DEPINNING OF A POLYMER IN A MULTI-INTERFACE MEDIUM

FRANCESCO CARAVENNA AND NICOLAS PETRELIS

ABSTRACT. In this paper we consider a model which describes a polymer chain interact-
ing with an infinity of equi-spaced linear interfaces. The distance between two consecutive
interfaces is denoted by T' = T'x and is allowed to grow with the size N of the polymer.
When the polymer receives a positive reward for touching the interfaces, its asymptotic
behavior has been derived in [3], showing that a transition occurs when T = log N. In
the present paper, we deal with the so—called depinning case, i.e., the polymer is repelled
rather than attracted by the interfaces. Using techniques from renewal theory, we deter-
mine the scaling behavior of the model for large N as a function of {Tv} n, showing that
two transitions occur, when Ty ~ N3 and when TN ~ \/N respectively.

1. INTRODUCTION AND MAIN RESULTS

1.1. The model. We consider a (1 + 1)-dimensional model of a polymer depinned at an
infinity of equi-spaced horizontal interfaces. The possible configurations of the polymer
are modeled by the trajectories of the simple random walk (4, S;);>0, where Sy = 0 and
(Si — Si—1)i>1 is an 1.i.d. sequence of symmetric Bernouilli trials taking values 1 and —1,
that is P(S; — S;—1 = +1) = P(S; — Si—1 = —1) = % The polymer receives an energetic
penalty 6 < 0 each times it touches one of the horizontal interfaces located at heights
{kT: k € Z}, where T € 2N (we assume that 7" is even for notational convenience). More
precisely, the polymer interacts with the interfaces through the following Hamiltonian:

N N
H{5(S) =0 Lsierzy = 0> ) Lis,—k1}s (1.1)
i=1 keZ i=1
where N € N is the number of monomers constituting the polymer. We then introduce
the corresponding polymer measure P%,d (see Figure |1| for a graphical description) by
dP%a exp (HIZ\;’(;(S))

= 1.2

where the normalizing constant Z]T,’ s=F [exp(Hﬁ 5(9))] is called the partition function.
We are interested in the case where the interface spacing T = {Tn}n>1 is allowed to
vary with the size N of the polymer. More precisely, we aim at understanding whether
and how the asymptotic behavior of the polymer is modified by the interplay between the
energetic penalty § and the growth rate of Ty as N — oo. In the attractive case § > 0, when
the polymer is rewarded rather than penalized to touch an interface, this question was
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FIGURE 1. A typical path of {Sy, }o<n<n under the polymer measure P%ﬁ,
for N = 158 and T" = 16. The circles indicate the points where the polymer
touches the interfaces, that are penalized by § < 0 each.

answered in depth in a previous paper [3], to which we also refer for a detailed discussion
on the motivation of the model and for an overview on the literature (see also below).
In the present paper we extend the analysis to the repulsive case § < 0, showing that the
behavior of the model is sensibly different from the attractive case.

For the reader’s convenience, and in order to get some intuition on our model, we recall
briefly the result obtained in [3] for § > 0. We first set some notation: given a positive
sequence {ay}y, we write Sy < ay to indicate that, on the one hand, Sy/ay is tight
(for every € > 0 there exists M > 0 such that P%I?’(SQSN/QN\ > M) < ¢ for large N) and,

on the other hand, that for some p € (0,1) and n > 0 we have P%N5(|SN/CLN| > 1) > p for

large N. This notation catches the rate of asymptotic growth of S v somehow precisely: if

Sy = ay and Sy = by, for some € > 0 we must have eay < by < e lay, for large N.
Theorem 2 in [3] can be read as follows: for every ¢ > 0 there exists ¢5 > 0 such that

\/Ne_%&TN TN ifTN—élogN—> —00
T :
Sy under Py =< ( Ty if Ty — é logN =0(1) . (1.3)
1 it T —élog]\f—wi—oo

Let us give an heuristic explanation for these scalings. For fixed T € 2N, the process
{Sn}o<n<n under P%(S behaves approximately like a time-homogeneous Markov process
(for a precise statement in this direction see . A quantity of basic interest is the first
time 7 := inf{n > 0: |S,| = T'} at which the polymer visits a neighboring interface. It
turns out that for § > 0 the typical size of 7 is of order ~ e%”, so that until epoch N the
polymer will make approximately N/e“T changes of interface.

Assuming that these arguments can be applied also when T = Ty varies with N,
it follows that the process {Sy}o<n<ny jumps from an interface to a neighboring one a
number of times which is approximately uy := N/e®~. By symmetry, the probability
of jumping to the neighboring upper interface is the same as the probability of jumping
to the lower one, hence the last visited interface will be approximately the square root of
the number of jumps. Therefore, when uy — 0o, one expects that Sy will be typically of
order T - \/un, which matches perfectly with the first line of (1.3)). On the other hand,
when uy — 0 the polymer will never visit any interface different from the one located at
zero and, because of the attractive reward d > 0, Sy will be typically at finite distance
from this interface, in agreement with the third line of . Finally, when uy is bounded,
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the polymer visits a finite number of different interfaces and therefore Sy will be of the
same order as Ty, as the second line of (1.3) shows.

1.2. The main results. Also in the repulsive case § < 0 one can perform an analogous
heuristic analysis. The big difference with respect to the attractive case is the following:
under PKC s, the time 7 the polymer needs to jump from an interface to a neighboring one
turns out to be typically of order T° (see Section . Assuming that these considerations
can be applied also to the case when T' = T’y varies with IV, we conclude that, under P%N(s,
the total number of jumps from an interface to the neighboring one should be of order
vn := N/T%. One can therefore conjecture that if v — +o00 the typical size of Sy should
be of order Ty - /vy = \/N/Tn, while if vn remains bounded one should have Sy =< T.

In the case vy — 0, the polymer will never exit the interval (—Tn,+7x). However,
guessing the right scaling in this case requires some care: in fact, due to the repulsive
penalty § < 0, the polymer will not remain close to the interface located at zero, as it were
for 6 > 0, but it will rather spread in the interval (—Tn,+7y). We are therefore led to
distinguish two cases: if Ty = O(v/N) then Sy should be of order Ty, while if Ty > VN
we should have Sy = VN (of course we write ay < by iff ay/by — 0 and ay > by iff
an/bn — 400). We can sum up these considerations in the following formula:

VN/Tn if Ty < N3
Sy < {In if (const.)N'/3 < Ty < (const.)V/N . (1.4)
VN if Tn > VN
It turns out that these conjectures are indeed correct: the following theorem makes this
precise, together with some details on the scaling laws.

Theorem 1.1. Let § < 0 and {Ty}nen € 2N)N be such that Ty — o0 as N — oo.

(1) If Tn < NY3, then Sy =< \/N/Tx. More precisely, there exist two constants 0 <
c1 < co < oo such that for all a,b € R with a < b we have for N large enough

c1Pla<Z <b) < PRy a< N <y < &Pla<Z <], (1.5)

/ N
05 ﬁ
where Cs := w/ve=9 — 1 is an explicit positive constant and Z ~ N(0,1).
(2) If T ~ (const.)N'/3, then Sy =< Tn. More precisely, for every e > 0 small enough
there exist constants M,n > 0 such that VN € N
PUs(SVI S MTy) = 1-e,  Py(ISylznTy) = 1-c.  (16)
(3) If N'/3 « Ty < (const.)\/N, then Sy =< Tn. More precisely, for every ¢ > 0 small
enough there exist constants L,n > 0 such that VN € N
PUS(0< S| <Tn, Vne{L,...,N}) > 1-e,  PR(ISn|=nTy) > 1-c. (1.7)
(4) If Tn > VN, then Sy =< V/N. More precisely, for every e > 0 small enough there
exist constants L, M,n > 0 such that VN € N

PU(0<[Spl < MVN, Vne{L,....N}) > 1-¢, P(Sx|=nVN) > 1-¢.
(1.8)
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To have a more intuitive view on the scaling behaviors in ([1.4]), let us consider the
concrete example T ~ (const.)N®: in this case we have

NO-9/2 jfo<a<i
Sy =< { N¢ if$<a<j. (1.9)
1

N1/2 if @ >

As the speed of growth of Tl increases, in a first time (until a = %) the scaling of Sy
decreases, reaching a minimum N1/3, after which it increases to reattain the initial value
N2 for a > %

We have thus shown that the asymptotic behavior of our model displays two transitions,
at Ty ~ VN and at Ty ~ N/3. While the first one is somewhat natural, in view of the
diffusive behavior of the simple random walk, the transition happening at Ty ~ N 1/3 ig
certainly more surprising and somehow unexpected.

