ON THE MOMENTS OF THE (2 + 1)-DIMENSIONAL
DIRECTED POLYMER AND STOCHASTIC HEAT EQUATION
IN THE CRITICAL WINDOW

FRANCESCO CARAVENNA, RONGFENG SUN, AND NIKOS ZYGOURAS

ABSTRACT. The partition function of the directed polymer model on Z**! undergoes a
phase transition in a suitable continuum and weak disorder limit. In this paper, we focus
on a window around the critical point. Exploiting local renewal theorems, we compute the
limiting third moment of the space-averaged partition function, showing that it is uniformly
bounded. This implies that the rescaled partition functions, viewed as a generalized random
field on R?, have non-trivial subsequential limits, and each such limit has the same explicit
covariance structure. We obtain analogous results for the stochastic heat equation on R?,
extending previous work by Bertini and Cancrini [BC9S].
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1. INTRODUCTION AND RESULTS

We set N := {1,2,3,...} and Ny := Nu {0}. We write a,, ~ b, to mean lim,,_,o, a, /b, = 1.
We denote by Cy(R%) (resp. C.(R?)) the space of continuous and bounded (resp. compactly
supported) real functions defined on R?, with norm |¢|w := sup,cga |6()].

1.1. DIRECTED POLYMER IN RANDOM ENVIRONMENT. One of the simplest, yet also
most interesting models of disordered system is the directed polymer model in random envi-
ronment on Z4t!, which has been the subject of the recent monograph by Comets [Com17].
Let S = (Sn)nen, be the simple symmetric random walk on 7Z%. The random environment
(or disorder) is a collection w = (Wn,z) (s z)enxz¢ Of 1.1.d. random variables. We use P and E,
resp. P and E, to denote probability and expectation for S, resp. for w. We assume that

Elw, 2] =0, Var[wp 2] =1, A(B) :=logE[e®*m=] e R for small 8> 0. (1.1)

Given w, polymer length N € N, and inverse temperature (or disorder strength) 8 > 0,
the polymer measure P?\, is then defined via a Gibbs change of measure for S:

PY(S) = 5 P(S), (1.2)
N

where Z ]BV is the normalization constant, called partition function:

78 = [ezﬁgfwwn,sn—w))] _ (1.3)

(We stop the sum at N —1 instead of N, which is immaterial, for later notational convenience.)
Note that Zﬁ, is a random variable, as a function of w.

We use P, and E, to denote probability and expectation for the random walk starting at
Sy = z € Z%. We denote by Z]ﬁv(z) the corresponding partition function:

Z8(2) = E. [625;11(5%,5”*/\(5))] ' (1.4)
We investigate the behavior as N — o of the diffusively rescaled random field

{ZB@VN) : t>0, zer!}, (1.5)
for suitable § = By, where we agree that ZJBV(Z) = ZFNJ([ZJ) for non-integer N, z.

In dimension d = 1, Alberts, Khanin and Quastel [AKQ14] showed that for Sy = BN_1/4,
the random field (1.5]) converges in distribution to the Wiener chaos solution u(t,z) of the
one-dimensional stochastic heat equation (SHE)

ou(t, x)
ot

where W is space-time white noise on R x R. The existence of such an intermediate disorder
regime is a general phenomenon among models that are so-called disorder relevant, see
[CSZ17a), and the directed polymer in dimension d = 1 is one such example.

_ %Au(t,x) FRW () ult2),  u(0,@) =1, (1.6)

A natural question is whether an intermediate disorder regime also exists for the directed
polymer in dimension d = 2. We gave an affirmative answer in [CSZ17b|, although the
problem turns out to be much more subtle than d = 1. The standard Wiener chaos approach
fails, because the model in d = 2 is so-called marginally relevant, or critical. We will further
elaborate on this later. Let us recall the results from [CSZ17b], which provide the starting
point of this paper.
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Henceforth we focus on d = 2, so S = (Sy,)nen, is the simple random walk on 7Z2. Let
Zk = {(z1,...,2) € ZF : 21 + - + 2, is even}. (1.7)
then (n, S,) € Z3, ., for all n € N. The transition

even

Due to periodicity, if we take Sy € Z2,,,
probability kernel of S will be denoted by

gn(z) :=P(Sy = x| So = 0) = (gnja(x) + 0(3)) 2Ly(nayezz.. ) asn — oo, (1.8)

by the local central limit theorem, where g, (-) is the standard Gaussian density on R?:

2
gu(T) := %e e u>0, zeR?. (1.9)
For notational convenience, we will drop the conditioning in when the random walk
starts from zero. The multiplicative factor 2 in is due to periodicity, while the Gaussian
density g,,/2() is due to the fact that at time n, the walk has covariance matrix 51.
The overlap (expected number of encounters) of two independent simple symmetric
random walks S and S’ on Z? is defined by

N

Ry = 3 P(S, = §) Z S gu(a) Zq% )=o) (0)

n=1 n=1 xe7?

where the asymptotic behavior follows from ([1.8]). It was shown in [CSZ17b| that the correct

choice of the disorder strength is 8 = By = [/+/Ry. More precisely, denoting by W7 a
standard normal, we have the following convergence in distribution:

N 2) if3<1
Z]%N _d )P <06 = ﬁ ' ? , where a = log s .
N—oo 0 if3>1 1- /3

(1.11)

This establishes a weak to strong disorder phase transition in ﬁ (with critical point BC =1),
similar to what was known for the directed polymer model in Z4*! with d > 3 [Com17]. It
was also proved in [CSZ17b, Theorem 2.13| that for B <1, after centering and rescaling, the
random field of partition functions converges to the solution of the SHE with additive
space-time white noise, known as Edwards-Wilkinson fluctuation. Similar results have been
recently obtained in [GRZ17] for the SHE with multiplicative noise.

The behavior at the critical point B = Bc, i.e. By = 1/v/Ry, is quite subtle. For each
x € R? and t > 0, the partition function Z ff}’ (z+/N) converges to zero in distribution as
N — o0, by , while its expectation is identically one, see , and its second moment
diverges. This suggests that the random field z — fo; (z+/N) becomes rough as N — o0,
so we should look at it as a random distribution on R? (actually a random measure, see
below). We thus average the field in space and define

ZW(p) = N Y oo@) 2 (aVN),  for ¢e Co(R?). (1.12)

zelZ2

The first moment of Z ]szzr (¢) is easily computed by Riemann sum approximation:

Jim B[Z3(6)] = Jim L 3 o= [ o (1.13)
VN

Our main result is the sharp asymptotic evaluation of the second and third moments. These
will yield important information on the convergence of the generalized random field ((1.12)).
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Let us first specify our choice of § = fy. Recalling that A(+) is the log-moment generating
function of the disorder w, see (|1.1)), we fix Sy such that

02 = MEN-DAGY) g L <1+

Noo Tow (1 + 0(1))) , for some ¥ eR. (1.14)

log N

Since A(t) ~ %tz as t — 0, we have Sy ~ 1/4/Ry, so we are indeed exploring a window
around the critical point ﬁc = 1. Let us recall the Euler-Mascheroni constant:

Q0
v o= —J e “logudu ~ 0.577. (1.15)
0

Remark 1.1. The asymptotic behavior in (1.10) can be refined as follows:
Ry = @ + 2 4 0o(1) where a:=v+logl6—m, (1.16)
see |[CSZ18, Proposition 3.2|. This leads to an equivalent reformulation of :
oy = e (1+ fgg_zoxér(l +o(1))) -

It is possible to express this condition in terms of By (see |[CSZ18, Appendix A.4]):

3/2 7r(19—o¢)+7r2(§,€2_l_l,€ )
BY = oW ~ Qg n® T Toen 2 (1 +0(1)), (1.17)

where k3, k4 are the disorder cumulants, i.e. A(t) = 32 + St3 + 244 + O(t°) as t — 0.

We define the following special function:

© o(F=7)s g qp5—1
Gy(w) := f _—

. TGt 1) ds, w € (0,00). (1.18)

We now state our first result, where we compute the second moment of Zﬁ{i (9).

