log

(
P y

a2

(
inf{i > 1

a2
: i ∈ τ} ∈ ( z

a2
, z+ε
a2

]
)

Pỹ

(
inf{u > 1 : u ∈ τ̃α} ∈ (z, z + ε]

))∣∣∣∣∣ . (B.5)

Recalling the statement of Lemma 3.5, we are left with showing that

Gε,a(z) ≤ κ(ε, a)
(

log z + 1
)
, with lim

ε→0
lim sup
a→0

κ(ε, a) = 0 . (B.6)

We claim that the rescaled renewal process a2τ = {a2τn}n∈N, viewed as a random closed
subset of [0,∞), converges in distribution as a→ 0 toward the regenerative set τ̃α, where
we equip the family of closed subsets of [0,∞) with the topology of Matheron, as described
in [13]. To check this claim, we recall from § A.1 that τ̃α is the closure of the image of the
(stable) subordinator with Lévy exponent Φ(λ) := λα. If we denote by {Nt}t≥0 a standard
Poisson process on R of rate γ > 0, independent of all the processes considered so far, the
random set a2τ can be viewed as the image of the subordinator {a2τNt}t≥0, whose Lévy
exponent is given by

Φa(λ) := − log E
[
e−λa

2τN1
]

= γ
(
1−E

[
e−λa

2τ1
])

= γ
∑
n∈N

(
1− e−λa2n

)
K(n) . (B.7)

If we fix γ = γ(a) so that Φa(1) = 1, as prescribed by Proposition (1.14) in [13], it
follows easily by our assumption (1.4) that lima→0 Φa(λ) = Φ(λ) = λα for every λ ≥ 0.
By Proposition (3.9) in [13], the pointwise convergence of the Lévy exponents entails the
convergence in distribution of the corresponding regenerative sets, which proves the claim.

From the convergence in distribution of a2τ toward τ̃α it follows that the numerator in
the right hand side of (B.5) converges as a → 0 toward the denominator with ỹ replaced
by y, for all fixed ε ∈ (0, 1), z ∈ [1,∞) ∩ εN and y ∈ (0, ε]. In the following Lemma we
provide a quantitative control on this convergence, as a function of z and y.

Lemma B.1. Fix ε ∈ (0, 1/3). There exists ζε(a) > 0 with lima→0 ζε(a) = 0 such that(
1− ζε(a)

)
z−ζε(a) ≤

P y

a2

(
inf{i > 1

a2
: i ∈ τ} ∈ ( z

a2
, z+ε
a2

]
)

Py

(
inf{u > 1 : u ∈ τ̃α} ∈ (z, z + ε]

) ≤ (
1 + ζε(a)

)
zζε(a) , (B.8)

for all a ∈ (0, a0) (with a0 > 0), y ∈ [0, 1/3] and z ∈ [1,∞) ∩ εN.
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We point out that Lemma B.1 is proved below through explicit estimates, without reference
to the convergence in distribution of a2τ toward τ̃α stated above.

We now apply (B.8) to (B.5): since | log(1+x)| ≤ 2|x| for x small, for small a we obtain

Gε,a(z) ≤ 2ζε(a)
(

log z + 1
)

+ sup
y,ỹ∈(0,ε]

∣∣∣∣∣ log

(
Py

(
inf{u > 1 : u ∈ τ̃α} ∈ (z, z + ε]

)
Pỹ

(
inf{u > 1 : u ∈ τ̃α} ∈ (z, z + ε]

))∣∣∣∣∣ .
(B.9)

Recalling the definition (2.7) of dt(τ̃
α) and applying (2.10), for z ∈ [1,∞) ∩ εN we can

write

Py

(
inf{u > 1 : u ∈ τ̃α} ∈ (z, z + ε]

)
=

sin(πα)

π

∫ z+ε

z

(1− y)α

(t− 1)α (t− y)
dt . (B.10)

From this explicit expression it is easy to check that the second term in the right hand
side of (B.9) vanishes as ε→ 0 uniformly in z ∈ [1,∞) ∩ εN, hence (B.6) holds true. �

B.1. Proof of Lemma B.1. We have already obtained in (B.10) an explicit expression for
the denominator in (B.8). It is however more convenient to give an alternative expression:
recalling again the definition (2.7) of the variable dt(τ̃

