A RENEWAL THEORY APPROACH TO
PERIODIC COPOLYMERS WITH ADSORPTION
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ABSTRACT. We consider a general model of a heterogeneous polymer chain fluctuating in
the proximity of an interface between two selective solvents. The heterogeneous character
of the model comes from the fact that the monomer units interact with the solvents and
with the interface according to some charges that they carry. The charges repeat them-
selves along the chain in a periodic fashion. The main question on this model is whether
the polymer remains tightly close to the interface, a phenomenon called localization, or
there is a marked preference for one of the two solvents yielding thus a delocalization
phenomenon.

In this paper we present an approach that yields sharp estimates on the partition
function of the model in all regimes (localized, delocalized and critical). This in turn
allows to get a precise pathwise description of the polymer measure, obtaining the full
scaling limits of the model. A key point is the closeness of the polymer measure to suit-
able Markov renewal processes and Markov renewal theory is precisely one of the central
mathematical tools of our analysis.
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1. INTRODUCTION AND MAIN RESULTS

1.1. Two motivating models. Let S := {S,},_o,  be a random walk, Sp = 0 and
Sp = Z?:l X, with IID symmetric increments taking values in {—1,0,+1}. Hence the
law of the walk is identified by p := P(X; =1) = P (X; = —1), and we assume that
p € (0,1/2). The case p = 1/2 can be treated in an analogous way but requires some
notational care because of the periodicity of the walk. We also consider a sequence w :=
{wWn}nen— (1,2} of real numbers with the property that w,, = w,+7 for some T' € N and
for every n: we denote by T'(w) the minimal value of T'.

Consider the following two families of modifications of the law of the walk, both indexed
by a parameter N € N:

Pinning and wetting models. For A > 0 consider the probability measure Py, defined by

dPy o
dP

N
(S) o exp /\anl{snzo} . (1.1)

n=1

The walk receives a pinning reward, which may be negative or positive, each time it
visits the origin. By considering the directed walk viewpoint, that is {(n, S,)},,, one may
interpret this model in terms of a directed linear chain receiving an energetic contribution
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when it touches an interface. The main question is whether for large IV the typical paths
of Py, are rather attracted or repelled by the interface.

There is an extensive literature on periodic pinning and wetting models, the majority of
which is restricted to the T" = 2 case, we mention for example [13, 26], see [16] for further
discussion and references.

Copolymer near a selective interface. Much in the same way we introduce

N
dig,w (S) x exp <)\an sign (Sn)> , (1.2)

n=1

where if S, = 0 we set sign(S,) := sign(S,-1) 1s,_,20)- This convention for defining
sign(0), that will be kept throughout the paper, means simply that sign(S,,) = +1,0,—1
according to whether the bond joining S,—1 and S, lies above, on, or below the x—axis.

Also in this case we take a directed walk viewpoint and then Py, may be interpreted
as a polymeric chain in which the monomer units, the bonds of the walk, are charged.
An interface, the z—axis, separates two solvents, say oil above and water below: positively
charged monomers are hydrophobic and negatively charged ones are instead hydrophilic.
In this case one expects a competition between three possible scenarios: polymer prefer-
ring water, preferring oil or undecided between the two and choosing to fluctuate in the
proximity of the interface.

We select [24, 29] from the physical literature on periodic copolymers, keeping however
in mind that periodic copolymer modeling has a central role in applied chemistry and
material science.

1.2. A general model. We point out that the models presented in § 1.1 are particular
examples of the polymer measure with Hamiltonian

N N N
HN(S) = Z Z W1 (Gan(s)=i} + Z w1 g, oy + Z 501 (Gan(sy=0p,  (L1.3)

i=t1n=1 n=1 n=1

where wFD | WO and @ are periodic sequences of real numbers. Observe that, by our
conventions on sign(0), the last term gives an energetic contribution (of pinning/depinning
type) to the bonds lying on the interface. We use the shorthand w for the four periodic
sequences appearing in (1.3), and we will use 7' = T'(w) to denote the smallest common
period of the sequences. We will refer to w as to the charges of our system.

Besides being a natural model, generalizing and interpolating between pinning and
copolymer models, the general model we consider is the one considered at several instances,
see e.g. [30] and references therein.

Starting from the Hamiltonian (1.3), for a = ¢ (constrained) or a = f (free) we introduce
the polymer measure PY; , on ZN, defined by

dP(]lV,W S _ €xp (HN(S))

Ip (S) = Za (Lgamry + Liazc} 1{sy=0}) » (1.4)

where Z]‘{,w = Elexp(HN) (1{a=f} + 1{a=c} 1{sy=0})] is the partition function, that is the
normalization constant. Observe that the polymer measure PY , is invariant under the
joint transformation S — —S, w1 — w(=Y hence by symmetry we may (and will)
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assume that
T(w)

| .
he = T nz::l (wﬁﬁ — Wl >) > 0. (1.5)

We also set S := Z/(TZ) and for 8 € S we write equivalently [n] = 3 or n € 3. Notice
that the charges w;, are functions of [n], and we can write w,) := wh.

1.3. The free energy viewpoint. The standard statistical mechanics approach leads
naturally to consider the free energy of the model, that is the limit as N — oo of
(1/N)log Z§; . It is however practical to observe that we can add to the Hamiltonian Hy
a term which is constant with respect to S without changing the polymer measure. Namely
if we set

N
Hy(S) = Hn(S) = Y wit,
n=1

which amounts to sending wgﬂ) — 0, w

we can write

=D _, (wﬁl—l) - wgﬂ)) and &510) — (CJ,(LO) — wy(fl)),

Pl o _ e (Hy(5))

3 )= 7 (Lga=r} + Lja=c} L{sn=0}) ; (1.6)
where Z; , is a new partition function given by
~ N (+1)
L = B exp(HN) (Lamty + Lpame) Liswy) | = Zh- e Zmm L (L7)
At this point we define the free energy:
1
F, = ]\}1_1?100 ~ log Z - (1.8)

A proof of the existence of such a limit goes through standard super-additive arguments,
as well as the fact that the superscript ¢ could be changed to f and the result does not
change (see e.g. [16], but a complete proof, without using super-additivity, is given below).

The principle that the free energy contains the crucial information on the large N
behavior of the system is certainly not violated in this context. In order to clarify this
point let us first observe that F, > 0 for every w. This follows by noticing that the
energetic contribution to the trajectories that stay positive and come back to zero for the

first time at epoch IV is just w](\(,)), hence by (1.7)

(0)
| 1 e
~log 25, > WTN—I—NlogP(Sn>O, n=1,...,N—1, Sy=0) =0, (19

where we have simply used the fact that the distribution of the first return to zero of S is
sub-exponential (see (2.2) for a much sharper estimate). This suggests a natural dichotomy
and, inspired by (1.9), we give the following definition:

Definition 1.1. The polymer chain defined by (1.4) is said to be:

e localized if F,, > 0;
e delocalized if ¥, = 0.

A priori one is certainly not totally convinced by such a definition. Localization, as well
as delocalization, should be given in terms of path properties of the process: it is quite
clear that the energy Hy(S) of trajectories S which do not come back very often (i.e. not
in a positively recurrent fashion) to the interface will be either negative or o(N), but this
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is far from being a convincing statement of localization. An analogous observation can be
made for delocalized polymer chains.

Nonetheless, with a few exceptions, much of the literature focuses on free energy esti-
mates. For example in [5] one can find the analysis of the free energy of a subset of the
class of models we are considering here and in § 1.7 of the same work it is argued that
some (weak) path statements of localization and delocalization can be extracted from the
free energy. We will come back with a review of the existing literature after we have stated
our main results, but we anticipate from now that our purpose is going well beyond free
energy estimates.

One of the main results in [5] is a formula for F,,, obtained via Large Deviations argu-
ments. We will not give the precise expression now, the reader can find it in § 3.2 below,
but we point out that this formula is proven here using arguments that are more elemen-
tary and these arguments yield at the same time much stronger estimates. More precisely,
there exists a positive parameter §*, which is given explicitly and analyzed in detail in
§ 2.1, that determines the precise asymptotic behavior of the partition function (the link
between J,, and F,, will be clarified right after the statement):

Theorem 1.2 (Sharp asymptotic estimates). Fizn € S and consider the asymptotic
behavior of Z§; , as N — oo along [N] = 1. Then:

(1) If 6% <1 then Z§, ~ C5, /N*? ;
(2) If 6% =1 then Z, ~ CZ,/NY?;
(3) If 6 > 1 then ¥y, > 0 and Z3,, ~ CF, exp (FuNN),

where the quantities F,, C«in’

Cj’n and Cg;,, are gien explicitly in Section 3.

Of course by ay ~ by we mean ay/by — 1. Note that Theorem 1.2 implies the
existence of the limit in (1.8) and that F,, = 0 exactly when 0 < 1, but we stress that
in our arguments we do not rely on (1.8) to define F,,. We also point out that analogous

asymptotic estimates can be obtained for the free partition function, see Proposition 3.2.

It is rather natural to think that from such precise estimates one can extract detailed
information on the limit behaviors of the system. This is correct, notably we can consider

(1) Infinite volume limits, that is weak limits of Py, as a measure on RY,
(2) Scaling limits, that is limits in law of the process S, suitably rescaled, under P}, .

Here we will focus only on (2): the case (1) is considered in [7].

