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Abstract We review the literature on the localization transition for the class of poly-
mers with random potentials that goes under the name of copolymers near selective
interfaces. We outline the results, sketch some of the proofs and point out the open
problems in the field. We also present in detail some alternative proofs that simplify
what one can find in the literature.
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1 Copolymers and selective solvents

1.1 A basic model

In [13], T. Garel, D. A. Huse, S. Leibler and H. Orland introduced a simple model in
order to look into how the statistical behavior of macromolecules can be strongly af-
fected by randomness in the physico-chemical properties of their constituents. They
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aimed at a special class of macromolecules of linear type, the random hydrophilic-
hydrophobic copolymers, in a medium of water and oil, separated by an interface.
Such a polymer chain is just made up of monomers that differ for their affinity for
water (or oil). The affinity is reduced to a real parameter that we call charge: the
charge of the j-th monomer is denoted in [13] by ζ j and, in mathematical terms,
{ζ j} j=1,2,... is an IID sequence of Gaussian random variables, with given mean and
variance. In order both to conform with the mathematical literature and to generalize
slightly the problem we will write ζ j as ω j +h, where h ∈R (or h≥ 0 as we will do
next) and ω = {ω j} j=1,2,... is an IID sequence of random variables (often referred
to as the disorder) such that

M(t) := E [exp(tω1)] < ∞ , (1)

for every t ∈R and such that Eω1 = 0, Eω2
1 = 1. Apart for the larger class of charges

that we allow and for notations, the Hamiltonian of the polymer model set forth in
[13] is

HN,ω,h(S) :=
N

∑
n=1

(ωn +h)sign(Sn) , (2)

where N is the length of the polymer and S = {S0,S1, . . .} is a simple symmetric
random walk trajectory (S0 = 0, {Sn+1− Sn}n=0,1,... is a sequence of independent
identically distributed symmetric random variables that take only values ±1: the
law of S is denoted by P and we stress that ω and S are independent).

We invite the reader to have a look from now at Figure 1 for the directed poly-
mer interpretation of the trajectories of the model. A small detail to deal with is
sign(0): sign(Sn) should be read as sign(Sn−1) when Sn = 0 and this convention is
particularly natural in directed polymer terms, because sign(Sn) is +1 (−1) if the
nth monomer is in the upper (lower) half plane, that is in oil (water), see Figure 1.
Still to conform with most of the mathematical literature on copolymers, the inverse
temperature is denoted by λ (≥ 0) instead of the more customary β , so that the
Boltzmann factor that defines the polymer model of length N is exp(λHN,ω,h(S)).
We are interested in the quenched system so we underline the very different nature
of the two sources of randomness: ω is chosen once for all at the beginning of the
experiment (the hydrophilic or hydrophobic character of the monomers does not
change, while the chain fluctuates).

At a superficial level the effect of the charges on the polymer is quite intu-
itive: for λ > 0 positively charged monomers (ωn + h > 0, that is hydrophobic
monomers) prefer lying in the upper half-plane (oil) and the opposite is true for
the negatively charged ones. But for large N these energetically favorable trajec-
tories become more and more atypical for P since placing the monomers in their
preferred solvent strongly reduces the fluctuation freedom of the chain. We are
therefore dealing with an energy-entropy competition that in the limit N→ ∞ leads
to a localization-delocation transition: localization arises when energy prevails and
the polymer sticks to the oil-water interface, visiting thus both oil and water, while
delocalization corresponds to the case in which the polymer prefers to stay away
from the interface. We will come back to this with much more details, but we an-
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Fig. 1 The upper part of the figure shows a copolymer configuration: each bond, or segment,
[(n−1,Sn−1),(n,Sn)] of the random walk trajectory represents a monomer, so that sign(Sn) should
be read as +1 (resp. −1) if this monomer is in the upper (resp. lower) half-plane. Note that the
Hamiltonian of the copolymer, cf. (2), does not depend on the details of S within an excursion,
but only on the length and sign of the excursion. This naturally leads to the generalized model
introduced in section 1.2 (lower part of the figure) in terms of a general discrete renewal process
τ and a sequence of independent signs ξ . It is mathematically useful to use the variable ∆n, that
in the random walk case is just (1− sign(Sn))/2, i.e. the indicator function that the copolymer is
below the axis. Note in fact that, by (2), HN,ω,h(S) =−2∑

N
n=1(ωn +h)∆n + cN(ω), with cN(ω) =

∑
N
n=1(ωn + h) which does not depend on S (or ∆ ), therefore we can drop it without changing the

polymer measure (that is what we do in (4)).

ticipate that this entropy-energy competition turns out to be rather challenging: the
phase diagram of the model is for the moment only partially understood and sound
conjectures (or even only convincing physical heuristics) are lacking on several fun-
damental issues. This may appear rather surprising in view of the very simple nature
of the model and of the fact, at the heart of the motivation of [13], that it represents
one of the simplest instances of a general mechanism that plays a crucial role in a
variety of extremely important phenomena (protein folding, to name one).

1.2 The (general) copolymer model

As argued in Figure 1 and its caption, the basic copolymer model does not depend
on all the details of S, but just on its zero level set, which is a renewal set, and on the
sign of the excursions, that is simply an independent fair coin tossing sequence. It
is therefore natural, and at times really helpful, to look at the following generalized
framework. Let us consider a discrete renewal process τ = {τn}n≥0 on the non-
negative integers N∪ {0}, i.e., a sequence of random variables such that τ0 = 0
and {τ j+1− τ j} j=0,1,... is an IID sequence of positive integer-valued variables, with
marginal law satisfying
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K(n) := P(τ1 = n) n→∞∼ CK

n1+α
, (3)

where α > 0 and CK > 0 (we write fn∼ gn for fn/gn→ 1). Since we are dealing with
renewal processes it is important to stress that P(τ1 < ∞) = 1, that is ∑

∞
n=1 K(n) = 1,

so that τ is a persistent renewal. More generally, one could replace the constant Ck
in (3) by a slowly varying function L(n), but we stick for simplicity to the purely
polynomial asymptotic behavior (3). It is well-known that the first return time to zero
of the simple symmetric random walk inf{n > 0 : Sn = 0} satisfies (3) (restricted to
the even integers, due to the usual periodicity issue) with α = 1

2 . In particular, the
basic model presented in the previous subsection is a special case of the generalized
copolymer model we are defining, as it will be clear in a moment.