α) and applying (2.8), we can rewrite
the denominator in (B.8) as

I(y, z) :=
α sin(πα)

π

∫ 1

y
ds

∫ z+ε

z
dt

1

(s− y)1−α (t− s)1+α
. (B.11)

Recalling that K(n) := P(τ1 = n) and setting U(n) := P(n ∈ τ), we can rewrite the
numerator in (B.8) using the renewal property as

Ja(y, z) :=
∑

y

a2
≤k≤ 1

a2
z
a2
<l≤ z+ε

a2

U(k− y
a2

)K(l−k) =
∑

s∈[y,1]∩a2N
t∈(z,z+ε]∩a2N

U
(

1
a2

(s−y)
)
K
(

1
a2

(t−s)
)
. (B.12)

We now use [12, Theorem B], coupled with our basic assumption on the inter-arrival
distribution (1.4), to see that

U(`)
`→∞∼ α sin(πα)

π

1

L(`) `1−α
. (B.13)

Using the asymptotic relations (1.4) and (B.13) and a Riemann sum argument (with some
careful handling of the slowly varying functions, see the details below), one can check that
(B.12) converges toward (B.11) as a → 0, for all fixed ε ∈ (0, 1/3), z ∈ [1,∞) ∩ εN and
y ∈ (0, ε]. However to obtain (B.8) a more attentive estimate is required. We set n := 1/a2

for notational convenience, so that, with some abuse of notation, we can rewrite (B.12) as

Jn(y, z) :=
∑

ny≤k≤n
nz<l≤n(z+ε)

U(k−ny)K(l−k) =
∑

s∈[y,1]∩ 1
n
N

t∈(z,z+ε]∩ 1
n
N

U
(
n(s−y)

)
K
(
n(t−s)

)
. (B.14)

We can now rephrase (B.8) in the following way: for every fixed ε ∈ (0, 1/3), there exist
ζε(n) > 0, with limn→∞ ζε(n) = 0, and n0 ∈ N such that(

1 − ζε(n)
)
z−ζε(n) ≤ Jn(y, z)

I(y, z)
≤
(
1 + ζε(n)

)
zζε(n) , (B.15)

for all n ≥ n0, y ∈ [0, 1/3] and z ∈ [1,∞) ∩ εN. We recall that I(y, z) is defined in (B.11).
For convenience, we divide the rest of the proof in three steps.



WEAK COUPLING LIMIT FOR COPOLYMER MODELS 41

Step 1. We first show that the terms in (B.14) with k ≤ ny +
√
n, that is

An(y, z) :=
∑

ny≤k≤ny+
√
n

nz<l≤n(z+ε)

U(k − ny)K(l − k) , (B.16)

give a negligible contribution to (B.15).
By paying a positive constant, we can replace K(·) and U(·) by their asymptotic be-

haviors, cf. (1.4) and (B.13). Note that k ≤ ny +
√
n ≤ n/2 for large n, because y ≤ 1/3,

and therefore n(z − 1/2) ≤ (l − k) ≤ n(z + 1/3), because ε ≤ 1/3, for all l, k in the range
of summation. We thus obtain the upper bound

An(y, z) ≤ C1

∑
0<h≤

√
n

1

L(h)h1−α

∑
n(z− 1

2
)<m≤n(z+ 1

3
)

L(m)

m1+α
, (B.17)

for some absolute constant C1 > 0. We now show that, for some absolute constant C2 > 0
(not depending on z), we can write L(m) ≤ C2L(nz) for every m in the range of summa-
tion. To this purpose, we recall the representation theorem of slowly varying functions:

L(x) = a(x) exp

(∫ x

1

b(t)

t
dt

)
, with lim

x→∞
a(x) ∈ (0,∞) and lim

x→∞
b(x) = 0 , (B.18)

see Theorem 1.3.1 in [4]. Setting γn := supx≥n/2 |b(x)|, we have limn→∞ γn = 0 and for

m ∈ {n(z − 1/2), n(z + 1/3)} we can write for z ≥ 1

L(m)

L(nz)
≤ a(m)

a(nz)
exp

(
γn

∫ n(z+ 1
3

)

n(z− 1
2

)

