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Abstract. We consider a general model of a heterogeneous polymer chain fluctuating in
the proximity of an interface between two selective solvents. The heterogeneous character
of the model comes from the fact that the monomer units interact with the solvents and
with the interface according to some charges that they carry. The charges repeat them-
selves along the chain in a periodic fashion. The main question on this model is whether
the polymer remains tightly close to the interface, a phenomenon called localization, or
there is a marked preference for one of the two solvents yielding thus a delocalization

phenomenon.
In this paper we present an approach that yields sharp estimates on the partition

function of the model in all regimes (localized, delocalized and critical). This in turn
allows to get a precise pathwise description of the polymer measure, obtaining the full
scaling limits of the model. A key point is the closeness of the polymer measure to suit-
able Markov renewal processes and Markov renewal theory is precisely one of the central
mathematical tools of our analysis.
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1. Introduction and main results

1.1. Two motivating models. Let S := {Sn}n=0,1,... be a random walk, S0 = 0 and

Sn =
∑n

j=1Xj , with IID symmetric increments taking values in {−1, 0,+1}. Hence the

law of the walk is identified by p := P (X1 = 1) = P (X1 = −1), and we assume that
p ∈ (0, 1/2). The case p = 1/2 can be treated in an analogous way but requires some
notational care because of the periodicity of the walk. We also consider a sequence ω :=
{ωn}n∈N={1,2,...} of real numbers with the property that ωn = ωn+T for some T ∈ N and

for every n: we denote by T (ω) the minimal value of T .

Consider the following two families of modifications of the law of the walk, both indexed
by a parameter N ∈ N:

Pinning and wetting models. For λ ≥ 0 consider the probability measure PN,ω defined by

dPN,ω

dP
(S) ∝ exp

(
λ

N∑

n=1

ωn1{Sn=0}

)
. (1.1)

The walk receives a pinning reward, which may be negative or positive, each time it
visits the origin. By considering the directed walk viewpoint, that is {(n, Sn)}n, one may
interpret this model in terms of a directed linear chain receiving an energetic contribution
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when it touches an interface. The main question is whether for large N the typical paths
of PN,ω are rather attracted or repelled by the interface.

There is an extensive literature on periodic pinning and wetting models, the majority of
which is restricted to the T = 2 case, we mention for example [13, 26], see [16] for further
discussion and references.

Copolymer near a selective interface. Much in the same way we introduce

dPN,ω

dP
(S) ∝ exp

(
λ

N∑

n=1

ωn sign (Sn)

)
, (1.2)

where if Sn = 0 we set sign(Sn) := sign(Sn−1)1{Sn−1 6=0}. This convention for defining
sign(0), that will be kept throughout the paper, means simply that sign(Sn) = +1, 0,−1
according to whether the bond joining Sn−1 and Sn lies above, on, or below the x–axis.

Also in this case we take a directed walk viewpoint and then PN,ω may be interpreted
as a polymeric chain in which the monomer units, the bonds of the walk, are charged.
An interface, the x–axis, separates two solvents, say oil above and water below: positively
charged monomers are hydrophobic and negatively charged ones are instead hydrophilic.
In this case one expects a competition between three possible scenarios: polymer prefer-
ring water, preferring oil or undecided between the two and choosing to fluctuate in the
proximity of the interface.

We select [24, 29] from the physical literature on periodic copolymers, keeping however
in mind that periodic copolymer modeling has a central role in applied chemistry and
material science.

1.2. A general model. We point out that the models presented in § 1.1 are particular
examples of the polymer measure with Hamiltonian

HN (S) =
∑

i=±1

N∑

n=1

ω(i)
n 1{sign(Sn)=i} +

N∑

n=1

ω(0)
n 1{Sn=0} +

N∑

n=1

ω̃(0)
n 1{sign(Sn)=0}, (1.3)

where ω(±1), ω(0) and ω̃(0) are periodic sequences of real numbers. Observe that, by our
conventions on sign(0), the last term gives an energetic contribution (of pinning/depinning
type) to the bonds lying on the interface. We use the shorthand ω for the four periodic
sequences appearing in (1.3), and we will use T = T (ω) to denote the smallest common
period of the sequences. We will refer to ω as to the charges of our system.

Besides being a natural model, generalizing and interpolating between pinning and
copolymer models, the general model we consider is the one considered at several instances,
see e.g. [30] and references therein.

Starting from the Hamiltonian (1.3), for a = c (constrained) or a = f (free) we introduce
the polymer measure Pa

N,ω on Z
N, defined by

dPa
N,ω

dP
(S) =

exp (HN (S))

Z̃a
N,ω

(
1{a=f} + 1{a=c}1{SN=0}

)
, (1.4)

where Z̃a
N,ω := E[exp(HN ) (1{a=f} + 1{a=c}1{SN=0})] is the partition function, that is the

normalization constant. Observe that the polymer measure Pa
N,ω is invariant under the

joint transformation S → −S, ω(+1) → ω(−1), hence by symmetry we may (and will)
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assume that

hω :=
1

T (ω)

T (ω)∑

n=1

(
ω(+)

n − ω(−)
n

)
≥ 0. (1.5)

We also set S := Z/(TZ) and for β ∈ S we write equivalently [n] = β or n ∈ β. Notice
that the charges ωn are functions of [n], and we can write ω[n] := ωn.

1.3. The free energy viewpoint. The standard statistical mechanics approach leads
naturally to consider the free energy of the model, that is the limit as N → ∞ of

(1/N) log Z̃a
N,ω. It is however practical to observe that we can add to the Hamiltonian HN

a term which is constant with respect to S without changing the polymer measure. Namely
if we set

H′
N (S) := HN (S) −

N∑

n=1

ω(+1)
n ,

which amounts to sending ω
(+1)
n → 0, ω

(−1)
n → (ω

(−1)
n − ω

(+1)
n ) and ω̃

(0)
n → (ω̃

(0)
n − ω

(+1)
n ),

we can write
dPa

N,ω

dP
(S) =

exp (H′
N (S))

Za
N,ω

(
1{a=f} + 1{a=c}1{SN=0}

)
, (1.6)

where Za
N,ω is a new partition function given by

Za
N,ω = E

[
exp(H′

N )
(
1{a=f} + 1{a=c}1{SN=0}

)]
= Z̃a

N,ω · e−
PN

n=1 ω
(+1)
n . (1.7)

At this point we define the free energy:

fω := lim
N→∞

1

N
logZc

N,ω. (1.8)

A proof of the existence of such a limit goes through standard super-additive arguments,
as well as the fact that the superscript c could be changed to f and the result does not
change (see e.g. [16], but a complete proof, without using super-additivity, is given below).

The principle that the free energy contains the crucial information on the large N
behavior of the system is certainly not violated in this context. In order to clarify this
point let us first observe that fω ≥ 0 for every ω. This follows by noticing that the
energetic contribution to the trajectories that stay positive and come back to zero for the

first time at epoch N is just ω
(0)
N , hence by (1.7)

1

N
logZc

N,ω ≥ ω
(0)
N

N
+

1

N
log P

(
Sn > 0, n = 1, . . . , N − 1, SN = 0

) N→∞−→ 0 , (1.9)

where we have simply used the fact that the distribution of the first return to zero of S is
sub-exponential (see (2.2) for a much sharper estimate). This suggests a natural dichotomy
and, inspired by (1.9), we give the following definition:

Definition 1.1. The polymer chain defined by (1.4) is said to be:

• localized if fω > 0;
• delocalized if fω = 0.

A priori one is certainly not totally convinced by such a definition. Localization, as well
as delocalization, should be given in terms of path properties of the process: it is quite
clear that the energy H′

N (S) of trajectories S which do not come back very often (i.e. not
in a positively recurrent fashion) to the interface will be either negative or o(N), but this
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is far from being a convincing statement of localization. An analogous observation can be
made for delocalized polymer chains.

Nonetheless, with a few exceptions, much of the literature focuses on free energy esti-
mates. For example in [5] one can find the analysis of the free energy of a subset of the
class of models we are considering here and in § 1.7 of the same work it is argued that
some (weak) path statements of localization and delocalization can be extracted from the
free energy. We will come back with a review of the existing literature after we have stated
our main results, but we anticipate from now that our purpose is going well beyond free
energy estimates.

One of the main results in [5] is a formula for fω, obtained via Large Deviations argu-
ments. We will not give the precise expression now, the reader can find it in § 3.2 below,
but we point out that this formula is proven here using arguments that are more elemen-
tary and these arguments yield at the same time much stronger estimates. More precisely,
there exists a positive parameter δω, which is given explicitly and analyzed in detail in
§ 2.1, that determines the precise asymptotic behavior of the partition function (the link
between δω and fω will be clarified right after the statement):

Theorem 1.2 (Sharp asymptotic estimates). Fix η ∈ S and consider the asymptotic
behavior of Zc

N,ω as N → ∞ along [N ] = η. Then:

(1) If δω < 1 then Zc
N,ω ∼ C<

ω,η /N
3/2 ;

(2) If δω = 1 then Zc
N,ω ∼ C=

ω,η /N
1/2;

(3) If δω > 1 then fω > 0 and Zc
N,ω ∼ C>

ω,η exp
(
fωN

)
,

where the quantities fω, C>
ω,η, C

<
ω,η and C=

ω,η are given explicitly in Section 3.

Of course by aN ∼ bN we mean aN/bN → 1. Note that Theorem 1.2 implies the
existence of the limit in (1.8) and that fω = 0 exactly when δω ≤ 1, but we stress that
in our arguments we do not rely on (1.8) to define fω. We also point out that analogous
asymptotic estimates can be obtained for the free partition function, see Proposition 3.2.

It is rather natural to think that from such precise estimates one can extract detailed
information on the limit behaviors of the system. This is correct, notably we can consider

(1) Infinite volume limits, that is weak limits of Pa
N,ω as a measure on R

N;
(2) Scaling limits, that is limits in law of the process S, suitably rescaled, under Pa

N,ω.

Here we will focus only on (2): the case (1) is considered in [7].

A word of explanation on the fact that there appears to be two types of delocalized
polymer chains: the ones with δω = 1 and the ones with δω < 1. As we will see, these
two cases exhibit substantially different path behavior (even if both display distinctive
features of delocalized paths, notably a vanishing density of visits at the interface). As it
will be clear, in the case δω < 1 the system is strictly delocalized in the sense that a small
perturbation in the charges leaves δω < 1 (as a matter of fact, for charges of a fixed period
the mapping ω 7→ δω is continuous), while δω is rather a borderline, or critical, case.

1.4. The scaling limits. The main results of this paper concern the diffusive rescaling

of the polymer measure Pa
N,ω. More precisely, let us define the map XN : R

N 7→ C([0, 1]):

XN
t (x) =

x⌊Nt⌋

σN1/2
+ (Nt− ⌊Nt⌋)

x⌊Nt⌋+1 − x⌊Nt⌋

σN1/2
, t ∈ [0, 1],

where ⌊ · ⌋ denotes the integer part of · and σ2 := 2p is the variance of X1 under the
original random walk measure P. Notice that XN

t (x) is nothing but the linear interpolation
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of {x⌊Nt⌋/(σ
√
N)}t∈ N

N
∩[0,1]. For a = f, c we set:

Qa
N,ω := Pa

N,ω ◦ (XN )−1.

