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Abstract. In this paper we consider a model which describes a polymer chain interact-
ing with an infinity of equi-spaced linear interfaces. The distance between two consecutive
interfaces is denoted by T = TN and is allowed to grow with the size N of the polymer.
When the polymer receives a positive reward for touching the interfaces, its asymptotic
behavior has been derived in [3], showing that a transition occurs when TN ≈ log N . In
the present paper, we deal with the so–called depinning case, i.e., the polymer is repelled
rather than attracted by the interfaces. Using techniques from renewal theory, we deter-
mine the scaling behavior of the model for large N as a function of {TN}N , showing that

two transitions occur, when TN ≈ N1/3 and when TN ≈
√

N respectively.

1. Introduction and main results

1.1. The model. We consider a (1 + 1)-dimensional model of a polymer depinned at an
infinity of equi-spaced horizontal interfaces. The possible configurations of the polymer
are modeled by the trajectories of the simple random walk (i, Si)i≥0, where S0 = 0 and
(Si − Si−1)i≥1 is an i.i.d. sequence of symmetric Bernouilli trials taking values 1 and −1,
that is P (Si − Si−1 = +1) = P (Si − Si−1 = −1) = 1

2 . The polymer receives an energetic
penalty δ < 0 each times it touches one of the horizontal interfaces located at heights
{kT : k ∈ Z}, where T ∈ 2N (we assume that T is even for notational convenience). More
precisely, the polymer interacts with the interfaces through the following Hamiltonian:

HT
N,δ(S) := δ

N∑
i=1

1{Si ∈TZ} = δ
∑
k∈Z

N∑
i=1

1{Si = k T}, (1.1)

where N ∈ N is the number of monomers constituting the polymer. We then introduce
the corresponding polymer measure PT

N,δ (see Figure 1 for a graphical description) by

dPT
N,δ

dP
(S) :=

exp
(
HT
N,δ(S)

)
ZTN,δ

, (1.2)

where the normalizing constant ZTN,δ = E[exp(HT
N,δ(S))] is called the partition function.

We are interested in the case where the interface spacing T = {TN}N≥1 is allowed to
vary with the size N of the polymer. More precisely, we aim at understanding whether
and how the asymptotic behavior of the polymer is modified by the interplay between the
energetic penalty δ and the growth rate of TN asN →∞. In the attractive case δ > 0, when
the polymer is rewarded rather than penalized to touch an interface, this question was
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Figure 1. A typical path of {Sn}0≤n≤N under the polymer measure PT
N,δ,

for N = 158 and T = 16. The circles indicate the points where the polymer
touches the interfaces, that are penalized by δ < 0 each.

answered in depth in a previous paper [3], to which we also refer for a detailed discussion
on the motivation of the model and for an overview on the literature (see also §1.3 below).
In the present paper we extend the analysis to the repulsive case δ < 0, showing that the
behavior of the model is sensibly different from the attractive case.

For the reader’s convenience, and in order to get some intuition on our model, we recall
briefly the result obtained in [3] for δ > 0. We first set some notation: given a positive
sequence {aN}N , we write SN � aN to indicate that, on the one hand, SN/aN is tight
(for every ε > 0 there exists M > 0 such that PTN

N,δ

(
|SN/aN | > M

)
≤ ε for large N) and,

on the other hand, that for some ρ ∈ (0, 1) and η > 0 we have PTN
N,δ

(
|SN/aN | > η

)
≥ ρ for

large N . This notation catches the rate of asymptotic growth of SN somehow precisely: if
SN � aN and SN � bN , for some ε > 0 we must have εaN ≤ bN ≤ ε−1aN , for large N .

Theorem 2 in [3] can be read as follows: for every δ > 0 there exists cδ > 0 such that

SN under PTN
N,δ �


√
N e−

cδ
2
TN TN if TN − 1

cδ
logN → −∞

TN if TN − 1
cδ

logN = O(1)
1 if TN − 1

cδ
logN → +∞

. (1.3)

Let us give an heuristic explanation for these scalings. For fixed T ∈ 2N, the process
{Sn}0≤n≤N under PT

N,δ behaves approximately like a time-homogeneous Markov process
(for a precise statement in this direction see §2.2). A quantity of basic interest is the first
time τ̂ := inf{n > 0 : |Sn| = T} at which the polymer visits a neighboring interface. It
turns out that for δ > 0 the typical size of τ̂ is of order ≈ ecδT , so that until epoch N the
polymer will make approximately N/ecδT changes of interface.

Assuming that these arguments can be applied also when T = TN varies with N ,
it follows that the process {Sn}0≤n≤N jumps from an interface to a neighboring one a
number of times which is approximately uN := N/ecδTN . By symmetry, the probability
of jumping to the neighboring upper interface is the same as the probability of jumping
to the lower one, hence the last visited interface will be approximately the square root of
the number of jumps. Therefore, when uN →∞, one expects that SN will be typically of
order TN ·

√
uN , which matches perfectly with the first line of (1.3). On the other hand,

when uN → 0 the polymer will never visit any interface different from the one located at
zero and, because of the attractive reward δ > 0, SN will be typically at finite distance
from this interface, in agreement with the third line of (1.3). Finally, when uN is bounded,
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the polymer visits a finite number of different interfaces and therefore SN will be of the
same order as TN , as the second line of (1.3) shows.

1.2. The main results. Also in the repulsive case δ < 0 one can perform an analogous
heuristic analysis. The big difference with respect to the attractive case is the following:
under PT

N,δ, the time τ̂ the polymer needs to jump from an interface to a neighboring one
turns out to be typically of order T 3 (see Section 2). Assuming that these considerations
can be applied also to the case when T = TN varies with N , we conclude that, under PTN

N,δ,
the total number of jumps from an interface to the neighboring one should be of order
vN := N/T 3

N . One can therefore conjecture that if vN → +∞ the typical size of SN should
be of order TN ·

√
vN =

√
N/TN , while if vN remains bounded one should have SN � TN .

In the case vN → 0, the polymer will never exit the interval (−TN ,+TN ). However,
guessing the right scaling in this case requires some care: in fact, due to the repulsive
penalty δ < 0, the polymer will not remain close to the interface located at zero, as it were
for δ > 0, but it will rather spread in the interval (−TN ,+TN ). We are therefore led to
distinguish two cases: if TN = O(

√
N) then SN should be of order TN , while if TN �

√
N

we should have SN �
√
N (of course we write aN � bN iff aN/bN → 0 and aN � bN iff

aN/bN → +∞). We can sum up these considerations in the following formula:

SN �


√
N/TN if TN � N1/3

TN if (const.)N1/3 ≤ TN ≤ (const.)
√
N√

N if TN �
√
N

. (1.4)

It turns out that these conjectures are indeed correct: the following theorem makes this
precise, together with some details on the scaling laws.

Theorem 1.1. Let δ < 0 and {TN}N∈N ∈ (2N)N be such that TN →∞ as N →∞.

(1) If TN � N1/3, then SN �
√
N/TN . More precisely, there exist two constants 0 <

c1 < c2 <∞ such that for all a, b ∈ R with a < b we have for N large enough

c1 P
[
a < Z ≤ b

]
≤ PTN

N,δ

a < SN

Cδ

√
N
TN

≤ b

 ≤ c2 P
[
a < Z ≤ b

]
, (1.5)

where Cδ := π/
√
e−δ − 1 is an explicit positive constant and Z ∼ N (0, 1).

(2) If TN ∼ (const.)N1/3, then SN � TN . More precisely, for every ε > 0 small enough
there exist constants M,η > 0 such that ∀N ∈ N

PTN
N,δ

(
|SN | ≤M TN

)
≥ 1− ε , PTN

N,δ

(
|SN | ≥ η TN

)
≥ 1− ε . (1.6)

(3) If N1/3 � TN ≤ (const.)
√
N , then SN � TN . More precisely, for every ε > 0 small

enough there exist constants L, η > 0 such that ∀N ∈ N

PTN
N,δ

(
0 < |Sn| < TN , ∀n ∈ {L, . . . , N}

)
≥ 1−ε , PTN

N,δ

(
|SN | ≥ η TN

)
≥ 1−ε . (1.7)

(4) If TN �
√
N , then SN �

√
N . More precisely, for every ε > 0 small enough there

exist constants L,M, η > 0 such that ∀N ∈ N

PTN
N,δ

(
0 < |Sn| < M

√
N , ∀n ∈ {L, . . . , N}

)
≥ 1− ε , PTN

N,δ

(
|SN | ≥ η

√
N
)
≥ 1− ε .

(1.8)
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To have a more intuitive view on the scaling behaviors in (1.4), let us consider the
concrete example TN ∼ (const.)Na: in this case we have

SN �


N (1−a)/2 if 0 ≤ a ≤ 1

3

Na if 1
3 ≤ a ≤ 1

2

N1/2 if a ≥ 1
2

. (1.9)

As the speed of growth of TN increases, in a first time (until a = 1
3) the scaling of SN

decreases, reaching a minimum N1/3, after which it increases to reattain the initial value
N1/2, for a ≥ 1

2 .
We have thus shown that the asymptotic behavior of our model displays two transitions,

at TN ≈
√
N and at TN ≈ N1/3. While the first one is somewhat natural, in view of the

diffusive behavior of the simple random walk, the transition happening at TN ≈ N1/3 is
certainly more surprising and somehow unexpected.

Let us make some further comments on Theorem 1.1.

• About regime (1), that is when TN � N1/3, we conjecture that equation (1.5) can be
strengthened to a full convergence in distribution: SN/(Cδ

√
N/TN ) =⇒ N (0, 1). The

reason for the slightly weaker result that we present is that we miss sharp renewal
theory estimates for a basic renewal process, that we define in §2.2. As a matter
of fact, using the techniques in [7] one can refine our proof and show that the full
convergence in distribution holds true in the restricted regime TN � N1/6, but we
omit the details for conciseness (see however the discussion following Proposition 2.3).

