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Abstract. We consider a model of a random copolymer at a selective interface which
undergoes a localization/delocalization transition. In spite of the several rigorous results
available for this model, the theoretical characterization of the phase transition has re-
mained elusive and there is still no agreement about several important issues, for example
the behavior of the polymer near the phase transition line. From a rigorous viewpoint
non coinciding upper and lower bounds on the critical line are known.

In this paper we combine numerical computations with rigorous arguments to get to
a better understanding of the phase diagram. Our main results include:
– Various numerical observations that suggest that the critical line lies strictly in between
the two bounds.
– A rigorous statistical test based on concentration inequalities and super–additivity, for
determining whether a given point of the phase diagram is in the localized phase. This is
applied in particular to show that, with a very low level of error, the lower bound does
not coincide with the critical line.
– An analysis of the precise asymptotic behavior of the partition function in the de-
localized phase, with particular attention to the effect of rare atypical stretches in the
disorder sequence and on whether or not in the delocalized regime the polymer path has
a Brownian scaling.
– A new proof of the lower bound on the critical line. This proof relies on a character-
ization of the localized regime which is more appealing for interpreting the numerical
data.

1. Introduction

1.1. The model. Let S = {Sn}n=0,1,... be a random walk with S0 = 0 and Sn =
∑n

j=1 Xj ,

{Xj}j a sequence of IID random variables and P (X1 = 1) = P (X1 = −1) = 1/2. For

λ ≥ 0, h ≥ 0, N ∈ 2N and ω = {ωj}j=1,2,... ∈ R
N we introduce the probability measure

Pλ,h
N,ω defined by

dPλ,h
N,ω

dP
(S) =

1

Z̃λ,h
N,ω

exp

(
λ

N∑

n=1

(ωn + h) sign (Sn)

)
, (1.1)

where Z̃λ,h
N,ω is the partition function and sign (S2n) is set to be equal to sign (S2n−1) for

any n such that S2n = 0. This is a natural choice, as it is explained in the caption of Fig. 1.

For what concerns the charges ω we put ourselves in a quenched set–up: ω is a typical
realization of an IID sequence of random variables (we denote by P its law). We suppose
that

M(α) := E [exp (αω1)] < ∞ , (1.2)
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0 n

Sn

Figure 1. The process we have introduced is a model for a non–homogeneous polymer,
or copolymer, near an interface, the horizontal axis, between two selective solvents, say
oil (white) and water (grey). In the drawing the monomer junctions are the small black
rounds and the monomers are the bonds of the random walk. The big round in the middle
of each monomer gives the sign of the charge (white = positive charge = hydrophobic
monomer, black = negative charge = hydrophilic monomer). When h > 0 water is the
unfavorable solvent and the question is whether the polymer is delocalized in oil or if
it is still more profitable to place a large number of monomers in the preferred solvent,
leading in such a way to the localization at the interface phenomenon. The conventional
choice of sign(0) we have made reflects the fact that the charge is assigned to bonds
rather than points.

for every α and that E [ω1] = 0. Moreover we fix E[ω1
2] = 1.

1.2. The free energy and the phase diagram. We introduce the free energy of the
system

f(λ, h) = lim
N→∞

1

N
log Z̃λ,h

N,ω. (1.3)

The limit has to be understood in the P ( dω)–almost sure sense, or in the L1 (P) sense, and
f(λ, h) does not depend on ω. A proof of the existence of such a limit goes along a standard
superadditive argument and we refer to [14] for the details, see however § 2.1 below. By
convexity arguments one easily sees that the free energy is a continuous function.

We observe that

f(λ, h) ≥ λh. (1.4)

In fact if we set Ω+
N = {S : Sn > 0 for n = 1, 2, . . . , N}

1

N
log Z̃λ,h

N,ω ≥ 1

N
log E

[
exp

(
λ

N∑

n=1

(ωn + h) sign (Sn)

)
; Ω+

N

]

=
λ

N

N∑

n=1

(ωn + h) +
1

N
log P

(
Ω+

N

) N→∞−→ λh, (1.5)

where the limit has to be understood in the P( dω)–almost sure sense: notice that we have
used the law of large numbers. We have of course also applied the well known fact that
P
(
Ω+

N

)
behaves like N−1/2 for N large [12, Ch. III]. In view of (1.3) and of (1.5) we

partition the phase diagram in the following way:

• The localized region: L = {(λ, h) : f(λ, h) − λh > 0};
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• The delocalized region: D = {(λ, h) : f(λ, h) − λh = 0}.
This phase diagram decomposition does correspond to different behaviors of the trajec-

tories of the copolymer: we will come back to this important issue in § 1.4.

We sum up in the following theorem what is known about the phase diagram of the
model.

Theorem 1.1. There exists a continuous increasing function hc : [0,∞) −→ [0,∞),
hc(0) = 0, such that

L = {(λ, h) : h < hc(λ)} and D = {(λ, h) : h ≥ hc(λ)} . (1.6)

Moreover

h(λ) :=
1

4λ/3
log M (−4λ/3) ≤ hc(λ) ≤ 1

2λ
log M (−2λ) =: h(λ). (1.7)

This implies that the slope at the origin belongs to [2/3, 1], in the sense that the inferior

limit of hc(λ)/λ as λ ց 0 is not smaller than 2/3 and the superior limit is not larger than

1.

Remark 1.2. In [15] it is proven that the limit of hc(λ)/λ as λ ց 0 does exist and it is
independent of the distribution of ω1, at least when ω1 is a bounded symmetric random
variable or when ω1 is a standard Gaussian variable [15]. This universal character of the
slope at the origin makes this quantity very interesting.

Theorem 1.1 is a mild generalization of the results proven in [5] and [3]: the extension
lies in the fact that ω1 is not necessarily symmetric and a proof of it requires minimal
changes with respect to the arguments in [3]. The lower bound in (1.7) is actually proven
explicitly in Appendix B (see also Section 3), but we stress that we present this proof
because it is a new one and because it gives some insight on the computational results.
For what follows we set

h(m)(λ) =
1

2mλ
log M (−2mλ) , (1.8)

for m > 0. Observe that the curves h(·) and h(·) defined in (1.7) correspond respectively

to m = 2/3 and m = 1, and that d
dλh(m)(λ)|λ=0 = m.

Remark 1.3. Notice that one can write

dPλ,h
N,ω

dP
(S) =

1

Zλ,h
N,ω

exp

(
−2λ

N∑

n=1

(ωn + h) ∆n

)
, (1.9)

with ∆n = (1 − sign(Sn)) /2 and ZN,ω := Zλ,h
N,ω a new partition function which coincides

with Z̃N,ω exp
(
−λ
∑N

n=1(ωn + h)
)

and therefore we have

f(λ, h) := lim
N→∞

1

N
log ZN,ω = f(λ, h) − λh. (1.10)

This limit of course has to be interpreted in the P( dω)–a.s. sense. We stress that, even

if equivalent to Z̃N,ω exp(−λhN) in the Laplace asymptotic sense, ZN,ω turns out to be
substantially more useful. This had been already realized in [5], but for our results looking

at ZN,ω, rather than Z̃N,ω, is even more essential. Moreover from now on f(λ, h), rather
than f(λ, h), will be for us the free energy.
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We will use repeatedly also the partition function associated to the model pinned at
the right endpoint:

Zλ,h
N,ω(x) := E

[
exp

(
−2λ

N∑

n=1

(ωn + h) ∆n

)
; SN = x

]
. (1.11)

It is worth recalling that one can substitute Zλ,h
N,ω with Zλ,h

N,ω(x), any fixed even x (recall

that N ∈ 2N), in (1.10) and the limit is unchanged, see e.g. [5] or [14].

1.3. A random walk excursions viewpoint. We present here a different viewpoint
on the process: this turns out to be useful for the intuition and it will be used in some
technical steps.

We call η the first return time of the walk S to 0, that is η := inf {n ≥ 1 : Sn = 0}, and
set K(2n) := P (η = 2n) for n ∈ N. It is well known that K(·) is decreasing on the even
natural numbers and

lim
x∈2N,x→∞

x3/2K(x) =
√

2/π, (1.12)

see e.g. [12, Ch. 3]. Let the IID sequence {ηj}j=1,2,... denote the inter–arrival times at 0 for

S, and we set τk := η0 + . . . + ηk. If we introduce also ℓN = max{j ∈ N ∪ {0} : τj ≤ N},
then by exploiting the up–down symmetry of the excursions of S we directly obtain

ZN,ω(0) = E




ℓN∏

j=1

ϕ

(
λ

τj∑

n=τj−1+1

ωn + λhηj

)
; τℓN

= N




=

N∑

l=0

∑

x0,...,xl∈2N

0=:x0<...<xl:=N

l∏

i=1

ϕ

(
λ

xi∑

n=xi−1+1

ωn + λh(xi − xi−1)

)
K(xi − xi−1) ,

(1.13)

with ϕ(t) := (1 + exp(−2t)) /2. Of course the formula for ZN,ω is just slightly different.
Formula (1.13) reflects the fact that what really matters for the copolymer are the

return times to the interface.