Then Qa
N,ω is a measure on C([0, 1]), the space of real continuous functions defined on the

interval [0, 1], and we want to study the behavior as N → ∞ of this sequence of measures.

We start by fixing a notation for the following standard processes:

• the Brownian motion {Bτ}τ∈[0,1];

• the Brownian bridge {βτ}τ∈[0,1] between 0 and 0;

• the Brownian motion conditioned to stay non-negative on [0, 1] or, more precisely,
the Brownian meander {mτ}τ∈[0,1], cf. [28], and its modification by a random flip

{m(p)
τ }τ∈[0,1], defined as m(p) = σm, where P(σ = 1) = 1 − P(σ = −1) = p ∈ [0, 1]

and (m,σ) are independent;
• the Brownian bridge conditioned to stay non-negative on [0, 1] or, more precisely,

the normalized Brownian excursion {eτ}τ∈[0,1], also known as the Bessel bridge of

dimension 3 between 0 and 0, see [28]. For p ∈ [0, 1], {e(p)
τ }τ∈[0,1] is the flipped

excursion defined in analogy with m(p);

• the skew Brownian motion {B(p)
τ }τ∈[0,1] and the skew Brownian bridge {β(p)

τ }τ∈[0,1]

of parameter p, cf. [28] (the definition is recalled in Remark 1.5 below).

Finally, we introduce a last process, labeled by two parameters p, q ∈ [0, 1]: consider a
random variable U 7→ [0, 1] with the arcsine law: P(U ≤ t) = 2

π arcsin
√
t, and processes

β(p), m(q) as defined above, with (U, β(p),m(q)) independent triple. Then we denote by

{B(p,q)
τ }τ∈[0,1] the process defined by:

B(p,q)
τ :=





√
U β

(p)
τ
U

if τ ≤ U

√
1 − U m

(q)
τ−U
1−U

if τ > U

.

Then we have the following Theorem, which is the main result of this paper:

Theorem 1.3 (Scaling limits). For every η ∈ S, if N → ∞ along [N ] = η, then the
sequence of measures {Qa

N,ω} on C([0, 1]) converges weakly. More precisely:

(1) for δω < 1 (strictly delocalized regime): Qc
N,ω converges to the law of e(p

c
ω,η) and

Qf
N,ω converges to the law of m(pf

ω,η), for some parameters pa
ω,η ∈ [0, 1], a = f, c.

(2) for δω = 1 (critical regime): Qc
N,ω converges to the law of β(pω) and Qf

N,ω converges

to the law of B(pω ,qω,η), for some parameters pω, qω,η ∈ [0, 1].

(3) for δω > 1 (localized regime): Qa
N,ω converges as N → ∞ to the measure concen-

trated on the constant function taking the value zero (no need of [N ] = η).

The exact values of the parameters pa
ω,η, pω and qω,η are given in (5.5), (5.7), (5.17) and

(5.19). See also the Remarks 5.3, 5.4, 5.7 and 5.8.

Remark 1.4. It is natural to wonder why the results for δω ≤ 1 may depend on [N ] ∈ S.
First of all we stress that only in very particular cases there is effectively a dependence
on η and we characterize these instances precisely, see § 2.3. In particular there is no
dependence on [N ] for the two motivating models (the pinning and the copolymer one)
described in § 1.1, and more generally if hω > 0. However this dependence on the boundary
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condition phenomenon is not a pathology, but it is a sign of the presence of first order phase

transitions in this class of models. Nonetheless the phenomenon is somewhat surprising
since the model is one dimensional. This issue, that is naturally clarified when dealing
with the infinite volume limit of the model, is treated in [7].

Remark 1.5. (Skew Brownian motion). We recall that B(p), respectively β(p), is a

process such that |B(p)| = |B|, resp. |β(p)| = |β|, in distribution, but in which the sign
of each excursion is chosen to be +1 (resp. −1) with probability p (resp. 1 − p) instead

of 1/2. Observe that for p = 1 we have B(1) = |B|, β(1) = |β|, m(1) = m and e(1) = e
in distribution. Moreover B(1/2) = B and β(1/2) = β in distribution. Notice also that the
process B(p,q) differs from the p–skew Brownian motion B(p) only for the last excursion
in [0, 1], whose sign is +1 with probability q instead of p.

N

N

N0

0

0

p

p

1 − p

1 − p

Figure 1. A schematic view of the scaling limits for the constrained end-
point case. While in the localized regime, image on top, on large scale the
polymer cannot be distinguished from the interface, in the strictly delocal-
ized regime, bottom image, the visits to the interface are only a few and all
close to the endpoints (the sign of the excursion is obtained by flipping one
biased coin). In between there is the critical case: the zeros of the limiting
process coincide with the zero of a Brownian bridge, as found for the ho-
mogeneous wetting case [18, 9, 6], but this time the signs of the excursions
vary and they are chosen by flipping independent biased coin. Of course
this suggests that the trajectories in the localized cased should be analyzed
without rescaling (this is done in [7]).

1.5. Motivations and a look at the literature. From an applied viewpoint, the inter-
est in periodic models of the type we consider appears to be at least two–fold:

(1) On the one hand periodic models are often (e.g. [13, 24]) motivated as caricatures
of the quenched disordered models, like the ones in which the charges are a typical
realization of a sequence of independent random variables (e.g. [1, 4, 16, 30] and
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references therein). In this respect, periodic models may be viewed as weakly in-

homogeneous, and the approximation of strongly inhomogeneous quenched models
with periodic ones, in the limit of large period, sets forth very interesting and chal-
lenging questions. We believe that, if the precise description of the periodic case
that we have obtained in this work highlights the limitations of periodic modeling
for strongly inhomogeneous systems (compare in particular the anomalous decay
of quenched partition functions along subsequences pointed out in [17, section 4]
and our Th. 1.2), it is at the same time an essential step toward understanding the
large period limit, and the method we use in this paper may allow a generalization
that yields information on this limit.

(2) One the other hand, as already mentioned above, periodic models are absolutely
natural and of direct relevance for application, for example when dealing with
molecularly engineered polymers (see [25, 29] for a sample of the theoretical physics
literature, but the applied literature is extremely vast).

From a mathematical standpoint, our work may be viewed as a further step in the
direction of

(a) extending to the periodic setting precise path estimates obtained for homogeneous
models;

(b) clarifying the link between the free energy characterization and the path charac-
terization of the different regimes.

With reference to (a), we point out the novelty with respect to the works on homoge-
neous models [24, 18, 9, 6]. Although the basic role of renewal theory techniques to get the
crucial estimates had been emphasized already in [9, 6], we stress that the underlying key
renewal processes that appear in our inhomogeneous context are not standard renewals,
but rather Markov renewal processes, cf. [2]. Understanding the algebraic structure leading
to this type of renewals is one of the central points of our work, see § 3.1.

We also point out that the Markov renewal processes appearing in the critical regime
have step distributions with infinite mean. Even for ordinary renewal process, the exact
asymptotic behavior of the Green function in the case of infinite mean has been a long-
standing problem, cf. [15] and [21], which has been solved only recently by R. A. Doney
in [10]. The extension of this result to the framework of Markov renewal theory, that
we consider here in the case of finite-state modulating chain, presents some additional
problems (see Remark 3.1 and Appendix A) and, to our knowledge, has not been considered
in the literature. In Section 5 we also give an extension to our Markov-renewal situation
of the beautiful theory of convergence of regenerative sets developed in [12].

A final observation is that, like in [6], the estimates we get here are really sharp in all
regimes and our method goes well beyond the case of random walks with jumps ±1 and
0, to which we restrict for the sake of conciseness.

With reference to (b), we point out that in the models we consider there is a variety of
delocalized path behaviors, which are not captured by the free energy. This is suggestive
also in view of progressing in the understanding of the delocalized phase in the quenched
models [17].

1.6. Outline of the paper. The exposition is organized as follows:

• In Section 2 we define the basic parameter δω and we analyze the dependence on
the boundary condition [N ] = η of our results.

• In Section 3 we clarify the link of our models with Markov renewal theory and we
obtain the asymptotic behavior of Zc

N,ω and Z f
N,ω, proving Theorem 1.2.
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• In Section 4 we present a basic splitting of the polymer measure into zero level set
and excursions and we point out the importance of the partition function.

• In Section 5 we compute the scaling limits of Pa
N,ω, proving Theorem 1.3.

• Finally, the Appendices contain the proof of some technical results.

2. A closer look into the main results

2.1. The order parameter δω. A remarkable feature of our results, see Theorem 1.2
and Theorem 1.3, is the fact that the properties of the polymer measure are essentially
encoded in one single parameter δω , that can be regarded as the order parameter of our
models. This subsection is devoted to defining this parameter, but before we need some
preliminary notation.

We start with the law of the first return to zero of the original walk:

τ1 := inf{n > 0 : Sn = 0} K(n) := P
(
τ1 = n

)
. (2.1)

It is a classical result [11, Ch. XII.7] that

∃ lim
n→∞

n3/2K(n) =: cK ∈ (0,∞) . (2.2)

The key observation is that, by the T–periodicity of the charges ω and by the defini-
tion (1.5) of hω, we can define a S × S matrix Σα,β by the following relation:

n2∑

n=n1+1

(ω(−1)
n − ω(+1)

n ) = −(n2 − n1)hω + Σ[n1],[n2] . (2.3)

Thus we have decomposed the above sum into a drift term and a fluctuating term, where
the latter has the remarkable property of depending on n1 and n2 only through their
equivalence classes [n1] and [n2] in S. Now we can define three basic objects:

• for α, β ∈ S and ℓ ∈ N we set

Φω
α,β(ℓ) :=





ω
(0)
β +

(
ω̃

(0)
β − ω

(+1)
β

)
if ℓ = 1, ℓ ∈ β − α

ω
(0)
β + log

[
1

2

(
1 + exp

(
− ℓ hω + Σα,β

))]
if ℓ > 1, ℓ ∈ β − α

0 otherwise

; (2.4)

• for x ∈ N we introduce the S × S matrix Mω
α,β(x) defined by

Mω
α,β(x) := eΦ

ω
α,β(x)K(x)1(x∈β−α) ; (2.5)

• summing the entries of Mω over x we get a S × S matrix that we call Bω:

Bω
α,β :=

∑

x∈N

Mω
α,β(x) . (2.6)

The meaning of these quantities will emerge clearly in the next subsection. For the moment
we stress that they are explicit functions of the charges ω and of the law of the underlying
random walk (to lighten the notation, the ω–dependence of these quantities will be often
dropped in the following).