Theorem 1.2 (Second moment). Let ¢ € C.(R?), t > 0, ¥ € R. Let By satisfy (1.14)).
Then

lim Var [zfvfg(qs)] - JszRz 6(2) (2') Ky g(z — #')dzd2’ (1.19)

N—0
where the covariance kernel K y(-) is given by
Kip(x) = f gu(x) Gy(v —u)dudv . (1.20)
O<u<wv<t

The same covariance kernel K; y was derived by different methods by Bertini and Cancrini
[BCIS| for the 2d Stochastic Heat Equation, see Subsection It is not difficult to see that

Ky y(z) ~ Cylog |71\’ as |z| — 0, (1.21)
with Cy € (0,00), and hence the integral in is finite.
Remark 1.3 (Scaling covariance). [t is easily checked from that for any t > 0,
Ki9(x) = Ky 9,(x/V1) with V¢ := 19 + logt. (1.22)

This is also clear because we can write Z]ﬁ\,’;’ (¢) = Zf/}v (¢pr) with M := Nt and ¢i(z) :=
tp(vtx), see (1.12)), and note that By can be expressed as By, provided ¥ is replaced by
Uy =0 +logt (just set N equal to Nt in (1.14)), and recall (1.16])).
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The starting point of the proof of Theorem [I.2]is a polynomial chaos expansion of the
partition function. The variance computation can then be cast in a renewal theory framework,
which is the cornerstone of our approach (see Subsection for an outline). This allows us
to capture the much more challenging third moment of the field. Let us extend the function

Gy(w) in (1.18) with a spatial component, recalling (1.9):
Gy(w,z) := Gy(w) gua(), w>0, reR?%. (1.23)

We can now state the main result of this paper.

Theorem 1.4 (Third moment). Let ¢ € C.(R?), t > 0, 9 € R. Let By satisfy (1.14).
Then

lim E[(Z]@Z(qﬁ) - E[Zﬁ}i(qﬁ)] )3] = f (2) p(2") p(2") My g(2, 7', 2") dzd2’ d2" < o0,

N—w
(R%)3
(1.24)
where the kernel My () is given by
0
M y(z,2',2") = Z gm—1gm {It(i';)(z,z’,z”) ~|—I§Tg)(z',z”,z) +I§?)(z",z,z')}, (1.25)
m=2
with It(:'; () defined as follows:
T (2,2, 2") = f dadbdz dy ge (w1 - 2) gt (21 — 2') gaz (23 — 2”)
O<ai<bi<...<am<bm<t
T1YL T Ym ER?
(1.26)

-Gy(br — a1, y1 — x1) Gaz—b, (x2 —y1) Gy(ba — az, Yo — 2)
Hgarbz 2 (T = Yi—2) Gai—viy (Ti — yi—1) Go(bi — ai, yi — @) -
2

The expression (|1.26)) reflects a key combinatorial structure which emerges from our
renewal framework. Establishing the convergence of the series in (1.25]) is highly non-trivial,
which shows how delicate things become in the critical window.

We remark that relation ([1.24) holds also for the mixed centered third moment with
different test functions ¢p(), ), ¢ € C.(R?), with the same kernel M; »(z, 2/, 2"). Note

that this kernel is invariant under any permutation of its variables, because It(:;)(z, 22" is
symmetric in z and 2’ (but not in 2”, hence the need of symmetrization in (1.25])).
Let us finally come back to the convergence of the random field Zﬁ;}’ (zv/ N) of diffusively

rescaled partition functions. By averaging with respect to a test function, as in ([1.12)), we
regard this field as a random measure on R?. More explicitly, if we define

23 (da) = DS 2 (V) y(da), (1.27)
ye xlﬁZQ
we can write Zﬁfz’ (¢) = (go o(x) ,ff]@é\’(dm ), see (L.12). Note that (QP V) Nen is a sequence
of random variables taking values in M (R?), the Polish space of locally finite measures on
R? with the vague topology (i.e. v, — v in M(R?) if and only if {¢dv, — @ dv for any
¢ € C.(R?)). We can make the following remarks.
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e The convergence of the first moment (T.13) implies tightness of (2 Vi) Nen, see [K97,
Lemma 14.15|. This yields the existence of weak subsequential limits:

ij@v (dx) 4, Z(dx) as N — oo along a subsequence,,
where the limit Z(dz) = Z; y(dz) can in principle depend on the subsequence.

e The convergence of the second moment ([1.19)) implies uniform integrability of Z ]vi (9).
It follows that any subsequential limit Z(dz) has mean measure given by Lebesgue
measure: E[ {2 ¢(z) Z(da)] = § ¢(x) dz. Moreover, by (L.19) and Fatou’s Lemma,

Var [ o(x) Z(dw)] < f () p(2') Kiy(z — 2')dzd2’ < 0. (1.28)
R2 R2xR2

However, this does not rule out that the variance in ((1.28)) might actually vanish, in
which case the limit Z(dx) would just be the trivial Lebesgue measure.

e The convergence of the third moment (| rules out this triviality. Indeed, (|1.24])
implies that E[|Z1ﬁ\,]¥ (®)P] < [Z’BN(|¢\) ] is bounded, so the squares Zﬁ,ﬁ’(gb)Q are
uniformly integrable and the inequality in ((1.28) is actually an equality.

We can combine the previous considerations in the following result.

Theorem 1.5. Lett > 0,9 € R. Let By satisfy (1.14). The random measures (c@p]@v (dz)) Nen
in (1.27) admit weak subsequential limits Z,9(dz), and any such limit satisfies

E[JRQ o(2) Zg(da)| — J b(x) dz (1.29)

ar [J o(x) Ztﬂg(dx)_ = J d(2) p(2') Ky (2 — ') dz d2’ (1.30)
R2 | R2 xR2

?

In particular, every weak subsequential limit Z; y(dz) is a random measure with the same

3_
< w. (1.31)

f o) Z49(da)
R2

covariance structure. It is natural to conjecture that the whole sequence (Z; Jgf (dz))nen has
a weak limit, but this remains to be proved.

We conclude with a remark on intermittency. As the asymptotics behavior (1.21)) suggests,
when we fix the starting point of the partition function instead of averaging over it, i.e. we

consider ZjﬁvN defined in (|1.3), the second moment blows up like log N. More precisely, in
[CSZ18, Proposition A.1] we have shown that as N — o

E[(ZW)?] ~ c(logN),  with  c¢=§ Gy(t)dt. (1.32)

This is a signature of intermittency, because it shows that I[Z,[(Z]ﬁ\,’V 2] » E[Zjﬁv’v =11t
also implies that for any ¢ > 2 we have the bound

E[(Z5¥)1] = ¢ (log N)I7L. (1.33)

Indeed, since E[Z]BVN] = 1, we can introduce the size-biased probability P*(A) := E[1 4 Z]@N]
and note that E[(Z5N)1] = E*[(Z5N)41] = B*[ 22 ]" " = E[(Z2)2]*"" by Jensen.

Remark 1.6. We formulated our results only for the directed polymer on Z2*1, but our
techniques carry through for other marginally relevant directed polymer type models, such as
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the disordered pinning model with tail exponent 1/2, and the directed polymer on Z*+1 with
Cauchy tails (see [CSZ1TDH] ).

1.2. THE 2d STOCHASTIC HEAT EQUATION. An analogue of Theorem for the
stochastic heat equation (SHE) in R? was proved by Bertini and Cancrini in [BC9S§],
although they did not obtain the analogue of Theorem We formulate these results next.

The SHE as written in (1.6 is illtposed due to the product W - u. To make sense of it, we
mollify the space-time white noise W in the space variable. Let j € C2°(R?) be a probability
density on R? with j(z) = j(—2), and let

J =7
Fore > 0, let j.(z) := £72j(x/e). Then the space-mollified noise W€ is defined by We(t, z) :=
Sge Je(x — y)W(t, y)dy. We consider the mollified equation
ou®
ot

which admits a unique mild solution (with Ito integration).

1 .
= §Au€ + Beu® W*e, u(0,2) =1 VaoeR?, (1.34)

A~

It was shown in [CSZITD| that if we rescale 8. := /22—, then for any fixed (t,2) €

loge—1"

R* x R? the mollified solution u®(t, ) converges in distribution as e — 0 to the same limit
as in (|1.11)) for the directed polymer partition function, with §. = 1 being the critical point.
In [BCY§|, Bertini and Cancrini considered the critical window around 5. = 1 given by

2 +o(1 .
B2 = 7r1 +2 01< 2) , with p e R. (1.35)
log=  (logz)
This is comparable to our choice of Sy, see (1.14]) and ((1.17)), if we make the identification
€2 = 1/N (note that the third cumulant k3 = 0 for Gaussian random variables). In this
critical window, u®(¢, z) converges to 0 in distribution, while its expectation is constant:

IE{ qb(x)ua(t,x)d:c] = ¢(x)dx. (1.36)
R2 R2
Bertini and Cancrini showed that when interpreted as a random distribution on R?, u¢(t, -)

admits subsequential weak limits, and they computed the limiting covariance. This is the
analogue of our Theorem [I.2] which we now state explicitly. Let us set

us(t, ¢) := -, o(x)us(t,x) dx, for ¢ € C.(R?).

