A POLYMER IN A MULTI-INTERFACE MEDIUM

FRANCESCO CARAVENNA AND NICOLAS PETRELIS

ABSTRACT. We consider a model for a polymer chain interacting with a sequence of equi-
spaced flat interfaces through a pinning potential. The intensity § € R of the pinning
interaction is constant, while the interface spacing 7' = Tn is allowed to vary with
the size N of the polymer. Our main result is the explicit determination of the scaling
behavior of the model in the large N limit, as a function of (Tn)~ and for fixed § > 0. In
particular, we show that a transition occurs at Tny = O(log N). Our approach is based
on renewal theory.

1. INTRODUCTION AND MAIN RESULTS

1.1. The model. In this paper we study a (1+ 1)-dimensional model for a polymer chain
dipped in a medium constituted by infinitely many horizontal interfaces. The possible
configurations of the polymer are modeled by the trajectories {(i,5;)}i>0 of the simple
symmetric random walk on Z, with law denoted by P, i.e., Sp = 0 and (S; — Sj—1)i>1 is
an i.i.d. sequence of Bernoulli trials satisfying P(S; = £1) = 1/2. We assume that the
interfaces are equispaced, i.e., at the same distance T' € 2N from each other (note that
T is even by assumption, for notational convenience, due to the periodicity of the simple
random walk).

The interaction between the polymer and the medium is described by the following

Hamiltonian:
Hy 5(S) = 6 Zl{s erzy = 0 Zzl{s — KT} (1.1)
keZ i=1

where N € N is the size of the polymer and § € R is the intensity of the energetic reward
(if & > 0) or penalty (if 6 < 0) that the polymer receives when touching the interfaces.
More precisely, the model is defined by the following probability law P% N5 on RNU{0},

dP%,(; (S o exp (H],I\},(S(S)) (1 2)
dp Zhs

where Z]C\F, s =E( exp(H]:\F, 5(9))) is the normalizing constant, called the partition function.

It should be clear that the effect of the Hamiltonian H7 N, 18 to favor or penalize, ac-
cording to the sign of §, the trajectories {(n,Sy)}n that have a lot of intersections with
the interfaces, located at heights TZ (we refer to Figure [l for a graphical description).
Although in this work we give a number of results that do not depend on the sign of &,
we stress from now that our main concern is with the case 6 > 0.
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FIGURE 1. A typical path of the polymer measure P N5 With V =158 and
T = 16. The circles represent the points where the polymer touches the
interfaces, which are favored (resp. disfavored) when § > 0 (resp. § < 0).

If we let T" — oo in (L2) for fixed N (in fact it suffices to take 7' > N), we obtain a

well defined limiting model P 5:

AP exp (H5(9)) . N
dg’ (S) = Tﬁ; where HY5(S) = 521{52.:0}. (1.3)
N, ;

PY s is known in the literature as a homogeneous pinning model and it describes a polymer
chain interacting with a single flat interface, namely the z-axis. This model, together with
several variants (like the wetting model, where {S,}, is also constrained to stay non-
negative), has been studied in depth, first in the physical literature, cf. [I1] and references
therein, and more recently in the mathematical one [13| 9] 4, [12]. In particular, it is well-
known that a phase transition between a delocalized regime and a localized one occurs as
d varies and this transition can be characterized in terms of the path properties of Py s

The aim of this paper is to answer the same kind of questions for the model plxy N> 8s a
function of 4 and of the interface spacing T' = Ty, which is allowed to vary with N. We
denote the full sequence by T := (T )nen (taking values in 2N) and, with no essential loss
of generality (one could focus on subsequences), we assume that T has a limit as N — oo:

J lim Ty =: T € 2NU{+o0} . (1.4)

N—oo

(Of course, if T, < oo the sequence (Tv)ny must take eventually the constant value Th.)
For notational convenience, we also assume that Ty < N: again, this is no real loss of
generality, since for Ty > N the law P%N(; reduces to the just mentioned P ;.

Before stating precisely the results we obtain in this paper, let us describe briefly the
motivations behind our model and its context. Several models for a polymer interacting
with a single linear interface have been investigated in the past 20 years, both in the
physical and in the mathematical literature (see [I1] and [12] for two excellent surveys).
The two most popular classes among them are probably the so-called copolymer at a
selective interface separating two selective solvents and the pinning of a polymer at an
interface, of which the homogeneous pinning model P 5 is the simplest and most basic
example. Although some questions still remain open, notably when disorder is present,
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important progress has been made and there is now a fairly good comprehension of the
mechanism leading to phase transitions for these models.

More recently, some generalizations have been introduced, to account for interactions
taking place on more general structures than a single linear interface. In the copolymer
class, we mention [0} [7] and [I7], where the medium is constituted by an emulsion, and es-
pecially [8], where the single linear interface is replaced by infinitely many equi-spaced flat
interfaces, separating alternate layers of each selective solvent. Our model P%ﬁ provides
a closely analogous generalization in the pinning class, with the important difference that
the model considered in [§] is disordered. In a sense, what we consider is the simplest case
of a pinning model interacting with infinitely many interfaces. In analogy with the single
interface case [12], we believe that understanding in detail this basic example is the first
step toward a comprehension of the more sophisticated disordered case.

Let us describe briefly the results obtained in [§]. The authors focus on the case when the
interface spacing 1Ty diverges as N — oo and they show that the free energy of the model
is the same as in the case of one single linear interface. Then, under stronger assumption
on (Tn)n, namely T /loglog N — oo and Tn/log N — 0, they show that the polymer
visits infinitely many different interfaces and the asymptotic behavior of the time needed
to hop from an interface to a neighboring one is shown to behave like eIV,

In this paper we consider analogous questions for our model P;{w. In our non-disordered
setting, we obtain stronger results: in particular, we are able to describe precisely the path
behavior of the polymer in the large N limit, for an arbitrary sequence T' = (T )y and
for § > 0 (i.e., we focus on the case of attractive interfaces). In fact there is a subtle
interplay between the pinning reward § and the speed T at which the interfaces depart,
which is responsible for the scaling behavior of the polymer. It turns out that there are
three different regimes, determined by comparing T with 1°§N, where ¢5 > 0 is computed
explicitly. We refer to Theorem [21and to the following discussion for a detailed explanation
of our results. Let us just mention that, as Ty increases from O(1) to the critical speed

bf—N, the scaling constants of Sy decrease smoothly from the diffusive behavior vV N to

log N, while if Ty > % then Sy = O(1). This means, on the one hand, that by
accelerating the growth of the interface spacing the scaling of Sy decreases, and, on the
other hand, that scaling behaviors for Sy intermediate between O(1) and log N (such as,
e.g., loglog N) are not possible in our model. We also stress that our model is sub-diffusive
as soon as Ty — oo. Sub-diffusive behaviors appear in a variety of models dealing with
random walks subject to some form of penalization: from the (very rich) literature we
mention for instance [I5] and [I] on the mathematical side and [I6] on the physical side.

Our approach is mainly based on renewal theory. The use of this kind of techniques in
the field of polymer models has proved to be extremely successful, starting from [9] and
[], and has been generalized more recently to cover Markovian settings, cf. [3] and [2].
The key point is to get sharp estimates on suitable renewal functions.

The same approach can be applied to deal with the depinning case § < 0, i.e., when
touching an interface entails a penalty rather than a reward. However, in this case the
limiting model P 5 is delocalized and this fact generates additional non-trivial difficulties.
For this reason, the analysis of the § < 0 case is given in a separate paper [5], where we
show that there are remarkable differences with respect to the § > 0 case that we consider
here. In particular, the critical speed of T above which the polymer gives up visiting
infinitely many different interfaces is no longer of order log N, but rather of order N1/3
(see Theorem 1 in [5] for a precise statement).
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1.2. The free energy. The standard way of studying the effect of the interaction (L.II)
for large N is to look at the free energy of the model, defined as the limit

GO.T) = lm on(T),  where  Gn(5T) = %mngv{g. (1.5)

The existence of such a limit, for any choice of 6 € R and T satistying (L4]), is proven in
Section 2l To understand why one should look at ¢, we introduce the random variable

N N
Lyr = Zl{SieTZ} = Zzl{&:kT}a (1.6)
i=1

keZ i=1
and we observe that an easy computation yields

0 L 0? L
%QSN((S,T) = EJZC/]Y§< ]}[\}TN>, @@bN((S,T) = NV&YP?}%( %TN> > 0.

In particular, ¢n (9, T) is a convex function of J, for every N € N. Hence ¢(6, T) is convex
too and by elementary convex analysis it follows that as soon as ¢(d,T') is differentiable

0 - 7~ ( LNTy
So0.T) = tim B (£ ). (17)

Thus, the first derivative of ¢(d, T') gives the asymptotic proportion of time spent by the
polymer on the interfaces, which explains the interest of looking at ¢(d, T'). In fact a basic
problem is the determination of the set of values of ¢ (if any) where ¢(d, T') is not analytic,
which correspond physically to the occurrence of a phase transition in the system.

