SHARP ASYMPTOTIC BEHAVIOR
FOR WETTING MODELS IN (1+1)-DIMENSION
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ABSTRACT. We consider continuous and discrete (141)-dimensional wetting models
which undergo a localization/delocalization phase transition. Using a simple approach
based on Renewal Theory we determine the precise asymptotic behavior of the parti-
tion function, from which we obtain the scaling limits of the models and an explicit
construction of the infinite volume measure in all regimes, including the critical one.

1. INTRODUCTION

1.1. Definition of the model. The building blocks of our model are a o—finite measure
won R (the single site a priori measure) and a function V' : R — RU{+o00} (the potential).
We allow two possible choices of pu:

e Continuous set—up: p = dx is the Lebesgue measure on R. In this case we
require that exp(—V(:)) be bounded and continuous.

e Discrete set—up: p is the counting measure on Z .
In both settings we assume that V' (0) < oo and that

K = /Rev(y) p(dy) < oo.

Additional assumptions on V(-) will be stated in the next subsection.
Fore > 0, N € N our model is defined by the following probability measure on (R*)" :=
[O,OO)N :
N

en(dr) = ZiN exp(—Hpy (7)) H (L(z;>0) p(da;) + edo(day)) (1.1)
€, i1

where Z¢ ,; is the normalizing constant (partition function), a is a label that stands for f
(free) or ¢ (constrained) and the corresponding Hamiltonians are defined by

N-1
ijv(.%') = Z V(xi“ — xz) xTo i — 0,
=0

N
H (z) = ZV(@“Hl — ;) xo:=axN41:=0.
1=0

We interpret P¢ , as an effective model for a (1 4 1)-dimensional interface above an
impenetrable wall that, when ¢ > 0, attracts it (see Figure 1 ad the relative caption).
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Remark 1.1. We stress that the assumption V' (0) < oo has been made only for simplicity
and can be removed at the price of some heavier notation. Also notice that in the definition
(1.1) of our model we have chosen to impose the positivity constraint (x; > 0) instead of
the more customary nonnegativity one (z; > 0). Of course this makes a real difference only
in the discrete set—up, and also in this case the difference is unessential, since choosing the
nonnegativity constraint amounts to switching ¢ — 1+ ¢ in the r.h.s. of (1.1). However
dealing with the positivity constraint allows to analyze the continuous and discrete set—ups
in a unified way, and this is the reason of our choice.

A
Sh

FIGURE 1. A trajectory of the walk (or interface) above the wall. The last
step may be constrained or free, according to the model. The walk is re-
warded when it enters the gray thin layer close to the wall. The competition
between the energetic gain coming from this reward and the entropic re-
pulsion due to the presence of the wall leads to a nontrivial behavior. Such
a model has been proposed at several instances for the study of interfaces
and polymers, we refer to [20] for details and references.

1.2. A random walk viewpoint. We introduce a sequence (Y;);cn of IID random vari-
ables with law P such that

P(¥i €ds) = - exp(~V(x) u(dr),

and we denote by (Sy)n>0 the associated random walk: Sy :=0, S, :=Y; +... + Y.
The basic assumption we make on the potential V(+) is the following one:

(H) The truncated variance t — V(t) := E[]Yllzl{‘yﬂgt}] is slowly varying at infinity
and E[Y1] =0.

We recall that a function L(-) is said to be slowly varying at infinity if for every ¢ > 0 one
has L(ct)/L(t) — 1 as t — oo. This entails that L(z)/z“ — 0 as x — oo, for every o > 0,
cf. [4, Prop. 1.3.6]. Notice that if the truncated variance is slowly varying, then we have
P[|Y1| > t] < V(t)/t? for large t, cf. [4, Th. 8.3.1], hence all the moments of Y of order
less than 2 are automatically finite.

Of course assumption (H) holds whenever Y] is centered and has a finite variance, that
is when E[Y;] = 0 and E[|Y;[?] =: 62 < co. Allowing the truncated variance to be slowly
varying turns out to be a very natural generalization: indeed assumption (H) is a necessary
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and sufficient condition for (Sy,),>0 to be in the domain of attraction (without centering)
of the Gaussian law, see Appendix A.1 for more on this issue (cf. also [4, Th. 8.3.1]).

