LARGE SCALE BEHAVIOR OF SEMIFLEXIBLE HETEROPOLYMERS
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ABSTRACT. We consider a general discrete model for heterogeneous semiflexible poly-
mer chains. Both the thermal noise and the inhomogeneous character of the chain (the
disorder) are modeled in terms of random rotations. We focus on the quenched regime,
i.e., the analysis is performed for a given realization of the disorder. Semiflexible models
differ substantially from random walks on short scales, but on large scales a Brownian
behavior emerges. By exploiting techniques from tensor analysis and non-commutative
Fourier analysis, we establish the Brownian character of the model on large scales and
we obtain an expression for the diffusion constant. We moreover give conditions yielding
quantitative mixing properties.

RESUME. On considére un modele discret pour un polymeére semi-flexible et hétérogene.
Le bruit thermique et le caractére hétérogene du polymere (le désordre) sont modélisés
en termes de rotations aléatoires. Nous nous concentrons sur le régime de désordre gélé,
c’est-a-dire, I'analyse est effectuée pour une réalisation fixée du désordre. Les modeles
semi-flexibles different sensiblement des marches aléatoires a petite échelle, mais a grande
échelle un comportement brownien apparait. En exploitant des techniques de calcul ten-
soriel et d’analyse de Fourier non-commutative, nous établissons le caractére brownien
du modele a grande échelle et nous obtenons une expression pour la constante de diffu-
sion. Nous donnons aussi des conditions qui entrainent des propriétés quantitatives de
mélange.

1. INTRODUCTION

1.1. Homogeneous semiflexible polymer models. In the vast polymer modeling lit-
erature an important role is played by random walks, in fact self-avoiding random walks
(e.g. [2, B]). However they are expected to model properly real polymers only on large
scales. On shorter scales one observes a stiffer behavior of the chain, and other models
have been proposed, notably the semiflexible one (see e.g. [9) [16] and references therein).
A semiflexible polymer is a natural and appealing mathematical object and, in absence
of self-avoidance, it has been implicitly considered in the probability literature for a long
time. Consider in fact a probability measure @@ on the Lie group SO(d) — the rotations
in R (d = 2,3,...) — and sample from this, in an independent fashion, a sequence of

rotations 71,79, .... Fixing an arbitrary rotation R € SO(d) and denoting by e',...,e?
the unit coordinate vectors in RY, the process {v, }»>0 defined by
vy := Re?, Up = (Rr1r2~--rn)ed, n=12,..., (1.1)
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is nothing but a random walk on the unit sphere S~1  R¢ starting at vg, a much studied
object (e.g. [11],13]). Then the process {X;0},=0,1,... defined by

n n
X i=wg + Y vy = Y v, (1.2)
j=1 j=0

is a homogeneous semiflexible polymer model in dimension d. The reason for writing

(Rrirg -+ 1y) instead of (r, rp—1 --- r1 R) in ([1.1]) is explained in Remark below.

Remark 1.1. The reader can get some intuition on the process by having a look at the
two-dimensional case of Figure [I} This case is in reality particularly easy to analyze in
detail (and it does not capture the full complexity of the d > 2 case) because the rotations
in two dimensions commute and they are characterized by only one parameter. More
precisely, if we identify the random rotation r; with the angle 0;, for j > 1, and we take
0y such that vy = (cos by, sinby), by setting ¢, := 0y + 01 + ... + 6, we can write

X = vy + Zcos(%), Zsin(goj) . (1.3)

This explicit expression allows an easy and complete analysis of the two-dimensional case,
cf. Appendix [A] Of course, in general no such simplification is possible for d > 2.

Homogeneous semiflexible chains have been used in a variety of contexts [16], [17] and
they do propose challenging questions that are still only partially understood (even in
their continuum version, see Remark , also because it is difficult to obtain explicit
expressions for very basic quantities like the loop formation probability, i.e. the hitting
probability. As a matter of fact, a more realistic model would have to take into account
a self-avoiding constraint, which is more properly called excluded volume condition, that
imposes that the sausage-like trajectory does not self-intersect. This of course makes the
model extremely difficult to deal with. Added to that, models need to embody the fact that
often real polymers are inhomogeneous, i.e. they are not made up of identical monomers
and that this does affect the geometry of the configurations. It is precisely on this latter
direction that we are going to focus.

1.2. Heterogeneous models. Heterogeneous semiflexible chains have attracted a sub-
stantial amount of attention (see e.g. [I, 10} 15 16l [17]), often (but not only) as a modeling
frame for DNA or RNA (single or double stranded) chains. The information that we want
to incorporate in the model is the fact that the monomer units may vary along the chain:
for the DNA case, the four bases A, T, G and C are the origin of the inhomogeneity and
couple of monomer units have an associated typical bend that depends on their bases. The
model we are interested in is therefore still based on randomly sampled rotations r1, 72, . . .,
independent and identically distributed with a given marginal law @ (this represents the
thermal noise in the chain), but associated to that there is a sequence of rotations wy,ws, . ..
that is fixed and does not fluctuate with the chain. If we want to stick to the DNA exam-
ple, the w-sequence is fixed once the base sequence is given. The model is then defined by
giving once again the orientation vg = Re? € S%! of the initial monomer and by defining
forn >0

X% = vy + Zv;" with v¢ = (Rwy rl'--wjrj)ed. (1.4)
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FIGURE 1. A sample bidimensional trajectory, with n = 10* and {6;};—12 .
drawn uniformly from (—m/10,7/10), while 6y is 0 (the notation is the one of
Remark . In the inset there is a zoom of the starting portion of the polymer
(the starting point is marked by the arrow). It is clear that the starting orientation
vo = (1,0) sets up a drift that is forgotten only after a certain number of steps.
Moreover, even if the starting orientation eventually fades away, in the sense that
the expectation of the scalar product of v,, and vy vanishes as n becomes large, the
local orientation is carried along for a while. A precise meaning to this is brought
by the key concept of persistence length ¢, that can be defined as the reciprocal
of the rate of exponential decay of E(vg,v,), where (-,-) denotes the standard
scalar product in R? and E is the average over the variables {r;};. Intuitively, one
expects that on a scale much larger than the persistence length, the semiflexible
polymer X}° is going to behave like a random walk. Note that if we view the
elements of SO(d) as linear operators, we can define 7 := Er; (not a rotation
unless 71 is trivial!) and we have E{vg,v,) = (e?,7"e?), which shows that the
decay of E(vg, v,,) is indeed of exponential type.

It should be clear that the rotation w; sets up the equilibrium position of the i-th monomer
with respect to the (i — 1)-st. In different terms, the sequence wy,ws, ... defines the back-
bone around which the semiflexible chain fluctuates.

The aim of this paper is to study the large scale behavior of the process { X"}, when
the sequence w is disordered, i.e. it is chosen as the typical realization of a random process.
The simplest example is of course the one in which the variables w, are independent
and identically distributed, but we stress from now that we are interested in the much
more general case when w is an ergodic process (see Assumption for the definition
of ergodicity). This includes strongly correlated sequences of random variables and, in
particular, the ones that have been proposed to mimic the base distributions along the
DNA (e.g. [15] and references therein). Other aspects of this model deserve attention,
notably the analysis of the persistence length in the heterogeneous set-up (see the caption
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of Figure[l)) and other kind of scaling limits, like the Kratky-Porod limit (see Remark [1.3]):
these issues are taken up in a companion paper.