A word of explanation on the fact that there appears to be two types of delocalized
polymer chains: the ones with 6 = 1 and the ones with §“ < 1. As we will see, these
two cases exhibit substantially different path behavior (even if both display distinctive
features of delocalized paths, notably a vanishing density of visits at the interface). As it
will be clear, in the case §“ < 1 the system is strictly delocalized in the sense that a small
perturbation in the charges leaves §“ < 1 (as a matter of fact, for charges of a fixed period
the mapping w — 0“ is continuous), while §* is rather a borderline, or critical, case.

1.4. The scaling limits. The main results of this paper concern the diffusive rescaling
of the polymer measure P{; ,. More precisely, let us define the map X NCRN = ([0, 1)):

N TNt B LINt|+1 — TNt
Xt (‘T) - O'N1/2 +(Nt LNtJ) O'N1/2 ) le [071]7
where |- | denotes the integer part of - and o2 := 2p is the variance of X; under the

original random walk measure P. Notice that X}¥(z) is nothing but the linear interpolation
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of {xLNtJ/(J\/N)}te%m[O,l}' For a = f, ¢ we set:

Qe = Pl o (XN
Then Q% is a measure on C([0,1]), the space of real continuous functions defined on the
interval [0, 1], and we want to study the behavior as N — oo of this sequence of measures.

We start by fixing a notation for the following standard processes:

e the Brownian motion {B-}, ¢ 13

e the Brownian bridge {/37}76[0,1] between 0 and 0;

e the Brownian motion conditioned to stay non-negative on [0, 1] or, more precisely,
the Brownian meander {m- }¢(o 1}, cf. [28], and its modification by a random flip
{mﬁp’}Te[O,”, defined as m) = gm, where P(c = 1) =1 —P(oc = —1) = p € [0,1]
and (m, o) are independent;

e the Brownian bridge conditioned to stay non-negative on [0, 1] or, more precisely,
the normalized Brownian excursion {eT}Te[O,l], also known as the Bessel bridge of
dimension 3 between 0 and 0, see [28]. For p € [0,1], {e@}TE[O,” is the flipped
excursion defined in analogy with m(®);

e the skew Brownian motion {ng )}76[071} and the skew Brownian bridge {ﬁﬁ” )}re[o,l}
of parameter p, cf. [28] (the definition is recalled in Remark 1.5 below).

Finally, we introduce a last process, labeled by two parameters p,q € [0, 1]: consider a
random variable U + [0, 1] with the arcsine law: P(U < t) = 2 arcsin /%, and processes
P m(@ as defined above, with (U, B(p),m(q)) independent triple. Then we denote by
{B7('p7q)}7'€[0,1] the process defined by:

VT Y ifr<U
U
ng,q) —

VIi—om?, ifr>U

1-U

Then we have the following Theorem, which is the main result of this paper:

Theorem 1.3 (Scaling limits). For everyn € S, if N — oo along [N] = n, then the
sequence of measures {lel\aw} on C([0,1]) converges weakly. More precisely:
(1) for 6* < 1 (strictly delocalized regime): QY converges to the law of e®on) and

ng,w converges to the law of m(wa), for some parameters pg, , € [0,1], a =f,c.

(2) for ¥ =1 (critical regime): QY ,, converges to the law of B®) and ng,w converges
to the law of B®«.n)  for some parameters p,,, duy € [0,1].

(3) for 8 > 1 (localized regime): Q% converges as N — oo to the measure concen-
trated on the constant function taking the value zero (mo need of [N] =n).

The exact values of the parameters pg, ,, p» and q 5 are given in (5.5), (5.7), (5.17) and
(5.19). See also the Remarks 5.3, 5.4, 5.7 and 5.8.

Remark 1.4. It is natural to wonder why the results for 6 < 1 may depend on [N] € S.
First of all we stress that only in very particular cases there is effectively a dependence
on 71 and we characterize these instances precisely, see § 2.3. In particular there is no
dependence on [N] for the two motivating models (the pinning and the copolymer one)
described in § 1.1, and more generally if h,, > 0. However this dependence on the boundary
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condition phenomenon is not a pathology, but it is a sign of the presence of first order phase
transitions in this class of models. Nonetheless the phenomenon is somewhat surprising
since the model is one dimensional. This issue, that is naturally clarified when dealing
with the infinite volume limit of the model, is treated in [7].

Remark 1.5. (Skew Brownian motion). We recall that B®), respectively 3%, is a
process such that |B®| = |B|, resp. |3®%)| = |4, in distribution, but in which the sign
of each excursion is chosen to be +1 (resp. —1) with probability p (resp. 1 — p) instead
of 1/2. Observe that for p = 1 we have BY) = |B|, V) = |5, m(!) = m and V) = ¢
in distribution. Moreover B1/2) = B and (/2 = 3 in distribution. Notice also that the
process B®9 differs from the p-skew Brownian motion B® only for the last excursion
in [0, 1], whose sign is +1 with probability ¢ instead of p.

4,
Y

o
q
T
i~
=
S~ |
=
Y

- -
- e - -—-—

FIGURE 1. A schematic view of the scaling limits for the constrained end-
point case. While in the localized regime, image on top, on large scale the
polymer cannot be distinguished from the interface, in the strictly delocal-
ized regime, bottom image, the visits to the interface are only a few and all
close to the endpoints (the sign of the excursion is obtained by flipping one
biased coin). In between there is the critical case: the zeros of the limiting
process coincide with the zero of a Brownian bridge, as found for the ho-
mogeneous wetting case [18, 9, 6], but this time the signs of the excursions
vary and they are chosen by flipping independent biased coin. Of course
this suggests that the trajectories in the localized cased should be analyzed
without rescaling (this is done in [7]).

1.5. Motivations and a look at the literature. From an applied viewpoint, the inter-
est in periodic models of the type we consider appears to be at least two—fold:

(1) On the one hand periodic models are often (e.g. [13, 24]) motivated as caricatures

of the quenched disordered models, like the ones in which the charges are a typical

realization of a sequence of independent random variables (e.g. [1, 4, 16, 30] and
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references therein). In this respect, periodic models may be viewed as weakly in-
homogeneous, and the approximation of strongly inhomogeneous quenched models
with periodic ones, in the limit of large period, sets forth very interesting and chal-
lenging questions. We believe that, if the precise description of the periodic case
that we have obtained in this work highlights the limitations of periodic modeling
for strongly inhomogeneous systems (compare in particular the anomalous decay
of quenched partition functions along subsequences pointed out in [17, section 4]
and our Th. 1.2), it is at the same time an essential step toward understanding the
large period limit, and the method we use in this paper may allow a generalization
that yields information on this limit.

(2) One the other hand, as already mentioned above, periodic models are absolutely
natural and of direct relevance for application, for example when dealing with
molecularly engineered polymers (see [25, 29] for a sample of the theoretical physics
literature, but the applied literature is extremely vast).

From a mathematical standpoint, our work may be viewed as a further step in the
direction of

(a) extending to the periodic setting precise path estimates obtained for homogeneous
models;

(b) clarifying the link between the free energy characterization and the path charac-
terization of the different regimes.

With reference to (a), we point out the novelty with respect to the works on homoge-
neous models [24, 18, 9, 6]. Although the basic role of renewal theory techniques to get the
crucial estimates had been emphasized already in [9, 6], we stress that the underlying key
renewal processes that appear in our inhomogeneous context are not standard renewals,
but rather Markov renewal processes, cf. [2]. Understanding the algebraic structure leading
to this type of renewals is one of the central points of our work, see § 3.1.

We also point out that the Markov renewal processes appearing in the critical regime
have step distributions with infinite mean. Even for ordinary renewal process, the exact
asymptotic behavior of the Green function in the case of infinite mean has been a long-
standing problem, cf. [15] and [21], which has been solved only recently by R. A. Doney
n [10]. The extension of this result to the framework of Markov renewal theory, that
we consider here in the case of finite-state modulating chain, presents some additional
problems (see Remark 3.1 and Appendix A) and, to our knowledge, has not been considered
in the literature. In Section 5 we also give an extension to our Markov-renewal situation
of the beautiful theory of convergence of regenerative sets developed in [12].

A final observation is that, like in [6], the estimates we get here are really sharp in all
regimes and our method goes well beyond the case of random walks with jumps +1 and
0, to which we restrict for the sake of conciseness.

With reference to (b), we point out that in the models we consider there is a variety of
delocalized path behaviors, which are not captured by the free energy. This is suggestive
also in view of progressing in the understanding of the delocalized phase in the quenched
models [17].

1.6. Outline of the paper. The exposition is organized as follows:

e In Section 2 we define the basic parameter é“ and we analyze the dependence on
the boundary condition [N] = 7 of our results.

e In Section 3 we clarify the link of our models with Markov renewal theory and we
obtain the asymptotic behavior of Z§ , and ZJvaw’ proving Theorem 1.2.
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e In Section 4 we present a basic splitting of the polymer measure into zero level set
and excursions and we point out the importance of the partition function.

e In Section 5 we compute the scaling limits of P} ,, proving Theorem 1.3.

e Finally, the Appendices contain the proof of some technical results.

2. A CLOSER LOOK INTO THE MAIN RESULTS

2.1. The order parameter §“. A remarkable feature of our results, see Theorem 1.2
and Theorem 1.3, is the fact that the properties of the polymer measure are essentially
encoded in one single parameter §*, that can be regarded as the order parameter of our
models. This subsection is devoted to defining this parameter, but before we need some
preliminary notation.