Now let us look more closely to our model. For ¢ = 0 we have the following random
walk interpretation: Pg’ N is just the law of (S,...,Sn) under the positivity constraint
{81 >0,5,>0,...,Sy > 0}, while P{§ v is the law of the same random vector under the
further constraint {Sxn4+1 = 0}. Then by the weak convergence toward Brownian meander
and Brownian excursion we have that the P{ y—typical height of the interface in the bulk

is of order v/N, hence very far from the interface (delocalized regime). On the other hand,
when € > 0 the interface receives an e-reward each time it touches the wall and intuitively
one expects that if € is large enough this attractive effect should be able to beat the
entropic repulsion, leading to a localized regime. As we are going to see, this scenario is
correct.

1.3. The phase diagram and the scaling limits. The model we are considering has
been studied in [16] in the discrete set—up, for the special choice exp(=V (z)) = § 1(jz/=1)+
7 1(3—0), With v >0, 7 > 0 and v+7r = 1, and more recently in [9] in the continuous set-up
with finite variance (that is when E[|Y}|?] < 00). In both cases it has been proven that:

(i) There is a phase transition at ¢ = €, > 0, between a delocalized regime (¢ < .) in
which the interface is repelled by the wall and a localized regime (¢ > ¢.) in which
the interface sticks close to the wall. A convenient definition of (de)localization
may be given for instance in terms of the free energy, that is by looking at the
Laplace asymptotic behavior of the partition function, cf. [9, § 2.2].

(ii) More quantitatively, Brownian scaling limits hold, inducing a further distinction in
the delocalized regime. More precisely, the linearly interpolated diffusive rescaling
of P2 ,; converges in distribution as N — oo:

— when € < ¢, (strictly delocalized regime), to the Brownian meander if a = f
or to the normalized Brownian excursion if a = c;

— when e = e, (critical regime), to the reflecting Brownian motion if a = f or
to the reflecting Brownian bridge if a = ¢;

— when € > ¢, (localized regime), to the law concentrated on the function taking
the constant value 0 for both ¢ =f and a = c.

The proof of these results in [16] has been obtained by exploiting some very peculiar
properties enjoyed by walks with increments in {—1,0,+1}. On the other hand, the more
general approach adopted in [9] is based on bounds on the asymptotic behavior of the
partition function Zg N as N — oo.

1.4. Outline of the results. The purpose of this note is to present a simple approach
based on Renewal Theory, which is applicable in complete generality in both the con-
tinuous and discrete cases, that allows to determine the precise asymptotic behavior of
the partition function Z7 y in all regimes. This yields a considerable simplification of sev-
eral steps in [9] and allows the extension of the above results (i) and (ii) to the general
continuous and discrete set—ups in a straightforward way.

Another important byproduct of our approach, and possibly the main result presented
here, is the infinite volume limit of our model, that is the weak convergence of P? \ without
rescaling, as a probability measure on (RT)N. This issue has been already considered in [9]
but only for the localized regime. Here we show that the weak limit as N — oo of P?
exists in complete generality, namely in both the continuous and discrete cases, for both
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a = f and @ = ¢ and in all the regimes (that is for all values of ¢), cf. Theorem 4.1.
This will come with an explicit description of the limit measure, whose properties differ
considerably in the strictly delocalized, critical and localized regimes, in complete analogy
to the above mentioned scaling limits.

The exposition is organized as follows:

— In Section 2 we describe a Renewal Theory approach to our model.

— This will lead to the determination of the precise asymptotic behavior of the par-
tition function (Section 3), to be compared to [9, Lemma 3].

— These results, in turn, are the key to proving the existence of the infinite volume
limit in Section 4 in all regimes.

— Finally, in Section 5 we give the main ingredients to extend the proof of the scaling
limits given in [9] to our general setting.

2. A RENEWAL THEORY VIEWPOINT

In this section we make explicit the link with Renewal Theory, showing that a suitable
modification of the constrained partition function Z¢  can be interpreted as the (gener-
alized) Green function associated with a probability measure ¢(-) that we define below.
We also give a simple relation linking Zé y and Z7 . Throughout the paper, we write for
positive sequences (a,,), and (by)n: 7 7

Qp ~ by < nli_)rr;oan/bnzl.