Remark 1.2. Let us comment on the order of the rotations appearing in equations (|1.4)
and (1.1]). The key point is the following consideration: in defining the rotations r; and w;,
we assume that the i-th monomer lies along the direction e?. Therefore, before applying
these rotations, we have to express them in the actual reference frame of the ¢-th monomer.
Let us be more precise, considering first the homogeneous case given by . The rotation
rq1 describes the thermal fluctuations of the first monomer assuming that its equilibrium
position is e?. However the equilibrium position of the first monomer is rather vy = R e,
therefore we first have to express r1 in the reference frame of vy, obtaining Rri R~!,
and then apply it to vg, obtaining v; = (Rry R vy = (Rry)e?. The same procedure
yields vy = (Rry) 72 (Rr1) w1 = (Rrirs)e?, and so on. The inhomogeneous case of
equation is analogous: we first apply wi expressed in the reference frame of vy,
getting v = (Rwi R™') vy = (Rw1) e?, then we apply r1 expressed in the reference frame
of v}, obtaining v¢ = (Rw1) r1(Rw1) v} = (Rwir1)e?, and so on.

Remark 1.3. Most of the physical literature focuses on a continuum version of the ho-
mogeneous semiflexible model, often called wormlike chain or Kratky-Porod model (e.g.
[16] and references therein), which can be obtained in a large scale/high stiffness limit of
discrete models. As for the discrete semiflexible model we had a discrete length parameter
n that was in fact counting the monomers along the chain, here we have a continuous pa-
rameter ¢ > 0 and the location X, of the wormlike chain at ¢ is equal to fg B(?)(s)ds, where

{B(d)(s)}s>0 is a Brownian motion on S9! (e.g. [I2]). Note that the initial orientation

vg is here replaced by the choice of B(d)(O). For d = 2, once again, this process becomes
particularly easy to describe since B?)(t) = (cos(B(t) + x),sin(B(t) + yo)), where B is
a standard Brownian motion. We point out that in the physical literature the continuum
model is just used for some formal computations and, in the heterogeneous set-up, the
model is often ill-defined and in fact when simulations are performed usually one goes
back to a discrete model [I} 10} [15] [16, [17].

1.3. The Brownian scaling. In order to study the large scale behavior of our model,
we introduce its diffusive rescaling, i.e. the continuous time process By (t) defined for
N € N and tN € NU{0} by

BO(t) = \/INX}@’”. (1.5)
This definition is extended to every ¢ € [0,00) by linear interpolation, so that B (-) €
C(]0,00)) and it is piecewise affine, where C([0,00)) denotes the space of real-valued
continuous functions defined on [0,00) and is equipped as usual with the topology of
uniform converge over the compact sets and with the corresponding o-field. The precise
hypothesis we make on the thermal noise is as follows.

Assumption 1.4. The variables ({ry, }»>1, P) taking values in SO(d) are independent and
identically distributed, and the law @ of r; satisfies the following irreducibility condition:
there do not exist linear subspaces V, W C R? such that Q(g € SO(d) : gV = W) =1,
except the trivial cases when V = W = {0} or V = W = R%
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We point out that this assumption on @ (actually on its support) is very mild. It is fulfilled
for instance whenever the support of @ contains a non-empty open set A C SO(d) (this is
a direct consequence of the fact that an open subset of SO(d) spans SO(d)), in particular
when @ is absolutely continuous with respect to the Haar measure on SO(d), a very
reasonable assumption for thermal fluctuations (see for details on the Haar measure).
We stress however that absolute continuity is not necessary and in fact several interesting
cases of discrete laws are allowed (e.g., for d = 3, when @ is supported on the symmetry
group of a Platonic solid). Also notice that for d = 2 Assumption can be restated more
explicitly as follows: denoting by Ry € SO(2) the rotation by an angle #, there does not
exist 6 € [0, 7) such that Q({ Ry, Rry0}) = 1.

Next we state precisely our assumption on the disorder.

Assumption 1.5. The sequence ({wn}nzl,P) is stationary, i.e. {wp+41}n>1 and {wp n>1
have the same law, and ergodic, i.e. P({wp}n>1 € A) € {0,1} for every shift-invariant
measurable set A C SO(d)Y. Shift-invariant means that {z1,z2,...} € A if and only if
{x9,23,...} € A, while measurability is with respect to the product o-field on SO(d)N.

We can now state our main result.

Theorem 1.6. If Assumptions and are satisfied, then P(dw)-almost surely and
for every choice of vy the process B\ converges in distribution on C([0,00)) as N — oo
toward oB, where B = {(Bi(t),...,B4(t))};>o s a standard d-dimensional Brownian
motion and the positive constant o2 is given by

1 2
o? == = + p ZEE(ed,wlrl e wprge?), (1.6)

d k=1

where the series in the right-hand side converges.

This result says, in particular, that the disorder affects the large scale behavior of the
polymer only through the diffusion coefficient 2. Let us now consider some special cases
in which 02 can be made more explicit. Notice first that, by setting 7 := E(r1), we can
rewrite EE (e, wyry -+ wprpe?) = E(ed w7 --- wpTed).

e When 7 = c¢I, where I denotes the identity matrix and c is a constant (necessarily
lc| < 1), the expression for o2 becomes

1 2
7= Gt a B ) ). (L.7)

Notice that the non disordered case is recovered by setting w; = I, so that the
diffusion constant becomes 1/d + 2¢/(d(1 — ¢)). Assume now that ¢ > 0 and let us
switch the disorder on: if we exclude the trivial case when P(wled = ed) =1, we

see that the diffusion constant decreases, whatever the disorder law is.
We point out that by Schur’s Lemma the relation 7 = c[ is fulfilled when the law
of r1 is conjugation invariant, i.e., P(ry € -) = P(hr1 h~! € -) for every h € SO(d).
e When the variables w,, are independent (and identically distributed), and with no

extra-assumption on 7, by setting w := E(w;) we can write
1 2 12 wT
2 _ d (—=m=\k d\ _ d d

o _d+dkzl<e,(w)e>_d+d<e,1we>. (1.8)
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Notice in fact that Assumption yields [[F|lop < 1, where || - ||op denotes the
operator norm (see Section , hence the geometric series converges.

In the general case, the expression for the variance is not explicit, but of course it can be
evaluated numerically.

In order to get some intuition on the model, in particular on the role of the disorder
and why it leads to (|1.6), we suggest to have a look at Appendix |A] where we work out
the computation of the asymptotic variance of X° in the two-dimensional case, where
elementary tools are available because SO(2) is Abelian. As a matter of fact, these el-
ementary tools would allow to prove for d = 2 all the results we present in this paper.
However, the higher dimensional setting is much more subtle and in particular the proof
of Theorem for d > 2 requires more sophisticated techniques: in Section [2, using tensor
analysis, we prove that Theorem follows from Assumption plus a general condition
of exponential convergence of some operator norms, cf. Hypothesis below, and we then
show that this condition is a consequence of Assumption

Remark 1.7. In the homogeneous case, i.e., when disorder is absent, our method yields
a proof of the result in Theorem under a generalized irreducibility condition that is
weaker than Assumption (see Appendix . This generalized condition is fulfilled in
particular whenever the support of @) generates a dense subset in SO(d). We point out
that this last requirement is exactly the assumption under which Theorem (in the
homogeneous case) was proven in [7, [14].

1.4. On strong decay of correlations. The persistence length (cf. caption of Figure [L)
does characterize the loss of the initial direction, but from a probabilistic standpoint this is
not completely satisfactory, since other information could be carried on much further along
the chain. For this reason, we study the mixing properties of the variables v¢ (see )
and this leads to a novel correlation length, that guaranties decorrelation of arbitrary local
observables. As we will see, we have only a bound on this new correlation length and we
can establish such a result only for a resticted (but sensible) class of models.