We start with the law of the first return to zero of the original walk:

7 :=inf{n >0: S, =0} K(n) == P(ri=n). (2.1)
It is a classical result [11, Ch. XII.7] that
3 lim n*?K(n) =: cx € (0,00). (2.2)

The key observation is that, by the T—periodicity of the charges w and by the defini-
tion (1.5) of hy,, we can define a S x S matrix ¥, g by the following relation:

n2

S @Y —wlt) = —(ng - n) b+ Spo o) (2.3)

n=ni1+1

Thus we have decomposed the above sum into a drift term and a fluctuating term, where
the latter has the remarkable property of depending on n; and no only through their
equivalence classes [n1] and [ng] in S. Now we can define three basic objects:

e for o, 3 €S and £ € N we set

wg]) + ((Zg]) — wgﬂ)) ifl=1,4lef—-a
apl) == wé0)+ log [%<1+exp(—£hw+2a,5))] ifld>1,¢ef—as (2.4)
0 otherwise

e for z € N we introduce the S x S matrix M 5(z) defined by

ap(T) = e®as® K (z) lizep—a); (2.5)

e summing the entries of M*“ over x we get a S X S matrix that we call B“:

Sa= > M (). (2.6)
zeN

The meaning of these quantities will emerge clearly in the next subsection. For the moment
we stress that they are explicit functions of the charges w and of the law of the underlying
random walk (to lighten the notation, the w—dependence of these quantities will be often
dropped in the following).

Observe that B, g is a finite dimensional matrix with positive entries, hence the Perron—
Frobenius Theorem (see e.g. [2]) entails that B, g has a unique real positive eigenvalue,
called the Perron—Frobenius eigenvalue, with the property that it is a simple root of the
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characteristic polynomial and that it coincides with the spectral radius of the matrix. This
is exactly our order parameter:

0“ := Perron—Frobenius eigenvalue of B . (2.7)

2.2. A random walk excursions viewpoint. In this subsection we are going to see
that the quantities defined in (2.4) and (2.5) emerge in a natural way from the algebraic
structure of the constrained partition function va’w. Let us look back to our Hamiltonian
(1.3): its specificity comes from the fact that it can be decomposed in an efficient way by
considering the return times to the origin of S. More precisely we define for j € N

T0=0 Tj41 = inf{n > 7;: S, =0},

and we set .y = sup{k : 7, < N}. We also set T = 7; — 7;_1 and of course {Tj}j=12 .
is, under P, an IID sequence. By conditioning on 7 and integrating on the up—down
symmetry of the random walk excursions one easily obtains the following expression for
the constrained partition function:

Z]C\f,w Hexp [j-1], [TJ}(TJ - Tj—l)); Ty = N

(2.8)

N k
=2 H ity ales) (85 = ti=1).5

k=1 to,...,t g EN
0=:to<t1<...<tp:=N

where we have used the quantities introduced in in (2.4) and (2.5). This formula shows in
particular that the partition function Zy.,isa function of the entries of MY.

We stress that the algebraic form of (2.8) is of crucial importance: it will be analyzed
in detail and exploited in Section 3 and will be the key to the proof of Theorem 1.2.

2.3. The regime w € P. In this subsection we look more closely at the dependence of our
main result Theorem 1.3 on the boundary condition [N] = 7. It is convenient to introduce
the subset P of charges defined by:

={w: <1, hy=0, Fo,f: Xu8#0}, (2.9)

where we recall that h,, and X, 3 have been defined respectively in (1.5) and (2.3).

The basic observation is that if w ¢ P the constants pg, . wa, po and q;, actually
have no dependence on 1 and they take all the same value, namely 1 if h,, > 0 and 1/2 if
h, = 0 (see the Remarks 5.3, 5.4, 5.7 and 5.8). Then the results in Theorem 1.3 for 6 < 1
may be strengthened in the following way:

Proposition 2.1. Ifw ¢ P, then the sequence of measures {QY; ,} on C([0,1]) converges
weakly as N — oco. In particular, setting p, := 1 if hy, > 0 and p,, := % if hy, = 0:
(1) for 0% < 1 (strictly delocalized regime), Qﬁv,w converges to the law of m®<) and
QY converges to the law of e(pw)

(2) ford“ =1 (critical regime), QE\,M converges to the law of B®<) and QY converges
to the law of BP<)

This stronger form of the scaling limits holds in particular for the two motivating models
of § 1.1, the pinning and the copolymer models, for which w never belongs to P. This is
clear for the pinning case, where by definition ¥ = 0, while the copolymer model with
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h, = 0 has always 6“ > 1, as we prove in Appendix B. However we stress that there
do exist charges w (necessarily belonging to P) for which there is indeed a dependence
on [N] = n in the delocalized and critical scaling limits. This interesting phenomenon may
be understood in statistical mechanics terms and is analyzed in detail in [7].

3. SHARP ASYMPTOTIC BEHAVIOR FOR THE PARTITION FUNCTION

In this section we are going to derive the precise asymptotic behavior of 2N w and Z]f\w7
in particular proving Theorem 1.2. The key observation is that the study of the partition
function for the models we are considering can be set into the framework of the theory of
Markov renewal processes, see [2, Ch. VIL.4].

3.1. A link with Markov Renewal Theory. The starting point of our analysis is
equation (2.8). Let us call a function N xS xS 3 (z,a,8) — F,g(x) > 0 a kernel. For
fixed x € N, F. () is a S X S matrix with non-negative entries. Given two kernels F' and
G we define their convolution F * G as the kernel defined by

(F* Qap@) =Y > Far@)Grple—y) =D [Fly)- Gz —y)], ;4 (3.1)
yeN ~veS yeN
where - denotes matrix product. Then, since by construction M, g(x) = 0 if [z] # § — «,
we can write (2.8) in the following way:

Z§ ., = Z > [M(t1) ... M(N = t5-1)] kz_:l [M**] (V) (3.2)

= t1,..,txEN
0<t1< Ltp:=N

where F* denotes the n—fold convolution of a kernel F' with itself (the n = 0 case is by
definition [F*%], 3(x) := 1(32a)1(s=0))- In view of (3.2), we introduce the kernel
Za5(n) = Z [M*k]a,ﬁ(n)’ (3.3)
k=1
so that Z§ , = Zjg,v(IV) and more generally Z§ . o = Zpy,v(N — k), k < N, where
we have introduced the shift operator for £ € N:

O : RS =R (0kQ)g = (g BES.

Our goal is to determine the asymptotic behavior as N — oo of the kernel Z, g(/N) and
hence of the partition function Z§ . To this aim, we introduce an important transforma-
tion of the kernel M that exploits the algebraic structure of (3.3): we suppose that §“ > 1
(the case 0* < 1 requires a different procedure) and we set for b > 0 (cf. [2, Th. 4.6])

Ag’ﬁ(x) = M, 5(zx)e .

Let us denote by A(b) the Perron-Frobenius eigenvalue of the matrix ) Agﬂ(x). As
the entries of this matrix are analytic and nonincreasing functions of b, A(b) is analytic
and nonincreasing too, hence strictly decreasing because A(0) = ¢ > 1 and A(oc0) = 0.
Therefore there exists a single value F,, > 0 such that A(Fw) = 1, and we denote by
{Cata, {€a}a the Perron-Frobenius left and right eigenvectors of >, AZ‘:’ﬁ(aj), chosen to
have (strictly) positive components and normalized in such a way that > (o &a =1 (the
remaining degree of freedom in the normalization is immaterial). Then we set

Top(x) = My ) e g_i , (3.4)
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and observe that we can rewrite (3.2) as

[e.e]

Zo5(n) = exp(Fun) g—; Ua,p(n), where Uap(n) = Z [F*k]a’ﬁ(n). (3.5)
k=1

The kernel U, g(n) has a basic probabilistic interpretation that we now describe. Notice
first that by construction we have » 5 I'q g(z) = 1, i.e. I' is a semi-Markov kernel, cf. [2].
Then we can define a Markov chain {(J,T;)} on S x N by:

P[(Jis1, Tog1) = (B, %) | (Jr, Tk) = (o, 9)] =Tap(z), (3.6)
and we denote by P, be the law of {(Ji, Tx)} with starting point Jy = « (the value of Tj
plays no role). The probabilistic meaning of U, g(x) is then given by:

Ua,p(n) = Z]P’a (Th+-++ T =n, Jy=0) . (3.7)
k=1

We point out that the process {7y }r>0 defined by 79 := 0 and 74 := T7 + ... + T}, under
the law P, is what is called a (discrete) Markov-renewal process, cf. [2]. This provides a
generalization of classical renewal processes, since the increments {7} } are not IID but
they are rather governed by the process {J} in the way prescribed by (3.6). The process
{Ji} is called the modulating chain and it is indeed a genuine Markov chain on S, with
transition kernel )y T'o 5(z), while in general the process {1} } is not a Markov chain.

One can view 7 = {7,} as a (random) subset of N. More generally it is convenient to
introduce the subset

7= |J {m}, BeS, (3.8)
k>0: Jp=p0
so that equation (3.7) can be rewritten as
Uap(n) =Pu(n e ). (3.9)

This shows that the kernel U, g(n) is really an extension of the Green function of a classical
renewal process. In analogy with the classical case, the asymptotic behavior of U, g(n) is
sharply linked to the asymptotic behavior of the kernel I'; i.e. of M. To this aim, we notice
that our setting is an heavy—tailed one: more precisely for every «, 3 € S, by (2.2), (2.5)
and (2.4) we have

CK 1 <1 + exp (Ea,5)> exp(wg])) if hy,=0

lim 22 My () = Lag = f . (3.10)
[a]=h—a K 5 exp(w]) if hy >0

The rest of this section is devoted to finding the asymptotic behavior of U, g(n) and
hence of Z, g(n), proving in particular Theorem 1.2. For convenience we consider the three
regimes separately.