In any case, equation (1.5) implies that the sequence {SN/(Cδ
√
N/TN )}N is tight,

and the limit law of any converging subsequence must be absolutely continuous with
respect to the Lebesgue measure on R, with density bounded from above and from
below by a multiple of the standard normal density.

• The case when TN → T ∈ R as N →∞ has not been included in Theorem 1.1 for the
sake of simplicity. However a straightforward adaptation of our proof shows that in
this case equation (1.5) still holds true, with Cδ replaced by a different (T -dependent)
constant Ĉδ(T ).

• We stress that in regimes (3) and (4) the polymer really touches the interface at zero
a finite number of times, after which it does not touch any other interface.

1.3. A link with a polymer in a slit. It turns out that our model PT
N,δ is closely related

to a model which has received quite some attention in the recent physical literature, the so-
called polymer confined between two walls and interacting with them [1, 6, 8] (also known
as polymer in a slit). The model can be simply described as follows: given N,T ∈ 2N, take
the first N steps of the simple random walk constrained not to exit the interval {0, T},
and give each trajectory a reward/penalization γ ∈ R each time it touches 0 or T (one
can also consider two different rewards/penalties γ0 and γT , but we will stick to the case
γ0 = γT = γ). We are thus considering the probability measure QTN,γ defined by

dQTN,γ
dP c,TN

(S) ∝ exp

(
γ

N∑
i=1

1{Si=0 or Si=T}

)
, (1.10)

where P c,TN ( · ) := P ( · | 0 ≤ Si ≤ T for all 0 ≤ i ≤ N) is the law of the simple random
walk constrained to stay between the two walls located at 0 and T .



DEPINNING OF A POLYMER IN A MULTI-INTERFACE MEDIUM 5

0

0

T

T

2T

3T

−T δ

δ

δ

δ

δ

δ + log 2

δ + log 2

ΦT

Figure 2. A polymer trajectory in a multi-interface medium transformed,
after reflection on the interfaces 0 and T , in a trajectory of polymer in a
slit. The dotted lines correspond to the parts of trajectory that appear
upside-down after the reflection.

Consider now the simple random walk reflected on both walls 0 and T , which may be
defined as {ΦT (Sn)}n≥0, where ({Sn}n≥0, P ) is the ordinary simple random walk and

ΦT (x) := min
{

[x]2T , 2T − [x]2T
}
, with [x]2T := 2T

( x

2T
−
⌊ x

2T

⌋)
,

that is, [x]2T denotes the equivalence class of x modulo 2T (see Figure 2 for a graphical
description). We denote by P r,TN the law of the first N steps of {ΦT (Sn)}n≥0. Of course,
P r,TN is different from P c,TN : the latter is the uniform measure on the simple random walk
paths {Sn}0≤n≤N that stay in {0, T}, while under the former each such path has a prob-
ability which is proportional to 2NN , where NN =

∑N
i=1 1{Si=0 or Si=T} is the number of

times the path has touched the walls. In other terms, we have

dP c,TN
dP r,TN

(S) ∝ exp

(
−(log 2)

N∑
i=1

1{Si=0 or Si=T}

)
. (1.11)

If we consider the reflection under ΦT of our model, that is the process {ΦT (Sn)}0≤n≤N
under PT

N,δ, whose law will be simply denoted by ΦT (PT
N,δ), then it comes

dΦT (PT
N,δ)

dP r,TN
(S) ∝ exp

(
δ

N∑
i=1

1{Si=0 or Si=T}

)
. (1.12)

At this stage, a look at equations (1.10), (1.11) and (1.12) points out the link with our
model: we have the basic identity QTN,δ+log 2 = ΦT (PT

N,δ), for all δ ∈ R and T,N ∈ 2N.
In words, the polymer confined between two attractive walls is just the reflection of our
model through ΦT , up to a shift of the pinning intensity by log 2. This allows a direct
translation of all our results in this new framework.

Let us describe in detail a particular issue, namely, the study of the model QTN,γ when
T = TN is allowed to vary with N (this is interesting, e.g., in order to interpolate between
the two extreme cases when one of the two quantities T andN tends to∞ before the other).
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This problem is considered in [8], where the authors obtain some asymptotic expressions
for the partition function Zn,w(a, b) of a polymer in a slit, in the case of two different
rewards/penalties (we are following their notation, in which n = N , w = T , a = exp(γ0)
and b = exp(γT )) and with the boundary condition SN = 0. Focusing on the case a = b =
exp(γ), we mention in particular equations (6.4)–(6.6) in [8], which for a < 2 read as

Zn,w(a, a) ≈ (const.)
n3/2

fphase

(√
n

w

)
, (1.13)

where we have neglected a combinatorial factor 2n (which just comes from a different
choice of notation), and where the function fphase(x) is such that

fphase(x) → 1 as x→ 0 , fphase(x) ≈ x3 e−π
2x2/2 as x→∞ . (1.14)

The regime a < 2 corresponds to γ < log 2, hence, in view of the correspondence δ =
γ − log 2 described above, we are exactly in the regime δ < 0 for our model PT

N,δ. We
recall (1.2) and, with the help of equation (2.11), we can express the partition function
with boundary condition SN ∈ (2T )Z as

Z
T, {SN∈(2T )Z}
N,δ ∼ O(1)ZT, {SN∈TZ}

N,δ ∼ O(1) eφ(δ,T )N Pδ,T (N ∈ τ) ,

where, with some abuse of notation, we denote by O(1) a quantity which stays bounded
away from 0 and ∞ as N → ∞. In this formula, φ(δ, T ) is the free energy of our model
and ({τn}n∈Z+ ,Pδ,T ) is a basic renewal process, introduced respectively in §2.1 and §2.2
below. In the case when T = TN → ∞, we can use the asymptotic expansion (2.3) for
φ(δ, T ), which, combined with the bounds in (2.21), gives as N,T →∞

Z
T, {SN∈(2T )Z}
N,δ =

O(1)
N3/2

max
{

1,
(√

N

T

)3}
exp

(
−π

2

2
N

T 2
+

2π2

e−δ − 1
N

T 3
+ o

(
N

T 3

))
.

Since ZT, {SN∈(2T )Z}
N,δ = Zn,w(a, a), we can rewrite this relation using the notation of [8]:

Zn,w(a, a) ≈ (const.)
n3/2

fphase

(√
n

w

)
g

(
n1/3

w

)
, where g(x) ≈ e

2π2

e−δ−1
x as x→∞ .

We have therefore obtained a refinement of equations (1.13), (1.14). This is linked to
the fact that we have gone beyond the first order in the asymptotic expansion of the free
energy φ(δ, T ), making an additional term of the order N/T 3

N appear. We stress that this
new term gives a non-negligible (in fact, exponentially diverging!) contribution as soon
as TN � N1/3 (w � n1/3 in the notation of [8]). This corresponds to the fact that, by
Theorem 1.1, the trajectories that touch the walls a number of times of the order N/T 3

N

are actually dominating the partition function when TN � N1/3. Of course, a higher order
expansion of the free energy (cf. Appendix A.1) may lead to further correction terms.

1.4. Outline of the paper. Proving Theorem 1.1 requires to settle some technical tools,
partially taken from [3], that we present in Section 2. More precisely, in §2.1 we introduce
the free energy φ(δ, T ) of the polymer and we describe its asymptotic behavior as T →
∞ (for fixed δ < 0). In §2.2 we enlighten a basic correspondence between the polymer
constrained to hit one of the interfaces at its right extremity and an explicit renewal
process. In §2.3 we investigate further this renewal process, providing estimates on the
renewal function, which are of crucial importance for the proof of Theorem 1.1. Sections
3, 4, 5 and 6 are dedicated respectively to the proof of parts (1), (2), (3) and (4) of
Theorem 1.1. Finally, some technical results are proven in the appendices.
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We stress that the value of δ < 0 is kept fixed throughout the paper, so that the generic
constants appearing in the proofs may be δ-dependent.

2. A renewal theory viewpoint

In this section we recall some features of our model, including a basic renewal theory
representation, originally proven in [3], and we derive some new estimates.

2.1. The free energy. Considering for a moment our model when TN ≡ T ∈ 2N is fixed,
i.e., it does not vary with N , we define the free energy φ(δ, T ) as the rate of exponential
growth of the partition function ZTN,δ as N →∞:

φ(δ, T ) := lim
N→∞

1
N

logZTN,δ = lim
N→∞

1
N

log E
(
eH

T
N,δ

)
. (2.1)

Generally speaking, the reason for looking at this function is that the values of δ (if any)
at which δ 7→ φ(δ, T ) is not analytic correspond physically to the occurrence of a phase
transition in the system. As a matter of fact, in our case δ 7→ φ(δ, T ) is analytic on the
whole real line, for every T ∈ 2N. Nevertheless, the free energy φ(δ, T ) turns out to be
a very useful tool to obtain a path description of our model, even when T = TN varies
with N , as we explain in detail in §2.2. For this reason, we now recall some basic facts on
φ(δ, T ), that were proven in [3], and we derive its asymptotic behavior as T →∞.

We introduce τT1 := inf{n > 0 : Sn ∈ {−T, 0,+T}}, that is the first epoch at which the
polymer visits an interface, and we denote by QT (λ) := E

(
e−λτ

T
1
)

its Laplace transform
under the law of the simple random walk. We point out that QT (λ) is finite and analytic
on the interval (λT0 ,∞), where λT0 < 0, and QT (λ)→ +∞ as λ ↓ λT0 (as a matter of fact,
one can give a closed explicit expression for QT (λ), cf. equations (A.4) and (A.5) in [3]).
A basic fact is that QT (·) is sharply linked to the free energy: more precisely, we have

φ(δ, T ) = (QT )−1(e−δ), (2.2)

for every δ ∈ R (see Theorem 1 in [3]). From this, it is easy to obtain an asymptotic
expansion of φ(δ, T ) as T →∞, for δ < 0, which reads as

φ(δ, T ) = − π2

2T 2

(
1− 4

e−δ − 1
1
T

+ o

(
1
T

))
, (2.3)

as we prove in Appendix A.1. We stress that this expansion is for fixed δ < 0, in particular
the term o(1/T ) in (2.3) does depend on δ.