Let us make some further comments on Theorem [.1]

e About regime , that is when Ty < N/3, we conjecture that equation can be
strengthened to a full convergence in distribution: Sy /(Cs/N/Tn) = N(0,1). The
reason for the slightly weaker result that we present is that we miss sharp renewal
theory estimates for a basic renewal process, that we define in As a matter
of fact, using the techniques in [7] one can refine our proof and show that the full
convergence in distribution holds true in the restricted regime Ty < N6 but we
omit the details for conciseness (see however the discussion following Proposition.

In any case, equation implies that the sequence {Sy/(Cs+\/N/Tn)}n is tight,
and the limit law of any converging subsequence must be absolutely continuous with
respect to the Lebesgue measure on R, with density bounded from above and from
below by a multiple of the standard normal density.

e The case when Ty — T' € R as N — oo has not been included in Theorem [L.1] for the
sake of simplicity. However a straightforward adaptation of our proof shows that in
this case equation still holds true, with Cjy replaced by a different (T-dependent)
constant Cs(T).

e We stress that in regimes and the polymer really touches the interface at zero
a finite number of times, after which it does not touch any other interface.

1.3. A link with a polymer in a slit. It turns out that our model P%d is closely related
to a model which has received quite some attention in the recent physical literature, the so-
called polymer confined between two walls and interacting with them [I}, 6], [§] (also known
as polymer in a slit). The model can be simply described as follows: given N, T € 2N, take
the first N steps of the simple random walk constrained not to exit the interval {0, T},
and give each trajectory a reward/penalization v € R each time it touches 0 or T (one
can also consider two different rewards/penalties 79 and v, but we will stick to the case
Yo =y = 7). We are thus considering the probability measure QTJ\}N defined by

dQY

N
T (S) X exp (7 Z 1{51-:0 or SiT}> ) (110)
4P

=1

where PK,’T(-) = P(-|0<S; <Tforall0 <i < N) is the law of the simple random
walk constrained to stay between the two walls located at 0 and T'.
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FIGURE 2. A polymer trajectory in a multi-interface medium transformed,
after reflection on the interfaces 0 and T, in a trajectory of polymer in a
slit. The dotted lines correspond to the parts of trajectory that appear
upside-down after the reflection.

Consider now the simple random walk reflected on both walls 0 and 7', which may be
defined as {®7(Sy) }n>0, where ({Sy }n>0, P) is the ordinary simple random walk and
. _ x x
®p(z) := min { [z]ar, 2T — [z]or}, with [x]op = 2T (ﬁ - LﬁJ) ,
that is, [z]or denotes the equivalence class of x modulo 27" (see Figure [2| for a graphical
description). We denote by P]:;T the law of the first N steps of {®7(Sy)}n>0. Of course,

PX,’T is different from Pﬁ;T: the latter is the uniform measure on the simple random walk
paths {5y }o<n<n that stay in {0, 7'}, while under the former each such path has a prob-

ability which is proportional to 2V~ where Ny = ZZJ\L 1 1{8;=0 or 5,=7} is the number of
times the path has touched the walls. In other terms, we have
T
dPy
T
4Py

N
(S) X €exp <_<10g 2) Z 1{51-:0 or S’i:T}> . (111)
i=1
If we consider the reflection under ®7 of our model, that is the process {®7(Sy) o<n<n
under PTA}V s, whose law will be simply denoted by @T(P?\z s), then it comes

dor(PL ) N
77’,7]517(5) X €exXp 0 Z 1{5i=0 or $;=T%} | - (112)
dPy —

At this stage, a look at equations (1.10]), (1.11)) and (1.12]) points out the link with our
model: we have the basic identity Q%,5+10g2 = @T(P%ﬁ), for all 6 € R and T, N € 2N.

In words, the polymer confined between two attractive walls is just the reflection of our
model through ®7, up to a shift of the pinning intensity by log2. This allows a direct
translation of all our results in this new framework.

Let us describe in detail a particular issue, namely, the study of the model Q]:Cm when
T = Ty is allowed to vary with N (this is interesting, e.g., in order to interpolate between
the two extreme cases when one of the two quantities 7" and N tends to oo before the other).
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This problem is considered in [§], where the authors obtain some asymptotic expressions
for the partition function Z, ,(a,b) of a polymer in a slit, in the case of two different
rewards/penalties (we are following their notation, in which n = N, w =T, a = exp(7o)
and b = exp(vyr)) and with the boundary condition Sy = 0. Focusing on the case a = b =
exp(7y), we mention in particular equations (6.4)—(6.6) in [§], which for a < 2 read as

Zn,w(aa a) ~ @Z’;Z‘)fphase (i}ﬁ) ’ (1'13)

where we have neglected a combinatorial factor 2" (which just comes from a different
choice of notation), and where the function fyhase() is such that

3 —m2x?/2

Jphase(z) — 1 as . —0, fphase(z) = x”e as T — 00. (1.14)

The regime a < 2 corresponds to v < log2, hence, in view of the correspondence § =
v — log 2 described above, we are exactly in the regime § < 0 for our model P%ﬁ. We
recall and, with the help of equation , we can express the partition function
with boundary condition Sy € (27)Z as

Z]T\;:(‘S{SNG(QT)Z} ~ O(l)Z]’I\;:(*s{SNGTZ} -~ 0(1)€¢(5,T)N Psr(N €71),

where, with some abuse of notation, we denote by O(1) a quantity which stays bounded
away from 0 and co as N — oo. In this formula, ¢(d,T) is the free energy of our model
and ({7 }ez+, Ps,r) is a basic renewal process, introduced respectively in and
below. In the case when T = Ty — 00, we can use the asymptotic expansion for
¢(0,T), which, combined with the bounds in , gives as N,T — oo

3 2 2
7. (sveeryzy _ O() VN N 2 NN
ZN,(S = N3 max § 1, T exp 5 T2+e*5—1T3+0 T3 .

Since ZZE’;SNG(QT)Z} = Znw(a,a), we can rewrite this relation using the notation of [§]:
const. n nt/3 2n2
Zusl0) ~ 05 e (Y1) o) where o) & e s
n w w

We have therefore obtained a refinement of equations , . This is linked to
the fact that we have gone beyond the first order in the asymptotic expansion of the free
energy ¢(0,T), making an additional term of the order N/ T]%, appear. We stress that this
new term gives a non-negligible (in fact, exponentially diverging!) contribution as soon
as Ty < N3 (w < n'/3 in the notation of [§]). This corresponds to the fact that, by
Theorem the trajectories that touch the walls a number of times of the order N/T%
are actually dominating the partition function when Ty < N1/3. Of course, a higher order
expansion of the free energy (cf. Appendix may lead to further correction terms.

1.4. Outline of the paper. Proving Theorem [I.1] requires to settle some technical tools,
partially taken from [3], that we present in Section [2| More precisely, in we introduce
the free energy ¢(9,T) of the polymer and we describe its asymptotic behavior as T" —
oo (for fixed § < 0). In we enlighten a basic correspondence between the polymer
constrained to hit one of the interfaces at its right extremity and an explicit renewal
process. In §2.3] we investigate further this renewal process, providing estimates on the
renewal function, which are of crucial importance for the proof of Theorem Sections

and |§| are dedicated respectively to the proof of parts , , and of
Theorem Finally, some technical results are proven in the appendices.
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We stress that the value of 6 < 0 is kept fixed throughout the paper, so that the generic
constants appearing in the proofs may be d-dependent.

2. A RENEWAL THEORY VIEWPOINT

In this section we recall some features of our model, including a basic renewal theory
representation, originally proven in [3], and we derive some new estimates.