3.2. The localized regime (6 > 1). If §“ > 1 then necessarily F,, > 0. Notice that
> . Tap(x) > 0, s0 that in particular the modulating chain {Jj} is irreducible. The unique
invariant measure {v, }, is easily seen to be equal to {(4&a}a-

Let us compute the mean pu of the semi—-Markov kernel I':

0A
W= Z Za:l/afa,g(a:) = Z Za:e_wa Ca Mo p(x)ép = ~5 e (0,00)

a,B€S zeN a,B€eS zeN b=Fu
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(for the last equality see for example [5, Lemma 2.1]). Then we can apply the Markov
Renewal Theorem, cf. [2, Th. VII.4.3], that in our periodic setting gives

3 lim Usg(z) = T2, (3.11)
[z]=6~a
Then by (3.5) we obtain the desired asymptotic behavior:
T
Za () ~ €0 (3 m exp (Fy, ) xr—o00, [z]=0—-a, (3.12)
and for a = [0] and 3 = 1 we have proven part (3) of Theorem 1.2, with C7, = &0 ¢, T/p.

3.3. The critical case (§“ = 1). In this case F,, = 0 and equation (3.4) reduces to

§
Tog(z) = Myp(z) 5—5 (3.13)
The random set 77 introduced in (3.8) can be written as the union 77 = UkZO{TIIc@ 1

where the points {T,f }i>0 are taken in increasing order, and we set Tkﬁ = T,f 1= 7'5 for

k > 0. Notice that the increments {Tkﬁ } correspond to sums of the variables {7;} between
the visits of the chain {J;} to the state (: for instance we have
T’ =T 4... 4Ty,  wi=mf{k>0: Jy=0}, (:=inf{k>r: Jy=0}.

Equation (3.6) then yields that {Tkﬁ }k>0 is an independent sequence under Py, and that the
variables T,f have for k > 1 the same distribution ¢°(n) := ]P’a(Tlﬁ = n) that actually does
not depend on «. The variable Toﬁ in general has a different law ¢(®%) (n) := ]P’a(Toﬁ =n).
These considerations yield the following crucial observation: for fixed o and (3, the
process {7‘5 ti>0 under P, is a (delayed) classical renewal process, with typical step dis-
tribution ¢”(-) and initial step distribution ¢\ (-). By (3.9), U, 5(n) is nothing but the
Green function (or renewal mass function) of this process: more explicitly we can write

[e.9]

Ua,p(z) = (q(‘”ﬁ) > (qﬁ)*”> (z). (3.14)

n=0

Of course ¢(®® plays no role for the asymptotic behavior of Uqap(x). The key point is
rather the precise asymptotic behavior of ¢®(z) as x — oo, « € [0], which is given by

3B cs h . 1
q°(x) ~ —=, where cg = E CaLa~r&y > 0, 3.15
(z) 23/2 8 (585 o 7Sy ( )

as it is proven in detail in Appendix A. Then the asymptotic behavior of (3.14) follows by
a result of Doney, cf. [10, Th. BJ:

1
27 s \/E
(the factor T? is due to our periodic setting). Combining equations (3.5), (3.15) and (3.16)
we finally get the asymptotic behavior of Z, 5(z):

Zoplx) ~ r Sa b L r—o00, [z]=0-a. (3.17)

2 Yy Gy Ly &y W
Taking o = [0] and 8 = 7, we have the proof of part (2) of Theorem 1.2.

Uaplx) ~ xr—o00, [z]=p—a, (3.16)
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Remark 3.1. We point out that formula (3.15) is quite non-trivial. First, the asymptotic
behavior #=3/2 of the law of the variables T 16 is the same as that of the Tj, although

Tlﬁ is the sum of a random number of the non-independent variables (7;). Second, the
computation of the prefactor cg is by no means an obvious task (we stress that the precise
value of cg is crucial in the proof of Proposition 5.5 below).

3.4. The strictly delocalized case (0 < 1). We prove that the asymptotic behavior
of Z, g(x) when 0¥ < 1 is given by

_ _ 1
Zaﬂ(:n) ~ <[(1_B) lL(l_B) l]aﬂ) m €T — 00, [m]:ﬁ—a, (318)

where the matrices L and B have been defined in (3.10) and (2.6). In particular, taking
a = [0] and § =1, (3.18) proves part (1) of Theorem 1.2 with

Cs,=1-B)7'L( —B)_l}o’n.

To start with, it is easily checked by induction that for every n € N
> Mg () = [B"ay - (3.19)
zeN

Next we claim that, by (3.10), for every a, 3 € S

Ed
—_

3 Jim P[] @) = Y [B LBV

—00
[z]=B—a i

i (3.20)

Il
o

We proceed by induction on k. The k = 1 case is just equation (3.10), and we have that

z/2

M () =3 (M(y) M (x—y) + M(z—y)- M*"(y)>
y=1

(strictly speaking this formula is true only when z is even, however the odd z case is
analogous). By the inductive hypothesis equation (3.20) holds for every k£ < n, and in
particular this implies that {z%2[M**], 5(x)}zen is a bounded sequence. Therefore we
can apply Dominated Convergence, and using (3.19) we get

n—1
3 [ g]glgﬁrolo 23/ [M*(n+1)]a,ﬁ(x) — Z <Ba,~/ z% (B L- B("—l)—l}%ﬁ + Loy [B*"]%ﬁ>
z|=F—a ¥ i=

= Z[B"-L-B"—"]aﬂ.

=0
Our purpose is to apply the asymptotic result (3.20) to the terms of (3.5) and we need
a bound to apply Dominated Convergence. What we are going to show is that

23/2 [M*k]aﬁ(‘r) < Ok [Bk]

7 s (3.21)

for some positive constant C' and for all o, € S and z,k € N. We proceed again by
induction: for the k = 1 case, thanks to (3.10), it is possible to find C' such that (3.21)
holds true (this fixes C' once for all). Now assuming that (3.21) holds for all £ < n we
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show that it does also for k£ = n (we suppose for simplicity that n = 2m is even, the odd n
case being analogous). Then we have (assuming that also x is even for simplicity)

x/2
G (2) = 2303 [ () 2B M (e — )
y=1~v€S
x/2
< 2220w’y N [M, () [BM], 5 < CCem)[B™],

y=1~€S

where we have applied (3.19), and (3.21) is proven.
The r.h.s. of (3.21) is summable in k because the matrix B has spectral radius 6* < 1.
We can thus apply Dominated Convergence to (3.5) using (3.20) and we get (3.18) by:

oo k—1
: 3 i k—1)—i -1 -1
lim @2z, 5() = Y > [BL-B*VT] = [1-B) - L-(1-B)'] ;.
[z]=B—« k=1 1i=0
This concludes the proof of Theorem 1.3. O

3.5. The free partition function. We want now to compute the asymptotic behavior
of the free partition function. In particular we have:

Proposition 3.2 (Sharp asymptotic estimates, free case). As N — oo, [N]| =1, we
have:

(1) for 6* < 1 (strictly delocalized regime) Z]fvw ~ C'Lf,hf/Nl/2 ;
(2) for 0 =1 (critical regime) Z]fvw C'Z,,f,
(3) for v >1 (Ioca]jzed regime) ij\, ~ C’>,7 exp (Fu V).

where C 5, C’fn and C5f n are explicit positive constants, depending on w and ).

Proof. Conditioning on the last zero of S before epoch N, we have the useful formula

Z]f\f7w Z Zt w - t exp <(I)[t} [N](N - t)) . (3.22)
where P(n) :=P(r; >n) =372 ., K(k) and:

~ 1
(I)a,ﬁ(e) = log |:§ (1 + exp ( - U‘Lw + 2a75)>:| 1(@ >1) 1(465—&) s (323)

which differs from ® in not having the terms of interaction with the interface, cf. (2.4).
Since also the asymptotic behavior of P(¢)exp(®, 3(¢)) will be needed, we set:

B ~ cK(l + exp(Ea,ﬁ)) if h,=0
Log =  lim  VIP()ePar® = . (3.24)
bmo0, tefia K it hy, >0

as it follows easily from (3.23) and from the fact that P(¢) ~ 2cx /v as £ — co. For the
rest of the proof we consider the different regimes separately.
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The strictly delocalized case. Notice that:
N2 ZN koo = Z Zig i () N2 P(N — & — t) exp (N[t—i-k],[N}(N —k— 75))-

Then by (3.24) we obtam

3 ]\}gﬂlooNl/ ZN ko = Zz[k Lit+w(8) Ligsrgy = [(1—B)7'L] on (3.25)
Nen
since - -
> Zan(t) = Z Z ME(t) => B = [(I- B)™'],..- (3.26)
t=0 t=0 k=0 k=0
The critical case. For N € 77 and k < N:
28 e = > Z Zjjy (1) PN = k= 1) exp (@, (N — k —1)).
v
By the previous results and using (3.24) we obtain that for every k € N
. L) [t dt T (¢, L.y)
3 lm Zh pew = § T 4G Loy / = & ’ 3.27
N—oo, Nen N=k.Or Mo 27 <C7 L§> 0 t%(l — t)% [k <C7 L§> ( )

where we denote the canonical scalar product in RS by (-, -):