This issue is addressed by our first result, which provides an explicit formula for ¢(d, T').
Let us introduce for T € 2N U {400} the random variable 7{ defined by

i = inf{n>0: S, € {-T,0,4+T}}, (1.8)

and denote by Q7 () its Laplace transform under the simple random walk law P:
Qr(\) = E(e_)‘TlT) = Z e~ P(TlT = n) . (1.9)
n=1

When T' = +00, the variable 77° is nothing but the first return time of the simple random
walk to zero, and it is well-known that Qu(A) = +oo for A < 0 while Qxo(N\) = 1 —
V1—e=2* for A\ > 0, cf. [I0]. We point out that Qr()\) can be given a closed explicit
expression also for finite T', see Appendix [A]l and in particular equation (A.4). Here it is
important to stress that for 7" < oo the function Qr(X) is analytic and decreasing on
(AL, +00), where Al < 0 (see eq. (A6)), and Q7(A\) — 400 as A | Al while Q7()\) — 0
as A — oo. In particular, when 7" < oo the inverse function (QT)_I(') is (analytic and)
defined on the whole (0, c0), while (Qoo)_l(-) is (analytic and) defined only on (0, 1].

Theorem 1. Denoting by Teo = limy_o0 T, the free energy ¢(6,T) = ¢(9, To) depends
only on § and Ty and is given by

(QTw)_l(e_‘S) if Too < +00
(Quo) (€AY if Tog = 400

It follows that for Ty, < +00 the function § — ¢(5,T) is analytic on the whole real line,
while for Ty, = +o0 it is not analytic only at § = 0.

¢®J@)={ (1.10)
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So there are no phase transitions in our model, except in the T, = 400 case, where
¢(0,00) is not analytic at § = 0. This fact is well-known, because ¢(d, o) is nothing but the
free energy of the classical homogeneous pinning model P Nao» cL. [12]. In fact the explicit
formula for Qs () mentioned above yields

¢(6,00) = <g —log v2— e—5> 1550y - (1.11)

Also in the case when T, < 0o, some general properties of ¢(9, Two) can be easily derived
from Theorem [I] for instance that %qﬁ(&,T) — 0 as § — —oo while %qﬁ(&, T) — % as
d — +o0o, which have a clear physical interpretation thanks to (LL7).

The proof of Theorem [ is given in Section 2] using renewal theory ideas. Besides
identifying the free energy, we introduce a slightly modified version of the polymer measure
ij\}ﬁ which can be given an explicit renewal theory interpretation. This provides a key
tool to study the path behavior (see below).

One consequence of Theorem [I]is that any T such that T, = oo yields the same free
energy ¢(6,T) = ¢(d,00) as the classical homogeneous pinning model. However we are
going to see that the actual path behavior of P]F‘C,Né as N — oo depends strongly on the
speed at which Ty — oo, a phenomenon which is not caught by the free energy.

1.3. The scaling behavior. Henceforth we focus on the case § > 0. We assume that
T = (Tn)Nen has been chosen such that Ty — oo as N — oo. Then the free energy
#(6,T) = ¢(9,00) is that of the homogeneous pinning model: in particular ¢(d,T) > 0 for
every d > 0. Since ¢(0,T) =0 for 0 <0, by convexity and by formula (7)) it follows that
for 6 > 0 the typical paths of P 5 touch the interfaces for large N a positive fraction of
time, and it is customary to say that we are in a localized regime.

We now investigate more closely the path properties of P 5- A natural question is: does
the polymer visit infinitely many different interfaces, or does 1t stick to a finite number of
them? And more precisely: what is the scaling behavior of Sy under ply Ny as N — oo?

The answer turns out to depend on the speed at which T — oco. Let c;; be the positive
constant defined as

= ¢(6,00) +log (1 4+ V1 — e 20(0)) = —+log\/2—e (1.12)

where the r.h.s. of ([LI2)) is obtained with the help of (III]). Then, the behavior of the
sequence Ty — % log N determines the scaling properties of the polymer measure. More

precisely, we have the following result, where = denotes convergence in law and N (0, 1)
the standard Normal distribution.

Theorem 2. Let § >0 and T = (Tn)nen such that Ty — 00 as N — oo.

(i) If Ty — locg(SN — —o0 as N — oo, then under PﬁNJ as N — oo

SN
Cs (e 3™ Tyy) VN

where Cy := \/2 ed ¢/ (8,00) /1 — e20(6:20) = (1 — ¢79) 2326,5 is an explicit posi-

tive constant.

—  N(0,1), (1.13)
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(i1) If there exists ¢ € R such that Tnr — % — (¢ along a sub-sequence N', then
under Pﬁ’\,’:(; as N' — oo
SN
TN/
where I' is a random variable independent of the {S;}i>0 and with a Poisson law
of parameter ts5 = 2e°\/1 — e=20(0.:20)¢/(§,00) - e7¢ = 265% e—coC,

Sr, (1.14)

(iil) If Ty — 1°§6N — +00 as N — oo, then the family of laws of {Sn}nen under Pﬁ’fé

is tight, i.e.,

lim sup PR (|Sy|>L) = 0. (1.15)
L—oo NeN ’

Remark 1. It may appear strange that in point (ii) we have required that Ty, — % —(

only along a sub-sequence N’: however this is just because Ty takes integer values and

therefore the full sequence Ty — loféN cannot have a finite limit. In general, equation (.14))

implies that Sy /T is tight when the full sequence [Ty — 5| is bounded. O

Cs

The proof of Theorem 2is distributed in Sections[Bl @ and Bl The crucial idea, described

in §3.I1 is to exploit the renewal theory description given in Section 2l Let us stress the
log(N)

intuitive content of this result. We set Ay := Ty — —— and we anticipate that e

is the typical number of different interfaces visited by the polymer of length N. With this
in mind, we can give some more insight on Theorem 2

—csAN

e If Ay — —o0, then the interfaces are departing slow enough so that it is worth
for the polymer to visit infinitely many of them. Of course, this is also true when
Ty =T < oo for all N € N. This situation is not included in Theorem [2] for
notational convenience, but a straightforward adaptation of our proof shows that
in this case Sy/(C7vVN) = N(0,1) for a suitable Cr satisfying Cr ~ Cj e 3T
as T — oo, thus matching perfectly with (LI3]).

We note that, independently of (Tx)n (such that Ay — —o0), the limit law
of Sy, properly rescaled, is always the standard Normal distribution. However
the scaling constants (e_%;TN TN) VN do depend on the sequence (Ty)y and in
particular they are sub-diffusive as soon as Ty — 00. Also notice that, by varying

Ty from O(1) to the critical case log(V) O(1), the scaling constants decrease

cs
smoothly from v/N to log N.

e If Ay = O(1), then we are in the critical case when the polymer visits a finite
number of different interfaces and therefore the scaling behavior of Sy is the same
as Ty, i.e., Sy =~ log N. The explicit form St of the scaling distribution has the
following interpretation: the number I' of different interfaces visited by the polymer
is distributed according to a Poisson law and, conditionally on I', the polymer just
performs I' steps of a simple symmetric random walk on the interfaces.

e If Ay — +00, then the only interface visited by the polymer is the x-axes. The
other interfaces are indeed too distant from the origin to be convenient for the
polymer to visit them. Therefore, the model PﬁNé becomes essentially the same as
the classical homogeneous pinning model Pﬁ(;,’ where only the interface located
at S = 0 is present. Since § > 0, we are in the localized regime for P?V°75 and it
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is well-known that Sy = O(1). One could also determine the limit distribution of
Sn, but we omit this for conciseness.

As already mentioned, the study of the path behavior in the delocalized regime § < 0
turns out to be rather different, both from a technical and a physical viewpoint, and will
therefore be carried out in a future work.

2. A RENEWAL THEORY PATH TO THE FREE ENERGY

This section is devoted to proving Theorem [Il We also provide a renewal theory de-
scription for a slight modification of the polymer measure Py 5, which is the key tool in
the next sections.

2.1. A slight modification. We consider ¢ € ]R and T' € 2N U {oo}. It is convenient to
introduce the constrained partition function VA% N, 5, where only the trajectories (S;); that
are pinned at an interface at their right extremity are taken into account, i.e.,

Zy5 = E(eXP (Hy5(5)) 1{sNeTZ}>- (2.1)

In order for the restriction on {Sy € TZ} to be non-trivial, we work with Z]C\F,’fg only for
N even. This is the usual parity issue connected with the periodicity of the simple random
walk: in fact P(Sy € TZ) = 0 if N is odd (we recall that T" is assumed to be even).

The reason for introducing Z]:\F,’f; is that it is easier to handle than the original partition
function, and at the same time it is not too different, as the following lemma shows.