Remark 1. It is practical to switch freely from looking at τ as a sequence to con-
sidering it a random set, so for example |τ ∩ [0,N]| is the number of renewals up to
N, or n ∈ τ is the event that there exists j such that τ j = n. For a comprehensive
references on renewal processes see for example [2].

The renewal τ identifies the polymer-interface contacts: we still need to know
whether the excursion is above or below the axis. For this let ξ = {ξn}n∈N denote
an IID sequence of B(1/2) variables (that is P(ξn = 0) = P(ξn = 1) = 1

2 ) indepen-
dent of τ , that we still call signs. Starting from the couple (τ,ξ ) we build a new
sequence ∆ = {∆n}n∈N by setting ∆n = ∑

∞
j=1 ξ j 1(τ j−1,τ j ](n), in analogy with the

simple random walk case: the signs ∆n are constant between the points in τ and
they are determined by ξ .

By copolymer model we mean the probability law PN,ω = PN,ω,λ ,h for the se-
quence ∆ defined by

dPN,ω

dP
(∆) :=

1
ZN,ω

exp

(
−2λ

N

∑
n=1

∆n(ωn +h)

)
, (4)

where N ∈ N, λ ≥ 0, h ∈ R (but we can and will assume h ≥ 0 without loss of
generality) and ω = {ωn}n∈N has been introduced in § 1. The partition function
ZN,ω = ZN,ω,λ ,h is given by

ZN,ω := E

[
exp

(
−2λ

N

∑
n=1

∆n(ωn +h)

)]
. (5)

In order to emphasize the value of α in (3), we will sometimes speak of a α-
copolymer model, but PN,ω depends on the full distribution K(·), not only on α .

1.3 The free energy: localization and delocalization

We introduce the free energy of the copolymer by
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F(λ ,h) := lim
N→∞

FN(λ ,h) , where FN(λ ,h) :=
1
N
E
[
logZN,ω,λ ,h

]
. (6)

The existence of such a limit follows by a standard argument based on super-
additivity, see for example [14] or [15, Ch. 4], where it is also proven that

F(λ ,h) = lim
N→∞

1
N

logZN,ω,λ ,h , P(dω)-a.s. and in L1(P) . (7)

Equations (6)–(7) are telling us that the limit in (7) does not depend on the (typical)
realization of ω , however it does depend on P, that is on the law of ω1, as well as
on the inter-arrival law K(·). This should be kept in mind, even if we omit P and
K(·) from the notation F(λ ,h). Let us point out from now that F(λ , ·) and F(·,h)
are convex functions, since they are limits of convex functions. As a matter of fact
F(·, ·) is only separately convex because of the choice of the parametrization, but it
is straightforward to see that (λ ,h) 7→ F(λ ,h/λ ) is convex.

Remark 2. It is sometimes useful to consider the constrained partition function
Zc

N,ω = Zc
N,ω,λ ,h of the model, defined by

Zc
N,ω,λ ,h := E

[
exp

(
−2λ

N

∑
n=1

(ωn +h)∆n

)
1{N∈τ}

]
, (8)

which differs from (5) only by the boundary condition factor 1{N∈τ}. It is a standard
fact [15, Remark 1.2] that for all N,λ ,h we have

Zc
N,ω,λ ,h ≤ ZN,ω,λ ,h ≤C N Zc

N,ω,λ ,h , (9)

where C is a positive constant. In particular, the free energy F(λ ,h) does not
change if ZN,ω,λ ,h is replaced by Zc

N,ω,λ ,h in (6) and (7). Furthermore, since N 7→
E(logZc

N,ω,λ ,h) is a real super-additive sequence, we can write

F(λ ,h) = lim
N→∞

1
N
E(logZc

N,ω,λ ,h) = sup
N∈N

1
N
E(logZc

N,ω,λ ,h) . (10)

A crucial observation is:

F(λ ,h) ≥ 0 for every λ ,h≥ 0 . (11)

This follows by restricting the expectation in (5) to the event {τ1 > N,ξ1 = 0}, on
which we have ∆1 = 0, . . . , ∆N = 0, hence we obtain ZN,ω ≥ 1

2 P(τ1 > N) and it
suffices to observe that N−1 logP(τ1 > N) vanishes as N→∞, thanks to (3). Notice
that the event {τ1 > N,ξ1 = 0} corresponds to the set of trajectories that never visit
the lower half plane, therefore the right hand side of (11) may be viewed as the
contribution to the free energy given by these trajectories.

Based on this, we say that (λ ,h) ∈ D (delocalized regime) if F(λ ,h) = 0, while
(λ ,h) ∈L (localized regime) if F(λ ,h)> 0. This may look at first as a cheap way
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to escape from the real localization/delocalization issue, that is inherently linked to
the path properties of the measure PN,ω , but it is not the case. Notice in fact that, if
h 7→ F(λ ,h) is differentiable (which fails at most for a countable number of values
of h, by convexity), by differentiating (7) and by convexity arguments we have

− 1
2λ

∂

∂h
F(λ ,h) = lim

N→∞
EN,ω

[
NN

N

]
, P-a.s., (12)

where

NN :=
N

∑
n=1

∆n , (13)

is just the total number of monomers in the lower half-plane, that is in water (cf.
Figure 1). Therefore if (λ ,h) is chosen in the interior of D , where F≡ 0, the polymer
visits water with null density (NN/N → 0). On the other hand, if (λ ,h) is in L ,
the polymer puts a positive density, precisely −(1/(2λ ))∂ F(λ ,h)/∂h ∈ (0,1), of
monomers in water and the rest, still a positive density, in oil.

We will deal below, cf. section 5, with sharper results on path behavior, but the
elementary observation we have just made shows that the definition we have set
forth of localization and delocalization is far from being artificial. As a matter of
fact, it is the natural physical definition, and in fact it has been used already in [13],
while in the mathematical literature was first introduced by [7].

1.4 The phase diagram

Convexity and the evident monotonicity of F(λ , ·) put strong a priori constraints on
the phase diagram: let us go through this before going toward sharper questions. We
can set

hc(λ ) := sup{h : F(λ ,h)> 0} , (14)

and the monotonicity of F(λ , ·) guarantees that (λ ,h) ∈L if and only if h < hc(λ ),
namely that hc(·) is the critical curve. Let us derive a number of elementary proper-
ties of hc(·).