1.4. Known and conjectured path properties. The question of whether splitting the
phase diagram into the regions L and D does correspond to really different path behaviors
has a positive answer, at least if we do not consider the critical case, that is if we consider
the path behavior for (λ, h) ∈ L and for (λ, h) in the interior of D. However, while the
localized regime is rather well understood, the delocalized one remains somewhat elusive
(we take up this point again in Section 4.1). More precisely:

• For (λ, h) ∈ L one knows that the polymer is going to stay very close to the
interface, essentially at distance O(1) and the polymer becomes finitely recurrent
for N → ∞. Due to the disordered distribution of the charges, even the most
elementary results in this direction require a careful formulation and we prefer to
refer to [1], [2] and [24].

• For (λ, h) in the interior of D one can prove by large deviation arguments that there
are o(N) visits to the unfavorable solvent and by more sophisticate arguments
that these visits are actually O(log N) [15]. These results are in sharp contrast
with what happens in L and in this sense they are satisfactory. However they give
at the same time still a weak information on the paths, above all if compared to
what is available for non disordered models, see e.g. [21], [11], [8] and references
therein, namely Brownian scaling, which in turn is a consequence of the fact that
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all the visits in the unfavorable solvent happen very close to the boundary points,

that is the origin, under the measure Pλ,h
N,ω. In non disordered models one can in

fact prove that the polymer becomes transient and that it visits the unfavorable
solvent, or any point below a fixed level, only a finite number of times. Recently it
has been shown [15] that such a result cannot hold as stated, at least for h < h(λ),
for the disordered copolymer. However the results in [15] leave open the possibility
of Brownian scaling in the whole delocalized region.

1.5. Outline of the results. Formula (1.7) leaves an important gap, that hides the
only partial understanding of the nature of this delocalization/localization transition. Our
purpose is to go toward filling this gap: our results are both of theoretical and numerical
nature. At the same time we address the delocalization issues raised in § 1.4, which are
intimately related with the precise asymptotic behavior of ZN,ω and of ZN,ω(0). More
precisely:

(1) In Section 2 we present a statistical test with explicit error bounds, see Proposi-
tion 2.2, based on super–additivity and concentration inequalities, to state that a
point (λ, h) is localized. We apply this test to show that, with a very low level of
error, the lower bound h = h(λ) defined in (1.7) does not coincide with the critical
line.

(2) In Section 3 we give the outline of a new proof of the main result in [3]. The details
of the proof are in Appendix B and we point out in particular Proposition B.2,
that gives a necessary and sufficient condition for localization. This viewpoint on
the transition, derived from [15, Section 4], helps substantially in interpreting the
irregularities in the behavior of {ZN,ω}N as N ր ∞.

(3) In Section 4 we pick up the conjecture of Brownian scaling in the delocalized
regime both in the intent of testing it and in trying to asses with reasonable
confidence that (λ, h) is in the interior of D. In particular, we present quantitative
evidences in favor of the fact that the upper bound h = h(λ) defined in (1.7) is
strictly greater than the critical line. We stress that this is a very delicate issue,
since delocalization, unlike localization, does not appear to be reducible to a finite
volume issue.

(4) Finally, in Section 5, we report the results of a numerical attempt to determine the
critical curve. While this issue has to be treated with care, mostly for the reasons
raised in point 4 above, we observe a surprising phenomenon: the critical curve
appears to be very close to h(m)(·) for a suitable value of m. By the universality
result proven in [15], building on the free energy Brownian scaling result proven in
[5], the slope at the origin of hc(·) does not depend on the law of ω. Therefore if

really h(m)(·) = hc(·), since the slope at the origin of h(m)(·) is m, m is the universal
constant we are looking for. We do not believe that the numerical evidence allows
to make a clear cut statement, but what we observe is compatible with such a
possibility.

We point out that our numerical results are based on a numerical computation of the
partition function ZN,ω, exploiting the standard transfer–matrix approach (this item is
discussed in more details in Appendix A).

1.6. A quick overview of the literature. The copolymer in the proximity of an inter-

face problem has a long literature, but possibly the first article that attracted the attention
of mathematicians is [16]. Here we are going to focus on very specific issues and the most
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interesting for our purposes is that in the physical literature both the conjecture that
h(·) = hc(·) (cf. [20] and [26]) and that h(·) = hc(·) (cf. [27]) are set forth. The approaches
are non rigorous, mostly based on replica computations, with the exception of [20] whose
method is the real space renormalization technique for one–dimensional disordered sys-
tems first proposed in [13] in the context of quantum Ising model with transverse field and
then applied with remarkably precise results to random walk in random environment, see
e. g. [17]. The result in [3], that h(·) ≤ hc(·), is obtained by exploiting the path behavior
of the copolymer near criticality suggested in [20]. This strategy may by summed up by:
the localized polymer close to criticality is mostly delocalized in the upper half–plane and
it keeps in the lower half–plane only the rare portions with an atypically negative charge.
The numerical results that we set forth in this work are saying that this strategy is not
good enough.

At the opposite end, the result h(·) ≥ hc(·), albeit relatively subtle, is absolutely ele-
mentary to prove [5]. And such a bound does not depend at all on the details of the walk:
any non trivial null recurrent walk with increments in {−1, 0,+1} leads to the same upper
bound. This suggests that such a bound is too rough. One can however prove that the
standard procedure for obtaining upper bounds that goes under the name of constrained

annealing cannot improve such a bound [7]. This is in any case far from being a proof that
h(·) = hc(·), and in fact the numerics suggest that this is not the case.

In the literature one finds also a large number of numerical works on copolymers, we
mention here for example [9], [25] and references therein. As far as we have seen, the
attention is often shifted toward different aspects, notably of course the issue of criti-
cal exponents, and the more complex model in which the polymer is not directed but
rather self–avoiding, see [9] and [25] also for some rigorous results and references in such
a direction.

Our work has been led rather by the idea that understanding the precise location of
the critical curve is a measure of our understanding of the nature of the transition. Un-
derstanding that, in turn, could promote an advance on the mathematical analysis of the
copolymer and, more generally, of this kind of disordered models.

2. A statistical test for the localized phase

2.1. Checking localization at finite volume. At an intuitive level one is led to believe
that, when the copolymer is localized, it should be possible to detect it by looking at
the system before the infinite volume limit. This intuition is due to the fact that in the
localized phase the length of each excursion is finite, therefore for N much larger that
the typical excursion length one should already observe the localization phenomenon in a
quantitative way. The system being disordered of course does not help, because it is more
delicate to make sense of what typicality means in a non translation invariant set–up.
However the translation invariance can be recovered by averaging and in fact it turns out
to be rather easy to give a precise meaning to the intuitive idea we have just mentioned.
The key word here is super–additivity of the averaged free energy.

In fact by considering only the S trajectories such that S2N = 0 and by applying the
Markov property of S one directly verifies that for any N,M ∈ N

Z2N+2M,ω(0) ≥ Z2N,ω(0)Z2M,θ2N ω(0), (2.1)

(θω)n = ωn+1, and therefore

{E log Z2N,ω(0)}N=1,2,... (2.2)
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is a super–additive sequence, which immediately entails the existence of the limit of
E[log Z2N,ω(0)]/2N and the fact that this limit coincides with the supremum of the se-
quence. Therefore from the existence of the quenched free energy we have that

f(λ, h) = sup
N

1

2N
E log Z2N,ω(0) . (2.3)

In a more suggestive way one may say that:

(λ, h) ∈ L ⇐⇒ there exists N ∈ N such that E log Z2N,ω(0) > 0 . (2.4)

The price one pays for working with a disordered system is precisely in taking the P–
expectation and from the numerical viewpoint it is an heavy price: even with the most
positive attitude one cannot expect to have access to E log Z2N,ω(0) by direct numerical
computation for N above 10. Of course in principle small values of N may suffice (and
they do in some cases, see Remark 2.1), but they do not suffice to tackle the specific issue
we are interested in. We elaborate at length on this interesting issue in § 2.4.

Remark 2.1. An elementary application of the localization criterion (2.4) is obtained for
N = 1: (λ, h) ∈ L if

E

[
log

(
1

2
+

1

2
exp (−2λ (ω1 + ω2 + 2h))

)]
> 0. (2.5)

In the case P(ω1 = ±1) = 1/2 from (2.5) we obtain that for λ sufficiently large hc(λ) >
1 − c/λ, with c = (1/4) log(2 exp(4) − 1) ≈ 1.17. From h(·) we obtain the same type of
bound, with c = (3/4) log 2 ≈ 0.52. This may raise some hope that for λ large an explicit,
possibly computer assisted, computation for small values of N of E log Z2N,ω(0) could lead
to new estimates. This is not the case, as we show in § 2.4.

2.2. Testing by using concentration. In order to decide whether E log Z2N,ω(0) > 0
we resort to a Montecarlo evaluation of E log Z2N,ω(0) that can be cast into a statistical
test with explicit error bound by means of concentration of measure ideas. This procedure
is absolutely general, but we have to choose a set–up for the computations and we take
the simplest: P(ω1 = +1) = P(ω1 = −1) = 1/2. The reason for this choice is twofold:

• if ω1 is a bounded random variable, a Gaussian concentration inequality holds
and if ω is symmetric and it takes only two values then one can improve on the
explicit constant in such an inequality. This speeds up in a non negligible way the
computations;

• generating true randomness is out of reach, but playing head and tail is certainly
the most elementary case in such a far reaching task (the random numbers issue
is briefly discussed in Appendix A too).