In order to state the result, let us introduce the o-field 7, ,, == o(vy : m <i < n) for
m €N, n € NU{oo} and for fixed w. Then the mixing index a’(n) of the sequence {v¥};
is defined for n € N by

a’(n) == sup {|P(ANB) —P(A)P(B)|: A€ Fim> B € Fy, m € N}. (1.9)

+n,007
We work under either one of the following two hypotheses:
H-1. The law Q of 71 is conjugation invariant, i.e., P(r; € -) = P(hr1 h~! € -) for every

h € SO(d), and for some ng the law Q*™ of (ry---rp,) has an L? density with
respect to the Haar measure on SO(d) (see §3.1)).

H-2. The law Q of r; has an L? density with respect to the Haar measure on SO(d).
Assumption H is sensibly weaker than H (of course on the conjugation invariant mea-

sure), however requiring an L? density is quite a reasonable assumptions for thermal
fluctuations. Then we have

Proposition 1.8. Under assumptions H-1 or H-2 there exist two constants C' € (0,00)
and h € (0,1) such that o*(n) < C'h"™ for every n and every w
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The proof of Proposition [1.8|relies on Fourier analysis on SO(d): it is given in Section
where one can find also an explicit characterization of the constant h (see (3.19).

2. THE INVARIANCE PRINCIPLE

In this section we prove the invariance principle in Theorem including the formula
(1.6)) for the diffusion constant, under some abstract condition, see Hypothesis below,
which is then shown to follow from Assumption [I.4] Throughout the section we set

apf,w = Wi Tm Wit 1 Pl - - Wi T m<n, (2.1)

so that vy = R Y e? (see (1.4)). We recall that vg = Re? is an arbitrary element of S9!,
with R € SO(d), and that ) denotes the law of 7.

2.1. Tensor products and operator norms. Unless otherwise specified, in this section
the vector spaces are assumed to be real (i.e., R is the underlying field) and to have
finite-dimension. The tensor product of two vector spaces V and W can be introduced for
example by considering first the Cartesian product V' x W and the (infinite-dimensional)
vector space V x W for which the elements of V' x W are a basis. Then the tensor product
V ® W is defined as the quotient space of V' x W under the equivalence relations

(1 +v2) Xw ~ vy Xw + v2 Xw, v X (W +wg) ~ vXw + vXws,
c(vxw) ~ (cv) Xxw ~ v X (cw),

for c € R, v(;) € V and w(;) € W. The equivalence class of v x w is denoted by v ® w and
we have the properties (v] +v2) QW = V1 QW+ V2 Qw, v® (W1 +w2) = VR W] +v@wg and
c(v®@w) = (cv) ®w =v @ (cw). Given a basis {v; }i=1,..», of V and a basis {w;}i=1,..m of
W, {vi ® w;};; is a basis of V ® W, which is therefore of dimension nm. We stress that
not every vector in V' ® W is of the form v ® w for some v € V, w € W.

A more concrete construction of V. ® W is possible in special cases, e.g., when V =W =
L(R%), the vector space of linear operators on R? (that will be occasionally identified with
the corresponding representative matrices in the canonical basis). In fact £(R%) ® L(R?) is
isomorphic to £(£(R?)), the space of all linear operators on £(R?), and this identification
will be used throughout the paper. Let us be more explicit: given g,h € L(R?), we can
view g ® h as the linear operator sending m € £(R?) to

d
(g@h)(m) := gmh*,  thatis  [(g@h)(m)ly = > gik hjimw, (2.2)
k=1

where (h*);; = hj; is the adjoint of h. We are going to use this construction especially
for g,h € SO(d), which of course is not a vector space, but can be viewed as a subset of
L(R9). A useful property of this representation of g ® h as an operator is that

(91 ® h1)(g2 ® h2) = (g192) ® (h1h2), (2.3)

which is readily checked from ([2.2)). Another crucial fact is the following one: given s1, s3 €
L(R%)*, the bilinear form (g, h) — s1(g)s2(h) can be written as a linear form s; ® sy on
the tensor space £(R?) ® L(R?), defined on product states g ® h by

(s1®s2)(g®h) = s1(g)s2(h) (2.4)

and extended to the whole space by linearity. This linearization procedure is the very
reason for introducing tensor spaces, as we are going to see below.
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Let us recall the definition and properties of some operator norms. Given a vector space
V endowed with a scalar product (-,-) and an operator A € £(V'), we define

[, Av)| 0]
Allop := sup ————— = sup , Allps = /Tr(A4*A), 2.5
[lop = sup Tl — wey ol [l := VTr(A74), - (25)

where Tr(A) is the trace of A and A* is the adjoint operator of A, defined by the identity
(w, Av) = (A*w,v) for all v,w € V. If we fix an orthonormal basis {e'};—1 ., of V and

we denote by A;; the matrix of A in this basis, we can write || A2, := D |A;;|% Tt is
easily checked that for all operators A, B € L(V') we have
[ABllop < [[Allop [|Bllop,  [[Allop < Il Allns,  [[ABllhs < [[Allop [I1Bllns - (2.6)

In what follows, the space £(R?) is always equipped with the scalar product (v, w)ys :=
Tr(v'w) =), ; Vijwij. We can then give some useful bound on the operator norm of g® h

acting on £(R?): by (2.2)) and (2.6)

gvh*||y Glloplv A*||p,

lg@hlloy = sup 10T oy Bolopllo M o iy 27)
vec@ingoy  vllns vec@infoy |l

where we have used that ||h*|op = ||h]|op-

Let us denote by I' the orthogonal projection on the subspace of symmetric operators
in L(R?), defined for v € L(R?) by
1 1

I(v) = 5(1}4—1}*), ie. F(v)y = B

Of course I' € L(L(R?)), and for any linear operator m € L£(L(R?)) we denote by m its
symmetrized version:

(Uij + Uji) . (2.8)

m = I'mT. (2.9)

Note that g®¢g = (9@ ¢)T = I' (g ® g), for every g € L(R?).
Finally, consider s € £(R?)* of the form s(g) = (v, gw), where v,w are vectors in R?
with ||Jv|| = ||w| = 1. For every linear operator m € L(L(R%)) we have

(s@s)(m) = (s@s)(T'm) = (s®s)(mT) = (s®s)(m), (2.10)

as one easily checks using coordinates, since (s ® s)(m) = Zijkl v; Uj My g Wi wy. It is also
easily seen that

(s @s)(m)] < [Imllop - (2.11)
These relations are easily generalized to higher order tensor products: in particular
s (m) = s®*(m (T el)) and 1524 (m)| < [|m|op , (2.12)

for every m € L(R9)®4,

2.2. An abstract condition. We are ready to state a condition on @) that will allow us
to prove the invariance principle in Theorem

Let us consider E¢}, ,, which is an element of L(RY) (we recall that @i 1s defined
in (2.1)). We need to assume that, when & is large, Ey} .1k s exponentially close to the
zero operator on R%, uniformly in n. We are also interested in the asymptotic behavior of
E [‘P%,mrk ® ¢$’n+k] , which by is a linear operator on £(R?): we need that, when k is
large and uniformly in n, the symmetrized version E[gp%n 1k ® gp‘;j?n +k] of this operator,
cf. and , is exponentially close to the linear operator II defined as the orthogonal
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projection on the one dimensional linear subspace of £(R?) spanned by the identity matrix
(Id)i,j = 52"]', 1< Z,j < d, that is

M) = éTr(v) I, veL®Y. (2.13)

The reason why the operator IT should have this form will be clear in Let us now
state more precisely the hypothesis we make on Q).

Hypothesis 2.1. The law Q of r1 is such that, for P—almost every w, we have

o0 oo
C(w) = Sup {Z“E[@g,n—kk]”op + Z‘}E[Soﬁ,n—i-k@@%,nﬁ-k] - HHop} < 0.
nzl k=0 k=0
(2.14)
The next paragraphs are devoted to showing that Theorem [I.6] holds if we assume Hypoth-

esis [2.1] together with Assumption We then show in that Hypothesis [2.1] indeed
follows from Assumption [1.4]

2.3. The diffusion constant. We start identifying the diffusion coefficient o2, given by
equation ((1.6)). For any Rdjvalued random variable Z we denote by Cov(Z) its covariance
matrix: Cov(Z); ; = cov(Z', Z7).