Theorem 1.7 ([BCI8]). Let B be chosen as in (1.35)). Then, for any ¢ € C.(R?),

lim Var [u(t, 8)] = 2 JRZ 9RO Kno(5) deds (1.37)

e—0t
where Ky g is defined as in Theorem[1.9, with
1
19:10g4+2f J J(m)logij(y)dxdy—'y—l—g. (1.38)
R2 JR2 |z —yl T

In Section [§| we provide an independent proof of Theorem which employs the renewal
framework of this paper. Note that, by Feynman-Kac formula, the mollified solution u® (¢, ¢)
can be interpreted as the partition function of a continuum directed polymer model.
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Remark 1.8. The covariance kernel in (1.37)) coincides with the one in [BCI8| eq. (3.14)],
provided we identify the parameter B in [BCIS| with ¢”~7. If we plug B = e’ into [BCIS,
eq. (2.6)], with ¥ given by (1.38)), we obtain precisely (|1.35)).

Our renewal framework leads to analogues of Theorems and for the SHE. For

simplicity, we content ourselves with showing that the third moment is bounded, but the
same techniques would allow to compute its sharp asymptotic behavior, as in ([1.24))-(1.26)).

Theorem 1.9. Follow the same assumptions and notation as in Theorem[1.7}. Then
3
su;g E [(ua(t, ¢) — (gao(z) dz) ] < 0.
e>

If uy(t,-) is any subsequential weak limit in M(R?) of us(t,-) as e — 0%, then uy(t,-)

satisfies the analogues of (1.29)~(1.31), with K;y(z — 2') in (1.30) replaced by 2Kt719(2\_/§/).

1.3. OUTLINE OF THE PROOF STRATEGY. We present the key ideas of our approach.
First we compute the second moment of the partition function, sketching the proof of
. Then we describe the combinatorial structure of the third moment, which leads to
Theorem This illustrates how renewal theory emerges in our problem.

Second moment. We start from a polynomial chaos expansion of the partition function Zﬁh
which arises from a binomial expansion of the exponential in (1.3|) (see Subsection [2.1)):

Z8 =1+ > > Gny (1) &ny oy - Gna—ny (T2 — 1) Eng ey -
k=1 0<le$:52ng (1.39)

et an*nk71(‘rk - xk—l) fnk,xk )

where we set &, , = ePNwne=ABN) _ 1 for n e N, z € Z2. Note that &n,z are i.i.d. with mean
zero and variance o2 = e*28)=2X5) _ 1 gee (1.14). Then

Var[Z]BV] = Z (‘72)k Z G (21)% - Gy —ny (22 — 1) -+ Ang—ny—1 (Tl — wp-1)?

k=1 O<ni<...<nip<N
I1,...,xk622
_ 2\k 2 2 2
- Z (U ) Z un1 : un2*n1 T unkfnk,l 9 (140)
k=1 O<ni<...<np<N

where we define . .
2 . _ 2 _ _
u? = xe%] an(2)* = gn(0) = — + o(n2> : (1.41)
Incidentally, ([1.40)) coincides with the variance of the partition function of the one-dimensional
disordered pinning model based on the simple random walk on Z [CSZ18§)].
The key idea is to view the series of convolutions through the lenses of renewal

theory. The sequence u2 is not summable, but we can normalize it to a probability on

{1,..., N}. We thus define a triangular array of independent random variables (Ti(N))ieN by

N
1
P(Ti(N) = ”) = Eui Tacnsvy where Ry := 2 u . (1.42)
n=1

We stress that Ry = Llog N + O(1) is the same as in (L.10). If we fix By satisfying (T.14)),

and define the renewal process

7= Y, (1.43)
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we can rewrite ((1.40)) for 8 = Sy as follows:

Var [Zg¥] = Y (0% By)"P(rV) < N) = ) ¢/t 0 (') P(ri™M < N). (1.44)
k>1 k=1

This shows that Var [ZﬁN] can be interpreted as a (weighted) renewal function for T,iN).

( ) is investigated in [CSZ18]|, where we proved that ( l(s log N| /N)s=0

converges in law as N — o to a special Lévy process Y = (Ys)s>0, called the chkman
subordinator, which admits an explicit density:

The renewal process T

P(Yyedt) e 7 sts!
dt  I(s+1)

fs(t) == for t € (0,1). (1.45)

Then P(r, l(s l(zg NS N) — P(Y; SO fs(t) dt, and by Riemann sum approximation

: Var [Z]I%N] ! * Vs !

where Gy(-) is the same as in , which can now be interpreted as a renewal function for
the Lévy process Y. This completes the derivation of .

Similar arguments can be applied to the partition function Z]%N (¢) averaged over the
starting point, to prove Theorem using renewal theory.

Third moment. The proof of Theorem is more challenging. In the second moment
computation, the spatial variables 1, ...,z have been summed over to get , reducing
the analysis to a one-dimensional renewal process. Such a reduction is not possible for
Theorem In addition to the “point-to-plane” partition functions —, it will be
important to consider point-to-point partition functions, where we also fix the endpoint Sy:

N—-1
Z]%(O, y) == Eo [eanl (Bwn, s, =A(B)) ]l{SN:y}] .

(N)

We need to extend our renewal theory framework, enriching the process 7, "’ with a spatial

component S,S:N) (see (2.13 - - below). This will yield the following analogue of -

k N N
X E[Z3 (0.9)%] = Y. (0% Ry)"P(rtY) = M, 5 = ), (1.46)
k=1
which is now a local (weighted) renewal function for the random walk (T,EN), S,(CN)) k>0- Its
asymptotic behavior as N — o was determined in [CSZ18]:
2 B g1 _ logN M

where Gy(t, z), defined in (1.23)), is a continuum local renewal function.

We now explain how the second moment of the point-to-point partition function (|1.46)
enters in the third moment computation. We consider the partition function Z ﬁ, started at
the origin, see ([1.3)), but everything extends to the averaged partition function Z}%((b)
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We compute E[(Z ﬁ, — 1)3] using the expansion (1.39)). This leads to a sum over three sets

of coordinates (n¢,x%), (n%, z8), (nf, z¢), with associated random variables &, ,, say

e

B 31 _
E(Zy -1"1= > X CM{(n;-axz),(ns,x§>,<nf,x;>}E[anw Enb ot fnlcaxf]’ (1.48)

k:>1 (n(l‘z71l?)’i=1 ..... k@ i»j»l
k°=1 (b gt
]{36;1 (n]'7xj)j:1 ..... kb

(nf,x7)i=1,... ke

for suitable (explicit) coefficients ¢n,(..}- The basic observation is that if a coordinate, say
(n¢, x¢), is distinct from all other coordinates, then it gives no contribution to (1.48), because
the random variable &, ;. is independent of the other &, ,’s and it has E[,, »,] = 0. This
means that the coordinates in have to match, necessarily in pairs or in triplesm We
will show that triple matchings can be neglected, so we restrict to pairwise matchings.

Let D € {1,...,N} x Z? be the subset of space-time points given by the union of all
coordinates (n¢,z¢), (ng’, zg’), (nf,z¢) in (1.48). By the pairwise matching constraint, any
index (n,x) € D must appear exactly twice among the three sets of coordinates with labels
a, b, c. So we can label each index in D as either ab, bc or ac, and we say that consecutive
indexes with the same label form a stretch. This decomposition into stretches will lead to
the integral representation for the third moment, as we now explain.

Let us write D = {(n;,x;) : ¢ =1,...,r} and consider the case when the first stretch has,
say, label ab and length k < r (this means that (n;, z;) = (n%,2¢) = (n®,2%) fori = 1,..., k).
The key observation is that, if we fix the last index (ng,z;) = (M,y) and sum over the
number k and the locations (n;, x;) of previous indexes inside the stretch, then we obtain
an expression similar to , except that the last index is not summed but rather fixed
to (ng, zx) = (M, y) (see Section 5| for the details). But this turns out to be precisely the
second moment of the point-to-point partition function Zf/[ (0,y).

In summary, when computing the third moment from (1.48|), the contribution of each
stretch of pairwise matchings is given asymptotically by (1.47). This is also the case when
we consider the partition function Z]@N (¢) averaged over the starting point.