2.2. A renewal theory interpretation. We now recall a basic renewal theory descrip-
tion of our model, that was proven in §2.2 of [3]. We have already introduced the first epoch
τT1 at which the polymer visits an interface. Let us extend this definition: for T ∈ 2N∪{∞},
we set τT0 = 0 and for j ∈ N

τTj := inf
{
n > τTj−1 : Sn ∈ TZ

}
and εTj :=

S
τT
j
−S

τT
j−1

T , (2.4)

where for T = ∞ we agree that TZ = {0}. Plainly, τTj is the jth epoch at which S visits
an interface and εTj tells whether the jth visited interface is the same as the (j − 1)th

(εTj = 0), or the one above (εTj = 1) or below (εTj = −1). We denote by qjT (n) the joint
law of (τT1 , ε

T
1 ) under the law of the simple random walk:

qjT (n) := P
(
τT1 = n , εT1 = j

)
. (2.5)



8 FRANCESCO CARAVENNA AND NICOLAS PÉTRÉLIS

Of course, by symmetry we have that q1
T (n) = q−1

T (n) for every n and T . We also set

qT (n) := P
(
τT1 = n

)
= q0

T (n) + 2 q1
T (n) . (2.6)

Next we introduce a Markov chain ({(τj , εj)}j≥0,Pδ,T ) taking values in (N ∪ {0}) ×
{−1, 0, 1}, defined in the following way: τ0 := ε0 := 0 and under Pδ,T the sequence of
vectors {(τj − τj−1, εj)}j≥1 is i.i.d. with marginal distribution

Pδ,T (τ1 = n, ε1 = j) := eδ qjT (n) e−φ(δ,T )n . (2.7)

The fact that the r.h.s. of this equation indeed defines a probability law follows from (2.2),
which implies thatQ(φ(δ, T )) = E(e−φ(δ,T )τT1 ) = e−δ. Notice that the process {τj}j≥0 alone
under Pδ,T is a (undelayed) renewal process, i.e. τ0 = 0 and the variables {τj − τj−1}j≥1

are i.i.d., with step law

Pδ,T (τ1 = n) = eδ qT (n) e−φ(δ,T )n = eδ P (τT1 = n) e−φ(δ,T )n . (2.8)

Let us now make the link between the law Pδ,T and our model PT
N,δ. We introduce two

variables that count how many epochs have taken place before N , in the processes τT and
τ respectively:

LN,T := sup
{
n ≥ 0 : τTn ≤ N

}
, LN := sup

{
n ≥ 0 : τn ≤ N

}
. (2.9)

We then have the following crucial result (cf. equation (2.13) in [3]): for all N,T ∈ 2N and
for all k ∈ N, {ti}1≤i≤k ∈ Nk, {σi}1≤i≤k ∈ {−1, 0,+1}k we have

PT
N,δ

(
LN,T = k, (τTi , ε

T
i ) = (ti, σi), 1 ≤ i ≤ k

∣∣∣N ∈ τT)
= Pδ,T

(
LN = k, (τi, εi) = (ti, σi), 1 ≤ i ≤ k

∣∣∣N ∈ τ) , (2.10)

where {N ∈ τ} :=
⋃∞
k=0{τk = N} and analogously for {N ∈ τT }. In words, the process

{(τTj , εTj )}j under PT
N,δ( · |N ∈ τT ) is distributed like the Markov chain {(τj , εj)}j under

Pδ,T ( · |N ∈ τ). It is precisely this link with renewal theory that makes our model amenable
to precise estimates. Note that the law Pδ,T carries no explicit dependence on N . Another
basic relation we are going to use repeatedly is the following one:

E
[
eH

T
k,δ(S) 1{k∈τT }

]
= eφ(δ,T )k Pδ,T

(
k ∈ τ

)
, (2.11)

which is valid for all k, T ∈ 2N (cf. equation (2.11) in [3]).

2.3. Some asymptotic estimates. We now derive some estimates that will be used
throughout the paper. We start from the asymptotic behavior of P (τT1 = n) as n → ∞.
Let us set

g(T ) := − log cos
(π
T

)
=

π2

2T 2
+O

(
1
T 4

)
, (T →∞) . (2.12)

We then have the following

Lemma 2.1. There exist positive constants T0, c1, c2, c3, c4 such that when T > T0 the
following relations hold for every n ∈ 2N:

c1

min{T 3, n3/2} e
−g(T )n ≤ P (τT1 = n) ≤ c2

min{T 3, n3/2} e
−g(T )n , (2.13)

c3

min{T,√n} e
−g(T )n ≤ P (τT1 > n) ≤ c4

min{T,√n} e
−g(T )n . (2.14)
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The proof of Lemma 2.1 is somewhat technical and is deferred to Appendix B.1. Next
we turn to the study of the renewal process

(
{τn}n≥0,Pδ,T

)
. It turns out that the law of τ1

under Pδ,T is essentially split into two components: the first one at O(1), with mass eδ, and
the second one at O(T 3), with mass 1− eδ (although we do not fully prove these results,
it is useful to keep them in mind). We start with the following estimates on Pδ,T (τ1 = n),
which follow quite easily from Lemma 2.1.

Lemma 2.2. There exist positive constants T0, c1, c2, c3, c4 such that when T > T0 the
following relations hold for every m,n ∈ 2N ∪ {+∞} with m < n:

c1

min{T 3, k3/2} e
−(g(T )+φ(δ,T ))k ≤ Pδ,T (τ1 = k) ≤ c2

min{T 3, k3/2} e
−(g(T )+φ(δ,T ))k (2.15)

Pδ,T (m ≤ τ1 < n) ≥ c3

(
e−(g(T )+φ(δ,T ))m − e−(g(T )+φ(δ,T ))n

)
(2.16)

Pδ,T (τ1 ≥ m) ≤ c4 e
−(g(T )+φ(δ,T ))m . (2.17)

Proof. Equation (2.15) is an immediate consequence of equations (2.8) and (2.13). To
prove (2.16), we sum the lower bound in (2.15) over k, estimating min{T 3, k3/2} ≤ T 3 and
observing that by (2.3) and (2.12), for every fixed δ < 0, we have as T →∞

g(T ) + φ(δ, T ) =
2π2

e−δ − 1
1
T 3

(
1 + o(1)

)
. (2.18)

To get (2.17), for m ≤ T 2 there is nothing to prove (provided c4 is large enough, see
(2.18)), while for m > T 2 it suffices to sum the upper bound in (2.15) over k. �

Notice that equation (2.15), together with (2.18), shows indeed that the law of τ1 has a
component at O(T 3), which is approximately geometrically distributed. Other important
asymptotic relations are the following ones:

Eδ,T (τ1) =
eδ(e−δ − 1)2

2π2
T 3 + o(T 3) , (2.19)

Eδ,T (τ2
1 ) =

eδ(e−δ − 1)3

2π4
T 6 + o(T 6) , (2.20)

which are proven in Appendix A.2. We stress that these relations, together with equation
(A.6), imply that, under Pδ,T , the time τ̂ needed to hop from an interface to a neighboring
one is of order T 3, and this is precisely the reason why the asymptotic behavior of our
model has a transition at TN ≈ N1/3, as discussed in the introduction. Finally, we state
an estimate on the renewal function Pδ,T (n ∈ τ), which is proven in Appendix B.2.

Proposition 2.3. There exist positive constants T0, c1, c2 such that for T > T0 and for
all n ∈ 2N we have

c1

min{n3/2, T 3} ≤ Pδ,T (n ∈ τ) ≤ c2

min{n3/2, T 3} . (2.21)

Note that the large n behavior of (2.21) is consistent with the classical renewal theorem,
because 1/Eδ,T (τ1) ≈ T−3, by (2.19). One could hope to refine this estimate, e.g., proving
that for n� T 3 one has Pδ,T (n ∈ τ) = (1 + o(1))/Eδ,T (τ1): this would allow strengthening
part (1) of Theorem 1.1 to a full convergence in distribution SN/(Cδ

√
N/TN ) =⇒ N (0, 1).
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It is actually possible to do this for n � T 6, using the ideas and techniques of [7], thus
strengthening Theorem 1.1 in the restricted regime TN � N1/6 (we omit the details).

3. Proof of Theorem 1.1: part (1)

We are in the regime when N/T 3
N → ∞ as N → ∞. The scheme of this proof is

actually very similar to the one of the proof of part (i) of Theorem 2 in [3]. However,
more technical difficulties arise in this context, essentially because, in the depinning case
(δ < 0), the density of contact between the polymer and the interfaces vanishes as N →∞,
whereas it is strictly positive in the pinning case (δ > 0). For this reason, it is necessary
to display this proof in detail.

Throughout the proof we set vδ = (1 − eδ)/2 and kN = bN/Eδ,TN (τ1)c. Recalling (2.4)
and (2.9), we set Y TN

0 = 0 and Y TN
i = εTN1 + · · ·+ εTNi for i ∈ {1, . . . , LN,TN }. Plainly, we

can write
SN = Y TN

LN,TN
· TN + sN , with |sN | < TN . (3.1)

In view of equation (2.19), this relation shows that to prove (1.5) we can equivalently
replace SN/(Cδ

√
N/TN ) with Y TN

LN,TN
/
√
vδkN .