Proposition 2.2. If Hypothesis[2.1] and Assumption[1.5 hold, then for P—almost every w
and for every vy € ST we have that

1
lim — Covp (X2°%) = o%I,, (2.15)
n—oo n

where
1 o
ol =—(1+2) EE(’ ¢t e |, (2.16)
d k=1 7
the series in the right-hand side being convergent.

Proof. By a standard polarization argument it is enough to prove that for any v € §¢1

1
lim — varp ((v, X'%)) = o2, P(dw)-a.s., (2.17)
n—oo n
because
i vo,w j vo,w €i+ej vo,w 6i_€j vo,w
covp ((e', X0¥), (), X)) = varp 7 , X0 — varp T,Xn : .
(2.18)
We recall that X, = vo + Y3, Ry, e, where we set vy = Re? for some R € SO(d).
For notational simplicity, we redefine X, := X;** — v, for the rest of the proof (notice
that this is irrelevant for the purpose of proving (2.17)). Introducing the notation
s,(g) == (v,Rge?), for g € L(RY), (2.19)

we have the simple estimate

|E(v, X0%)| =

n
y (z)
k=1

< SEeul, < o (@220
keN
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by Hypothesis This shows that, in order to establish (2.17)), it is sufficient to consider

n n—k

E[(v, X0%) ZE [ so(¢fk )2} + 2 Z ZE ES (c,o‘ﬂl) Sy ((p‘f}Hk)] : (2.21)

k=1 1=1

By (24) and 210) we can write (s,(¢%,))" = (sv ® 50)(95, @ #7;), and by (21I)

together with Hypothesis 2.1 we can rewrite the fist sum as

n n
2 —
STE (s (914)°] = 552 (Z E[¢7,® soaik}> = nsP2I) + O(1).  (2.22)
k=1 k=1
In the same spirit the control the off-diagonal terms. We first observe that by (2.3))
1@ e = W@ (W) = (P ® @?,z)(fd ® ¢f+1,l+k) ; (2.23)

where I; € £(R?) is the identity operator. Then by (2.4) and ( we can write
s50(070) So(@W148) = 52 (T WY ® W 1in) = 55 ((9011 ® ¢ l) (Id R @thin)) - (224)

By (2.11), (2.7) and (2.6) we then obtain E[SU(SOLZ)%(SOLH;Q)] < HEgolH,HkHop, hence
by Hypothesis 2.1] it is the clear that

n n—=k
lim i > Y Elsu(¢) s = 0. 22
e lglsogpnk m l=1 S (671) su(pt l+k)] 0 (2.25)

This allows us to focus on studying the limit as n — oo and for fixed k of

3\’*
3\’—‘

Z so(951) s0(PF1n)] = Z E[¢?,@¢7,|(Ja @By 4h)) - (2:26)

In this expression we can replace E [ oy ® @Y l] by its limit II by making a negligible error
(of order 1/n), by Hypothesis Furthermore, by the Ergodic Theorem
n—k

1
Jim ~ D STy @ Befyyey) = 52 (Ig@EEgY,)), Pldw)-as.. (227)
=1

We have therefore proven that P(dw)-a.s

1 [e.9]
lim — varp (v, X)) = s2*(II) + 228?2(1_[ (Is ® EEgY ) . (2.28)

n—oo m

Let us simplify this expression: by (2.13)) the representative matrix of IT is IT;; 3y = é 0ij Okt
and by (2.19) we can write s,(g9) = >_,,,(R*V)m gma, hence

SEAM) = SR (B0 Tyaa = 3[R = 7, (229)

because R € SO(d) and v is a unit vector. The second term in the right hand side of (2.28)
is analogous: setting for simplicity m := EEyy, | ., € L(RY), the matrix of the operator
II(I; ® m) is given by

d

d
1
M(Ig @ m)|ijm = Z jap (g @ m)ap s = p Z 0ij Oab Ok My =
a,b=1 a,b=1

1
p dig myr, (2.30)
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hence
1
—Mgq - (2.31)

sPPM(Ig@m)] = > (R*)i (R*); [(Ia @ m)lijaa = g

]
Since myq = EE(ed, go‘f’ked), we have shown that the right hand side of (2.28)) coincides
with the formula ([2.16)) for 02 and therefore equation (2.17)) is proven. O

2.4. The invariance principle. Next we turn to the proof of the full invariance principle.
The main tool is a projection of the increments of our process {X,"“},, on martingale
increments, to which the Martingale Invariance Principle can be applied.

We start setting 5(g) := Rge?, so that

$(etn) = vy = XY = X0 (2.32)

n—1>

cf. (1.4) and (2.1)). Recalling the definition (2.19) of s,(g), we have §(g) = Z?Zl s.i(g) €.

For n =1,2... we introduce the R%valued process

We now show that, for P-a.e. w,

| SRl < o 230

>1
where we recall that i, = o(¢y; : m < i < n). Observe that E[Y, x| F},] =
3(E [‘P“ﬁnJrk}ffn] —E[¢Y n+k]) and we can write
Bt n sl Fin] — Bletnm] = et BlotnklFin] = Blotn] Blonin] (2.35)
= ((pblu,n - E[@in]) E[(p‘;:—l-l,n—l-k] .
Since H‘P‘f,n - E[@iu,n} Hop < 2, we have
HE[YnJrk}}Yn] HLOO(P;Rd) <2 HE[VJ%H@M] Hop ) (2.36)

hence ([2.34)) follows from Hypothesis
We are now ready to prove the invariance principle. It is actually more convenient

to redefine BY?*(t), which was introduced in (LF)), as ﬁ X fj‘)\,‘t‘j, where |a] € N U {0}

denotes the integer part of a. In this way, By () is a process with trajectories in the
Skorohod space D([0, 00)) of cadlag functions, which is more suitable in order to apply the
Martingale Invariance Principle. However, since the limit process ¢ B has continuous paths,
it is elementary to pass from convergence in distribution on D([0, c0)) to convergence on
C([0,00)), thus recovering the original statement of Theorem

Theorem 2.3. If Hypothesis and Assumption hold, then P(dw)—-a.s. and for every
choice of vy the R¥*-valued process B converges in distribution on C([0,00)) to oB,
where B is a standard d-dimensional Brownian motion and o is given by (1.6]).

Proof. Let us set for n > 1

=Y E[Vu|Fr,] and Zy = (E[Yagk| Fy] — BYaun| 72, 1)), (2:37)
k=0 k=0

where we agree that ]—"fo is the trivial o-field. Note that U, and Z, are well-defined,
because by equation (2.34)) the series in (2.37) converge in L>®(P;RY), for P-a.e. w. The
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basic observation is that E[Z,|F}’, ] = 0, hence Z, is a martingale difference sequence,
i.e., the process {7, },>0 defined by

n
Ty =0, Ty:=> 7, (2.38)
i=1

is a {F}, }n—martingale (taking values in R%). Moreover we have by construction
Y, = B[Ya|F] = Zo + (Un—Unsia), (2.39)

that is Y}, is just Z,, plus a telescopic remainder. Therefore the process {7, },, is very close
to the original process {X.,"“},, because the variables Y,, are nothing but the centered
increments of the process {X;"“},, see (2.32) and (2.33).