A third reason to restrict testing to the Bernoulli case is explained at the end of the
caption of Table 2.

We start the testing procedure by stating the null hypothesis:

H0 : E log Z2N,ω(0) ≤ 0. (2.6)

N in H0 can be chosen arbitrarily. We stress that refusing H0 implies E log Z2N,ω(0) > 0,
which by (2.4) implies localization.

The following concentration inequality for Lipschitz functions holds for the uniform
measure on {−1,+1}N : for every function GN : {−1,+1}N → R such that |GN (ω) −



8 FRANCESCO CARAVENNA, GIAMBATTISTA GIACOMIN, AND MASSIMILIANO GUBINELLI

GN (ω′)| ≤ CLip

√
(
∑N

n=1(ωn − ω′
n)2), where CLip a positive constant and GN (ω) is an

abuse of notation for GN (ω1, . . . , ωN ), one has

E [exp (α (GN (ω) − E[GN (ω)]))] ≤ exp
(
α2C2

Lip

)
, (2.7)

for every α. Inequality (2.7) with an extra factor 4 at the exponent can be extracted from
the proof of Theorem 5.9, page 100 in [18]. Such an inequality holds for variables taking
values in [−1, 1]: the factor 4 can be removed for the particular case we are considering
(see [18, p. 110–111]). In our case GN (ω) = log Z2N,ω(0). By applying the Cauchy–Schwarz

inequality one obtains that GN is Lipschitz with CLip = 2λ
√

N . Let us now consider an

IID sequence {G(i)
N (ω)}i with G

(1)
N (ω) = GN (ω): if H0 holds then we have that for every

n ∈ N, u > 0 and α = un/8λ2N

P

(
1

n

n∑

i=1

G
(i)
N (ω) ≥ u

)
≤ E

[
exp

(α

n
(GN (ω) − E[GN (ω)])

)]n
exp (−α (u − E[GN (ω)]))

≤ exp

(
4α2λ2N

n
− αu

)

= exp

(
− u2n

16λ2N

)
.

(2.8)

Let us sum up what we have obtained:

Proposition 2.2. Let us call ûn the average of a sample of n independent realizations of

log Zλ,h
2N,ω(0). If ûn > 0 then we may refuse H0, and therefore (λ, h) ∈ L, with a level of

error not larger than exp
(
−û2

nn/16λ2N
)
.

2.3. Numerical tests. We report in Table 1 the most straightforward application of
Proposition 2.2, obtained by a numerical computation of log ZN for a sample of n inde-
pendent environments ω. We aim at seeing how far above h(·) one can go and still claim
localization, keeping a reasonably small probability of error.

λ 0.3 0.6 1
h 0.22 0.41 0.58

p–value 1.5 × 10−6 9.5 × 10−3 1.6 × 10−5

h(λ) 0.195 0.363 0.530

h(λ) 0.286 0.495 0.662
N 300000 500000 160000
n 225000 330000 970000

C. I. 99% 7.179 ± 0.050 9.011 ± 0.045 7.643 ± 0.025

Table 1. According to our numerical computations, the three pairs (λ, h) are in L and
this has been tested with the stated p–values (or probability/level of error). We report

the values of h(λ) and h(λ) for reference. Of course in these tests there is quite a bit of
freedom in the choice of n and N : notice that N enters in the evaluation of the p–value
also because a larger value of N yields a larger value of E log Zλ,h

2N,ω(0). In the last line

we report standard Gaussian 99% confidence intervals for E log Zλ,h
2N,ω(0). Of course the

p–value under the Gaussian assumption turns out to be totally negligible.
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Remark 2.3. One might be tempted to interpolate between the values in Table 1, or
possibly to get results for small values of λ in order to extend the result of the test to the
slope of the critical curve in the origin. However the fact that hc(λ) is strictly increasing
does not help much in this direction and the same is true for the finer result, proven in
[4], that hc(λ) can be written as U(λ)/λ, U(·) a convex function.

2.4. Improving on h(·) is uniformly hard. One can get much smaller p–values at little
computational cost by choosing h just above h(λ). As a matter of fact a natural choice

is for example h = h(0.67)(λ) > h(λ), recall (1.8), for a set of values of λ, and this is

part of the content of Table 2: in particular E log Z
λ,h(0.67)(λ)
2N+,ω (0) > 0 with a probability of

error smaller than 10−5 for the values of λ between 0.1 and 1. However we stress that for
some of these λ’s we have a much smaller p–value, see the caption of Table 2, and that
the content of this table is much richer and it approaches also the question of whether or
not a symbolic computation or some other form of computer assisted argument could lead
to hc(λ) > h(λ) for some λ, and therefore for λ in an interval. Since such an argument
would require N to be small, intuitively the hope resides in large values of λ, recall also
Remark 2.1. It turns out that one needs in any case N larger than 700 in order to observe
a localization phenomenon at h(0.67)(λ). We now give some details on the procedure that
leads to Table 2.

λ 0.05(⋆) 0.1 0.2 0.4 0.6 1 2(⋆) 4(⋆⋆) 8(⋆⋆)
N+ 750000 190000 40000 9500 4250 1800 900 800 800
N− 600000 130000 33000 7500 3650 1550 750 700 700

Table 2. For a given λ, both E log Z
λ,h(0.67)(λ)
2N+,ω (0) > 0 and E log Z

λ,h(0.67)(λ)
2N

−
,ω (0) < 0 with

a probability of error smaller than 10−5 (and in some cases much smaller than that).
Instead for the two cases marked by a (⋆) the level of error is rather between 10−2 and
10−3. For large values of λ, the two cases marked with (⋆⋆), it becomes computationally
expensive to reach small p–values. However, above λ = 3 one observes that the values of
Z2N,ω(0) essentially do not depend anymore on the value of λ. This can be interpreted in
terms of convergence to a limit (λ → ∞) model, as it is explained in Remark 2.4. If we
then make the hypothesis that this limit model sharply describes the copolymer along
the curve (λ, h(m)(λ)) for λ sufficiently large and we apply the concentration inequality,
then the given values of N+ and N− are tested with a very small probability of error.
Since the details of such a procedure are quite lengthy we do not report them here. We
have constructed (partial) tables also for different laws of ω, notably ω1 ∼ N(0, 1), and
they turned out to yield larger, at times substantially larger, values of N±(λ).

First and foremost, the concentration argument that leads to Proposition 2.2 is sym-
metric and it works for deviations below the mean as well as above. So we can, in the very
same way, test the null hypothesis E log Z2N,ω(0) > 0 and, possibly, refuse it if ûn < 0,
exactly with the same p–value as in Proposition 2.2. Of course an important part of Propo-
sition 2.2 was coming from the finite volume localization condition (2.4): we do not have
an analogous statement for delocalization (and we do not expect that there exists one).
But, even if E log Z2N,ω(0) ≤ 0 does not imply delocalization, it says at least that it is
pointless to try to prove localization by looking at a system of that size.

In Table 2 we show two values of the system size N , N+ and N−, for which, at a given λ,
one has that E log Z2N+,ω(0) > 0 and E log Z2N−,ω(0) < 0 with a fixed probability of error
(specified in the caption of the Table). It is then reasonable to guess that the transition
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from negative to positive values of E log Z·,ω(0) happens for N ∈ (N−, N+). There is no
reason whatsoever to expect that E log ZN,ω(0) should be monotonic in N but according
to our numerical result it is not unreasonable to expect that monotonicity should set in for
N large or, at least, that for N < N− (respectively N > N+) E log Z2N,ω(0) is definitely
negative (respectively positive).

0.05 0.10 0.20 0.50 1.00 2.00 5.00

1e
+

03
5e

+
03

2e
+

04
1e

+
05

5e
+

05

N

λ

Figure 2. A graphical representation of Table 2. The plot is log–log, and a λ−c behavior
is rather evident, c is about 2.08. This can be nicely interpreted in terms of the coarse
graining technique in the proof of the weak interaction scaling limit of the free energy
in [5]: from that argument one extracts that if λ is small the excursions that give a
contribution to the free energy have typical length λ−2 and that in the limit the polymer
is just made up by this type of excursions. One therefore expects that it suffices a
system of size N(λ), with limλց0 λ2N(λ) = +∞, to observe localization if m < h′

c(0),

h = h(m)(λ) = mλ(1 + o(1)) and λ is small.

Remark 2.4. As pointed out in the caption of Table 2, from numerics one observes a
very sharp convergence to a λ independent behavior as λ becomes large, along the line
h = h(m)(λ). This is easily interpreted if one observes that h(m)(λ) = 1− ((log 2)/2mλ) +
O(exp(−4mλ)) so that

lim
λ→∞

exp

(
−2λ

N∑

n=1

(ωn + h) ∆n

)
= exp

(
log 2

m

N∑

n=1

∆n

)
1{PN

n=1 ∆n(1+ωn)=0}(S). (2.9)

This corresponds to the model where a positive charge never enters the lower half-plane
and where the energy of a configuration is proportional to the number of negative charges
in the lower half-plane.
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3. Lower bound strategies versus the true strategy

3.1. An approach to lower bounds on the critical curve. In this section we give an
outline of a new derivation of the lower bound

h(λ) ≤ hc(λ), (3.1)

with h(λ) defined in (1.7). The complete proof may be found in Appendix B. The argu-
ment takes inspiration from the ideas used in the proof of Proposition 3.1 in [15] and, even
if it is essentially the proof of [4] in disguise, in the sense that the selection of the random
walk trajectories that are kept and whose energy contribution is evaluated does not differ
too much (in a word: the strategy of the polymer is similar), it is however conceptually
somewhat different and it will naturally lead to some considerations on the precise asymp-
totic behavior of ZN,ω in the delocalized phase and even in the localized phase close to
criticality.