Observe that Bα,β is a finite dimensional matrix with positive entries, hence the Perron–
Frobenius Theorem (see e.g. [2]) entails that Bα,β has a unique real positive eigenvalue,
called the Perron–Frobenius eigenvalue, with the property that it is a simple root of the
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characteristic polynomial and that it coincides with the spectral radius of the matrix. This
is exactly our order parameter:

δω := Perron–Frobenius eigenvalue of Bω . (2.7)

2.2. A random walk excursions viewpoint. In this subsection we are going to see
that the quantities defined in (2.4) and (2.5) emerge in a natural way from the algebraic
structure of the constrained partition function Zc

N,ω. Let us look back to our Hamiltonian

(1.3): its specificity comes from the fact that it can be decomposed in an efficient way by
considering the return times to the origin of S. More precisely we define for j ∈ N

τ0 = 0 τj+1 = inf{n > τj : Sn = 0} ,
and we set ιN = sup{k : τk ≤ N}. We also set Tj = τj − τj−1 and of course {Tj}j=1,2,...

is, under P, an IID sequence. By conditioning on τ and integrating on the up–down
symmetry of the random walk excursions one easily obtains the following expression for
the constrained partition function:

Zc
N,ω = E




ιN∏

j=1

exp
(
Φω

[τj−1],[τj ]
(τj − τj−1)

)
; τιN = N




=

N∑

k=1

∑

t0,...,tk∈N
0=:t0<t1<...<tk:=N

k∏

j=1

Mω
[tj−1],[tj ]

(tj − tj−1) ,

(2.8)

where we have used the quantities introduced in in (2.4) and (2.5). This formula shows in
particular that the partition function Zc

N,ω is a function of the entries of Mω.

We stress that the algebraic form of (2.8) is of crucial importance: it will be analyzed
in detail and exploited in Section 3 and will be the key to the proof of Theorem 1.2.

2.3. The regime ω ∈ P. In this subsection we look more closely at the dependence of our
main result Theorem 1.3 on the boundary condition [N ] = η. It is convenient to introduce
the subset P of charges defined by:

P := {ω : δω ≤ 1, hω = 0, ∃ α, β : Σα,β 6= 0} , (2.9)

where we recall that hω and Σα,β have been defined respectively in (1.5) and (2.3).

The basic observation is that if ω /∈ P the constants pc
ω,η, p

f
ω,η, pω and qω,η actually

have no dependence on η and they take all the same value, namely 1 if hω > 0 and 1/2 if
hω = 0 (see the Remarks 5.3, 5.4, 5.7 and 5.8). Then the results in Theorem 1.3 for δω ≤ 1
may be strengthened in the following way:

Proposition 2.1. If ω /∈ P, then the sequence of measures {Qa
N,ω} on C([0, 1]) converges

weakly as N → ∞. In particular, setting pω := 1 if hω > 0 and pω := 1
2 if hω = 0:

(1) for δω < 1 (strictly delocalized regime), Qf
N,ω converges to the law of m(pω) and

Qc
N,ω converges to the law of e(pω)

(2) for δω = 1 (critical regime), Qf
N,ω converges to the law of B(pω) and Qc

N,ω converges

to the law of β(pω).

This stronger form of the scaling limits holds in particular for the two motivating models
of § 1.1, the pinning and the copolymer models, for which ω never belongs to P. This is
clear for the pinning case, where by definition Σ ≡ 0, while the copolymer model with
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hω = 0 has always δω > 1, as we prove in Appendix B. However we stress that there
do exist charges ω (necessarily belonging to P) for which there is indeed a dependence
on [N ] = η in the delocalized and critical scaling limits. This interesting phenomenon may
be understood in statistical mechanics terms and is analyzed in detail in [7].

3. Sharp asymptotic behavior for the partition function

In this section we are going to derive the precise asymptotic behavior of Zc
N,ω and Z f

N,ω,
in particular proving Theorem 1.2. The key observation is that the study of the partition
function for the models we are considering can be set into the framework of the theory of
Markov renewal processes, see [2, Ch. VII.4].

3.1. A link with Markov Renewal Theory. The starting point of our analysis is
equation (2.8). Let us call a function N × S × S ∋ (x, α, β) 7→ Fα,β(x) ≥ 0 a kernel. For
fixed x ∈ N, F·,·(x) is a S × S matrix with non-negative entries. Given two kernels F and
G we define their convolution F ∗G as the kernel defined by

(F ∗G)α,β(x) :=
∑

y∈N

∑

γ∈S

Fα,γ(y)Gγ,β(x− y) =
∑

y∈N

[
F (y) ·G(x− y)

]
α,β

, (3.1)

where · denotes matrix product. Then, since by construction Mα,β(x) = 0 if [x] 6= β − α,
we can write (2.8) in the following way:

Zc
N,ω =

N∑

k=1

∑

t1,...,tk∈N
0<t1<...<tk :=N

[
M(t1) · . . . ·M(N − tk−1)

]
0,[N ]

=
∞∑

k=1

[
M∗k

]
[0],[N ]

(N) , (3.2)

where F ∗n denotes the n–fold convolution of a kernel F with itself (the n = 0 case is by
definition [F ∗0]α,β(x) := 1(β=α)1(x=0)). In view of (3.2), we introduce the kernel

Zα,β(n) :=
∞∑

k=1

[
M∗k

]
α,β

(n) , (3.3)

so that Zc
N,ω = Z[0],[N ](N) and more generally Zc

N−k,θkω = Z[k],[N ](N − k), k ≤ N , where
we have introduced the shift operator for k ∈ N:

θk : R
S 7→ R

S, (θkζ)β := ζ[k]+β, β ∈ S.

Our goal is to determine the asymptotic behavior as N → ∞ of the kernel Zα,β(N) and
hence of the partition function Zc

N,ω. To this aim, we introduce an important transforma-

tion of the kernel M that exploits the algebraic structure of (3.3): we suppose that δω ≥ 1
(the case δω < 1 requires a different procedure) and we set for b ≥ 0 (cf. [2, Th. 4.6])

Ab
α,β(x) := Mα,β(x) e−bx .

Let us denote by ∆(b) the Perron–Frobenius eigenvalue of the matrix
∑

xA
b
α,β(x). As

the entries of this matrix are analytic and nonincreasing functions of b, ∆(b) is analytic
and nonincreasing too, hence strictly decreasing because ∆(0) = δω ≥ 1 and ∆(∞) = 0.
Therefore there exists a single value fω ≥ 0 such that ∆

(
fω

)
= 1, and we denote by

{ζα}α, {ξα}α the Perron–Frobenius left and right eigenvectors of
∑

xA
fω

α,β(x), chosen to

have (strictly) positive components and normalized in such a way that
∑

α ζα ξα = 1 (the
remaining degree of freedom in the normalization is immaterial). Then we set

Γα,β(x) := Mα,β(x) e−fωx ξβ
ξα
, (3.4)
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and observe that we can rewrite (3.2) as

Zα,β(n) = exp(Fωn)
ξα
ξβ
Uα,β(n) , where Uα,β(n) :=

∞∑

k=1

[
Γ∗k
]
α,β

(n) . (3.5)

The kernel Uα,β(n) has a basic probabilistic interpretation that we now describe. Notice
first that by construction we have

∑
β,x Γα,β(x) = 1, i.e. Γ is a semi–Markov kernel, cf. [2].

Then we can define a Markov chain {(Jk, Tk)} on S × N by:

P
[
(Jk+1, Tk+1) = (β, x)

∣∣ (Jk, Tk) = (α, y)
]

= Γα,β(x) , (3.6)

and we denote by Pα be the law of {(Jk, Tk)} with starting point J0 = α (the value of T0

plays no role). The probabilistic meaning of Uα,β(x) is then given by:

Uα,β(n) =

∞∑

k=1

Pα (T1 + · · · + Tk = n, Jk = β) . (3.7)

We point out that the process {τk}k≥0 defined by τ0 := 0 and τk := T1 + . . . + Tk under
the law Pα is what is called a (discrete) Markov–renewal process, cf. [2]. This provides a
generalization of classical renewal processes, since the increments {Tk} are not IID but
they are rather governed by the process {Jk} in the way prescribed by (3.6). The process
{Jk} is called the modulating chain and it is indeed a genuine Markov chain on S, with
transition kernel

∑
x∈N Γα,β(x), while in general the process {Tk} is not a Markov chain.

One can view τ = {τn} as a (random) subset of N. More generally it is convenient to
introduce the subset

τβ :=
⋃

k≥0: Jk=β

{τk} , β ∈ S , (3.8)

so that equation (3.7) can be rewritten as

Uα,β(n) = Pα

(
n ∈ τβ

)
. (3.9)

This shows that the kernel Uα,β(n) is really an extension of the Green function of a classical
renewal process. In analogy with the classical case, the asymptotic behavior of Uα,β(n) is
sharply linked to the asymptotic behavior of the kernel Γ, i.e. of M . To this aim, we notice
that our setting is an heavy–tailed one: more precisely for every α, β ∈ S, by (2.2), (2.5)
and (2.4) we have

lim
x→∞

[x]=β−α

x3/2Mα,β(x) = Lα,β :=





cK
1

2

(
1 + exp

(
Σα,β

))
exp(ω

(0)
β ) if hω = 0

cK
1

2
exp(ω

(0)
β ) if hω > 0

. (3.10)

The rest of this section is devoted to finding the asymptotic behavior of Uα,β(n) and
hence of Zα,β(n), proving in particular Theorem 1.2. For convenience we consider the three
regimes separately.

3.2. The localized regime (δω > 1). If δω > 1 then necessarily fω > 0. Notice that∑
x Γα,β(x) > 0, so that in particular the modulating chain {Jk} is irreducible. The unique

invariant measure {να}α is easily seen to be equal to {ζαξα}α.
Let us compute the mean µ of the semi–Markov kernel Γ:

µ :=
∑

α,β∈S

∑

x∈N

x να Γα,β(x) =
∑

α,β∈S

∑

x∈N

xe−fωx ζαMα,β(x) ξβ = −∂∆

∂b

∣∣∣∣
b=fω

∈ (0,∞)
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(for the last equality see for example [5, Lemma 2.1]). Then we can apply the Markov
Renewal Theorem, cf. [2, Th. VII.4.3], that in our periodic setting gives

∃ lim
x→∞

[x]=β−α

Uα,β(x) = T
νβ

µ
. (3.11)

Then by (3.5) we obtain the desired asymptotic behavior:

Zα,β(x) ∼ ξα ζβ
T

µ
exp (fω x) x→ ∞, [x] = β − α , (3.12)

and for α = [0] and β = η we have proven part (3) of Theorem 1.2, with C>
ω,η = ξ0 ζη T/µ.