= Yata, YRS

a€S
The localized case. By (3.22):
N—k _
e "N ZN oo = €N 2y iv—g(N — k —t) P(t) exp <<I>[N—t},[N] (75)>
=0
— ek Y Z e P() [exp (B (1)) €™ N TED 2y (N~ k1))

~yeS t=0

Since by (3.12) the expression in brackets converges as N — oo and N € [t] 4+, we obtain

i B = (DT 0 e (00), )

—00
Nen ~eS t=0

Observe that the term in parenthesis is just a function of 7. O

4. A PRELIMINARY ANALYSIS OF THE POLYMER MEASURE

In this section we give some preliminary material which will be used in section 5 for
the proof of the scaling limits of our models. We are going to show that the core of the
polymer measure is encoded in its zero level set and that the law of the latter is expressed
in terms of the partition function. This explains the crucial importance retained by the
partition function for the study of Py,

We start giving a very useful decomposition of P% . The intuitive idea is that a path
(Sn)n<n can be split into two main ingredients:
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e the family (75 )k=0,1,... of returns to zero of S (defined in § 2.2);
e the family of excursions from zero (Sitr, , 10 <@ < T — Th—1)k=1,2,...
Moreover, since each excursion can be either positive or negative, it is also useful to
consider separately the signs of the excursions oy, := sign(Sy,_,+1) and the absolute values
(er(2) = [Sitr,_,| : ©=0,..., 7, — 7,—1). Observe that these are trivial for an excursion
with length 1: in fact if 7, = 74,1 + 1 then o, = 0 and ex(0) = ex(1) = 0.
Let us first consider the returns (7x)k<,, under P‘fvw, where we recall the definition

1y = sup{k : 7, < N}. The law of this process can be viewed as a probability measure
P, on the class of subsets of {1,...,N}: indeed for A C {1,..., N}, writing

A:{tl,...,tm‘}, 0= t0<t1<"'<t|A‘§N, (4.1)
we can set
p‘}V,W(A) = P(]IVM(TZ' =t;, 1 <LN). (4.2)
Then from the very definition (1.6) of P}, and from the strong Markov property of P,
we have the following basic

Lemma 4.1. With the notation (4.1), for AC {1,...,N}:if a =c, pﬁ\,’w(A) #0 if and
only if tja =N, and in this case:

||
c 1
Pw(4) = 73 HM[ti,l},[ti](ti —ti 1), (4.3)
Nw ;=1
while for a = f:
1 |A|
; .
Prw(A) = 7 TT Mgyt = tia) | PN = t1)) exp (q)[t‘A‘},[N](N _t\A|)> - (4.4)
;W Z:1

Thus the law of the zero level set is explicitly given in terms of the kernel M, g(n)
and of the partition function Zy . The following two lemmas (that follow again from the
definition (1.6)) show that, conditionally on the zero level set, the signs are independent
and the excursions are just the excursions of the unperturbed random walk S under P.
This shows that the zero level set is indeed the core of the polymer measure Py .

Lemma 4.2. Conditionally on {in, (Tj)j<.y }, under P% , the signs (o )k<.y+1 form an
independent family. For k < vy, the conditional law of o is specified by:

-if e =14 7,1, then o = 0;

- if 7, > 14 Tp_1, then oy can take the two values £1 with
1

P4 <0k — 41 ‘ ins (7)< ) - . (45)
“ PIEN] T T exp {— (7 — Tho1) ho + Spr_y]m )
For a =1, when 7,,, < N there is a last incomplete excursion in the interval {0,..., N},
whose sign 0,41 is also specified by (4.5), provided we set 7,41 := N.
Lemma 4.3. Conditionally on {tn, (7j)j<iy, (05)j<in+1}, the excursions (e’f('))k<w+1

form an independent family under Py . For k < .y, the conditional law of er(:) on the
event {Tp—1 = Lo, T, = {1} is specified for f = (fi)i=o,...0,—eo bY

P4 . (%(') =f ‘ iNs (T5)j<ens (Uj)jSLNJfl)

(4.6)
- P(s,-:f,-: i=0,... 0 — 0 ( S;>0: i=1,....0 —ly—1, Szl_gozo).
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For a = f, when 7,, < N the conditional law on the event {1,, = ¢ < N} of the last
incomplete excursion e,y 11(-) is specified for f = (fi)i=o,. .N—¢ by

Pl (en1() =1 | oy (T)ssons (03)s<in1)

- P(s,-:f,-: z’:O,...,N—K‘SZ->0: ¢=1,...,N—e>. o

We stress that Lemmas 4.1, 4.2 and 4.3 fully characterize the polymer measure PY .
It is worth stressing that, conditionally on (73 )ken, the joint distribution of (0}, e;) <.y
does not depend on N. In this sense, all the N—dependence is contained in the law p‘}v’w
of the zero level set. This fact will be exploited in the next section.

5. PROOF OF THEOREM 1.3 AND PROPOSITION 2.1

In this section we show that the measures P} , converge under Brownian rescaling,
proving Theorem 1.3 and Proposition 2.1. The results and proofs follow closely those of [9]
and we shall refer to this paper for several technical lemmas; for the tightness of (Q?VM) NeN
in C([0,1]), we refer to [8].

Lemma 5.1. For any w and a = c,f the sequence (Q% ) Nen is tight in C([0, 1]).

From now on, we consider separately the three regimes 6% > 1, % < 1 and é* = 1.

5.1. The localized regime (6“ > 1). We prove point (3) of Theorem 1.3. By Lemma 5.1
it is enough to prove that P?v,w(‘XtN’ >¢) — 0 forall e >0 and ¢t € [0,1] and one can
obtain this estimate explicitly. We point out however that in this regime one can avoid
using the compactness lemma and one can obtain a stronger result by elementary means:
observe that for any k,n € N such that n > 1 and k +n < N, we have

‘JIVM(S]Q:Sk_i_n:O, S]H_i#()fori:l,...,n—l)

3 (1 + exp (Zzﬂ:l (wl(c:-? - wlii)») =: Kp(n), (5.1)

— c
n,0pw

and this holds both for a = ¢ and a = f. Inequality (5.1) is obtained by using the Markov
property of S both in the numerator and the denominator of the expression (1.6) defining

Nw () after having bounded 2y from below by inserting the event Sy = Sgin = 0.
Of course limy,_(1/n)log Ki(n) = —F,, uniformly in k (notice that Ky r(n) = Kj(n)).
Therefore if we fix € > 0 by the union bound we obtain (we recall that {7;}; and ¢y were
defined in Section 2.2) for some ¢ > 0:

7Vw< max 7;—Tj—1 > (1+¢) logN/Fw>
YA\ =12, N
< ) >, K
k<N—(14¢)log N/F,, n>(1+4¢€)log N/F.,
~ c
< N Z k:gf.li}é—lKk(n) < e
n>(1+¢) log N/Fo,

Let us start with the constrained case: notice that Py ,(dS)-a.s. we have 7,, = N and
hence maxj<, 7j — Tj—1 > maxy—1,. N |Sy|, since [Sp41 — Sp| < 1. Then we immediately
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obtain that for any C' > 1/F,,

N—oo

lim PNW< _nllaxN\Sn\ > ClogN> =0, (5.2)

which is of course a much stronger statement than the scaling limit of point (3) of Theo-
rem 1.3. If we consider instead the measure P', N> the length of the last excursion has to
be taken into account too: however, an argument very close to the one used in (5.1) yields
also that the last excursion is exponentially bounded (with the same exponent) and the
proof of point (3) of Theorem 1.3 is complete. O

5.2. The strictly delocalized regime (6“ < 1). We prove point (1) of Theorem 1.3
and Proposition 2.1. We set for t € {1,...,N}:
Dy :=inf{k=1,...,N: k>t, Sy=0}, Gy :=suplk=1,...,N: k<t Sp=0}

The following result shows that in the strictly delocalized regime, as N — oo, the visits to
zero under P¢; , tend to be very few and concentrated at a finite distance from the origin
1fa—fandfr0m00rN1fa—C

Lemma 5.2. If §* < 1 there exists a constant C > 0 such that for all L > 0:
limsup [Pl (Gn > L)+ P%,, (Gnje > L) + Py, (Dnjp < N — L)] < CL7Y2

N—oo

Proof. We consider e.g. Py , (G NJ2 2 L): using Lemma 4.1 to write down this probability,
recalling the definition (3.5) of the kernel Z, g(n) and using (3.18), we obtain

|N/2] N
c My 19(z — 2) 2, (N — 2)
PN (Gnj2 = L) Z Zom@) > [],[2] [2),[N]

2=|N/2|+1 Zom(V)
[NV/2] N
< Cl N3/2 Z $—3/2 Z (Z o $)—3/2 (N—I— 1— Z)_3/2 < 02 L_1/2,
z=L 2=|N/2]+1
for some positive constants C7 and Cs, and the proof is completed. O

The signs. Since the zeros are concentrated near the boundary, to complete the proof it
is enough to argue as in the proof of Theorem 9 in [9]. More precisely, by Lemma 5.2 for
large N the typical paths of P} , are essentially made up of one big excursion, whose
absolute value converges in law to the Brownian excursion {et}te[o,l] for a = ¢ and to
the Brownian meander {m;}c(o1] for a = f by standard invariance principles, cf. [19]
and [3]. Therefore to complete the proof we only have to show that there exists the limit
(as N — oo along [N] = n) of the probability that the process (away from {0,1}) lives
in the upper half plane. In the general case we have different limits depending on the
sequence [N] =n and on a = f, ¢, while if w ¢ P all such limits coincide.