2.1. The constrained case. Let us consider first the € = 0 case. We claim that

Z4 N C L(N)
N or N3

where C' is a positive constant and L(-) is a slowly varying function. The proof of this
relation is deferred to Appendix A, where C' and L(-) are given explicitly. We stress that
in the case of finite variance we have L(-) = o~ L.

We set for convenience Z¢ := exp(—V(0)). We recall that L(z)/z% — 0 as z — o0
for every a > 0, because L(-) is slowly varying. Then from equation (2.1) it follows that
Y = Y p>1 Lo n1/K" < 00, hence we can define a probability distribution ¢(-) on N by
setting

(N — oo), (2.1)

1 Z§
= — Pt A — > 1
q(n) ol (n>1),

and we have for some positive constant c;:

dn) ~ e 2 n o). (22)

Next we pass to the ¢ > 0 case. It is convenient to switch from the parameter e to
0 := e and to make a change of scale, by setting for V > 1

(6/7) Z(5/y),N-1 t (8/7) Z(fé/v),N

Z8 N = = 2.3
6=N K;N 6,N K;N ( )
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Then from the very definition of the partition function ZZ y it follows that Zg ~41 Satisfies
the following recurrence relation (cf. [9, Lemma 2]):

N
Zso =1, Ziy =06) at) Zin-y, (N21). (2.4)
=1
This is nothing but the (generalized) renewal equation driven by ¢ g(-), see [3], and it is
easily checked that its unique solution is given by
" o0
Zin = Y0 (V) 2
k=0
where ¢** denotes the k—fold convolution of ¢ with itself (by convention ¢%*(n) := 1(n—0))-
Notice that the infinite sum in the right hand side of (2.5) is in fact a sum from 0 to N.
It will be shown in the next section (but it is somewhat clear from (2.5)) that the
asymptotic behavior of Z§ y is radically different according to whether 4 § 1, and since
d = ~ye it is natural to set (cf. equation (4) in [9, § 1.2])
1 1
€c 1= — = - ~. (2.6)
v anl Z§ 1]k
We will see that the three regimes € < €., € = ¢, and € > ¢, correspond indeed to the
strictly delocalized, critical and localized regimes mentioned in the introduction. It is also
interesting to observe that in the discrete set—up equation (2.6) gives the explicit formula
. = 1/P(Hy = 0), where H; is the first weak descending ladder height of the random
walk (Sp)n>0, see Appendix A.3.

Remark 2.1. We point out that this approach can be generalized via the so—called Markov
Renewal Theory [3], allowing to study periodically inhomogeneous models, that is the case
in which ¢ is substituted by ¢; € R and ¢; = ¢;47 for some T' € N and every ¢. This has
been recently worked out in [8], in the context of models of copolymers with adsorption.

2.2. The free case. From the definition of Zé N> conditioning on the last epoch when
the interface touches the wall, we have the following simple relation for the modified free
partition function (cf. equation (18) in [9, § 2.3]):

N
Zin =) Z5 PN 1), (27)
t=0

where P(n) is the probability that the unperturbed random walk (.S;); stays positive up
to epoch n:

P(n) :==P(S;>0,i=1,...,n), P(0) := 1. (2.8)

It is worth recalling that if we set
L'(n) := vnP(n), (2.9)

then assumption (H) yields that L'(-) is slowly varying at infinity, cf. for instance [11].
We note that, by the standard theory of stability [4], this is equivalent to saying that the
first descending ladder epoch Ty (see Appendix A.3) is in the domain of attraction of the
positive stable law of index 1/2, like in the simple random walk case.
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3. SHARP ASYMPTOTIC BEHAVIOR OF THE PARTITION FUNCTION

In this section we specialize the theory of the renewal equation [3] to our heavy—tailed
setting, see (2.2), in order to find the asymptotic behavior of Z§ , and Z§ ~- The result is
radically different in the three regimes ¢ § 1, that we consider separately.
3.1. The strictly delocalized regime (6 < 1). The following lemma gives the asymp-
totic behavior of the partition function in the strictly delocalized regime. To get some
intuition we observe that Z¢ SN when § < 1 is the Green function of a renewal process with
defective interarrival distribution § q(+), as it follows from (2.5).
Lemma 3.1. If 6 <1 and relations (2.2) and (2.9) hold, then
deqg  L(N)

R A Ll @1
~ 1 L'(N)
f
Proof. From (2.5) we have that
n3/2 0 n3/2
— 75, =) & H(n). 3.3
We claim that
n3/2
M) = keg,  VE>1 (3.4)

I

Jim 7o q
We argue by induction, the case k = 1 being true by (2.2). Suppose that we have proven
(34) for k=1,...,m, then we have:

[n/2] n—1 n3/2

n3/2 (m41)x
mq (n) = Z‘f' Z

=1 |n/2|+1

/2] . n3/2 . el n3/2 mx . .
= 2@ (fayen9) + X (Fgyeme =)

and by dominated convergence the claim follows.