2.1. The free energy. Considering for a moment our model when Ty = T € 2N is fixed,
i.e., it does not vary with NV, we define the free energy ¢(6,T) as the rate of exponential
growth of the partition function Zﬁ’ s as N — oo:

. 1 . ]. HT
6(6.7) = lm —logZfy = lim ~ 1ogE(e m) . (2.1)

Generally speaking, the reason for looking at this function is that the values of ¢ (if any)
at which 0 — ¢(0,T) is not analytic correspond physically to the occurrence of a phase
transition in the system. As a matter of fact, in our case § — ¢(d,7T) is analytic on the
whole real line, for every T' € 2N. Nevertheless, the free energy ¢(0,7") turns out to be
a very useful tool to obtain a path description of our model, even when T' = Ty varies
with N, as we explain in detail in For this reason, we now recall some basic facts on
(9, T), that were proven in [3], and we derive its asymptotic behavior as T" — oo.

We introduce 7{ :=inf{n > 0: S, € {~T,0,+T}}, that is the first epoch at which the
polymer visits an interface, and we denote by Qr(\) := E(e_)‘TlT ) its Laplace transform
under the law of the simple random walk. We point out that Q7 () is finite and analytic
on the interval (A}, 00), where Al < 0, and Qr(\) — 400 as A | Al (as a matter of fact,
one can give a closed explicit expression for Q7 (), cf. equations (A.4) and (A.5) in [3]).
A basic fact is that Qr(+) is sharply linked to the free energy: more precisely, we have

@b(é’ T) = (QT)_I(e_é)v (22)
for every 6 € R (see Theorem 1 in [3]). From this, it is easy to obtain an asymptotic
expansion of ¢(9,T) as T'— oo, for § < 0, which reads as

w2 4 1 1
6,T) = — 1-— — — 2.3
66.1) = ~ga(1- == 7 +o(7)). (2.3
as we prove in Appendix[A.T] We stress that this expansion is for fixed § < 0, in particular
the term o(1/T) in (2.3 does depend on .

2.2. A renewal theory interpretation. We now recall a basic renewal theory descrip-
tion of our model, that was proven in §2.2 of [3]. We have already introduced the first epoch
r{ at which the polymer visits an interface. Let us extend this definition: for T € 2NU{oc},
we set 70 =0 and for j € N

S =S

T T
TjT := inf {n > T]-T,1 : S, €TZ} and ajr = LIt (2.4)

where for T'= oo we agree that T7Z = {0}. Plainly, TjT is the 7' epoch at which S visits
an interface and 5JT tells whether the j*" visited interface is the same as the (j — 1)
(EJT = 0), or the one above (EJT = 1) or below (¢! = —1). We denote by qu(n) the joint

J
law of (7{,e1) under the law of the simple random walk:

qgr(n) = P(TlT =n, f-:f :j) ) (2.5)
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Of course, by symmetry we have that ¢j(n) = ¢ (n) for every n and T. We also set

qgr(n) = P(Tszn) = q%(n) + 2q:1p(n). (2.6)

Next we introduce a Markov chain ({(7j,¢;)};>0,Psr) taking values in (N U {0}) x

{—1,0,1}, defined in the following way: 79 := €9 := 0 and under P;r the sequence of
vectors {(7; — 7j—1,€;)};>1 is 1.i.d. with marginal distribution

Psr(ti=n,e1=7j) = el qu(n) e~ P& (2.7)
The fact that the r.h.s. of this equation indeed defines a probability law follows from ([2.2)),
which implies that Q(¢(8,T)) = E(e~*®T)") = ¢=%_ Notice that the process {7j}j>0 alone

under Ps 7 is a (undelayed) renewal process, i.e. 79 = 0 and the variables {7; — 7j_1};>1
are i.i.d., with step law

Psr(ri=n) = ed qr(n) e~ ¢@n oo P(TlT =n) e~ ¢(0T)n (2.8)

Let us now make the link between the law P57 and our model P% s- We introduce two

variables that count how many epochs have taken place before N, in the processes 77 and
T respectively:

Lyr = Sup{nZO:TnTSN}, Ly = Sup{nZO:TnSN}. (2.9)

We then have the following crucial result (cf. equation (2.13) in [3]): for all N,T" € 2N and
for all k£ € N, {ti}lgigk S Nk, {Ui}lgigk S {—1,0, —i—l}k we have

PLs(Ln =k, (7 ,e0) = (tiy0i), 1 < i <k ’ NerT)
(2.10)
= 7D&T(LN =k, (1i,6) = (ti,04), 1 <i <k ‘ N e 7’) ,

where {N € 7} := ;2 {7 = N} and analogously for {N € 77}. In words, the process
{(T]T ,ajT)}j under P%75(~ IN € 771) is distributed like the Markov chain {(7;,¢;)}; under
Psr(-|N € 7). It is precisely this link with renewal theory that makes our model amenable
to precise estimates. Note that the law P carries no explicit dependence on IN. Another
basic relation we are going to use repeatedly is the following one:

E s 1 n | = ODED; (ke ), (2.11)

which is valid for all k, T € 2N (cf. equation (2.11) in [3]).

2.3. Some asymptotic estimates. We now derive some estimates that will be used
throughout the paper. We start from the asymptotic behavior of P(r{ = n) as n — co.

Let us set )

g(T) = —logcos(%> - ;T2+0<1}4> . (T — ). (2.12)

We then have the following

Lemma 2.1. There exist positive constants Ty, c1,co,c3,cq4 such that when T > Ty the
following relations hold for every n € 2N:

c1 ~9(T)n <« p(.T _ < €2 —g(T)n 213

i (78 ) < P(ry =n) < i (75377 ) (2.13)
€3 —9(Tn < p(T < 4 9Dn 2.14
min{7T, \/ﬁ}e s Plr>n) < min{7, \/ﬁ}e ) (2.14)
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The proof of Lemma, [2.1]is somewhat technical and is deferred to Appendix Next
we turn to the study of the renewal process ({Tn}nzo, 7357T). It turns out that the law of 7
under Ps 7 is essentially split into two components: the first one at O(1), with mass %, and
the second one at O(T?), with mass 1 — €’ (although we do not fully prove these results,
it is useful to keep them in mind). We start with the following estimates on Ps (71 = n),
which follow quite easily from Lemma

Lemma 2.2. There exist positive constants Ty, c1,co,c3,cq4 such that when T > Ty the
following relations hold for every m,n € 2N U {+oco} with m < n:

A D+ TE k) < 2 eIk (9 15
min{1%, 57} ° < Por(n=k) < 5o e © (2.15)
Psr(m <1 <n) > e <€—<g<T>+¢<6,T>>m _ e—<g<T>+¢<a,T>>n) (2.16)
Psr(i>m) < ¢4 e~ (9(D+(6T))m (2.17)

Proof. Equation (2.15) is an immediate consequence of equations (2.8) and (2.13]). To
prove (2.16), we sum the lower bound in (2.15) over k, estimating min{7", k3/2} < T° and
observing that by (2.3) and (2.12)), for every fixed § < 0, we have as T — oo

2?1
9(T) +¢@.T) = =7 75 (1+0(1)). (2.18)
To get (2.17), for m < T? there is nothing to prove (provided c4 is large enough, see
([2-18)), while for m > T? it suffices to sum the upper bound in (2.15) over k. O

Notice that equation (2.15)), together with (2.18)), shows indeed that the law of 7; has a
component at O(7T?), which is approximately geometrically distributed. Other important
asymptotic relations are the following ones:

e®(e™® —1)?

Esr(n) = TT?) + o(T?), (2.19)
65 675 -1 3
ar(rt) = ST o), (2.20)

which are proven in Appendix We stress that these relations, together with equation
, imply that, under Ps 7, the time 7 needed to hop from an interface to a neighboring
one is of order T3, and this is precisely the reason why the asymptotic behavior of our
model has a transition at Ty ~ N/3, as discussed in the introduction. Finally, we state
an estimate on the renewal function Psr(n € 7), which is proven in Appendix .