Lemma 3. The following relation holds for all N € N;§ € R, T € 2N:

—lél 7T,

2LN/2J6 < le\jf,é < (N+1) ZQN(S (2.2)

Proof. If N is even, then 2LN /2] = N and the lower bound in (2.2)) follows trivially from
the definition (2.1)) of Z 5- If N is odd, then 2| N/2] = N — 1 and since

Hy5(S) > Hf 4 5(5) — 4],

the lower bound in (2.2]) is proven in full generality.
To prove the upper bound, we observe that by the definition (2.1I)

N
Zg]\?& 2 E<eXP (H3y 5(5)) 1{52N:0}) = Z E<eXP (Hyn 5(5)) 1{SN:k}1{szN=o}>,
k=N

and from the Markov property and the time-symmetry ¢ — N — ¢ we have

2TJ\?5 = Z [ <eXP HN(S(S)) l{SNZk})]z'

Since P(Sy = k) > 0 if and only if N and k have the same parity, there are only N + 1
non-zero terms in the sum, and applying Jensen’s inequality we get

2
kij\fE(exp (Hy5(9)) 1{SN:k})] = N;H [Z]Tw]?,

1
T7
221\25 = N+1

therefore the upper bound in (2.2)) is proven and the proof is completed. O
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As a direct consequence of Lemma [3, we observe that to prove the existence of the free
energy, i.e., of the limit in (IL5]), we can safely replace the original partition function Z}\;f\g

by the constrained one Z}\;J‘g , restricting N to the even numbers. The next paragraphs

are devoted to obtaining a more explicit expression of Z}\;’g.

2.2. The link with renewal theory. We start with some definitions. For T' € 2NU{o0},
we set 7& = 0 and for j € N
S =S _r

TjT = inf{i>7+1: S; € TZ} and E? = %731 , (2.3)
where for T' = oo we agree that T7Z = {0}. Notice that TJT gives the 7' epoch at which S
touches an interface, while E? tells whether the j*" interface touched is the same as the
(j— 1)t (s;f = 0), or is the interface above (s;f = 1) or below (e;f = —1). Under the law
P of the simple random walk, we define for j = {0,4+1}, n € N and A € R the quantities

qff(n) = P(’7'1T:’I’L, z—:{:j) and Ze An ] (2.4)

Of course Q{‘F()\) may be (in fact, is) infinite for A negative and large, and clearly ¢Z!(n) = 0
for n > 1 and QL' (A\) = 0 for A > 0. Notice that q;l = g3 and Q;l = Q% so that we can
focus only on ¢, Q7 for j € {0,1}. We also set

ar(n) = > @h(n) = af(n) + 2ak(n) = P(r] =n)
=0 ' - (2.5)
Qr(N) = Y Qh() = Q) + 2QF() = B,
j=0,%1
Next we introduce
= {Rx 2N} U {R* x {+oo}} (2.6)
and for (6,7) € H we define the quantity As7 by the equation
Qr(Xst) = e7°. (2.7)

As we show in Appendix [Al, for T' < oo the function Qr(-) is analytic and decreasing on
(AL, +00), with A = —L1og (1 4 (tan Z)?) < 0, and such that Q7(\) — +oo as A | Al
and Qr(A) — 0 as A — 4oo. In particular, equation (2.7)) has exactly one solution for
every § € R, so that A\;r is well-defined. For T' = oo, Q7(.) is analytic and decreasing on
[0,00), Q7(0) =1 and Q7 (N\) — 0 as A — +o0, while Q7(\) = oo for A < 0. This implies
that equation (Z7)) has exactly one solution ;. for every 6 > 0 and zero solution for
0 < 0. In the next paragraph we are going to show that when A5 exists, it is nothing but
the free energy ¢(0,T) (in agreement with Theorem [I]).

We are finally ready to introduce, for (6,7') € H, the basic law Psr, under which the
sequence of vectors {(&;,&;)}i>1, taking values in N x {£1,0}, is i.i.d. with marginal law

Por((E,e1) = (n,5)) = gdlm)yesmm neN, je{+1,0}.  (28)
Note that (2.7) ensures that this indeed is a probability law. Then we set 79 = 0 and
Tn =& + - + &, for n > 1. We denote by 7 both the sequence of variables {7, },>0 and
the corresponding random subset of NU {0} defined by 7 = |J,,5 {7}, so that expressions
like {N € 7} make sense. Notice that {7,}n>0 under Psr is a classical renewal process,
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because the increments {7, — 7,—1}n>1 = {&n }n>1 are 1.i.d. positive random variables, with
law

7757T(7'1 = n) = ¢ qgr(n) e o neN. (2.9)
Because of the periodicity of the simple random walk, gr(n) = 0 for all odd n € N and

gr(n) > 0 for all even n € N (we recall that we only consider the case of even T'). Therefore,
the renewal process is periodic with period 2.

We now have all the ingredients to give an explicit expression of the partition function
in terms of the jumps made by S between interfaces. This can be done for (§,7) € H and
for Z}\;’g (recall (1)) as follows. For k,n € N, k < n, we define the set

Spn = {te (NU{ODF: 0=thg <ty <...<tp=n}.
Then for A € R and N even we can write

ZEDED W o | LT

k=1 oe{-1,0,1}k t€Sk,N =1
N k
= M Z Z Z H e q‘;f‘(tl —ty_q) e Mt (2.10)
k=1 oe{-1,0,1}¢ t€Skn I=1
Then setting A = A\; 7 and recalling (2.8)), we can rewrite (Z10) as
T :
ZNs = TN Psr(Ner). (2.11)

We stress that this equation retains a crucial importance in our approach. In fact the
behavior of Z]:\F,’f; is reduced to the asymptotic properties of the renewal process 7.

The next step is to lift relation (ZI1I]) from the constrained partition function to the
constrained polymer measure P%%, defined for N even as

PUS() = Phs( - |SveTz).

Recalling the definition (L6) of Ly 7, for (6,T) € H, fork < N, t € Sy v and o € {£1, 0}*,
in analogy to (Z.I0) we can write

PG (Lne =k, (el = (t,00), 1 <0 < k)

ot 2.12
= 656 He ql lI tl—l) e_)\é’T (tl_tlfl). ( )

Therefore from (28] and (ZI1]) we obtain
PG (Lnr =k, (7] €1) = (ti,00), 1 < i < k)

(2.13)
= 'P(;,T<LN =k, (Ti,e?i) = (ti,Ui), 1< < k"N S 7') ,

where Ly := sup{j > 1: 7; < N} in analogy with (L8). Thus the process {(71,el)};
under N’c& is distributed hke {(7i,€i)}s under the explicit law P, conditioned on the
event {N € 7}. The crucial point is that {r;}; under Psr is a genuine renewal process.
This fact is the key to the path results that we prove in the next section, because we will
show that the constrained law ij\}’fé is not too different from the original law P]{,’é.
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2.3. Proof of Theorem [Il Thanks to Lemma 3l to prove Theorem [ it suffices to show
that for every sequence (T )y such that Tn — T as N — oo we have

1 T e (QTm)_l(E_(S) if To, < o0
10 Z(S N’ = 1 5 .

’ (Qr.) (e A1) if T =00

where we recall that Qr(-) was introduced in (L9). Recall also that for (§,T) € H we have

(Qr) ' (e70) = Nsr (see (D).

Consider first the case when T, < 00, i.e., Too € N. Then the sequence (Ty)n takes
eventually the constant value Ty = T, and thanks to (2I1]) and (Z71]) we can write

lim

— 2.14
N—oo, Neven N ’ ( )

1 . o 1
~ log Z3 % = (Qr.) " '(e™) + ~ 108 Ps 1. (Ner). (2.15)

Therefore it remains to show that the last term in the r.h.s. vanishes as N — oo, N even,
and we are done (as a by-product, we also show that As 7. coincides with the free energy
#(0, T )). We recall that the process 7 = {7, },, under P57 is a classical renewal process
with step-mean

m(6,To) = & (11) < +00. (2.16)
The fact that m(d, To) < 400 is easily checked by (2.9), because by construction A5z, >
Mg, cf. (Z3), [Z7) and the following lines. Since the renewal process ({7u}n, Ps,r.) has
period 2, the Renewal Theorem yields

2
lim Py (NerT) = — > 0, (2.17)

N—o0, N even (5, Too)
and looking back to (2.I5]) we see that (2.14]) is proven.

Next we consider the case when T, = 400, that is Ty — +o00 as N — oco. We can
rewrite equation (2.15)) as

1 1, _ 1
N log Zg:%’c = (Qry) Le 6) + N log Ps 1y (N € 7'). (2.18)
We start considering the first term in the r.h.s. of (2.I8]), by proving the following lemma.