By the uniform convergence property of slowly varying sequences [4, Th. 1.2.1] we have
that L(xt)/L(t) — 1 as t — oo uniformly in = € [a,1/a], for every o > 0. In particular,
there exists a positive constant ¢y such that L(zt) < ¢y L(t) for all x € [1/2,1] and for all
t > 1. Then, setting ¢ := 5/2 + logy(c1), we claim that there exists C' > 0 such that

*(n) < Ck° gﬂ) Vk,n e N. (3.5)
n

Again, we argue by induction: by (2.2) the case k = 1 holds for some positive constant C.
If (3.5) holds for all k£ < 2m, m € N, then we get:

[n/2] [n/2]

L(n—1)
Zm* E m* m* 2 : m* c
q n S 2 q n—l S 2 £ q Cm m
[n/2]
c 01L m* c(05/2 (n) _ c ( )
< 20m ) 3/2 }: < Cme(2°%¢)) = Cem)r =5
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The case k = 2m + 1 follows similarly and consequently (3.5) holds. Therefore we can
apply dominated convergence in (3.3) (we recall that ¢ € (0,1)), getting

n?/? Z 5k i ch 5k = 0 c
L(n 7 (1—-6)2 7

k=1

and (3.1) is proven. Finally equation (3.2) follows by (2.7) and (2.9) applying again dom-
inated convergence:

~ noo_ 1/2 .
fnZZOZit —g(n)P(n— L E:ZM_ E:ak——5
t=

where in the equality before the last we have used (2.5). O

3.2. The critical case (6 =1). We treat now the case 6 = 1.

Lemma 3.2. If 6 =1 and relations (2.2) and (2.9) hold, then
1 1

Zi N ~ o W (N — ), (3.6)
Z{’N ~ % (N — 00). (3.7)

Proof. When ¢ = 1 it is clear from (2.5) that Zf n is the Green function of the renewal
process with step distribution ¢(-). More explicitly, if we set

& =T+ -+ Ty, (T;); ID, P(T; =n)=¢q(n), neN, (3.8)

then the law of & is ¢®*(-) and it is immediate to check that ZfN =P3k: & = N).
Then the asymptotic behavior (3.6) is a result of Doney’s [10, Th. BJ.
To prove (3.7), we split the sum in (2.7) in three parts:

lan]  [(1-a)n]—1 n
LL,((Z Zln—<2+ DY )(LL,((Z))Z”P( t)). (3.9)

t=|an]|+1 t=[(1—a)n]

Combining the asymptotic relations (2.9) and (3.6) with the uniform convergence property
of slowly varying sequences mentioned before equation (3.5), it is easy to check that the
second sum above converges as n — oo to the integral

1 1-a dy
21cy Jo Nyl —vy)
On the other hand the fact that ZZ VL) Vi~ 2L(k )\/E as k — oo, cf. [4, Prop. 1.5.8],

entails that the limits as n — oo of the ﬁrst and third sums in (3.9) are vanishing as & — 0,
and equation (3.7) follows. O

3.3. The localized case (6 > 1). Let § > 1. By continuity there exists Fs > 0 such that

(52(] exp(—Fst) = 1.