3.3. The critical case (δω = 1). In this case fω = 0 and equation (3.4) reduces to

Γα,β(x) = Mα,β(x)
ξβ
ξα
. (3.13)

The random set τβ introduced in (3.8) can be written as the union τβ =
⋃

k≥0{τ
β
k },

where the points {τβ
k }k≥0 are taken in increasing order, and we set T β

k := τβ
k+1 − τβ

k for

k ≥ 0. Notice that the increments {T β
k } correspond to sums of the variables {Ti} between

the visits of the chain {Jk} to the state β: for instance we have

T β
1 = Tκ+1 + . . .+ Tℓ, κ := inf{k ≥ 0 : Jk = β}, ℓ := inf{k > κ : Jk = β} .

Equation (3.6) then yields that {T β
k }k≥0 is an independent sequence under Pα, and that the

variables T β
k have for k ≥ 1 the same distribution qβ(n) := Pα(T β

1 = n) that actually does

not depend on α. The variable T β
0 in general has a different law q(α;β)(n) := Pα(T β

0 = n).

These considerations yield the following crucial observation: for fixed α and β, the

process {τβ
k }k≥0 under Pα is a (delayed) classical renewal process, with typical step dis-

tribution qβ(·) and initial step distribution q(α;β)(·). By (3.9), Uα,β(n) is nothing but the
Green function (or renewal mass function) of this process: more explicitly we can write

Uα,β(x) =

(
q(α;β) ∗

∞∑

n=0

(
qβ
)∗n
)

(x). (3.14)

Of course q(α;β) plays no role for the asymptotic behavior of Uα,β(x). The key point is

rather the precise asymptotic behavior of qβ(x) as x→ ∞, x ∈ [0], which is given by

qβ(x) ∼ cβ

x3/2
, where cβ :=

1

ζβ ξβ

∑

α,γ

ζα Lα,γ ξγ > 0 , (3.15)

as it is proven in detail in Appendix A. Then the asymptotic behavior of (3.14) follows by
a result of Doney, cf. [10, Th. B]:

Uα,β(x) ∼ T 2

2π cβ

1√
x

x→ ∞, [x] = β − α , (3.16)

(the factor T 2 is due to our periodic setting). Combining equations (3.5), (3.15) and (3.16)
we finally get the asymptotic behavior of Zα,β(x):

Zα,β(x) ∼ T 2

2π

ξα ζβ∑
γ,γ′ ζγ Lγ,γ′ ξγ′

1√
x

x→ ∞, [x] = β − α . (3.17)

Taking α = [0] and β = η, we have the proof of part (2) of Theorem 1.2.
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Remark 3.1. We point out that formula (3.15) is quite non-trivial. First, the asymptotic

behavior x−3/2 of the law of the variables T β
1 is the same as that of the Ti, although

T β
1 is the sum of a random number of the non-independent variables (Ti). Second, the

computation of the prefactor cβ is by no means an obvious task (we stress that the precise
value of cβ is crucial in the proof of Proposition 5.5 below).

3.4. The strictly delocalized case (δω < 1). We prove that the asymptotic behavior
of Zα,β(x) when δω < 1 is given by

Zα,β(x) ∼
([

(1 −B)−1L (1 −B)−1
]
α,β

) 1

x3/2
x→ ∞, [x] = β − α , (3.18)

where the matrices L and B have been defined in (3.10) and (2.6). In particular, taking
α = [0] and β = η, (3.18) proves part (1) of Theorem 1.2 with

C<
ω,η :=

[
(1 −B)−1L (1 −B)−1

]
0,η
.

To start with, it is easily checked by induction that for every n ∈ N

∑

x∈N

[M∗n]α,β(x) = [Bn]α,β . (3.19)

Next we claim that, by (3.10), for every α, β ∈ S

∃ lim
x→∞

[x]=β−α

x3/2
[
M∗k

]
α,β

(x) =

k−1∑

i=0

[
Bi · L · B(k−1)−i

]
α,β

. (3.20)

We proceed by induction on k. The k = 1 case is just equation (3.10), and we have that

M∗(n+1)(x) =

x/2∑

y=1

(
M(y) ·M∗n(x− y) + M(x− y) ·M∗n(y)

)

(strictly speaking this formula is true only when x is even, however the odd x case is
analogous). By the inductive hypothesis equation (3.20) holds for every k ≤ n, and in

particular this implies that {x3/2[M∗k]α,β(x)}x∈N is a bounded sequence. Therefore we
can apply Dominated Convergence, and using (3.19) we get

∃ lim
x→∞

[x]=β−α

x3/2
[
M∗(n+1)

]
α,β

(x) =
∑

γ

(
Bα,γ

n−1∑

i=0

[
Bi · L ·B(n−1)−i

]
γ,β

+ Lα,γ

[
B∗n

]
γ,β

)

=

n∑

i=0

[
Bi · L ·Bn−i

]
α,β

.

Our purpose is to apply the asymptotic result (3.20) to the terms of (3.5) and we need
a bound to apply Dominated Convergence. What we are going to show is that

x3/2
[
M∗k

]
α,β

(x) ≤ C k3
[
Bk
]
α,β

(3.21)

for some positive constant C and for all α, β ∈ S and x, k ∈ N. We proceed again by
induction: for the k = 1 case, thanks to (3.10), it is possible to find C such that (3.21)
holds true (this fixes C once for all). Now assuming that (3.21) holds for all k < n we
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show that it does also for k = n (we suppose for simplicity that n = 2m is even, the odd n
case being analogous). Then we have (assuming that also x is even for simplicity)

x3/2
[
M∗2m

]
α,β

(x) = 2

x/2∑

y=1

∑

γ∈S

[
M∗m

]
α,γ

(y) x3/2
[
M∗m

]
γ,β

(x− y)

≤ 2 · 23/2 C m3

x/2∑

y=1

∑

γ∈S

[
M∗m

]
α,γ

(y)
[
Bm
]
γ,β

≤ C (2m)3
[
B2m

]
α,β

,

where we have applied (3.19), and (3.21) is proven.
The r.h.s. of (3.21) is summable in k because the matrix B has spectral radius δω < 1.

We can thus apply Dominated Convergence to (3.5) using (3.20) and we get (3.18) by:

lim
x→∞

[x]=β−α

x3/2Zα,β(x) =

∞∑

k=1

k−1∑

i=0

[
Bi · L · B(k−1)−i

]
α,β

=
[
(1 −B)−1 · L · (1 −B)−1

]
α,β

.

This concludes the proof of Theorem 1.3. �

3.5. The free partition function. We want now to compute the asymptotic behavior
of the free partition function. In particular we have:

Proposition 3.2 (Sharp asymptotic estimates, free case). As N → ∞, [N ] = η, we
have:

(1) for δω < 1 (strictly delocalized regime) Z f
N,ω ∼ C<,f

ω,η /N1/2 ;

(2) for δω = 1 (critical regime) Z f
N,ω ∼ C=,f

ω,η ;

(3) for δω > 1 (localized regime) Z f
N,ω ∼ C>,f

ω,η exp
(
fωN

)
.

where C>,f
ω,η , C

<,f
ω,η and C=,f

ω,η are explicit positive constants, depending on ω and η.

Proof. Conditioning on the last zero of S before epoch N , we have the useful formula

Z f
N,ω =

N∑

t=0

Zc
t,ω P (N − t) exp

(
Φ̃[t],[N ](N − t)

)
. (3.22)

where P (n) := P(τ1 > n) =
∑∞

k=n+1K(k) and:

Φ̃α,β(ℓ) := log

[
1

2

(
1 + exp

(
− ℓhω + Σα,β

))]
1(ℓ >1) 1(ℓ∈β−α) , (3.23)

which differs from Φ in not having the terms of interaction with the interface, cf. (2.4).

Since also the asymptotic behavior of P (ℓ) exp(Φ̃α,β(ℓ)) will be needed, we set:

L̃α,β := lim
ℓ→∞, ℓ∈β−α

√
ℓ P (ℓ) e

eΦα,β(ℓ) =





cK
(
1 + exp(Σα,β)

)
if hω = 0

cK if hω > 0

, (3.24)

as it follows easily from (3.23) and from the fact that P (ℓ) ∼ 2 cK/
√
ℓ as ℓ→ ∞. For the

rest of the proof we consider the different regimes separately.
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The strictly delocalized case. Notice that:

N1/2 Z f
N−k,θkω =

N−k∑

t=0

Z[k],[t+k](t)N
1/2 P (N − k − t) exp

(
Φ̃[t+k],[N ](N − k − t)

)
.

Then by (3.24) we obtain

∃ lim
N→∞
N∈η

N1/2 Z f
N−k,θkω =

∞∑

t=0

Z[k],[t+k](t) L̃[t+k],η =
[
(1 −B)−1L̃

]
[k],η

(3.25)

since
∞∑

t=0

Zα,γ(t) =

∞∑

t=0

∞∑

k=0

M∗k
α,γ(t) =

∞∑

k=0

B∗k
α,γ =

[
(I −B)−1

]
α,γ

. (3.26)

The critical case. For N ∈ η and k ≤ N :

Z f
N−k,θkω =

∑

γ

N−k∑

t=0

Z[k],γ(t)P (N − k − t) exp
(
Φ̃γ, η(N − k − t)

)
.

By the previous results and using (3.24) we obtain that for every k ∈ N

∃ lim
N→∞, N∈η

Z f
N−k,θkω = ξ[k]

T

2π

〈ζ, L̃·,η〉
〈ζ, Lξ〉

∫ 1

0

dt

t
1
2 (1 − t)

1
2

= ξ[k]
T

2

〈ζ, L̃·,η〉
〈ζ, Lξ〉 , (3.27)

where we denote the canonical scalar product in R
S by 〈·, ·〉:

〈ϕ,ψ〉 :=
∑

α∈S

ϕα ψα, ϕ, ψ ∈ R
S.

The localized case. By (3.22):

e−fωN Z f
N−k,θkω = e−fωN

N−k∑

t=0

Z[k],[N−t](N − k − t) P (t) exp
(
Φ̃[N−t],[N ](t)

)

= e−fωk
∑

γ∈S

N−k∑

t=0

e−fω t P (t)
[
exp

(
Φ̃γ,[N ](t)

)
e−fω (N−k−t)Z[k],γ(N − k − t)

]
.

Since by (3.12) the expression in brackets converges as N → ∞ and N ∈ [t]+γ, we obtain

∃ lim
N→∞
N∈η

e−fωN Z f
N−k,θkω = ξ[k] e

−fωk

(
T

µ

∑

γ∈S

∞∑

t=0

e−fω t P (t) exp
(
Φ̃γ, η(t)

)
ζγ

)
.

Observe that the term in parenthesis is just a function of η. �

4. A preliminary analysis of the polymer measure

In this section we give some preliminary material which will be used in section 5 for
the proof of the scaling limits of our models. We are going to show that the core of the
polymer measure is encoded in its zero level set and that the law of the latter is expressed
in terms of the partition function. This explains the crucial importance retained by the
partition function for the study of Pa

N,ω.

We start giving a very useful decomposition of Pa
N,ω. The intuitive idea is that a path

(Sn)n≤N can be split into two main ingredients:
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• the family (τk)k=0,1,... of returns to zero of S (defined in § 2.2);

• the family of excursions from zero (Si+τk−1
: 0 ≤ i ≤ τk − τk−1)k=1,2,...

