INFINITE VOLUME LIMITS
OF POLYMER CHAINS WITH PERIODIC CHARGES
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ABSTRACT. The aim of this paper is twofold:
— To give an elementary and self-contained proof of an explicit formula for the free energy
for a general class of polymer chains interacting with an environment through periodic
potentials. This generalizes a result in [6] in which the formula is derived by using the
Donsker-Varadhan Large Deviations theory for Markov chains. We exploit instead tools
from renewal theory.
— To identify the infinite volume limits of the system. In particular, in the different
regimes we encounter transient, null recurrent and positive recurrent processes (which
correspond to delocalized, critical and localized behaviors of the trajectories). This is
done by exploiting the sharp estimates on the partition function of the system obtained
by the renewal theory approach.

The precise characterization of the infinite volume limits of the system exposes a
non-uniqueness problem. We will however explain in detail how this (at first) surprising
phenomenon is instead due to the presence of a first-order phase transition.
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1. INTRODUCTION AND MAIN RESULTS

The real systems that we want to model are schematized in Fig. 1. A linear polymer,
that is a chain made up of almost repetitive units (the monomers), fluctuates in a medium
constituted by two solvents, A and B, separated by an interface. We say almost repetitive
because the monomers differ for one property, that we call charge, that determines the
affinity of the monomer for one or the other solvent (in the figure the charge is considered
simply as positive, i.e. A—favorable, or negative, i.e. B—favorable, but in general it may
have an intensity which also varies from monomer to monomer).

Let us consider the following two possible scenarios:

1- Imagine that there are as many monomers preferring the solvent A as the ones
preferring B and that the charges are distributed along the chain in such a way that,
roughly, the charges alternate. Then the only configurations with all monomers in
their preferred solvent are configurations that stick closely to the interface. This
is true even if the matching of charges and solvents is only approximate. If this is
what happens, we say that the polymer is localized at the interface.

2— The limit of the argument above is that it takes into account only of energetic
effects (the charge dependent interaction monomer—solvent). In particular perfect
matchings are essentially impossible in large systems with non zero temperature,
but imperfect matchings leave open the possibility of observing the localization
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phenomenon outlined above. In reality however, if for example the A—favorable
monomers outnumber the B—favorable ones, say in a ratio two to one, then it is
still true that the polymer may end up optimizing the energetic gain via (possibly
imperfect) matchings, but it may also take the different strategy of lying above the
interface almost all the time, performing in this way only very imperfect matchings,
two over three, but gaining (presumably) very much in fluctuation freedom (the
so called entropic gain).

The situation is therefore rather unclear and it appears that a non trivial energy-entropy
competition is governing the system.

— A-favorable interface layer

—— B-favorable

FIGURE 1. A polymer is made up of two types of monomers, type A that lies preferably
in the solvent A and type B that prefers solvent B (a thicker line denotes the stretches
of A—favorable monomers). In order to satisfy the preferences of all the monomers, the
polymer has to keep close to the interface between the two solvents. However entropy
plays a role too and observing perfect monomer—solvent matchings is highly improbable
as long as the temperature of the system is non zero. A realistic model may also include
a different type of interaction, attractive or repulsive, at the interface layer.

The type of polymer we have introduced is what is called a copolymer, a synonymous
with heterogeneous polymer, and the physical system goes under the name of copolymer
near an interface between selective solvents [5, 12, 16]. More realistic would be however to
consider that the interface is typically non extremely sharp and there is a layer in which
the two solvents mix (we could also imagine that in this layer are trapped some impurities)
and the monomers may pay a price or receive a reward in crossing, or even lying on, the
interface layer. This extra interaction is normally referred to as a pinning or depinning
interaction (but also as adsorption/desorption) [23].

One can also imagine the extreme case in which there is no monomer-solvent interaction,
but there are only (de)pinning interactions: this is a very realistic situation too, even
beyond the two solvent picture we have given. One can in fact imagine that a polymer
fluctuates freely in space (or in a solvent), except when it is in proximity of a defect line
with which it interacts, see e.g. [1] and references therein.

The literature on the realistic situations that we have just outlined is vast. A con-
siderable part of it focuses on a case which is very relevant for applications: the one of
periodic distribution of charges (we mention of course also the other extremely relevant
case of disordered charge distributions [1, 5, 12]). With this we mean that the sequence
of charges repeats after a finite number of monomer units and the polymer is effectively
made up piecing together identical stretches of monomers. In this paper we focus exactly
on modeling periodic copolymer models with adsorption (or pinning) interactions.
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A further important remark is that a polymer model should include the so called ex-
cluded volume interaction, which leads to self-avoiding walks. We will enforce the self-
avoiding condition by making the rather drastic choice of considering directed polymers
(of course the trajectory in Fig. 1 may be self-avoiding, if the space is three dimensional).

1.1. The model. We consider a random walk S := {S,},enufoy that is So = 0 and
Sp =351 Xj, where {Xj}jen is an IID sequence with P(X; = +1) = P(X; = —1) =
p € (0,1/2) and P(X; = 0) = 1 — 2p (we have decided to exclude p = 1/2 only for
notational convenience, because of the periodicity of the walk).

The walk S'is our free model. We suppose that .S interacts with an environment, that we
model with four periodic sequences w™, w1 WO and O, We consider two models,
respectively free and constrained, defined by

dE EVw GXP(HN(S)) dE (]:Vw exp(HN(S))
— = —— nd ——— = —— 1 _ 1.1
dpP (%) Z]f\w ? dP (5) ch\f,w {Sn=0}> (1.1)

where the Hamiltonian is

Hn Z Z Wn 1{s1gn Sn)=i} + Zw 1{Sn—0} + Zw 1{s1gn Sn)=0} * (12)

i=t1n=1
Some comments are in order:

(1) wED ) wO and & are periodic sequences of real numbers, describing the interac-
tion of the monomers with the solvents and the interface. We say that the sequence
w = {wp }nen is periodic if there exists T € N such that w,+7 = w, for every n.
The smallest such T is the period of w. From now on w rather denotes the four
periodic sequences appearing in (1.2), and we will use T' = T'(w) to denote the
least common multiple of the periods of w1, w(® and &©.

(2) To define sign(S,) when S,, = 0 we adopt the following convention: if S,_1 # 0
we set sign(Sy,) := sign(S,—_1) while if also S,,_; = 0 we set sign(S,,) := 0. This
definition has the following simple interpretation: sign(.S,,) = +1, —1 or 0 according
to whether the bond (S,,—1,S,) lies above, below or on the z—axis.

(3) Zj{,w = E[exp(Hn) (1{a=f} + L{a—c} 1{sy=0})] is the normalization constant, that
is usually called partition function.

(4) The measure PY , is invariant under the joint transformation S — —S and

wtD — w1 hence we may (and will) assume that
Z ( (+1) _ *”) > 0. (1.3)

Remark 1.1 (Copolymers and pinning models). The general model (1.1) that we consider
will be referred to as a copolymer with adsorption model. This includes as special cases the
copolymer and pinning models that were mentioned informally above. More precisely, the
copolymer model corresponds to the choice w® = & =0 (this formulation generalizes
the case considered in [6]). If instead we set w&!) = 0 we are left with the interactions at
the interface, or defect line, and we are dealing with a pinning model. We stress that much
of the literature on periodic models, e.g. [16, 17, 18] for the copolymer case and [10] for
the pinning case, focuses on the case of T' = 2. We mention as exceptions [20] that deals
with the free energy of very particular types of periodic sequences and [21, 22] treating,
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in a qualitative and non rigorous fashion, arbitrary 7' models (see [6] for more details on
the literature).

1.2. The free energy and the localization/delocalization alternative. Getting
back to the general model (1.1), we observe that from a technical viewpoint it is con-
venient to set

N
Hi(S) == Hn(S) — Y with, (1.4)
n=1

which just corresponds to wﬁfn — 0, wﬁfl) — (wﬁfl) — wgﬂ)), &ﬁlo) — (&SLO) — w£L+1)), and

to note that this new energy yields the same polymer measures, namely

dP% ., exp (Hyy (5))
T(S) = Tw (1{a=f} + ]-{a:C}]-{SN:O}) ) (15)
where the new partition function is just Z§, , = Z}{,w exp(— 25:1 wgﬂ)).

It is not difficult to see that {log Z¢

nT,w}n is a super-additive sequence and from this to
establish the existence of the limit

1
F, := lim —logZ% . (1.6)
N—oo ’

F, is the free energy of the system. It is also rather straightforward to show that (1.6)
holds also if we replace the superscript ¢ with f, i.e. the free energy does not depend on
the boundary condition. For a proof of these facts the reader is referred for example to
[12], but we stress that in this paper we will give a proof of the existence of the limit in
(1.6) that does not rely on super-additivity, see Section 2.