The fact that hc(λ )< ∞ for every λ follows by the standard annealed bound:

E logZN,ω ≤ logEZN,ω = logEE

[
exp

(
−2λ

N

∑
n=1

∆n(ωn +h)

)]
=

logEexp

(
(log M(−2λ )−2λh)

N

∑
n=1

∆n

)
, (15)

so that F(λ ,h) ≤ 0 (hence, recall (11), F(λ ,h) = 0) if h ≥ log M(−2λ )/(2λ ), and
log M(−2λ )/(2λ )< ∞ for every λ by (1).
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Remark 3. The exponential of the rightmost term in (15) is the partition function
of the annealed model associated to our quenched model. The free energy of the
annealed model is rather trivial: it is in fact an elementary exercise to see that

lim
N→∞

1
N

logEexp

(
(log M(−2λ )−2λh)

N

∑
n=1

∆n

)
= (log M(−2λ )−2λh)+ , (16)

where a+ := a1a>0. The annealed model has therefore a (de)localization transition
too: its critical curve is hann

c (λ ) := log M(−2λ )/(2λ ) and we have just remarked
that hc(λ ) ≤ hann

c (λ ) (this inequality on the critical curves is also referred to as
annealed bound). It can be noticed also that the annealed free energy is not C1 at
criticality, that is the transition is of first order. Let us stress that the annealed free
energy looses a lot of details of the original model (in particular: no trace of K(·)!).

We have also hc(λ )> 0 as soon as λ > 0, but this is not a trivial statement. In fact
this means showing that F(λ ,0)> 0 for every λ > 0: in more dramatic terms, if the
interaction does not select, on the average, a preferred solvent (h = 0), the polymer
is localized even at arbitrarily weak coupling, a result established first in [26]. We
skip the proof of this fact (in section 2 the proof of stronger results is sketched)
and we simply observe that, together with the annealed upper bound, it implies that
hc(λ )−→ 0 as λ ↘ 0.

At this point convexity can be used in a very profitable way: since {(λ ,y) :
F(λ ,y/λ ) ≤ 0)} is a convex set, its lower boundary λ 7→ λhc(λ ) is a convex func-
tion. So we can write hc(λ ) = g(λ )/λ , with g(·) convex such that g(λ ) = o(λ ) as
λ ↘ 0. This directly implies in particular continuity of hc(·) and, with a little bit
more of work, also the fact that hc(·) is strictly increasing [4].

Quite a bit of effort has been put into pinning down the value of hc(·). Figure 2
sums up the results that are known on hc(·) and, in particular, the content of

Theorem 1. For every λ > 0 the following explicit bounds hold:

1
2λ/(1+α)

log M (−2λ/(1+α)) ≤ hc(λ ) <
1

2λ
log M (−2λ ) = hann

c (λ ) , (17)

where the left inequality is strict when α ≥ 0.801 (at least for λ small).

The lower bound in (17) is proved in [4]. The strict inequality in the upper bound in
(17) was first proved in [30] to hold for large λ and then extended to every λ > 0 in
[5]. In section 3 we give an alternative, more direct proof.

Highlighted in Figure 2 is the small λ behavior of hc(λ ). In fact, as more exten-

sivily explained in section 4, for α ∈ (0,1) we have hc(λ )
λ↘0∼ mα λ , with mα > 0

depending only on α . The slope mα is therefore a universal feature of the model:
it does not depend on the details of the disorder sequence ω and of the underlying
renewal τ . The proof of such a result goes through showing that for λ and h small
the free energy of the copolymer is close to the free energy of a suitable continuum
polymer model.
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Fig. 2 On the left there is a sketch of the phase diagram and the critical curve λ 7→ hc(λ ). The
localized (resp. delocalized) regime corresponds to (λ ,h) lying strictly below (resp. above) the
critical curve. Explicit upper and lower bound on hc(·) are known, cf. Theorem 1, and they are
schematically drawn as dashed lines. On the right one finds a zoom of the region near the origin,
where the critical curve is close to a straight line and essentially all the relevant information close
to the origin (weak coupling regime) is encoded in the slope of this line: while the details of the
critical curve do depend on the law of the disorder ω and on the details of K(·), the slope depends
only on α . This is an important universality feature to which section 4 is devoted.

It becomes therefore quite relevant to get a hold of the value of mα (at least for
α ∈ (0,1)). As a matter of fact, from (17) one directly extracts

1
1+α

≤ mα ≤ 1 , for every α > 0 . (18)

but this result can be sharpened to

max
(

1
2
,

g(α)√
1+α

,
1

1+α

)
≤ mα < 1 , (19)

where g(·) is a continuous function (of which we have an expression in terms of
the primitive of an explicit function) such that g(α) = 1 for α ≥ 1 and for which
one can show that g(α)/

√
1+α > 1/(1+α) for α ≥ 0.801 (by evaluating g(·)

numerically one can extend this result to α ≥ 0.65). Since the existence of mα is not
guaranteed for α ≥ 1, to be precise both in (18) and in (19) mα should be replaced
by the inferior and superior limits of hc(λ )/λ .

Remark 4. For sake of conciseness we have left aside the α = 0, that would require
replacing the power law behavior (3) with a regularly varying behavior (allowing, in
particular, the presence of logarithmic multiplicative corrections). The bounds that
we have just presented directly generalize [15, Ch. 6] and for α = 0 the three terms
in (17) coincide.

We would like to stress that Theorem 1 and the bounds (19) show that some
claims in the physical literature are wrong. Notably in [13, 32] it is claimed, for
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α = 1/2, that hc(·) coincides with h(ann)
c (·) (and (19) shows that also the weaker

claim that hc(λ )
λ↘0∼ h(ann)

c (λ ) is not correct. In [28, 23] it is claimed that, still for
α = 1/2, the inequality in the left-hand side of (17) is an equality. Theorem 1 falls
short of proving that also this claim is false (even if it suggests it). A numerical
study [9] lead for α = 1/2, complemented by a careful statistical analysis using
concentration inequalities, strongly suggests that the lower bound in (17) is strict
and that the critical curve is somewhat halfway between the lower and the upper
bound.