We start with the constrained case: given Lemma 5.2, it is sufficient to show that
3 lim Py, (Snpe>0)=
N—oo ’
Nen
Formula (5.3) follows from the fact that

. Z0,0(2) py 5y — ) Map(y — ) Z5 (3N —y)
Pu(Sne>0= 3 3 % e = ,

a,BES z<N/2 y>N/2 Zo, v (N)

) (5.3)
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where for all z € N and o, 3 € S we set:

1
: = 5.4
Pa,6(2) 1+exp(—zhy+Xap) (54)
cf. (4.5). By Dominated Convergence and by (3.10) and (3.26) we get:
3 lim NN N Zoa() gy — 7) Map(y — ) 2.0 (N — )
Nen x<N/2y>N/2
_ 1 0 _
= [(1-B) 1}0’ CK 5 exp(wg )) [(1-B) 1]5,17'
Then by (3.18) it follows that (5.3) holds true, with
_ 0 _
o Tasl@-B) ek g ey’ [1-B)Y,, 5.5
Pon = 1-B)'L(1-B)! ' (5:5)
(A-B)LO-B)],,

Remark 5.3. Observe that by (3.10):

e if A, > 0 then in (5.5) the denominator is equal to the numerator, so that Po, =1
for all 7.

e if h, = 0 and ¥ = 0 then in (5.5) the denominator is equal to twice the numerator,
so that pg, , = 1/2 for all n.

e in the remaining case, i.e. if w € P, in general P, depends on 1.

Now let us consider the free case. This time it is sufficient to show that

3 Jlim Pl (Sy >0) = pl,,. (5.6)
Nén
However we can write
Zya(x) - P(N k)
P S > 0 5

and using (3.22), (3.26) and (3.24) we obtain that (5.6) holds with

Za [(1 - B)_l]o CK
f _ Qo
pwﬂ? - [(1 _ B)_:LZ] o . (57)

Remark 5.4. Again, observe that by (3.24):

e if h,, > 0 then in (5.7) the denominator is equal to the numerator and pfw =1 for
all n.

e if h, = 0 and ¥ = 0 then in (5.7) the denominator is equal to twice the numerator,
so that pfw =1/2 for all n.

e in the remaining case, i.e. if w € P, in general pfw77 depends on 7 and is different
from pg, .

The proof of point (1) of Theorem 1.3 and Proposition 2.1 is then concluded. O

5.3. The critical regime (6 = 1). We prove point (2) of Theorem 1.3 and Proposition
2.1. As in the previous section, we first determine the the asymptotic behavior of the zero
level set and then we pass to the study of the signs of the excursions.



20 FRANCESCO CARAVENNA, GTAMBATTISTA GIACOMIN, AND LORENZO ZAMBOTTI

The zero level set. We introduce the random closed subset A%, of [0, 1], describing the zero
set of the polymer of size N rescaled by a factor 1/N:

P(A%Y = A/N) = pyu(4),  ACH{0,..., N},

recall (4.2). Let us denote by F the class of all closed subsets of RT := [0, 4+00). We are
going to put on F a topological and measurable structure, so that we can view the law
of A} as a probability measure on F and we can study the weak convergence of AY;.

We endow F with the topology of Matheron, cf. [22] and [12, section 3], which is a
metrizable topology. To define it, to a closed subset F C R* we associate the compact
nonempty subset F' of the interval [0, 7/2] defined by F' := arctan(F U {+o0}). Then the

metric p(-,-) we take on F is

p(F,F') := max { sup d(t, F'), sup d(t',F) } F, F' e F, (5.8)
ter teF’

where d(s, A) := inf{|t —s|,t € A} is the standard distance between a point and a set. The

r.hus. of (5.8) is the so—called Hausdorff metric between the compact nonempty sets F, F'.

Thus by definition a sequence {F, },, C F converges to F' € F if and only if p(F),, F') —

0. This is equivalent to requiring that for each open set G and each compact K C RT
FNG#0 = F,NG# 0 eventually, 59
FNK=0 = F,NK=0 eventually. (59)

Another necessary and sufficient condition for F,, — F' is that d(t, F,,) — d(t, F) for
every t € RT.

This topology makes F a separable and compact metric space [22, Th. 1-2-1], in par-
ticular a Polish space. Endowing F with the Borel o—field, we have that the space M (F)
of probability measures on F is compact with the topology of weak convergence.

The crucial result is the convergence in distribution as N — oo of the random set A%,
towards the zero set of a Brownian motion for a = f or of a Brownian bridge for a = c.

Proposition 5.5. If % =1 then as N —
Ay = {te][0,1]: B(t) =0}, (5.10)
Ay = {te€]0,1]: 5(t) =0}. (5.11)

The proof of Proposition 5.5 is achieved comparing the law of AEV and A%, with the law of
a random set Ry defined as follows. With the notation introduced in §3.1, we introduce
the rescaled random set R y:

Ry = range{r;/N, i >0} = 7/N C R
under Pj. Notice that for any A = {t1,...,t4} C {1,..., N} we have (setting to := 0):

A S[t\AM

P[O](Tﬂ{lv N} A HMtz 1] t] ti—l) Qt\A\(N_t|A\)m7 (512)

where Qq(t) =3 532141 Ta,p(s).

The key step to prove Proposition 5.5 is given by the following Lemma, whose proof
uses the theory of regenerative sets and their connection with subordinators, see [12].

Lemma 5.6. The random set Ry converges in distribution to {t > 0: B(t) = 0}.
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Proof. Recalling the definition (3.8) of 77, we introduce the random set
R]ﬁv .= range {7, /N : k >0, J, = 3} = 7°/N, ges
under Pp. Notice that Ry = UgR]BV. We divide the rest of the proof in two steps.

Step 1. This is the main step: we prove that the law of R]ﬁv converges to the law of
{t > 0 : B(t) = 0}. For this we follow the proof of Lemma 5 in [9]. Let {P(t)}+>0 be a
Poisson process with rate v > 0, independent of (Tiﬁ)iz& Then oy = [Tlﬁ + Tg(t)]/N
is a non decreasing right-continuous process with independent stationary increments and
oo = 0, that is ¢ = (0¢)¢>0 is a subordinator. By the standard theory of Lévy processes,
the law of o is characterized by the Laplace transform of its one-time distributions:

E[exp (—)\at)] = exp (—ton(N)), A>0,t>0,

for a suitable function ¢ : [0,00) — [0, 00), called Lévy exponent, which has a canonical
representation, the Lévy—Khintchin formula (see e.g. (1.15) in [12]):

o () :/(0 )(1_6 ) YPITYIN € ds) = 7> (1= exp(~An/N)) ¢ (n) .
,00 n=1

We denote the closed range {o; : t > 0} of the subordinator o by ﬁj’if Then, following
[12], 7%]5\, is a regenerative set. Moreover Rﬁ/ = Toﬁ /N + ﬁ]’if

Notice now that the law of the regenerative set 7@16\, is invariant under the change of
time scale 6y — o, for ¢ > 0, and in particular independent of v > 0. Since ¢y — con
under this change of scale, we can fix v = -y such that ¢n(1) = 1 and this will be
implicitly assumed from now on. Then, by Proposition (1.14) of [12], the law of ﬁ]’if is
uniquely determined by ¢y .

The asymptotic behavior of ¢7 given in (3.15) yields easily ¢n(\) — A/2 =: ®pps(N) as
N — oco. It is now a matter of applying the result in [12, §3] to obtain that ﬁjﬁv converges
in law to the regenerative set corresponding to ®5;;. However by direct computation one
obtains that the latter is nothing but the zero level set of a Brownian motion, therefore
ﬁ]’if = {t € [0,1] : B(t) = 0}. From the fact that TOB/N — 0 a.s., the same weak

convergence for R]’if follows immediately.

Step 2. Notice that Ry = UgR]ﬁV is the union of non independent sets. Therefore, although

we know that each R]ﬁv converges in law to {t > 0 : B(t) = 0}, it is not trivial that Ry
converges to the same limit. We start showing that for every positive ¢t > 0, the distance
between the first point in R after ¢ and the first point in R]ﬁv after ¢ converges to zero
in probability. More precisely, for any closed set F' C [0,00) we set:

di(F) = inf(F N (t,00)). (5.13)
and we claim that for all o, € S and t > 0, |d;(R%) — dt(R]ﬁV)\ — 0 in probability.
Recalling (3.14) and the notation introduced there, we can write for all € > 0:

| Nt| [e's) 00

Py <dt(RN)>dt R2) +6> ZZUO"Y Z g (2) Z g% (w).

v y=0 2=|Nt]—y+1 w=|Ne]
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Arguing as in the proof of (3.15), it is easy to obtain the bound ¢(%® (w) < C; w=3/? and
by (3.16) we have Up~(y) < Co y~ Y2 with Cy, Cy positive constants. Therefore

Pro (de(RS) > do(RE) >< I Y R A
[°]<t v =@y te) = gipl . W (t—y)/T : e/T RETIEFTEIR

for some positive constant C'3, having used the convergence of the Riemann sums to the
corresponding integral. The same computations can be performed exchanging a with 3,
hence the claim is proven.