Lemma 4. For every 6 € R

podm (@) = (Qu) e A ). (2.19)
Proof. To this purpose, we observe that as T — oo the variable 7{, defined in (2.3)
converges a.s. toward 77° := inf{i > 0: S§; = 0}, i.e., the first return to zero of the simple
random walk. Accordingly, by dominated convergence (or by direct verification), Q7(\)
converges as T — oo, for every \ € [0, +00), toward Qoo(\) =1 — V1 — e~2. Since Qoo(+)
is strictly decreasing, it is easily checked that also the inverse functions converge, i.e., for
every y € (0,1] we have (Q7) ' (y) — (Qoo) *(y) as T — oo, so that ([ZI9) is checked
for § > 0. On the other hand, when § < 0 we have Al < (Q7)'(e™®) < 0, because as
we already mentioned Qr(-) is decreasing and Qr(\) — oo as A | Al and Qr(0) = 1.
Moreover, A\l vanishes as T — oo (see ([(A.6)) and consequently (Qr)~'(e™®) — 0 as
T — oo. Hence (2.19]) holds also for § < 0. O

Using Lemma [ and the fact that Psr, (N € 7) < 1, by ([2I8) we obtain

1 _
lim sup N logZ;F%’c < (Qx) 1(6_5/\1),

N—o00, N even
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hence to complete the proof of (2Z.14]) it remains to show that for every § € R

o 1 Tn,c -1, ¢
N_l}lolgl’}\lflgvcn N log Z; " > (Qx) (e2A1). (2.20)

We start considering the case when 6 < 0, hence (Qoo)_l(e_‘; A1) = 0. We give a very
rough lower bound on Zg%’c, namely for N even we can write

Zg%’c > E<9XP (H]C\F/,V(;(S)) 1{51-gTNZ,VISiSN—l}l{SN:O}) = 65'Q%N(N), (2.21)

where we recall that qf}N (N) = P(TlTN = N; Sy = 0) was defined in 24). (If N is odd,
the same formula holds just replacing N by N — 1, and the following considerations are
easily adapted.) So we are left with showing that q%N (N) does not decay exponentially
fast as N — oo: by the explicit formula (A7) we have

2 o ™ ) T
qfopN(N) > Ty cos™M 2 (E) sin? (E)

At this stage, by using the fact that sin?(z) ~ 22 as  — 0 we can assert that for N large

enough sin(7w/Ty) > 7/(2T) and since by assumption Ty < N we obtain
2 s
T . . m (N—2)logcos | 7~
Py (7 :N—LSN_l—O)zme (TN),
which by (2.2I]) shows that (220) holds (note that the r.h.s. of (Z20) is zero for § < 0).
Finally, we have to prove that equation (2.20) holds true for 6 > 0. By (2.I8]) and
Lemma Ml it suffices to show that
|
l}\gi}éaof N log Psry (N €71) = 0. (2.22)
This is not straightforward, because the law Psr, changes with N and therefore some
uniformity is needed. Let us be more precise: by the Renewal Theorem, see (2.17), for
fixed T" we have that, as n — oo along the even numbers,

2
Psr(net) — me.T)

where m(0,T) was introduced in (Z.I6]). At the same time, as T — oo we have

m(8,T) — m(J,00),
as we prove in Lemma [6 below. Since Ty — oo as N — oo, the last two equations
suggest that for N large Ps 1, (N € T) should be close to 2/m(d, c0). To show that this
is indeed the case, we are going to apply Theorem 2 in [I4], which is a uniform version
of the Renewal Theorem. First recall that, by Lemma ldl \s7 — A5 > 0 as T — o0,

T € 2N, and moreover A\s7 > 0 for every T' € 2N, hence there exist C7,C2 > 0 such that
C1 < As < Oy for every T € 2N. We are ready to verify the following two conditions:

(1) when 6 > 0 is fixed and T varies in 2N, the family of renewal process ({7 }n, Ps1)
restricted to the even numbers is uniformly aperiodic, in the sense of Definition 1
n [14], because Ps7(11 = 2) = 2qr(2) e 227 > (¢7/2) - 7272 > 0 for all T € 2N;
(2) when § > 0 is fixed and T varies in 2N, the family of renewal process ({7n}n, Ps1)
have uniformly summable tails, in the sense of Definition 2 in [14], because
0 —Cit
e

Par(n21) < ) % = =

r=t



12 FRANCESCO CARAVENNA AND NICOLAS PETRELIS

We can therefore apply Theorem 2 in [14], which yields the following Lemma. This implies
([2:22]) and therefore the proof of Theorem [Il is completed. 0

Lemma 5. Fix § > 0. Then for every e > 0 there exist Nog € N such that for every T € 2N
and for all N > Ny, N even, we have

2
- - | <e.
P57T(N€T) m(é,oo) <€
Lemma 6. For alld >0 and k € N
jli_Iil)ogg,T((Tl)k) = 55700((7'1)%. (2.23)

Proof. By Lemma [l we know that for 6 > 0 we have A\s7 — X500 > 0as T — oo, T € 2N.
Thus, by writing

557T((7'1)k) —— Z nk qr(n) e~ hoT
n=1

it suffices to apply the Dominated Convergence Theorem (since gr(n) < 1). O

Remark 2. Now that we have proven that the free energy ¢(d,7") indeed equals the r.h.s.
of ([2.14)), we can restate Lemma [l in the following way:

Tlim 66, T) = ¢(,00) Vo eR. (2.24)

Remark 3. For (0,T) € H we know that s = ¢(6,T"). Consequently, we will use ¢(4,7")
instead of A5 in what follows. O

3. PROOF OoF THEOREM [2] (1)

This section is devoted to the proof of part (i) of Theorem 2. We recall that § > 0 is
fixed and that Ty — % log N — —oc0 as N — oo, where ¢; is defined in (L12]).

We recall that (77,7 );>; defined in (23) under PLY; represents the jump process of

the polymer between the interfaces, whereas (7;,¢;);>1 introduced in (2.8) under the law
Ps, Ty represents an auxiliary renewal process. For N > 1 we set

N
Y= ZE;*F and recall from (L.6) Lyt =sup{j >1: TjT < N}, (3.1)
i=1

and

N
YN:ZEZ' and Ly =sup{j>1:7; < N}. (3.2)
i=1
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3.1. General strategy. Let us describe the strategy of our proof. The aim is to determine
the asymptotic behavior of Sy under Pﬁ’fé as N — oo. The starting point is given by the
following considerations:
e by definition we have Sy =T - YLTNT + O(T), hence the behavior of Sy can be
recovered from that of Ly 7 and {Yg Jo
e it turns out that the free polymer measure P;{,Né is not too different from the
constrained one P?:,Né’c = P;‘QN(;( -|Sy € TNZ), which in turn is closely linked to the
law Pj 1, introduced in §2.2] cf. in particular ([2.13)).
For these reasons, the first part of the proof of Theorem [2 consists in determining the
asymptotic behavior of {Y,,},, and Ly under Psr, . This is carried out in §3.3] (Step 1)
and §3.4] (Step 2) below, exploiting ideas and techniques from random walks and renewal
theory. The second part of the proof is devoted to showing that the law Ps 1, can indeed

be replaced by P]{,J:’(S’C, see §3.5] (Step 3), and finally by P;{,’:’é, see §3.6] (Step 4).

Let us give a closer (heuristic) look at the core of the proof. For fixed T, the process
{Y.,}» under Psr is just a symmetric random walk on Z with step law

Por(Yi=j) = Par(er=4) = ¢ Q7 (G(6.T)  je {10},
see equations (2.8) and (24]), (Z3). In particular the Central Limit Theorem yields
YN ~ CpVN under P57 as N — oo, (3.3)

where Cr = 1/2e°QL(4(8,T)) is the standard deviation of Y.
Of course we are interested in the case when T' = Ty is not fixed anymore but varies
with N, more precisely Ty — oo as N — oo. Then it is easy to see that Cr,, — 0. However,

if it happens that Cr, vV N — oo as N — 0o, one may hope that equation (3.3]) still holds
with T replaced by T . This is indeed true, as we are going to show. To determine the
asymptotic behavior of Cp, the following lemma, is useful.

Lemma 7. Fix § > 0. Then as T — o0
Qr(¢(6,T)) = V1= e 200:2) =T (14 0(1)), (3.4)
where c5 = ¢(5,00) + log(1 + /1 — e=2¢6(6:29)) (recall ([LI2)).

This shows that the condition C7y vV N — 0o as N — oo is equivalent to Ty — locg(SN — —00,

which is exactly the hypothesis of part (i) of Theorem[2 As we mentioned, in this case we
show that ([B.3)) still holds, so that

Yy ~ Oy VN = Cre 3NN under Ps 7, as N — oo, (3.5)

with C* = \/265\/ 1 — e=29(8,00)

Now let us come back to Sy. By definition we have Sy = Ty yIv 4 O(Ty) and
N

LnT
from equation (7)) we get Ly, =~ cN, with ¢ = ¢/(4,00) > 0. Moreover, as we already

mentioned, the law Ps 7, can be replaced by the original polymer measure PE{,N(S without
changing the asymptotic behavior. Together with (8.5]), these considerations yield

Sy = Tn - YCC]F\’,V ~ Cs (e_%éTN Tn) VN under P]:cffj’é as N — oo,
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where Cs := C* \/c = \/2€5¢/(5, o0)V/ 1 — e=2#(5,2) Notice that this matches exactly with
the result of Theorem [2

Proof of Lemma[7]. We can rewrite the second relation in (A.3) as
>y & 1
Q%"()‘) = 1 —e 22, e_CAT : T (36)
1+ <1—\/1—62A>

14+4/1—e—2X

where ¢\ := A +log(1+ V1 —e~2Y). We have to replace A by ¢(d,T) in this relation and
study the asymptotic behavior as T — oc.

Observe that ¢(0,T) and ¢(d,c0) are both strictly positive, since § > 0, and moreover
#(6,T) — ¢(d,00) as T — oo (see Remark [2)). This easily implies that the last factor in
the r.h.s. of (B6) is 1+ o(1), hence as T' — oo

QL(H(0,T)) = V/1— 200609 =56 T (1 4 o(1)).

To prove (B.4)) it remains to show that ¢y 7)1 = csT+0(1) as T' — oc. Since c5 = Cy(5,00)5
this follows once we show that |¢(8,T) — ¢(6,00)| = o(F).