Proposition 2.3. There exist positive constants Ty, c1,co such that for T > Ty and for
all n € 2N we have

Cc1 C2
——— < P, € < —————0r .
min{n3/2, T3} — sT(n€7) < min{n3/2, T3}

(2.21)

Note that the large n behavior of (2.21]) is consistent with the classical renewal theorem,
because 1/&5 (1) ~ T3, by (2.19). One could hope to refine this estimate, e.g., proving
that for n > T3 one has Psr(n € 7) = (1+0(1))/Es7(71): this would allow strengthening

part ([1f) of Theorem to a full convergence in distribution Sy /(Cs\/N/Tn) = N(0,1).
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It is actually possible to do this for n > T, using the ideas and techniques of [7], thus
strengthening Theorem [1.1]in the restricted regime Ty < N/ (we omit the details).

3. PROOF OF THEOREM [1.1}: PART (1))

We are in the regime when N, /T]‘rf, — 00 as N — oo. The scheme of this proof is
actually very similar to the one of the proof of part (i) of Theorem 2 in [3]. However,
more technical difficulties arise in this context, essentially because, in the depinning case
(6 < 0), the density of contact between the polymer and the interfaces vanishes as N — oo,
whereas it is strictly positive in the pinning case (6 > 0). For this reason, it is necessary
to display this proof in detail.

Throughout the proof we set v; = (1 — €?)/2 and kx = | N/Es 1y (1)]. Recalling
and (2.9), we set YE)TN =0 and Y;TN = ngN +- 4 EZ-TN for i € {1,..., Ly, }. Plainly, we
can write

Sy = YV Ty + sy,  with |sy| < Tw. (3.1)

LTy
In view of equation (2.19)), this relation shows that to prove ([1.5) we can equivalently

replace Sy /(Csy/N/Tn) with YLT;V’TN/\/v(;kN.

3.1. Step 1. Recall (2.7) and set Y, =1 + - +¢ep for all n > 1. The first step consists
in proving that for all ¢ < b in R

Yy
lim P (a< N <b)=Pa<Z<b, 3.2
Jim P (a < 2 < (a<Z<b) (32)
that is, under Psr, and as N — oo we have Y}, /\/vsky = Z, where “=" denotes
convergence in distribution.

The random variables (e1,...,en), defined under Ps 7, , are symmetric and i.i.d. . More-
over, they take their values in {—1,0, 1}, which together with (A.6) entails

Esry(e1l’) = Ery((e1)?) — w5 as N — oo (3.3)
Observe that ky — oo as N — oo and &1y (1) = O(T%), by (2.19). Thus, we can apply
the Berry Esseén Theorem that directly proves (3.2) and completes this step. O

3.2. Step 2. Henceforth, we fix a sequence of integers (V) n>1 such that sz’, <L Vy < N.

In this step we prove that, for all a < b € R, the following convergence occurs, uniformly
inué€ {0,...,2VN}Z

YL
li e <p| =P Z <b). 3.4
Ngnoo P(S’TN (a < Vuskn T ) (CL SOs ) ( )
To obtain (3.4), it is sufficient to prove that, as N — oo and under the law Ps 1, ,
Yk Yin_ _Yk
Uy = N —= 7 and Gy :=  sup e N — ). (3.5)
Vskn ue{0,...2Vy'} Vuskn

Step 1 gives directly the first relation in (3.5). To deal with the second relation, we must
show that P51, (Gn > €) — 0 as N — oo, for all € > 0. To this purpose, notice that
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{Gny > ¢} C A7]7V U Bé\{a, where for n > 0 we have set

Ai]\[ = {LN —ky > nkN} U {LN,QVN —ky < —nkN} (36)

Yivii — Y

N . kn+i k .

Bme.—{sup{‘]\mv , ze{—nkN,...,nk‘N}}Ze}. (3.7)
N

Let us focus on Ps 1y (4;) ). Introducing the centered variables 7, := 7 — k - &5 1 (1),
for k € N, by the Chebychev inequality we can write (assuming that (1 — n)ky € N for
notational convenience)

P&,TN (LN—ZVN —kn < —nkN) = P&TN (T(lfn)kN >N — QVN)
= Psrn (Ta-npy > N =2V = (L =n)knEsry(11) = 0N —2Vy)

(1 —n)kn Vars g, (11) < N Vars 7, (11)
(NN — 2V )? = (N = 2VN)2 &5y (1)

With the help of the estimates in (2.19)), (2.20)), we can assert that Vars 1, (71)/Esry (T1) =
O(T%). Since N > Vy and N > Ty, the r.h.s. of (3.8) vanishes as N — oo. With a

similar technique, we prove that Ps 1, (LN —kn > nk‘N) — 0 as well, and consequently
Pg,TN(AnN) —0as N — co.

At this stage it remains to show that, for every fixed € > 0, the quantity Ps 7y (B,]Xg)
vanishes as 7 — 0, uniformly in N. This holds true because {Y,}, under Psr, is a
symmetric random walk, and therefore {(Ygy+; — Yy )?}j>0 is a submartingale (and the
same with j — —j). Thus, the maximal inequality yields

(3.8)

2 En ((YVintnkn — Yiy)?) 21 &5,y (€7) 21
BN < Z2Z7%IN NTHEN N < AN - il 3.9
Ps TN( "’E) ~ ¢ vskn - EVs ~ evs (3.9)
We can therefore assert that the r.h.s in (3.9) tends to 0 as n — 0, uniformly in N. This
completes the step. O

3.3. Step 3. Recall that kxy = | N/E 1, (71)]. In this step we assume for simplicity that
N € 2N, and we aim at switching from the free measure Ps 1, to Pg}TN( . | N € 7'). More

precisely, we want to prove that there exist two constants 0 < ¢; < c2 < oo such that for
all a < b € R there exists Ny > 0 such that for N > Ny and for all u € {0,...,Vx}N2N

Y,
aPla<Z<b) < 735TN<a< LN <b N—UGT) < Pla< Z<b). (3.10)
’ Vuskn

A first observation is that we can safely replace Ly_, with L N—u-T} in (3.10f). To prove
this, since kny — oo, the following bound is sufficient: for every N, M € 2N

(const.)
M

sup Ps, 1y (‘YLN_u - Y, | > M ‘ N—-uc T) < (3.11)

UG{O,...,VN}OQN

Note that the L.h.s. is bounded above by Ps 1 (#{TN[N—u—-Tx,N—u)} > M ‘ N-uer).
By time-inversion and the renewal property we then rewrite this as

P&,TN(#{TQ(QTJ%/]} > M’N—’LLET) = Psry (Tm STJ%;‘N—UET)

3
TN

7u7T]%f

Psry (N —u—ner) (3.12)
< = . ! .
o Z Pait (TM n) Psty (N —u € 7')

n=1
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Recalling that N > Vy > T3 and using the estimate , we see that the ratio in
the r.h.s. of is bounded above by some constant, uniformly for 0 < n < T ﬁ’[ and
u € {0,...,VN} N2N. We are therefore left with estimating P51, (TM <T ]%[) Recalling
the definition 7 = 14 — k- Es7(11) ~ Tk — kT3 as T — oo, where ¢ > 0 by , it
follows that for large N € N we have
735,TN (T N [O7T]%I] > M) = P(S,TN (TM < T]i\))/’)

4M Vars 1, (11) < (const.)

A M?TS - M
having applied the Chebychev inequality and . This proves .

Let us come back to . By summing over the last point in 7 before N —u — T]?\’,
(call it N —u— Ty —t) and the first point in 7 after N —u —T% (call it N —u—Tx + 1),
using the Markov property we obtain

< Psry (%M < —SMT;%) <

D YLNfufT]% bl N
< — < —uc
5, Tn | @ o ueT
N-T3—u Y.
N—u-T3 —t 3 u
= Z P&,TN(G < W <b,N-u—-Ty—-tE€ T) ',P&TN(T1 >t) '@&N(t)’
t=0
(3.13)
where @g} y is defined by
T3 3
NP =t+r) - Psoy (I — 7€
O u(t) = =LA (n=ttr) Pory(Ty—re7) (3.14)

Psay (N —ueT) Psmy(r1 > 1)
Let us set Z% := {0,..., N —u — T%}. Notice that replacing ©f y(t) by the constant 1 in
the r.h.s. of (3.13]), the latter becomes equal to

YLNfufTI?(] < b)

P@TN <a < Tgk‘]\[
Since u + Ty < 2Vy for large N (because Viy > T%), equation implies that
converges as N — oo to P(a < Z < b), uniformly for u € {0,...,Vx} N 2N. Therefore,
equation will be proven (completing this step) once we show that there exists Ny
such that @gN(t) is bounded from above and below by two constants 0 < I1 < l2 < o0,
for N > Ny and for all w € {0,...,Vy} and t € Z},.