Now notice that d¢(Rx) = minges di(R%;), and since S is a finite set we have that also

|de(Rn) — dt(Rﬁ,)| — 0 in probability for any fixed 3 € S. Since we already know that R]BV
converges weakly to the law of {¢ > 0 : B(t) = 0}, the analogous statement for R follows

by standard arguments. More precisely, let us look at (Ry, R]BV) as a random element of
the space F x F: by the compactness of F it suffices to take any convergent subsequence
(Rkn,an) = (B, ) and to show that P(B # €) = 0. However we can write

B#e} = |J U {1de(B) — di(@)] > 1/n},
teQ+ neN

by the right-continuity of ¢ — d;, and by the Portmanteau Theorem we have
]P)[O] (|dt(%) — dt(€)| > 1/7’L) < lij{fnsup ]P)[O} (|dt(RN) — dt(R'].ifﬂ > 1/7’L) = 0,

because |di(Ry) — dt(R]BV)| — 0 in probability. O
Proof of Proposition 5.5: equation (5.11). First, we compute the Radon-Nykodim

derivative ff; of the law of A% N [0,1/2] with respect to the law of le\{2 =RnynNI0,1/2],
using (4.3) and (5.12). For F' = {t;/N,...,tx/N} C [0,1/2] with 0 =:tp < t; < --- <t}

integer numbers, the value of f§; at R}f = F' depends only on g, /5(F) and is given by:
Snewze Min (= ) Zay (N = 1) &
Zo,n(N) Qi (N/2 — t) €]

IN(gr2(F)) = fR(te/N) =
where for any closed set F' C [0,00) we set:
gt(F) = sup(F'N[0,¢]). (5.14)
By (3.17), for all £ > 0 and uniformly in g € [0,1/2 — ¢]:

_C - — —

. [LE] (N g] g—j <<,[g]§> 71 01/2y V2(1—y—g)"32dy & 73

In(g) ~ 72 0 ¢IN] 1 12 € = . =:r(g).
2= ey T L€l ivg /ivg 2(1/2 = g) [Ng) g

If ¥ is a bounded continuous functional on F such that U(F) = ¥(F N[0,1/2]) for all
F € F, then, setting Zp := {t € [0,1] : B(t) = 0} and Zg := {t € [0,1] : (t) = 0}, we get:
E[W(Z3)] = E[¥(ZB)r(g91/2(ZB))] ,
see formula (49) in [9]. By Lemma 5.6 and by the asymptotic behavior of f§; we obtain

c 1/2N rc 1/2 N—oo
E[W(AS)] = E[ORY®) filop(RYP)] =5 E[0(Zp)rg2(Z8))] = E[(Z5)] .
ie. A4 N[0,1/2] converges to ZgN[0,1/2]. Notice now that the distribution of the random
set {1 —t:te Ay N[1/2,1]} under PY , is the same as the distribution of A% N [0,1/2]
under Py -, where @j; := wiy_;. Therefore we obtain that A% N [1/2,1] converges to
Z3N[0,1/2] and the proof is complete.
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Proof of Proposition 5.5: equation (5.10). By conditioning on the last zero, from
(4.3) and (4.4) we see that if ¥ is a bounded continuous functional on F then

E|w(Al)] = ZE[ ( ”jﬁg“’P(N—k;)exp<<f>[k},[N](N—k)>.

We denote by 3" a Brownian bridge over the interval [0,¢], i.e. a Brownian motion over

[0,¢] conditioned to be 0 at time ¢, and we set Zg = {s € [0,t] : §'(s) = O} = tZg. By

(5.11) it follows that if k/N — t then the random set £ §Aj converges in distribution to
Zgt. Then, applying (3.17) and (3.27), we obtain as N — oo along [N] = n:

E[U(AS)] = gj 3 1y E [qf <%Ak>] ;“’ P(N — k) exp <<T>%,7(N - k:))

k=0 7~ N,w
! 1 172 &¢ L
— E[V(Zgt)] ——— dt - 7 iU/ = E(U(Zp)|.
/0 T Z T2 (CL g1 L (7))
Since the result does not depend on the subsequence [N] = 7, we have indeed proven that
AEV converges in distribution to Zp. O

The signs. In order to conclude the proof of part (2) of Theorem 1.3 and Proposition 2.1
in the critical case (0“ = 1) we follow closely the proof given in Section 8 of [9]. Having
already proven the convergence of the zero level set, we only have to paste the excursions
(recall Lemmas 4.2 and 4.3). The weak convergence under diffusive rescaling of ej(-) for
k < tn towards the Brownian excursion e(-) and of the last excursion e,, 11(:) for a = f
towards the Brownian meander m(-) has been proved in [19] and, respectively, in [3]. Then
it only remains to focus on the signs.

We start with the constrained case: we are going to show that for all ¢t € (0,1)
3 ]\}1—H>100 P?V,w(SLtNJ > 0) = Pu> (515)

and the limit is independent of ¢. We point out that actually we should fix the extremities
of the excursion embracing t, that is we should rather prove that

Jim Pl (Sjvy > 0 | Gl /N € (a—2,a), Dyny /N € (bb+2)) = b, (5.16)

for a <t < band e > 0 (recall the definition of G; and Dy in § 5.2), but in order to lighten
the exposition we will stick to (5.15), since proving (5.16) requires only minor changes.
We have, recalling (5.4):

) Z0.0(2) pb 5y — ) Map(y — ) 25 (N — y)
Py (Siivy > 0) Z Z Z Zo,n](N) .
o,B z<|tN] y>|tN] o[N]

By Dominated Convergence and by (3.17):

3 lim NY2ON TN T Zoa(w) pf sy — 2) Map(y — 2) Z,(N —y)
Nen x<[tN] y>|[tN]

[SIE

e [ aytoty -1 - o) <2ﬂ) 808101 2 explul?)

(¢, LE)?
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see (3.10). We obtain that (5.15) holds true with

o aplacrs exp(w) €
v (¢, LE)
Remark 5.7. Observe the following: by (3.10),

e if b, > 0 then in (5.17) the denominator is equal to the numerator, so that p,, = 1.
e if h,, = 0and ¥ = 0 then in (5.17) the denominator is equal to twice the numerator,
so that p, = 1/2.

(5.17)

Now let us consider the free case. We are going to show that for all ¢ € (0,1]:

2 arcsin v/t 2 arcsin v/t

™

Jim Pl (Sjev) > 0) = <1 -
[N]=n

where p,, is the same as above, see (5.17), while q,, , is defined in (5.19) below. We stress

again that we should actually fix the values of G ;x| and D,y like in (5.16), proving that

the limiting probability is either p,, or q, , according to whether Dy < N or Dy > N,

but this will be clear from the steps below. Formula (5.18) follows from the fact that

0.0() P 5y — ) Mag(y — 2) Zjy_
£ a,@ ) N—y,0[yw
SICREUES D b i —

a,B z<[tN] y>|tN]

Quy =1 Py(t), (5.18)

Z0.(@) Py (N = 2) PN = 2) exp (Bpg ) (V = )

2.2

f
a z<|tN] Zva
Letting N — oo with [N] = n, by (3.27) the first term in the r.h.s. converges to:
I T%6C 1 €65 (¢, L) L
/ / T22 Soé e 5 explw) ST f 2
0 y — ) (¢, LE) (€, L&) &L (¢ L.y
< 2 arcsin \/_>
= (1 - 2RV g,
T
while the second term converges to
/t dz 1 Z T2 & (o ) (¢, LE) 2 arcsin vt CK Doy Gy
0 22(1—x)z T 4 2m(GLE T &5 (¢ L) ﬂ (¢, L)
Therefore we obtain (5.18) with:
CKZ Gy
Qpy = —=— . (5.19)
<<7 L-ﬂ?>

Remark 5.8. We observe that, by (3.24):
o if b, >0, or if h, =0 and ¥ = 0, then pfu,n(t) =q,, =P, forall t and n
e in the remaining case, i.e. if w € P, in general pim(t) depends on t and 7.

Now that we have proven the convergence of the probabilities of the signs of the excur-
sion, in order to conclude the proof of point (2) of Theorem 1.3 and Proposition 2.1, it
is enough to use the excursion theory of Brownian motion: for the details we refer to the
proof of Theorem 11 in [9]. O
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APPENDIX A. AN ASYMPTOTIC RESULT

In this appendix we are going to prove that equation (3.15) holds true, but we need
first some preliminary notation and results.

Given an irreducible T' x T matrix @), g with nonnegative entries, its Perron—Frobenius
eigenvalue (= spectral radius) will be denoted by Z = Z(Q) and the corresponding left
and right eigenvectors (with any normalization) will be denoted by {(n}, {{a}. We recall
that (y, &, > 0. Being a simple root of the characteristic polynomial, Z(Q) is an analytic
function of the entries of (), and

02 _ lals (A1)

0Qaps  (C.6)

Hence Z(Q) is a strictly increasing function of each of the entries of Q.
Now, let ) denote the transition matrix of an irreducible, positive recurrent Markov
chain, and let us introduce the matrix Q) and the vector 60, defined by

QY] 5 = Qupliaey [5(”](1 = Lia=y) -

By monotonicity, Z(Q") < Z(Q) = 1 for all 4. Then we can define the geometric series

(1- QM) = S (Q(v))’f.

k=0

The interesting point is that, for every fixed ~, the vector a — [(1 - Q(V))_l]wa is (a
multiple of) the left Perron—Frobenius eigenvector of the matrix (. Similarly the vector
am [(1- QU L. Q]a s (a multiple of) the right Perron-Frobenius eigenvector of Q.
More precisely we have
1 _ Va -1 o

(1=, = A [(1-Q")™"-Q], =1, (A-2)
where {v4 }q is the unique invariant law of the chain, that is ) vaQa g =vgand > vy =
1. Equation (A.2) can be proved by exploiting its probabilistic interpretation in terms of
expected number of visits to state « before the first return to site 7, see [2, section 1.3].