We set gs(t) := 0 q(t) exp(—Fst), t € N, so that gs(-) is a probability measure on N. Notice
that pus ==, tqs(t) < 0.
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Lemma 3.3. If § > 1 then

~ 1
Zs N ~ o exp(N F) (N — o0), (3.10)
~ 1 &
Z§7N ~ (E Ze*Fat P(t)) exp(N Fy) (N — 00). (3.11)
=0

Proof. From (2.5) it is immediately seen that
o0
N T = S0 ),
k=0

Arguing as in the proof of Lemma 3.2 we have that the r.h.s. above is the Green function

of the renewal process with step distribution g¢s(-). However this distribution has finite

mean ps and therefore equation (3.10) is nothing but the standard Renewal Theorem [3].
Finally, to prove (3.11) we resort to (2.7):

N o'}
~ ~ _ 1
exp(~Ts N) Zfy = Y (70 Zg e P(t) FE — S e p(r),
7 =0 ’ Hs =0
having applied (3.10) and dominated convergence. O

4. INFINITE VOLUME MEASURES

Now we apply the asymptotic results obtained in the preceding section to the issue
of the infinite volume limit. Although P; n and P¢ y have been defined as measures on

(RT)N it is convenient to extend them to (R*)N in an arbitrary way (for example by
multiplying them by []:2 y; do(dz;) ). Our main result is the following theorem.

Theorem 4.1. For every € > 0 both P;N and P as measures on (RN converge
weakly as N — 0o to the same limit P, law of an irreducible Markov chain which is:

(1) positive recurrent if € > €. (localized regime)
(2) transient if € < e. (strictly delocalized regime)
(3) null recurrent if € = . (critical regime)

Let us introduce the times (74)r>0 at which the interfaces touches the wall:
70 :=0 7 =inf{n > 751 : &, =0} ze (RMHY,
and the excursions (ey())r>0 of the interface above the wall:

er(i) == A{xr i 1=0,...,Thqy1 — Tk} ze (RN,
We also set ¢y :=sup{k : 7 < N}. The law of (7j)<,, under P¢ y can be viewed as a
probability measure pZ  on the class Ax of subsets of {1,..., N}: indeed for A € Ay,
writing
AZ{tl,...,tM‘}, 0 =: t0<t1<"'<t|A‘§N, (4.1)
we can set
Pen(A) = P (i =ti, i <un). (4.2)
From the inclusion of Ay into {0,1}", the family of all subsets of N, pe y can be viewed
as a measure on {0, 1}
The fundamental observation, that follows from the very definition (1.1) of our model,
is that under P¢ \ and conditionally on {en, (Tk)k<uy } the excursions (ex)o<k<,y—1 are
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independent and their (conditional) laws are the same as under the random walk measure
P. Therefore, if we can prove that pe n has a weak limit on {0, 1}, then it is easily checked
that the measure P¢ ; on (RT)N converges weakly too, and the limiting measure P is
constructed by pastirfg the excursion over the limit zero set. If the limit zero set has a finite
number of zeros, the last excursion has infinite length and has to be drawn according the
law of the random walk (S, P) conditioned to stay positive, as it is defined in [2]. Therefore
the analysis is completed by the following result.

Proposition 4.2. For every e > 0 both pi N and p \ as measures on {0, 1Y converge to
the same limit p., under which (Ty)k>0 1s:

(1) for e > e. a renewal process with interarrival probability qs(-) (see §3.3).
(2) fore < e. aterminating renewal process with defective interarrival probability ¢ q(-)
(3) for e = e, a renewal process with interarrival probability q(-).

Proof. For all ¢ > 0 and a = f, ¢, we have by the Markov property:

NQ
Z(S, N+1(a:c) —k;

~a
Z‘Sv N+1 (a=c)

)

J
Pl (n = kiumo = k.o = k) = lﬂéqa@- k)
=1

for all 0 =: ko < k1 <--- <k;j <N (the factor 1, in the partition functions is due to
definition (2.3)). Letting N — oo, we obtain the thesis by Lemmas 3.1-3.2-3.3. O

4.1. More on the strictly delocalized regime. If ¢ < &, i.e. § < 1, then under
P. the number of returns to 0 and the last return to 0 are a.s. finite random variables.
Their distributions are given in the following proposition, whose proof is a straightforward
consequence of Proposition 4.2.

Proposition 4.3. Let N := #{i € N: z; = 0} and L := sup{i € N: 2; = 0}. Then for
e < eé&er
P.(N =k) = (1-6)6", k=0,1,... (4.3)

P.(L=k) = (1-0)Z5,, k=0,1,... (4.4)

5. SCALING LIMITS

We finally turn to the scaling limits of our model. We denote by (XtN ) the linear

t€[0,1]
interpolation of (S - L(N)/\/ﬁ)i:0 __» the choice of the norming sequence being the
natural one, see Appendix A.1. We are interested in the weak convergence in C([0,1]) of
the law of (X}V) te[0.1] under P¢ . This problem has been solved in [9] in the finite variance

continuous set—up, but for € # ¢, the techniques can be adapted in a straightforward way
to treat the general continuous and discrete settings considered here.