Let us set Kn(n) := Psry (11 = n) and un(n) := Psry(n € 7). The lower bound is
obtained by restricting the sum in the numerator of tor € {1,...,T%/2}. Recalling
that N > Vy > T%, and applying the upper (resp. lower) bound in to un (N — u)
(resp. un (T — 1)), we have that for large N, uniformly in u € {0,...,Vy} and t € T4,

T3 /2 3 T3 /2
sty > St Sy =) e Rn Kalter), (3.16)
7 uN(N_“)'Zj:1KN(t+J) c2 Do Kn(t+7)
Then, we use (2.16) to bound from below the numerator in the r.h.s. of (3.16]) and we use
(2.17) to bound from above its denominator. This allows to write

o105 (1 — e~ +o6T) 5

(3.15)

(3.17)

in(t) = —
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Moreover, shows that there exists ms > 0 such that g(Tn) + ¢(8,Tn) ~ ms/ T as
N — 00, which proves that the r.h.s. of converges to a constant ¢ > 0 as N tends
to co. This completes the proof of the lower bound.

The upper bound is obtained by splitting the r.h.s. of into

S Kl 4 ) cun(Th = 1) SN K+ T = ) - un ()

’LLN(N—U)'ZJO-.;lKN@—i-j) uN(N—u)-Z;-’ilKN(t+j)
The term Ry can be bounded from above by a constant by simply applying the upper
bound in toun (T —r) forallr € {1,...,T%/2} and the lower bound to uy (N —u).
To bound Dy from above, we use the upper bound in , which, together with the
fact that g(T) + ¢(8, Tw) ~ ms/Tx, shows that there exists ¢ > 0 such that for N large
enough and r € {1,...,T%/2} we have

Ry + Dy = . (3.18)

Kn(t+T: —r) < TLS o~ (9(TN)+6(5,Tw))t (3.19)
N

Notice also that by (2.16) we can assert that

ZKN(t + ) > cse”9IN)+EG TN (3.20)
j=1
Finally, (3.19), (3.20) and the fact that uy(N —u) > cl/T]{’, for all u € {0,...,Vn} (by
(2.21))) allow to write

T3 /2
c ngl UN (T)
C1C3 '

3
By applying the upper bound in (2.21]), we can check easily that Zfﬁ 1/ u ~(r) is bounded
from above uniformly in N > 1 by a constant. This completes the proof of the step. [

Dy < (3.21)

3.4. Step 4. In this step we complete the proof of Theorem , by proving equation
(1.5), that we rewrite for convenience: there exist 0 < ¢; < ¢z < oo such that for all
a < b € R and for large N € 2N (for simplicity)

Tn

aPla<Z<b) <Py (a < UL(;;N < b) < epPla< Z<b). (3.22)

We recall (2.4) and we start summing over the location py := ng’ .. of the last point
AN

in 7I¥ before N:

T Yg}\;’T N T YEJJ\YT T
Pis|a< = <b =Y P a<\/ﬁgb‘w=z\f—z Py = N—0).
£=0

(3.23)
Of course, only the terms with ¢ even are non-zero. We want to show that the sum in the
r.hs. of (3.23)) can be restricted to £ € {0,...,Vy}. To that aim, we need to prove that

ZéV:VN P\ (,uN =N — E) tends to 0 as N — oo. We start by displaying a lower bound

on the partition function Zﬁj‘g.

Lemma 3.1. There exists a constant ¢ > 0 such that for N large enough

T C
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Proof. Summing over the location of uy and using the Markov property, together with

(2.11)), we have

Z0 = E[esz\;{\g(S)} — ZE[eH%(S) 1{uN:r}]
. ) r=0
= ZE[@H“%V (S) 1{T€TTN}] P(TlTN > N — T)
T;O
= > POTN P (reT) P(r{N > N —7r). (3.25)
r=0

From (3.25)) and the lower bounds in (2.14]) and (2.21)), we obtain for N large enough
e~ 08, TN)+9(TN)|(N—r)
VN =7+ 1, Ty} min{(r + 1)3/2, T3}

At this stage, we recall that ¢(5,T) + g(T) = ms/T> + o(1/T3) as T — oo, with ms > 0,
by (2.18). Since T < N, we can restrict the sum in (3.26) tor € {N —=T%,...,N —T%},
for large N, obtaining

7N > const.) e®OTN)N 3.26
No 2 Z min{ (3:26)

N-T
#(8,Tn)N (™8 o L _ #(8,Tn)N
e +o (N=7) e
Zﬁ\g > (const.) 7 Z e (Tz?’v (Tl?ir» > (const.”) Ty (3.27)
N r=N-T3%
because the geometric sum gives a contribution of order Tﬁ}. O

We can now bound from above (using the Markov property and (2.11]))

N NN E(exp (HI¥ (S))1gpen) - P(r1 > N — ¢
Z P%IVV(;(MNZE) _ Z ( ( ) ) ;;N}) (™ )
1=0 =0 N,§

NVy Psry (L €T) eP(6TN)L P(T1 >N — E)

= Z Tn
ZNs

=0
N—-Vn _ _
e [6(6Tn)+9(Tn)|(N—0)
< (const.) Z - N E - ,  (3.28)
= min{(¢ + 1)3/2, T3}  min{y/N — ¢, Ty}

where we have used Lemma and the upper bounds in (2.14]) and (2.21]). For notational
convenience we set d(Ty) = ¢(3, Tn) + g(Tn). Then, the estimate (2.18) and the fact that
VN > T]:\)’, imply that

N-Vn . AT}V, N_VN  —d(TN)(N=VN—0)
P =/) < t.)e  CNJVN
% ns(un =1) < (const.)e ; min{ (¢ + 1)%/2, 7%} 529)
- - 3.29

o0

< (const /) o~ d(TN)VN <Z 1 N i e—d(TN)(€)>
B ' 1132 — |-
o (+ D ! = In

Since d(Tn) ~ ms/Tx, with ms > 0, and Vy > T& we obtain that the Lh.s. of (3.29)
tends to 0 as N — oo.
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Thus, we can write

YN
PV 4 < INIy o b
N, /U(SkN —
VN YgN
= PN g < 2N <p
where en(a,b) tends to 0 as N — oo, uniformly over a,b € R. At this stage, by using the
Markov property and (2.10) we may write

(3.30)

UN =N—€> P%IY(;(MN =N /) + en(a,b),

ngyé(m — <b uNzN—z> = P%’S(a<ﬁ§b N—EGTT>
0NN ONN
Yr
’ Vuskn

Plugging this into (3.30]), recalling (3.10|) and the fact that ZZQ’O P%’V(;(MN =N-1{)—1
(by (3.29)), it follows that equation (3.22)) is proven, and the proof is complete. O

4. PROOF OF THEOREM (1.1} PART (2))

We assume that Ty ~ (const.)N'/3 and we start proving the first relation in (I.6), that
we rewrite as follows: for every € > 0 we can find M > 0 such that for large N

P%%GSN‘ > M‘TN) <e.