To this purpose, we fix ¢ > 0 such that ¢(§,T) > ¢ for every T. By equation (A4,
there exists k = k. > 0 such that, uniformly for A € [e, 00),

Qr(\) = 1—V1—e 22+ 0(e"T) (T — o0).
Recalling that Qu(A) = 1 — V1 —e=2* and that e = Qr(¢(5,T)) = Qoo(é(d,00)) by
Theorem [II, we obtain
Qoo(#(6,T)) — Qoo(¢(8,00)) = O(e™"T) (T — 00).

Since Qoo(A) is continuously differentiable with non-zero derivative for A > 0, it follows
that ¢(5,T) — #(5,00) = O(e~*T), and the proof is completed. O

3.2. Preparation. We start the proof of Theorem 2l by rephrasing equation (I.I3]), which
is our goal, in a slightly different form. We recall that T — % log N — —oco as N — o0, or

equivalently e=%7N N — oo, and that by construction |Sy — YLT ;{V -Tn| < Tx. Therefore

TN
equation (LI3]) is equivalent to the following: for all z € R
YN
. Ty N, Ty < _ <
]\}I_I)noo PN,5 <C§\/m = x) P(N(O, 1) = x), (3’7)
where
Cs = \/ 26 ¢/(8,00) V1 — e=26(6:00) (3.8)

Recall the definition (2.9]) of the renewal process (7, P5 ). For 6 > 0 and T' € 2NU{+o0},
we set

sp = € (0,00). (3.9)

>

Differentiating the relation Q7(¢(5,7)) = e~° one obtains ¢'(5,T) = —e~%/Q4(¢(5,T)),
and by direct computation

Esr(m) = 652”%(”) e 00T — _eS QL (4(5,T)) =

neN

VT € 2N. (3.10)
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In particular, ¢/'(d,00) = so. Recalling Lemma [7] and setting Qfle = Q%FN(QS(&, Ty)) for
conciseness, we can finally restate (3.7 as

v,/

Jim Pﬁg( NN < g;> = P(N(0,1) < z), (3.11)
- /Soor /260 QlTNN

which is exactly what we are going to prove. This will be achieved in four steps. We stress

that the assumption T — % log N — —oco as N — oo is equivalent to Q%FN - N — 0.

3.3. Step 1. In this step we consider the auxiliary renewal process of law Ps 1, and we
prove that for x € R

Y,
lim Py <7N < x) = P(N(0,1) < z). (3.12)
e \ /QeéQ%NN
Under the law Ps 1y, (€1,...,en) are symmetric i.i.d. random variables taking values
—1,0, 1. Therefore, they satisfy
Esry(le1®) = Esmy((21)?) = 2¢°Qry, (3.13)
and we can apply the Berry-Esséen Theorem which gives
YN 3557“ (’61‘3) 3
Pst <7 < x) — P(N(0,1) < x)‘ < 2bi4 = . (3.14)
‘ N a(;(N,TN) 55,TN(5%)%\/N QeéQ%ﬂNN
Since Qfle - N — oo by assumption, equation (3.12]) is proved.
3.4. Step 2. In this step we prove that for z € R
lim Psr < Yiy < x) = PN(0,1) < z) (3.15)
Nooo 7N /5.6 1 - o ’
S04/ 2€ QTNN

The idea is to show that Ly & so - N and then to apply ([B.12]). We need the following

Lemma 8. For every € > 0 there exists Ty = Tp(e) € N such that

N
__SOO

I
im sup 775,T< N

N—oo T>Tp

>e| = 0. 3.16
) (3.16)

Proof. Lemma [0l yields s7 — Soo as T — oo (we recall the definition (3.9))). Therefore we
fix Ty = To(e) such that |so — s7| < § for T > Tpy and consequently

LN LN £
- < — — — .
P”( N S“‘ >E> - P‘”( N T~ 2>
Setting & = 7; — 7,1 and 52 =& — %, by Chebychev’s inequality we get
L ~ ~ eN
775,T<—N > s —l—&?) = PJ,T(TL(ST+€)NJ < N) = 775,T< =& = =& (sp4e)N] = g)

< s (st +€) Es.r (€3)
- e2N




16 FRANCESCO CARAVENNA AND NICOLAS PETRELIS

By Lemma [6] both the sequences T +— sp and T +— &Es (E%) are bounded and therefore
the r.h.s. above vanishes as N — oo, uniformly in 7. The event {LTN < sp — e} is dealt

with analogous arguments and the proof is completed. O
We set
_ Ve Yin = YiswN)
V0or[260Q1 N \[500/2°Q 1 N \[5001/29Q] N

Step 1, see equation ([B.I2]), entails directly that Vy converges in law towards N(0,1).
Therefore, it remains to prove that G converges in probability to 0. For n,e > 0 we write

L
< E) + Ps.1x < > €>

_N_S
N o
>¢).

3.5. Step 3. This is the most delicate step, where we show that one can replace the free
measure Ps 1, by the constrained one P57TN( . ‘ N € 7'). More precisely, we prove that for
reR

= Vy + Gn.

N

Psty (IGN] > 1) < Psry (!GN! >,

(3.17)

< Psoy (Uen >1n) + P&,TN< N S

Y
lim Ps Ty ( Ly <uz

N—oo, N even \/Q 266Q%NN

We note that one can safely replace Ly with Ly _ |VTw] in the Lh.s., because Y7,

Ne T) = P(N(0,1) < z). (3.18)

N-[/TN]
differs from Y7, at most by £1. The same is true for equation (B.15]), that we rewrite for

convenience:

Yp
lim PMN( NV §x> = P(N(0,1) < =), (3.19)
N—oo VBo0y/269Q%, N

By summing over the locations of the last point ¢ in 7 before N — |/Tx | and of the first
point 7 in 7 after N — |\/Tn ], and using the Markov property, we obtain

P ( R < NET)
L N _
/S0 2e5QC1FNN
N—|VIN]|t+|VTN]

Y

1 Ly_|y7y)

Y Y gx,N—L\/TNJ—teT)
Pory(Ner) = 4 o ( f50ey/26°Q% N

“Psn (11 =7) - Psry <t + [VTy] -1 € 7') )

Introducing the function

EZE@J Psay (11 =7)  Psry(t+ [VIN] —7€7)
Py (N €7) - 3021 Pory (1 =7)

Osn(t) =

)
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NET)

Yr
N LT §x,N—b/TNJ—t€T) -P57TN(T1>t)-@5,N(t).
/o0 266Q%~NN

we can write

Yy,
Ps Ty ( N V) <z
V300 2e5QC1FNN
N—|[vTn] <

= 2 Puny
=0

(3.20)

Notice that if we set ©5n(t) = 1, the r.h.s. of the last relation becomes the Lh.s. of
BI3). In fact ©sn(t) is nothing but the Radon-Nikodym derivative of the conditioned
law P5,TN( . ‘N S 7') with respect to the free one Psr,. We are going to show that
Osn(t) — 1 as N — oo, uniformly in the values of ¢ that have the same parity as |7
(otherwise O n(t) = 0). If we succeed in this, equation (B.I8]) will follow from (B.19).

Let us set Kny(n) := Psy (11 = n) and uny(n) := Ps 1y (n € 7), so that we can rewrite
Os5.n(t) as

SN Ky (r) - un(t + VTN 1)
un(N) -y Kn(r)

Osn(t) 1= . (3.21)

We recall that
Ky(n) = e® e~ ¢ IN) qry(n),

see (2.9]), and ¢p(-) is defined in (24]). We are going to show the following: for every e > 0
there exists Ny = Ny(g) such that for every N > Ny and for all the value of t < N —|/Tn |
that have the same parity as |\/Tn| we have

l—e < O5n() < 1+e¢. (3.22)

Then the proof of this step will be completed. We first need a preliminary lemma.

Lemma 9. For every n > 0 there exists Ny = N1(n) such that for every N > Ny and for
all0 <t < N — |VIn]| we have

oo t+[vTn]/2
> En(r) <7 < > KN(?”))- (3.23)
r=t+|vIn|/2 r=t+1

Proof. We first observe that, by the explicit formulas in (A7) the following upper bound
holds for every T, n € N with n > 2:

9 [(T-1)/2] . .
max {¢7(n), 2¢r(n)} < T Z cos™ 2 <?> sin2 (T) )
v=1

We can bound the Lh.s. of (3:23)) as

e e} [e.e]

- (4 N IN)
Z Kn(r) < &8 em$0In)-(t+=55) Z qry (1)
r=t+[VTN]/2 r=t+[VTN]/2
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and since qr(r) = ¢%(r) + 2¢-(r) we have

o0 00 9 [(Tn-1)/2] . .
Z qry(r) < 2 Z <E Z cos™ 2 <E> sin? <E>)

r=t+|vTn]/2 r=t+|vIn]/2 v=1
- v’d - T
4 L(TNZE)/M (cos (ﬁ))t 2+|VTN]/2 o <ﬂ>
Tn ot 1 — cos (%) Ty
_ 4 TN T t—2+|vTn|/2 )
S T2 cos Ty ,
where we have used that sin?z/(1 — cosz) = 1 + cosz < 2 for x € (0, §]. Therefore
s /T ] t=2+|VTn]/2
Z KN(?") S 465 e—d)((;,TN)'(t-l-@) <COS (Tl>> (324)
r=t |VT /2 N
Next we bound from below the r.h.s. of (3:23):
t+VTn]/2
> Kyn(r) = & eI ) <q%N(t+ 1) +q%N(t+2)> .
r=t+1