We can finally explain qualitatively the structure of the kernel — in Theorem

e the index m of the sum in (1.25) corresponds to the number of stretches;

e cach stretch gives rise to a kernel Gy(b; — a;,y; — ;) in ((1.26)), by (1.47);
o the switch from a stretch to the following consecutive stretch gives rise to the remaining

kernels ga;—b;_» (T — Yi—2) Gai—v;_y (¥; — yi—1) in (L.26)).
2 2

We stress that the knowledge of precise asymptotic estimates such as is crucial to
compute the limiting expression — for the third moment.

We refer to Section [f] for a more detailed exposition of the combinatorial structure in the
third moment calculation, which lies at the heart of the present paper.

1.4. DiscussiON. To put our results in perspective, we explain here some background.
The key background notion is disorder relevance/irrelevance. The directed polymer is an
example of a disordered system that arises as a disorder perturbation of an underlying pure
model, the random walk S in this case. A fundamental question is whether the disorder
perturbation, however small 5 > 0 is, changes the qualitative behavior of the pure model as

TNote that coordinates (ng, ) with the same label « € {a, b, ¢} are distinct, by n§ < ng 1, see (1.39),
hence more than triple matchings cannot occur.
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N — oo. If the answer is affirmative, then disorder is said to be relevant; otherwise disorder
is said to be irrelevant. For further background, see e.g. the monograph [G10].

For the directed polymer on Z*! the underlying random walk S is diffusive with
|Sn| ~ N 12 while under the polymer measure Pl , it has been shown that for d > 3, there
exists a critical value B.(d) > 0 such that for 8 < B.(d), |Sn| ~ N2 (sce e.g. [CY06)]);
while for any > 0in d = 1,2 and for § > .(d) in d = 3, it is believed that |[Sx| > N1/2,
Thus the directed polymer model should be disorder irrelevant in d > 3, disorder relevant in
d =1, while d = 2 turns out to be the critical dimension separating disorder relevance vs
irrelevance, and disorder should be marginally relevant.

In [AKQ14], Alberts, Khanin and Quastel showed that on the intermediate disorder scale
BN = ﬁ /N 1/4 the rescaled partition functions of the directed polymer on Z!*! converges to
the solution of the 1-dimensional SHE . We note that the idea of considering polymers
with scaled temperature had already appeared in the physics literature [BD00), [CDR10].

Inspired in particular by [AKQ14], we developed in [CSZ17a] a new perspective on disorder
relevance vs irrelevance (see also [CSZ16]). The heuristic is that, if a model is disorder
relevant, then under coarse graining and renormalization of space-time, the effective disorder
strength of the coarse-grained model diverges. Therefore to compensate, it should be possible
to choose the disorder strength Sy | 0 (known as weak disorder limit) as the lattice spacing
d :=1/N | 0 (known as continuum limit) in such a way that we obtain a continuum
disordered model. In particular, the partition function ZJU\’,’ By should admit a non-trivial
random limit for suitable choices of Sy | 0. In [CSZ17al, we formulated general criteria
for the partition functions of a disordered system to have non-trivial continuum and weak
disorder limits. These criteria were then verified for the disordered pinning model, a family
of (possibly long-range) directed polymer on Z'*! and the random field perturbation of the
critical Ising model on Z2. However, the general framework developed in [CSZ17a] does not
include models where disorder is only marginally relevant, such as the directed polymer on
72+, which led to our previous work [CSZI7h] and to our current work.

Disorder relevance /irrlevance is also closely linked to the classification of singular sto-
chastic partial differential equations (SPDE), such as the SHE or the KPZ equation, into
sub-critical, critical, or super-critical ones, which correspond respectively to disorder rel-
evance, marginality and disorder irrelevance. For sub-critical singular SPDEs, a general
solution theory called regularity structures has been developed in seminal work by Hairer
in [H13, [H14|, and alternative approaches have been developed by Gubinelli, Imkeller, and
Perkowski [GIP15], and also by Kupiainen |[K14]. However, for critical singular SPDEs such
as the SHE in d = 2, the only known results so far are: our previous work [CSZ17a], which

established a phase transition in the intermediate disorder scale . = 3 (2m/ log %)1/ 2 and

identified the limit in distribution of the solution u¢(¢,z) in the subcritical regime § < 1;
the work of Bertini and Cancrini [BC9§|, which computed the limiting covariance of the
random field u®(t,-) at the critical point B = 1; and our current work, which establishes the
non-triviality of subsequential weak limits of the random field at the critical point B = 1.
Let us mention some related work on the directed polymer model on the hierarchical
lattice. In particular, for the marginally relevant case, Alberts, Clark and Kocié¢ in [ACK17]
established the existence of a phase transition, similar to [CSZI7a]. And more recently,
Clark [Clal7] computed the moments of the partition function around a critical window
for the case of bond disorder. The computations in the hierarchical lattice case employ the
independence structure inherent in hierarchical models, which is not available on Z¢.
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Note added in publication. More recently, Gu, Quastel and Tsai [GQT19| proved the existence
of all moments for the 2-dimensional SHE in the critical window. They use different,
functional analytic methods inspired by Dimock and Rajeev [DRO4].

1.5. ORGANIZATION OF THE PAPER. In Section [2, we recall the polynomial chaos
expansion for the partition functions and introduce the renewal framework, which are then
used in Section [3] to prove Theorem on the limiting second moment of the partition
function. In Section [4, we derive a series expansion for the third moment of the averaged
point-to-point partition functions, whose terms are separated into two groups: ones with
so-called triple intersections, and ones with no triple intersection. Terms with no triple
intersection is shown in Section [5| to converge to the desired limit, while terms with triple
intersections are shown to be negligible in Section [7] using bounds developed in Section [6]
Lastly, in Section |8 we prove Theorems and for the stochastic heat equation.

2. POLYNOMIAL CHAOS AND RENEWAL FRAMEWORK
In this section, we describe two key elements that form the basis of our analysis:

(1) polynomial chaos expansions, which represent the partition function as a multilinear
polynomial of modified disorder random varibles, see Subsection [2.1

(2) a renewal theory framework, which allows to relate the second moment of the partition
function to suitable renewal functions, see Subsection [2.2]

We will use P, , and E, , to denote probability and expectation for the random walk S
starting at time a from position S, = z € Z?, with the subscript omitted when (a, x) = (0,0).
Recalling (1.7)), we define the family of point-to-point partition functions by

20w, y) = By | eXnmen Bnsn X1 g L (,2), (b,y) € Zeny a< b (21)

even’
The original point-to-plane partition function Z]’[f,(:z:)7 see ([1.4]), can be recovered as follows:
Zy(@) = 3 Zoy(e,y). (2:2)
yeZ2?

We note that the point-to-plane partition function has E[Zf »()] = 1, while for the
point-to-point partition function we have

E[Z,3(@, )] = dap(.9) = traly — 7). (2.3)
the transition probability kernel defined in (|1.8]). We will need to average the partition

functions Zf »(x,y) over either x or y, or both, on the diffusive scale. More precisely, we
define for N e N

20 @)= Y, 20wy u(de),  veGRY), (2.4)
yeZ2?

Zo6.y) = Y o) Zay(ay),  deCulRY), (2.5)
reZ?
1

Zyy (6.0) = NWZGZZMJ%) Zi@ ) o(d), b CuR?), peCGy(R?).  (26)

The reason that the terminal function %) is only required to be bounded and continuous,
while the initial function ¢ is compactly supported is that, we would like to include the case
1 = 1, which corresponds to the point-to-plane polymer partition function. On the other
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hand, the initial function ¢ plays the role of a test function used to average the partition
function. (In general, the fact that at least one between ¢ and 1 is compactly supported

ensures finiteness of the average ([2.6]).) Note that Z%t(d)) in coincides with Zj Nt((b )
with ¢ = 1. From we compute

E[Zéﬂ;%,w] = (@, 0) = Y araly — ) $(), (2.7)
yeZ?
E[Zgl;ﬁ@’y)] = q;;\fb(éi),y) = Z ¢ qb a 1“)7 (28)
x622
E[Z)(6,%)] = aby(, ) : Z () @l — 2) () - (2.9)
xye22

Note that these expectations are of order 1 for a = 0 and b = N, because gn(y — x) ~ 1/N

for 2,y = O(v/N), see (T.8)-(1.9). This explains the normalizations in (2.4)-(2.6).

2.1. POLYNOMIAL CHAOS EXPANSION. Let us start by rewriting the point-to-point
partition function from (2.1)) as

28 (,y) = Eag [eZﬁllaH(Bwn,san(B))]l { Sb:y}] — Ea, [ [T [T e tisns 1, Sb:y}]_

a<n<b ze7?