Consequently we focus on the critical case € = g.. In fact in this regime the result
proven in [9] for a = ¢ is not optimal, the reason being that the authors were not aware
of Doney’s result [10, Th. B] which yields (3.6). In this section we show that the sharp
asymptotic relations (3.6) and (3.7) allow to simplify significantly the arguments in [9],
proving the following

Theorem 5.1. If § = 1 then the process (XtN)te[O 1]

to the reflecting Brownian motion on [0,1] for a = f and to the reflecting Brownian bridge
on [0,1] for a =c.

under P¢ \ converges in distribution
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In the preceding section we have shown that, under the measure PZ y, there is a remark-
able decoupling between the zero level set (that is the set of points where the interface
touches the wall) and the excursions of the interface above the wall. Namely, conditionally
on the zero level set, the excursions are an independent family and their (conditional) laws
are the same as under the initial measure P. Since our basic assumption (H) entails that
the measure P is attracted to the Gaussian law, it is not a surprise that the law of the
rescaled excursion under P converges weakly to the law of the Brownian excursion. The
proof of this fact in the continuous set—up can be found for instance in [9] (for the case
of finite variance, but it can be easily adapted to the general case). On the other hand, it
appears that in the literature there is no general proof of this fact for the discrete set—up
(for the case of walks with increments in {£1,0} one can use the result in [17]). However
a proof can be given exploiting the local limit theorem recently obtained in [5] and [6]:
the details (in a more general setting) are carried out in [7].

Therefore we focus our attention to the law of the rescaled zero level set. More precisely
we introduce A%, a random subset of [0, 1], by setting P (Ay = A/N) = p? y(A), a =
f,c, for A C {0,...,N} (recall the notation introduced in (4.2)). If we can prove the
weak convergence of the zero set A%;, then, in view of the convergence of the excursions
mentioned above, the weak convergence of the full measure P y follows arguing like in
Section 8 of [9]. Therefore Theorem 5.1 is a consequence of the following proposition,
first proven in [9, Prop. 10] (in the finite variance continuous case and with an additional
assumption for a = c).

Proposition 5.2. As N — oo we have that:
(i) AL converges in law to {t € [0,1] : B(t) = 0},
(ii) A% converges in law to {t € [0,1] : 5(t) = 0},
where B is a standard Brownian motion and (3 is a Brownian bridge over [0, 1].

The basic notions about the convergence in law of random sets are recalled in Appendix B
(for more details see [14, § 3] and [18]).

It is convenient to introduce a simpler random set A, to which the random sets A%, and
A are strictly linked. Namely we consider again the renewal process {, = 11 + - - - + T,
where (T;); is IID and P(T' = n) = g(n), n € N, and we set Ay := {{/N : k € N} N[0, 1].
Then the asymptotic relation (2.2) for ¢(-) implies the following basic result, first proven
in [9, Lemma 5| for the case in which L(-) is a constant (but the proof extends to our
general set—up in a straightforward way).

Lemma 5.3. The sequence (Ax)n converges in law to {t € [0,1] : B(t) = 0}.

We point out that the proof of this result given in [9] uses in an essential way the theory of
regenerative sets and their connection with subordinators (we refer to [14] for more on this
subject). In view of the importance of this result, in Appendix B we sketch an alternative
and more direct proof, which is built on the basic relation (3.6).

Proof of Proposition 5.2. Let us first consider the free case a = f. It is easy to see
that the laws of Al;v and Ay are equivalent, more precisely for every bounded measurable
functional ® we have
P(N(1-1)
E[(AN)] = E[o(An) AewAn)], (1) = = . telo],
7ty QN (1))

where Q(n) := Y22 1 q(t). The asymptotic behavior of ¢(-) being given by (2.2), it follows
from [4, Prop. 1.5.10] that Q(n) ~ 2¢4L(n)/+/n as n — oco. Hence by (2.9) and (3.7) one
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sees that limy_.o f4(t) = 1 uniformly in ¢ € [0,~], for every v € (0,1), and then (i) is an
easy consequence of Lemma 5.3.