What the previous results and discussion expose is that a convincing heuristic
theory predicting the location of the critical curve, or just its slope at the origin, is
lacking. In this sense we consider that capturing the value of mα , for α ∈ (0,1), is
an important open problem. Since computing explicitly quenched quantities may be
really out of reach, here are two sub-problems that are open:

? show that m1/2 > 2/3;
? is mα = 1/(1+α) for some α > 0?

Finally, we point out that a reduced (simplified) copolymer model was introduced
in [4], taking inspiration from the approach in [23]. The original hope was that this
simplified model could catch the main features of the original copolymer model.
However, this does not seem to be the case, since it has been shown [30, 6] that for
the reduced model one has mα = 1/(1+α) for all α ∈ (0,1).

1.5 The critical behavior and a word about pinning models

Claims can be found in the physical literature about the critical behavior of this
model (at least in the original set-up, α = 1/2, e.g. [10, 21, 23, 32]), but these
claims do not always agree with each other, apart for the fact that they all claim,
not surprisingly, a smoothing effect of disorder. A rigorous result available on this
issue has been proven in [19]: the transition of the general copolymer model is
smooth (the derivative of the free energy vanishes at least linearly when the critical
point is approached, hence it is at least Lipschitz continuous at the critical point),
in contrast with the annealed case (where the the derivative of the free energy has
a discontinuity at criticality, cf. Remark 3): for every λ > 0 there exists c(λ ) < ∞

such that
F(λ ,hc(λ )+δ )≤ (1+α)c(λ )δ 2 (20)

for every δ > 0. The result was obtained under some technical conditions on the
disorder law, which are satisfied for instance in the case of Gaussian or bounded
charges. One can of course wonder whether the critical behavior of the copolymer
model depends or not on α (and on λ?) and how, but once again, the substantial
lack of sound physical predictions is quite disappointing. A natural open question
however is:
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? Can one improve (20), in the sense of replacing the exponent 2 with a larger
value?

A somewhat deeper insight into this issue can be achieved by considering also an-
other class of models, as we explain next.

The bound (20) in fact coincides with the one available for disordered pinning
models. Pinning models are a close companion to the copolymer, since the Boltz-
mann factor of a pinning model is

exp

(
N

∑
n=1

(βωn +h)δn

)
, (21)

where δn = 1n∈τ , that is 1Sn=0 in the random walk set-up (ω is chosen as before,
so that βωn +h is a random variable of mean h ∈ R and variance β 2). Therefore in
this case the polymer has an interaction with the environment only when it touches
the oil-water interface (or simply when it touches the x axis, usually called defect
line, since the model does not depend on the sign of the excursions). It is well
known that pining models exhibit a localization transition too and they can be dealt,
to a certain extent, with similar techniques [15]. However, in the end, there are
considerable differences, but let us try to single them out and see what they suggest
for copolymers:

1. The annealed pinning model is much richer than the annealed copolymer (cf. Re-
mark 3). In particular, the annealed free energy does depend on K(·) and the crit-
ical behavior depends on α: the transition is continuous (that is, the free energy
is C1) as soon as α ≤ 1 and it becomes smoother and smoother as α approaches
0 [15]. Harris criterion (see references in [15, 16]) gives a precise prediction on
what to expect for systems for which the annealed system has a transition that is
sufficiently smooth (for the pinning case the criterion boils down to α < 1/2):
essentially it says that quenched and annealed systems have the same critical be-
havior and it gives a precise prediction of the shift in the critical point due to
the disorder (irrelevant disorder regime). At the same time it suggests/predicts
that for α > 1/2 disorder is relevant, even if arbitrarily weak. This scenario has
now been made rigorous, see [16] and references therein, for pinning models.
The crucial point for us is however the fact that the free energy of the annealed
copolymer model is not differentiable at the critical point and therefore, in the
Harris sense, disorder is always relevant.

2. Understanding critical phenomena when disorder is relevant is a major challenge
and the possible scenarios set forth in the physical literature are quite intriguing,
but very challenging and, at times, controversial (see e.g. [24, 33] and references
therein). In this sense also the question that we have raised about improving (20)
acquires particular importance.

3. When α > 1, also the annealed pinning model free energy is not C1, and the
critical curve has been identified with no more precision than for the copolymer
model. In fact the annealed pinning critical curve (again, a curve separating lo-
calized and delocalized regimes, in the (β ,h) plane) behaves like−β 2/2 when β
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is small and the quenched critical curve is in [−c+β 2,−c−β 2] for β small (with
explicit values of the constants 0 < c− < c+ < 1/2, cf. [11]). This is absolutely
parallel to the fact that for the copolymer model hc(λ )∈ [c−λ ,c+λ ], as one reads
for example out of (18), (19).

Finally, it is natural to wonder what happens when a pinning interaction is added
to the copolymer model, that is when not only the solvents are selective, but some-
thing special goes on at the interface (thus taking into account for example the lack
of sharpness of the interface or the fact that impurities could be trapped at the inter-
face). There are works on this model, often called copolymer with adsorption (see
for example [25, 27, 34]), but the understanding is very limited: we refer to [15,
§ 6.3.2] for a detailed overview on this issue.

1.6 Organisation of the paper

The rest of the paper is devoted to going deeper into various results that we have
stated, by giving either a sketch of arguments of proof, or alternative proofs and
results that complement what can be found in the literature. More precisely:

• In section 2 we give a sketch of the proof on the lower bound in (17).
• In section 3 we give an alternative proof of the upper bound in (17).
• In section 4 we discuss the universality features of the copolymer model in the

weak coupling regime, i.e., for small values of λ ,h.
• Finally, section 5 is devoted to the description of the available results on the path

properties of the copolymer model.

2 Localization estimates

The aim of this section is to give a sketch of the proof of the lower bound in Theo-
rem 1, that is of the left inequality in (17), as well as of the left inequality in (19).