Using the fact that e®linert = 1 4 (&% — D1ery for z € R, we can write

Z8 (x,y) = E”[ ]_[ [T+ 1s,—2)1s,= y]

n=a+1 ze72

(2.10)

where &, . = ePenz=AB) _ 1

The random variables &, , are i.i.d. with mean zero (thanks to the normalization by A(3))

and with variance Var[§, .| = er28)=2M(B) _ 1. Recalling (2.3)) and expanding the product,
we obtain the following polynomial chaos expansion:

Z0 (@) = qap(@y) + D) D Gan (2.71) iy -

k=1 a<ni<...<np<b
x17...,$k€Z2

k
: { H qnj_l,nj (.Tj_l, x]) gnj,zj } an,b(kaa y) b

J=2

(2.11)

with the convention that the product equals 1 when k& = 1. We have written Z f o(2,y) as a
multilinear polynomial of the random variables &, ;.
Analogous expansions hold for the averaged point-to-point partition functions: by ([2.6))

N (o,0) = ay(dv) + Z D @ (331) b

k=1 a<ni<.. <nk<b

x1,...,8,EZ2
2.12
: (212
N
' { H anfl,nj (l‘jfl,l'j) gnj,xj} an,b(mk‘7¢) .

=2

Similar expansions hold for Zivl;ﬁ (x,1) and Zévl;ﬂ (¢,y), without the factor %
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2.2. RENEWAL THEORY FRAMEWORK. Given N € N, we define a sequence of i.i.d.

random variables ((Ti(N),X i(N)>)ieN taking values in N x Z2, with marginal law

T 2
P, XY) = (n,2) = 2 n{l,.'.mn), (213)

where we recall that ¢, (z) is defined in (1.8) and Ry = >}, _ 1 Dw kﬁzg qn(x)? is the replica

overlap, see - We then define the corresponding random walkl'lon N x ZQ
(W, M) = (T 4T X X)), ke (2.14)
(N)

Note that the first component 7,7 is the renewal process that we introduced in Subsection

We now describe the link with our model. We note that 012\,, see , is the variance
of the random variables &, , = ePwnz=AB) _ 1 which appear in . Recalling and
, we introduce a crucial quantity Uy (n, z), that will appear repeatedly in our analysis,
which is a suitably rescaled second moment of the point-to-point partition function:

Un(n,@) = 0% E[Z57(0,2)%] = 0% {an(2)? + Var [Z)}(0,2)]}, n=>1,

(2.15)
UN(O,CC) = 5z,0 = ]1{1:0} .
By (2.11)), we then have
Un(n, ) = o3 qon(0,2)° + D (o) > Go.ny (0, 71)% - (2.16)

k=1 O<ni<...<ng<n
z1,...,xx€ZL?

k
’ { 1_[ Anj_q1,n; (leal‘j)2} an,n(xkal')2 .
=2

Looking at —, we have the following key probabilistic representation:
Un(n,z) = Z(AN)TP(quN) —n, SN =z), where Ay := 0% Ry . (2.17)
r>1
It is also convenient to define
Z Un(n,x) Z()\N)TP(TfN) =n). (2.18)
x€Z? rzl
Thus Uy (n,z) and Un(n) can be viewed as (exponentially weighted) local renewal functions.

We investigated the asymptotic properties of the random walk (TlgN), S](CN)) in [CSZI§|.

In particular, introducing the rescaled process

N VN

we proved in [CSZ18]| that Yy W) converges in distribution as N — o0 to the Lévy process Y
on [0,00) x R? with Lévy measure

(V) ()
Ywn:wwxWMy:(FMM,ﬁmM), s> 0, (2.19)

v(dt,dz) =

1 t
(0’;) ) gyja(z) dt dz,

TS should not be confused with the random walk S in the definition of the directed polymer model.
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where g, () is the standard Gaussian density on R?, see (T.9). Remarkably, the process Y’
admits an explicit density:
P(Y, e (dt,dz)) e $sts7!

dtdz  T(s+1) 9u/4()

fs(t,x) = for t € (0,1), 2 € R?,

which leads to a corresponding explicit expression for the (weighted) local renewal function

0 0 L(9—7)s ¢ +s—1
Golt.) = [ " pita)as - ( | r<+f>d> gia(@) = Go(t) gyaa).

where the functions Gy(t) and Gy(t, ) match with and ([1.23).

We showed in [CSZ18| that the sharp asymptotic behavior of Uy(n,z) and Uy(n) is
captured by the functions Gy(n, ) and Gy(z). Note that for the weight Ay in (2.17)-(2.18)
we can write Ay = 1 + logLN(l +0(1)) as N — o, by our assumption (1.14). Then we can
rephrase [CSZ18, Theorem 1.4 and Theorems 2.3-2.4] as follows.

Proposition 2.1. Fiz By such that (1.14)) holds, for some 9 € R. Let Un(n) be defined as
in (2.18)). For any fired 6 > 0, as N — o0 we have

log N
Un(n) = % (Go(3%) +0(1)), uniformly for ON <n <N, (2.20)
where Gy is defined in (1.18). Moreover, there exists C' € (0,0) such that for all N € N
log N
Un(n) <C=2=Gy(%),  Vi<n<N. (2.21)

Proposition 2.2. Fiz By such that (1.14]) holds, for some ¥ € R. Let Un(n,x) be defined
as in (2.16)-(2.17). For any fired 6 > 0, as N — o0 we have

log N n
UN(na :L‘) = N2 (G'ﬂ(ﬁa ﬁ) + 0(1)) 2 ]l{(nvx)Engen} , (2 22)
uniformly for SN <n< N, |z| < %\/]V,

where Gy(t,x) is defined in (1.23). Moreover, there exists C' € (0,00) such that for all N € N

3 Untnz) - €y <N YM >0, (2.23)
z€Z?: |z|>M+\/n UN(TL) M*

We will also need the following asymptotic behavior on Gy(t) from [CSZ1§].

Proposition 2.3. For every fized ¥ € R, we have that
1 29 + o(1)

Gy(t) = t—0. 2.24
M= g1t og (2.24)
It follows that there exists cy € (0,00) such that
A o cy
Go(t) < Gy(t) = - . Yte(0,1]. 2.25
1‘}( ) 19( ) t(2+log%)2 t(log%)Q ( ] ( )

By direct computation %G(t) <0 for allt € (0,1), hence G’g(-) 1s strictly decreasing.
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3. PROOF OF THEOREM [1.2]
Recall the definition (T.9) of g;(x). Given a bounded function ¢ : R> — R, we define

B(a) = (@r92)@) = | 0@-n)apt)dy,  s>0. 0eR (@)

The averaged partition function Z]BV’;’ (¢) in Theorem n, see , coincides with
Zé\f]’\%\’ (¢, 1) with ¢ =1, see (2.6)). By the expansion (2.12)) with ¢ = 1, we obtain
k

VarlZ @) = 1z 2 03 Y 6.0 [ Lanyan, (o m) (32)

k=1 O0<ni<...<np<Nt j=2
x1,...,0,EZ>

We isolate the term k = 1, because given (n1,x1) = (m,x) and (ng,xx) = (n,y), the sum
over k > 2 gives E[Zyﬂnjyn(x, y)?] = Un(n — m,y — x)/0%, by ([2.15)-(2.16)). Therefore

2 4
VarlZ @] = 35 Y dn@@)?+ B Y a0 B2 ()]

0<n<Nt O<m<n<Nt
CEEZQ x,yeZQ
0-12\/' N 2 U]2V N 9
=35 2 Wa@a)’+ Y (60 Un(n—m),  (33)
0<n<Nt O<m<n<Nt
$€Z2 reZ

where in the second equality we summed over y € Z? — this is the reason that only Uy (n—m)

appears instead of Uy (n —m,y — x); recall (2.17) and (2.18]).
We now let N — oo. We first show that the first term in the RHS of (3.3]) vanishes as

O(c%) = O(loé ), see (T.10)) and (1.14)). Note that for v € (0,1) and z € R? we have
m gy, (6, VNT) = @y(x), SUP g0 (,2) < [l < 0, (3.4)

meN, zeZ

see (2.8]), (1.8) and (3.1). Then, by Riemann sum approximation, we have
1 1

N 2 z \2
3 2 Gom(@2)? ~ 5 Y Pa()
N 0<n<Nt N—wo N O0<n<Nt NAVN
z€Z? x€Z?
— ®,(z)? dvdz € (0,00).

N—o©  J(0,t)xR2
Indeed, the approximation is uniform for Ne < n < Nt, with fixed ¢ > 0, while the
contribution of n < Ne¢ is small, for ¢ > 0 small, by the uniform bound in (3.4)).