We turn now to a = c. Here it is more convenient to study the Radon-Nikodym derivative
of the law of A%, N[0,1/2] w.r.t. the law of Ay N [0,1/2]. This time the Radon-Nikodym
derivative is given by (cf. [9, Proof of (32), Step 1])

E[®(A% 1[0,1/2))] = E[@(Ay n[0,1/2)) fi(sup (Ax N10,1/2]))] ,
Sonlo 25, a(N +1 - Nt —n)
F(t) = =m0

75y 41 QUN/2] = NY)
By (2.2), (2.9) and (3.6) we see that:
f01/2y_1/2(1—t—y)_3/2dy 1 1

, tel0,1/2].

lim f$(t) = =—

i S (®) 2(1/2 —t)-1/2 V21—t
uniformly in ¢ € [0,7], for any v € (0,1/2). Then (ii) follows from Lemma 5.3 by the same
arguments used in [9, Proof of (32), Step 3]. O

APPENDIX A. AN ASYMPTOTIC RELATION
We are going to prove that relation (2.1) holds true.

A.1l. A Local Limit Theorem. We recall that, by our basic assumption (H), one has
the weak convergence

% Sp = \/%_W e 2 dy (n — o0), (A1)
where L(-) is a slowly varying function satisfying the relation L(x) ~ 1//V(y/z/L(x))
as ¥ — o0o. More explicitly, this function can be defined as L(z) := /z/g(z), where g(*)
is any increasing function such that g(z) ~ 22/V(z) as n — oo (the existence of such g(-)
is guaranteed by [4, Th. 1.5.3], where an explicit definition is given).

We point out that equation (A.1) expresses the most general instance in which a random
walk is attracted (without centering) to the Gaussian law, which in turn happens if and
only if condition (H) holds, cf. [13, §IX.8 & §XVIL5]. Of course in the special case o2 :=
E[]Ylﬂ < 0o we have L(t) = o~! by the Central Limit Theorem.

Let us denote by f,,(z) the density (resp. the mass function) of S,, under P, in the con-
tinuous set—up (resp. in the discrete set—up). Then the Local Limit Theorem for Densities,
cf. [15, §46], (resp. Gnedenko’s Local Limit Theorem, cf. [4, §8.4]) yields the asymptotic
relation

under P :

PO ~ o= o). (a2)

A.2. The continuous case. We follow the proof given in [9] in the case of finite variance.
Introducing the set C,, := {z1 > 0,...,z, > 0}, the very definition of Z§ ,, gives

Zom = / e Ha@iesmn) gy o day, . (A.3)
Cn

On the other hand for the density of S,,+; under P we have

eiH;:L(zlv"'vxn)
fn+1(0) = /anxl”'dxn-
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Next we introduce the linear transformation 7}, : R — R" defined by

To(x1,...,2p) == (xa —x1, T3 — 1, ..., T — T1, —T1) .
Notice that Tj, preserves Lebesgue measure, that (T},)"*! is the identity map on R™ and
that Hy is invariant along the orbits of T}, namely H (T, (x)) = HS(x). Moreover, the

n+ 1 sets {(T)*(Cn), k =0,...,n} are disjoint and their union differs from the whole
R™ only by a set of zero Lebesgue measure. These considerations yield

n eiH;:L(l‘) eiH;’:l(l‘)
Jraa0) = kz_;) /( )R (Cn) T de = () /n 47,
and comparing with (A.3) we get
Zn 1
] fn+1(0).
Therefore it suffices to apply (A.2) to show that relation (2.1) holds with C' = 1.

A.3. The discrete case. For S = (S;,)n>0 € RN we introduce the weak descending ladder
epochs B B
Ty:=0 TkJrl = mf{n >T: S, < STk}

and the corresponding ladder heights Hj, := _STk (if T}, = +o0 we set Hy := +00). The
reason why these quantities are of interest to us is that the definition of Zj,, yields

C

0,n

K”+1

Notice in particular that by (2.6) we have e, = > >0 Z§ /" =P(Hy = 0).