The first step in our proof of (3.1) is a different way of looking at localization. For
any fixed positive number C we introduce the stopping time (with respect to the natural
filtration of the sequence {ωn}) TC = TC,λ,h(ω) defined by

TC,λ,h(ω) := inf{N ∈ 2N : Zλ,h
N,ω(0) ≥ C} . (3.2)

The key observation is that if E[TC ] < ∞ for some C > 1, then the polymer is localized.
Let us sketch a proof of this fact (for the details, see Proposition B.2): notice that by the
very definition of TC we have ZT C(ω),ω(0) ≥ C. Now the polymer that is in zero at TC(ω) is

equivalent to the original polymer, with a translated environment ω′ = θT C
ω, and setting

T2(ω) := TC(ω′) we easily get ZT1(ω)+T2(ω),ω(0) ≥ C2 (we have put T1(ω) := TC(ω)).

Notice that the new environment ω′ is still typical, since TC is a stopping time, so that T2 is
independent of T1 and has the same law. This procedure can be clearly iterated, yielding an
IID sequence {Ti(ω)}i=1,2,... that gives the following lower bound on the partition function:

ZT1(ω)+...+Tn(ω),ω(0) ≥ Cn . (3.3)

From this bound one easily obtains that

f(λ, h)
a.s.
= lim

n→∞

log ZT1(ω)+...+Tn(ω),ω(0)

T1(ω) + . . . + Tn(ω)
≥ log C

E[TC ]
, (3.4)

where we have applied the strong law of large numbers, and localization follows since by
hypothesis C > 1 and E[TC ] < ∞.

Remark 3.1. It turns out that also the reciprocal of the claim just proved holds true,
that is the polymer is localized if and only if E[TC ] < ∞, with an arbitrary choice of
C > 1, see Proposition B.2. In fact the case E[TC ] = ∞ may arise in two different ways:

(1) the variable TC is defective, P[TC = ∞] > 0: in this case with positive probability
{ZN,ω(0)}N is a bounded sequence, and delocalization follows immediately;

(2) the variable TC is proper with infinite mean, P[TC = ∞] = 0, E[TC ] = ∞: in this
case we can still build a sequence {Ti(ω)}i=1,2,... defined as above and this time
the lower bound (3.3) has subexponential growth. Moreover it can be shown that
in this case the lower bound (3.3) gives the true free energy, cf. Lemma B.1, which
therefore is zero, so that delocalization follows also in this case.
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As a matter of fact, it is highly probable that in the interior of the delocalized phase
ZN,ω(0) vanishes P( dω)–a.s. when N → ∞ and this would rule out the scenario (2) above,

saying that for C > 1 the random variable TC must be either integrable or defective. We
take up again this point in Sections 4 and 5: we feel that this issue is quite crucial in order
to fully understand the delocalized phase of disordered models.

Remark 3.2. Dealing directly with TC may be difficult. Notice however that if one finds
a random time (by this we mean simply an integer–valued random variable) T = T (ω)
such that

ZT (ω),ω(0) ≥ C > 1 , with E[T ] < ∞ , (3.5)

then localization follows. This is simply because this implies TC ≤ T and hence E[TC ] <
∞. Therefore localization is equivalent to the condition log ZT (ω),ω(0) > 0 for an integrable

random time T (ω): we would like to stress the analogy between this and the criterion for
localization given in § 2.1, see (2.4).

Now we can turn to the core of our proof: we are going to show that for every (λ, h) with
h < h(λ) we can build a random time T = T (ω) that satisfies (3.5). The construction of
T is based on the idea that for h > 0 if localization prevails is because of rare ω–stretches
that invite the polymer to spend time in the lower half–plane in spite of the action of h.

The strategy we use consists in looking for q–atypical stretches of length at least M ∈
2N, where q < −h is the average charge of the stretch. Rephrased a bit more precisely, we
are looking for the smallest n ∈ 2N such that

∑n
i=n−k+1 ωi/k < q for some even integer

k ≥ M . It is well known that such a random variable grows, in the sense of Laplace, as
exp(Σ(q)M) for M → ∞, where Σ(q) is the Cramer functional

Σ(q) := sup
α∈R

{αq − log M(α)} . (3.6)

One can also show without much effort that the length of such a stretch cannot be much
longer than M . Otherwise stated, this is the familiar statement that the longest q–atypical
sub–stretch of ω1, . . . , ωN is of typical length ∼ log N/Σ(q). So T (ω) is for us the end–point
of a q–atypical stretch of length approximately (log T (ω))/Σ(q): by looking for sufficiently
long q–atypical stretches we have always the freedom to choose T (ω) ≫ 1, in such a way
that also log T (ω) ≪ T (ω) and this is helpful for the estimates. So let us bound ZT (ω),ω

from below by considering only the trajectories of the walk that stay in the upper half–
plane up to the beginning of the q–atypical stretch and that are negative in the stretch,
coming back to zero at step T (ω) (see Fig. 3: the polymer is cut at the first dashed vertical
line). The contribution of these trajectories is easily evaluated: it is approximately

(
1

T (ω)3/2

)
exp

(
−2λ(q + h)

log T (ω)

Σ(q)

)
. (3.7)

For such an estimate we have used (1.12) and log T (ω) ≪ T (ω) both in writing the
probability that the first return to zero of the walk is at the beginning of the q–atypical
stretch and in neglecting the probability that the walk is negative inside the stretch. It is
straightforward to see that if

4λ

3
h < −4λ

3
q − Σ(q), (3.8)

and if T (ω) is large, then also the quantity in (3.7) is large. We can still optimize this
procedure by choosing q (which must be sufficently negative, i.e. q < −h). By playing
with (3.6) one sees that one can choose q0 ∈ R such that for q = q0 the right–hand side
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in (3.8) equals log M(−4λ/3) and if h < log M(−4λ/3)/(4λ/3) = h(λ) then q0 < −h. This
argument therefore is saying that there exists C > 1 such that

ZT (ω),ω(0) ≥ C, (3.9)

for every ω. It only remains to show that E[T ] < ∞: this fact, together with a detailed
proof of the argument just presented can be found in Appendix B.

0

ℓ

nL

S

T (ω)

Figure 3. Inequality (3.10) comes simply from restricting the evaluation of ZT (ω)+L,ω

to the trajectories visiting the q–atypical stretch of length ℓ and by staying away from
the unfavorable solvent after that.

3.2. Persistence of the effect of rare stretches. As pointed out in the previous sec-
tion, there is strong evidence that hc(λ) > h(λ). At this stage Fig. 4 is of particular
interest. Notice first of all that in spite of being substantially above h(·) the copolymer
appears to be still localized, see in particular case A.

The rigorous lower bounds that we are able to prove cannot establish localization in
the region we are considering. All the same, notice that if one does not cut the polymer
at T (ω), as in the argument above, but at T (ω) + L, a lower bound of the following type

ZT (ω)+L,ω

roughly
≥ const.

1

T (ω)3/2
exp

(
−2λ(q + h)

log T (ω)

Σ(q)

)
1

L1/2
, (3.10)

is easily established. Of course we are being imprecise, but we just want to convey the idea,
see also Fig. 3, that after passing through an atypically negative stretch of environment
(q > 0), the effect of this stretch decays at most like L−1/2, that is the probability that a
walk stays positive for a time L.

At this point we stress that the argument outlined in § 3.1 and re–used for (3.10) may be
very well applied to h > h(λ), except that this time it does not suffice for (3.9). But it yields

nevertheless that for h ∈
(
h(λ), h(λ)

)
the statement ZN,ω ∼ N−1/2, something a priori

expected (for example [6]) in the delocalized regime and true for non disordered systems,
is violated. More precisely, one can find a sequence of random times {τj}j , limj τj = ∞
such that Zτj ,ω ≥ τj

−1/2+a, a = a(λ, h) > 0 (see Proposition 4.1 in [15]). These random
times are constructed exactly by looking for q–atypical stretches as above and one can
appreciate such an irregular decay for example in case B of Fig. 4, and this in spite of the
fact that the data have been strongly coarse grained.
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Therefore the lower bound (3.10), both in the localized and in the delocalized regime,
yields the following picture: the lower bound we found on ZN,ω grows suddenly in cor-
respondence of atypical stretches and after that it decays with an exponent 1/2, up to
another atypical stretch. This matches Fig. 4, at least on a qualitative level, see the cap-
tion of the figure.

Of course it very natural to ask what is missing, on a theoretical level, to the strategy
that we are adopting for the lower bound to match the quantitative discrepancy. Moreover,
since the ω sequence is of course known, one may look at the atypical stretches, this
time defined by the points of sudden growth of ZN,ω, and look for the specificity of such
stretches. Up to now we have not been able to extract from this analysis definite answers.