Leaving aside for the moment the problem of determining F,,, we focus instead on a
simple but crucial aspect of the free energy, namely that

F, > 0. (1.7)
The proof of this fact is absolutely elementary:

1 1
NlOgZJC\Cw > NE lexp (H(S)); Sp>0forn=1,...,N —1]

1 1 .
— < log (§exp(w§\?))K(N)> N=ee g,

where we have introduced the notation K(N) := P(S, # 0 forn = 1,...,N — 1 and
Sy = 0) and we have used the polynomial decay of K (-). Later on we will need the precise
asymptotic behavior of K(-), namely

N— CK
for a positive constant cx that depends on p (see e.g. [12, Appendix A.6]). By ay ~ by
we mean ay /by — 1 as N — oc.

(1.8)

Inspired by (1.7) and by its proof, it is customary to say that the system is
- localized if F,, > 0;
- delocalized if 7, = 0.

As unsatisfactory as this definition may look at first, we will see in the next paragraph
that the above dichotomy captures some of the essential features of the system. For the
moment we would like to stress that the free energy F,, admits an explicit formula in terms
of the charges w, see Theorem 2.1 below, that has been first derived in [6], by means of
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large deviations techniques, and then re—obtained in [8], using a more direct approach
based on renewal theory. One of the purposes of this work is to present (in Section 2) a
direct self-contained proof of this formula, using renewal theory ideas in analogy to [8]. As
we shall see next, the renewal theory approach allows to go much further.

1.3. From free energy to path behavior. A very natural question is whether the
localization (resp. delocalization) defined in terms of the free energy does correspond to a
real localized (resp. delocalized) behavior of the trajectories of the polymer measure PY; .
A positive answer to this question had been already given before, but only in terms of weak
(de)localization results and leaving out essentially in all instances the critical behavior (see
[6] and references therein). We have instead given strong path results in terms of scaling
limits in [8], by exploiting renewal theory ideas. Here we pursue the line and obtain the
precise characterization of the infinite volume limit of the system.

The key technical point is that we can go well beyond the Laplace asymptotic behavior
captured by the free energy. In fact in [8] we have shown that there exists a basic parameter
0., which is an explicit function of the charges w, that determines the precise asymptotic
behavior of the partition function (we define d,, in (2.7), but the precise expression of 4,
is not essential now). Let us denote by S the Abelian group Z/(TZ), that is {0,...,T — 1}
with sum modulo 7', and we write equivalently [n] = a or n € a to denote that n is in the
equivalence class of a € S. The result proven in [8] is:

Theorem 1.2 (Sharp asymptotic estimates). Fiz n € S and consider the asymptotic
behavior of Z5; , as N — oo along [N] =n. Then:

(1) If 6, <1 then Z§,, ~ C5,/N3? ;
(2) If 6y =1 then Z§,,, ~ C5, ) NY%;
(3) If 6w > 1 then ¥y, >0 and Z, ~ CF, exp (FuN),

where the positive quantities ¥, C_ C’;n and Cg, are gwen explicitly in Theorem 3.1.

w,n’?

In Theorem 3.1 one finds also the asymptotic behavior for the free endpoint case. We
remark that Theorem 1.2 implies that the localized regime corresponds to d, > 1. The
complementary delocalized regime §, < 1 clearly splits in two sub-regimes that we call
strictly delocalized regime (6, < 1) and critical regime (6, = 1). The reason for such a
denomination is clear if one considers that w — ., is a continuous function on the set
{w: T(w) =T} (that is for fixed period) and hence arbitrarily small variations in w may
change §, = 1to 0, > 1 or §, < 1, while of course the localized and strictly delocalized
regimes are stable.

Theorem 1.2 has been applied in [8] to determine the scaling limits of our models.
More precisely, it has been shown that for every fixed n € S the linear interpolation of
{Si/n/ VN }i=o,..,v under P, , converges in distribution as N — oo along the subsequence
[N] = n. The properties of the limit process (that in general may depend on the choice
of n) are radically different in the three regimes 4, § 1 and this gives a precise picture of
localization/delocalization (see [8, Th. 1.3]).

It is natural to look at the scaling limits as describing the global properties of the
system. In this paper we focus rather on the infinite volume limit of our model, that is
on the weak convergence of the polymer measures Py , without rescaling, as a measure

on ZNU{0} | The latter space being equipped with the product topology, weak convergence
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simply means convergence of all finite dimensional marginal distributions and hence the
infinite volume limit contains the information on the local properties of the model.

In the following theorem, that is our main result, we characterize the possible limits of
P} ., showing that they exhibit distinctive features of localization/delcalization according
to whether ¢, > 1 or d,, < 1 (the critical case d,, = 1 is borderline, as for the scaling limits).

Theorem 1.3 (Infinite volume limit). For every n € S and for a = f,c the polymer
measure Py, converges weakly as N — oo along the subsequences [N] = n to a limit
measure P, law of an irreducible Markov process on Z which is:

e positive recurrent if §,, > 1 (localized regime) ;
e null recurrent if 6, = 1 (critical regime) ;
e transient if §, < 1 (strictly delocalized regime) .

When 6, > 1 the limit law P = P, does not depend on n and a, hence both the polymer
measures Pﬁw and Py, converge weakly as N — oo to the same limit P,.

We prove this theorem in Section 5, exploiting the precise asymptotic behavior of Z§;
given in Theorem 1.2 and in Proposition 3.1, and we also provide an explicit construction
of the limit law P7* in all regimes. We also point out that the transition kernel of the
Markov law P7% is only periodically inhomogeneous, that is P%(Sy,+1 = y|S, = z) is a
T—periodic function of n.

Results similar to Theorems 1.2 and 1.3 have been obtained for homogeneous pinning
systems (see [7, 9, 15]) and for periodic pinning models in the 7" = 2 case [16] (we stress
however that a T' = 2 periodic pinning model based on simple random walk becomes, by
considering the marginal on odd or even sites, a homogeneous model based on a random
walk with jumps in {—1,0, 1}: this decimation procedure is less straightforward for T > 2
and it leads to rather involved models).

In spite of recent advances, see [13, 14] and references therein, obtaining results like
Theorem 1.2 and Theorem 1.3 for disordered models appears to be a real challenge (the
problem is more apparent for the delocalized regime, but also the localized regime of
disordered systems is still only partly understood).

1.4. Non-uniqueness and first order transition. It should have possibly struck the
reader the dependence of the infinite volume limit on the boundary conditions [N] and
on a = f,c in the strictly delocalized regime §,, < 1 (recall that our system is one dimen-
sionall). This trouble was already present in [8, Th. 1.3], i.e. for the scaling limits, where
however also the critical regime is affected.

Here we are going to clarify this point. First of all we point out that for a large number of
cases, that we characterize explicitly in §5.2, all limit laws P>* appearing in Theorem 1.3
in fact coincide also in the strictly delocalized regime, hence there is only one infinite
volume measure which is the limit of both PE\W and Py, as N — oo. This is true in
particular for copolymer and pinning models (defined in Remark 1.1).

However there do exist cases when the laws P1:® have a real dependence on the boundary
conditions a = f,c and [N] = n (we anticipate that this happens only for h, = 0).
In Section 6 we study in detail this phenomenon, showing that all possible limit laws
P”7% are in fact superpositions of two extremal Gibbs measures Q) and Q_, that we
define explicitly and which differ sharply for the asymptotic behavior as N — oo: with
probability 1, Sy — 400 under @} and Sy — —oc under Q;, (we recall that for &, < 1
the infinite volume process is transient). We insist however on the fact that, in general,
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fo differ also for the statistics of the finitely many returns close to the origin and they
are not related by a simple symmetry.

h

————, e, <y - - - -
)

FIGURE 2. A sketch of the phase diagram for the model (1.10). Approaching h = 0 in
the sense of the dashed arrowed lines, one observes the two sharply different behaviors
of paths completely delocalized above (¢ = +1) or below (9 = —1) the interface. Taking
the (weak) limits as h \, O (respectively h " 0) of the infinite volume measures one
obtains precisely the measure Q (respectively Q7). The infinite volume limit for A = 0
instead exists only along subsequences since there are in general T different limit points
(for the constrained endpoint case and T for the free endpoint case) that are different
superpositions of Q} and Q.