The key-phrase for the approaches in this section is: rare stretch strategies. The
idea, inspired by the renormalization group approach in [23], is to restrict the par-
tition function to polymer trajectories that can visit the lower half-plane only when
there is a stretch of monomers that are particularly, and anomalously, hydrophilic.
To do this we introduce an intermediate scale ` (large, but fixed) and look at the
sequence of charges in blocks of ` charges at a time. We will consider two strategies
(A and B) and, for simplicity, we will assume ω1 ∼N (0,1):

A: the jth block is good if ∑
j`
n=( j−1)`+1(ωn + h) ≤ −m`, with m a positive value to

be chosen below. For ` large, the probability that a given block is good is very
small, about exp(−`(h+m)2/2), so that good blocks are typically separated by
a distance of about exp(`(h+m)2/2).
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B: the jth block is good if ∑
j`
n=( j−1)`+1(ωn + h) = o(`). For ` large, the probability

that a given block is good is again very small for h > 0, about exp(−`h2/2),
so that good blocks in this case are typically separated by a distance of about
exp(`h2/2).

2ℓ

2ℓℓ

ℓ

0

0

A

B

Fig. 3 The lower bound strategies presented in this section are two and they are both based on
selecting some good blocks, just by looking at the environment. They are actually blocks in which
the environment is atypically negative: in strategy A we really select blocks in which the empirical
average of the charges ωn + h is smaller that a value −m < 0 (selected in the end, in order to
maximize the gain) and in strategy B we just aim at an empirical average close to zero (a rare
event anyway, for h > 0). Then for strategy A we make a lower bound on the partition function by
visiting the lower half plane if and only if a block is good and by insisting that in a good block the
walk stays in the lower half plane. In strategy B we target again the good blocks, but we put no
constraint on the walk in the good blocks.

Given a sequence ω of charges, the good blocks are identified by the rules just
given and we introduce a set of polymer trajectories Ω A

N,ω , resp. Ω B
N,ω , for the strat-

egy A, resp. B, defined as follows. Ω A
N,ω is the set of trajectories that stay in the

upper half plane except in presence of good blocks, when they stay in the lower
half plane, see the upper part of Figure 3. The set of polymer trajectories Ω B

N,ω still
includes all trajectories that stay in the upper half plane except in presence of good
blocks, but when there is a good block the only restriction is that the polymer has
to touch the oil-water interface just before every good block and it has to touch it
again at the end of the block, see the lower part of Figure 3.

The estimates are now just based on observing that

ZN,ω ≥ E

[
exp

(
−2λ

N

∑
n=1

∆n(ωn +h)

)
; Ω

A
N,ω

]

=
K(i1`)

2
exp

(
−2λ

(i1+1)`

∑
n=i1`+1

(ωn +h)

)
K(`)

2
×

K((i2− i1)`)
2

exp

(
−2λ

(i2+1)`

∑
n=i2`+1

(ωn +h)

)
K(`)

2
× . . . (22)
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where the first good block is the ith1 and so on. By using the definition of Ω A
N,ω

we see that each term −2λ ∑
(i j+1)`
n=i j`+1(ωn + h) is bounded below by 2λm` and we

notice that the right-hand side of (22) is a product of terms that, typically and to
leading order, are just the same term, because the distance of good block is about
exp(`(h+m)2/2). Therefore this product of terms will give origin to an exponential
growth in N (localization!) if

− 1+α

2
`(h+m)2 +2λ`m+o(`)> 0 (23)

(we have of course used (3)). If we now optimize the choice of m we readily see that
this condition is met if h < λ/(1+α), for ` sufficiently large. Therefore hc(λ ) ≥
λ/(1+α), which is the lower bound in (17) for the special case of Gaussian charges
(the extension to general disorder is straightforward).

Strategy B exploits a factorization similar to (22) but this time the contribution
in the good blocks is of about exp(F(λ ,0)`), since in the good blocks the empirical
average of the charges is zero, so the charges are essentially centered and for large
` the random variables in a good block have a distribution that is close to centered
IID standard Gaussian variables (in the complete proof, cf. [5, Sec. 2], this step
is performed via a change of measure argument that makes rigorous the heuristics
presented here: the argument is slightly more involved for non Gaussian charges).
The analog of (23) in this case becomes

− 1+α

2
`h2 + F(λ ,0)`+o(`) . (24)

At this point we need to estimate F(λ ,0). For example if one can show that F(λ ,0)≥
cλ 2 for come c > 0 (say, for λ ≤ λ0) then for the same values of λ one would have
that hc(λ ) ≥ λ

√
2c/(1+α). This is the basic idea leading to the (middle) lower

bound in (19). Of course the work is now on estimating c. We will not go into this
issue which, ultimately, is a refinement of the result in [26] and we refer to [5, Sec.
2] for details. But we point out that

• as explained in section 4, one can show that F(λ ,0)/λ 2 has a positive limit that
can be expressed in term of the free energy of a continuum polymer;

• in order to improve on the lower bound in (18) one needs
√

2c/(1+α)> 1/(1+
α), that is c> 1/(2+2α). This can be established, as recalled just below (19), for
α ≥ 0.65. If we were to improve on the lower bound in (18) with this strategy for
α = 1/2 we would need to show c > 1/3, but numerical estimations suggest that
limλ↘0 F(λ ,0)/λ 2 is smaller (probably by little) than 1/3, so it is very likely that
this strategy (barely) fails to establish that the lower bound in (18) can be made
strict for α = 1/2. The interest on this issue is because it would prove that the
claims in [23, 28] are not correct.
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3 Delocalization estimates

In this section we address the upper bound in Theorem 1, that is the right inequality
in (17). We will actually present (in full) an argument that is substantially easier
than the one originally used [5], even if it has the drawback to work only for α ∈
(0,1). This argument is still based on the fractional moment method (first used in
the copolymer context in [30] to show that the upper bound in (17) holds for λ large
and unbounded disorder), but it avoids the change of measure argument used in [5].
The change of measure argument in [5, 11] is an important technique, as well as
its refinement in [31] that leads to the upper bound in (19), but we will not discuss
these techniques here.