For this reason, we start proving the invariance principle for the rescaled process TV =

{T™(t)}1e0,00) defined by TN (t) := ﬁTLNt |- By the Martingale Invariance Principle in

the form given by [8, Corollary 3.24, Ch. VIII], the R%-valued process TV converges in law
to 0B, where & > 0 and B denotes a standard R%valued Brownian motion, provided the
following conditions are satisfied:
(i) the (random) matrix (Vy.)i; = Y p_y E[ (€, Zk)(e?, Zy) |.7:i‘jk_1 |, with1 <i,j <d,
is such that

1 oo~
~V, ==, 5%1;  in P-probability; (2.40)
n

(ii) the following integrability condition holds:
1 ¢ n—00
- Y E[|Z; 12| > ev/n] =5 0. (2.41)
k=1

The second condition is trivial because the variables Z,, are bounded, P(dw)—a.s.. The first
condition requires more work. We first show that varp (% (Vn)w) — 0 as n — oo, for all
i,7=1,...,d and for P-a.e. w, and then we prove the convergence of E[%Vn]

We start controlling the variance of V,,. By definition (V;,);; < 2((Vy.)ii+(Va);,;), hence
it suffices to show that Varp(% (Vn)“) — 0 for every i = 1,...,d. We observet that Z,
has a nice explicit formula:

Zn =5 <90Lf,n1 (Qp?lj,n - E[Soﬁ,n]) (Z E[¢%+1,n+k]>> ’ (242)
k=0

where we agree that ¢} 4, is the identity operator on R (this convention will be used

throughout the proof). Since §(g) = Z?Zl s.i(g) €', where s,(g) is defined in (2.19), a
simple computation then yields

E[(e', Zn)* | Fiinr] = s (B[ 20 ® Zn | Fipr]) = 3 ((910-0)207) . (243)
where we have applied and and we have set

@Z = (E[Soﬁ,n@)(p%,n] - E[SOLﬁ,n]@E[Wﬁ,nD (Z E[Soz—i-l,n—l—k} ® Z E[@z—&-l,n—f—l]) . (244)
k=0 =0



DISORDERED SEMIFLEXIBLE POLYMERS 13

Applying (2.43)) together with (2.4) and (2.3)) we obtain

wrp (1250 (3 (e - Blir™Der) | |
1<k<n
23 s (B[t 0 - Bl ) (2.45)

1
- —E
n2

IN

62
1<k<I<n

® () ~ Blet)™) | (er w 6p)).

Observe that by (2.3) we can write

)®2 - E[(‘P‘f,z—1)®2] = (@f,k—ﬂ
(#5007 = Bl(w5-)% ) E[ml %]
[(

+ (2 { (1) ~ B(w8)%? }
(2.46)

2 (‘Pf,z—1)®2 - E[(SD‘f,k 1) ]E[( ,1—1)®2]

(waf,z—1

and notice that the term inside the curly brackets is independent of F}°,_; and vanishes

when we take the expectation. Therefore we have

Bt Bl ()™ - Bleto™)]

= B|(¢750)® ~ B[e1,0)% %] (10 B[(¢,-)%%) |

where we have applied again ([2.3) and where I denotes the identity operator on £(R%)
We can therefore rewrite the term in the sum in (2.45)) as

24 (E [(Sdfk 1)®4 - E[(@f,k—1)®2]®2} (I ® E[Soz,lﬂ ® <P7§,z—1]) ((93u ® @7:)> (2.48)
2 (B[err0® ~ Blete)® | (1 0 B[of, 1 09 ) (67 0 6F) ) |

= 5%
where we have applied the first relation in together with the following relations
OfT = ©f and  E[pf @98, 1]05T = E[¢f,_ @9f, 107, (249
which follow from the fact that (¢ ® g)T' = g ® g for every g € L(R?)

w

We know from Hypothesis that when ! > k the operator E [ OF 11 @ oY% 171] is close
to II. Furthermore, if we replace E [ O QY ] by II inside ([2.48]) we get zero: in fact,

since trivially g®2II = II for every g € SO(d), we have
®2
B[(¢fk )™ - Bllet, )1 (2,50
= E[(¢71 1) ® (¢7p-)°I)] — El(¢]r 1) @ E[(p7_1)®?1] = 0.
So it remains to take into account the contribution of the error E[¢%, | ® ¥, ||

inside ([2.48)). However, using Hypothesis (2.7) and the triangle inequality, we have

<2, |efeer|, <4(1+C0w)", (2.51)
op

—1II

HE [(ch,k_1)®4 - E[(cpik_l)@z]m}
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hence, using the second relation in (2.12)), from (2.45)) and (2.48]) we obtain

(Vi) 8(1+C(w))* _ _
e (V) < MG S i ) -,

n
1<k<n,m>0

. 8(1+C(w))° |

n

(2.52)

having applied Hypothesis again. We have therefore shown that varp(% (Vn)m) — 0
asn — oo, for all 1 <1i,j < d and for P-almost every w.
It remains to prove that E[% Vn] — 021, as n — oo and to identify o2. Let us first

note that by (2.32)) and (2.33))

>V, = X — B[Xp¥] = X,. (2.53)
k=1

We also set Z& := (ef, Z,,), X! := (¢!, X,,) and Ul := (e, U,,) for short. Since E[Zn‘ffn_ﬂ =
0 and in view of (2.39), we can write

E[(Va)is] = D E[ZLZ]) = Y E[Z4Z]] = E[(X, +Up) (X) +Up)] (254)
k=1 k=1

(note that U; = 0). We recall that by Proposition we have as n — oo, for P-a.e. w,

E[)N(;l)?{l] = (COVP(XgO’w))Z.j = n0'2 6i,j + O(H), (2.55)
where o2 is given by (2.16) (equivalently by (1.6)). Since sup,, ||Uy|| Leo(prdy < 00 by
(2.34), it follows from ([2.54) that as n — oo, for P-a.e. w, we have

E[(Vn)ij] = E[XLX2] + o(n) = nodi; + o(n). (2.56)

This completes the proof that the rescaled process TV = {TV (t)}tefo,00) coOnverges in
distribution as N — oo to o2 B, where o2 is given by ((L.6).

It finally remains to obtain the same statement for B0 (t) := —= X% . Notice that

T VN TNt
by (2:35), (:39) and ([2:53) we can write

swp |50 T < swp [BIXP#T) + s Uil @57
1<k<n 1<k<n 1<k<n

where || - || denotes the Euclidean norm in R?. However the right hand side is bounded
in n in L®°(P;RY), for P-a.e. w (for the first term see (2.20) while for the second term
we already know that sup,, Uy || 1o p.ray < 00). Therefore sup,ejo ar || BN (8) = TN ()| <

(const.)/v/'N for every M > 0, and the proof is completed. O

2.5. Proof of Theorem We now show that the abstract condition expressed by
Hypothesis[2.1]is a consequence of Assumption In view of Theorem this completes
the proof of Theorem

We start by controlling E [go‘;jm +k] , which is quite easy: the independence of the r; yields

E[¢ k] = wnB(r)wng1 E(ry) - wpi B(ry) (2.58)
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It is clear that [|E(r1)|op < 1. We now show that Assumption yields [|[E(71)|lop < 1,
so that for every w we have

ZHE Gl llop ZHE ) ., ZHE )|k, < 0. (2.59)

To prove that HE(rl)Hop < 1, we argue by contradlctlon: if ||E(71)|lop = 1 there would
exist two vectors x,y € S?! such that

1 = (g B(r)a) = /S oy 197 Q). (2.60)

Since |(y, g z)| < 1, for this equality to hold it is necessary that g = y for @Q—almost ev-
ery g € SO(d). Setting V :={Az: A€ R} and W :={Ay: X € R}, this would mean that
gV =W for Q—-almost every g € SO(d), which is in contradiction with Assumption

Next we turn to the analysis of E[gp%ﬂwk ® @‘;”wrk], which is a linear operator on

the vector space L£(R?), equipped with the standard scalar product (v, w)ps = Tr(v*w).
We decompose L£(R?) = H; @ H? @ H, as a sum of the orthogonal subspaces consisting
respectively of the multiples of the identity, of the symmetric matrices with zero trace and
of the antisymmetric matrices:

= {A4: XeR}, H? = {veLRY): v* = v and Tr(v) =0},
H, = {ve LRY): v =—v}.
All of these subspaces are invariant under g ® g, for every g € L(R?), hence they are
invariant under E[goj;n_i_k ® gpﬁ,n+k]. We recall that II is the orthogonal projection on
Hy, cf. (2.13), while T is the orthogonal projection on Hy & HY, cf. . Since Il and
E[g@“ﬁﬂwk ® gpﬁ,n+k] are zero on H, and they coincide on Hy, E[cp;‘;,n+k ® gojl”nJrk] — HHOp

is nothing but the operator norm of E[gpﬁ ik @ O n+k] restricted to the subspace H?,
therefore with obvious notation we can write for every w

0 oo
Z HE [ @%,n-ﬁ-k ® (p(;;,n-‘rk] B HHop = Z HE[QO(;Z},TL-&—k ® 90‘7‘1),714-’@] HHg,op : (261)
k=1 k=1

However from (2.3) and from the fact that the r; are independent and identically dis-
tributed we have

E[gs i @00 k] = Wn@wn)E[r @11 - (Wnak Qi) Blrr @], (2.62)
hence - -
k
Z HE[SO;::JH-IC ® soﬁ,n-‘rk] B 1—‘[Hop = Z (HE[Tl ® 7ﬁl]HH‘Q,op) : (263)
k=1 k=1

We are finally left with showing that ||E[r1 @ 71]||goop < 1. Let us assume by contra-
diction that there exist v,w € H? with ||v||ns = ||w||ns = 1 such that

1 = (w,E[r ®ri]v)ns = /So(d)<w,gvg*)hSQ(dg). (2.64)

However ||gvg*||ns = ||v|lns = 1, hence (w,gv ¢g*)ns < 1 and we must have w = gvg* =
gvg ! for Q-a.e. g in SO(d). In particular, the matrices v and w are similar and therefore
they have the same eigenvalues A1, ..., \;, with k£ < d. Recall that by the spectral theorem
v and w are diagonalizable. Denoting by K, and K, respectively the eigenspaces of v and
w corresponding to A1, we have that 1 < dim(K,) = dim(K,) < d — 1, where the last
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inequality follows from the fact that v and w, having zero-trace and not being identically
zero, cannot be multiples of the identity. Let us now fix g such that w = gv¢g~! and take
an arbitrary = € g K,: since ¢~ 'z € K, we have

wr = gvg tx = ghglx) = Az, (2.65)

which yields € K,,. Therefore g K, C K,, and since the two subspaces have the same
dimension we must have g K,, = K, for Q—almost every g. This being in contradiction with
Assumption we have indeed that ||E[r; ® r1]||goop < 1 and the proof of Theorem
is completed. L]

3. DECAY OF CORRELATION

3.1. General notations. We denote by A the normalized Haar measure on SO(d). We
recall that A is the only probability measure that is left- and right-invariant, i.e., such that
AAg) = MgA) = A(A) for all g € SO(d) and (measurable) A C SO(d). In the special
case d = 3, A describes a (random) rotation around the vector w of angle 6, where w is
uniform on S? and 6 is uniform on [0, 27). For more on the Haar measure we refer to [4].

We recall that ) denotes the law of r1. For fixed w, we denote by L7, , the law of ¢,
under P, so that for any bounded and measurable function F': SO(d) — R

E[F(¢2,,)] = / Fg) L2, (dg) (3.1)

50(d)
We also set
E“(k) = 2sup ||L‘;LJ+1,n+k = Arv, (3.2)
n

where the total variation (TV) distance between the probability measures p and v is
defined as ||u — v||Tv := supy |u(A) — v(A)|. We observe that || — v||ry coincides with
% Sup|g|<1 [ gdpu— [ gdv, in particular if p is absolutely continuous with respect to v, with

f=dp/dv, we have ||p—v|rv =3 [|f —1|dv.

3.2. Reminders of harmonic analysis on compact groups. Throughout this section,
we assume that G is a compact topological group, equipped with the Borel o-field, and A
is the normalized Haar measure on G (of course we have in mind the specific case where
G = S0(d), d > 2). We start recalling some basic facts about harmonic analysis on G,
taking inspiration from [5] [6].

Given a (complex) Hilbert space H, a representation of G on H is a group homomor-
phism U : G — B(H), i.e., U(gh) = U(g)U(h) for all g,h € G, where B(H) denotes the
set of bounded linear operators from H to itself. The representation U is said to be:

e continuous if the map g — (z,U(g)y) from G to C is continuous, for all z,y € H;

e irreducible if there is no closed subspace M of H such that U(g)M C M for every
g € G, except the trivial case when M = {0} or M = H;

e unitary if U(g) is a unitary operator for every g € G, i.e., (U(9)x,U(g9)y) = (z,y)
for all x,y € H, where (-,-) denotes the scalar product in H (that we take skew-
linear in the first argument and linear in the second).

Finally, two representations U, U’ of G on the Hilbert spaces H, H' are said to be equivalent
if there exists a linear isometry T : H — H’ such that U(g) = T~1U’(g)T for every g € G.
The set of equivalence classes of continuous, irreducible, unitary representations of G is
denoted by 3, which is a countable set (sometimes called the dual object of G).
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We point out that, since GG is compact, all irreducible representations are finite dimen-
sional, that is, they act on a finite dimensional Hilbert space. Given a € 3, we denote by U“
an arbitrary representation in the class a, acting on the Hilbert space H, of finite dimen-
sion d, € N. In each space H, we fix an (arbitrary) orthonormal basis {¢(,i =1,...,d}
and we denote by uf;(g) = ((/*, U*(¢9)(") the matrix of U%(g) on this basis. Notice that
u$(+) is a continuous function from G to C. We have the following orthogonality relations,

)

valid for all a, B € £, 1 < j,k < dyo, 1 <1,m < dg:

- 1
|G, N) = - daa (33)

(6%
where T denotes the complex conjugate of z and J;; is the Kronecker delta. Therefore
{Vda Ugj(')}aez,lgi,jgda is an orthonormal set in L?(G,d)). A crucial result is that it is
also complete, i.e., the functions uf]() span L?(G,d)), by the the Peter-Weil Theorem.

Next we introduce the Fourier transform fi of a probability measure 1 on G, which is

the element of the space S :=[] o B(H®) defined by

i) = [ U@ utdg). e (3.4)

More explicitly, ji(a) is the linear operator acting on H* whose matrix in the basis {¢*};
is given by ji(a)i; = [, ui;(g) p(dg), for a € X and 1 <i,j < da.

It follows directly from the definition and that ||f()]lop < 1 for every
probability measure 1 on G and for every o € ¥. As a matter of fact, when G is connected,
this inequality is strict for a large class of i, as we show in the following lemma (where we
denote by a = 0 the trivial representation, with Hy = C and U°(g) = 1 for every g € G).

Lemma 3.1. Let i be a probability measure on G with support V. Assume that V=1V :=
{h=Yg : h,g € V'} generates a dense set in G, i.e., the set | Joo(VIV)" is dense in G.
Then ||fi(c)|lop < 1 for every a € ¥, a # 0.