We stress that this multiplicity of infinite volume measures should not be regarded as a
pathology, but it is rather the sign of the presence of a first order phase transition in the
system. In order to be more precise let us consider for instance the case of

dPy,, 1 al . Y
P (%) = =— oxp > (wn+h)sign (S,) = B Lis,—qp | » (1.10)
N,w n=1 n=1

with h and § two real parameters and w a fixed centered (Zle wy, = 0) periodic con-
figuration of charges which is non trivial, that is w; # 0 for some . For the sake of this
paragraph we define the free energy directly by f(8,h) := limy_.. N !log Zn,,, that is
we do not make the transformation (1.4). Then with arguments analogous to (1.8) one gets
f(B,h) > |h| and hence we say that the system is localized if f(8,h) > |h| and delocalized
if £(8.h) = [hl.

The phase diagram of such a model is sketched in Figure 2. In particular it is easy to
show that for 3 sufficiently large and positive the system is delocalized for any value of h.
On the other hand, for (3, h) = (0,0) the system is localized, see [8, App. B] or [6]. By the
monotonicity of the free energy in 3, one immediately infers that there exists G, > 0 such
that at h = 0 localization (resp. delocalization) prevails for 5 < . (resp. for 5 > ).

The interesting point is that the delocalized regime that appears when G > (. has
sharply different properties according to the sign of h: in fact, since f(8,h) = |h|, the
quantity (83, h) := 9f(8,h)/Oh takes the value +1 for h > 0 and —1 for h < 0. Notice
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that this quantity has the following direct interpretation (h # 0):

1 N
~ Zsign(Sn)] . (1.11)

Since for 3 > (. the free energy is not differentiable at h = 0, the system is said to undergo
a first order phase transition.

It is worth remarking that first order phase transitions are usually associated to multiple
infinite volume limits (phase coexistence) like the ones obtained in Theorem 1.3. In our
case we are able to assert with precision that Qf are pure phases (that is extremal Gibbs
states) and which linear combination of Q7 and @, one obtains taking the limits along
the subsequences with fixed values of [IV].

Q(/Bv h) = th Enw

—00 ’

1.5. Outline of the paper. In Section 2 we give the formula for F, and its proof based
on renewal theory: along the proof the fundamental processes characterizing the rest of
the paper will appear naturally. Section 2 contains only algebraic manipulations and basic
probability facts. In Section 3 we recall and discuss a more general version of Theorem 1.2,
proven in [8]. In Section 4 we make a number of manipulations on the finite volume
polymer measures that clarify the role of the random set of contacts of the polymer with
the interface and the excursions of the polymer in the solvents. In Section 5 we identify the
infinite volume limits of the system, proving in particular Theorem 1.3. Finally, in Section 6
we unravel the non-uniqueness phenomenon encountered by taking infinite volume limits.

2. A RENEWAL THEORY PATH TO AN EXPLICIT EXPRESSION FOR THE FREE ENERGY

We are going to explain how renewal theory ideas lead to a representation formula for
the partition function Z§ , that we exploit to establish an explicit formula for the free
energy F,. It will be clear that one can do much more with such a formula and we will
explain (without a full proof) how to obtain Theorem 1.2 from it.

2.1. The matrix encoding procedure. In order to give the formula for the free energy
we need to recall the matrix encoding procedure presented in [6]. We recall the definition
S := Z/TZ and, for n € Z, we denote by [n] € S the equivalence class of n, that is if
m € [n] there exists j € Z such that m =n + jT.

The basic structure underlying S is for us the renewal process 7 := {7;},=0,1, .. defined
by 70 := 0 and

Tj41 = inf{n > 7;: S, =0}, (2.1)

and, since S is recurrent, 7; < oo for every j, P-a.s.. The sequence 7, which we will view
also as a random subset of NU {0}, is a renewal process precisely because {7; — 7j_1};en
is an IID sequence. It is therefore fully characterized by the law of 7 and we have already
set the notation P(r; = n) = K(n). Note that, by (1.9), S is only null recurrent, since
E[7] = +00. In renewal terms, 7 is persistent (but we will prefer to refer to it as recurrent)
and in fact null persistent.

Next we can define a S X S matrix ¥, g by the relation

n2
> Wi =Wt = —(n2 —n1) he + Spuying » (2.2)
n=ni+1

where h,, has been defined in (1.3) (we stress that the matrix ¥, g is well-defined because
the charges w are T—periodic). In this way we have decomposed the above sum into a drift
term and a fluctuating term, where the latter has the key property of depending on n;
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and on ng only through the respective equivalence classes [n1] and [ny]. Now for o, f € S
and ¢ € N we define

wg)) + (&[(30) — wéﬂ)) ife=1,4€ef—«
w o 1 . .
Y 5(0) = wg)+]Og<§(1+fmp(—€hw%—2m@)> if¢>1tepf—a; (23
0 otherwise

and for n € N we introduce the S x S matrix M*“(n) defined by
©sn) = e K () 1(ep a) - (2.4)

Summing over n € N the entries of M“ we obtain a S X S matrix B:

Bag = » Mg 4(n). (2.5)
neN

We finally introduce for b > 0 the S x S matrix A“(b):

A% 5(b) =) M 5(n) exp(—bn). (2.6)
neN

Notice that A“(0) = B. It is important to note that A“(b) is a matrix with positive
entries and therefore, by the classical Perron-Frobenius Theorem [2], its spectral radius
Z,(b) is also a positive eigenvalue, with the property that the corresponding left and right
eigenvectors may be chosen to have strictly positive components. Moreover Z,(b) has also
the property of being simple, that is its eigenspace has dimension one, and it is larger than
the absolute value of any other (possibly complex) eigenvalue of A“(b).

We know also that Z,(b) is a smooth function of b, since A 5(-) is smooth for every «
and (3, and that Z,(+) is also strictly decreasing, since the entries A:’ ﬂ() are. The inverse
function of Z,(-), which is defined on the domain (0, d,], will be denoted by z_1(-).

We now introduce the basic positive parameter §,,, which is defined by

dw = Zy(0). (2.7)

2.2. A matrix representation and the formula for the free energy. We are now
ready to give the explicit formula for the free energy F,:

Theorem 2.1. The limit in (1.6) exists and is given by

z;N(1) if S, > 1
L= , 2.8
’ {o it 5, <1 (2:8)

As a preliminary step for the proof of Theorem 2.1 we will make a manipulation on
the formula for Z%, , leading to a particularly useful matrix expression. This is in reality
very simple, just set ¢ty := sup{j : 7; < N} and notice that {N € 7} = {r,, = N} is
just the event that 7, = N for some k. Then, by conditioning on the return times 7 and
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integrating on the up—down symmetry of the excursions of S, we can write

Z;:V,w Hexp i, [TJ}( —Tj— 1)); Ner

k (2.9)

N
= > 1M by (B — ti-1) -

k=1 to,...,tx, ENU{0} Jj=1
O=:tp<t1<...<tp:=N

But we can go further with the following algebraic manipulation: let us denote by & =
£(b) € (0,00)° the right eigenvector of A¥(b) with eigenvalue Z,(b) (the precise normal-
ization is inessential). Then we introduce the probability kernel

Fop(n) = Zwl(b) exp(—bn) M&"ﬂ(n)g—i (2.10)

Equation (2.9) may then be rewritten as

€o i
Zw = exp(bN)g ~0 Z 3 Zo ) T Toy i (65— tj-1) . (2.11)
j=1

30 B t0,...,t, ENU{0}
O=ito<t1<..<tp=N

Remark 2.2. We have called I' probability kernel because

_ 1 (A())a _
%raﬂ(n) = & 1, (2.12)

because by definition £ is the right Perron Frobenius eigenvector of A(b) (notice that we
have dropped the explicit dependence on w, something that we will frequently do below).
Therefore it is possible to interpret I' as the transition matrix of a Markov chain on S x N
that we denote {(Ji,Tk)}r=o0,1,...:

Py ((Jps1, Tis1) = (B,1)|(Ji Ti) = (a,m)) = Ty p(n). (2.13)
Note that since this transition probability does not depend on m, this chain may be built
by first sampling the {J}, process, that is a finite state space (S) Markov chain with

transition matrix ), I', 3(n), and then sampling {7} }; as independent random variables
with distributions 'y, | 7, (-)/ >, Ty, (n).

Thanks to Remark 2.2 we interpret (2.11) in probabilistic terms: for Jy := [0] (and
Ty := 0 for definiteness, but the value of Ty is irrelevant) we define the Markov renewal
process T as the partial sum process of the sequence {T}}, that is

72]' = Tl—i-...—i-Tj, jEN, 7A'0:=0. (2.14)

This is a particular case of the general class of Markov renewal processes treated for
example in [2]. In terms on this new process, (2.11) takes a nice probabilistic expression:

Lemma 2.3. For every b we have

S0 g, Z,(b)V; N e 7|, (2.15)
[NV]

where iy = inf{j : 7; < N} =max(7N{0,1,...,N}) and we have exploited the fact that

7 may be looked upon as a (random) subset of NU {0}.