It remains to focus on the second term in the RHS of (3.3)). By (2.20)-(2.21)) and (3.4},

together with 0%, ~ g > See (1.14)) and (1.10]), another Riemann sum approximation gives

Var[Z3 (8)] ——— 7 f By ()2 Gy (v — u) dudo dz, (3.5)
O<u<v<t
zeR?

Integrating out x, we obtain

JR2 Pu(e)*do = ng (JRQXW $(2) 9(2) Gupo( — 2) gujolz — 2') dz dz’) dz
= fu@?sz ¢(2) () gu(z — 2') dzd?’,
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which plugged into (3.5 proves (1.19). O

4. EXPANSION FOR THE THIRD MOMENT

In this section, we give an expansion for the third moment of the partition function, which
forms the basis of our proof of Theorem [[.4] We actually prove a more general version for
the averaged point-to-point partition functions, which is of independent interest.

Theorem 4.1 (Third moment, averaged point-to-point). Let ¢t > 0, ¥ € R and Oy
satisfy (1.14)). Fiz a compactly supported ¢ € C.(R?) and a bounded 1 € C,(R?). Then

Jlim B[ (Z3507 (6.0) - B[Z0507 (6,0)])° | = Mil@,9) =8 3] 2771w 70 (6.4) < o0,
m=2

(4.1)
where we set @g 1= ¢ x ggp and Vs 1= 1) * gy9, see (3.1), and define
T (6v) 1= || 22, (11) B, ()
O<ai<bi<az<ba<...<am<bm<t
T1,Y1,82,525-,Tm Ym ER?
- Gy(b1 — a1, Y1 — 1) Gag—vy (22 — Y1) Gy(ba — az, y2 — 12) - (4.2)
2 .

Hgaz—bz 2 (T — Yie )gaz—bz (T = yi1) Go(bi — ag, yi — i) -

Uy (Y1) Py, (ym) dd@dbdZ dy .

We observe that Theorem [I.4] is a special case of Theorem [4.1} it suffices to take ¢ =1
so that Z[J)V],\%v (¢,0) = Z?ﬂ((b), see ([2.6) and ((1.12)), and it is easy to check that (4.1))-(4.2])

match with (1.24))-(1.26)), since ¥, = 1.
It remains to prove Theorem [.1] This will be reduced to Propositions [£.2] and [.3] below.

We exploit the multilinear expansion in (2.12) for the partition function, which leads to the
following representation for the centered third moment (recall (2.7))-(2.9))):

B[(Z2 (6,9) — BN (6,9)))’]

1
= Z ﬁ qg\,[al (¢7 xl) ngl (¢7 yl) : qg\,/cl (d)u Zl) :

A,B,C<{s+1,..,t—1}xZ?
|A>1,|B|>1,|C|>1

|A| | B le]
E[&n [ [éa alAir, A) - ¢m, [ [ €8, a(Bj-1, By) - oy | [ €on a(Crs Ci)
1=2 7j=2 k=2
: Qé\(A|,t($|A|7¢) Qé\(B‘,t(y\Bh V) qgc|,t(Z|C\77/}) ,
(4.3)

where we agree that A = (Ay, ..., Aj4)) with 4; = (a;,7;) € Z3..., and B, C are defined

similarly, with B; = (bj,y;), Ck = (c, 2x), and we set for short
q(Ai—1,Ai) = qa;—a;_, (i — 1) .

(When |A| = 1, the product Hl‘;‘g ... equals 1, by definition, and similarly for B and C'.)

even’
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We now split the sum in (4.3)) into two parts:

B[(205% (0 0) ~ BI2Y™ (0.00)" | = MEN T 0,0) + MY (000), (44)

defined as follows:

. MN NT(qﬁ ) is the sum in restricted to A, B,C such that An Bn C = (J,
Wthh we call the case with no tm’ple ntersections;

. MSJX;T(Qw) is the sum in (4.3)) restricted to A, B,C such that A n B n C # (J,
which we call the case with triple intersections.

These parts are analyzed in the following propositions, which together imply Theorem

Proposition 4.2 (Convergence with no triple intersections). Let the assumptions of
Theorem [{.1] hold. Then

o0

lim Mé\’]\lﬁf(qs,w) = My(¢,%) =3 D 2" L e I () < o0 (4.5)

m=2

Proposition 4.3 (Triple intersections are negligible). Let the assumptions of Theo-
rem[4.1] hold. Then

: N,T
]\}'linoo My 'y (¢, 9) = 0. (4.6)

Proposition [£.2] is proved in the next section. The proof of Proposition [£.3] will be given
later, see Section [7}

5. CONVERGENCE WITHOUT TRIPLE INTERSECTIONS

In this section, we prove Proposition [£.2] and several related results.

5.1. PROOF OF PROPOSITION . We first derive a representation for Mévﬂt’NT(¢7 ),
which collects the terms in the expansion (4.3)) with A n B nC = .

Denote D := AuBuUC < {s+1,...,t — 1} x Z?, with D = (Dy,...,Dyp|) and
D; = (d;,w;). Since E[¢,] = 0, the contributions to MthNT(gi), ) come only from A, B,C
where the points in A U B u C pair up. In particular,

1
k:=|D| = 5(|A| +|B|+|C]) =2

and each point D; belongs to exactly two of the three sets A, B, C, and hence we can associate
a vector £ = ({1,...,¢) of labels ¢; € {AB, BC, AC}. Note that there is a one to one

correspondence between (A, B, C) and (D, £). We also recall that &, , = efn@(2)=ABx) 1,
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hence 0% = E[¢2], see (1.14). From (4.3) we can then write

1 0
M3 (6) = 55 2, oN > >
k=2 Dc{s+1,...,t—1}xZ? €c{AB, BC, AC}¥
|D|=k>2

qi’\,[al (¢7 ml) Qé\,fbl (¢? yl) qLJQ\,]cl (¢7 21) : (51)
|A| | B IC]|

JTaAior, 4) [ Ta(Bj—1,B5) [] a(Crm-1,Com)-
i=2

j=2 m=2
N N N
oyt (141 V) Gy 1Y B) V) Gei (210 )

where we agree that A, B, C are implicitly determined by (D, £).

We now make a combinatorial observation. The sequence £ = ({1,...,¢;) consists of
consecutive stretches ({1,...,4;), (lit1,...,¥¢;), etc., such that the labels are constant in
each stretch and change from one stretch to the next. Any stretch, say (¢,,...,¢,), has a
first point D), = (a,x) and a last point D, = (b,y). Let m denote the number of stretches
and let (a;,z;) and (b;, y;), with a; < b;, be the first and last points of the i-th stretch.

We now rewrite by summing over m € N, (a1,b1, ..., am, bm), and (X1, Y1, - - -, T, Ym)-
The sum over the labels of £ leads to a combinatorial factor 3 - 21, because there are
3 choices for the label of the first stretch and two choices for the label of the following
stretches. Once we fix (a1, 21) and (b1, y1), summing over all possible configurations inside
the first stretch then gives the factor

. r
2 UJQ\ET+1) Z Hqti—l,ti(zi—17 Zi)Q = UIQV UN(b1 —an i xl) ’
r=1

a1=tog<t1<...<tr=by =1
20=T1, 21,22, 2r—1€L2, 2r =11

where we recall that Uy is defined in (2.15))-(2.16)). A similar factor arises from each stretch,
which leads to the following crucial identity (see Figure [1):

o0
Mﬁt’NT(Qba V) = Z 3- melf‘g’m)wﬂb), where
m=2

2m

m o
IS(,];L )((ba /l]b) = % Z qé\fal (¢7 .131)2 qL]e\,[(zg (¢a 1:2) ’

s<ai1<bi<as<bo<...<am<bm<t
2
xl,y17$27927~~~;$m7?¥m62 (5.2)

~Un (b1 — a1,y1 — 1) @by a0 (Y1, 72) Un (b2 — a2, y2 — 2) -
m

11 {Qbi,g,ai (Yi—2: i) Qb; 1,0, (Yim1, ) UN(bi — @i, yi — fb’i)} :
i=3

’ qu,n_ht(ym*la ¢) qé\fnj(yma ¢)2 ’

with the convention that [[“4{...} = 1 for m = 2. Note that the sum starts with m = 2
because in (5.1]), we have |A|, |B],|C| = 1.