Moreover, since each excursion can be either positive or negative, it is also useful to
consider separately the signs of the excursions σk := sign(Sτk−1+1) and the absolute values
(ek(i) := |Si+τk−1

| : i = 0, . . . , τk − τk−1). Observe that these are trivial for an excursion
with length 1: in fact if τk = τk−1 + 1 then σk = 0 and ek(0) = ek(1) = 0.

Let us first consider the returns (τk)k≤ιN under Pa
N,ω, where we recall the definition

ιN = sup{k : τk ≤ N}. The law of this process can be viewed as a probability measure
pa

N,ω on the class of subsets of {1, . . . , N}: indeed for A ⊆ {1, . . . , N}, writing

A = {t1, . . . , t|A|}, 0 =: t0 < t1 < · · · < t|A| ≤ N, (4.1)

we can set
pa

N,ω(A) := Pa
N,ω(τi = ti, i ≤ ιN ). (4.2)

Then from the very definition (1.6) of Pa
N,ω and from the strong Markov property of P,

we have the following basic

Lemma 4.1. With the notation (4.1), for A ⊆ {1, . . . , N}: if a = c, pc
N,ω(A) 6= 0 if and

only if t|A| = N , and in this case:

pc
N,ω(A) =

1

Zc
N,ω

|A|∏

i=1

M[ti−1],[ti](ti − ti−1) , (4.3)

while for a = f:

pf
N,ω(A) =

1

Z f
N,ω




|A|∏

i=1

M[ti−1],[ti](ti − ti−1)


P (N − t|A|) exp

(
Φ̃[t|A|],[N ](N − t|A|)

)
. (4.4)

Thus the law of the zero level set is explicitly given in terms of the kernel Mα,β(n)
and of the partition function Za

N,ω. The following two lemmas (that follow again from the

definition (1.6)) show that, conditionally on the zero level set, the signs are independent
and the excursions are just the excursions of the unperturbed random walk S under P.
This shows that the zero level set is indeed the core of the polymer measure Pa

N,ω.

Lemma 4.2. Conditionally on {ιN , (τj)j≤ιN }, under Pa
N,ω the signs (σk)k≤ιN+1 form an

independent family. For k ≤ ιN , the conditional law of σk is specified by:

- if τk = 1 + τk−1, then σk = 0;

- if τk > 1 + τk−1, then σk can take the two values ±1 with

Pa
N,ω

(
σk = +1

∣∣∣ ιN , (τj)j≤ιN

)
=

1

1 + exp
{
−(τk − τk−1)hω + Σ[τk−1],[τk]

} . (4.5)

For a = f, when τιN < N there is a last incomplete excursion in the interval {0, . . . , N},
whose sign σιN+1 is also specified by (4.5), provided we set τιN+1 := N .

Lemma 4.3. Conditionally on {ιN , (τj)j≤ιN , (σj)j≤ιN+1}, the excursions
(
ek(·)

)
k≤ιN+1

form an independent family under Pa
N,ω. For k ≤ ιN , the conditional law of ek(·) on the

event {τk−1 = ℓ0, τk = ℓ1} is specified for f = (fi)i=0,...,ℓ1−ℓ0 by

Pa
N,ω

(
ek(·) = f

∣∣∣ ιN , (τj)j≤ιN , (σj)j≤ιN+1

)

= P
(
Si = fi : i = 0, . . . , ℓ1 − ℓ0

∣∣∣ Si > 0 : i = 1, . . . , ℓ1 − ℓ0 − 1, Sℓ1−ℓ0 = 0
)
.

(4.6)
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For a = f, when τιN < N the conditional law on the event {τιN = ℓ < N} of the last
incomplete excursion eιN+1(·) is specified for f = (fi)i=0,...,N−ℓ by

Pa
N,ω

(
eιN+1(·) = f

∣∣∣ ιN , (τj)j≤ιN , (σj)j≤ιN+1

)

= P
(
Si = fi : i = 0, . . . , N − ℓ

∣∣∣ Si > 0 : i = 1, . . . , N − ℓ
)
.

(4.7)

We stress that Lemmas 4.1, 4.2 and 4.3 fully characterize the polymer measure Pa
N,ω.

It is worth stressing that, conditionally on (τk)k∈N, the joint distribution of (σj , ej)j≤ιN
does not depend on N . In this sense, all the N–dependence is contained in the law pa

N,ω

of the zero level set. This fact will be exploited in the next section.

5. Proof of Theorem 1.3 and Proposition 2.1

In this section we show that the measures Pa
N,ω converge under Brownian rescaling,

proving Theorem 1.3 and Proposition 2.1. The results and proofs follow closely those of [9]
and we shall refer to this paper for several technical lemmas; for the tightness of (Qa

N,ω)N∈N

in C([0, 1]), we refer to [8].

Lemma 5.1. For any ω and a = c, f the sequence (Qa
N,ω)N∈N is tight in C([0, 1]).

From now on, we consider separately the three regimes δω > 1, δω < 1 and δω = 1.

5.1. The localized regime (δω > 1). We prove point (3) of Theorem 1.3. By Lemma 5.1
it is enough to prove that Pa

N,ω(|XN
t | > ε) → 0 for all ε > 0 and t ∈ [0, 1] and one can

obtain this estimate explicitly. We point out however that in this regime one can avoid
using the compactness lemma and one can obtain a stronger result by elementary means:
observe that for any k, n ∈ N such that n > 1 and k + n ≤ N , we have

Pa
N,ω

(
Sk = Sk+n = 0, Sk+i 6= 0 for i = 1, . . . , n − 1

)

≤
1
2

(
1 + exp

(∑n
i=1

(
ω

(−1)
k+i − ω

(+1)
k+i

)))

Zc
n,θkω

=: K̂k(n), (5.1)

and this holds both for a = c and a = f. Inequality (5.1) is obtained by using the Markov
property of S both in the numerator and the denominator of the expression (1.6) defining
Pa

N,ω (·) after having bounded Za
N,ω from below by inserting the event Sk = Sk+n = 0.

Of course limn→∞(1/n) log K̂k(n) = −fω uniformly in k (notice that K̂k+T (n) = K̂k(n)).
Therefore if we fix ε > 0 by the union bound we obtain (we recall that {τj}j and ιN were
defined in Section 2.2) for some c > 0:

Pa
N,ω

(
max

j=1,2,...,ιN
τj − τj−1 > (1 + ε) logN/fω

)

≤
∑

k≤N−(1+ε) log N/fω

∑

n>(1+ε) log N/fω

K̂k(n)

≤ N
∑

n>(1+ε) log N/fω

max
k=0,...,T−1

K̂k(n) ≤ c

N ε
.

Let us start with the constrained case: notice that Pc
N,ω(dS)–a.s. we have τιN = N and

hence maxj≤ιN τj − τj−1 ≥ maxn=1,...,N |Sn|, since |Sn+1 − Sn| ≤ 1. Then we immediately
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obtain that for any C > 1/fω

lim
N→∞

Pc
N,ω

(
max

n=1,...,N
|Sn| > C logN

)
= 0, (5.2)

which is of course a much stronger statement than the scaling limit of point (3) of Theo-
rem 1.3. If we consider instead the measure Pf

N,ω, the length of the last excursion has to
be taken into account too: however, an argument very close to the one used in (5.1) yields
also that the last excursion is exponentially bounded (with the same exponent) and the
proof of point (3) of Theorem 1.3 is complete. �

5.2. The strictly delocalized regime (δω < 1). We prove point (1) of Theorem 1.3
and Proposition 2.1. We set for t ∈ {1, . . . , N}:
Dt := inf{k = 1, . . . , N : k > t, Sk = 0}, Gt := sup{k = 1, . . . , N : k ≤ t, Sk = 0}.
The following result shows that in the strictly delocalized regime, as N → ∞, the visits to
zero under Pa

N,ω tend to be very few and concentrated at a finite distance from the origin
if a = f and from 0 or N if a = c.

Lemma 5.2. If δω < 1 there exists a constant C > 0 such that for all L > 0:

lim sup
N→∞

[
Pf

N,ω (GN ≥ L) + Pc
N,ω

(
GN/2 ≥ L

)
+ Pc

N,ω

(
DN/2 ≤ N − L

)]
≤ C L−1/2.

Proof. We consider e.g. Pc
N,ω

(
GN/2 ≥ L

)
: using Lemma 4.1 to write down this probability,

recalling the definition (3.5) of the kernel Zα,β(n) and using (3.18), we obtain

Pc
N,ω(GN/2 ≥ L) =

⌊N/2⌋∑

x=L

Z0,[x](x)

N∑

z=⌊N/2⌋+1

M[x],[z](z − x)Z[z],[N ](N − z)

Z0,[N ](N)

≤ C1N
3/2

⌊N/2⌋∑

x=L

x−3/2
N∑

z=⌊N/2⌋+1

(z − x)−3/2 (N + 1 − z)−3/2 ≤ C2 L
−1/2 ,

for some positive constants C1 and C2, and the proof is completed. �

The signs. Since the zeros are concentrated near the boundary, to complete the proof it
is enough to argue as in the proof of Theorem 9 in [9]. More precisely, by Lemma 5.2 for
large N the typical paths of Pa

N,ω are essentially made up of one big excursion, whose
absolute value converges in law to the Brownian excursion {et}t∈[0,1] for a = c and to
the Brownian meander {mt}t∈[0,1] for a = f by standard invariance principles, cf. [19]
and [3]. Therefore to complete the proof we only have to show that there exists the limit
(as N → ∞ along [N ] = η) of the probability that the process (away from {0, 1}) lives
in the upper half plane. In the general case we have different limits depending on the
sequence [N ] = η and on a = f, c, while if ω /∈ P all such limits coincide.

We start with the constrained case: given Lemma 5.2, it is sufficient to show that

∃ lim
N→∞
N∈η

Pc
N,ω(SN/2 > 0) =: pc

ω,η. (5.3)

Formula (5.3) follows from the fact that

Pc
N,ω(SN/2 > 0) =

∑

α,β∈S

∑

x<N/2

∑

y>N/2

Z0,α(x) ρ+
α,β(y − x)Mα,β(y − x)Zβ,[N ](N − y)

Z0,[N ](N)
,
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where for all z ∈ N and α, β ∈ S we set:

ρ+
α,β(z) :=

1

1 + exp (−z hω + Σα,β)
, (5.4)

cf. (4.5). By Dominated Convergence and by (3.10) and (3.26) we get:

∃ lim
N→∞
N∈η

N3/2
∑

x<N/2

∑

y>N/2

Z0,α(x) ρ+
α,β(y − x)Mα,β(y − x)Zβ,η(N − y)

=
[
(1 −B)−1

]
0,α

cK
1

2
exp(ω

(0)
β )

[
(1 −B)−1

]
β,η

.