Z5r . = exp(bN)

,w
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The proof of this lemma follows immediately from (2.11), (2.13) and (2.14). Next we pass
to the proof of Theorem 2.1, treating separately the three regimes 6, % 1.

Proof of Theorem 2.1, case &, > 1. Since o, = Z,(0) > 1, the image of Z,(-) contains 1
and we can set b := Z_1(1), so that Z,,(b) = 1 and (2.15) becomes

75, = exp(bN) 5[—(” Py (N € 7) . (2.16)

[N]

Since £ is a vector with positive entries, (2.16) implies immediately that the superior limit
of {(1/N)log Z%; ,} n is bounded above by b and it suffices to show that P, (N € 7) does
not vanish exponyentially fast in NV to establish that the free energy exists and that it takes
the value b. However it is rather intuitive that a much better bound holds, namely that
there exists ¢ > 0 such that

inf Py (N €7) > c, (2.17)

because since b > 0 the process 7 is positive recurrent, that is sup Ey[T;] < oo. This is
in fact a consequence of the Markov Renewal Theorem [2, Th. VII.4.3], which gives the
precise asymptotic behavior of P, (N € 7) as N — oo. More directly, it suffices to remark
that the processes 77 := {7j: J; = B} is a classical (i.e. no Markov dependence) positive
recurrent renewal process and that P, (N € 7) = P, (N € #9) for 8 = [N]. Therefore the
classical Renewal Theorem yields P, (N € 77) — T/Eb[%g - %15 ] >0as N — oo along the

subsequence [N] = 3, and (2.17) is proven, because there are only finitely many options
for S. [l

Proof of Theorem 2.1, case 6, = 1. Since §,, = Z,(0) = 1, also in this case 1 is in the
image of Z,(-) and we set b = Z_1(1) = 0. In particular, limsupy(1/N)log Z% , < b =0
like before, but we cannot proceed like above for a lower bound, since, under Py, 7 is

null recurrent (that is E¢[7; — 7j_1] = oo). However, by (1.8), we already know that
liminfy(1/N)log Zf , > 0 and we are done. O

Proof of Theorem 2.1, case d,, < 1. This is quick too: since J,, = Z,(0) < 1, by choosing
b = 0in (2.15) we clearly see that Z5 , = O(1), so limsupy(1/N)log Z5, , < 0, and
(1.8) provides the lower bound. Note that in this case to the Markov renewal process is
superimposed a killing rate Z,,(0) and it is this transient or terminating process that we
should consider as the Markov renewal process naturally associated to the regime in which
Z,(0) < 1 (this point will emerge clearly in Section 5). O

Remark 2.4. The proof we just completed implicitly contains the most fundamental ideas
of this work and of [8]. Theorem 1.2 should now appear as the natural (but not straightfor-
ward!) sharpening of this proof. We also stress that the Markov renewal processes arising
in the three regimes are not mere technical tools: they are in fact the limiting processes
given in Section 1.3.

3. SHARP ASYMPTOTIC ESTIMATES

The aim of this section is to report a more detailed version of Theorem 1.2, collecting
the results obtained in Section 3 of [8], see Theorem 3.1 below.
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We recall from the last section the notation £ = £(b) for the right Perron—Frobenius
eigenvector of the matrix A(b), defined in (2.6). More explicitly:

> Auy(0)& =2Z(b)&a, Vac€s, (3.1)
>

where we recall that Z(b) is the Perron-Frobenius eigenvalue of A(b). We choose & in (0, 00)®
and we fix the normalization Zv & = 1. As in the proof of Theorem 2.1, we observe that

when §,, > 1 the image of Z(-) contains 1 and hence we can set b := Z~(1) = F,,. From
now on, we always mean that when J,, > 1 the eigenvector & = £(b) is evaluated for b = F,,
(when 4, < 1 we do not need to use the eigenvector).

Theorem 3.1 (Sharp asymptotic estimates). Let k € N with [k] = a. Then as N — oo
along [N] = n we have:

(1) If 6, > 1 then there exist constants cj, > 0, a = f,c, such that:

Zlcif—kﬁkw ~ (C% Sa) e€xp (Fw (N - k)) . (32)
(2) If 6, =1 then there exist constants k7, >0, a = f,c, such that:

1 f f
Z5 koo ~ (K5 &a) N ZIN ko — ('in fa)- (3.3)
3) If §, < 1 then there exist constants A% >0, a =f,c, such that:
a’n
1 . .1
Z;:V—kﬁkw ~ Agz,n W ) ZN—k,ka Aan N1/2° (34)

The precise value of the constants {c}, s, Ag , } is given in [8, §3.2, §3.3, §3.4] and that
of Aj ,, also in (5.8) below. Here we notice that for d,, > 1 the prefactor in the asymptotic
behav1or of Z%_, O 18 equal to a constant, depending on 7 and a, multiplied by the
eigenvector 5(1 this fact will be important in the proof of Proposition 5.2 below. On the
other hand, for d, < 1 in general the constant Ag , does not admit such a factorization
and this is the source of the dependence of the 1nﬁn1te volume limit on the boundary
conditions a = f, ¢ and [IN] = 1. This phenomenon, anticipated in §1.4, is studied in detail
in Section 6.

4. THE POLYMER MEASURE: CONTACT SET AND EXCURSIONS

In this section we perform a preliminary analysis of the polymer measure P} , that will
be a basic tool for the proof of Theorem 1.3, given in the next section.
The starting point is a very useful decomposition of Py . The intuitive idea is that a
path {S,}n<n can be split into two main ingredients:
e the family {7j}x=0,1,.. of returns to zero of S, already introduced in (2.1);
e the family of excursions from zero {Sii,, , 10 <1 <7 — Tp_1}tr=1.2,..
Moreover, since each excursion can be either positive or negative, it is also useful to
consider separately the signs of the excursions oy, := sign(Sr,_,+1) and the absolute values
{ex(?) == |Si4r,_,| : i=1,..., 7k — Tp—1}. Observe that these are trivial for an excursion
with length 1: in fact if 7, = 7,1 + 1 then o, = 0 and ex(0) = ex(1) = 0.

Remark 4.1. A word about definiteness: if 7, = +00 (and hence 7; = +oo for all i > k),
the definition of the variables o; and e;(+) given above do not make sense for i > k. However
the problem is immaterial, since in this case these variables are irrelevant for the purpose
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of reconstructing the path {S,},, and consequently we agree to define o; and e;(-) for
1 > k in an arbitrary way.

The process (7x)r can be also viewed as a (random) subset of N U {0}, and for this
reason we will refer to it as to the contact set (of course we have in mind the polymer
interpretation of our model described in the introduction). The crucial point, already
exploited in [8] to obtain the scaling limits our our model, is the following description of
the law of the contact set and of the excursions under the polymer measure P% .

4.1. The contact set. We recall the definition ¢y = sup{k : 7, < N}. Let us first con-
sider the returns (73); under P(]lV,w' The law of this process can be viewed as a probability

measure p%; , on the class Ay of subsets of {1,..., N}: indeed for A € Ay, writing
A:{tl,...,tm‘}, 0= t0<t1<"-<t|A‘§N, (4.1)
we can set
p(]lv,w(A) = P?V,W(TZ' =ti, 1 <LN). (4.2)

The measure PN describes the set of contacts of the polymer with the interface. From
the inclusion of Ay into {0,1}NV10} the family of all subsets of N U {0}, Py, can be
viewed as a measure on {0, 1}N{%} (this observation will be useful in the following).

Let us describe more explicitly p% ,(A4), using the (strong) Markov property of Py .
We use throughout the paper the notation (4.1). Recalling the definition (2.4) of M, (1),
we have for a = ¢, f:

p?\f,w({km"'vkn}) - P?V,w (Tl :klv"'aTn:kn)

n Zx[fknG w (4.3)
- HM[kifl],[ki}(ki —ki1) Thn
i=1 4

forall 0 =1 kg < k1 <--- <k, <N and a =c,f.

4.2. The signs. From the very definition (1.5) of our model it is easy to check that,
conditionally on {vn, (7;)j<.y }, the signs (ok)k<,, are under P, , an independent family.
For k <y, the conditional law of o is specified by:

- if 7, =1+ 7_1, then o}, = 0;

- if 7. > 1+ 7,_1, then o} can take the two values +1 with

a _ ) . — 1
PN (Jk =+l ‘ (TJ)JSLN) T+ exp{—( = 1) ho + S ind )

Observe that when 7,,, < N (which can happen only for a = f) there is a last (incomplete)
excursion in the interval {0, ..., N}, and the sign of this excursion is also expressed by (4.4)
for k = 'n + 1, provided we set 7,41 := N.