4. The delocalized phase: a path analysis

Let us start with a qualitative observation: if we set the parameters (λ, h) of the copoly-

mer to (λ, h(m)(λ)) with m = 0.9, then the observed behavior of {Zλ,h
N,ω(0)}N –suitably aver-

aged over blocks in order to eliminate local fluctuations– is somewhat close to (const)/N3/2.
This is true for all the numerically accessible values of N (up to N ∼ 108), at once for a
number of values of λ and for a great number of typical environments ω. Of course this is
suggesting that for m = 0.9 the curve h(m)(λ) lies in the delocalized region, but it is not
easy to convert this qualitative observation into a precise statement, because we do not
have a rigorous finite–volume criterion to state that a point (λ, h) belongs to the delocal-
ized phase (the contrast with the localized phase, see (2.4), is evident). In other words, we
cannot exclude the possibility that the system is still localized but with a characteristic
size much larger than the one we are observing.

Nevertheless, the aim of this section is to give an empirical criterion, based on an
analysis of the path behavior of the copolymer, that will allow us to provide some more
quantitative argument in favor of the fact that the curve h(m)(λ) lies in the delocalized
region even for values of m < 1. This of course would entail that the upper bound h(λ)
defined in (1.7) is not strict.

4.1. Known and expected path behavior. We want to look at the whole profile

{Zλ,h
N,ωr(x)}x∈Z rather than only at Zλ,h

N,ωr(0), where by ωr we mean the environment ω

in the backward direction, that is (ωr)n := ωN+1−n (the reason for this choice is explained
in Remark 4.1 below). The link with the path behavior of the copolymer, namely the law

of SN under the polymer measure Pλ,h
N,ωr , is given by

Zλ,h
N,ωr(x)

Zλ,h
N,ωr

= Pλ,h
N,ωr (SN = x) . (4.1)

As already remarked in the introduction, although the localized and delocalized phases
have been defined in terms of free energy they do correspond to sharply different path

behaviors. In the localized phase it is known [24, 2] that the laws of SN under Pλ,h
N,ωr are

tight, which means that the polymer is essentially at O(1) distance from the x–axis. The
situation is completely different in the (interior of the) delocalized phase, where one expects

that SN = O(
√

N): in fact the conjectured path behavior (motivated by the analogy with
the known results for non disordered models, see in particular [21], [11] and [8]) should
be weak convergence under diffusive scaling to the Brownian meander process (that is
Brownian motion conditioned to stay positive on the interval [0, 1], see [23]). Therefore in

the (interior of the) delocalized phase the law of SN/
√

N under Pλ,h
N,ωr should converge
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weakly to the corresponding marginal of the Brownian meander, whose law has density
x exp(−x2/2)1(x≥0).

We stress however that for the delocalized regime the rigorous results that are available
are more meager: essentially the only known P( dω)–a.s. result is that for any L > 0

lim
N→∞

Eλ,h
N,ωr

[
1

N

N∑

n=1

1(Sn≥L)

]
= 1 P( dω)–a.s. , (4.2)

that is the polymer spends almost all the time above any prefixed level. More precise results
have been derived for the path behavior of the polymer under the quenched averaged

measure EEλ,h
N,ω[ · ] : these results go in the direction of proving the conjectured scaling

limit, but they still do not suffice (we refer to [15] for more details and also for a discussion
on what is still missing).

In spite of the lack of precise rigorous results, the analysis we are going to describe is
carried out under the hypothesis that, in the interior of the delocalized phase, the scaling
limit towards Brownian meander holds true (as it will be seen, the numerical results provide
a sort of a posteriori confirmation of this hypothesis).

Remark 4.1. From a certain point of view attaching the environment backwards does
not change too much the model: for example it is easy to check that if one replaces ω by
ωr in (1.3), the limit still exists P( dω)–a.s. and in L1( dP). Therefore the free energy is
the same, because {ωr

n}1≤n≤N has the same law as {ωn}1≤n≤N , for any fixed N .
However, if one focuses on the law of SN as a function of N for a fixed environment

ω, the behavior reveals to be much smoother under Pλ,h
N,ωr than under Pλ,h

N,ω. For instance,

under the original polymer measure Pλ,h
N,ω it is no more true that in the localized region

the laws of SN are tight (it is true only most of the time, see [14] for details). The reason
for this fact is to be sought in the presence of long atypical stretches in every typical ω
(this fact has been somewhat quantified in [15, Section 4] and it is at the heart of the
approach in Section 3) that are encountered along the copolymer as N becomes larger. Of
course the effect of these stretches is very much damped with the backward environment.

A similar and opposite phenomenon takes place also in the delocalized phase. In fancier
words, we could say that for fixed ω and as N increases, the way SN approaches its limiting

behavior is faster when the environment is attached backwards: it is for this reason that
we have chosen to work with Pλ,h

N,ωr .

4.2. Observed path behavior: a numerical analysis. In view of the above considera-

tions, we choose as a measure of the delocalization of the polymer the ℓ1 distance △λ,h
N (ω)

between the numerically computed profile for a polymer of size 2N under Pλ,h
2N,ωr , and the

conjectured asymptotic delocalized profile:

△λ,h
N (ω) :=

∑

x∈2Z

∣∣∣∣∣
Zλ,h

N,ωr(x)

Zλ,h
N,ωr

− 1√
2N

ϕ+

(
x√
2N

)∣∣∣∣∣ , ϕ+(x) := x e−x2/21(x≥0) . (4.3)

Loosely speaking, when the parameters (λ, h) are in the interior of the the delocalized
region we expect △N to decrease to 0 as N increases, while this certainly will not happen
if we are in the localized phase.

The analysis has been carried out at λ = 0.6: we recall that the lower and upper bound
of (1.7) give respectively h(0.6) ≃ 0.36 and h(0.6) ≃ 0.49, while the lower bound we
derived with our test for localization is h = 0.41, see Table 1. However, as observed in
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Section 3, Fig. 4, there is numerical evidence that h = 0.43 is still localized, and for this
reason we have analyzed the values of h = 0.44, 0.45, 0.46, 0.47 (see below for an analysis
on smaller values of h).

For each couple (λ, h) we have computed △λ,h
N (ω) for the sizes N = a × 106 with

a = 1, 2, 5, 10 and for 500 independent environments. Of course some type of statistical
analysis must be performed on the data in order to decide whether there is a decay of △
or not. The most direct strategy would be to look at the sample mean of a family of IID
variables distributed like △N (ω), but it turns out that the fluctuations are too big to
get reasonable confidence intervals for this quantity (in other words, the sample variance
does not decrease fast enough), at least for the numerically accessible sample sizes. A
more careful analysis shows that the variance is essentially due to a very small fraction of
data that have large deviations from the mean, while the most of the data mass is quite
concentrated.

Remark 4.2. It is actually interesting to observe that the rare samples that affect the
sample variances are in reality very close to meanders anyway, only with a smaller variance.
This is the signature of the presence of atypical pinning stretches in the ω–sequence close
to the boundary. A fine analysis of this aspect would lead us too far and it is left for future
investigation.

We have therefore chosen to focus on the sample median rather than on the sample
mean. Table 3 contains the results of the analysis (see also Fig. 5 for a graphical repre-
sentation): for each value of h we have reported the standard 95% confidence interval for
the sample median (see Remark 4.3 below for details) for the four different values of N
analyzed. While for h = 0.44 the situation is not clear, we see that for the values of h
greater than 0.45 there are quantitative evidences for a decrease in △N : this leads us to
the conjecture that the points (λ, h) with λ = 0.6 and h ≥ 0.45 (equivalently, the points

(λ, h(m)(λ)) with m & 0.876) lie in the delocalized region.

h\N(×106) 1 2 5 10

0.44 [.0603, .0729] [.0574, .0682] [.0572, .0689] [.0570, .0695]
0.45 [.0258, .0286] [.0207, .0232] [.0170, .0190] [.0149, .0171]
0.46 [.0140, .0154] [.0108, .0116] [.00792, .00869] [.00647, .00731]
0.47 [.00905, .00963] [.00676, .00711] [.00475, .00508] [.00364, .00398]

Table 3. The table contains the standard 95% confidence interval for the median of a
sample {△λ,h

N (ω)}ω of size 500, where λ = 0.6 and h, N take the different values reported
in the table. For the values of h ≥ 0.45 the decreasing behavior of △N is quite evident
(the confidence intervals do not overlap), see also Fig. 5.

As already remarked, these numerical observations cannot rule out the possibility that
the system is indeed localized, but the system size is too small to see it. For instance, we
have seen that there are evidences for h = 0.43 to be localized (see case C of Fig. 4). In
any case, the exponential increasing of ZN (0) is detectable only at sizes of order∼ 108,
while for smaller system sizes (up to∼ 107) the qualitative observed behavior of ZN (0)

is rather closer to (const)/N3/2, thus apparently suggesting delocalization (see case D of
Fig. 4).

For this reason it is interesting to look at △0.6, h
N for h = 0.42, 0.43 and for N ≪ 108. For

definiteness we have chosen N = a× 106 with a = 1, 2, 5, 10, performing the computations
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for 3000 independent environments: the results are reported in Table 4 (see also Fig. 5). As
one can see, this time there are clear evidences for an increasing behavior of △N . On the
one hand this fact gives some more confidence on the data of Table 3, on the other hand it
suggests that looking at {△N}N is a more reliable criterion for detecting (de)localization
than looking at {ZN (0)}N .

h\N(×105) 1 2 5 10

0.42 [.351, 0.382] [.480, 0.517] [.751, 0.794] [1.01, 1.06]
0.43 [.143, 0.155] [.165, 0.180] [.197, 0.215] [.236, 0.264]

Table 4. The table contains the standard 95% confidence interval for the median of a
sample {△λ,h

N (ω)}ω of size 3000, where λ = 0.6 and h, N take the values reported in the
table. For both values of h an increasing behavior of △N clearly emerges, see also Fig. 5
for a graphical representation.