Then by (3.18) it follows that (5.3) holds true, with

pc
ω,η :=

∑
α,β

[
(1 −B)−1

]
0,α

cK
1
2 exp(ω

(0)
β )

[
(1 −B)−1

]
β,η[

(1 −B)−1L (1 −B)−1
]
0,η

. (5.5)

Remark 5.3. Observe that by (3.10):

• if hω > 0 then in (5.5) the denominator is equal to the numerator, so that pc
ω,η = 1

for all η.
• if hω = 0 and Σ ≡ 0 then in (5.5) the denominator is equal to twice the numerator,

so that pc
ω,η = 1/2 for all η.

• in the remaining case, i.e. if ω ∈ P, in general pc
ω,η depends on η.

Now let us consider the free case. This time it is sufficient to show that

∃ lim
N→∞
N∈η

Pf
N,ω(SN > 0) =: pf

ω,η . (5.6)

However we can write

Pf
N,ω(SN > 0) =

∑

α

∑

x<N

Z0,α(x) · 1
2P (N − k)

Z f
N,ω

,

and using (3.22), (3.26) and (3.24) we obtain that (5.6) holds with

p
f
ω,η =

∑
α

[
(1 −B)−1

]
0,α

cK
[
(1 −B)−1L̃

]
0,η

. (5.7)

Remark 5.4. Again, observe that by (3.24):

• if hω > 0 then in (5.7) the denominator is equal to the numerator and pf
ω,η = 1 for

all η.
• if hω = 0 and Σ ≡ 0 then in (5.7) the denominator is equal to twice the numerator,

so that pf
ω,η = 1/2 for all η.

• in the remaining case, i.e. if ω ∈ P, in general pf
ω,η depends on η and is different

from pc
ω,η.

The proof of point (1) of Theorem 1.3 and Proposition 2.1 is then concluded. �

5.3. The critical regime (δω = 1). We prove point (2) of Theorem 1.3 and Proposition
2.1. As in the previous section, we first determine the the asymptotic behavior of the zero
level set and then we pass to the study of the signs of the excursions.
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The zero level set. We introduce the random closed subset Aa
N of [0, 1], describing the zero

set of the polymer of size N rescaled by a factor 1/N :

P(Aa
N = A/N) = pa

N,ω(A), A ⊆ {0, . . . , N},
recall (4.2). Let us denote by F the class of all closed subsets of R

+ := [0,+∞). We are
going to put on F a topological and measurable structure, so that we can view the law
of Aa

N as a probability measure on F and we can study the weak convergence of Aa
N .

We endow F with the topology of Matheron, cf. [22] and [12, section 3], which is a
metrizable topology. To define it, to a closed subset F ⊆ R

+ we associate the compact

nonempty subset F̃ of the interval [0, π/2] defined by F̃ := arctan
(
F ∪ {+∞}

)
. Then the

metric ρ(·, ·) we take on F is

ρ(F,F ′) := max

{
sup
t∈ eF

d(t, F̃ ′) , sup
t′∈ eF ′

d(t′, F̃ )

}
F, F ′ ∈ F , (5.8)

where d(s,A) := inf{|t−s|, t ∈ A} is the standard distance between a point and a set. The

r.h.s. of (5.8) is the so–called Hausdorff metric between the compact nonempty sets F̃ , F̃ ′.
Thus by definition a sequence {Fn}n ⊂ F converges to F ∈ F if and only if ρ(Fn, F ) →

0. This is equivalent to requiring that for each open set G and each compact K ⊂ R
+

F ∩G 6= ∅ =⇒ Fn ∩G 6= ∅ eventually,

F ∩K = ∅ =⇒ Fn ∩K = ∅ eventually.
(5.9)

Another necessary and sufficient condition for Fn → F is that d(t, Fn) → d(t, F ) for
every t ∈ R

+.
This topology makes F a separable and compact metric space [22, Th. 1-2-1], in par-

ticular a Polish space. Endowing F with the Borel σ–field, we have that the space M1(F)
of probability measures on F is compact with the topology of weak convergence.

The crucial result is the convergence in distribution as N → ∞ of the random set Aa
N

towards the zero set of a Brownian motion for a = f or of a Brownian bridge for a = c.

Proposition 5.5. If δω = 1 then as N → ∞
Af

N =⇒ {t ∈ [0, 1] : B(t) = 0} , (5.10)

Ac
N =⇒ {t ∈ [0, 1] : β(t) = 0} . (5.11)

The proof of Proposition 5.5 is achieved comparing the law of Af
N and Ac

N with the law of
a random set RN defined as follows. With the notation introduced in §3.1, we introduce
the rescaled random set RN :

RN := range {τi/N, i ≥ 0} = τ/N ⊂ R
+

under P[0]. Notice that for any A = {t1, . . . , t|A|} ⊂ {1, . . . , N} we have (setting t0 := 0):

P[0](τ ∩ {1, . . . , N} = A) =




|A|∏

i=1

M[ti−1],[ti](ti − ti−1)


Qt|A|

(N − t|A|)
ξ[t|A|]

ξ[0]
, (5.12)

where Qα(t) :=
∑

β

∑∞
s=t+1 Γα,β(s).

The key step to prove Proposition 5.5 is given by the following Lemma, whose proof
uses the theory of regenerative sets and their connection with subordinators, see [12].

Lemma 5.6. The random set RN converges in distribution to {t ≥ 0 : B(t) = 0}.
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Proof. Recalling the definition (3.8) of τβ, we introduce the random set

Rβ
N := range {τk/N : k ≥ 0, Jk = β} = τβ/N, β ∈ S

under P[0]. Notice that RN = ∪βRβ
N . We divide the rest of the proof in two steps.

Step 1. This is the main step: we prove that the law of Rβ
N converges to the law of

{t ≥ 0 : B(t) = 0}. For this we follow the proof of Lemma 5 in [9]. Let {P (t)}t≥0 be a

Poisson process with rate γ > 0, independent of (T β
i )i≥0. Then σt = [T β

1 + · · · + T β
P (t)]/N

is a non decreasing right-continuous process with independent stationary increments and
σ0 = 0, that is σ = (σt)t≥0 is a subordinator. By the standard theory of Lévy processes,
the law of σ is characterized by the Laplace transform of its one-time distributions:

E
[
exp (−λσt)

]
= exp (−t φN (λ)) , λ ≥ 0, t ≥ 0,

for a suitable function φN : [0,∞) 7→ [0,∞), called Lévy exponent, which has a canonical
representation, the Lévy–Khintchin formula (see e.g. (1.15) in [12]):

φN (λ) =

∫

(0,∞)

(
1 − e−λs

)
γ P(T β

1 /N ∈ ds) = γ
∞∑

n=1

(1 − exp(−λn/N)) qβ(n) .

We denote the closed range {σt : t ≥ 0} of the subordinator σ by R̂β
N . Then, following

[12], R̂β
N is a regenerative set. Moreover Rβ

N = T β
0 /N + R̂β

N .

Notice now that the law of the regenerative set R̂β
N is invariant under the change of

time scale σt −→ σct, for c > 0, and in particular independent of γ > 0. Since φN −→ c φN

under this change of scale, we can fix γ = γN such that φN (1) = 1 and this will be

implicitly assumed from now on. Then, by Proposition (1.14) of [12], the law of R̂β
N is

uniquely determined by φN .
The asymptotic behavior of qβ given in (3.15) yields easily φN (λ) → λ1/2 =: ΦBM (λ) as

N → ∞. It is now a matter of applying the result in [12, §3] to obtain that R̂β
N converges

in law to the regenerative set corresponding to ΦBM . However by direct computation one
obtains that the latter is nothing but the zero level set of a Brownian motion, therefore

R̂β
N ⇒ {t ∈ [0, 1] : B(t) = 0}. From the fact that T β

0 /N → 0 a.s., the same weak

convergence for Rβ
N follows immediately.

Step 2. Notice that RN = ∪βRβ
N is the union of non independent sets. Therefore, although

we know that each Rβ
N converges in law to {t ≥ 0 : B(t) = 0}, it is not trivial that RN

converges to the same limit. We start showing that for every positive t ≥ 0, the distance

between the first point in Rα
N after t and the first point in Rβ

N after t converges to zero
in probability. More precisely, for any closed set F ⊂ [0,∞) we set:

dt(F ) := inf(F ∩ (t,∞)) . (5.13)

and we claim that for all α, β ∈ S and t ≥ 0, |dt(Rα
N ) − dt(Rβ

N )| → 0 in probability.
Recalling (3.14) and the notation introduced there, we can write for all ǫ > 0:

P[0]

(
dt(Rα

N ) ≥ dt(Rβ
N ) + ǫ

)
=
∑

γ

⌊Nt⌋∑

y=0

U0,γ(y)

∞∑

z=⌊Nt⌋−y+1

q(γ;β)(z)

∞∑

w=⌊Nǫ⌋

q(β;α)(w) .
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Arguing as in the proof of (3.15), it is easy to obtain the bound q(β;α)(w) ≤ C1w
−3/2 and

by (3.16) we have U0,γ(y) ≤ C2 y
−1/2, with C1, C2 positive constants. Therefore

P[0]

(
dt(Rα

N ) ≥ dt(Rβ
N ) + ǫ

)
≤ C3

N1/2

(∫ t/T

0
dy

∫ ∞

(t−y)/T
dz

∫ ∞

ǫ/T
dw

1

y1/2 z3/2 w3/2

)

for some positive constant C3, having used the convergence of the Riemann sums to the
corresponding integral. The same computations can be performed exchanging α with β,
hence the claim is proven.

Now notice that dt(RN ) = minα∈S dt(Rα
N ), and since S is a finite set we have that also

|dt(RN )−dt(Rβ
N )| → 0 in probability for any fixed β ∈ S. Since we already know that Rβ

N
converges weakly to the law of {t ≥ 0 : B(t) = 0}, the analogous statement for RN follows

by standard arguments. More precisely, let us look at (RN ,Rβ
N ) as a random element of

the space F ×F : by the compactness of F it suffices to take any convergent subsequence

(Rkn ,Rβ
kn

) ⇒ (B,C) and to show that P(B 6= C) = 0. However we can write
{
B 6= C

}
=

⋃

t∈Q+

⋃

n∈N

{
|dt(B) − dt(C)| > 1/n

}
,

by the right-continuity of t 7→ dt, and by the Portmanteau Theorem we have

P[0]

(
|dt(B) − dt(C)| > 1/n

)
≤ lim sup

N→∞
P[0]

(
|dt(RN ) − dt(Rβ

N )| > 1/n
)

= 0 ,

because |dt(RN ) − dt(Rβ
N )| → 0 in probability. �

Proof of Proposition 5.5: equation (5.11). First, we compute the Radon-Nykodim

derivative f c
N of the law of Ac

N ∩ [0, 1/2] with respect to the law of R1/2
N := RN ∩ [0, 1/2],

using (4.3) and (5.12). For F = {t1/N, . . . , tk/N} ⊂ [0, 1/2] with 0 =: t0 < t1 < · · · < tk

integer numbers, the value of f c
N at R1/2

N = F depends only on g1/2(F ) and is given by:

f c
N (g1/2(F )) = f c

N (tk/N) =

∑N
n=N/2M[tk],[n](n− tk)Z[n],[N ](N − n)

Z0,[N ](N) Q[tk ](N/2 − tk)

ξ0
ξ[tk]

,

where for any closed set F ⊂ [0,∞) we set:

gt(F ) := sup(F ∩ [0, t]) . (5.14)

By (3.17), for all ε > 0 and uniformly in g ∈ [0, 1/2 − ε]:

f c
N(g) ∼

[Lξ][Ng]
T 2

2π

ζ[N]

〈ζ,Lξ〉 T
−1
∫ 1/2
0 y−1/2 (1 − y − g)−3/2 dy

T 2

2π

ξ0 ζ[N]

〈ζ,Lξ〉 T
−1 [Lξ][Ng]/ξ[Ng] 2 (1/2 − g)−1/2

ξ0
ξ[Ng]

=

√
1/2

1 − g
=: r(g) .