Proof. Suppose that ||fi(c)|/op = 1. Then there must exist z,y € H* with ||z| = |ly|| =1
such that (y, fi(a) ) = 1. Now

L= Ry la)a) = [ Ry U%(0) 2)ldy) (3.5)

The function r(g) = R(y, U%(g) =) is real and such that r(g) < 1, and so must be constant
on the support of © and equal to 1. This implies that U%(g) x = y for any g € V, hence
U(hlg)e = UM U (g)x = US(h )y = & (3.6)

for all g, h € V. This means that the relation U%(g)z = z holds for all g € V'V and hence
for all g € |Jo2,(V~1V)™. By assumption the latter set is dense in G and the continuity
of the representation U® yields that U%(g)z = x for all g € G, which is impossible unless
« is the trivial representation. O

We conclude this paragraph noting that the Fourier transform provides an easy tool to
check whether a probability measure p has an L? density with respect to the Haar measure
A. More precisely, we have the following

Lemma 3.2 (Fourier inversion theorem). A probability measure p on G is such that

D da|A(@)7s < o0 (3.7)
aeX
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if and only if it is absolutely continuous with respect to A with density in L*(G,d\). In
this case, the density f = du/d/\ s given by

= ) do Tr( =Y Y dafi(a)isus(g), (3.8)

acy ae¥ 1<4,j<dq

where the series converges in L*(G,d)\).

Proof. Since {\/d uq-(-)}aeg 1<ij<d, is a complete orthonormal set in L*(G,d\), the

same is true if we replace uf';(-) by ug,(-), therefore condition (3.7) guarantees that the

right hand side of . does deﬁne a function f € L?(G,d)\). Consider then the (a priori
complex) measure dv := fdA. Using ({3.3)) it is easy to check that

Pa)ij = /G u5(g) v(dg) = fa)s;, (3.9)

for all « € ¥ and 1 < 4,j < d,. By Theorem (27.42) of [6] this implies that p = v. Vice
versa, if a function f is in L?(G, d)\), the right hand side of (3.8)) is nothing but its Fourier
series in the orthonormal set {\ﬁ uf';(4) Yaes, 1<i,j<da> hence relation ) holds true.
Finally, the second equality in is easﬂy checked. O

3.3. Exponential decay of the total variation norm. In this subsection we need to
assume that G is also connected (which is of course the case for G = SO(d)). We show
that, assuming hypothesis H or hypothesis H (cf. § , for P-a.e. w, we have

> E¥(k) < oo, (3.10)
keN

where we recall that £ (k) has been introduced in (3.2)). As a matter of fact, we are going
to prove the much stronger result that there exist positive constants ci, co such that

sup E¥(k) < cpe 2k, for all k € N. (3.11)
w

It is convenient to introduce the convolution u * v of two probability laws u, v on G by

(s )(A) = [ panyvian) = [ vl 4) ). (3.12)

so that if X, Y are two independent random elements of G with marginal laws u, v, then
px v is the law of XY. Therefore we can express Ly, ,, as

L%,n:5wm*Q*5wm+1*Q*---*5wn*Q, (3.13)

where 9, denotes the Dirac mass at g € G. We stress that in general the convolution is
not commutative. A basic property is that 1 * v(a) = fi(a) ¥(a) for every o € 3, or more

explicitly i+ v(a); j = Zi‘;l f(a)ik V(a)g ;, as one easily checks from (3.4)).
In the next crucial lemma we give an explicit bound on E“(k) in terms of the Fourier

transform @ of ). We recall that we denote by o = 0 the trivial representation.

Lemma 3.3. The following relation holds true for every k € N:

2
(sgpmk)) < Y O (B2 (3.14)

a€eY, a0
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Proof. From (3.13) we can write

Ly k(@) = UM (wnt1) Q(a) - UM (wnik) Q) (3.15)
and using the inequalities in (2.6) we get

151 i@ < 1Q@)F 1Q@) 135 HHU“ wniillap < Q@7 1Q@)IZF Y,

(3.16)
where we used that ||[U%(wn4i)||2, = 1 because the representation is unitary. Now as-
sume that the right hand side of (3.14)) is finite (otherwise there is nothing to prove). By

Lemma L3 (1 ik has a density f € L*(G,d)\) with respect to A, therefore by Jensen’s
inequality we can write

ALy i My = ( / |f—1|dA) < /G P -1 = Y da B (o),

aeX, a#0

(3.17)

where in the last equality we have used Parseval’s identity, observing that (f, u%} =

(E;‘; i +k(a))i7j and that trivially 12(0) = 1 for every probability measure u on G. Recall-
ing the definition (3.2) of E“(k), relation (3.14) is proven. O

Proof of (3.11) under Hypothesis H-@ Let us set f := dQ/d\ € L*(G,d)). By Parseval’s
identity we have

112 = / P = Y da Q@) < . (3.18)

aEX

Since ||C§(a)||op < ||Q(c)||ns, we have that ||@(oz)]|op < e for every a € X, a ¢ T'. Next
observe that Lemma can be applied, because by hypothesis the support of () contains
a non-empty open set A, hence A~!A is open too and therefore it generates the whole G
(it is easily seen that, for any non-empty open subset B, | J;2 ; B" is non-empty and both
open and closed, hence it must be the whole GG, which is connected). This observation
yields

In particular, for every € > 0, ||@(a)\|hs < e for every a ¢ T', with " a finite subset of 3.

ho= sup [|Qa)]op < 1. (3.19)
a€X, a#0
Therefore from Lemma we have that
sup E¥(k) < |[[flla- h*Y, (3:20)
w
which proves (3.11]) under hypothesis H O
Proof of (3.11)) under Hypothesis H—l Since the law @) is assumed to be conjugation
invariant, we have fG f(g fG f(t~1gt) Q(dg), for every t € G. Then for any law

v on G and for any bounded measurable function f: G — R we have

/Gfd(Q*v //fgh (dg) v(dh) //fhg (dg) v(dh) = /fd(V*Q),

(3.21)
hence @ *v = v Q. In particular, taking v = d,4, the operator Q(a) commutes with U%(g),
for every g € G. Schur lemma then yields that Q(«) is a multiple of the identity I, on
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~

H,: Q(a) = ¢col, for ¢y € C. Then from (3.15)) it follows that
E%+1,n+k(a) = U%(wny1- - Wntk) @(a)k ) (3.22)

hence ||LnJrl war(@) i = 1Q(cx )¥||2.. Since by assumption for k& > ng the measure Q**
has a density f;, := dQ**/d\ € L?(G,d)), it follows that also L;7, ;. (a) has a density
G =dLy /AN € L?(G,d\) (cf. Lemma and by Parseval’s identity we have

/G (02020 = lg2ul3 = 1l = 3 da Q)] <

aEeX

Arguing as above and recalling that @(a) = cqly, it follows that (3.19) still holds. We
therefore have for k > nyg

2
U aen@ - My < ([le-1a) < [rar -1
= Z daH@(a)kHiS < Z daHQ\(a)noHiSH@ H2(k ng) ”anH2 . h2(k=no)
a€Z, a0 a€eY, a#0

(3.23)

Then sup,, E*(k) < || fnoll2 ¥~ and the proof of equation (3.11)) is complete. O

Proof of Proposition . It suffices to prove that for every n and every w we have o (n) <
2E“(n). Since {¢1n}n is a (inhomogeneous) Markov process we directly see that

a”(n) < sup |B[u(ef 1) w65 )] — Blu(e? ) Ew(@f )] (3.24)
where v and w vary in the set of measurable maps from G to [0, 1]. Since
Eu(ef ) w(ef min)] = Blulet ) Bt py,)]] <
[ o) ([ wta) (s mends) = X)) L ()| +
' [ wtarEtmtds) [ ([ wlad) (Erirmenlas) - Naa) ) i) (:25)
the desired bound follows since both |u(-)| and |w(:)| are bounded by 1. O

APPENDIX A. THE ELEMENTARY APPROACH TO THE TWO-DIMENSIONAL CASE

We give here a partial proof of Theorem in the 2-dimensional case. We identify in
particular the variance o2, cf. (L.6)), of the limit process. We set T := R/(27Z) and we
denote by R, the rotation by an angle . With reference to , we write w; = R, and
rj = Ry, with 7; and 6; random variables taking values in T. The Fourier coefficients of
the law @ of 0, are fT em*Q(dx) =: Gm, for m € Z. Recall that we are assuming that
Q{00,600 +7}) < 1 for every Oy and this is equivalent to |G,| < 1 for n =1 and n = 2.