3.1 Fractional moment method: the general principle

We consider the fractional moment method in its most elementary application. For
the constrained partition function (8) we can write

Zc
N,ω,λ ,h =

N

∑
k=1

∑
0=t0<t1<...<tk=N

k

∏
i=1

1+ e−2λ (∑ti−1< j≤ti ω j+h(ti−ti−1))

2
K(ti− ti−1) . (25)

For γ ∈ [0,1], from the inequality (a+b)γ ≤ aγ +bγ , valid for all a,b≥ 0, we obtain
the upper bound

E((Zc
N,ω,λ ,h)

γ)≤
N

∑
k=1

∑
0=t0<t1<...<tk=N

k

∏
i=1

K̃γ,λ ,h(ti− ti−1) , (26)

where we define

K̃γ,λ ,h(n) :=
1+ e−(2λγh−log M(−2λγ))n

2
K(n)γ , (27)

We also set
Σ(γ,λ ,h) := ∑

n∈N
K̃γ,λ ,h(n) . (28)

Assume that Σ(γ,λ ,h) ≤ 1. By classical renewal theory [2], the right hand side
of (26) equals the probability that a renewal process with step probability (or sub-
probability, if Σ(γ,λ ,h)< 1) K̃γ,λ ,h(·) passes through N; in particular, it is bounded
by 1. Then

F(λ ,h) = lim
N→∞

1
N
E(logZc

N,ω,λ ,h) = lim
N→∞

1
γN

E(log(Zc
N,ω,λ ,h)

γ)

≤ lim
N→∞

1
γN

logE((Zc
N,ω,λ ,h)

γ) = 0 ,
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whence F(λ ,h) = 0 by (11).
This means that, when there exists γ ∈ [0,1] such that Σ(γ,λ ,h) ≤ 1, it follows

that (λ ,h) ∈ D . This allows to give explicit estimates on the delicalized region.
Note that for γ = 1 we find the annealed delocalized regime, that we have already
introduced: in fact Σ(1,λ ,h) ≤ 1 when h > hann

c (λ ) := log M(−2λ )/(2λ ). Since
for γ ∈ [0,1/(1+α)] one sees immediately that Σ(γ,λ ,h) = +∞, the interesting
range is γ ∈ (1/(1+α),1).

3.2 Fractional moment method: application

Let us define for λ > 0

h(λ ) := inf{h > 0 : ∃γ ∈ [0,1] such that Σ(γ,λ ,h)< 1} . (29)

Proposition 1. For α ∈ (0,1) we have hc(λ )≤ h(λ )< hann
c (λ ) for every λ > 0.

Proof. We have just remarked that Σ(γ,λ ,h) ≤ 1 implies (λ ,h) ∈ D , therefore
hc(λ ) ≤ h(λ ). It remains to show that h(λ ) < hann

c (λ ) for every λ > 0, that is, for
ε > 0 sufficiently small we can choose γ ∈ [0,1] such that Σ(γ,λ ,hann

c (λ )−ε)< 1.
Note that for γ ∈ (0,1)

∂Σ

∂γ
(γ,λ ,hann

c (λ )) = ∑
n∈N

1+ e−(γ log M(−2λ )−log M(−2λγ))n

2
(logK(n))K(n)γ

−2λ

[
(log M)′(−2λ )+

log M(−2λ )

2λ

]
∑

n∈N

e−(γ log M(−2λ )−log M(−2λγ))n

2
nK(n)γ .

By the strict convexity of log M(·) and the fact that log M(0) = 0,

(log M)′(−2λ )<
log M(0)− log M(−2λ )

2λ
=− log M(−2λ )

2λ
. (30)

Recalig our assumption (3), for α ∈ (0,1) we have ∑n∈N nK(n) = ∞, therefore by
Fatou’s lemma

∂Σ

∂γ
(1−,λ ,hann

c (λ )) := lim
γ↑1

∂Σ

∂γ
(γ,λ ,hann

c (λ )) = +∞ . (31)

Since Σ(1,λ ,hann
c (λ )) = 1, it follows that Σ(1−η ,λ ,hann

c (λ ))< 1, for η > 0 small
enough. By continuity, Σ(1−η ,λ ,hann

c (λ )− ε) < 1 for ε small enough, and the
proof is completed. ut



16 Francesco Caravenna, Giambattista Giacomin and Fabio Lucio Toninelli

4 Continuum model and weak coupling limit

In this section we explain in some detail the universality feature sketched in Figure 2
and its caption. The idea is that at weak coupling the details of the model, that is the
law of the renewal beyond the exponent α and the law of the disorder, are inessential
and a suitable continuum model captures the leading behavior of the (large class of)
discrete models we consider.

As we already remarked, it is convenient to look at the renewal process τ =
{τk}k≥0 as a random subset of [0,∞). It follows from our assumption (3) that the
rescaled random set ετ = {ετk}k≥0 converges in distribution as ε↘ 0 toward a limit
random set τ̃α , the so-called α-stable regenerative set (we refer to [12] for more
details; cf. also [8]). This is a random closed subset of [0,∞) which is scale-invariant
(cτ̃α has the same law as τ̃α , for every c > 0), has zero Lebesgue measure and no
isolated points. For α = 1

2 we have the representation τ̃α = {t ∈ [0,∞) : Bt = 0},
where B is Browian motion.

The complementary set (τ̃α)c, being open, is the countable union of disjoint open
intervals {In}n∈N. We can then define a continuous-time process ∆̃ α = {∆̃ α

t }t∈[0,∞),
which is constant on each In and takes the value 0 or 1, decided by fair coin tossing:
more precisely, in analogy with the discrete case, we set ∆t := ∑n∈N ξn 1In(t) where
{ξn}n∈N are i.i.d. B( 1

2 ) random variables. For α = 1
2 we have the representation

∆̃ α
t = 1{Bt<0} with B a Brownian motion. In general, ∆̃ α may be viewed as the limit

in distribution of the rescaled discrete process {∆bt/εc}t∈[0,∞) as ε ↘ 0.

Let now (β = {βt}t∈[0,∞),P) be a Brownian motion, independent of (∆̃ α ,P). We
proceed for a moment in a somewhat informal way: as a↘ 0, a−1ωbt/a2c converges

toward the white noise dβt/dt and ∆bt/a2c converges toward ∆̃t , therefore

aλ

N/a2

∑
n=1

(ωn +ah)∆n = λ

∫ N

0
(a−1

ωbt/a2c+h)∆bt/a2c dt ≈ λ

∫ N

0
(dβt +hdt)∆̃ α

t .