3.1. Step 1. Recall (2.7) and set Yn = ε1 + · · ·+ εn for all n ≥ 1. The first step consists
in proving that for all a < b in R

lim
N→∞

Pδ,TN
(
a <

YkN√
vδkN

≤ b
)

= P (a < Z ≤ b) , (3.2)

that is, under Pδ,TN and as N → ∞ we have YkN /
√
vδkN =⇒ Z, where “=⇒” denotes

convergence in distribution.
The random variables (ε1, . . . , εN ), defined under Pδ,TN , are symmetric and i.i.d. . More-

over, they take their values in {−1, 0, 1}, which together with (A.6) entails

Eδ,TN (|ε1|3) = Eδ,TN ((ε1)2) −→ vδ as N →∞. (3.3)

Observe that kN →∞ as N →∞ and Eδ,TN (τ1) = O(T 3
N ), by (2.19). Thus, we can apply

the Berry Esseèn Theorem that directly proves (3.2) and completes this step. �

3.2. Step 2. Henceforth, we fix a sequence of integers (VN )N≥1 such that T 3
N � VN � N .

In this step we prove that, for all a < b ∈ R, the following convergence occurs, uniformly
in u ∈ {0, . . . , 2VN}:

lim
N→∞

Pδ,TN

(
a <

YLN−u√
vδkN

≤ b
)

= P (a < Z ≤ b) . (3.4)

To obtain (3.4), it is sufficient to prove that, as N →∞ and under the law Pδ,TN ,

UN :=
YkN√
vδkN

=⇒ Z and GN := sup
u∈{0,...,2VN}

∣∣∣∣YLN−u − YkN√
vδkN

∣∣∣∣ =⇒ 0 . (3.5)

Step 1 gives directly the first relation in (3.5). To deal with the second relation, we must
show that Pδ,TN (GN ≥ ε) → 0 as N → ∞, for all ε > 0. To this purpose, notice that
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{GN ≥ ε} ⊆ ANη ∪BN
η,ε, where for η > 0 we have set

ANη : =
{
LN − kN ≥ ηkN

}
∪
{
LN−2VN − kN ≤ −ηkN

}
(3.6)

BN
η,ε : =

{
sup

{∣∣∣∣YkN+i − YkN√
vδkN

∣∣∣∣ , i ∈ {−ηkN , . . . , ηkN}} ≥ ε
}
. (3.7)

Let us focus on Pδ,TN (ANη ). Introducing the centered variables τ̃k := τk − k · Eδ,TN (τ1),
for k ∈ N, by the Chebychev inequality we can write (assuming that (1 − η)kN ∈ N for
notational convenience)

Pδ,TN
(
LN−2VN − kN < −ηkN

)
= Pδ,TN

(
τ(1−η)kN > N − 2VN

)
= Pδ,TN

(
τ̃(1−η)kN > N − 2VN − (1− η)kNEδ,TN (τ1) = ηN − 2VN

)
≤ (1− η)kN Varδ,TN (τ1)

(ηN − 2VN )2
≤ N Varδ,TN (τ1)

(ηN − 2VN )2 Eδ,TN (τ1)
. (3.8)

With the help of the estimates in (2.19), (2.20), we can assert that Varδ,TN (τ1)/Eδ,TN (τ1) =
O(T 3

N ). Since N � VN and N � T 3
N , the r.h.s. of (3.8) vanishes as N → ∞. With a

similar technique, we prove that Pδ,TN
(
LN − kN > ηkN

)
→ 0 as well, and consequently

Pδ,TN (ANη )→ 0 as N →∞.
At this stage it remains to show that, for every fixed ε > 0, the quantity Pδ,TN

(
BN
η,ε

)
vanishes as η → 0, uniformly in N . This holds true because {Yn}n under Pδ,TN is a
symmetric random walk, and therefore {(YkN+j − YkN )2}j≥0 is a submartingale (and the
same with j 7→ −j). Thus, the maximal inequality yields

Pδ,TN
(
BN
η,ε

)
≤ 2

ε

Eδ,TN
(
(YkN+ηkN − YkN )2

)
vδkN

≤ 2 η Eδ,TN (ε2
1)

εvδ
≤ 2 η

ε vδ
. (3.9)

We can therefore assert that the r.h.s in (3.9) tends to 0 as η → 0, uniformly in N . This
completes the step. �

3.3. Step 3. Recall that kN = bN/Eδ,TN (τ1)c. In this step we assume for simplicity that
N ∈ 2N, and we aim at switching from the free measure Pδ,TN to Pδ,TN

(
·
∣∣N ∈ τ). More

precisely, we want to prove that there exist two constants 0 < c1 < c2 <∞ such that for
all a < b ∈ R there exists N0 > 0 such that for N ≥ N0 and for all u ∈ {0, . . . , VN} ∩ 2N

c1 P (a < Z ≤ b) ≤ Pδ,TN
(
a <

YLN−u√
vδkN

≤ b
∣∣∣∣N − u ∈ τ) ≤ c2 P (a < Z ≤ b) . (3.10)

A first observation is that we can safely replace LN−u with LN−u−T 3
N

in (3.10). To prove
this, since kN →∞, the following bound is sufficient: for every N,M ∈ 2N

sup
u∈{0,...,VN}∩2N

Pδ,TN
(∣∣YLN−u − YLN−u−T3

N

∣∣ ≥M ∣∣∣N − u ∈ τ) ≤ (const.)
M

. (3.11)

Note that the l.h.s. is bounded above by Pδ,TN
(
#
{
τ∩[N−u−T 3

N , N−u)
}
≥M

∣∣N−u ∈ τ).
By time-inversion and the renewal property we then rewrite this as

Pδ,TN
(
#
{
τ ∩ (0, T 3

N ]
}
≥M

∣∣N − u ∈ τ) = Pδ,TN
(
τM ≤ T 3

N

∣∣N − u ∈ τ)
≤

T 3
N∑

n=1

Pδ,TN
(
τM = n

)
· Pδ,TN

(
N − u− n ∈ τ

)
Pδ,TN

(
N − u ∈ τ

) .
(3.12)
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Recalling that N � VN � T 3
N and using the estimate (2.21), we see that the ratio in

the r.h.s. of (3.12) is bounded above by some constant, uniformly for 0 ≤ n ≤ T 3
N and

u ∈ {0, . . . , VN} ∩ 2N. We are therefore left with estimating Pδ,TN
(
τM ≤ T 3

N

)
. Recalling

the definition τ̃k := τk − k · Eδ,T (τ1) ∼ τk − ckT 3 as T → ∞, where c > 0 by (2.19), it
follows that for large N ∈ N we have

Pδ,TN (τ ∩ [0, T 3
N ] ≥M) = Pδ,TN (τM ≤ T 3

N )

≤ Pδ,TN
(
τ̃M ≤ −

c

2
M T 3

N

)
≤ 4M Varδ,TN (τ1)

c2M2 T 6
N

≤ (const.)
M

,

having applied the Chebychev inequality and (2.20). This proves (3.11).
Let us come back to (3.10). By summing over the last point in τ before N − u − T 3

N

(call it N − u− T 3
N − t) and the first point in τ after N − u− T 3

N (call it N − u− T 3
N + r),

using the Markov property we obtain

Pδ,TN

(
a <

YL
N−u−T3

N√
vδkN

≤ b
∣∣∣∣∣N − u ∈ τ

)

=
N−T 3

N−u∑
t=0

Pδ,TN

(
a <

YL
N−u−T3

N
−t√

vδkN
≤ b , N − u− T 3

N − t ∈ τ
)
· Pδ,TN

(
τ1 > t

)
·Θu

δ,N (t) ,

(3.13)

where Θu
δ,N is defined by

Θu
δ,N (t) :=

∑T 3
N
r=1 Pδ,TN

(
τ1 = t+ r

)
· Pδ,TN

(
T 3
N − r ∈ τ

)
Pδ,TN

(
N − u ∈ τ

)
· Pδ,TN

(
τ1 > t

) . (3.14)

Let us set IuN := {0, . . . , N − u− T 3
N}. Notice that replacing Θu

δ,N (t) by the constant 1 in
the r.h.s. of (3.13), the latter becomes equal to

Pδ,TN
(
a <

YL
N−u−T3

N√
vδkN

≤ b
)
. (3.15)

Since u + T 3
N ≤ 2VN for large N (because VN � T 3

N ), equation (3.4) implies that (3.15)
converges as N → ∞ to P (a < Z ≤ b), uniformly for u ∈ {0, . . . , VN} ∩ 2N. Therefore,
equation (3.10) will be proven (completing this step) once we show that there exists N0

such that Θu
δ,N (t) is bounded from above and below by two constants 0 < l1 < l2 < ∞,

for N ≥ N0 and for all u ∈ {0, . . . , VN} and t ∈ IuN .
Let us set KN (n) := Pδ,TN (τ1 = n) and uN (n) := Pδ,TN (n ∈ τ). The lower bound is

obtained by restricting the sum in the numerator of (3.14) to r ∈ {1, . . . , T 3
N/2}. Recalling

that N � VN � T 3
N , and applying the upper (resp. lower) bound in (2.21) to uN (N − u)

(resp. uN (T 3
N − r)), we have that for large N , uniformly in u ∈ {0, . . . , VN} and t ∈ IuN ,

Θu
δ,N (t) ≥

∑T 3
N/2
r=1 KN (t+ r) · uN

(
T 3
N − r

)
uN
(
N − u

)
·∑∞j=1KN (t+ j)

≥ c1

c2
·
∑T 3

N/2
r=1 KN (t+ r)∑∞
j=1KN (t+ j)

. (3.16)

Then, we use (2.16) to bound from below the numerator in the r.h.s. of (3.16) and we use
(2.17) to bound from above its denominator. This allows to write

Θu
δ,N (t) ≥ c1 c3 (1− e−(g(TN )+φ(δ,TN ))

T3
N
2 )

c2 c4
. (3.17)
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Moreover, (2.18) shows that there exists mδ > 0 such that g(TN ) + φ(δ, TN ) ∼ mδ/T
3
N as

N → ∞, which proves that the r.h.s. of (3.17) converges to a constant c > 0 as N tends
to ∞. This completes the proof of the lower bound.