One of the two numbers ¢ + 1,¢ + 2 is even, call it £: then we can apply equation (A7) to
get

2 (I =172 ) Y TV 2 ¢ 0 0
0 _ 2 —2 (VN 2(TV) o = 2 T\ . o2f T
ary (0) T Z cos (TN> sin (TN> > T cos <TN> sin (TN> ,

v=1
hence
t+|vTN]/2 9 - -
Z Ky(r) > € e ®OIN)-(tH2) 2 o6t [ — ) sin® | — | . (3.25)
r=t+1 Iy Iy Iy
The ratio of the r.h.s. of equations ([3.24)) and (3.:25)) equals
(cos( ))L\/WJQ 2 N
2Ty e~ ¢GTN)-(lVTN1/2-2) Tn < = (Tw)Pe ?(6,Tn)-(IVTN1/2-2)
sin? (%) - 72
Since the r.h.s. does not depend on ¢ anymore and vanishes as N — oo, the proof is
completed. O

Let us come back to the proof of ([3:22). We first observe that thanks to Lemma [5] for
every n > 0 there exists No = Na(n) and such that for all N € N and for all » > Ny, r
even, we have

(1 -1)2500 < un(r) < (14n)2ss
(Soo is defined in (3.9])). Henceforth we assume that ¢ has the same parity as |/Tn|. Then
if N is large, such that |/Tn]/2 > N2, we can bound O; n(t) (recall (3:2I))) by
t+L\/T_J/2 t+ \/T_J

(1— 1) 2500 z?ﬁ“% (r) ’
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and if N > N we can apply Lemma [9] to obtain

1+n+n/(2s)

t) <
Osn(t) < 1=

< 1l+e¢,

provided 7 is chosen sufficiently small. Therefore the upper bound in ([8:22]) is proven. The
lower bound is analogous: for large N we have

(1= 1) 28500 STV R ()

t T 2 t T
(14 1) 2800 ST v ) + STV L BN ()

Osn(t) >

and applying again Lemma [9 we finally obtain
1=
6(5 N(t) = > l—e¢ )
M 2 TG

provided 7 is small. Recalling (3:20]) and the following lines, the step is completed.

3.6. Step 4. In this step we finally complete the proof of Theorem [2 (i), proving equation
(B11), that we rewrite for convenience: for every x € R

vy
lim P]TVN6< alEh 9;) = P(N(0,1) < z). (3.26)
N0 VBo0y/269Q4 N

We start summing over the location py := ng\\; . of the last point in 77~ before N (we
N

assume henceforth that N is even):

TN N TN
T YLNT T YLNT
/500 265QTNN =0 VS0 265QTNN

’Pjifr],va(NN =N-1).

Of course only the terms with ¢ even are non-zero. We start showing that we can truncate
the sum at a finite number of terms. To this purpose we estimate

E(exp (HyY 1 5(5))1n—rer}) - P(m1 > ()
E( exp (H%’I;(S)))

We focus on the denominator: inserting the event {N — ¢ € 7} and using the Markov
property yields

E(exp (HY5(S))) = B(exp (HYY,5(9)Liv—sery) - B exp (H3(5)))

PEIYJ(NN =N-{) =

hence

P(Tl > f) 1 1
PU(uv=N—10) < < = ==,
il )= Bl () © BewHEE) | 7
where we have used the elementary fact that E(eXp (HZ(;(S))) > E(exp (H Z‘(’;(S))) for
every T € N, see ([LI)) and (L3). Notice that the r.h.s. above does not depend on N
anymore and that Zp5 = exp(¢p(d,00) - ¢) as £ — oo, where =< denotes equivalence in the
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Laplace sense, cf. [12]. Since ¢(d,00) > 0 for 6 > 0, it follows that for every ¢ > 0 there
exists £y = p(g) such that for every N € N we have

N
> PW(un=N-1) < e, (3.27)
(=lp+1

As a consequence, we have
YLTN
Tn N, TN
P\ < < x)

Lo YEN
T N, T
(e
£=0 V800 /2€ QTNN

Therefore to complete the proof of ([B.20) it remains to show that, for every fixed
¢ e NU {0},

,uN:N—€> P (unv =N —10)] < e

TN
L
lim Pﬁg( alEh <zlpuy=N-— e) = PN(0,1) <z). (3.28)
N—oo VSo0y/269Q1, N
However this is easy. In fact on the event {uy = N — ¢} we have YLT ]’\j = YLT ]’VV%TN and
by the Markov property we get
T YLTJIVVT T YLTJI\XZ T
P\ N Szlpuny=N-—-L]| = P N <z|N-tler
"\ /S0 265Q%FNN "\ /S0 265Q%FNN
However, arguing as in §2.2] (see in particular ([2.13])), we have that
v/ Y,
P%’%( et <z N—EGT) :736,TN< L <z N—f€7'>-
"\ /Soor /ZeéQ%FNN /oo /265Q%FNN
Therefore ([3.28]) follows easily from (B.I8]). O

4. PROOF OF THEOREM [2] (11)

This section is devoted to the proof of part (ii) of Theorem 2] which in a sense is the
critical regime. We stress that 6 > 0 is fixed throughout the section. The assumption in
part (ii) is that the sequence (1) is such that T — % — ( along a sub-sequence N',
where ¢ € R (the reason for considering only a sub-sequence is explained in Remark [I).
However, for notational convenience, in this section we drop the sub-sequence and we

assume that for some ( € R as N — oo

log N
ey ¢ or equivalently Qry N — V1- e=20(0,00)=%C | (4.1)

Cs

TN —

where we have used Lemma [7l and we recall the shorthand Q%N = Q%N(qﬁ(d, Ty)) intro-
duced in the previous section.
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We recall that the variables (&;,¢;,7;)i>1 are defined under the law Psr, (see (2.8])).
We now introduce the successive epochs (6;);>0 at which the jump process changes of
interface, by setting g = 0 and for j > 1

0; == inf {m > 6;_: 3i € N such that 7; =m and |g;| = 1} . (4.2)
The number of these jumps occurring before time N is given by
Ly ==sup{j >0:0; <N} = #{i <Ly : |g;| =1}. (4.3)

Notice that # C 7, where as usual we identify § = {6,,},, with a (random) subset of NU{0}.
We split the proof in three steps.

4.1. Step 1. We start proving that under Ps, the variable Ly converges in law towards

a Poisson law of parameter t5: with t5¢ := 2e0\/1 — e=20(6:20) ¢/ (5, 00) - 7€ e,

t
dm o (T =3) = o B g enu o). (1)

We note that {|e;|}i>1 under Psr, is a sequence of i.i.d. Bernoulli trials with success
probability given by
pry = Psry(leil =1) = 2¢°Q, . (4.5)
We also set
A = inf{i > 1:|g] =1}.

Notice that (0; — 6;_1)j>1 are i.i.d. random variables. Moreover we can write

A
0 = ij-
=

We now study the asymptotic behavior of 6; and by {3) we derive that of Ly,. The
building blocks are given in the following Lemma.

Lemma 10. The following convergences in law hold as N — oo under Ps, :

1 A—-1

A —
gA 1 ﬁ Zﬁj — 55,00(51)7 (46)
=1

W = 0, T - EXp('U5),

where vs ¢ 1= 2e%4/1 — e=2¢(6,0) ¢=¢5¢ gnd Exp(A) denotes the Exponential law of param-
eter \, i.e., P(Exp()\) € dz) = Ae™™® 1(p>0y dz.

Proof. For the first relation, it suffices to show that &7, ({a/N) vanishes as N — oo.
By definition, the variable €A gives the length of a jump conditioned to occur between

two different interfaces, namely, €A has the same law as & conditionally on the event
{|e1] = 1}. This leads to the following formula (see (2.8])):

i (53) = g Db e 0T (47

By (@1 Q%NN — c > 0as N — oo and for every fixed n > 1 we observe that plainly
qile(n) — 0as N — oo (in fact gh(n) = 0 for T > n). Since ¢(3,Tn) — ¢(J,00) > 0 as
N — o0, see Remark 2] by Dominated Convergence the r.h.s. of (£7]) vanishes as N — oc.
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For the second relation in (4.0]), note that the variable A has a Geometric law of pa-
rameter pry, i.e., for all j € N

Psry(A=7) = (1—pry ) 'pry .

Since N - pry — vs¢ = 2€°y/1 — e 20(6:2) ¢7¢¢ as N — oo, see ([@5) and (&I, it is
well-known (and easy to check) that A/N converges to an Exponential law of parameter
vs, and of course the same is true for (A —1)/N.

Next we focus on the third relation in ([.6). Since Ps 7, (A <N ) — 0 as N — oo by
the result just proved, it suffices to consider for € > 0 the quantity

A—1
Ps T (‘ﬁ ; £ — Eso(E1)| > 6, A > \/N>
(4.8)

>¢€

A:l).