If Ψ is a bounded continuous functional on F such that Ψ(F ) = Ψ(F ∩ [0, 1/2]) for all
F ∈ F , then, setting ZB := {t ∈ [0, 1] : B(t) = 0} and Zβ := {t ∈ [0, 1] : β(t) = 0}, we get:

E[Ψ(Zβ)] = E
[
Ψ(ZB) r(g1/2(ZB))

]
,

see formula (49) in [9]. By Lemma 5.6 and by the asymptotic behavior of f c
N we obtain

E [Ψ(Ac
N )] = E

[
Ψ(R1/2

N ) f c
N (g1/2(R1/2

N ))
]

N→∞−→ E
[
Ψ(ZB) r(g1/2(ZB))

]
= E [Ψ(Zβ)] ,

i.e. Ac
N ∩ [0, 1/2] converges to Zβ ∩ [0, 1/2]. Notice now that the distribution of the random

set {1 − t : t ∈ Ac
N ∩ [1/2, 1]} under Pc

N,ω is the same as the distribution of Ac
N ∩ [0, 1/2]

under Pc
N,ω, where ω[i] := ω[N−i]. Therefore we obtain that Ac

N ∩ [1/2, 1] converges to
Zβ ∩ [0, 1/2] and the proof is complete.
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Proof of Proposition 5.5: equation (5.10). By conditioning on the last zero, from
(4.3) and (4.4) we see that if Ψ is a bounded continuous functional on F then

E

[
Ψ(Af

N )
]

=
N∑

k=0

E

[
Ψ

(
k

N
Ac

k

)]
Zc

k,ω

Z f
N,ω

P (N − k) exp
(
Φ̃[k],[N ](N − k)

)
.

We denote by βt a Brownian bridge over the interval [0, t], i.e. a Brownian motion over

[0, t] conditioned to be 0 at time t, and we set Zβt :=
{
s ∈ [0, t] : βt(s) = 0

} d
= tZβ. By

(5.11) it follows that if k/N → t then the random set k
N Ac

k converges in distribution to
Zβt . Then, applying (3.17) and (3.27), we obtain as N → ∞ along [N ] = η:

E [Ψ(Ac
k)] =

N∑

k=0

∑

γ

1(k∈γ) E

[
Ψ

(
k

N
Ac

k

)]
Zc

k,ω

Z f
N,ω

P (N − k) exp
(
Φ̃γ,η(N − k)

)

−→
∫ 1

0
E[Ψ(Zβt)]

1

π t
1
2 (1 − t)

1
2

dt ·
∑

γ

1

T

T 2

2

ξ0 ζγ
〈ζ, Lξ〉

L̃γ,η

ξ0
T
2

〈ζ,eL·,η〉
〈ζ,Lξ〉

= E
[
Ψ(ZB)

]
.

Since the result does not depend on the subsequence [N ] = η, we have indeed proven that
Af

N converges in distribution to ZB . �

The signs. In order to conclude the proof of part (2) of Theorem 1.3 and Proposition 2.1
in the critical case (δω = 1) we follow closely the proof given in Section 8 of [9]. Having
already proven the convergence of the zero level set, we only have to paste the excursions
(recall Lemmas 4.2 and 4.3). The weak convergence under diffusive rescaling of ek(·) for
k ≤ ιN towards the Brownian excursion e(·) and of the last excursion eιN+1(·) for a = f
towards the Brownian meander m(·) has been proved in [19] and, respectively, in [3]. Then
it only remains to focus on the signs.

We start with the constrained case: we are going to show that for all t ∈ (0, 1)

∃ lim
N→∞

Pc
N,ω(S⌊tN⌋ > 0) =: pω, (5.15)

and the limit is independent of t. We point out that actually we should fix the extremities
of the excursion embracing t, that is we should rather prove that

lim
N→∞

Pc
N,ω

(
S⌊tN⌋ > 0

∣∣∣ G⌊tN⌋/N ∈ (a− ε, a) , D⌊tN⌋/N ∈ (b, b+ ε)
)

= pω , (5.16)

for a < t < b and ε > 0 (recall the definition of Gt and Dt in § 5.2), but in order to lighten
the exposition we will stick to (5.15), since proving (5.16) requires only minor changes.

We have, recalling (5.4):

Pc
N,ω(S⌊tN⌋ > 0) =

∑

α,β

∑

x<⌊tN⌋

∑

y>⌊tN⌋

Z0,α(x) ρ+
α,β(y − x)Mα,β(y − x)Zβ,[N ](N − y)

Z0,[N ](N)
.

By Dominated Convergence and by (3.17):

∃ lim
N→∞
N∈η

N1/2
∑

x<⌊tN⌋

∑

y>⌊tN⌋

Z0,α(x) ρ+
α,β(y − x)Mα,β(y − x)Zβ,η(N − y)

=
1

T 2

∫ t

0
dx

∫ 1

t
dy [x(y − x)3(1 − y)]−

1
2

(
T 2

2π

)2
ξ0 ζα ξβ ζη
〈ζ, Lξ〉2 cK

1

2
exp(ω

(0)
β )
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see (3.10). We obtain that (5.15) holds true with

pω :=

∑
α,β ζα cK

1
2 exp(ω

(0)
β ) ξβ

〈ζ, Lξ〉 (5.17)

Remark 5.7. Observe the following: by (3.10),

• if hω > 0 then in (5.17) the denominator is equal to the numerator, so that pω = 1.
• if hω = 0 and Σ ≡ 0 then in (5.17) the denominator is equal to twice the numerator,

so that pω = 1/2.

Now let us consider the free case. We are going to show that for all t ∈ (0, 1]:

lim
N→∞
[N ]=η

Pf
N,ω(S⌊tN⌋ > 0) =

(
1 − 2 arcsin

√
t

π

)
pω +

2 arcsin
√
t

π
qω,η =: pf

ω,η(t), (5.18)

where pω is the same as above, see (5.17), while qω,η is defined in (5.19) below. We stress

again that we should actually fix the values of G⌊tN⌋ and D⌊tN⌋ like in (5.16), proving that
the limiting probability is either pω or qω,η according to whether D⌊tN⌋ ≤ N or D⌊tN⌋ > N ,
but this will be clear from the steps below. Formula (5.18) follows from the fact that

Pf
N,ω(S⌊tN⌋ > 0) =

∑

α,β

∑

x<⌊tN⌋

∑

y>⌊tN⌋

Z0,α(x) ρ+
α,β(y − x)Mα,β(y − x)Z f

N−y,θ[y]ω

Z f
N,ω

+
∑

α

∑

x<⌊tN⌋

Z0,α(x) ρ+
α,[N ](N − x)P (N − x) exp

(
Φ̃[x],[N ](N − x)

)

Z f
N,ω

.

Letting N → ∞ with [N ] = η, by (3.27) the first term in the r.h.s. converges to:
∫ t

0

dx

x
1
2

∫ 1

t

dy

(y − x)
3
2

∑

α,β

1

T 2

T 2 ξ0 ζα
2π 〈ζ, Lξ〉 cK

1

2
exp(ω

(0)
β )

ξβ
T
2 〈ζ, L̃·,η〉
〈ζ, Lξ〉 · 〈ζ, Lξ〉

ξ0
T
2 〈ζ, L̃·,η〉

=

(
1 − 2 arcsin

√
t

π

)
· pω

while the second term converges to
∫ t

0

dx

x
1
2 (1 − x)

1
2

1

T

∑

α

T 2 ξ0 ζα
2π 〈ζ, Lξ〉 cK · 〈ζ, Lξ〉

ξ0
T
2 〈ζ, L̃·,η〉

=
2 arcsin

√
t

π
·
cK
∑

γ ζγ

〈ζ, L̃·,η〉
.

Therefore we obtain (5.18) with:

qω,η =
cK
∑

γ ζγ

〈ζ, L̃·,η〉
. (5.19)

Remark 5.8. We observe that, by (3.24):

• if hω > 0, or if hω = 0 and Σ ≡ 0, then pf
ω,η(t) = qω,η = pω for all t and η

• in the remaining case, i.e. if ω ∈ P, in general pf
ω,η(t) depends on t and η.

Now that we have proven the convergence of the probabilities of the signs of the excur-
sion, in order to conclude the proof of point (2) of Theorem 1.3 and Proposition 2.1, it
is enough to use the excursion theory of Brownian motion: for the details we refer to the
proof of Theorem 11 in [9]. �
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Appendix A. An asymptotic result

In this appendix we are going to prove that equation (3.15) holds true, but we need
first some preliminary notation and results.

Given an irreducible T ×T matrix Qα,β with nonnegative entries, its Perron–Frobenius
eigenvalue (= spectral radius) will be denoted by Z = Z(Q) and the corresponding left
and right eigenvectors (with any normalization) will be denoted by {ζα}, {ξα}. We recall
that ζα, ξα > 0. Being a simple root of the characteristic polynomial, Z(Q) is an analytic

function of the entries of Q, and

∂Z

∂Qα,β
=

ζα ξβ
〈ζ, ξ〉 . (A.1)

Hence Z(Q) is a strictly increasing function of each of the entries of Q.
Now, let Q denote the transition matrix of an irreducible, positive recurrent Markov

chain, and let us introduce the matrix Q(γ) and the vector δ(γ), defined by
[
Q(γ)

]
α,β

:= Qα,β 1(β 6=γ)

[
δ(γ)
]

α
:= 1(α=γ) .

By monotonicity, Z(Q(γ)) < Z(Q) = 1 for all γ. Then we can define the geometric series

(1 −Q(γ))−1 :=
∞∑

k=0

(
Q(γ)

)k
.

The interesting point is that, for every fixed γ, the vector α 7→
[
(1 − Q(γ))−1

]
γ,α

is (a

multiple of) the left Perron–Frobenius eigenvector of the matrix Q. Similarly the vector

α 7→
[
(1 −Q(γ))−1 ·Q

]
α,γ

is (a multiple of) the right Perron–Frobenius eigenvector of Q.