(4.4)

4.3. The moduli of the excursions. Again, from the definition of our model it follows
that, conditionally on {tn, (7})j<.y, (0j)j<in+1}, the excursions (e’f('))k<w+1 are under
P} ., an independent family. For k& < ¢, the conditional law of ex(-) on the event {7p_; =

by, T, = L1} is specified for f = (fi)i=o,...e,—¢, Y
PR <6k(') =f ‘ LN, (T5)j<uns (Uj)jgaNH)

(4.5)
- P(Si:fi: i=0,....0 — ( Sy >0: i=1,... 0 —Lly—1, Sgl,gO:O).
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For a = f, when 7,, < N the conditional law on the event {7,, = ¢ < N} of the last
incomplete excursion e, 1(-) is specified for f = (fi)i=o,... n—¢ by

P?V,w (eLN‘f'l(.) = f LN, (Tj)jSLNv (O—j)jSLN-i-l) (4 6)
:P(Si:fi:z’:O,...,N—E‘SZ->O:z’:l,...,N—E). '

4.4. Building the infinite volume measure. We stress that the above descriptions
of the contact set, of the signs and of the moduli of the excursions fully characterize
the polymer measure P% . A remarkable fact is that, conditionally on (Tk) k>0, the joint
distribution of (0j,e;);<,, does not depend on N: in this sense, the N-dependence is
contained in the contact set law pjy .

For this reason, the next section is devoted to the study of the asymptotic behavior of
the contact set measure py , as N — oo. The main result is that, for every n € S, the
measure py , converges weakly on {0, 10} ag N — 00 along the subsequence [N] = 1,
toward a limit measure p;” (which in general depends on a and 7).

From this result and from the above considerations, one would like to infer that the full
polymer measure P}, converges weakly on ZNAO} as N — oo along [N] = 7, toward a
limit measure P* which is constructed by pasting the excursion over the limit contact
set. This is indeed true when the cardinality of the contact set {7}, is infinite under the
limit contact set law p,, := pl,*, that is when p,, (7, < +o0c) = 1 for all £ > 0 (we will see
that this is what happens when d,, > 1). In this case the infinite volume polymer measure
P, := P* can be completely reconstructed from p,, (to lighten the notation, for the rest
of this section the dependence of P;* and p/,” on a and n will be omitted).

However when 9, < 1 it turns out that the cardinality of the contact set is p,—a.s.
finite, hence there is a last infinite excursion. In this case to obtain the weak convergence
of the full polymer measure Py , it is also necessary to determine the law of the sign of
the last infinite excursion. But let us describe more in detail how to construct the infinite
volume polymer measure P,.

The proper case. We consider first the case when p,(7x < +00) = 1 for all £ > 0. Then
the infinite volume polymer measure P, is the law on ZNU{0} ynder which the processes
(15)j, (05); and (e;(-)); have the following laws:

e The process (7;); is drawn according to p,.

e Conditionally on (7;);, the variables (o;); are independent. The conditional law of
oy depends only on (75_1,7%) and it is specified in the following way:
— if Tk — Tk—1 = 1, then O = 0;
— if 7, — 7,1 > 1, then o} takes the two values +1 with probabilities given by
the r.hus. of (4.4).
e Conditionally on (7,0;);, the variables (e;(-)); are independent. The conditional
law of ey (-) on the event {r;_1 = {p, 7, = £1} is given by the r.h.s. of (4.5).

Of course these requirements determine uniquely the law P,,.

The defective case. Next we analyze the defective case, when the cardinality of the set
{7Tn}n is p,—a.s. finite, which is what happens when J,, < 1.

Let us denote by p := sup{k > 0 : 7, < 400} the index of the last point in the contact
set, and by assumption we have p,(p < +00) = 1. In this case to characterize the infinite
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volume polymer measure Py, it suffice to specify the laws of the processes (7;);enugo}
(0)j=1,..p+1 and (e;())j=1..._p+1 under Py,

As before, the process (7;); is drawn according to the law p,,. Conditionally on (7;);
the variables (0;);j=1,..,+1 are independent, and conditionally on (7;,0;);, the variables
(€j(-))j=1,... p+1 are independent: therefore it remains to specify the conditional laws of oy,
and of eg(-), for k =1,...,p+ 1. However it is easy to see that for k < p there is still no
change with respect to the proper case, that is the conditional laws are given by the r.h.s.
of (4.4) and (4.5) respectively. Hence we are left with specifying the conditional laws of
the last sign 0,41 and of the last modulus e, 1(-).

For the last modulus the answer is rather intuitive: on the event 7,11 = ¢, the conditional
law of e,11(-) is given for any n € N and for f = (fi)i=o,...n by:

Pw(ek(i):fi :1=0,...,n ‘ (Tj,Jj)j) = PT<SZ~:fZ~ : i:O,...,n)
.= lim P(Si:fi: z':O,...,n‘Si>0: ¢:1,...,N),

N—oo

(4.7)

where the existence of such limit is well known, cf. [3].

On the other hand, the law of the sign of the last excursion 0,41 has to be determined
by a direct computation and this will be done in §5.2. Once this is done, the construction
of the measure P, in the defective case is complete. A remarkable fact is that, for the
choice of free or constrained boundary conditions, the law of 0,41 is in fact determined
by p,. However this is not true in general: one can show (we will not pursue this point in
detail) that more general boundary conditions may yield different infinite volume measures,
having the same law for the contact set but a different law for the sign of the last infinite
excursion.

5. INFINITE VOLUME LIMITS

This section contains the proof of Theorem 1.3. We study the limit as N — oo of the
polymer measure P%, ,, using the sharp asymptotic behavior of the partition function given
in Theorem 3.1. We recall that P4,  is a probability measure on ZN{% and that we endow
the latter space with the product fopology, hence weak convergence means convergence of
all finite dimensional marginal distributions.

Our focus is mainly on the contact set law PN W defined in (4.2), which is a measure on
{0, 13NY{0}  We are going to show that, for a = f, ¢, for any fixed n € S and for any value
of d,,, the measure P}, converges weakly on {0, 1}NU{O} as N — oo along the subsequence
[N] =n. When §,, > 1 the convergence actually holds true without having to impose the
[N] = n constraint, while when ¢,, < 1 the limit may really depend on the value of n and
of a = f,c (in §5.2 we characterize precisely the instances in which this happens).

Once the convergence of pf,, (as N — oo along [N] = ) is proven, the analogous
statement for the polymer measure Py , follows by the arguments given in §4.4.

Remark 5.1. In the proof we actually show that, under the limit measure of p?\w, the
process {7y } k>0 is a Markov renewal process with modulating chain {Jj }r>0 = {[7%] }x>0-
This means that, setting Ty := 7, — 7,1 for k € N, the joint process {(Jx,Tk)}ren is
a Markov chain on S x N such that the transition probability to go from (J,Tj) to
(Jg+1, Tk+1) does not depend on Jy:

P ((Jk+17Tk+1) = (ﬁvn)KkaTk) = (avm)) = Fa,ﬁ(n)v (51)
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see also Remark 2.2 and the lines that follow it. The transition kernel I', g(n) is called the
semi-Markov kernel of the Markov renewal process {7 }. We are going to find an explicit
expression for I'y, 3(n), showing in particular that the laws of the T}, are:

(1) integrable if §,, > 1 (localized regime);
(2) defective if §,, < 1 (strictly delocalized regime);
(3) non integrable if §,, = 1 (critical regime).
A detailed account on Markov renewal processes can be found in [2].

Next we pass to the proof of Theorem 1.3. For ease of exposition, we consider first the
cases &, > 1 and §,, = 1, where there are no problems of uniqueness, and then the more
delicate strictly delocalized regime 6, < 1.

5.1. The regimes (§, > 1) and (J,, = 1). We are going to prove the following:

Proposition 5.2. If §, > 1 then the polymer measures Pg\,,w and PY,, converge as

N — oo to the same limit P, under which (7i)k>0 is a Markov renewal process with
semi-Markov kernel (I g(x) : o, B € S,z € N), defined by:

Lop(x) = My pg(z)e " g—z (5.2)

We recall that r, = 0if §, <1 and F, > 0 if 6, > 1.