Next we turn to our main problem. We recall for convenience the notations introduced
in § 3.1 and § 3.3. The process {7} }x>0 where 70 = 0 and 7, = 71 + ... + T}, is a Markov—
renewal process associated to the semi-Markov kernel I'y ,(n) (defined in (3.13)) and
{Jk}r>0 is its modulating chain. We denote by Pg the law of {(Ji, k) k>0 with starting
point Jy = 3 and we set £ := inf{k > 0: .J, = 8}. Then ¢®(z) denotes the law of 7, under
Pg and we want to determine its asymptotic behavior.

We anticipate that the notations are necessarily quite involved, but the basic idea is
simple. By the periodic structure of the kernel T it follows that ¢°(z) is zero if [x] # 0. On
the other hand, when [x| = [0], by summing over the possible values of the index ¢ and
using equation (3.6) we obtain

¢’(x) = Pg(n =a,J1 =B) + Z]Pﬁ(t]i#ﬂilgiﬁky Jit1 = B, Th1 = )
P

_ 3 (E@)*41) (@), (A.3)

P 8.3
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where we have introduced the kernel F((f 2,(3;) i= T (2)1(y2p) that gives the law of the

steps with index k < ¢. Looking at (A.3), we set Vo(ﬁ,) () :== 372, ((F(ﬁ )*k) 7(:17) and we
can write

¢’(x) = (VW1 = Z VD) Ty pla — ). (A4)
yeS y=0

The asymptotic behavior of ¢? () can be extracted from the above expression. To this
aim, we need to know both the asymptotic behavior as n — oo and the sum over n € N

of the two kernels I'y g(n) and Vﬁ(ff) (n) appearing in the r.h.s.
e By (3.13) and (3.10), as n — oo along [n] = # — v we have

~

) T g
Ly p(n) ~ %g where Ly = L%ﬁ_ﬁ : (A.5)
n &y
Moreover, the sum over n € N gives
& ~
E :F%ﬁ(") = B%ﬁf_ﬁ = Byp. (A.6)
v

neN

e For the asymptotic behavior of the kernel V(%) := $7% il 0( #))* we can apply the
theory developed in § 3.4 for the case 0 < 1, because the matrix ) _ rg%( ) is
just [E(ﬁ)]ow by (A.6) (we recall the convention [Q)], . := Qa1(y2p) for any
matrix ()) which has Perron—Frobenius eigenvalue strictly smaller than 1. Since

r'® ) ~

o n—oo, [n=v-—a,

n3/2

we can apply (3.18) to get the asymptotic behavior as n — oo, [n] = a —7:

S(B\-1T S(8)\— 1
VO (n) ~ <[(1 — BONITO (1 — BO)y 1]«1,7) — (A7)
On the other hand, for the sum over n € N an analog of (3.19) yields
o) R . R B
Y Vi) =) [(BM)],,=[a-BD)"], . (A8)

neN k=0

As equations (A.5) and (A.7) show, both kernels V(?) and I have a n~3/2 tail. Then
from (A.4) it follows that as  — oo along [x] = 0

£ (@) %{(%vw W)Lto) + Vi (HEE:NPW )}

Now it suffices to apply (A.8), (A.5), (A.7) and (A.6) to see that indeed ¢%(x) ~ cg/x3/?
as © — oo along [z] = 0, where the positive constant cg is given by

s = [(1 _ Bt 'E]w 4 [(1 ~BOY-1.TO . _]§<ﬁ>)—1.§]w,
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Using the fact that [(1 — B®H-1. B]ﬁﬁ = 1, which follows from (A.2) applied to the

matrix () = B, we can rewrite the above expression as

~ ~ ~ ~ 1 ~
g = |1=BPY 1. L.1-BYHY1.B| = — VoL ,
s = [0=B L a-BO B = P

where {vy}q is the invariant measure of the matrix B and the second equality follows
again from (A.2). However from (A.6) it is easily seen that {v,} = {(a &}, and recalling
the definition (A.5) of L we finally obtain the expression for c¢g given in equation (3.15):

1
cg = @ ; Coe La,’y 57 . (Ag)

APPENDIX B. A LOCALIZATION ARGUMENT

Let us give a proof that for the copolymer near a selective interface model, described
in § 1.1, the charge w never belongs to P (see (2.9) for the definition of P). More precisely,
we are going to show that if A, = 0 and ¥ # 0 then §* > 1, that is the periodic copolymer
with zero—mean, nontrivial charges is always localized. As a matter of fact this is an
immediate consequence of the estimates on the critical line obtained in [5]. However we
want to give here an explicit proof, both because it is more direct and because the model
studied in [5] is built over the simple random walk measure, corresponding to p = 1/2
with the language of Section 1, while we consider the case p < 1/2.

We recall that, by (A.1), the Perron-Frobenius eigenvalue Z(Q) of an irreducible matrix
@ is increasing in the entries of Q). We also point out a result proved by Kingman [20]: if
the matrix @ = Q(t) is a function of a real parameter ¢ such that all the entries Q4 g(t)
are log—convex functions of ¢ (that is t — log Qq g(t) is convex for all «,3), then also
t— Z(Q(t)) is a log—convex function of ¢.

Next we come to the copolymer near a selective interface model: with reference to the

general Hamiltonian (1.3), we are assuming that wflo) = CJ,(LO) = 0 and h,, = 0 (where h,,

was defined in (1.5)). In this case the integrated Hamiltonian ®, 5(¢), see (2.4), is given
by
0 if £t=1or (¢0—«

log [%<1+exp(2a,5)>} if £>1 and fe€f(—« .

We recall that the law of the first return to zero of the original walk is denoted by K (),
see (2.1), and we introduce the function ¢ : S — R defined by
)= > K
z€eN, [z]=y

(notice that > q(y) = 1). Then the matrix B, g defined by (2.6) becomes

Po5(0) =

%(1 +exp (Ea,ﬁ)) (8 — ) it §—a#[l]
Ba,,@ = (Bl)

K(1) + %(Hexp (Ea,aﬂu)) (g(1]) = K1) if B—a =[]

By (2.7), to prove localization we have to show that the Perron—Frobenius eigenvalue of
the matrix (B, ) is strictly greater than 1, that is Z(B) > 1. Applying the elementary
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convexity inequality (1 + exp(z))/2 > exp(z/2) to (B.1) we get

Bag > Bag = {eXP (Za.p/2) 4(B — ) it ozl
I RO + exn (Saan/2) - (o) - K() i 5-a= 1]

By hypothesis ¥, 3, # 0 for some ay, 3y, therefore the inequality above is strict for
a = ag, B = By. We have already observed that the P—F eigenvalue is a strictly increasing
function of the entries of the matrix, hence Z(B) > Z(B). Therefore it only remains to
show that Z(E) > 1, and the proof will be completed.

Again an elementary convexity inequality applied to the second line of (B.2) yields

. (B.2)

~ ~

Bag > Bap := exp (c(ﬁ — ) Eaﬂ/Z) -q(B8— ) (B.3)
where
1 if v# 1]
() = § qu-xa)

L =1

We are going to prove that Z(B) > 1. Observe that setting v, := Y[0),a We can write
Ea’ﬁ = 2[0]75 — 2[0],o¢ = Uﬁ — Vqy -

Then we make a similarity transformation via the matrix Ly g := exp(vg/2) 1(3-q), getting
Cap = [L- B- L_l]a’ﬁ = exp <(c(ﬂ —a) — 1)2(1,5/2) (B — )
= €xp <d Eoz,oz—l—[l] 1(6—04:1)) : Q(ﬂ - a) )

where we have introduced the constant d := —K(1)/(2¢([1])). Of course Z(B) = Z(C).
(-1) (+1)

at[1] T Yar1] hence

Also notice that by the very definition of ¥, g we have ¥, 1) = w
the hypothesis h, = 0 yields > cs(Xa,a+01]) = 0.

Thus we are finally left with showing that Z(C') > 1 where C, g is an S x S matrix of
the form

Cap = exp (wa lg_a=1) ) q(6— @) where Z we =0 Z q(y) =1.
o v
To this end, we introduce an interpolation matrix

Ca,p(t) = exp (t-wal(g_azr)) (B —a),

defined for ¢t € R, and notice that C(1) = C. Let us denote by n(t) := z(C(t)) the
Perron-Frobenius eigenvalue of C(t): as the entries of C(t) are log—convex functions of ¢,
it follows that also 7(t) is log—convex, therefore in particular convex. Moreover 1(0) = 1
(the matrix C'(0) is bistochastic) and using (A.1) one easily checks that %n(t)hzo =0.
Since clearly n(t) > 0 for all ¢ € R, by convexity it follows that indeed n(¢) > 1 for all t € R,
and the proof is complete.
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