If we compare (5.2)) with (4.5) and (4.2)), we see that Proposition follows from the

following result and dominated convergence. ]
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FIGURE 1. Diagramatic representation of the expansion of the
third moment. Curly lines between nodes (a;, z;) and (b;,y;) have weight
Un(b; — z4,y; — x;), coming for pairwise matchings between a single
pair of copies AB,BC or CA, while solid, curved lines between nodes
(ai,x;) and (b;—1,yi—1) or between (a;, x;) and (bj_2,y;—2) indicate a weight
@b, 1,05 (Yi—1, i) and gy, , a0, (Yi—2,x;), respectively.

Lemma 5.1. For m > 2, let I](Vji’m)(qb Y) = ONt (qb ¥) be defined as in (5.2), and let
It(m)(gb,¢) be defined as in (4.2]). Then

lim Iy (90) = 7" LM (6)  Ym> 2, (5.3)
Furthermore, for any C' > 0 we have
]I](V]\t]’m)(¢,¢)| <e Om for all m, N sufficiently large. (5.4)

The proof of Lemma [5.1] is given later, see Subsection [5.3] We first prove the next result
on I ((b 1), which will reveal a structure that will be used in the proof of Lemma |5

Lemma 5.2. For ¢ € C.(R?), ¥ € Cp(R?), andI ((b V) defined as in ([(£.2), we have:
Vae (0,00), Z ¢1/J)|<OO (5.5)

5.2. PROOF OoF LEMMA [5.2] In light of Remark we may assume ¢t = 1. Recall that

™ (6, 1) = T (6,) 1= j . f B2, (1) By (a2)

0<ai<bi<az<ba<..<m<bm<l
2
T1,Y1,%2,Y2;-Tm,YmER

- Gy(by — a1, y1 — x1) ozt (w2 —y1) Gy(ba — a2, y2 — x2) - (5.6)
Hgaz_bz 2 yl )gaz_gz 1( yl 1) Gﬁ(b az:@/z_wz)

: ‘Illfbm_1<ym—1)\1/%,bm (ym) d@ dbdE d7,

where Gy (t,x) := Gy(t)gy/a(z), with g;/4 () being the heat kernel, see (L.9), and Gy defined
in (L.18). We also recall that ®q(z) := (¢ * go/2)(x), V1_4(y) = (¥ * g1_p)2) (y)-
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Note that we obtain an upper bound if we replace ¢ by |¢|, so we may assume that ¢ = 0
Similarly, we may replace ¢ by the constant ||, and we take [1)|o, < 1 for simplicity. We
thus bound Z™ (¢, ) < Z0™($,1), with ¢ = 0, and we focus on Z0™ (¢, 1).

We first show that, by integrating out the space variables, we can bound
™) (,1) < Cy Jm) where Cy :=|¢|% J #(z)dz, and

qu(b ) . (5.7)
- bz 2)

m) ::f JGﬁ(bl_al)Gﬁ(bQ—aQ HV

O<ai1<bi<..<am<bm<l

Note that in (5.6)) we have ¥ =1 (by v = 1) and y,,, appears only in Gy(by, — am, Ym — Tm)-
Then we can integrate out v, € R? to obtain

Gﬁ(bm — Om,Ym — xm) dym = Gﬁ(bm - am)'
R2

We are then left with two factors containing x,,, and the corresponding integral is

f ) gam—bm 1 ( — Ym— 1) Gam—by_2 (xm - ym—?)dxm = J2am—bpy_1-bm_2 (ym—l - ym—2)
R 2 2
1 1 1
< G2am—by_1—bm_o (0) = < — )
& 21 2 ( ) 7T(2am — b1 — bm—?) 27 \/(am - bm_1)<am - bm_g)

having used af < (a + %) in the last inequality.
We now iterate. Integratmg out each y;, for i = 2, replaces Gy (b; —a;, y;—x;) by Gy(b;—a;),
while integrating out each z;, for ¢ > 3, replaces ga;—b, o (T; — yi— )gafbl (@ —yi—1) by
2izbiz2 ai=bi—1

(2m+/(a; — bi—1)(a; — bi—2)) 1. This leads to

1 -
M (g,1) < < G da db dz; dy; das
O<ai<bi<as<bo<..<am<bm<l
x1,y1,w2€R?

cI)cQzl (1‘1) (I)az(x2) gbl;% (yl - xl) ga2gb1 (1'2 - yl) :

Gy(b; — a;
+ Gy(by — a1) Gy(b H¢a d a)bQ).
% 11 v — Ui—

We finally bound @, (z2) < |¢|sw, see (3.1), then perform the integrals over z3 and y;, which
both give 1, and note that {po @y, (21)* dz1 < [Pl (o #(2) dz, which yields (5.7).

We can now bound the quantity in Lemma using (5.7)), to get

T (6,8)] < @rECy Y, (52 ) . (5.9)
m=2

ﬁM8
=)

2

It remains to show that J(™ decay super-exponentially fast. For any A > 0, we have

m o —X\(bj—bi—1) . .
m) < 6)‘ J .- J eiAb1 qu(bl - al)ei)\(luibl)Gﬂ(bQ - ag) H c Gﬁ(bl al) da db.
s V(@i —bi_1)(a; — bi_2)

O<ai<bi<..<am<bm<l
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i < m, where by := 0. Then observe that

Denote u; := a; — bj—1 and v; := b; — q; for 1 <
v;, we can bound J(™ by

—bi_o = uj_1 +vj_1 +u; = u;—1 + u;. Since b; — b;_1 =

Jm < et j J e MGy (vy) dii d7
H v Zl_[’\/ Uz 1+uz>z

w;,v;€(0,1)

£ G 4o <1
(5.10)

<eA<L X0 Go(v)d > f JHW

U2,.. 7u'me(0 1)

1
<ek(f e Gy(v) > ng)m?) (ug) dus,
0
< Gy(-), see (2.25)), and we define

o V(s)ds, VkeN. (5.11)

where in the last inequality we have bounded Gy(-)

1
o0 (u) =1, and oW (u) = L \/S(iﬁ

We will show the following results.

Lemma 5.3. There is a constant cy < o0 such that for every A

1
—Av A Cy
dv < Cyi= ——. 12
fo e " Gy(v)dv < Cy 57 log A (5.12)

Lemma 5.4. For all k € N, the function ¢\F)(-) is decreasing on (0,1) and satisfies

<32’f2 ( log & > <32’“\%, Yo e (0,1). (5.13)
With Lemmas and it follows from that
Jm) < A o 3gm2 fo 1 7 dv < e O 3272 2¢ < ) (32C0)\)™ (5.14)
If we choose A = m, then by (j5.9)) and the definition of C we get

0 o0 m
m 1(m) m 7(m) 32aecy

a™ |, (b, )] < Cy a™ I\ < Cy <> < 0, (5.15)

Z mZ:]z Z 2 + logm

m=2

which concludes the proof of Lemma
It remains to prove Lemmas [5.3 and [5.4]
Proof of Lemma [5.3l Recall that G’g(-) is defined in (2.25)) and it is decreasing. Then
1 ) ) s el I
f e M Gy(v)dv < Glg(i)f My = Gg(%) ~ <e ! f Gy(v)dv,
1 0

1
A

A

hence
f e Gy(v)do < (1+e™)) F Co(v)do = B+ ey 26 (5.16)
0 b 0 2+logh  2+log)’

We have proved that (5.12)) holds, provided we chose ¢y := 2 ¢y.
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Proof of Lemma [5.4l The second inequality in (5.13) follows from Zf;o f—: < ev.
Let us prove the first inequality in (5.13)). Recall the definition (5.11)) of ¢(*). Then

1
— =2+ log - 5.17
J \/s(s +v) J \Vz(z + 1 J g ( )
To iterate this argument and bound ¢*), we claim that
u Ch.i e\
(k) i h
o™ (v) < ZO Sl <1og U) vue (0,1), (5.18)

for suitable choices of the coefficients ¢y, ;. For k = 1, we see from ([5.17) that
C10 = 0, C11 = 2. (5.19)

Inductively, we assume that (5.18) holds for k¥ — 1 and we will deduce it for k. Note that
plugging (5.18)) for &k — 1 into (5.11)) gives

®)(v) < C’“.‘LJ ( Og d 5.20

To identify ¢ ; for 0 < i < k, we need the following Lemma, proved later.

Lemma 5.5. For all k € Ny, we have

1 (] e2\k il (1og €2)!
U085) gy comriy 185 ooy, (5.21)

0 A/s(s+v) = 2l
If we plug (5.21) with & = j into (5.20) we get that, for all v € (0, 1),

(k) S o1 [ o JH eM d = 2\
o= St Lo S S S Yy

J=0 j=(i—-1)*

This shows that (5.18) indeed holds, with

k—1

Ck,i = 2 Z Ck—1,5 - (5.22)
j=(i-1)*

We have the following combinatorial bound on the coefficients ¢, ;, which we prove later by
comparing with the number of paths for a suitable random walk.