Proof of Proposition 5.2. By the asymptotic behavior of Zf; , in (3.2) and (3.3) above, we
have for all o,n € Sand k € a:
Za
lim _N-kOkw e—ka% (5.3)

N—o00 A ’
ey N 30

and since the right hand side does not depend on 7, then the limit exists as N — oo.
By (4.3) it follows that for 0 =: kg < k1 < --- < kj, a =c,f:

j —ruk; SIky)
HM[ki—l},[ki}(ki - ki—l) e Twhi 2
=1

A}i_r)noo Py ({kos - kj}) &[0}

j (5.4)
- HF[kH],{ki}(ki —ki—1),
=1

and this shows that py , converges weakly on {0, 11N} a5 N — oo toward the law p,,
under which (73)x>0 is a Markov renewal process with semi-Markov kernel Ty g(x).
Notice that 3,y geg 'a,6(z) = 1, that is p, (7 < +00) =1 for all k > 0. Therefore the
weak convergence of the full polymer measure P} , on ZNY10} follows from the arguments
given in §4.4, and the proof is completed. O

5.2. The regime (4, < 1). We introduce the subset of w defined by

P<i={w: d,<1, hy,=0, Fa,f: Xa5#0}, (5.5)
where h,, and ¥, g have been defined respectively in (1.3) and (2.2). We are going to prove
that when w ¢ P< both the free and the constrained polymer measures P?\Cw’ a="f,c,
converge weakly as N — oo, without having to impose the constraint [N] = 7, while for

w € P< the limit exists as N — oo along [N] = n and in general depends on the choice of a
and 7. It is worth stressing that for the two motivating models introduced in Remark 1.1,
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the pinning and the copolymer models, w never belongs to P<. This is clear for the pinning
case, where by definition ¥ = 0. On the other hand, in the copolymer case it is known
that if h, =0 and 3 o, 3 : X, 3 # 0 then 6, > 1, cf. [8, App. B].

It will turn out that in the strictly delocalized regime there exists a.s. a last return
to zero, i.e. the process (7;)r>0 is defective. In order to express this with the language
of Markov renewal processes, we introduce the sets S := SU {oo} and N := N U {c},
extending the equivalence relation to N by [co] = {oo}.

We need some notation: we set
ck (14 exp(Zap)) if hy =0

- 1 -
Lag = . Lap =g exp(wy’) Lag.  (5.6)
CK if hy,>0
We notice that for any w:
Lo = lim 2/ M, 5(x). (5.7)
[z]=5~a

In [8, §3.4] it is proven that the constants Af , appearing in (3.4) are equal to:

Aoy = [0=-B)'L(-B)"],,, Ay, =[0-B7L],,, (5.8)
where B is defined in (2.5). Finally we set for all a,,n € S:
Wy = [LA=B), .ty = Lan, (5.9)
and for all n € S and a = f,c we introduce the semi-Markov kernel on S x N:
Mo p(z) AG, /AG acS, zeN, f=[z]€S
on/ NS a €S, x=00, =0
L) = Han/Bacn o) (5.10)
’ 1 a=pF=]x, =0
0 otherwise.

Notice that ['"* is really a semi-Markov kernel, since for a € S:

a M, A2 gl
I I B Bt R RO
a,n a,n a,n

BeS zeN @ BeSzeN
Hgtaﬂ 1 a a
= Agw7 + Ag,n (Aa,n - :U'oz,n) = 1

We are going to prove the following:

Proposition 5.3. Let 6, <1 and n € S. Then:

(1) for a = f,c, Py, converges weakly as N — oo along [N] = n toward a measure
P, under which (7y)k>0 is a Markov renewal process with semi-Markov kernel
given by FZ%(SC)

(2) if w ¢ P<, then P1* =: P, and I'""® =: T'S depend neither on n nor on a, and
both ng,w and PY , converge as N — oo to Py, under which (7y)r>0 is a Markov
renewal process with semi-Markov kernel I'<.
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Remark 5.4. Part (2) of Proposition 5.3 is an easy consequence of part (1). In fact from
equation (5.6) it follows immediately that when w ¢ P< then both matrices (L, g) and

(Ea,g) are constant in «, and therefore A® factorizes into a tensor product, i.e.

AL, = Aoy a,n €S, (5.11)

04777

where (A%),es and (v2)qes are easily computed. But then it is immediate to check that
the semi-Markov kernel I'"»% =: I'< depends neither on 7 nor on a.

Proof of Proposition 5.3. By the preceding Remark it suffices to prove part (1). By (3.4)
we have we have for all o, € S and k € a:

Aa

Za
lim Rl 0, (5.12)
e “Nw (0],

By (4.3) it follows that for 0 =: ko < k1 < -+ < kj < 00, a = ¢, f:

J A
. a '
]\}gnoo pN,w({kOa e 7k5j}) = HM[kiflL[k‘i}(ki —ki—1) A[a il
i 0],
o - o (5.13)
J

=TI (ki = ke

=1

This shows that p% , converges weakly on {0, 1IN0 a5 N — o0, [N] = 7, toward the law
p;” under which (7;)>0 is a Markov renewal process with semi-Markov kernel I'}% ().

However this time the semi-Markov kernel is defective, that is > scq sen FZ%(@“) <1,
hence the contact set {74 }x>0 is py“—a.s. unbounded. By the arguments given in §4.4, to
obtain the weak convergence of the full polymer measure Py ,, as N — oo along [N] =n,
toward a limit law P/“, it remains to determine the law of the sign 0,41 of the last
(infinite) excursion (the notation has been introduced in §4.4).

We start with the free case. We want to show that Pf\w (Sy > 0) has a limit as N — oo
along [N] = 7. By conditioning on the last zero before N we get

0]7 ( Z K(t))v

Nw k>0 v€S n=0 t>N—n

PEV,w(SN > 0 =

where K (-) has been defined before (1.9) and M** denotes the convolution of the kernel
M with itself k times, the convolution between two kernels ' and G being defined by

(F % G)ap(n ZZFO‘V Gy p(n—m).

m=1~y€eS

Therefore, using (1.9) and (3.4) and recalling the definition (2.5), we obtain

C
lim Pl (Sy>0) = N1 -BYg,- (5.14)
[N]=n [0l,n ~es
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Next we consider the constrained case, where we focus instead on Pf (S INj2| > 0).
Conditioning on the last zero before and on the first zero after | N/2], we can write

Py . (SLN/2J > 0)
[N/2] N-1

1 RO)
0]7 (EK(m—n)eC )M([N}(N m),
INw Ek,h>0~,(€S n=0 m=[N/2]

and using again (1.9) and (3.4) we obtain

- w® -
Jim Py (Siny2) > 0) = 2Af Y (=B g, > e 1-B ey (5.15)
[N]=n [0],n ~eS ces

Now it is easy to check that (5.14) and (5.15) give exactly the probability, under the
infinite volume polymer measure P, that the sign 0,1 of the last (infinite) excursion
equals +1, and this completes the proof. ]

6. NON UNIQUENESS OF THE INFINITE VOLUME MEASURE

We want to show that all infinite volume measures P/,* appearing in the strictly delo-
calized regime ¢, < 1, see Theorem 1.3 and Section 5, are in reality superpositions of only
two measures Q. and Q,, that are extremal Gibbs measures for our system. We split the
exposition in two parts:

e in §6.1 we show, by purely combinatorial arguments, that the law of the contact
set under P is a superposition of two basic laws g and q;

e in §6.2 we show that ¢ and g, can be extended to two laws Q. and Q_, for the
whole process {5y, }» which are extremal Gibbs measure for our system.

6.1. Decomposition of the contact set law. Let p;® denote the law of the contact set
(7k)k>0 under the infinite volume measure P{;*. As it has been shown in §5.2, under p/*
the process (7x)k>0 is a Markov renewal process with semi-Markov kernel I, defined in
(5.10). More explicitly, for every n € N and for all 0 =: kg < k1 < --- < k,, we have:

P ({k1,... . kn}) = Loy (B1) - TRE g (B — k1)

Af (6.1)
kn
= Mgy o) (k1) -+~ Mg o (ki — ki)

A?O] U
where Af, 5 is defined in (5.8) and the basic kernel M, g(n) has been introduced in (2.4).

To express the law p/i® as a superposition we are going to exploit the algebraic structure
of (6.1). However the steps are more transparent if carried out in a general setting, and
one is led to the following definition: we introduce the set C defined by

C = {v € (0,00)° : ﬁ% (%Ma,ﬁ(n)>vﬁ <vy, Vac S} . (6.2)

More explicitly, we recall that B, g := Y,y Ma,g(n) has spectral radius d, < 1, and
therefore we have

C= {v —(I—-B) 'w, weln, oo)S\{O}} . (6.3)
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The reason for such a definition is that if (and only if) v € C then the kernel M, g(n)-vg/va
is a (defective) semi-Markov kernel, that is > 5, M, g(n)vs/ve < 1 for every a € S.
Therefore, for all v € C, we can define a (defective) law g¥ for the contact set {7y }ren by

v vkn
g (k1 hn}) o= Mgy (1) -+ My, oy (i — 1) - U[[O]], (6.4)

for every n € Nand for all 0 =: kg < k1 < -+ < ky,.