Remark 4.3. A confidence interval for the sample median can be obtained in the following
general way (the steps below are performed under the assumption that the median is
unique, which is, strictly speaking, not true in our case, but it will be clear that a finer
analysis would not change the outcome). Let {Yk}1≤k≤n denote a sample of size n, that is
the variables {Yk}k are independent with a common distribution, whose median we denote
by ξ1/2: P

(
Y1 ≤ ξ1/2

)
= 1/2. Then the variable

Nn := #{i ≤ n : Yi ≤ ξ1/2} (4.4)

has a binomial distribution Nn ∼ B(n, 1/2) and when n is large (for us it will be at
least 500) we can approximate Nn/n ≈ 1/2 + Z/(2

√
n), where Z ∼ N(0, 1) is a standard

gaussian. Let us denote the sample quantiles by Ξq, defined for q ∈ (0, 1) by

#{i ≤ n : Yi ≤ Ξq} = ⌊qn⌋ . (4.5)

If we set a := |Φ−1(0.025)| (Φ being the standard gaussian distribution function) then the
random interval [

Ξ 1
2
− a

2
√

n
, Ξ 1

2
+ a

2
√

n

]
(4.6)

is a 95% confidence interval for ξ1/2, indeed

0.95 = P
(
Z ∈ [−a, a]

)
= P

(
1

2
+

1

2
√

n
Z ∈

[1
2
− a

2
√

n
,

1

2
+

a

2
√

n

])

≈ P

(Nn

n
∈
[1
2
− a

2
√

n
,

1

2
+

a

2
√

n

])
= P

(
Ξ 1

2
− a

2
√

n
≤ ξ1/2 ≤ Ξ 1

2
+ a

2
√

n

)
. (4.7)

5. An empirical observation on the critical curve

The key point of this section is that, from a numerical viewpoint, hc(·) seems very close

to h(m)(·), for a suitable value of m. Of course any kind of statement in this direction
requires first of all a procedure to estimate hc(·) and we explain this first.

Our analysis is based on the following conjecture:

(λ, h) ∈
◦
D =⇒ lim

N→∞
Zλ,h

2N,ω(0) = 0, P ( dω) − a.s.. (5.1)



18 FRANCESCO CARAVENNA, GIAMBATTISTA GIACOMIN, AND MASSIMILIANO GUBINELLI

The arguments in Section 3 (and in the Appendix) suggest the validity of such a conjecture,

which is comforted by the numerical observation. Since, if (λ, h) ∈ L, Zλ,h
2N,ω(0) diverges

(exponentially fast) P ( dω)–almost surely and since Zλ,h
2N,ω(0) is decreasing in h, we define

ĥN,ω(λ) as the only h that solves Zλ,h
2N,ω(0) = 1. We expect that ĥN,ω(λ) converges to hc(λ)

as N tends to infinity, for typical ω’s. Of course setting the threshold to the value 1 is
rather arbitrary, but it is somewhat suggested by (2.4) and by the idea behind the proof
of (3.1) (Proposition B.2 and equation (3.2)).

What we have observed numerically, see Figures 6 and 7, may be summed up by the
statement

there exists m such that ĥN,ω(λ) ≈ h(m)(λ). (5.2)

Practically this means that ĥN,ω(λ), for a set of λ ranging from 0.05 to 4, may be fitted

with remarkable precision by the one parameter family of functions
{
h(m)(·)

}
m

. The fitting
value of m =: m̂N,ω does depend on N and it is essentially increasing. This is of course
expected since localization requires a sufficiently large system (recall in particular Table 2
and Fig. 2 – see the caption of Fig. 6 for the fitting criterion). We stress that we are
presenting results that have been obtained for one fixed sequence of ω: based on what we
have observed for example in Section 2.1 for different values of λ one does expect that
for smaller values of λ one should use larger values of N , but changing N corresponds to
selecting a longer, or shorter, stretch of ω, that is a different sequence of charges and this
may have a rather strong effect on the value of m̂N,ω. Moreover there is the problem of
deciding which λ-dependence to choose. This may explain the deviations from (5.2) that
are observed for small values of λ, but these are in any case rather moderate (see Fig. 7).

A source of stronger (and unavoidable) deviations arises in the cases of unbounded
charges: of course if

h ≥ hsat := max
n∈{1,...,N}

(−(ω2n−1 + ω2n)/2) , (5.3)

then Zλ,h
2N,ω(0) < 1, regardless of the value of λ. Moreover it is immediate to verify that

limλ→∞ Zλ,h
2N,ω(0) = +∞ for h < hsat and therefore ĥN,ω(λ) ր hsat as λ ր ∞. We refer to

the captions of Fig. 7 for more on this saturation effect.

We have tried also alternative definitions of ĥN,ω(λ), namely:

(1) the value of h such that Zλ,h
2N,ω = 1 (or a different fixed value);

(2) the value of h such that the ℓ1 distance between the distribution of the endpoint
and the distribution of the meander, cf. Section 4, is smaller than a fixed threshold,
for example 0.05.

What we have observed is that (5.2) still holds. What is not independent of the criterion
is m̂N,ω. Of course believing deeply in (5.2) entails the expectation that m̂N,ω converges
to the non random quantity h′

c(0). The results reported in this section suggest a value
of h′

c(0) larger than 0.83 and the cases presented in Section 4 suggest that it should be
smaller than 0.86.
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Appendix A. The algorithm for computing ZN,ω

We are going to briefly illustrate the algorithm we used in the numerical computation

of the partition function ZN = Zλ,h
N,ω. We recall its definition (see equation (1.1)):

ZN = E

[
exp

(
− 2λ

N∑

n=1

(ωn + h)∆n

)]
, (A.1)

where ∆n := (1−sign(Sn))/2 and the convention for sign(0) described in the introduction.
Observe that a direct computation of ZN from (A.1) would require to sum the con-

tributions of 2N random walk trajectories, making the problem numerically intractable.
However, here we can make profitably use of the additivity of our Hamiltonian: loosely
speaking, if we join together two (finite) random walk segments, the energy of the resulting
path is the sum of the energies of the building segments.

We can exploit this fact to derive a simple recurrence relation for the sequence of

functions
{
ZM (y) := Z2M (2y), y ∈ Z

}
M∈N

, where ZN (x) = Zλ,h
N,ω(x), the latter defined in

(1.11), and we recall that we work with even values of N . Conditioning on S2M and using
the Markov property one easily finds

ZM+1(y) =





1
4ZM (y + 1) + 1

2ZM (y) + 1
4ZM(y − 1) y > 0

1
4

[
ZM (1) + ZM(0)

]
+ 1

4αM

[
ZM (0) + ZM(−1)

]
y = 0

αM

[
1
4ZM(y + 1) + 1

2ZM (y) + 1
4ZM(y − 1)

]
y < 0

, (A.2)

where we have put αM := exp
(
− 2λ (ω2M+1 + ω2M+2 + 2h)

)
.

From equation (A.2) and from the trivial observation that ZM (y) = 0 for |y| > M ,
it follows that {ZM+1(y), y ∈ Z} can be obtained from {ZM (y), y ∈ Z} with O(M)
computations. This means that we can compute ZN in O(N2) steps.1

We point out that sometimes one is satisfied with lower bounds on ZN , for instance in
the statistical text for localization described in Section 2.1. In this case the algorithm can
be further speeded up by restricting the computation to a suitable set of random walk
trajectories. In fact when the system size is N the polymer is at most at distance O(

√
N)

(we recall the discussion in Section 4 on the path behavior), hence a natural choice to
get a lower bound on ZN is to only take into account the contribution coming from those
random walk paths {sn}n∈N for which

−A
√

n ≤ sn ≤ B
√

n for n ≥ N0 , (A.3)

where A,B,N0 are positive constants. Observe that this is easily implemented in the al-
gorithm described above: it suffices to apply relation (A.2) only for y ∈ [−A

√
M,B

√
M ],

while setting ZM+1(y) = 0 for the other values of y. In this way the number of computa-

tions needed to obtain ZN is reduced to O(N3/2).
The specific values of A,B,N0 we used in our numerical computations are 3, 8, 1000,

and we would like to stress that the lower bound on ZN we got coincides up to the 8th

decimal digit with the true value obtained applying the complete algorithm.

A final important remark is that for the results we have reported we have used the
Mersenne–Twister [19] pseudo–random number generator. However we have also tried

1The algorithm just described can be implemented in a standard way: the code we used, written in C, is
available on the web page: http://www.proba.jussieu.fr/pageperso/giacomin/C/prog.html. Graphic
representations and standard statistical procedures have been performed with R [28].
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other pseudo–random number generators and true randomness from www.random.org:
the results appear not to depend on the generator.