Recalling that L% is the number of times the polymer has touched an interface up to
epoch N, see (2.9), we have |Sy| < Tn - (Ln 1y + 1), hence it suffices to show that

P (Lyay > M) <ce. (4.1)
By using (2.10]) we have
1 TN
T H S
PNI:% (LN7T > M) = TN E|:€ N’[S( ) 1{LN,TN>M}:|
N5

N
1 H'N(S T

- 7N ZE[@ e (5) YL, ry>M} 1{TETTN}1| P(r{¥ >N —r)
N, r=0
L N

~ 7N > O Py (Lery > M, 1 € 7N) P(r{¥ > N 7).
N, r=0

By (2.14]) and (2.12)) it follows easily that

(const.) 6—2’}7]2\]1\7
In

ZWs = P(r{" > N) > (4.2)

(note that this bound holds true whenever we have (const.)N'/* < Ty < (const.’)v/N for
large N). Using this lower bound on Zﬁf\g, together with the upper bound in (2.14]), the
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asymptotic expansions in and ( -, we obtain

N

1
P (Lyg > M) < (const.)Tn Y Pszy (Lzy > M, 7€ 7N :
Na(Lyg > M) < )T — st (Lrit )min{\/N—r—l—l,TN}

The contribution of the terms with r > N — T]% is bounded with the upper bound (2.21)):

(const.)
TN Z T3 N —r+1 < TN — 0 (N_>OO)’
r=N— T2

while for the terms with r < N — T% we get

N

1
TN ZP&TN (Lr,TN > M, re TTN) E = 56:TN ((LN,TN — M)l{LN,TN>M}) .
r=0

Finally, we simply observe that {Ly 1, =k} C ﬂle{ﬁ — Ti—1 < N}, hence
k
Poay(Inay =k) < (Pazy(n <N))° <,

with 0 < ¢ < 1, as it follows from (2.16]) and (2.18)) recalling that N = O(Ty). Putting
together the preceding estimates, we have

P?:’(;(LN,TN > M) < (const.)Esry ((Lnmy — M)l{LN,TN>M})
= (const.) Z (k= M) Psry (Lny = k)
k=M+1

< (const.) Z (k—M)c* < (const.)cM,
k=M+1

and (4.1)) is proven by choosing M sufficiently large.

Finally, we prove at the same time the second relations in (1.6 and (1.7)), by showing
that for every € > 0 there exists > 0 such that for large NV

PO (IS <nTw) < e, (4.3)

whenever Ty satisfies (const.)N'/3 < Ty < (const.”)v/N for large N. Letting P, denote the
law of the simple random walk starting at £ € N and 7{° its first return to zero, it follows
by Donsker’s invariance principle that there exists ¢ > 0 such that info<p<yry Pe(77° <
n?T%, S; < TnVi< 1) > c for large N. Therefore we may write

nTN

T C
P (ISnl <nTy) = TN ZE[e S )1{\SN\ k}
N4 k=0

IN

E|:€ N‘S( )1{‘5 |= k}} Pk( =u, SZ<TNVZSU)

1 Tn
A Z

HWN . (S
E ["505 1501ky Lisal<mvisu) Lswoumo | -

s

k=
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Performing the sum over k, dropping the second indicator function and using equations

(2.11)), (2.21)) and ([2.3), we obtain the estimate
Ty -

HN (S
c ZIn > E [e s L ety
N,0 u=0

Ps(1Sn <nTy) <

Ty

2T2 _LN
Z BTN ) (N+u) Psty(N+ueT) < (const.) AN g )

1

<
T, 3
235 T

¢ ZN,(S u=0

Then (4.2) shows that equation (4.3]) holds true for n small, and we are done. O

®

5. PROOF OF THEOREM |l.1} PART (]3]

We now give the proof of part of Theorem More precisely, we prove the first
relation in , because the second one has been proven at the end of Section {4 (see
and the following lines). We recall that we are in the regime when N3 <« Ty <
(const.)v/N, so that in particular

N
C = inf — > 0. (5.1)
NeN T%

We start stating an immediate corollary of Proposition [2.3

Corollary 5.1. For every e > 0 there exist Ty > 0, M. € 2N, d. > 0 such that for T > Tj

d.T3

Z ’P(;,T(kET) < e.

k=M

Note that we can restate the first relation in ([1.7]) as P%Né (TLTN <L) >1—ec. Let us
) N, T
define three intermediate quantities, by setting for [ € N

T T T,
Bi(l,N) = PN%(TLJJ:;,TN <) Z\%, (5.2)
T T, T,
By(I,N) = Py(I <, <N-—nI})Zy5, (5.3)
T T T,
By(N) = Py(mpy, >N - nTx) 25 (5.4)

where we fix n := C/2, so that nT% < N/2. The first relation in (1.7) will be proven once
we show that for all € > 0, there exists [. € N such that for large N we have

By(le,N) and B3(N)

Bi(l.,N) = °© Bi(l.,N) = (5:5)

We start giving a simple lower bound of Bj: since {Tgx o S {TlT N> N}, we have
N

2
T ) —ZN
Bi(l,N) > B|efNs(S) 1{TITN>N}] — P(+I¥ > N) > (C‘);L]‘Vg)e 2 (5.6)
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having applied the lower bound in (2.14]). Next we consider Bs. Summing over the possible
T .
values of TL}J\\;,TN and using (2.11)), we have

N-nT% ,
N
By, N) = > Ele"3 D1 o] P(Y > N = n)
n=Il+1
N-nT%
= Z Psy(n€T) e Tnn P(TlTN >N —n) (5.7)
n=Il+1
2 N
t.) —5= N
SR (3 ).
n=I[+1

where we have applied the upper bound in (2.14)) and the equalities (2.3) and (2.12)) (we
also assume that nT ]%, € N for simplicity). Since N < T ]%, by Corollary we can fix

[ = l. depending only on ¢ such that Ba/B; < € (recall (5.6))). Finally we analyze Bs(N):
in analogy with (5.7]) we write

N
B3(N) < > Papy(ner) OV P(rN > N —n)
n:N—nTﬁ,—i—l
2 N 2
—577 N (const.) (const.”) —5=N 1
< e X Z 2 < (const”)e n
= 3 = = 2
Ty N T2 41 VN —-n+1 Ty

where we have applied the upper bounds in (2.14) and (2.21)) (note that n > (C/2)T%).
Therefore Bs/B; < ¢ for N large, and the first relation in ([1.7]) is proven.

6. PROOF OF THEOREM |l.1} PART (/4]

We now assume that Ty > v/ N, that is

N
Ii — = 0. 1
Na T% 0 (6.1)

The proof is analogous to the proof of part , given in Section [5| We set for [ € N

Bi(l,N) = P(mpY . <1) Zy%., (6.2)

By(,N) = P\(I<7py, < N/2) Zyy, (6.3)
T T, T,

Bs(N) = P\%(rpy . > N/2) 2y, (6.4)

and we first show that for every ¢ > 0 we can choose [ € N such that for large N
By(l.,N) B3(N)

— < ¢ and — 6.5
Bl(lg,N) B Bl(la,N) B ( )
We start with a lower bound: since {Tng <1} 2 {r{¥ > N}, by (2.14) we have
TN
T,
Bi(l,N) > Ble™NsS)1 } — P(rI¥ > N) > (const.) (6.6)

{m, N>N}

VN
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Next consider By. Summing over the possible values of TLTJJ\\]’ . and using (2.11)), we have
N

N/2
By(l,N) = ZE[eHIeT?(S) 1{k€TTN}] - P(r{" > N k)
k=l

o (6.7)

= Psay(ker)e? @IV PN > N — k)
k=l

(we assume that N/2 € N for notational convenience). By the upper bound in (2.14) we
have P(TlTN > N — k) < (const.”)/v/N — k. Since ¢(8, T) < 0, we obtain

N
By(I,N) < (c‘\mﬁfft‘) (Z%,TN(keT)> ,

k=l

which can be made arbitrarily small by fixing [ = [, thanks to Corollary hence we
have proven that Bs/B; < ¢ for large N. In a similar fashion, for B3 we can write

N
By = > Prry(ner)e?@np(rfN > N —n)
n=N/2+1
N N
1 1 (const.) 1 (const.”)
< t. < <
> (COHS ) Z n3/2 \/m — (N/2)3/2 Z \/N——TH-l = N )

n=N/2+1 n=N/2+1

where we have used the upper bounds in and as well as the fact that
¢(8, Tn)n = o(1) uniformly in n < N, by (2.3). Therefore for large N we have B3/B; < ¢
and equation is proven. This implies that, for every £ > 0, there exists [, € N such
that for large N

T (T
Ps(Ting, <l)=1-c¢. (6.8)
Next we turn to the proof of the both relations in ([1.8)) at the same time. In view of