The upper bound is obtained by splitting the r.h.s. of (3.14) into

RN +DN :=
∑T 3

N/2
r=1 KN (t+ r) · uN (T 3

N − r)
uN
(
N − u

)
·∑∞j=1KN (t+ j)

+
∑T 3

N/2
r=1 KN (t+ T 3

N − r) · uN (r)
uN
(
N − u

)
·∑∞j=1KN (t+ j)

. (3.18)

The term RN can be bounded from above by a constant by simply applying the upper
bound in (2.21) to uN (T 3

N−r) for all r ∈ {1, . . . , T 3
N/2} and the lower bound to uN (N−u).

To bound DN from above, we use the upper bound in (2.15), which, together with the
fact that g(TN ) + φ(δ, TN ) ∼ mδ/T

3
N , shows that there exists c > 0 such that for N large

enough and r ∈ {1, . . . , T 3
N/2} we have

KN (t+ T 3
N − r) ≤

c

T 3
N

e−(g(TN )+φ(δ,TN )) t. (3.19)

Notice also that by (2.16) we can assert that
∞∑
j=1

KN (t+ j) ≥ c3e
−(g(TN )+φ(δ,TN )) t. (3.20)

Finally, (3.19), (3.20) and the fact that uN (N − u) ≥ c1/T
3
N for all u ∈ {0, . . . , VN} (by

(2.21)) allow to write

DN ≤
c
∑T 3

N/2
r=1 uN (r)
c1c3

. (3.21)

By applying the upper bound in (2.21), we can check easily that
∑T 3

N/2
r=1 uN (r) is bounded

from above uniformly in N ≥ 1 by a constant. This completes the proof of the step. �

3.4. Step 4. In this step we complete the proof of Theorem 1.1 (1), by proving equation
(1.5), that we rewrite for convenience: there exist 0 < c1 < c2 < ∞ such that for all
a < b ∈ R and for large N ∈ 2N (for simplicity)

c1 P (a < Z ≤ b) ≤ PTN
N,δ

(
a <

Y TN
LN√
vδkN

≤ b
)
≤ c2 P (a < Z ≤ b) . (3.22)

We recall (2.4) and we start summing over the location µN := τTNLN,TN
of the last point

in τTN before N :

PTN
N,δ

(
a <

Y TN
LN,TN√
vδkN

≤ b
)

=
N∑
`=0

PTN
N,δ

(
a <

Y TN
LN,TN√
vδkN

≤ b
∣∣∣∣µN = N−`

)
·PTN

N,δ

(
µN = N−`

)
.

(3.23)
Of course, only the terms with ` even are non-zero. We want to show that the sum in the
r.h.s. of (3.23) can be restricted to ` ∈ {0, . . . , VN}. To that aim, we need to prove that∑N

`=VN
PTN
N,δ

(
µN = N − `

)
tends to 0 as N → ∞. We start by displaying a lower bound

on the partition function ZTNN,δ.

Lemma 3.1. There exists a constant c > 0 such that for N large enough

ZTNN,δ ≥
c

TN
eφ(δ,TN )N . (3.24)
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Proof. Summing over the location of µN and using the Markov property, together with
(2.11), we have

ZTNN,δ = E
[
eH

TN
N,δ(S)

]
=

N∑
r=0

E
[
eH

TN
N,δ(S) 1{µN=r}

]
=

N∑
r=0

E
[
eH

TN
r,δ (S) 1{r∈τTN }

]
P (τTN1 > N − r)

=
N∑
r=0

eφ(δ,TN )r Pδ,TN (r ∈ τ)P (τTN1 > N − r) . (3.25)

From (3.25) and the lower bounds in (2.14) and (2.21), we obtain for N large enough

ZTNN,δ ≥ (const.) eφ(δ,TN )N
N∑
r=0

e−[φ(δ,TN )+g(TN )](N−r)

min{
√
N − r + 1, TN} min{(r + 1)3/2, T 3

N}
. (3.26)

At this stage, we recall that φ(δ, T ) + g(T ) = mδ/T
3 + o(1/T 3) as T →∞, with mδ > 0,

by (2.18). Since T 3
N � N , we can restrict the sum in (3.26) to r ∈ {N −T 3

N , . . . , N −T 2
N},

for large N , obtaining

ZTNN,δ ≥ (const.)
eφ(δ,TN )N

T 4
N

N−T 2
N∑

r=N−T 3
N

e
−
(
mδ
T3
N

+o
(

1

T3
N

))
(N−r)

≥ (const.′)
eφ(δ,TN )N

TN
, (3.27)

because the geometric sum gives a contribution of order T 3
N . �

We can now bound from above (using the Markov property and (2.11))

N−VN∑
l=0

PTN
N,δ(µN = `) =

N−VN∑
`=0

E
(

exp
(
HTN
`,δ (S)

)
1{`∈τ}

)
· P
(
τ1 > N − `

)
ZTNN,δ

=
N−VN∑
`=0

Pδ,TN (` ∈ τ) eφ(δ,TN )` P
(
τ1 > N − `

)
ZTNN,δ

≤ (const.)
N−VN∑
`=0

TN
min{(`+ 1)3/2, T 3

N}
· e
−[φ(δ,TN )+g(TN )](N−`)

min{
√
N − `, TN}

, (3.28)

where we have used Lemma 3.1 and the upper bounds in (2.14) and (2.21). For notational
convenience we set d(TN ) = φ(δ, TN ) + g(TN ). Then, the estimate (2.18) and the fact that
VN � T 3

N imply that

N−VN∑
`=0

PTN
n,δ(µN = `) ≤ (const.) e−d(TN )VN

N−VN∑
`=0

e−d(TN )(N−VN−`)

min{(`+ 1)3/2, T 3
N}

≤ (const.′) e−d(TN )VN

( ∞∑
`=0

1
(l + 1)3/2

+
∞∑
`=0

e−d(TN )(`)

T 3
N

)
.

(3.29)

Since d(TN ) ∼ mδ/T
3
N , with mδ > 0, and VN � T 3

N we obtain that the l.h.s. of (3.29)
tends to 0 as N →∞.
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Thus, we can write

PTN
N,δ

(
a <

Y TN
LN,TN√
vδkN

≤ b
)

=
VN∑
`=0

PTN
N,δ

(
a <

Y TN
LN,TN√
vδkN

≤ b
∣∣∣∣∣µN = N − `

)
PTN
N,δ

(
µN = N − `

)
+ εN (a, b) ,

(3.30)

where εN (a, b) tends to 0 as N →∞, uniformly over a, b ∈ R. At this stage, by using the
Markov property and (2.10) we may write

PTN
N,δ

(
a <

Y TN
LN,TN√
vδkN

≤ b
∣∣∣∣∣µN = N − `

)
= PTN

N,δ

(
a <

Y TN
LN−`,TN√
vδkN

≤ b
∣∣∣∣∣N − ` ∈ τT

)

= Pδ,TN

(
a <

YLN−`√
vδkN

≤ b
∣∣∣∣∣N − ` ∈ τ

)
.

Plugging this into (3.30), recalling (3.10) and the fact that
∑VN

`=0 PTN
N,δ(µN = N − `)→ 1

(by (3.29)), it follows that equation (3.22) is proven, and the proof is complete. �

4. Proof of Theorem 1.1: part (2)

We assume that TN ∼ (const.)N1/3 and we start proving the first relation in (1.6), that
we rewrite as follows: for every ε > 0 we can find M > 0 such that for large N

PTN
N,δ

(
|SN | > M · TN

)
≤ ε .

Recalling that LTN is the number of times the polymer has touched an interface up to
epoch N , see (2.9), we have |SN | ≤ TN · (LN,TN + 1), hence it suffices to show that

PTN
N,δ

(
LN,TN > M

)
≤ ε . (4.1)

By using (2.10) we have

PTN
N,δ

(
LN,T > M

)
=

1

ZTNN,δ
E
[
eH

TN
N,δ(S) 1{LN,TN>M}

]

=
1

ZTNN,δ

N∑
r=0

E
[
eH

TN
r,δ (S) 1{Lr,TN>M} 1{r∈τTN }

]
P (τTN1 > N − r)

=
1

ZTNN,δ

N∑
r=0

eφ(δ,TN )r Pδ,TN
(
Lr,TN > M, r ∈ τTN

)
P (τTN1 > N − r) .

By (2.14) and (2.12) it follows easily that

ZTNN,δ ≥ P (τTN1 > N) ≥ (const.)
TN

e
− π2

2T2
N

N
(4.2)

(note that this bound holds true whenever we have (const.)N1/4 ≤ TN ≤ (const.′)
√
N for

large N). Using this lower bound on ZTNN,δ, together with the upper bound in (2.14), the
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asymptotic expansions in (2.18) and (2.12), we obtain

PTN
N,δ

(
LN,T > M

)
≤ (const.)TN

N∑
r=0

Pδ,TN
(
Lr,TN > M, r ∈ τTN

) 1
min{

√
N − r + 1, TN}

.

The contribution of the terms with r > N − T 2
N is bounded with the upper bound (2.21):

TN

N∑
r=N−T 2

N

1
T 3
N

1√
N − r + 1

≤ (const.)
TN

−→ 0 (N →∞) ,

while for the terms with r ≤ N − T 2
N we get

TN

N∑
r=0

Pδ,TN
(
Lr,TN > M, r ∈ τTN

) 1
TN

= Eδ,TN
(
(LN,TN −M)1{LN,TN>M}

)
.

Finally, we simply observe that {LN,TN = k} ⊆ ⋂k
i=1{τi − τi−1 ≤ N}, hence

Pδ,TN (LN,TN = k) ≤
(
Pδ,TN (τ1 ≤ N)

)k ≤ ck ,

with 0 < c < 1, as it follows from (2.16) and (2.18) recalling that N = O(T 3
N ). Putting

together the preceding estimates, we have

PTN
N,δ

(
LN,TN > M

)
≤ (const.) Eδ,TN

(
(LN,TN −M)1{LN,TN>M}

)
= (const.)

∞∑
k=M+1

(k −M)Pδ,TN (LN,TN = k)

≤ (const.)
∞∑

k=M+1

(k −M) ck ≤ (const.′) cM ,

and (4.1) is proven by choosing M sufficiently large.