Appendix B. Proof of the lower bound on hc

We are going to give a detailed proof of the lower bound (3.1) on the critical curve,
together with some related result. We stress that this appendix can be made substantially
lighter if one is interested only in the if part of Proposition B.2. In this case the first part
of this appendix is already contained in the first part of § 3.1, up to (3.4), and it suffices
to look at § B.2.

We recall that Zλ,h
N,ω(0) is the partition function corresponding to the polymer pinned

at its right endpoint, see (1.11), and TC = TC(ω) is the first N for which ZN,ω(0) ≥ C,
see (3.2). In particular, for all ω such that TC(ω) < ∞ we have

Zλ,h
T C(ω),ω

(0) ≥ C . (B.1)

We will also denote by Fn := σ(ω1, . . . , ωn) the natural filtration of the sequence {ωn}n∈N.

B.1. A different look at (de)localization. We want to show that (de)localization can
be read from TC . We introduce some notation: given an increasing, 2N–valued sequence
{ti}i∈N, we set t0 := 0 and ζN := max{k : tk ≤ N}. Then we define

ẐN,ω(0) = Ẑ
{ti},λ,h
N,ω (0) := E

[
e−2λ

PN
n=1(ωn+h)∆n ; St1 = 0, . . . , StζN

= 0, SN = 0
]

=

ζN−1∏

i=0

Zλ,h
ti+1−ti,θtiω

(0) · Zλ,h

N−tζN
(ω),θ

tζN ω
(0) ,

(B.2)

and we recall that θ denotes the translation on the environment. One sees immediately

that ẐN,ω(0) ≤ ZN,ω(0). We first establish a preliminary result.

Lemma B.1. If the sequence {ti}i is such that ζN/N → 0 as N → ∞, then

lim
N→∞

1

N
log Ẑ

{ti},λ,h
N,ω (0) = f(λ, h) , (B.3)

both P( dω)–a.s. and in L1(P).

Proof. By definition we have ZN,ω(0) ≥ ẐN,ω(0). On the other hand, we are going to show
that

Zλ,h
N,ω(0) ≤ 4ζN A2ζN

(
ζN∏

i=1

(ti − ti−1) · (N − tζN
)

)3

Ẑ
{ti},λ,h
N,ω (0) , (B.4)

where A is a positive constant. To derive this bound, we resort to the equation (1.13) that
expresses ZN,ω(0) in terms of random walk excursions. We recall that K(2n) is the discrete

probability density of the first return time of the walk S to 0, and that K(t) ≥ 1/(At3/2),
t ∈ 2N, for some positive constant A: it follows that for a1, . . . , ak ∈ 2N

K(a1 + . . . + ak) ≤ 1 ≤ Ak (a1 · . . . · ak)
3/2 K(a1) · . . . · K(ak) . (B.5)

This gives us an upper bound to the entropic cost needed to split a random walk excursion
of length (a1 + . . . + ak) into k excursions of lengths a1, . . . , ak.

Now let us come back to the second line of (1.13), that can be rewritten as

ZN,ω(0) =
∑

{xi}⊆{0,...,N}∩2N

G({xi}) . (B.6)
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A first observation is that if we restrict the above sum to the {xi} such that {xi} ⊇ {ti},
then we get Ẑ

{ti}
N,ω(0). Now for each {xi} we aim at finding an upper bound on the term

G({xi}) of the form c · G({xi} ∪ {ti}) for some c > 0 not depending on {xi}. Each term
G({xi}), see (1.13), is the product of two terms: an entropic part depending on K(·) and
an energetic part depending on ϕ(·). Replacing the entropic part costs no more than

cent := A2ζN

(
ζN∏

i=1

(ti − ti−1) · (N − tζN
)

)3

, (B.7)

thanks to (B.5). On the other hand, the cost for replacing the energetic part is easily
bounded above by

cenergy := 2ζN , (B.8)

so that the bound G({xi}) ≤ c ·G({xi}∪{ti}) holds true with c := cent cenergy. Replacing in
this way each term in the sum in the r.h.s. of (B.6), we are left with a sum of terms G({yi})
corresponding to sets {yi} such that {yi} ⊇ {ti}. It remains to count the multiplicity of
any such {yi}, that is how many original sets {xi} are such that {xi} ∪ {ti} = {yi}. Sets
{xi} satisfying this last condition must differ only for a subset of {ti}, hence the sought
multiplicity is 2ζN (the cardinality of the parts of {ti}) and the bound (B.4) follows.

Therefore we get

∣∣∣∣
log Ẑ

{ti},λ,h
N,ω (0)

N
−

log Zλ,h
N,ω(0)

N

∣∣∣∣ ≤ (2 log 2A)
ζN

N
+ 3

1

N
log

(
ζN∏

i=1

(ti − ti−1) · (N − tζN
)

)

(B.9)

≤ (2 log 2A)
ζN

N
+ 3

ζN + 1

N
log

(
N

ζN + 1

)
,

where in the second inequality we have made use of the elementary fact that once the sum
of k positive numbers is fixed, their product is maximal when all the numbers coincide
(for us k = ζN + 1). Since by hypothesis ζN/N → 0 as N → ∞, the Lemma is proved. �

Now we are ready to prove the characterization of L and D in terms of TC . Fix any
C > 1.

Proposition B.2. A point (λ, h) is localized, that is h < hc(λ), if and only if E[TC ] < ∞.

Proof. We set A := {ω : TC(ω) < ∞}. Observe that for ω ∈ A∁ we have ZN,ω(0) ≤ C for

every N ∈ 2N, and consequently log Zλ,h
N,ω(0)/N → 0 as N → ∞.

Consider first the case when the random variable TC is defective, that is P[A∁] > 0

(this is a particular case of E[TC ] = ∞). Since we know that log Zλ,h
N,ω(0)/N → f(λ, h),

P( dω)–a.s., from the preceding observation it follows that f(λ, h) = 0 and the Proposition
is proved in this case.

Therefore in the following we can assume that TC is proper, that is P(A) = 1, so
that equation (B.1) holds for almost every ω. Setting θ−1A := {ω : θω ∈ A}, we have
P
(
θ−1A

)
= 1 since P is θ–invariant, and consequently P

(
∩∞

k=0θ
−kA

)
= 1, which amounts

to saying that (B.1) can be actually strengthened to

Zλ,h
T C(θkω),θkω

(0) ≥ C ∀k ≥ 0, P( dω)–a.s. . (B.10)
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Observe that the sequence {(θT C(ω)ω)n}n∈N has the same law as {ωn}n∈N and it is in-
dependent of FT C . We can define inductively an increasing sequence of stopping times
{Tn}n∈N by setting T0 := 0 and Tk+1(ω) − Tk(ω) := TC(θTk(ω)ω) =: Sk(ω). We also set
ζN (ω) := max{n : Tn(ω) ≤ N}. Since {Sk}k∈N is an IID sequence, by the strong law of
large numbers we have that, P( dω)–a.s., Tn(ω)/n → E[TC ] as n → ∞, and consequently
ζN (ω)/N → 1/E[TC ] as N → ∞ (with the convention that 1/∞ = 0).

Now let us consider the lower bound ẐN,ω(0) corresponding to the sequence {ti} =
{Ti(ω)}: from (B.2) and (B.10) we get that P( dω)–a.s.

Ẑ
{Ti(ω)},λ,h
N,ω (0) =

ζN (ω)−1∏

i=0

Zλ,h

T C(θTiω),θTiω
(0) · Zλ,h

N−TζN (ω)(ω),θ
TζN (ω)ω

(0)

≥ CζN (ω) · c

N3/2
,

(B.11)

where c is a positive constant (to estimate the last term we have used the lower bound

Zk(0) ≥ c/k3/2, cf. (1.5)), and consequently

f(λ, h) = lim
N→∞

log Zλ,h
N,ω(0)

N
≥ lim inf

N→∞

log Ẑ
{Ti(ω)},λ,h
N,ω (0)

N
≥ log C

E[TC ]
. (B.12)

It follows that if E[TC ] < ∞ then f(λ, h) > 0, that is (λ, h) is localized.

It remains to consider the case E[TC ] = ∞, and we want to show that this time ẐN,ω(0),

defined in (B.11), gives a null free energy. In fact, as TC(η) is defined as the first N such
that ZN,η(0) ≥ C, it follows that ZT C(η),η(0) cannot be much greater than C. More
precisely, one has that

ZT C(η),η(0) ≤ C exp(2λ|ηT C (η)−1 + ηT C(η)|) , (B.13)

and from the first line of (B.11) it follows that

1

N
log ẐN,ω(0) ≤ ζN (ω) + 1

N
log C +

2λ

N

ζN (ω)∑

i=1

(
|ωTi(ω)| + |ωTi(ω)−1|

)
. (B.14)

We estimate the second term in the r.h.s. in the following way:

1

N

ζN (ω)∑

i=1

(
|ωTi(ω)| + |ωTi(ω)−1|

)
=

1

N

N∑

k=1

1{∃i: Ti(ω)=k}

(
|ωk| + |ωk−1|

)

≤
(

1

N

N∑

k=1

1{∃i: Ti(ω)=k}

)1/2(
1

N

N∑

k=1

(
|ωk| + |ωk−1|

)2
)1/2

(B.15)

≤
√

ζN (ω)

N
· 2

√√√√ 1

N

N∑

k=1

|ωk|2 ≤ A

√
ζN (ω)

N
,

for some positive constant A = A(ω) and eventually as N → ∞, having used the Cauchy–
Schwartz inequality and the law of large numbers for the sequence {|ωk|2}k∈N. Therefore

1

N
log ẐN,ω(0) ≤ ζN (ω) + 1

N
log C + 4λA

√
ζN (ω)

N
, (B.16)
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and since E[TC ] = ∞ implies ζN (ω)/N → 0, P( dω)–a.s., we have log ẐN,ω(0)/N → 0,
P( dω)–a.s.. Then Lemma B.1 allows us to conclude that f(λ, h) = 0, and the proof of the
Proposition is completed. �

B.2. Proof of the lower bound on hc. To prove equation (3.1), we are going to build, for

every (λ, h) such that h < h(λ), a random time T such that E[T ] < ∞ and Zλ,h
T (ω),ω(0) ≥ C,

for some C > 1. It follows that TC ≤ T , yielding that E[TC ] < ∞ and by Proposition B.2
(λ, h) is localized, that is, h(λ) ≤ hc(λ).