This hints at introducing a continuum partition function

Z̃t,β = Z̃t,β ,λ ,h := E
[

exp
(
−2λ

∫ t

0
∆̃

α
s (dβs +h ds)

)]
, (32)

so that, recalling (5), one should have ZN/a2,ω,aλ ,ah ≈ Z̃N,β ,λ ,h for a small.
We now turn to precise statements. One can show that the definition (32) of the

continuum partition function is well-posed, for P-a.e. β , and one introduces the
corresponding continuum free energy F̃

α
(λ ,h) in the usual way:

F̃α(λ ,h) = lim
t→∞

1
t
E log Z̃t,β ,λ ,h . (33)
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The existence of this limit and the fact that it is self-averaging (i.e., the expecta-
tion E can be dropped) require a much longer and technical proof than the discrete
counterpart, cf. [8].

Also the continuum free energy is non-negative: F̃α(λ ,h)≥ 0 for all λ ,h≥ 0, as
one can easily check. The localized and delocalized regimes can therefore be defined
in analogy with the discrete case, namely (λ ,h)∈ L̃ (resp. (λ ,h)∈ D̃) if F̃α(λ ,h)>
0 (risp. F̃α(λ ,h) = 0), and it is easily shown that they are separated by a critical
curve: L̃ = {(λ ,h) : h < h̃α

c (λ )} and D̃ = {(λ ,h) : h≥ h̃α
c (λ )}. There is however

a major simplification with respect to the discrete case: the scaling properties of
the processes ∆̃ α and β yield easily F̃α(aλ ,ah) = a2 F̃α(λ ,h) for all λ ,h,a ≥ 0,
therefore the critical curve is a straight line: h̃α

c (λ ) = mα λ for some mα .
We can finally come back to the rough consideration ZN/a2,ω,aλ ,ah ≈ Z̃N,β ,λ ,h,

that was discussed above. This can be made precise in the form of the following
theorem.

Theorem 2. For an arbitrary discrete α-copolymer model we have

lim
a↘0

1
a2 F(aλ ,ah) = F̃α(λ ,h) , ∀λ ,h≥ 0 . (34)

Moreover

lim
λ↘0

hc(λ )

λ
= mα . (35)

This result was first proved in [7] in the special case of the basic model of sec-
tion 1, i.e., for the discrete copolymer model based on the simple random walk on
Z, corresponding to α = 1

2 (in [17] one can find an argument to relax the assumption
in [7] of binary charges and in [25] the case with adsorption is treated, cf. the end
of section 1.5). The generalization to arbitrary α-copolymer models, with general
disorder distribution, is in [8].

Note that (34) yields directly the existence of the limit as λ ↘ 0 of F(λ ,0)/λ 2,
that was anticipated in section 2, as well as the fact that this limit coincides with
F̃α(1,0)> 0. We also point out that (35) is not a direct consequence of (34).

The importance of Theorem 2 relies in its universality content: for any fixed
α ∈ (0,1) there is a single continuum model that captures the behavior of all dis-
crete α-copolymer models for small values of λ and h. In other words, the differ-
ences among these models become irrelevant in the weak coupling limit. From this
viewpoint, the slope mα of the continuum critical curve is an extremely interest-
ing object: improving the known bounds 1

1+α
≤ mα < 1 would yield a substantial

improvement in the understanding of the phase transition in this class of models.

5 Path properties

Up to now we have discussed the localization-delocalization transition only in terms
of free energy. A complementary, and equally interesting, point of view is that of
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looking at path properties. In other words, how does the typical (under PN,ω , for
typical ω) polymer trajectory look like? The bottom-line of the picture which has
emerged up to this day is the following. In the localized region the polymer makes
order of N excursions between the two half-planes; the lengths of such excursions
are O(1) and their distribution has an exponential tail. In the delocalized region, on
the other hand, the number of monomers in the defavorable solvent (i.e. in the lower
half plane) is not only sub-linear in N (this information can be obtained immediately
from the fact that the free energy is zero there, cf. (12)) but it actually does not
exceed O(logN), with high probability. In the following, we discuss this picture in
a bit more detail.

5.1 The localized phase

This subsection is is extracted from [18], to which we refer for additional results,
concerning for instance the exponential tail of the length of the polymer excursions
between the two solvents. Path properties in the localized phase have been studied
also in [1, 3].

Let MN := maxi:τi≤N(τi− τi−1) be the length of the longest polymer excursion
between the two solvents. The following result says that in the localized region
correlations decay exponentially fast, and the longest excursion is of order logN:

Theorem 3. Let (λ ,h) ∈L . There exist constants c1,c2 such that, for every pair of
bounded local functions A,B of τ we have

sup
N

E [|EN,ω(AB)−EN,ω(A)EN,ω(B)|]≤ c1‖A‖∞ ‖B‖∞e−c2d(A,B), (36)

where d(A,B) denotes the distance between the supports of A and B.
Moreover, for every ε ∈ (0,1) the following holds in P-probability:

lim
N→∞

PN,ω

(
1− ε

µ(λ ,h)
≤ MN

logN
≤ 1+ ε

µ(λ ,h)

)
= 1 , (37)

where µ is defined as

µ(λ ,h) =− lim
N→∞

1
N

logE
1+ e−2λ ∑

N
n=1(ωn+h)

ZN,ω
. (38)

The existence of the limit (38), together with the bounds 0 < µ(λ ,h) ≤ F(λ ,h) in
the localized phase (µ(λ ,h)≥ 0 in general, and this is seen in the same way as for
F(λ ,h) ≥ 0), is proven in [18], where one can also find an argument showing that
µ(λ ,h)< F(λ ,h) under suitable (but not too restrictive) assumptions on the law of
the charges.

As a simple consequence of the exponential decay of correlations one can prove
that
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1. the free energy is infinitely differentiable (in both λ and h) in the localized region
L ;

2. for every bounded local observable A the limit limN→∞ EN,ω(A) exists P(dω)
almost surely and is reached exponentially fast.

As expected, the rate of exponential decay of the correlation functions (or inverse
correlation length), i.e. c2 in (36), tends to zero as h↗ hc(λ ). In general, it is a very
interesting open problem to understand the relation between this and the way the
free energy vanishes close to the critical point. In [29], for the special case where
K(·) is the law of the first return to zero of the symmetric simple random walk on
Z, it was proven that the best constant c2 coincides with µ(λ ,h) defined in (38).

There would be much to say about µ(λ ,h) and F(λ ,h) and we prefer to refer
the reader to the introduction of [20] where this issue is treated in detail for pinning
models. Here, in a simplistic way, we just point out that Theorem 3 and the bounds
mentioned just after it are telling us in particular that µ(λ ,h) is as good as F(λ ,h)
for detecting the localization transition. But:

? is it true that log µ(λ ,h) ∼ log F(λ ,h) as h↘ hc(λ )? In view of the discussion
on disorder relevance in section 1.5, we expect that this is not the case and estab-
lishing such a result would be very interesting.