Now let us take two arbitrary vectors v, v~ € C. Since C is a convex set, for all p € [0, 1]
the vector v := pv™ + (1 —p)v~ belongs to C, hence the law q* is well-defined. The crucial
result is expressed by the following combinatorial lemma.

Lemma 6.1. The law qp”++(1*p)”_ is a superposition of the laws qer and q°
Jr
Pl

+ —
V'=rq" +(1-1)q" , where r= € [0,1]. 6.5
¢ = ra" +(1-")g e cl 69)

Proof. By (6.4), all we have to verify is that for every a € S
v v,  pul + (1—p)uy

S S R 2 (6.6)
Ul U P =P
By the definition (6.5) of ¢, we can rewrite the L.h.s. above as
pvﬁ] Ei_ U*_p)vﬁ] E:_:
+ — F + — =
P+ (L =p) v v P+ (1= P) v vy 6.7)
_ pod I-pva  _ pva +(1=p)v,
pv[a—i—(l—p)v[g] pvfg]—i—(l—p)v[f)] pv[a —|—(1—p)v[6] ’
and the proof is completed. O

Next we come back to our model. We define two vectors v (w) and v~ (w) by
vi()a == Y (1-B)} VT (W)a = Y (1= B) ke o (6.8)
vES YES
where Bo g = By 5 1= > ,en M 5(n), see (2.5), and 3, g is defined in (2.2). From (6.3)
we have that v*(w) € C, and the corresponding laws p”i «) will be simply denoted by q:

ql = qv+(w) q, = q’ @, (6.9)

We are ready to state the main result of this paragraph.

Proposition 6.2. For every a = f,c and n € S, the measures pl;® are superpositions of
the two laws g} and q :

Pl = r(na.w)ql + (1-r(naw)q;, (6.10)
with r(n,a,w) € (0,1).

Proof. We introduce the vector v(n, a,w)s 1= Ag ,, (the dependence of Af, ;5 on w has not
been explicitly indicated, but of course is present), and notice that the law p;* coincides
with gU(%%) cf. (6.1) and (6.4).

To prove that pii® = ¢"("%%) is a superposition of qu = q”i(w), we are going to exploit
Lemma 6.1. Let us be more precise: we are going to show that, for every a = f,c¢ and
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n € S, the vector v(n,a,w) is a linear combination of two vectors v+ (w) and v~ (w) with
positive coefficients:

v(n,a,w) = zvT (W) + yu (W), r,y € RT. (6.11)
Then the vector v(n, a,w) can be written as the following convex combination:

v a,w) = ——wh(w) + —2

- + — +
T4y x—i—yw (w)7 w (w) .—(.%'—i—y)'u (W)7 (6.12)

and Lemma 6.1 yields that g"®%) = pl® is a superposition of the two laws g¥~ ).
However it is straightforward to see from (6.4) that the laws qwi(w) are the same as
q"" @), because the vectors vE (w) and w* (w) differ only by a scale factor. Therefore from
(6.11) it follows indeed that pJ;“ is a superposition of qu, that is what we have to prove.
Therefore it only remains to show that (6.11) holds true, where of course x = z(n, a,w)
and y = y(a,n,w). We consider first the constrained case a = c¢: from the definition (5.8)
of Ag,, and from the definition (5.6) of the matrix L, we can write for o € S
v(e,nw)e = AG, = [(1 - B) L1 - B)fl]am
c (0)
= 7K (1—B) L (1+exp(Sy))e”s (1—B)g .
7,CES

Observing that ¥ ¢ = Sjg ¢ — X[}, and recalling the definition (6.8) of v*(w) we obtain

(0) (0)
v(e,n,w)e = <%K Z e“c (1 — B)&}) v (W)a + <%K Z e TR00¢(1 — B)&) v (Wa,

CES Ces

which shows that (6.11) holds true for a = ¢ and gives an explicit expression for z(c,n,w)
and y(c,n,w). With analogous (and simpler) arguments, for the free case we get

o(f,n,w)a = ckvT(W)a + (cxe0) v (W) -

Thus (6.11) holds true also for a = f, with z(f,n,w) = cx and y(f,n,w) = cxe™0n, and
the proof is completed. O

Finally, we observe that one can obtain an explicit formula for the weight r(n,a,w)
appearing in (6.10). From the expression for r given in (6.5) and from (6.12) it follows
that

‘T(T}a a, w) ’U+(u))[0}

r<n7a7w> B x(nu a,w) ’U+(w)[0} + y(na a,w) ’U_(w)[()}
_ zma,w) vt @) _ #(,00) v (W)
U(nv a, w)[O} A?OLT] ’

having used (6.11) and the definition v(n, a,w)s 1= Ag ;. Observe that the precise values
of x(n,a,w) is the coefficient of v (w), in the last two equations of the proof of Proposi-
tion 6.2, cf. (6.11). Then, recalling the definition (6.8) of v*(w), we obtain the following
formula for r(n, a,w): for the constrained case a = ¢

-1 © -1
ZWES (1- B)[o],7 : CTK deg e (1- B)g,n

AEO] n

r(n,cw) = (6.13)
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and for the free case a = {

1-B) ! ¢
r(n,fw) = ZWES( A )[0]’7 K. (6.14)
[0],n

The exact value of (1, a,w) will be important in the next paragraph.

6.2. Extremal Gibbs measures. The aim of this paragraph is to show that the decom-
position of the contact set law pJ” in terms of the two laws qf, proved in the previous
paragraph, can be lifted from the space of the contact set {7, }, to the space of trajectories
of {Sy, }n. More precisely, we are going to show that for all @ = f,c and « € S the infinite
volume measure P> is a superposition of two laws Qf, depending only on w, which have
g as contact set laws and which are extremal Gibbs measures for our system.

Let us first recall some basic notions. A measure Q on ZN{9} is said to be a Gibbs
measure for our system if it satisfies the so—called DLR equation, that in our setting reads
as follows: for all M € N and for all A C Z™ we have

Q((S1,....Su) € A|Su) =Pl ((S1,....Su) €A |Su) Qas.. (6.15)

The set of all Gibbs measures is clearly a convex set, that is if @, and Q, are Gibbs
measure and p € [0,1] then the convex combination pQ; + (1 — p)Q is a Gibbs measure
too. If a Gibbs measure @ cannot be written as a nontrivial convex combination of two
distinct Gibbs measures, then @Q is said to be extremal. The standard reference on Gibbs
measures is [11].

Both the free and the constrained polymer measures PE\W and PY , satisfy relation
(6.15) for any M < N. Then it is not a surprise that any weak limit of Py ,, as N — oo
along a subsequence, satisfies (6.15) for all M € N, that is it is a Gibbs measure, cf. [11,
Th. 4.17]. In particular, all infinite volume measures P};® for a = f,c and n € S, that are
found in Theorem 1.3, are Gibbs measures.

The basic Gibbs measures Qf extending g* are introduced in the next lemma.

Lemma 6.3. There erist two extremal Gibbs measures QY and Q_, such that the law of
the contact set (7y,)n>0 under Qf s exactly qf. Moreover these laws satisfy

Q:;(A}EHOOSN:"FOO) =1 Q;(A}EHOOSN:—OO> = 1. (6.16)

The proof of this lemma is given below. Now that we have introduced the two laws Qf,
we are ready to state and prove the main result of this section.

Proposition 6.4. For all a = f,c and n € S, the infinite volume measures PL* given
in Theorem 1.3, for 6, < 1, are superpositions of the two laws QJ and Q_ given in
Lemma 6.3. More precisely:

P = r(n,a,w)Qf + (1—7r(n,a,w))Q, (6.17)
where the weight r(n,a,w) € (0,1) is given by (6.13) and (6.14) for a = c,f respectively.

Proof. We already know by Proposition 6.2 that relation (6.17) holds true if restricted to
events involving only the contact set, see (6.10). Now notice that, conditionally on the
level set, the law of the signs and of the moduli of the excursions (except for the last
infinite one) are the same under the three laws P"* Q7 and @, that is they are given
by (4.4) and (4.5): this is just because all three laws are Gibbs measures for our system
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and hence satisfy the relation (6.15). Therefore relation (6.17) holds true if restricted to
the events that happen not later than the last contact point (more precisely, restricted on
the o-field o(7,,S; : 0 < k < 7,), where p := sup{k > 0 : 7, < 00} is the index of the
last contact point).