Weset ©, :=601+...4+0, and '), ;=1 +... 4+, for n € N, along with &, :=T,, + 0,
Therefore the real and complex part of the random variable Z%; := e +e'®N coincide
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with the components of the random vector XX?’“), vo = (1,0). Our goal is to compute the
asymptotic covariance matrix of X/ 0% as N — oo. Note that no centering is needed, since

N
= Z eTmE [eie’"] = Z etm gin | (A1)
m=1 m=1

and therefore |E[Zn]| < |¢1|/(1 — |q1]) < oo, because |¢1] < 1.

We can therefore focus on the second moments. For simplicity, we fix an arbitrary
direction €®° in R? ~ C, with & € T, and we look at the projection {Zﬁf’go}n of the
process {Z¥},, in this direction, i.e.

ZSJ’EO =0, Z;‘L”fo = cos(Py — &) + ... + cos(P, — &) . (A.2)
For n € N and m € NU {0} one directly computes with x = ©,, + [’y — &o
E[cos(®nim—&0) | Om] = E[cos(z+6,)] = %(Q?e”) = |G1|™ cos(Om+0 n+Tpmin—Eo),
] (A.3)
where 6 is such that € = §;/|G1|. We observe also that for a,b € T
1
E [cos(Oy, + a) cos(O,, + b)] = 3 cos(a —b) + §R (Am ’(a+b)> , (A.4)
and from ((A.3)) and (A.4]) we directly see that
E [cos(®,, — &) cos( nt+m — &0)] =
LA n o ~m z(l"m+n+l"m+0n 2£0)
2|q1| {cos(Fm+n Ty + On) +3%( )} (A.5)

and the latter expression actually holds also for n = 0. We are now ready to estimate
E[(Zf\?’w)ﬂ. The expression contains diagonal terms and for those we have

al N
Z_: E[cos®(®,, — &)] = 5 oV, (A.6)

by (A.5) with n = 0 (recall that |g2| < 1). The off—diagonal terms instead give

N—-1N-m N-1
2 Z Z COS - 60) COS(CI)n-i-m Z Q1 Z COS m+n — m + én) + O(N) :
m=1 n=1
(A7)
For every fixed n € N, by the Ergodic Theorem we have that P(dw)-a.s. as N — oo
Z cos(Tyin — T +6n) = E(cos(T'y, +6n))- N + o(N), (A.8)

and therefore that P-a.s.

N-1 00
qu Zcos (Coptnn — D +0n) = (Zq E (cos(T' —1—971))) N + o(N), (A)9)
n=1

so that ﬁnally we have P(dw)-a.s

N
%E[(Z;,&))z} = % > E(cos(®i—&) cos(®;—&)) Noge 1 5 T Z |G1[" E[cos(Tn+0n)]
ij—1

(A.10)
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which matches with (|1.6]). Note that the diffusion coefficient is independent of the direction
& and that it depends on the law of #; just through the first Fourier coefficient §;.

APPENDIX B. THE HOMOGENEOUS CASE

The aim of this appendix is to argue that, if disorder is absent, Theorem [I.6]holds under
the assumption that the support of @) generates a dense set in SO(d).

In order to do this, let us first observe that, when disorder is absent, we can weaken
Assumption to the following generalized condition: there exist m € N such that

m m
|®E) < 1. and B ©n) gy < 1. (B
where we recall that H? denotes the space of symmetric real matrices with zero trace.
We have shown in that this condition with m = 1 follows from Assumption The

fact that, when disorder is absent, equation (B.1]) is sufficient to yield Hypothesis and
hence Theorem is immediately checked: for instance, by (2.58) we can write

S il < D @EE)) L™ < oo, (B.2)
k=1 k=1

and analogously one shows that > 72, HE[(pgnJrk ® cp‘;;’nJrk] — HHOP < 00, cf. .

We recall that, for an arbitrary linear operator A on some vector space and for any fixed
operator norm | - ||, the sequence ||A™||'/™ converges as m — oo toward the spectral radius
of A, denoted Sp(A). Furthermore, by sub-additivity (since ||A"™""lop < [|A™lop |A™]lop)
we have Sp(A) = inf ey ||A™'/™, hence we can restate as

Sp(E(rl)) < 1, Sp(E(T‘1®T’1)|H£) < 1. (B.3)

Let us finally show that equation is satisfied whenever the support V' of ) gener-
ates a dense set in SO(d), i.e., whenever the closure of |, V* is the whole SO(d), where
weset V1= {g7': geV}, V2:={gh: g,h € V}, and so on. Since this fact is easily
checked for d = 2, in the following we assume that d > 3.

We argue by contradiction: if the spectral radius of E(ry) is equal to one, there exists
v € C% with |lv|| = 1 such that E(r1) v = € v, with 6 € [0, 27), hence

1 = R, E(r)v) = /SO(d) R(ev, gv) Q(dg). (B.4)

In the preceding relations we have denoted by (-, -) the standard Hermitian product on Ce,
ie., (a,b) := ZZ:I @y, b, where @ denotes the complex conjugate of a. Since R(e?v, gv) < 1
for every g € SO(d), we must have gv = e v for every g € V, the support of Q. Writing
v1 + vy with vy, vo € R? and denoting by U the linear subspace of R? spanned by v1, va,
it follows that gU = U for every g € V. Since by assumption V generates a dense set
in SO(d), by continuity we must have gU = U for every g € SO(d), which is clearly
impossible because 1 < dim(U) < 2 (recall that we assume d > 3).

With analogous arguments, if the spectral radius of E(r; ® r1) on the space H? equals
one, there must exist vi,vy € H? with [lur]|Z, + [lv2f?, = 1 and @ € [0,27) such that
g(v1 +ive) g™t = e (v) + ivy), for every g € V. Denoting by U the linear subspace of
H? spanned by vy, ve, it follows that gU g=! = U for every g € V. Since by assumption
V generates a dense set in SO(d), by continuity we must have gU g~! = U for every
g € SO(d). However this is not possible, because the only linear subspaces W such that
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gW g™t C W for every g € SO(d) are W = {0} and W = H? (i.e., the representation
SO(d) 3 g — g ® g on the vector space H? is irreducible).

Let us check this fact. We take w € W not identically zero: by the spectral theorem,
there exists g € SO(d) such that v := gwg™' € W is diagonal: v;; = \;d;;. Since v
is not identically zero and it has zero trace, there exist ig,jo such that X\;; # Aj,. Let
us now take h € SO(d) to be the matrix that permutes the coordinates ig and jo, i.e.,
hij := 6ij for 4, j & {io, jo} while hiyj = hji, := Jjo; and hijy = hjoi := 4o It is clear that
v:=hvh™! € W is such that v;; = i dij, where i = A for i & {ig,jo} while X, = No

and )\]0 = \j,- Therefore z := )(v —v) € W is such that z;, = 1, 2., = —1,

1
(Xig=Ajo
and z;; = 0 for all the other values of 7, j. By considering gz ¢!, where g € SO(d) is an
arbitrary permutation matrix, we obtain all the matrices defined like z but with arbitrary
10, jo- These matrices span the linear subspace consisting of all the diagonal matrices with
zero trace, which are therefore contained in W. However, again by the spectral theorem,
for any matrix u € H? we can find g € SO(d) such that gu g~! is diagonal with zero trace,
hence we must have W = H? and the proof is completed.
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