5.2 The delocalized phase

Recall the definition NN = ∑
N
n=1 ∆n in (13). The following theorem shows that,

strictly inside the delocalized region, NN is typically at most of order logN:

Theorem 4 ([17]). For any δ > 0,λ > 0 there exist c > 0,q > 0 such that for every
N ∈ N

EPN,ω,λ ,hc(λ )+δ (NN ≥ n)≤ e−cn ∀n≥ q logN . (39)

This result was proven in [17] under the assumption that the disorder law P sat-
isfies a concentration inequality of sub-Gaussian type. This holds for instance in the
case of Gaussian or bounded charges, and more generally whenever the distribution
of ω1 satisfies a Log-Sobolev inequality.

Here we give a simpler argument, inspired by [22], which works under the gen-
eral assumptions of section 1 on the disorder law and gives the weaker statement

EEN,ω,λ ,hc(λ )+δ (NN)≤
c

2λδ
logN (40)

for some constant c. The same argument also shows that at the critical point NN is
typically at most of order

√
N logN:

EEN,ω,λ ,hc(λ )(NN)≤ c′
√

N logN (41)

for some other constant c′.
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Recalling (5), for all h0,h1 ≥ 0 we can write

ZN,ω,λ ,h0 := ZN,ω,λ ,h1 ·EN,ω,λ ,h1 [exp(2λ (h1−h0)NN)] . (42)

Restricting ZN,ω,λ ,h1 on the event {τ1 > N,ζ1 = 0}, we obtain the bound ZN,ω,λ ,h1 ≥
1
2 ∑n>N K(n)∼ (const.)N−α , by (3). Applying Jensen’s inequality we obtain

1
N
E
[
logZN,ω,λ ,h0

]
≥ 1

N
E
[
logZN,ω,λ ,h1

]
+

2λ (h1−h0)

N
EEN,ω,λ ,h1 [NN ]

≥−c1
logN

N
+

2λ (h1−h0)

N
EEN,ω,λ ,h1 [NN ] ,

(43)

where c1 ∈ (0,∞). By (9) we have logZc
N,ω,λ ,h ≥ logZN,ω,λ ,h− c2 logN, for some

constant c2, therefore by (10) we can write, for some c ∈ (0,∞),

F(λ ,h0)≥ sup
N∈N

{
2λ (h1−h0)

N
EEN,ω,λ ,h1 [NN ]− c

logN
N

}
. (44)

• Take h0 = hc(λ ) and h1 = hc(λ )+ δ with δ > 0. Since F(λ ,h0) = 0, from (44)
we obtain (40).

• Now take h0 = hc(λ )−δ , with δ > 0, and h1 = hc(λ ). Since F(λ ,hc(λ )−δ )≤
c2δ 2 for some c2 = c2(λ ) ∈ (0,∞) (cf. (20)), it follows again from (44) that

limsup
N→∞

EEc
N,ω,λ ,hc(λ )

[NN ]
√

N logN
≤C , where C :=

√
c1 c2(λ )

λ
∈ (0,∞) , (45)

whence (41).

Remark 5. Recalling (27), let λ ,h> 0 and γ ∈ [0,1] be chosen such that Σ(γ,λ ,h)<
1, that is, K̃γ,λ ,h(·) is a sub-probability kernel on N0. Since K̃γ,λ ,h(·) ∼ cK(N)γ ∼
c′N−γ(1+α) as N → ∞ for some constants c,c′ > 0, by (27) and (3), it is a basic
result in renewal theory that the right hand side of (26) is asymptotically equivalent
to c′′K̃γ,λ ,h(N) as N→∞ for some constant c′′ > 0, cf. [15, Theorem A.4]. Therefore
we have for all N ∈ N

E((Zc
N,ω,λ ,h)

γ)≤C1K̃γ,λ ,h(N)≤C1 K(N)γ , (46)

where here and in the sequel Ci denotes a generic positive constant. Recalling (9)
and (3), for the original (non constrained) partition function we have

E
(
(ZN,ω,λ ,h)

γ
)
≤C2 Nγ K(N)γ ≤C3N−γα . (47)

This relation can be exploited to improve Theorem 4, showing that with high prob-
ability NN is of order 1. More precisely, from the bound ZN,ω,λ ,h ≥ 1

2 ∑n>N K(n)∼
(const.)N−α and (42) it follows that for any δ > 0
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EN,ω,λ ,h+δ [exp(2λδNN)] =
ZN,ω,λ ,h

ZN,ω,λ ,h+δ

≤C4 Nα ZN,ω,λ ,h , (48)

hence applying (47) we obtain

E
[
(EN,ω,λ ,h+δ [exp(2λδNN)])

γ
]
≤Cγ

4 Nαγ E
(
(ZN,ω,λ ,h)

γ
)
≤C5 . (49)

Recalling that γ ∈ [0,1], by Markov’s inequality we can write

EPN,ω,λ ,h+δ (NN ≥ n)≤ E
(
PN,ω,λ ,h+δ (NN ≥ n)γ

)
≤ e−2λδγnE

[
(EN,ω,λ ,h+δ [exp(2λδNN)])

γ
]
≤C5 e−2λδγn .

Summarizing, we have shown that whenever relation (47) holds true, there exists
a constant C > 0 such that for every δ > 0

EPN,ω,λ ,h+δ (NN ≥ n)≤C e−2λδγn , ∀n ∈ N . (50)

We stress that relation (47) holds true in particular for every λ ,h with h> h(λ ) (with
a suitable choice of γ ∈ [0,1], recall (29) and Proposition 1), hence also below the
annealed critical curve. This is therefore an improvement of equation (1.12) in [17].

We point out that delocalization properties were also studied in [3]. However the
nature of the delocalized phase, in the pathwise sense, is still very little understood
and, notably, almost sure results are laking. For example:

? Is it true that, if (λ ,h) is in the interior of D , for every ε > 0 we have
limN→∞ PN,ω(∆n = 0 for every n ∈ [εN,N]∩N) = 0 P(dω)-almost surely?
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