To evaluate the last term, we notice that under P67TN( . ‘A = l) the variables &1, ...,&_1
are i.i.d. with marginal law simply given by the law of &; conditionally on the event {e; = 0}
(which means that the jump occurs at the same interface). Denoting for simplicity by Pg,TN
this law, we have for n > 1,

[ -1

1

= S Pry(A=1) Pony <‘—1— =Y 6~ Esnel)
I=[V'N] j=1

Pg,TN (&1 =n) = % ngpN (n) ¥ e~ TN, (4.9)
By (1) we have QlTN — 0 as n — oo. Moreover q%N (n) — ¢oo(n) by definition and
#(0,Tn) — ¢(5,00) > 0 by Remark 2l These considerations yield by Dominated Conver-
gence EgTN (&1) = &5.00(&1) and VargTN (&1) — Vars oo(£1) as N — oo. In particular, in the
r.h.s. of ([A8]) we can replace & «(&1) by 5c(5),TN (&1) and € by (say) £/2 and we get an upper
bound for large N. Applying Chebychev’s inequality we obtain

B 4 VargTN (&1)
A—l> S —Fu-n

€

>3 (4.10)

=
Ps, T ('l——l Z & — E3ry (&)
=

This shows that the r.h.s. of ([A8]) vanishes as N — oo and this completes the proof. [

By writing
A-1
6 A-1 1 N
N~ T'ﬁ;fﬂ TN

and applying Lemma [I0l we can easily conclude that 6 /N converges in law to an Expo-
nential distribution of parameter ¢s5 ¢ given by

tsc = Usc/E500(&1) = 2e%4/1 — e—26(6,00) g=C5€ . ¢ (6,00) ,

having used (BI0). By independence, for every fixed j € N the variable 6;/N converges
to a Gamma law with parameters (j,t5¢), hence by (&3)) the variable L’y converges to a
Poisson law of parameter ¢5 .. This completes the step.
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4.2. Step 2. In this step we want to prove that under the law Psr,(-|N € 7), with
N € 2N, the quantity L'y still converges toward a Poisson distribution of parameter ¢;,
ie.,

i I — ot (t5c) .
N_)Oil’rjréeven Poan(Ly =j|Ner) = e ¢ i Vje Nu{0}. (4.11)

We start elaborating a bit on (4.4]). Fix L € N and write, by the renewal property,

Psry (T V(N — L,N] = 0) Z Z un(r) - Kn(s —r),
r=0 s=N+1

where we recall the definitions un(n) := Ps 1y (n € 7) and Kn(n) := Ps 1, (71 = n). Since
un(r) < 1 and Ky(n) < e e @IV see @), and since ¢(8, T) — ¢(d,00) > 0 as
N — oo, see Remark 2] it follows that

N—-L oo
Pory (TN(N—L,N=0) < &Y Y e ?0TG) < 0L (412)
r=0 s=N-+1

where C,C’ are suitable positive constants depending only on 6. This means that the
probability of the event {7 N (N — L, N] = 0} can be made arbitrarily small, uniformly in
N, by taking L large. It is then easy to see that equation ([4.4)) yields the following: for all
e >0and j € NU{0} there exist Ny, Lo such that for all N > Ny and L > Ly we have

tsc) tsc)
Psty (Ly = 3|70 (N~ L,N] #0) € <e_t5v< % —¢, e e (JTC) —|—€> . (4.13)

Next we show that equation (£I]) follows from (£I3]). The idea is that conditioning on
the event {7 N (N — L, N] # 0}, i.e., that there is a renewal epoch in (N — L, N], is the
same as conditioning on {N —i € 7} for some i = 0,..., L — 1, and the latter is essentially
independent of ¢. More precisely, we have the following lemma.

Lemma 11. For every i € 2NU{0}, the following relation holds as N — oo, with N € 2N:
Poon (Ly =j|NeT) = Psry(Lv_i =3 |N—i€e7) + &(N), (4.14)

where €;,(N) — 0 as N — oc.

Proof. Notice that {L'y = j} = {0; < N, 6,41 > N}. First we restrict the expectation on
the event {#; < N —+/N}, which has almost full probability. In fact for fixed i € 2NU {0}

’P(;,TN(N—\/N<9j SN)
’P(;,TN(N—Z'E T)

PJ,TN(L/N—i:ja0j>N_\/N‘N—i€T) < 20(1)7

(4.15)
as N — oo, N € 2N, because §;/N converges as N — oo to a atom-free law (in fact a
Gamma) by Step 1 and, by Lemma [Bl, P57, (N —i € 7) — 2/m(d,00) > 0 as N — oo.
Specializing (£I5]) to i = 0 we can therefore write as N — oo, N € 2N,
Psry(Ly =j|Net) = Pspy(Ly=4,0, < N—VN|Ner) + o(1)
= 'P(;,TN(ej SN—\/N, 9j+1 >N|NET) + 0(1).
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The renewal property then yields
IN-VN]

] P, 0 >N—-rN—rer
Ps. 1y (L?V =3 | N e 7-) — Z Psry (0, = 1) - 5. T (01 )
r=1

PJ,TN (N c T)

+ o(1).

(4.16)
We now study the term Pj 1, (61 > 1,1 € 7). We have

l k
P&,TN (91 > 1,1l e T) = Z Z H 65 q%N (tj - tj_l) e_d)(é’TN)(tj_tj*l)

k=1 O0=:to<t1<...<tp=Il j=1

k
— Nl > [T ER ¢ —t),

0=:to<t1<...<tp=l j=1

(4.17)

where we have set for n € N
I?%(n) . qu(n) e~ (@G TN +vn)n

and we fix vy < 0 such that ) IN(JOV(n) =1, ie., Q%N(gb(é, Tn) + vn) = e%, which is
always possible because Q%(A) diverges as A | A, see Appendix[Al Denoting by 753TN the

global law of 7, when the step distribution is IN(R,(n), we can rewrite ([@I7) with i = N —r
as
Psay (>N -1, N—rer) = VWPl (N-rer). (4.18)

Plainly, as N — oo we have q%N (n) — goo(n) for every n € N, where we recall that
qoo(nl is the return time distribution for the simple random walk, cf. §2.21 Hence vy — 0
and K% (n) — Pso(n € 7) as N — oo. Then a slight modification of Lemma [l shows that,
for any fixed r € 2N, PS’TN (N—rer)—2/m(doo) >0as N — oo. Then in equation
([#I8) we can replace N by N — i, any fixed i € 2N, by paying o(1): more precisely, as
N — oo, with N € 2N,

Psry(r >N —r,N—rer) = Pspy(01 >N —i—r, N—i—ret) + ol).
Coming back to (£.16]) and replacing also P51, (N € 7) by P51y (N —i € 7), we can write
Psoy(Ly=3|NeT) = Psry(Ln_i=4,0; <N—VN|N—ier) + ol)

= Psrn(Ln_i=J|N—ier) + o(1),
where the second equality follows by (4.15]). The proof is completed. O
Let us come back to ([EI3]). We write the event {7 N (N — L, N] # 0} as a disjoint union

L—1
{rn(N=L,N|#0} = [JA, A= {N—ier, N-kgrfor0<k<i}, (419
=0

i.e., N —i is the last renewal epoch before N. Then we can write the Lh.s. of ([£I3]) as
L—1
Poay (L =4, TN (N =L, NI #0) = > Psay (L =5 | Ai) - Py (Ai) . (4.20)
i=0
Notice that Psr, (Ly = j | A) =Psoy (Ly_; = | A;), because Ly = L'y_, on the event
A;. The next basic fact is that, by the renewal property, we have

Psry (L = 5| A) = Psry(Liy_;=j|N—ier),
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because the event {Ly_, = j} depends only on 7 N [0, N — i]. Therefore we can apply
Lemma [IT] and rewrite (£20]) as

L—-1
Psty (Ly =74, TN (N = L,N]#0) = Pszy(Ly =3 | N €T) (ZP&TN (Ai)> + o(1)
=0

= Psan Ly =J|Ne€T) Pspy(tN(N—=L,N|#0) + o(1). (4.21)

However, by (@I2) the term Py, (7N (N — L, N] # 0) is as close to one as we wish, by
taking L large. Combining (£I3) with (£21]), this means that for every j € N'U {0} and
for N sufficiently large we have

‘ iy (toc) iy (toc)!
P&,TN(L/N =7 |N € 7') € <e toc j—f — 2¢, et j—?—i—2£ .

Since € is arbitrary, (£11]) is proven and the step is completed.

4.3. Step 3. In this last step it remains to prove that for all € > 0 and all j € NU {0},

S
Jm PR (2 ey cyd) = Pisi =) (122

where T' is a random variable independent of the {S;}i>o and with a Poisson law of
parameter ts .