Finally, we prove at the same time the second relations in (1.6) and (1.7), by showing
that for every ε > 0 there exists η > 0 such that for large N

PTN
N,δ

(
|SN | ≤ η TN

)
≤ ε , (4.3)

whenever TN satisfies (const.)N1/3 ≤ TN ≤ (const.′)
√
N for largeN . Letting Pk denote the

law of the simple random walk starting at k ∈ N and τ∞1 its first return to zero, it follows
by Donsker’s invariance principle that there exists c > 0 such that inf0≤k≤ηTN Pk(τ

∞
1 ≤

η2T 2
N , Si < TN ∀i ≤ τ∞1 ) ≥ c for large N . Therefore we may write

cPTN
N,δ

(
|SN | ≤ η TN

)
=

c

ZTNN,δ

ηTN∑
k=0

E
[
eH

TN
N,δ(S) 1{|SN |=k}

]

≤ 1

ZTNN,δ

ηTN∑
k=0

η2T 2
N∑

u=0

E
[
eH

TN
N,δ(S) 1{|SN |=k}

]
Pk(τ∞1 = u , Si < TN ∀i ≤ u)

=
1

ZTNN,δ

ηTN∑
k=0

η2T 2
N∑

u=0

E
[
eH

TN
N+u,δ(S) 1{|SN |=k} 1{|SN+i|<TN ∀i≤u} 1{SN+u=0}

]
.
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Performing the sum over k, dropping the second indicator function and using equations
(2.11), (2.21) and (2.3), we obtain the estimate

PTN
N,δ

(
|SN | ≤ η TN

)
≤ 1

cZTNN,δ

η2T 2
N∑

u=0

E
[
eH

TN
N+u,δ(S) 1{N+u∈τTN }

]

≤ 1

cZTNN,δ

η2T 2
N∑

u=0

eφ(δ,TN )(N+u) Pδ,TN (N + u ∈ τ) ≤ (const.)
η2 T 2

N

ZTNN,δ T
3
N

e
− π2

2T2
N

N
.

Then (4.2) shows that equation (4.3) holds true for η small, and we are done. �

5. Proof of Theorem 1.1: part (3)

We now give the proof of part (3) of Theorem 1.1. More precisely, we prove the first
relation in (1.7), because the second one has been proven at the end of Section 4 (see
(4.3) and the following lines). We recall that we are in the regime when N1/3 � TN ≤
(const.)

√
N , so that in particular

C := inf
N∈N

N

T 2
N

> 0 . (5.1)

We start stating an immediate corollary of Proposition 2.3.

Corollary 5.1. For every ε > 0 there exist T0 > 0, Mε ∈ 2N, dε > 0 such that for T > T0

dεT 3∑
k=Mε

Pδ,T
(
k ∈ τ

)
≤ ε .

Note that we can restate the first relation in (1.7) as PTN
N,δ

(
τTNLN,TN

≤ L
)
≥ 1− ε. Let us

define three intermediate quantities, by setting for l ∈ N

B1(l, N) = PTN
N,δ

(
τTNLN,TN

≤ l
)
ZTNN,δ , (5.2)

B2(l, N) = PTN
N,δ

(
l < τTNLN,TN

≤ N − ηT 2
N

)
ZTNN,δ , (5.3)

B3(N) = PTN
N,δ

(
τTNLN,TN

> N − ηT 2
N

)
ZTNN,δ , (5.4)

where we fix η := C/2, so that ηT 2
N ≤ N/2. The first relation in (1.7) will be proven once

we show that for all ε > 0, there exists lε ∈ N such that for large N we have

B2(lε, N)
B1(lε, N)

≤ ε and
B3(N)
B1(lε, N)

≤ ε . (5.5)

We start giving a simple lower bound of B1: since {τTNLN,TN ≤ l} ⊇ {τ
TN
1 > N}, we have

B1(l, N) ≥ E
[
eH

TN
N,δ(S) 1{τTN1 >N}

]
= P

(
τTN1 > N

)
≥ (const.)

TN
e
− π2

2T2
N

N
, (5.6)
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having applied the lower bound in (2.14). Next we consider B2. Summing over the possible
values of τTNLN,TN

and using (2.11), we have

B2(l, N) =
N−ηT 2

N∑
n=l+1

E
[
eH

TN
n,δ (S) 1{n∈τTN }

]
· P
(
τTN1 > N − n

)

=
N−ηT 2

N∑
n=l+1

Pδ,TN (n ∈ τ) eφ(δ,TN )n P
(
τTN1 > N − n

)
≤ (const.)

TN
e
− π2

2T2
N

N
(

N∑
n=l+1

Pδ,TN (n ∈ τ)

)
,

(5.7)

where we have applied the upper bound in (2.14) and the equalities (2.3) and (2.12) (we
also assume that ηT 2

N ∈ N for simplicity). Since N � T 3
N , by Corollary 5.1 we can fix

l = lε depending only on ε such that B2/B1 ≤ ε (recall (5.6)). Finally we analyze B3(N):
in analogy with (5.7) we write

B3(N) ≤
N∑

n=N−ηT 2
N+1

Pδ,TN (n ∈ τ) eφ(δ,TN )n P
(
τTN1 > N − n

)

≤ e
− π2

2T2
N

N (const.)
T 3
N

N∑
n=N−ηT 2

N+1

(const.′)√
N − n+ 1

≤ (const.′′) e
− π2

2T2
N

N 1
T 2
N

,

where we have applied the upper bounds in (2.14) and (2.21) (note that n ≥ (C/2)T 2
N ).

Therefore B3/B1 ≤ ε for N large, and the first relation in (1.7) is proven.

6. Proof of Theorem 1.1: part (4)

We now assume that TN �
√
N , that is

lim
N→∞

N

T 2
N

= 0 . (6.1)

The proof is analogous to the proof of part (3), given in Section 5. We set for l ∈ N

B1(l, N) = PTN
N,δ

(
τTNLN,TN

< l
)
ZTNN,δ , (6.2)

B2(l, N) = PTN
N,δ

(
l ≤ τTNLN,TN ≤ N/2

)
ZTNN,δ , (6.3)

B3(N) = PTN
N,δ

(
τTNLN,TN

> N/2
)
ZTNN,δ , (6.4)

and we first show that for every ε > 0 we can choose lε ∈ N such that for large N

B2(lε, N)
B1(lε, N)

≤ ε and
B3(N)
B1(lε, N)

≤ ε . (6.5)

We start with a lower bound: since {τTNLN,TN ≤ l} ⊇ {τ
TN
1 > N}, by (2.14) we have

B1(l, N) ≥ E
[
eH

TN
N,δ(S) 1{τTN1 >N}

]
= P

(
τTN1 > N

)
≥ (const.)√

N
. (6.6)
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Next consider B2. Summing over the possible values of τTNLN,TN
and using (2.11), we have

B2(l, N) =
N/2∑
k=l

E
[
eH

TN
k,δ (S) 1{k∈τTN }

]
· P
(
τTN1 > N − k

)
=

N/2∑
k=l

Pδ,TN (k ∈ τ) eφ(δ,TN )k P
(
τTN1 > N − k

) (6.7)

(we assume that N/2 ∈ N for notational convenience). By the upper bound in (2.14) we
have P

(
τTN1 > N − k

)
≤ (const.′)/

√
N − k. Since φ(δ, TN ) ≤ 0, we obtain

B2(l, N) ≤ (const.)√
N

(
N∑
k=l

Pδ,TN (k ∈ τ)

)
,

which can be made arbitrarily small by fixing l = lε, thanks to Corollary 5.1, hence we
have proven that B2/B1 ≤ ε for large N . In a similar fashion, for B3 we can write

B3 =
N∑

n=N/2+1

Pδ,TN (n ∈ τ) eφ(δ,TN )n P
(
τTN1 > N − n

)
≤ (const.)

N∑
n=N/2+1

1
n3/2

1√
N − n+ 1

≤ (const.)
(N/2)3/2

N∑
n=N/2+1

1√
N − n+ 1

≤ (const.′)
N

,

where we have used the upper bounds in (2.21) and (2.14) as well as the fact that
φ(δ, TN )n = o(1) uniformly in n ≤ N , by (2.3). Therefore for large N we have B3/B1 ≤ ε
and equation (6.5) is proven. This implies that, for every ε > 0, there exists lε ∈ N such
that for large N

PTN
N,δ

(
τTNLN,TN

< lε
)
≥ 1− ε . (6.8)

Next we turn to the proof of the both relations in (1.8) at the same time. In view of
(6.8), it suffices to show that, for every ε > 0, we can choose M ∈ N and η > 0 such that
for large N

PTN
N,δ

({
τTNLN,TN

< lε

}
∩
({

sup
n≤N
|Sn| > M

√
N

}
∪
{
|SN | ≤ η

√
N
}))

≤ ε . (6.9)

Summing over the values of τTNLN,TN
and using (2.11), the l.h.s. of (6.9) is bounded from

above by
lε−1∑
u=0

Pδ,TN (u ∈ τ) eφ(δ,TN )uAN,u(M,η) ,

where

AN,u(M,η) :=
P
({
τTN1 > N − u

}
∩
({

supn≤N−u |Sn| > M
√
N
}
∪
{
|SN−u| ≤ η

√
N
}))

ZTNN,δ
.

Therefore equation (6.9) will be proven once we show that we can chose M,η such that
AN,u(M,η) ≤ ε/lε, for N large. For the partition function appearing in the denominator,
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applying (6.2) and (6.6) we easily obtain ZTNN,δ ≥ (const.)/
√
N . Setting Nu := N − u for

short, the numerator in the definition of AN,u(M,η) can be bounded from above by

P
(
|Si| > 0 , ∀i ≤ Nu

)
·P
({

sup
n≤Nu

|Sn| > M
√
N

}
∪
{
|SNu | ≤ η

√
N
} ∣∣∣∣ |Si| > 0 , ∀i ≤ Nu

)
.