More precisely we have
[
(1 −Q(γ))−1

]
γ,α

=
να

νγ

[
(1 −Q(γ))−1 ·Q

]
α,γ

= 1 , (A.2)

where {να}α is the unique invariant law of the chain, that is
∑

α ναQα,β = νβ and
∑

α να =
1. Equation (A.2) can be proved by exploiting its probabilistic interpretation in terms of
expected number of visits to state α before the first return to site γ, see [2, section I.3].

Next we turn to our main problem. We recall for convenience the notations introduced
in § 3.1 and § 3.3. The process {τk}k≥0 where τ0 = 0 and τk = T1 + . . .+ Tk is a Markov–
renewal process associated to the semi–Markov kernel Γα,γ(n) (defined in (3.13)) and
{Jk}k≥0 is its modulating chain. We denote by Pβ the law of {(Jk, τk)}k≥0 with starting

point J0 = β and we set ℓ := inf{k > 0 : Jk = β}. Then qβ(x) denotes the law of τℓ under
Pβ and we want to determine its asymptotic behavior.

We anticipate that the notations are necessarily quite involved, but the basic idea is
simple. By the periodic structure of the kernel Γ it follows that qβ(x) is zero if [x] 6= 0. On
the other hand, when [x] = [0], by summing over the possible values of the index ℓ and
using equation (3.6) we obtain

qβ(x) = Pβ

(
τ1 = x, J1 = β

)
+

∞∑

k=1

Pβ

(
Ji 6= β : 1 ≤ i ≤ k, Jk+1 = β, τk+1 = x

)

=

∞∑

k=0

((
Γ(β)

)∗k ∗ Γ
)

β,β
(x) , (A.3)
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where we have introduced the kernel Γ
(β)
α,γ(x) := Γα,γ(x)1(γ 6=β) that gives the law of the

steps with index k < ℓ. Looking at (A.3), we set V
(β)
α,γ (x) :=

∑∞
k=0

(
(Γ(β))∗k

)
α,γ

(x) and we

can write

qβ(x) =
(
V (β) ∗ Γ

)
β,β

(x) =
∑

γ∈S

x−1∑

y=0

V
(β)
β,γ (y) Γγ,β(x− y) . (A.4)

The asymptotic behavior of qβ(x) can be extracted from the above expression. To this
aim, we need to know both the asymptotic behavior as n → ∞ and the sum over n ∈ N

of the two kernels Γγ,β(n) and V
(β)
β,γ (n) appearing in the r.h.s.

• By (3.13) and (3.10), as n→ ∞ along [n] = β − γ we have

Γγ,β(n) ∼ L̂γ,β

n3/2
where L̂γ,β := Lγ,β

ξβ
ξγ
. (A.5)

Moreover, the sum over n ∈ N gives

∑

n∈N

Γγ,β(n) = Bγ,β
ξβ
ξγ

=: B̂γ,β . (A.6)

• For the asymptotic behavior of the kernel V (β) :=
∑∞

k=0(Γ
(β))∗k we can apply the

theory developed in § 3.4 for the case δω < 1, because the matrix
∑

x∈N Γ
(β)
α,γ(x) is

just
[
B̂(β)

]
α,γ

by (A.6) (we recall the convention [Q(β)]α,γ := Qα,γ1(γ 6=β) for any

matrix Q) which has Perron–Frobenius eigenvalue strictly smaller than 1. Since

Γ(β)
α,γ(n) ∼

[
L̂(β)

]
α,γ

n3/2
n→ ∞ , [n] = γ − α ,

we can apply (3.18) to get the asymptotic behavior as n→ ∞, [n] = α− γ :

V (β)
α,γ (n) ∼

([
(1 − B̂(β))−1L̂(β)(1 − B̂(β))−1

]
α,γ

) 1

n3/2
. (A.7)

On the other hand, for the sum over n ∈ N an analog of (3.19) yields

∑

n∈N

V (β)
α,γ (n) =

∞∑

k=0

[(
B̂(β)

)k]
α,γ

=
[
(1 − B̂(β))−1

]
α,γ

. (A.8)

As equations (A.5) and (A.7) show, both kernels V (β) and Γ have a n−3/2 tail. Then
from (A.4) it follows that as x→ ∞ along [x] = 0

qβ(x) ∼
∑

γ∈S

{(∑

n∈N

V
(β)
β,γ (n)

)
Γγ,β(x) + V

(β)
β,γ (x)

(∑

n∈N

Γγ,β(n)

)}
.

Now it suffices to apply (A.8), (A.5), (A.7) and (A.6) to see that indeed qβ(x) ∼ cβ/x
3/2

as x→ ∞ along [x] = 0, where the positive constant cβ is given by

cβ =
[
(1 − B̂(β))−1 · L̂

]
β,β

+
[
(1 − B̂(β))−1 · L̂(β) · (1 − B̂(β))−1 · B̂

]
β,β

.



A RENEWAL THEORY APPROACH TO PERIODIC INHOMOGENEOUS POLYMER MODELS 27

Using the fact that
[
(1 − B̂(β))−1 · B̂

]
β,β

= 1, which follows from (A.2) applied to the

matrix Q = B̂, we can rewrite the above expression as

cβ =
[
(1 − B̂(β))−1 · L̂ · (1 − B̂(β))−1 · B̂

]
β,β

=
1

νβ

∑

α,γ∈S

ναL̂α,γ ,

where {να}α is the invariant measure of the matrix B̂ and the second equality follows
again from (A.2). However from (A.6) it is easily seen that {να} = {ζα ξα}, and recalling

the definition (A.5) of L̂ we finally obtain the expression for cβ given in equation (3.15):

cβ =
1

ζβ ξβ

∑

α,γ

ζα Lα,γ ξγ . (A.9)

Appendix B. A localization argument

Let us give a proof that for the copolymer near a selective interface model, described
in § 1.1, the charge ω never belongs to P (see (2.9) for the definition of P). More precisely,
we are going to show that if hω = 0 and Σ 6≡ 0 then δω > 1, that is the periodic copolymer
with zero–mean, nontrivial charges is always localized. As a matter of fact this is an
immediate consequence of the estimates on the critical line obtained in [5]. However we
want to give here an explicit proof, both because it is more direct and because the model
studied in [5] is built over the simple random walk measure, corresponding to p = 1/2
with the language of Section 1, while we consider the case p < 1/2.

We recall that, by (A.1), the Perron-Frobenius eigenvalue Z(Q) of an irreducible matrix
Q is increasing in the entries of Q. We also point out a result proved by Kingman [20]: if
the matrix Q = Q(t) is a function of a real parameter t such that all the entries Qα,β(t)
are log–convex functions of t (that is t 7→ logQα,β(t) is convex for all α, β), then also
t 7→ Z(Q(t)) is a log–convex function of t.

Next we come to the copolymer near a selective interface model: with reference to the

general Hamiltonian (1.3), we are assuming that ω
(0)
n = ω̃

(0)
n = 0 and hω = 0 (where hω

was defined in (1.5)). In this case the integrated Hamiltonian Φα,β(ℓ), see (2.4), is given
by

Φα,β(ℓ) =





0 if ℓ = 1 or ℓ /∈ β − α

log
[

1
2

(
1 + exp

(
Σα,β

))]
if ℓ > 1 and ℓ ∈ β − α

.

We recall that the law of the first return to zero of the original walk is denoted by K(·),
see (2.1), and we introduce the function q : S → R

+ defined by

q(γ) :=
∑

x∈N, [x]=γ

K(x)

(notice that
∑

γ q(γ) = 1). Then the matrix Bα,β defined by (2.6) becomes

Bα,β =





1
2

(
1 + exp

(
Σα,β

))
q(β − α) if β − α 6= [1]

K(1) + 1
2

(
1 + exp

(
Σα,α+[1]

))
·
(
q([1]) −K(1)

)
if β − α = [1]

(B.1)

By (2.7), to prove localization we have to show that the Perron–Frobenius eigenvalue of
the matrix (Bα,β) is strictly greater than 1, that is Z(B) > 1. Applying the elementary
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convexity inequality (1 + exp(x))/2 ≥ exp(x/2) to (B.1) we get

Bα,β ≥ B̃α,β :=

{
exp

(
Σα,β/2

)
q(β − α) if β − α 6= [1]

K(1) + exp
(
Σα,α+[1]/2

)
·
(
q([1]) −K(1)

)
if β − α = [1]

. (B.2)

By hypothesis Σα0,β0 6= 0 for some α0, β0, therefore the inequality above is strict for
α = α0, β = β0. We have already observed that the P–F eigenvalue is a strictly increasing

function of the entries of the matrix, hence Z(B) > Z(B̃). Therefore it only remains to

show that Z(B̃) ≥ 1, and the proof will be completed.
Again an elementary convexity inequality applied to the second line of (B.2) yields

B̃α,β ≥ B̂α,β := exp
(
c(β − α)Σα,β/2

)
· q(β − α) (B.3)

where

c(γ) :=





1 if γ 6= [1]

q([1])−K(1)
q([1]) if γ = [1]

.

We are going to prove that Z(B̂) ≥ 1. Observe that setting vα := Σ[0],α we can write

Σα,β = Σ[0],β − Σ[0],α = vβ − vα .

Then we make a similarity transformation via the matrix Lα,β := exp(vβ/2)1(β=α), getting

Cα,β :=
[
L · B̂ · L−1

]
α,β

= exp
((
c(β − α) − 1

)
Σα,β/2

)
· q(β − α)

= exp
(
dΣα,α+[1] 1(β−α=1)

)
· q(β − α) ,

where we have introduced the constant d := −K(1)/( 2 q([1]) ). Of course Z(B̂) = Z(C).

Also notice that by the very definition of Σα,β we have Σα,α+[1] = ω
(−1)
α+[1] − ω

(+1)
α+[1], hence

the hypothesis hω = 0 yields
∑

α∈S(Σα,α+[1]) = 0.
Thus we are finally left with showing that Z(C) ≥ 1 where Cα,β is an S × S matrix of

the form

Cα,β = exp
(
wα 1(β−α=1)

)
· q(β − α) where

∑

α

wα = 0
∑

γ

q(γ) = 1 .

To this end, we introduce an interpolation matrix

Cα,β(t) := exp
(
t · wα 1(β−α=1)

)
· q(β − α) ,

defined for t ∈ R, and notice that C(1) = C. Let us denote by η(t) := Z
(
C(t)

)
the

Perron–Frobenius eigenvalue of C(t): as the entries of C(t) are log–convex functions of t,
it follows that also η(t) is log–convex, therefore in particular convex. Moreover η(0) = 1
(the matrix C(0) is bistochastic) and using (A.1) one easily checks that d

dtη(t)|t=0 = 0.
Since clearly η(t) ≥ 0 for all t ∈ R, by convexity it follows that indeed η(t) ≥ 1 for all t ∈ R,
and the proof is complete.
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