1

t
dt

)
≤

supk≥n
2
a(k)

infk≥n a(k)
exp

(
γn log

z + 1
3

z − 1
2

)
. (B.19)

Since z ≥ 1, it is clear that the right hand side of (B.19) is bounded from above by some
absolute constant C2 (in fact, it even converges to 1 as n → ∞). From (B.17) we then
obtain

An(y, z) ≤ C2 L(nz)
∑

0<h≤
√
n

1

L(h)h1−α

∑
n(z− 1

2
)<m≤n(z+ 1

3
)

1

m1+α

≤ C3
L(nz)

nα z1+α

∑
0<h≤

√
n

1

L(h)h1−α ≤ C4
L(nz)

nα z1+α

nα/2

αL(
√
n)
,

(B.20)

where C3, C4 are absolute positive constant and the last inequality is a classical result
(Proposition 1.5.8 in [4]). Using again the representation (B.18), in analogy with (B.19),
we can write

L(nz)

L(
√
n)
≤ a(nz)

a(
√
n)

exp

(
γn

∫ nz

√
n

1

t
dt

)
≤ C5 exp

(
γn log

nz√
n

)
= C5 n

γn/2 zγn , (B.21)

for some absolute constant C5. Coming back to (B.20), we have shown that there exists
absolute constants C6 and n0 such that for all n ≥ n0, z ∈ [1,∞) ∩ εN and y ∈ [0, 1/3]

An(y, z) ≤ C6

n(α−γn)/2

zγn

z1+α
. (B.22)

Let us now look back at the integral I(y, z), defined in (B.11). It is easy to check that
for every fixed ε ∈ (0, 1/3) there exists an absolute constant C7 = C7(ε) > 0 such that

I(y, z) ≥ C7

z1+α
, (B.23)
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for all y ∈ [0, 1/3] and z ∈ [1,∞) ∩ εN. If we set ζ ′(n) := max{γn, C6/(C7 n
(α−γn)/2)}, we

have limn→∞ ζ
′(n) = 0 and from (B.22) and (B.23) we have shown that for every fixed

ε ∈ (0, 1/3) there exists n0 ∈ N such that for n ≥ n0 we have

An(y, z)

I(y, z)
≤ ζ ′(n) zζ

′(n) , (B.24)

for all z ∈ [1,∞) ∩ εN and y ∈ [0, 1/3]. This completes the first step.

Step 2. We now consider the terms in (B.14) with k > ny+
√
n, or equivalently s > y+ 1√

n
,

that is we introduce the quantity

Bn(y, z) :=
∑

s∈(y+ 1√
n
,1]∩ 1

n
N

t∈(z,z+ε]∩ 1
n
N

U
(
n(s− y)

)
K
(
n(t− s)

)
, (B.25)

and we observe that Jn(y, z) = An(y, z) + Bn(y, z), see (B.14) and (B.16). Our aim is to
prove (B.15): in view of relation (B.24), it remains to show that for every fixed ε ∈ (0, 1/3)
there exist ζ ′′(n) > 0, with limn→∞ ζ

′′(n) = 0, and n0 ∈ N such that(
1 − ζ ′′(n)

)
z−ζ

′′(n) ≤ Bn(y, z)

I(y, z)
≤
(
1 + ζ ′′(n)

)
zζ
′′(n) , (B.26)

for all n ≥ n0, y ∈ [0, 1/3] and z ∈ [1,∞) ∩ εN = {1, 1 + ε, 1 + 2ε, . . .}. In this step we
prove that (B.26) holds for z ∈ [1 + ε,∞) ∩ εN, that is we exclude the case z = 1, that
will be considered separately in the third step.

By construction, the arguments of the functions U(·) and K(·) appearing in (B.25)
tend to ∞ as n → ∞ uniformly in the range of summation: in fact n(s − y) ≥ √n and
n(t− s) ≥ εn, because we assume that z ≥ 1 + ε. We can therefore replace U(·) and K(·)
by their asymptotic behaviors, given in (1.4) and (B.13), by committing an asymptotically
negligible error: more precisely, we can write

Bn(y, z) =
(
1 + o(1)

) Cα
n2

∑
s∈(y+ 1√

n
,1]∩ 1

n
N

t∈(z,z+ε]∩ 1
n
N

[
L
(
n(s− y)

)
L
(
n(t− s)

) ] 1

(s− y)1−α (t− s)1+α
, (B.27)

where we set Cα := α sin(πα)/π for short and where, here and in the sequel, o(1) denotes
a quantity (possibly depending on ε and varying from place to place) that vanishes as
n→∞ uniformly in y ∈ [0, 1/3] and in z ∈ [1 + ε,∞) ∩ εN.