Given M ∈ 2N and q < −h, we start defining the stopping time

τM (ω) = τM,q(ω) := inf

{
n ∈ 2N : ∃k ∈ 2N, k ≥ M :

∑n
i=n−k+1 ωi

k
≤ q

}
. (B.17)

This is the first instant at which a q–atypical stretch of length at least M appears along
the sequence ω. The asymptotic behavior of τM is given by Theorem 3.2.1 in [10, § 3.2]
which says that P( dω)–a.s.

log τM (ω)

M
→ Σ(q) as M → ∞ , (B.18)

where Σ(q) is Cramer’s Large Deviations functional for ω, (3.6). We also give a name to
the shortest of the terminal stretches in the definition of τM :

RM (ω) = RM,q(ω) := inf

{
k ∈ 2N, k ≥ M :

∑τM
i=τM−k+1 ωi

k
≤ q

}
, (B.19)

and it is not difficult to realize that RM ≤ 2M .

We are ready to give a simple lower bound on the partition function of size τM,q (for
any M ∈ 2N and q < −h): it suffices to consider the contribution of the trajectories that
are negative in correspondence of the last (favorable) stretch of size RM , and stay positive
the rest of the time. Recalling that we use K(·) for the discrete density of the first return

time to the origin and that by (1.12) we have K(2n) ≥ c/n−3/2 for a constant c > 0, we
estimate

Zλ,h
τM (ω),ω(0) ≥ 1

4
K (τM − RM ) K (RM ) e−2λ(q+h)RM ≥ c2

4τ
3/2
M (2M)3/2

e−2λ(q+h)M

≥ c′ exp

{
3

2
M

[
(−4λ/3)q − log τM

M
− (4λ/3)h − log M

M

]}
,

(B.20)

where c′ := c2/(8
√

2).
Having in mind (B.18), we define a random index ℓ = ℓA,ε,q depending on the two

parameters A ∈ 2N, ε > 0 and on q:

ℓ(ω) = ℓA,ε,q(ω) := inf

{
k ∈ 2N, k ≥ A :

log τk,q(ω)

k
≤ Σ(q) + ε

}
, (B.21)

and we finally set T (ω) = TA,ε,q(ω) := τℓ(ω)(ω). Then for the partition function of size
T (ω) we get

Zλ,h
T (ω),ω(0) ≥ c′ exp

{
3

2
A

[
(−4λ/3)q − Σ(q) − (4λ/3)h − log A

A
− ε

]}
. (B.22)
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The fact that E[TA,ε,q] < ∞ for any choice of A, ε, q (with q < −h) is proved in
Lemma B.3 below. It only remains to show that for every fixed (λ, h) such that h < h(λ),
or equivalently

(4λ/3)h < log M(−4λ/3) , (B.23)

the parameters A, ε, q can be chosen such that the right–hand side of equation (B.22) is
greater than 1.

The key point is the choice of q. Note that the generating function M(·) is smooth, since
finite on the whole real line. Moreover for all λ ∈ R there exists some q0 ∈ R such that

log M(−4λ/3) = (−4λ/3)q0 − Σ(q0) , (B.24)

and from (B.23) it follows that q0 < −h. Therefore we can take q = q0, and equation
(B.22) becomes

Zλ,h
T (ω),ω(0) ≥ c′ exp

{
3

2
A

[
log M(−4λ/3) − (4λ/3)h − log A

A
− ε

]}
. (B.25)

It is now clear that for every (λ, h), such that (B.23) holds, by choosing ε sufficiently small
and A sufficiently large, the right–hand side of (B.25) is greater than 1, and the proof of
(3.1) is complete.

Lemma B.3. For every A ∈ 2N, ε > 0 and q < −h the random variable T (ω) = TA,ε,q(ω)
defined below (B.21) is integrable: E[T ] < ∞.

Proof. By the definition (B.21) of ℓ = ℓA,ε,q we have

TA,ε,q ≤ exp
(
(Σ(q) + ε) ℓA,ε,q

)
, (B.26)

so it suffices to show that for any β > 0 the random variable exp(β ℓA,ε,q) is integrable.

For any l ∈ 2N, we introduce the IID sequence of random variables {Y l
n}n∈N defined by

Y l
n :=

1

l

nl∑

i=(n−1)l+1

ωi . (B.27)

By Cramer’s Theorem [10] we have that for any fixed q < 0 and ε > 0 there exists l0 such

that P
(
Y l

1 ≤ q
)
≥ e−l(Σ(q)+ε/2) for every l ≥ l0. By (B.21) have that

{ℓ > l} ⊆ {τl > exp((Σ(q) + ε)l)} ⊆
⌊M/l⌋⋂

i=1

{Y l
i > q} , (B.28)

with M := exp((Σ(q) + ε)l), so that

P (ℓ > l) ≤
(
1 − e−l(Σ(q)+ε/2)

)⌊M/l⌋
≤ exp

(
−⌊M/l⌋e−l(Σ(q)+ε/2)

)

≤ exp (− exp (lε/4)) ,
(B.29)

where the last step holds if l is sufficiently large (we have also used 1−x ≤ e−x). Therefore

P (exp(β ℓ) > N) = P (ℓ > (log N)/β) ≤ exp
(
−N ε/4β

)
, (B.30)

when N is large, and the proof is complete.
�
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B: h = 0.44
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Figure 4. For λ = 0.6 (h(0.6) ≃ 0.36 and h(0.6) ≃ 0.49) , the behavior of log Z2N,ω for
h = 0.42 (A), 0.43 (C,D) and 0.44 (B). The sequence of charges is the same in all the
cases. In case A, the polymer is localized with free energy approximately 3 · 10−6: the
linear growth is quite clear, but a closer look shows sudden jumps, which correspond to
atypically negative stretches of charges. Getting closer to the critical point, case C, the
growth is still rather evident, but it is clearly the result of sudden growths followed by slow
decays (approximately polynomial with exponent −1/2). Case B suggests delocalization:

a closer analysis reveals a decay of the type N−1/2, but sharp deviations are clearly
visible and these deviations are in reality much larger, since in the graph we have plotted
just one point every 10000. Case D is the zoom of the rectangle in the left corner of C.
The similarity between B and D make clear that claiming delocalization looking at the
behaviour of the partition function is difficult.
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Figure 5. Graphical representation of the data of Tables 3 (on the right) and 4 (on the
left). The plotted points are the sample medians against the sample size, the error bars
correspond to the confidence intervals given in Tables 3 and 4.
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ĥ
N

,ω
(λ

)

ĥ
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Figure 6. On the left the case of binary symmetric ω1 and on the right the case of
ω1 ∼ N(0, 1), boths for N = 3.2 · 107. The small circles represent the computed values:

the errors on ĥN,ω(λ) are negligible and the plotted points are at the centers of the circles.

The continuous line is instead the curve h(m)(·). In the binary case m = 0.841 and it

has been chosen by solving h(m)(4) = ĥN,ω(4). In the Gaussian case m = 0.802, the

maximum of ĥN,ω(λ)/λ for the plotted values of λ(> 0). The rather different values of
m̂N,ω may be somewhat understood both by considering that these two curves have been
obtained for a fixed realization of ω and by taking into account the remark at the end of
the caption of Table 2: it appears that for Gaussian charges one needs longer systems in
order to get closer to the values of m observed in the binary case (in particular: for the
prolongation, with the same random number generator, of the Gaussian ω sample used
here up to N = 5 · 107 one obtains m̂N,ω = 0.812).
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Figure 7. Relative errors rN,ω(λ) :=
“

h(m)(λ) − ĥN,ω(λ)
”

/ĥN,ω(λ), for the value m =

m̂N,ω explained in the caption of Fig. 6 and for the cases of N = 2.5 · 105 (× dots), and
N = 3.2 · 107 (+ dots). Notice that in the binary case the error is more important for
small values of λ (recall Table 2 and Fig. 2). Instead for the Gaussian case there is a
deviation both for small and large values of λ: the deviation for large values is due to
the saturation effect explained in the text. Given the fact that hsat, cf. (5.3), behaves
almost surely and to leading order for N → ∞ as

√
log N one understand why the slow

disappearing of the saturation effect has to be expected. In both graphs the dotted line
above the axis is at level 0.01. The fitted values for m̂N,ω, N = 2.5 · 105, are 0.821 in the
binary case and 0.778 in the Gaussian case.