Then it remains to focus on the sign 0,41 and on the modulus e,;1(-) of the last
(infinite) excursion (the notation has been introduced in §4). For the modulus e,;(-)
there are no problems, because it has the same law under each of P Qf and Q, see
(4.7). About the sign 0,41, we know from Lemma 6.3 that under Q7 it is +1 and under
Q_, it is —1, hence under the r.h.s. of (6.17) the variable 0,4 takes the values +1 and —1
with probabilities respectively equal to r(n,a,w) and 1 — r(n, a,w). However, the Lh.s. of
(6.17), that is Ph?, gives exactly the same law to 0,41, cf. (5.14) and (5.15) with (6.14)
and (6.13), and this completes the proof. ]

Proof of Lemma 6.3. Let us introduce two modified finite volume polymer measures P} w
and Py, defined by

dPy,, exp (Hy(S)) dPy, exp (Hy(S))
dP S = Tw 1(SN>0) dP S = T 1(SN<0) s (618)

and notice that Z]“\—L,w = Z]fv,w . Pg\,,w(SN 2 0), cf. (1.5). Then from Theorem 3.1 and
equation (5.14) it follows that for any fixed & > 0, as N — oo along [N] =7

Zjol,n
im0 B ) 2 (S0 e )
N—E,0pw [k],y N—Ek,Opw (k]
* ~v€S \/N * vES \/N

Therefore for every fixed k > 0 we obtain

lim Z kb _ v W)k lim ZN kb _ v (W) ]
N—oo Z]J\r[,w U+(W)[0] N—oo Z&,w ’Ui(w)[o} 3

where the vectors v*(w) have been defined in (6.8). But then, following closely the proof
of Proposition 5.3, it is easy to prove that both the measures Pﬁ » converge weakly on

ZNHO} a5 N — oo toward two limit measures, that we denote by Qf, such that the contact
set {7y }n>0 under QF has law g, cf. (6.9). In particular, the cardinality of the contact

set {Tn}n>0 is @>-a.s. finite. Moreover, by the definition (6.18) of Pﬁw, it follows that

the sign of the last (infinite) excursion under Q; (resp. under Q) is deterministic and
takes the value +1 (resp. —1). This proves (6.16).

Being weak limit of finite volume polymer measures with suitable boundary conditions,
the two laws QT are automatically Gibbs measures for our system, cf. [11, Th. 4.17]. To
complete the proof, it only remains to show that they are extremal, and by [11, Th. 7.7] this
is equivalent to showing that they are trivial on the tail o—field of the sequence {Sy}n>0.

Let us denote by G,, := o(Sj, : kK > n) the o-field generated by the variables {Sj} with
index k£ > n. We recall that the tail o—field 7 is defined by 7 := ﬂmeN Gm. Let us denote
by ©~! the inverse shift defined on G, that is for A € G; the event ©A € Gy is defined by

(50,51,52,...)69_114 <~ (51,52,53,...) cA.

By iteration we can define the n—shift ©~" on G,, in particular if A € 7 then ©7"A is
well defined for all n € Nand ©7"A e 7T.

We have to show that QX (A) = 0 for all A € 7, and for conciseness we focus on Q7 (the
case Q, is analogous). We recall that p := sup{k > 0 : 7, < 400} denotes the index of
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the last contact point, and we stress that Q7 (p < +00) = 1. We also recall from §4.4 that
the last excursion {e,41(k)}e>0 := {Sr,+&}r>0 has under Q} the law P! of the random
walk conditioned to stay positive, see (4.7) and [3]. We point out that P is the law of a
Markov chain on NU {0} which is transient: PT(limy .o Sy = +00) = 1, cf. [3].

By conditioning on the value of the last contact point, we can write

QI4) = Y QlAl7,=n) QL(r,=n). (6.19)
n>0
However if A € 7 then A € G,,, for all n, hence
Q:;(A |7, =n) = Q:; ({Sn+k}k20 €A | T, = n) = PT(@_”A) .

We have already remarked that ©~"A € T for all n, hence if we show that the law P! is
trivial on 7 then from (6.19) it follows that Q' (A) = 0 and this completes the proof.

Let k € N, /1,...,4, € Nand set M, := PI(S; = ;i = 1,...,k|G,), n > k. Then
(M) nsk is a (Gp)nsk-inverse martingale, hence M,, converges P'-a.s. and in L'(dP") to
M :=PI(S; =4;;i=1,...,k|T). On the other hand, by the Markov property:

Pl(Si=t,i=1,....k|G,) = PI(S;=t,i=1,...,k|S,)

k

|
P, (ks Sn)
Hp{(fz;l, &)] % 5 Pta.s. 5
i=1 pn(0,Sn)

where [y := 0 and p}(a, b) is the j—th iteration of the transition kernel of P!, that is the
P! probability that S goes from a to b in j steps. Now we claim that for every z € N

pl_k(x7 Sn)

= ph(0,Sy)

=1, Plas. (6.21)
Then we obtain:

k
PI(S;=t,i=1,....k|T) = [Hp{(e“,ei) = PI(S;=0;,i=1,...,k)
=1

and it follows that 7 is independent of o(S; : i = 1,...,k). Since this is true for all k£ € N,
7 is independent of itself and therefore must be trivial.

It remains to prove (6.21). We recall that P! is the law of a transient Markov chain
on R, cf. [3], and we denote by P] the law with starting point z € NU {0}. Then we can
rephrase (6.21) in the following way: for all k,z € N

Pch(Snfk = y)

: =1, Plas. (6.22)
n—oee P()(Sn :y) y=Sn

We stress that we already know that the Lh.s. of this equation has a limit as n — oo,
Pl a.s. (it suffices to give a look at the r.h.s. of (6.20) and to recall that the Lh.s. of
(6.20) converge P'-a.s. by the martingale argument outlined above). Therefore it suffices
to show that, for P'-a.e. S = {S,},, there exists a subsequence (nj)r = (nx(S))x such
that the Lh.s. of (6.22) tends to 1 as n — oo along the subsequence (ny).

Let us denote by ({R:}+>0,P) a standard Bessel(3) process starting from zero. Then
from [4, Th. 5.1] we have that, for any fixed z, under P the sequence S, /(1/2py/n)
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convergence in law toward R; (note that \/2p is the variance of S; under the unperturbed
random walk measure P). In particular, for all 0 < a < b < co we have

Pl (Sn € [a\/%\/ﬁ, b\/% ﬁ]) — P(R1 € [a, b]) (n — 00). (6.23)

It follows that, for Pl -a.e. S = {S,}n, there exists a subsequence (ng)r = (nx(S)) such
that lim infy, S, /\/nk > 0 and limsupy, Sy, /y/1k < 00 : indeed, from (6.23) and by Fatou’s

lemma,
P;(sn = [a\/%\/ﬁ, b\/%\/ﬁ] i.o.> > P(Ry € [a,b]),

where {A,, i.0.} := limsup,, A,, for a sequence of events (4,),, and since P(R; € [a,b])
can be made arbitrarily close to 1 by choosing a small and b large, we obtain the claim.

Therefore, in order to prove (6.22) it is enough to show that for any sequence (y,,), C N
such that liminf, y,/v/n > 0 and lim sup,, y,/v/n < oo we have

Po(Sn = yn)
We denote by p(-,-) the transition kernel of S under P:

(n — 00). (6.24)

p(x,y) = p]-(y:z—i-l) +p1(y:m—1) + (1 - 2p) 1(y:a:)a z,y €N,
and we denote by P, the law of x + S under P, z € NU{0}. We recall that the transition
probability kernel p'(z,y) = p{(x, y) of S under P! is a h-transform of p(z, Y)1(y>0):

h
pT(‘T’y) = p(‘r’y)]—(y>0) %’ z,y >0,

where h : NU {0} — (0, c0) satisfies:
> p(@,y) Lyso) hly) = h(z), x>0,
y
see [3]. It is easy to see that necessarily h(x) = h(0) z/p for all z > 1, hence for all z,y > 1:

Pl(S,_r=y) P.(S,=%,5 >0,..,8, >0) p

P(T](Sn =) Po(S, =9,51>0,...,5,>0) =z

Px(Sn - y) - PJ:(STL - _y) b
pPo(Sn-1=y—1) —=Po(Sp-1=y+1)]
where we have used the reflection principle. The Local Limit Theorem given by [19, Th. 13
in Ch. VIL.3] yields the expansion:

Po (S =2+ V/Em) = 1(:) |1+ = (2 = 32)| + ol1/ V).

NG

uniformly in z € (2pn)~ Y2 N, where (-) is the density of A’(0, 1) and ¢ a positive constant.
Then we obtain:
P, (Sn =yn) — Pu(Sn = —yn)
PO(Snfl =Yn — 1) - PO(Snfl =Yn+ 1)
and the proof of (6.24) is complete. O

— T, (n — o0),
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