It is well-known [4] that P
(
|Si| > 0 , ∀i ≤ n

)
≤ (const.)/

√
n. Recalling the weak conver-

gence of the random walk conditioned to stay positive toward the Brownian meander [2],
we conclude that for every fixed u ≤ lε and for large N we have the bound

AN,u(M,η) ≤ (const.)P
({

sup
0≤t≤1

mt > M

}
∪
{
m1 ≤ η

})
. (6.10)

We can then choose M large and η small so as to satisfy the desired bound AN,u(M,η) ≤
ε/lε, and the proof is completed. �

Appendix A. On the free energy

A.1. Free energy estimates. We determine the asymptotic behavior of φ(δ, T ) as T →
∞, for fixed δ < 0. By Theorem 1 in [3], we have QT

(
φ(δ, T )

)
= e−δ, and furthermore

QT (λ) = 1 +
√
e−2λ − 1 · 1− cos

(
T arctan

√
e−2λ − 1

)
sin
(
T arctan

√
e−2λ − 1

) ,

see, e.g., equation (A.5) in [3]. If we set

γ = γ(δ, T ) := arctan
√
e−2φ(δ,T ) − 1 , (A.1)

we can then write

Q̃T
(
γ(δ, T )

)
= e−δ where Q̃T (γ) = 1 + tan γ · 1− cos(Tγ)

sin(Tγ)
. (A.2)

Note that γ 7→ Q̃T (γ) is an increasing function with Q̃T (0) = 1 and Q̃T (γ)→ +∞ as γ ↑ π
T ,

hence 0 < γ(δ, T ) < π
T . So we have to study the equation Q̃T (γ) = e−δ for 0 < γ < π

T . An
asymptotic expansion yields

(1 + o(1)) γ · 1− cos(Tγ)
sin(Tγ)

= e−δ − 1 ,

where here and in the sequel o(1) is to be understood as T →∞ with δ < 0 fixed. Setting
x = Tγ gives

(1 + o(1))x · 1− cosx
sinx

= T (e−δ − 1) ,

where 0 < x < π. Since the r.h.s. diverges as T → ∞, x must tend to π and a further
expansion yields

(1 + o(1))
2π
π − x = T (e−δ − 1) ,

from which we get x = π − 2π
e−δ−1

1
T (1 + o(1)) and hence, since γ(δ, T ) = x

T ,

γ(δ, T ) =
π

T
− 2π
e−δ − 1

1
T 2

(1 + o(1)) . (A.3)

Recalling (A.1), we have√
e−2φ(δ,T ) − 1 = tan

(
π

T
− 2π
e−δ − 1

1
T 2

(1 + o(1))
)
.
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Since the function λ 7→ arctan
√
e−2λ − 1 is decreasing and continuously differentiable,

with non-vanishing first derivative, it follows that

φ(δ, T ) = − π2

2T 2

(
1− 4

e−δ − 1
1
T

+ o

(
1
T

))
, (A.4)

so that equation (2.3) is proven. �

A.2. Further estimates. We now derive some asymptotic properties of the variables
(τ1, ε1) under Pδ,T , as T →∞ and for fixed δ < 0.

We first focus on Q1
T (φ(δ, T )), where Q1

T (λ) := E(e−λτ
T
1 1{εT1 =1}) =

∑
n∈N e

−λnq1
T (n).

In analogy with the computations above, by equation (A.5) in [3] we can write

Q1
T (φ(δ, T )) = Q̃1

T (γ(δ, T )) , where Q̃1
T (γ) :=

tan γ
2 sin(Tγ)

,

so that from (A.3) we obtain as T →∞

Q1
T (φ(δ, T )) =

π

T

1
2 · 2π

e−δ−1
1
T

(1 + o(1)) −→ e−δ − 1
4

. (A.5)

In particular, by (2.7) we can write as T →∞

Eδ,T (ε2
1) = 2Pδ,T (ε1 = +1) = 2 eδ Q1

T (φ(δ, T )) −→ 1− eδ
2

. (A.6)

Next we determine the asymptotic behavior of Eδ,T (τ1) as T → ∞ for fixed δ < 0.
Recalling (2.8) we can write

Eδ,T (τ1) = eδ
∑
n∈N

n qT (n) e−φ(δ,T )n = −eδ ·Q′T (φ(δ, T )) , (A.7)

Eδ,T (τ2
1 ) = eδ

∑
n∈N

n2 qT (n) e−φ(δ,T )n = eδ ·Q′′T (φ(δ, T )) , (A.8)

hence the problem is to determine Q′T (λ) for λ = φ(δ, T ). Introducing the function γ(λ) :=
arctan

√
e−2λ − 1 and recalling (A.2), since QT = Q̃T ◦ γ it follows that

Q′T (λ) = Q̃′T (γ(λ)) · γ′(λ) , (A.9)

Q′′T (λ) = γ′′(λ) · Q̃′T (γ(λ)) + (γ′(λ))2 · Q̃′′T (γ(λ)) . (A.10)

By direct computation

Q̃′T (γ) =
1 cos(Tγ)
sin(Tγ)

·
(

1
cos2 γ

+
T tan γ
sin(Tγ)

)
, (A.11)

Q̃′′T (γ) =
1− cos(Tγ)

sin(Tγ)
·
(

2T
sin(Tγ) cos2 x

+
2 sin γ
cos3 x

+
T 2 tan γ
sin2(Tγ)

(1− cos(Tγ))
)
, (A.12)

and

γ′(λ) = − 1√
e−2λ − 1

, γ′′(λ) = − e−2λ

(e−2λ − 1)3/2
.

Recalling (A.7) and (A.1), we have

Eδ,T (τ1) = −eδ · Q̃′T (γ(δ, T )) · γ′(φ(δ, T )) .
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Now the asymptotic behaviors (A.3) and (A.4) give

Q̃′T (γ(δ, T )) =
e−δ − 1
π

T +
(e−δ − 1)2

2π
T 2 + o(T ) , γ′(φ(δ, T )) = −T

π
+ o(T ) ,

and

Q̃′′T (γ(δ, T )) =
(e−δ − 1)3

2π2
T 4 + o(T 4) , γ′′(φ(δ, T )) = −T

3

π3
+ o(T 3) .

Combining the preceding relations, we obtain

Eδ,T (τ1) =
eδ(e−δ − 1)2

2π2
T 3 +

1− eδ
π2

T 2 + o(T 2) ,

Eδ,T (τ2
1 ) =

eδ(e−δ − 1)3

2π4
T 6 + o(T 6) ,

which show that equations (2.19) and (2.20) hold true. �

Appendix B. Renewal theory estimates

This section collects the proofs of Lemma 2.1 and Proposition 2.3.

B.1. Proof of Lemma 2.1. We recall that, by equation (5.8) in Chapter XIV of [4], we
have the following explicit formula for qjT (n) (defined in (2.5)):

q0
T (n) =

(
2
T

b(T−1)/2c∑
ν=1

cosn−2

(
πν

T

)
sin2

(
πν

T

))
· 1{n is even} ,

q1
T (n) =

(
1
T

b(T−1)/2c∑
ν=1

(−1)ν+1 cosn−2

(
πν

T

)
sin2

(
πν

T

))
· 1{n−T is even} ,

(B.1)

hence qT (n) = P (τT1 = n) = q0
T (n) + 2q1

T (n) is given for n and T even by

qT (n) =
4
T

b(T+2)/4c∑
ν=1

cosn−2

(
(2ν − 1)π

T

)
sin2

(
(2ν − 1)π

T

)
, (B.2)

(notice that b(T − 1)/2c = T/2− 1 for T even).
We split (B.2) in the following way: we fix ε > 0 and we write

P (τT1 = n) = V0(n) + V1(n) + V2(n) , (B.3)

where we set

V0(n) :=
4
T

cosn−2
(π
T

)
sin2

(π
T

)
,

V1(n) :=
4
T

bεT c∑
ν=2

cosn−2

(
(2ν − 1)π

T

)
sin2

(
(2ν − 1)π

T

)
,

V2(n) :=
4
T

b(T+2)/4c∑
ν=bεT c+1

cosn−2

(
(2ν − 1)π

T

)
sin2

(
(2ν − 1)π

T

)
.

Plainly, as T →∞ we have

V0(n) =
4π2

T 3
(1 + o(1)) e−g(T )n , (B.4)
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where o(·) refer as T → ∞, uniformly in n. Next we focus on V1: for ε small enough and
x ∈ [0, πε] we have log(cos(x)) ≤ −x2

3 , and since sin(x) ≤ x we have

V1(n) ≤ 4π2

T

bεT c∑
ν=2

(
2ν − 1
T

)2

e−
(n−2)π2

3
( 2ν−1

T
)2 ≤ (const.)

∫ ∞
2/T

x2 e−
π2

3
nx2

dx

=
(const.)
n3/2

∫ ∞
2
√
n/T

y2 e−
π2

3
y2 dy ≤ (const.′)

n3/2
e−

π2n
T 2 ≤ (const.′)

n3/2
e−g(T )n ,

(B.5)

where the last inequality holds for T large by (2.12). The upper bound on V2 is very rough:
since sin(x) ≤ x and cos(x) ≤ cos(πε) for x ∈ [πε, π/2], we can write

V2(n) ≤ 16π2

T 3
cosn−2(πε)

b(T+2)/4c∑
ν=bεT c+1

ν2 ≤ (const.) cosn(πε) . (B.6)

Finally, we get a lower bound on V1 +V2, but only when 400 ≤ n ≤ T 2. Since log(cos(x)) ≥
−2

3x
2 and sin(x) ≥ x

2 for x ∈ [0, π/4], we can write

V1(n)+V2(n) ≥ π2

T

bT/8c∑
ν=2

(
2ν − 1
T

)2

e−
2nπ2

3
( 2ν−1

T
)2 ≥ π2

2

∫ 1/4

4/T
x2 e−

2π2

3
nx2

dx

=
π2

2n3/2

∫ √n/4
4
√
n/T

y2 e−
π2

3
y2 dy ≥ π2

2n3/2

∫ 5

4
y2 e−

π2

3
y2 dy =

(const.)
n3/2

.