Let € > 0 and set

Ve(N) =

P (% clj—ej+ 6]> —P(5p = j)' : (4.23)

Our goal is to prove that for all n > 0 we have V-(IN) < n when N is large enough. We let
V(N,1) be the set 7/ N[N — [, N] and it is useful to recall the result obtained in (3.27),
i.e., there exists ¢y = £y(n) such that for every N > ¢y we have P%J:’(; (V(N, ly) =0) <n/b
Therefore, with N large enough we obtain

SN .. . .
V6) < 3t [P (5 - e el VL) £ 0) - RSt =) PR (/. 00) £0)|.
With some abuse of notation, we still denote by #; and L'y the variables on the S space
defined by (4.2]) and (4.3]) with 7; replaced by TZ-T N and g; by &?ZTN (in particular Ly := #{i <
Lyty - |€ZTN| = 1}). Then notice that on the event V(N, ) we have [Sy — Sy, | < fo.
N
Moreover, for all N > 1 we have Sy, /TN € Z, therefore, assuming that £ has been chosen

small enough, we obtain for N large enough

So,,
P%N5<§—N €[j—ej+el, VIN,ly) # @> = P%&( T ~ =, V(N lo) # @)- (4.24)
N N

We can rewrite the r.h.s. of (£.24]) by using, for i € {0,...,¢}, the sets A; introduced in
#19). This gives

T SGL, lo T SGL,
. N—i .
PNJ,V5< TNN =J, V(N,b) # @) = > Py <7TN =]

1=0

Ai) PIN(A).  (4.25)

At this stage, the Markov property and equation (2.13) give
PU(1A) = PRG(IN—i€T) = Pory(|N —ier),
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hence we can rewrite (4.25]) as

Sp , So o
L . .
P%%( TNN J, V(N,by) # @) Z P&TN< L=j|IN—-i€ 7’) P%%(.Ai).
(4.26)
Thus, the proof of this step will be completed if we can show that for all i € {0,...,4}
Se,,
&@Jm( T = N—z‘er) = P(Sr =)
This is proved once we show that, for all (v,j) € NU {0} x Z,
/ S
lim Ps1, (LN_Z- =, 20— ‘ N-—ic T> = P(C=v)P(S, =). (4.27)
N—ooo TN
We can rewrite the Lh.s. of (£27) as
S, / ,
Ps.1y (T—G =7 ( Ly_j=v,N—ie€ T> Psty(Ly_; =v|N—i€T) (4.28)
N

and it is easy to figure out that the process (Sg,/TN)nen is just the symmetric simple
random walk on Z and is independent of (L _;,7). Therefore, the first factor in ([E28)
equals P(S; = v) and then Lemma [l and equation (IT) are sufficient to complete the
proof. O

5. PROOF OF THEOREM [2] (111)

In this section we prove part (iii) of Theorem[2l The parameter § > 0 is fixed throughout

the section and the assumption is that the sequence (T )y is such that Ty — M — 00,
or equivalently
Qry N — 0 (N — o), (5.1)

where we have used Lemma [7l and we recall the shorthand Q%N = Q%N(qﬁ(d, Ty)) intro-
duced in Section Bl The goal is to prove equation (LIH), i.e., that the law of Sy under
Py N6 is tight.

In analogy with the previous sections, we start working under the law Ps 1, . We show
that the polymer of length N does not visit any interface other than the one located at
S =0, i.e., (recalling ([£2]) and @3)) Ly = 0. Notice in fact that

N/2

{Ly =1} = {6 <N} = U{]s, =1[} € U{!&?, =1[},
because plainly Ly < N/2 (recall (3:2))), hence the 1nclu81on bound yields

N
P5,TN (LEV > 1) < ? . ,PJ,TN(‘El’ = 1) = e‘SNQ%pN — 0 (N — OO), (5.2)

where we have used (£5]) and (5.1). With the same abuse of notation as in the previous
section, we denote by L'y also the variable on the S spaced defined by Ly := #{i <

Ly, : |€ZTN| = 1}, so that applying (2.13]) we get as N — oo with N € 2N

>
PN (Ly > 1| Sy € TNZ) = Pspy(Ly 21| NeT) < Poy (Liy 2 1)

0, (5.3
S PmNen , (5:3)
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having applied (5.2]) and Lemma [0l
Now set |S,,|* := maxo<k<p |Sk| and observe that equation (5.3) can be rephrased as

P%76(|SN|*2TN|NETTN) — 0 (N — oo, N € 2N).

We want to remove the conditioning on N € 777, To this purpose, we let puy := Tgx ,
TN
denote the location of the last point of 77¥ N[0, N]. Let us recall equation (3:27), which

holds whenever § > 0 and hence can be applied here: for every € > 0 there exists £y such
that PJCC,N(S(MN <N — 60) < g, for every N € N. Therefore

Lo
PGSV = Tw) = D7 PRG(ISNI" = T [y = N =) PR(un = N =€) < e
=0
(5.4)
However on the event {uny = N — £} we have |Sy|* > Ty if and only if [Sy_¢|* > Tn.
Moreover {|Sy_¢|* > T} = {L’y_, > 1}, hence, using the Markov property and (2.I3),
for £ even we get
POS(ISN[* > T |py = N =€) = PN (Ly_ > 1| N —£e7™)
= Pson(Ly_¢21|N—teT) — 0 (N — o0, N € 2N).
Then equation (5.4) yields, for N sufficiently large,
P%%(’SN’* > TN) < 2¢e.

We can finally prove that Sy is tight. Denoting by {x a quantity such that |{x] < 2e
for N large, we have

PUS(1Sx1 2 L) = PRS(ISn| = L, [Snl* <Tn) + &v < PR5(uw S N —L) + &n,

where the inequality follows by the inclusion bound, since {|Sy| > L, |[Sn|* < Tn} C
{un < N — L}. Then, again by B27), if L > ¢, we have for large N

P (ISv| > L) < 3e.
Since € > 0 was arbitrary, it follows that

lim sup PN6(|SN| >L) =0,
L—oo NeN

hence (T3] is proven and the proof is completed. O

APPENDIX A. COMPUTING Q'(\)

The computation of Q+(A\) and Q%()), defined in ([2.4), is a classical problem, cf. [10]
Ch. XIV]. For completeness, here we are going to derive an explicit formula for Q%p()\) and
Q%()), using a simple martingale argument. We assume that 7' € N (i.e., T' < 00).

For 4 € C and n € N we set
M e}LSn
" " (cosh p)™

and we observe that the {M,},>0 under P is a C-valued martingale (i.e., its real and
imaginary parts are R-valued martingales) with respect to the natural filtration of the
simple random walk {S;};. We will be only interested in the special cases when p € R or
1 € (=%, %14), so that in any case cosh . € R* and therefore the expression logcosh y is
well-defined with no need of further specifications.
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We denote by Py the law P(-|S; = 1) and note that {M,},>1 is a martingale under
P;. Moreover both 7{ and |e]'| have the same law under P and P;. The Optimal Stopping
Theorem yields El(STlT) =E1(51), i.e.,

eNTE #1 + E #1 _ el
1 (cosh )™ ter=1 ' (cosh p)™ {=d1=0} ) ™ coshp

Setting for short Ql;p = Qi;p(log cosh p1), we can rewrite this relation as

et

9 ohT O] 0 _ _
e Qr + Qr cosh 1

The analogous relation with p replaced by —pu leads to the following couple of equations:
2 cosh(uT)Qr + QF = 1
2 sinh(uT) Q% = tanh p,

which yields the solutions

! L tanh(y) 1 _tanh()
QT(log COSh /’[/) - 1 tanh(/JT) ) QT(log COSh /’[/) - QSlnh(,uT) I (Al)
and for Q7() :== Q%(-) + 2Q%(-) we have
B cosh(uT) — 1
Qr(logcosh ) = 1 — tanh(p) (T (A.2)
Setting A = log cosh u, i.e., p = A + log (1 +v1-— e—%), we finally obtain
o\ 1 —5\ 7T’
QAN = 1—V/1—e2. (Irvi-e?) +(1-vi-e?)
A+Vi—e) —(1-vVi—e)' A3
1 m-e_)‘T ( . )
G = ey i)
and therefore
1 V11— T 1—+1— —2>\T_2—>\T
0r) = 1 - VI e, LHvi—e?) 4 ) 2Ny

I+vVi—e) —(1-vVi—e)'
Notice that when A < 0 we have = A+ log (1+ V1 —e=2}) = jarctan vVe=2* — 1, hence
we can write more explicitly

e2r —1

" tan (T arctan ve—2* — 1) 7

|

- 2sin (T arctan ve—2* — 1)

Qr(\) =1+ \/6—2)\7_1' 1 —cos (T arctan m) '

sin (T arctan Ve 2A — 1)

Qr()) =1 Qr(N)

(A.5)

Of course these formulas break down if |A| is too large. This happens at the first negative

zero of the denominator A = )\(7;, where (T arctan Ve 2% — 1) =, ie.,

1 2
N = =5 log <1+ (tan %) ) (A.6)
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and note that as A | AL both Q%.(\) and QX.()\) diverge (they have a pole). Also note that
taking the limit A — 0 in (A.3]) or (A.D) we get

1

Qr(0) = 1- =, Qr(0) =

We conclude by noting that also the probabilities ¢/ (n) introduced in (2.4]) can be given
an explicit formula. More precisely, by equation (5.8) in Chapter XIV of [I0] we have
Vn > 2

1)/2]
0 B T\ . o [TV
QT(n) - T Z (T) s <?> ’ l{n is even}

_ TV o\ . TV
Q%“(n) = T Z V+1 cos” 2 <?> Sln2 <?> ’ l{n—T is even}

(A7)
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