We now estimate the ratio in square brackets in the right hand side of (B.27). Recalling
the representation theorem of slowly varying functions, see (B.18), uniformly for s, t in the
range of summation we can write

L
(
n(s− y)

)
L
(
n(t− s)

) = (1 + o(1)) exp

(∫ n(s−y)

n(t−s)

b(x)

x
dx

)
, (B.28)

with the convention
∫ γ
β (. . .) := −

∫ β
γ (. . .) if β > γ. Let us set

ηn := sup
x≥min{

√
n,εn}

|b(x)| , (B.29)

so that ηn → 0 as n→∞. Uniformly for s, t in the range of summation, we can write∣∣∣∣ ∫ n(s−y)

n(t−s)

b(x)

x
dx

∣∣∣∣ ≤ ηn

∣∣∣∣ ∫ n(s−y)

n(t−s)

1

x
dx

∣∣∣∣ ≤ ηn
(
| log(t− s)| + | log(s− y)|

)
. (B.30)
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In the range of summation of (B.27) we have 0 < (s − y) ≤ 1, hence | log(s − y)| =
− log(s− y), and ε ≤ (t− s) ≤ z+ ε, whence | log(t− s)| ≤ − log ε+ log(z+ ε) (recall that
ε < 1 < z). Coming back to (B.27), from (B.28) and (B.30) we obtain the upper bound

Bn(y, z) ≤
(
1 + o(1)

) (z + ε)ηn

εηn

[
Cα
n2

∑
s∈(y+ 1√

n
,1]∩ 1

n
N

t∈(z,z+ε]∩ 1
n
N

1

(s− y)1−α+ηn (t− s)1+α

]
, (B.31)

as well as the corresponding lower bound

Bn(y, z) ≥
(
1 + o(1)

) εηn

(z + ε)ηn

[
Cα
n2

∑
s∈(y+ 1√

n
,1]∩ 1

n
N

t∈(z,z+ε]∩ 1
n
N

1

(s− y)1−α−ηn (t− s)1+α

]
. (B.32)

Observe that we can write (z+ε)ηn

εηn = cε,z,n z
ηn , with cε,z,n = (1

ε + 1
z )ηn → 1 as n → ∞

(for fixed ε) uniformly in z ∈ [1,∞). We can therefore incorporate cε,z,n in the (1 + o(1))
term in (B.31) and (B.32). Recalling that we aim at proving (B.26), it remains to show
that for every fixed ε ∈ (0, 1/3) the terms in square brackets in the right hand sides of
(B.31) and (B.32), divided by the integral I(y, z) defined in (B.11), converge to 1 as n→∞
uniformly in y ∈ [0, 1/3] and in z ∈ [1 + ε,∞).

Since the summand in the right hand side of (B.31) is decreasing in t, we can replace
the sum over t by an integral over a slightly shifted domain, getting the following upper
bound on the term in square brackets in the right hand side of (B.31):

[
. . .
]
(B.31)

≤
∫ z+ε

z− 1
n

(
Cα
n

∑
s∈(y+ 1√

n
,1]∩ 1

n
N

1

(s− y)1−α+ηn (t− s)1+α

)
dt . (B.33)

By direct computation one sees that the term in the right hand side of this relation, as a

function of s, is decreasing in (0, s0) and increasing in (s0,∞), where s0 = (1−α+ηn)t+(1+α)y
2+ηn

.