(B.7)

Putting together (B.4), (B.5) and (B.6), it is easy to see that the upper bound in (2.13)
holds true (consider separately the cases n ≤ T 2 and n > T 2), while the lower bound
follows analogously from (B.4) and (B.7). To see that also equation (2.14) holds it is
sufficient to sum the bounds in (2.13) over n, and the proof is completed. �

B.2. Proof of Proposition 2.3. For convenience, we split the proof in two parts, dis-
tinguishing between the two regimes n ≤ T 3 and n ≥ T 3.

The regime n ≤ T 3. The lower bound in (2.21) for n ≤ T 3 follows easily from Pδ,T (n ∈
τ) ≥ Pδ,T (τ1 = n) together with the lower bound in (2.15). The upper bound requires
more work. We set for k, n ∈ N

Kk(n) = KT
k (n) := Pδ,T (τk = n) ,

and we note that, by (2.16) and (2.18), there exists T0 > 0 and α < 1 such that∑T 3

n=1K1(n) ≤ α, for every T > T0. Since Kk+1(n) =
∑n−1

m=1Kk(m)K1(n − m), an
easy induction argument yields

T 3∑
n=1

Kk(n) ≤ αk , ∀k ∈ N . (B.8)

Next we turn to a pointwise upper bound on Kk(n). From the upper bound in (2.15), we
know that there exists C > 0 such that K1(n) ≤ C/min{n3/2, T 3} for every n ≤ T 3. We
now claim that

Kk(n) ≤ k3 αk−1 C

min{n3/2, T 3} , ∀k ∈ N , ∀n ≤ T 3 . (B.9)
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We argue by induction: we have just observed that this formula holds true for k = 1.
Assuming now that the formula holds for k = 1, . . . , 2m− 1, we can write for n ≤ T 3

K2m(n) ≤ 2
dn/2e∑
i=1

Km(i)Km(n− i) ≤ 2
dn/2e∑
i=1

Km(i)
(
m3 αm−1 C

min{(n− i)3/2, T 3}

)
,

and since min{(n−i)3/2, T 3} ≥ min{(n/2)3/2, T 3} ≥ 2−3/2 min{n3/2, T 3} for i in the range
of summation, from (B.8) we get

K2m(n) ≤ 25/2m3 αm−1 C

min{n3/2, T 3}

dn/2e∑
i=1

Km(i) ≤ (2m)3 α2m−1 C

min{n3/2, T 3} ,

so that (B.9) is proven (we have only checked it when k = 2m, but the case k = 2m + 1
is completely analogous). For n ≤ T 3 we can then write

Pδ,T (n ∈ τ) =
∞∑
k=0

Kk(n) ≤ C

min{n3/2, T 3}

∞∑
k=0

k3 αk−1 =
(const.)

min{n3/2, T 3} ,

hence the upper bound in (2.21) is proven. �

The regime n ≥ T 3. We start proving the lower bound in (2.21) for n ≥ T 3. Setting
γm := inf{k ≥ m : k ∈ τ} we can write

Pδ,T (n ∈ τ) ≥ Pδ,T
(
τ ∩ [n− T 3, n− 1] 6= ∅, n ∈ τ

)
=

n−1∑
k=n−T 3

Pδ,T
(
µn−T 3 = k

)
Pδ,T

(
n− k ∈ τ

)
≥ (const.)

T 3
Pδ,T

(
τ ∩ [n− T 3, n− 1] 6= ∅

)
,

where we have applied the lower bound in (2.21) to Pδ,T
(
n− k ∈ τ

)
, because n− k ≤ T 3.

It then suffices to show that there exist c, T0 > 0 such that for T > T0 and n ≥ T 3

Pδ,T
(
τ ∩ [n− T 3, n− 1] 6= ∅

)
> c .

We are going to prove the equivalent statement

Pδ,T
(
τ ∩ [n− T 3, n− 1] 6= ∅

)
≥ C Pδ,T

(
τ ∩ [n− T 3, n− 1] = ∅

)
, (B.10)

for a suitable C > 0. We have

Pδ,T
(
τ ∩ [n− T 3, n− 1] 6= ∅

)
=

n−T 3−1∑
`=0

Pδ,T
(
` ∈ τ

) n−1∑
k=n−T 3

Pδ,T (τ1 = k − `)

≥ (const.)
n−T 3−1∑
`=0

Pδ,T
(
` ∈ τ

) (
e−(φ(δ,T )+g(T ))(n−T 3−`) − e−(φ(δ,T )+g(T ))(n−`)

)
,

(B.11)

having applied (2.16). Analogously, applying (2.17) we get

Pδ,T
(
τ ∩ [n− T 3, n− 1] = ∅

)
=

n−T 3−1∑
`=0

Pδ,T
(
` ∈ τ

) ∞∑
k=n

Pδ,T (τ1 = k − `)

≤ (const.)
n−T 3−1∑
`=0

Pδ,T
(
` ∈ τ

)
e−(φ(δ,T )+g(T ))(n−`) ,

(B.12)
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having used the upper bound in (2.13). However we have

e−(φ(δ,T )+g(T ))(n−T 3−`) − e−(φ(δ,T )+g(T ))(n−`)

e−(φ(δ,T )+g(T ))(n−`) = eT
3(φ(δ,T )+g(T )) − 1 T→∞−−−−→ e

2π2

(e−δ−1) − 1 ,

thanks to (2.18), so that (B.10) is proven.
It remains to prove the upper bound in (2.21) for n ≥ T 3. Notice first that

Pδ,T
(
τ ∩ [n− T 3, n− T 2] 6= ∅ , n ∈ τ

)
=

n−T 2∑
k=n−T 3

Pδ,T (γn−T 3 = k)Pδ,T (n− k ∈ τ)

≤ (const.)
T 3

Pδ,T
(
τ ∩ [n− T 3, n− T 2] 6= ∅

)
≤ (const.)

T 3
,

having applied the upper bound in (2.21) to Pδ,T (n − k ∈ τ), because T 2 ≤ n − k ≤ T 3.
If we now show that there exist c, T0 > 0 such that for T > T0 and for n > T 3

Pδ,T
(
τ ∩ [n− T 3, n− T 2] 6= ∅

∣∣n ∈ τ) ≥ c , (B.13)

it will follow that

Pδ,T (n ∈ τ) ≤ 1
c
Pδ,T

(
τ ∩ [n− T 3, n− T 2] 6= ∅ , n ∈ τ

)
≤ (const.′)

T 3
,

and we are done. Instead of (B.13), we prove the equivalent relation

Pδ,T
(
τ ∩ [n− T 3, n− T 2] 6= ∅, n ∈ τ

)
≥ CPδ,T

(
τ ∩ [n− T 3, n− T 2] = ∅, n ∈ τ

)
, (B.14)

for some C > 0. We start considering the l.h.s.:

Pδ,T
(
τ ∩ [n− T 3, n− T 2] 6= ∅, n ∈ τ

)
=

n−T 3−1∑
m=0

Pδ,T (m ∈ τ)
n−T 2∑
`=n−T 3

Pδ,T (τ1 = `−m)Pδ,T (n− ` ∈ τ) .
(B.15)

Notice that Pδ,T (n − ` ∈ τ) ≥ (const.)/T 3 for n − ` ∈ 2N by the lower bound in (2.21).
Equation (2.16) then yields

n−T 2∑
`=n−T 3

Pδ,T (τ1 = `−m) ≥ (const.)
(
e−(φ(δ,T )+g(T ))(n−T 3−m) − e−(φ(δ,T )+g(T ))(n−T 2−m)

)
= (const.) e−(φ(δ,T )+g(T ))(n−T 3−m) (1− e−(φ(δ,T )+g(T ))(T 3−T 2))

≥ (const.′) e−(φ(δ,T )+g(T ))(n−T 3−m) ≥ (const.′′) e−(φ(δ,T )+g(T ))(n−m) ,

having used repeatedly (2.18). Coming back to (B.15), we obtain

Pδ,T
(
τ ∩ [n− T 3, n− T 2] 6= ∅, n ∈ τ

)
≥ (const.)

T 3

n−T 3−1∑
m=0

Pδ,T (m ∈ τ) e−(φ(δ,T )+g(T ))(n−m) .
(B.16)

Next we focus on the r.h.s. of (B.14):

Pδ,T
(
τ ∩ [n− T 3, n− T 2] = ∅, n ∈ τ

)
=

n−T 3−1∑
m=0

Pδ,T (m ∈ τ)
n∑

`=n−T 2

Pδ,T (τ1 = `−m)Pδ,T (n− ` ∈ τ) .
(B.17)
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Since `−m ≥ T 3 − T 2, from the upper bound in (2.15) we get

Pδ,T (τ1 = `−m) ≤ (const.)
T 3

e−(φ(δ,T )+g(T ))(`−m) ≤ (const.′)
T 3

e−(φ(δ,T )+g(T ))(n−m) ,

because n− ` ≤ T 2 (recall (2.18)). Furthermore, by the upper bound in (2.21) applied to
Pδ,T (n− ` ∈ τ), for n− ` ≤ T 2, we obtain

n∑
`=n−T 2

Pδ,T (n− ` ∈ τ) ≤ (const.)
n∑

`=n−T 2

1
(n− `)3/2

≤ (const.′) ,

and coming back to (B.17) we get

Pδ,T
(
τ ∩ [n− T 3, n− T 2] = ∅, n ∈ τ

)
≤ (const.′)

T 3

n−T 3−1∑
m=0

Pδ,T (m ∈ τ) e−(φ(δ,T )+g(T ))(n−m) .
(B.18)

Comparing (B.16) and (B.18) we see that (B.14) is proven and this completes the proof. �
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