=P(T1=n+1,H =0). (A.4)

=
Now we are going to use a fundamental combinatorial identity discovered by Alili and
Doney, that for k&, n € N and = > 0 reads as

P(Tk:n,ﬁkzx) = %P(Fk71§$<ﬁk7 Sn:x)v

cf. [1, Eq. (3)] (the interchange between < and < with respect to that formula is due to
the fact that they consider strong instead of weak ladder variables). Plugging this identity
into (A.4) and arguing as in the step (i) of the proof of Proposition 6 in [1], we get

Ze, 1 - - 1 B P(H; > 0) L(n)
— P(H; >0,5,=0) ~ EP(Hl >0)P(S, =0) ~ Vo

KL n+1
where we have applied (A.2), and equation (2.1) is proved with C = P(H; > 0).

APPENDIX B. THE CRITICAL ZERO LEVEL SET

We want to sketch here an alternative proof of Lemma 5.3. For the purpose of this
section it is convenient to consider the random set Ay of Section 5 on the whole positive
real line instead of the interval [0,1]. More precisely, introducing the renewal process
& =T+ - 4Tk, where (T;);en is IID and P(T7 = n) = q(n), weset Ay := {&k/N : k € N}.

Let us first recall some basic facts on the convergence of closed sets. We denote by F
the family of all closed sets of RT, and we endow it with the topology of Matheron, cf. [18]
and [14, § 3|, which in our setting can be conveniently described as follows. For F' € F
and ¢t € RT we set d(F) := inf (F N (¢,00)). Notice that ¢ — di(F) is a right—continuous
function and that the set F' can be actually identified with the function d(.)(F), because
F = {t € Rt : d; (F) = t}. Then in terms of d(.)(F) the Matheron topology is the
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standard Skorohod topology on cadlag functions taking values in RT := RT U {+o0}. We
point out that with this topology the space F is metrizable, separable and compact, hence
in particular Polish. Moreover the Borel o—field on F coincides with the o—field generated
by the maps {d;(-), t € R*}.

Let us denote respectively by Py and P the laws of the random closed sets Ay
and {t € RT : B(t) = 0}, where B(-) is a standard Brownian motion. These laws are
probability measure on F, and our goal is to prove that Py converges weakly to P(BM)
as N — oo. Thanks to the compactness of F, we can focus on the convergence of the
marginal distributions. More precisely, it is sufficient to show that for every n € N and for
all t; < ... <t, € R" one has the weak convergence of the image laws on (R*)™:

(BM)

Pyo(dy,...,dy,) " = PEMo(d,,....d,)"" (N — o0), (B.1)
and the weak convergence Py = P(BEM) follows, because the distributions of the vectors
(diy,...,dy,) determine laws on F.

The validity of (B.1) can be obtained by direct computation. For simplicity we will only
consider the case n = 1, the general case follows along the same line. We recall that for
any t > 0, the law of d; under P(FM) ig given by

£1/2
= — 1 d = d 3
7_{_y(y _ t)1/2 (y>t) Yy Pt(y) Yy

cf. [19], hence we have to show that for every x € R

o0
Jim Py (d > @) = / pu(y) dy.
Using the Markov property for the renewal process () we get
Py(d; = x) = P(& < Nt, &1 2 Na)

]P)(BM) (dt S dy)

keN
INt] oo

5 (s mens) i
i=1 j=[Nz] \keN

Nt 0 | Nt
= (Z q*k(z)> Z q(j —1) Z le ([Nz]—i—1),
‘ j=[Nz]

where we have applied (2.5). We recall the notation Q(n) := > 72 | q(k), introduced in
the proof of Proposition 5.2, and the fact that Q(n) ~ 2¢,L(n)/\/n as n — oo, as it follows
from (2.2) applying [4, Prop. 1.5.10]. Since the asymptotic behavior of the constrained
partition function in the critical case is given by (3.6), we obtain

N 1 2 L([Nz] —i—1)

£ 2 L(i)vi  \/[Na] —i—1

Now using the fact that L(ct)/L(t) — 1 as t — oo uniformly in t € [a,1/a], for every
a > 0 (cf. [4, Th. 1.2.1]), and the convergence of the Riemann sums to the corresponding
integral we easily get

N(dth) ~

(N — 0).

HJ}EHOOPN(dt > :C = dz pe(z

=R

that is what was to be proven.
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