The precise value of s0 is actually immaterial: the important point is that each term in
the sum in (B.33) can be bounded from above by an integral over [s − 1

n , s] (if s ≤ s0)

or over [s, s + 1
n ] (if s ≥ s0). Therefore we get an upper bound replacing the sum by an

integral over a slightly enlarged domain:

[
. . .
]
(B.31)

≤ α sin(πα)

π

∫ 1+ 1
n

y+ 1√
n
− 1
n

ds

∫ z+ε

z− 1
n

dt
1

(s− y)1−α+ηn (t− s)1+α
. (B.34)

With almost identical arguments one obtains the following lower bound on the term in
square brackets in the right hand side of (B.32):

[
. . .
]
(B.32)

≥ α sin(πα)

π

∫ 1− 1
n

y+ 1√
n

+ 1
n

ds

∫ z+ε+ 1
n

z
dt

1

(s− y)1−α−ηn (t− s)1+α
. (B.35)

One can now check directly that, for every fixed ε ∈ (0, 1/3), the ratio between the right
hand side of (B.34) and the integral I(y, z) defined in (B.11) converges to 1 as n → ∞,
uniformly in y ∈ [0, 1/3] and in z ∈ [1 + ε,∞). Since an analogous statement holds for the
right hand side of (B.35), the second step is completed.
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Step 3. To complete the proof of Lemma B.1, it only remains to prove that equation (B.26)
holds true also for z = 1. More explicitly, we have to show that as n→∞

Bn(y, 1)

I(y, 1)
−→ 1 , (B.36)

uniformly in y ∈ [0, 1/3]. We recall that

Bn(y, 1) :=
∑

s∈(y+ 1√
n
,1]∩ 1

n
N

t∈(1,1+ε]∩ 1
n
N

U
(
n(s− y)

)
K
(
n(t− s)

)
, (B.37)

while the integral I(y, z) is defined in (B.11).
We only sketch the proof of (B.36), because the arguments are very similar to those used

in the preceding steps. Note that we cannot immediately replace K(·) by its asymptotic
behavior, because its argument n(t − s) can take small values. It is therefore convenient
to restrict the sum in (B.37) to t ∈ (1 + 1/

√
n, 1 + ε]. For this restricted sum, call it

B′n(y, 1), one can write a formula analogous to (B.27): then, arguing as in the second step
(with several simplifications), one shows that (B.36) holds true with Bn replaced by B′n.
It remains to deal with Bn−B′n, that is to control the terms in (B.37) with t ≤ 1 + 1/

√
n.

In this case one can replace K(·) by its asymptotic behavior by paying a positive constant:
arguing as in the first step, one can show that (Bn(y, 1)−B′n(y, 1))/I(y, 1)→ 0 as n→∞,
uniformly in y ∈ [0, 1/3]. This completes the proof of (B.36) and of Lemma B.1. �
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H. Poincaré 45 (2009), 175-200.
[23] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Third Edition, Springer-Verlag

(1999).
[24] Ya. G. Sinai, A random walk with a random potential, Theory Probab. Appl. 38 (1993), 382-385.
[25] F. L. Toninelli, Disordered pinning models and copolymers: beyond annealed bounds, Ann. Appl.

Probab. 18 (2008), 1569-1587.
[26] F. L. Toninelli, Coarse graining, fractional moments and the critical slope of random copolymers,

Electron. J. Probab. 14 (2009), 531-547.

Dipartimento di Matematica Pura e Applicata, Università degli Studi di Padova, via Trie-
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(CNRS U.M.R. 7599), U.F.R. Mathématiques, Case 7012 (Site Chevaleret), 75205 Paris cedex
13, France

E-mail address: giacomin@math.jussieu.fr


	1. Introduction
	1.1. The discrete model
	1.2. The free energy: localization and delocalization
	1.3. The continuum model: Brownian case
	1.4. The continuum -copolymer model
	1.5. The main result
	1.6. Outline of the paper

	2. A closer look at the continuum model
	2.1. Preliminary considerations
	2.2. On the -stable regenerative set
	2.3. A modified partition function
	2.4. Proof of Theorem 1.4

	3. The proof of the main result
	3.1. Step 1: coarse-graining of the renewal process
	3.2. Step 2: switching to Gaussian charges
	3.3. Step 3: from the renewal process to the regenerative set
	3.4. Step 4: inverse coarse-graining of the regenerative set

	Appendix A. Completing the proof of Proposition 2.2
	A.1. Regenerative set, excursions and local time
	A.2. Proof of equation (A.1)

	Appendix B. Proof of Lemma 3.5 
	B.1. Proof of Lemma B.1

	Acknowledgements
	References