, it suffices to show that, for every ¢ > 0, we can choose M € N and n > 0 such that
for large N

T, T,

PN%({TL]];TN < la} N <{ sup |Sn| > M\/N} U {|SN| < nﬁ})) < e. (6.9)

Summing over the values of ng\\; . and using (2.11), the Lh.s. of is bounded from
TN

above by
le—1
> Poay(uer)e? O Ay (M),

u=0
where
P({TlTN >N —u} N ({sup,cn_u [Sn| > MVN} U{|Sn_u| <nVN}))
2N

AN,U(Ma 77) =

Therefore equation will be proven once we show that we can chose M,n such that
An (M, n) < e/l for N large. For the partition function appearing in the denominator,
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applying (6.2]) and we easily obtain Z]:\F,"g > (const.)/v/N. Setting N, := N — u for
short, the numerator in the definition of Ay, (M,n) can be bounded from above by

P(|S;| >0, Vi < N,) -P({ sup |Sp| > M\/N}u{SNuy < n\/N} ' 1Si| >0, Vi < Nu> .
n<Ny

It is well-known [4] that P(|S;| > 0, Vi < n) < (const.)/ /n. Recalling the weak conver-
gence of the random walk conditioned to stay positive toward the Brownian meander [2],
we conclude that for every fixed v < [, and for large N we have the bound

Anu(M,n) < (const.) P({ Osgnglmt > M} U{my < 77}) : (6.10)

We can then choose M large and 7 small so as to satisfy the desired bound Ay, (M,n) <
¢/l., and the proof is completed. O
APPENDIX A. ON THE FREE ENERGY

A.1. Free energy estimates. We determine the asymptotic behavior of ¢(5,T) as T —
00, for fixed 6 < 0. By Theorem 1 in [3], we have Q7 (4(5,T)) = e~%, and furthermore

Qr(\) =1+ Ve 22 1. 1 — cos (T arctan \/6_2)‘7—1)

sin (T arctan Ve 2A — 1)

)

see, e.g., equation (A.5) in [3]. If we set
v =~(6,T) := arctan Ve~ 2¢(6T) — 1 (A1)

we can then write
~ 5 ~ 1 —cos(T)
Qr(v(6,T)) = e where Qr(y) = 1+tany ————=

sin(Ty) (A-2)

Note that v — @T('y) is an increasing function with @T(O) =1and @T('y) — fooasy T 7,
hence 0 < (4,T) < 7. So we have to study the equation QVT(W) =edfor0<y< 7. An
asymptotic expansion yields
1 — cos(T7) 5

1 My —= = -1

(14 0(1))y Sn(T) e ,
where here and in the sequel o(1) is to be understood as 1" — oo with § < 0 fixed. Setting
x =T gives
1—cosz _5
1 WMe-—— =T -1
(4o 28 = (e 1),
where 0 < x < . Since the r.h.s. diverges as T — oo, x must tend to m and a further
expansion yields

2
(14 o(1)) == =T(e™’ ~1),
T—x
from which we get x =7 — e?gf_l +(1+ o(1)) and hence, since ¥(5,T) = £,
s 27 1
T = = — ———=(1 1)). A.
G T) = T T (14 o) (A3)

Recalling (A.1]), we have
2 1
Ve 20060T) — 1 = tan <7T S (1+ 0(1))) :

T ed-1T2
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Since the function A — arctan ve=2* — 1 is decreasing and continuously differentiable,
with non-vanishing first derivative, it follows that

w2 4 1 1
6,T) = — 1-— — — A4
so that equation ([2.3) is proven. O

A.2. Further estimates. We now derive some asymptotic properties of the variables
(11,€1) under P57, as T'— oo and for fixed 6 < 0.

We first focus on QL(¢(5, 7)), where QL()) 1= E(e™ 7 1ir_yy) = X,cn e ah(n).
In analogy with the computations above, by equation (A.5) in [3] we can write

1 _ Al ~1 . tany
QT(¢(5a T)) - QT(’Y(& T)) ) where QT(PV) T 9 sin(Tq/) )
so that from (A.3]) we obtain as T' — oo
m 1 e d—1
Qr(#(6,T)) = = -7 (L+o0(1)) — : (A5)
T2 e=9—1T 4
In particular, by we can write as T' — 00
1—¢€
55,T(5%) = 27357:/“(61 =+1) = 2¢0 Q%w(gb((s, T) — 5 (A.6)

Next we determine the asymptotic behavior of & (1) as T — oo for fixed 6 < 0.
Recalling (2.8) we can write

Esr(n) = € ZnQT(n) e ?0Tm — 0. QL (¢(5,T)), (A7)
neN

Er(rd) = ¢ Y n?qr(n) e 0T = . Qh(p(5,T)) (A.8)
neN

hence the problem is to determine Q.(X) for A = ¢(d, T'). Introducing the function y(X) :=

arctan ve~2* — 1 and recalling (A.2)), since Q7 = Q o~ it follows that

Qr(\) = Qr(Y(\) YN (A.9)
T = ") - Qr(v(N) + (Y (W) - QF(v(V)) - (A.10)
By direct computation
~, ~ lcos(Tw) 1 T tan~y
Qrty) = sin(Ty) (COS2’}/ * sin(T'y)> ’ (A-11)
~ — CoS sin 2 tan
r(7) = 1sin(T(ftyZ;V) . <sin(T3;Fcoszaf ios?’;cy gth(T% (1_COS(T7)))’ (A-12)
and
/ 1 " 6_2)\
V(A):—ﬁ7 V(A):—m-

Recalling (A.7)) and (A.1]), we have
Er(r) = — - Qr(y(6,1)) -7/ (#(6,T)).
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Now the asymptotic behaviors (A.3) and (A.4) give

-6 -0 2
~ e’ —1 e’ —1 T
Qr(+(6.1)) = T+ e o), 66T = 5 + oD,
s 27 s
and
~ e ®—1)3 T3
rae1) = ST o, ) = L 4 o).
Combining the preceding relations, we obtain
O(,—0 2 6
S(S’T(Tl) == TT + TT + O(T ),
O(,—0 1 3
gir(rd) = LT ge o),
) 27-[-4
which show that equations (2.19)) and ([2.20)) hold true. O

APPENDIX B. RENEWAL THEORY ESTIMATES

This section collects the proofs of Lemma and Proposition 2.3

B.1. Proof of Lemma We recall that, by equation (5.8) in Chapter XIV of [4], we
have the following explicit formula for ¢J.(n) (defined in (2.5)):

0 gl
g3 (n) = (T Z coS (T> sin <T)> “1in is even} »

v

= (B.1)
1 LT=D/2] ) , (7w , (v
1 _ v+ n— :
QT(n) - T ; (_1) Cos <T> S <T> ’ 1{n7T is even} »
hence gr(n) = P(t] = n) = ¢%(n) + 2¢}(n) is given for n and T even by
L(T+2)/4]
4 neo (Ru—=11\ . 5o (Q2v—-17
qr(n) = T2 cos ( T > sin T , (B.2)
(notice that [(T'—1)/2| =T/2 —1 for T even).
We split (B.2)) in the following way: we fix ¢ > 0 and we write
P(r{ =n) = Vo(n) + Vi(n) + Va(n), (B.3)
where we set
4 a2 (T 2T
Vo(n) = 7 cos (T) sin (T) ,
T
4 o [(Qu—=1)1\ . o (Qv—-1)rm
Vi(n) = T ;COS < T )sm T ,
L(T+2)/4]
4 neo (RQu—=1)1\ . o ((2v—17
‘/2(”) = f Z COS (T) S1n # .
v=|eT|+1
Plainly, as T" — oo we have
4n? —g(T)n
Vo(n) = —= (14 0(1)) e 9" (B.4)

Td
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where o(+) refer as T — oo, uniformly in n. Next we focus on Vj: for € small enough and

x € [0, me] we have log(cos(x)) < —x—;, and since sin(z) < x we have

[eT) 2
4 2 v —1 (7L72)7l’2 v— S w2
Vi(n) < T ( v > e ) < (const.)/ 22e T dy

ST\ T 2T (B.5)
o0 7'r2n
n3/ 2yn/T n®/ n?/

where the last inequality holds for 7" large by (2.12)). The upper bound on V5 is very rough:
since sin(x) < x and cos(z) < cos(we) for x € [me, /2], we can write

1672 L(T+2)/4]
Va(n) < 5 cos" 2 (me) Z v? < (const.) cos"(me). (B.6)
v=|eT]|+1

Finally, we get a lower bound on V; + V4, but only when 400 < n < T2. Since log(cos(x)) >

—22? and sin(z) > £ for x € [0,7/4], we can write

5 [T/8] . 2 9 2 1/4 2
‘/l(n)—i—‘/z(n) Z l Z <2V 1) €_2n§r (21/T—1)2 2 l :[;2 6_2%,”3/2 dgj
=T 2 Jur (B.7)
w2 VA a2 72 5 2 2 (const.)
= —3Y > - 2e775Y = 70
2n3/2 [L\/E/Ty ¢ dy = 2n3/2/4 yre s dy n3/2

Putting together (B.4)), (B.5) and , it is easy to see that the upper bound in (2.13))
holds true (consider separately the cases n < T? and n > T?), while the lower bound

follows analogously from (B.4)) and . To see that also equation (2.14) holds it is
sufficient to sum the bounds in (2.13]) over n, and the proof is completed. O

B.2. Proof of Proposition For convenience, we split the proof in two parts, dis-
tinguishing between the two regimes n < 7% and n > T°.

The regime n < T3. The lower bound in (2.21) for n < T3 follows easily from Psr(n €
7) > Ps(m1 = n) together with the lower bound in (2.15)). The upper bound requires
more work. We set for k,n € N

Ki(n) = KF(n) = Psr(m =n),

and we note that, by (2.16) and (2.18)), there exists Tp > 0 and a < 1 such that
ZZ; Ki(n) < a, for every T' > Tp. Since Kjii1(n) = 22;11 Ki(m)Ki(n — m), an
easy induction argument yields

T3
> Ki(n) < o, VEeN, (B.8)
n=1

Next we turn to a pointwise upper bound on Kj(n). From the upper bound in , we
know that there exists C' > 0 such that K;(n) < C/min{n32, T3} for every n < T%. We
now claim that

C

Ki(n) < Kot —————
kn) < Ka min{n3/2, T3}’

VkeN, Vn<T3. (B.9)
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We argue by induction: we have just observed that this formula holds true for £ = 1.

Assuming now that the formula holds for k = 1,...,2m — 1, we can write for n < T3
[n/2] [n/2] o
< — < 3gm—1
() < 2 3 Konli) Knln =) < 23 Ko ( min{(n—z’)3/2,T3}>’

and since min{(n—i)3/2, T3} > min{(n/2)3/2, T3} > 273/2min{n3/2 T3} for i in the range
of summation, from (B.8]) we get
[n/2]

C
Z K S 2m)3 a?m—l

mln{n3/2 T3} &~

C

KZM(”) < 2 moa min{nS/Z,TB’},

so that is proven (we have only checked it when k = 2m, but the case k = 2m + 1
is completely analogous). For n < T3 we can then write

3 ko1 (const.)
Por(n € 7) ZKk ) < mln{n3/2 T3} Zk © min{n3/2,13}’

hence the upper bound in is proven. O

The regime n > T3. We start proving the lower bound in (2.21)) for n > T3. Setting
Ym = inf{k > m: k € 7} we can write

Psr(nert) > P&T(T Nn—T3n—-1]#0,n¢ 7')
n—1

= > Psr(pngs=k)Psr(n—ker) >
k=n—T3

where we have applied the lower bound in (2.21)) to Ps 7 (n —ke 7'), because n — k < T3.
It then suffices to show that there exist ¢, Ty > 0 such that for T > Ty and n > T3

Psr(tNn—T%n—1#0) > ¢
We are going to prove the equivalent statement
Posr(tNn—T*n—1#0) > CPsr(rNn—Tn—-1=0), (B.10)
for a suitable C' > 0. We have

(const.)

T3 PgT(Tﬂ[n—T?’n—l]#@),

n—T3-1 n—1

Psr(TN[n— T3,n—1] # 0) = Z Psr(l€T) Z Psor(ri =k —1)

e = h=n—T? (B.11)
> (const.) S Psp(ter) (€—<¢<67T>+g<T>><n—T3—z> _ e—(¢(6,T>+g<T)><n—e>) ,
=0
having applied . Analogously, applying we get
3

Pg}T(Tﬂ[n—T:)’,n—l]:@) = ilpgT ler) ZP5T —0)

P (B.12)

(const.) Z 795T g c 7- e~ (60D +g(T)(n—0)
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having used the upper bound in (2.13)). However we have
—(¢(6,T)+g(T))(n=T°~£) _ o—(¢(8,1)+9(T))(n—¢) 272
€ © = (TPOET) (1) _p T=oo, ooy
@O FaT) D) ¢ . ¢ L

thanks to (2.18]), so that (B.10)) is proven.
It remains to prove the upper bound in ([2.21)) for n > T°. Notice first that

n—T2
7357T(7' N[n— T3 n— T2] #0,ne 7') = Z Pst(Yn_1s = k) Pso(n—k eT)
k=n—T3
const. const.
( T3 )Pg,T(Tﬂ[n—T?’,n—TQ]#@) S (173),

having applied the upper bound in [2.21)) to Psr(n — k € 7), because T? < n — k < T3.
If we now show that there exist ¢, Ty > 0 such that for T > T and for n > T3

Psr(tNn—T*n-T?#0|ner) > c, (B.13)
it will follow that

Psr(nerT) < %'P&T(Tﬂ n—T3n—-T4#0,nc T) < (60;?'/),

and we are done. Instead of , we prove the equivalent relation
Por(tNn—T*n—T%#0,ner) > CPsr(rNn—Tn—-T*=0,ner), (B.14)

for some C' > 0. We start considering the L.h.s.:

Por(tNn—T*n—T%#0,ner)

n—T3—1 n—T2
(B.15)
- Z Ps,r(m € 71) Z Psr(mi =L —m)Psr(n—LeT).
m=0 {=n—T3

Notice that Psr(n — ¢ € 7) > (const.)/T? for n — ¢ € 2N by the lower bound in (2.21).
Equation ([2.16)) then yields

n—T2

Z Psr(r1 =0 —m) > (const.) (6—(¢(5,T)+9(T))(H—T3—m) _ 6—(¢(5,T)+9(T))(H—T2—m))
I=n—T3
= (const.) e~ (@(8,T)+g(T))(n—T%—m) (1— e—(¢(5,T)+9(T))(T3—T2))

> (const.) e~ (SO +g(T)(n=T—m) (const.") e~ (@(OT)+9(1))(n=m)
having used repeatedly (2.18). Coming back to (B.15]), we obtain
Pso(rNn—Tn—-T#0,ner)

n—T53-1
(con?ft') >~ Psr(m e 1) @ONTID)mmm) (B.16)
T El
m=0

)

>

Next we focus on the r.h.s. of (B.14]):
Psr(tNn—T°n—T%=0,n€r)

n—T3—1

— Z Psr(m e 1) Z Psr(mi=0—m)Psr(n—LeT).
m=0 l=n—T7?

(B.17)
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Since £ —m > T3 — T2, from the upper bound in (2.15) we get
t. t.
Pyl = (—m) < <CO;§) —(OGT +g(T)(E-m) 030;2) ¢~ (@G +o(T)) (=)
because n — £ < T? (recall (2.18))). Furthermore, by the upper bound in ([2.21)) applied to
Psr(n—LeT), forn—{¢<T* we obtain

n n
1
Z 7357:/“(71 - f € 7_) S (COTLSt.) Z m é (Const,/) ,
{=n—T?2 b=n—T2

and coming back to (B.17)) we get
Psr(tNin—T*n—T%*=0,ner)

n—T53-1
M S Pap(m € 7) e GO0 (B-18)
< ,
m=0

Comparing (B.16]) and (B.18|) we see that (B.14]) is proven and this completes the proof. [J
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