Lemma 5.6. For every ke N and i € {0,...,k} we have ¢j,; < 32F.

Plugging this bound into (5.18) we obtain, for all £k € N and v € (0, 1),

2 [
32k Z < log — ) : (5.23)
which is the first inequality in ([5.13)). This concludes the proof of Lemma O

It remains to prove Lemmas [5.5 and [5.6]
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Proof of Lemma 5.5l By a change of variable s = vz,

' (log )" v (log£)* (log£)" v (log £)"
md md <J Wz d,zjtf1 p dz . (5.24)

" v~

A B

Let us look at B: the change of variable z = v*~!, with a € (0, 1), gives

2\ k+1
)

1 (log )" 1
Bzf Mvafl log}]dazlog}}f (2+alog%)kda<k%r1(log
0

pa—1 0
We now look at A the change of variable z = z €2 /v, with x € (0, %), followed by z = ™2V,

with y € (§ log £ 7, 00), yields

e (= (logz) e JOO (2y)", o
- = de = — 2e"Ydy = yeydy
\/EJ;) \/5 \ﬁ %logi—? ey \/5 log

Let (N¢)i=0 be a Poisson process with intensity one, and let (X;);>1 denote its jump sizes,
which are i.i.d. exponential variables with parameter one. For all t > 0 we can write

0 k
fy’fe—ydyzr(k+1)P<ZXi>t>_r(k+1) (N, —tzl . (5.25)
t i=1 v

Choosing t = %log é, it follows that

2k+1

k k .
A= ol %Z’%% g <) 2 2’f+“ log €)' (5.26)

We have thus shown that

M\H

kg ,
AL B= 2 2k’+12 g%)l,

which coincides with the RHS of (5.21] - O

Proof of Lemma [5.6l We iterate the recursion relation (5.22)), to get

k—1 k—1 k—2
Chyi = 2 2 Ch—1,j1 =4 Z Z Ch—2,jy_y =
Je—1=(-1)* Jh—1=0-1)" jp_o=0r_1—-1)*
5.27
k—1 k—2 2 1 ( )

_okl Y D N S T

Je—1=0=1% jp_2=0k—1-1)F  Jo=0z—-1)* ji=02—-1)*
Since ¢1,1 = 2 and ¢19 = 0, see (5.19)), we can restrict to j; = 1. Also observe that
jiz (Jin—1)%  ifandonlyif  j; >0 and ji1 <ji+1,
hence we can reverse the order of the sums in ([5.27) and write
ers = 2 |Sk(0)], (5.28)
where |Si(7)| denotes the cardinality of the set
Si(@) = {1, ) NG 1 =1, o =14, jop1 <jn+1VYn=1,....k—1}. (5.29)
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In words, Sg(7) is the set of non-negative integer-valued paths (ji, ..., jr) that start from
j1 =1, arrive at ji = 7, and can make upward jumps of size at most 1, while the downward
jumps can be of arbitrary size (with the constraint that the path is non-negative).

To complete the proof, it remains to show that

|S(3)| < 16"

We define a correspondence which associates to any path j = (j1,...,jx) € Sk(i) a nearest
neighbor path £ = ({1,...,4,), with length n = n(j) € {k,...,2k}, with increments in
{—1,0,0%,+1}, where by 0* we mean an increment of size 0 Wlth an extra label “x” (that
will be useful to get an injective map). The correspondence is simple: whenever the path j
has a downward jump (which can be of arbitrary size), we transform it into a sequence of
downward jumps of size 1, followed by a jump of size 0*.

Note that if m = m(j) denotes the number of downward jumps in the path j, then the
new path £ = (¢1,...,¢,) has length

n=n(j)=k+(o1+...+om),

where o; is the size of the i-th downward jump of 3. The total size of downward jumps is

k—1
(o1 4. +om) = A(F) = > Uiy — ji)~

i=1

Defining A*(5) := Y5 (jir1 — ji)*, we have

ATG) =A@ =gk =i =i 1.
However A*(j) < k — 1, because the upward jumps are of size at most 1, hence
AT(j)<(k—-1)—(i—1)< k,

which shows that n = n(g) < 2k, as we claimed.

Note that the correspondence 3 — £ is injective: the original path j can be reconstructed
from £, thanks to the labeled increments 0*, which distinguishes consecutive downward jumps
from a single downward jump with the same total length. Since the path £ = (¢1,...,4,)
has n — 1 increments, each of which takes four possible values, we get the desired estimate:

2k 2k 16k 1
[Se(i)] < D 47t < Y 4T = —— < 16" O

5.3. PROOF oF LEMMA [5.1] We follow the same strategy as in the proof of Lemma 5.2l
We first prove the exponential bound . We recall that 1% Nt (qzb ) = 0 Nt (qzb ),

see . We may take t = 1, ¢ = 0, and 1 = 1, so that the last terms in are

ql];\;_l,t(ym—l’w) =1, qé\fn +(Um, 1) = 1. We can thus rewrite as follows:

2m

157" (9,1) = 2 > Wiy (071)? @, (6 72)-

O<a1<bi<as<ba<..<am<bm<N
T1,Y1,82,Y2,0 T, Yrm €L

(b1 — a1,y1 — 1) Gby a0 (Y1, 2) Un (b2 — a2, y2 — 22) -

Un
m
H{le 20 (Yi=2, i) @b,y 0 (Yi—1, i) Un (bi — @i, yi —wi)}-
=3

(5.30)
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Similar to (5.7]), we first prove the following bound:

™ (p,1) < Cp JN™ - where (5.31)
2
" UN(b' )
JOm) = om 2N Un(b— ) Un (b — az H
N20<a1<b1<... \/ - bZ 1 - bl 2)
<am <bm <N

for suitable constants Cy, c < 00. We first note that v, appears in (5.30) only in the term
UN (b — @, Ym — Tpy) and hence we can sum it out as

D Un(bm — Gmy Ym — Tm) =1 Un (b — ). (5.32)

Ym€Z2

We next sum over z,: since gs¢(x,y) < sup, ¢;—s(2) < 7%, see . ) and ([1.8]), we have

Z Qby_1,am (ym—la xm) 4by_2,am (ym—27 xm) < SUD Qb,_s,am (y7 IL’)

Tm€Z2 ,yer?
¢ ‘ (5.33)
< < .
(am - bm—2) \/(am — bm,l)(am — bm,Q)
We can now iterate, integrating out y; for ¢ > 2 and z; for ¢« > 3, to obtain

Moy Y @@l d,e) (639

S TN 90,0, \ P> ¥1)" 90,05\ P> L2 :

O<a1<bi<az - <am<bm<N x1,r2,y1€7Z2
a‘)

~Un(b1 — a1,y1 — 1) Gby a5 (Y1, 72) Un (D . :

e H \/ az z 1 - bi—?)

After bounding qé\fa2 (¢, x2) <|P|oo, see (2.8)), the sum over xa gives 1, because gy, 4, (y1, ) is
a probability kernel. Then the sum over y; gives Uy (b; — a1). Finally, the sum over z; gives

Y G (@71)° <9l D) a0, (0:71) = B0 D) O(F) SN (5.35)

r1€72 r1€72 2€72

for a suitable ¢4 < 00, because ¢ has compact support. This completes the proof of (5.31)).

Next we bound J®:™) in (5.31)), similarly to the continuum analogue ([5.10)). Namely, we
denote uz = aZ b;—1 and v; := b; — a; for 1 < ¢ < m, with by := 0, we insert the factor
et H ) > 1, and then we use a; — b;_o2 = u;_1 + u; to obtain the bound

" m 1
JWm) < A gm ( e AN Uy (v ) { } . (5.36)
Z N? 1§u17§mSN 1—1_[3 Vui(ui-1 + u;)

ote that o3, < , see 4), and Un(u) < ¢ o + A,g ~)), see (2. an
Note that 0% < 2y dU Lumo) + BN Gy(% 2.21)) and
(2.25)). Since GA19 )) is decreasmg, we can bound the Riemann sum by the integral and get

al c1¢9 log N N AT A (o
; SN (1T LY G(R)

v=1

1
C1C9 v A 1
< 1 +1log N dv ) < o ,
log N < + log Jo e " Gy(v) v> c162 (logN + CA>

where in the last inequality we have applied (5.12]).

(5.37)




CRITICAL DIRECTED POLYMER AND STOCHASTIC HEAT EQUATION ON Z2+! 27

The multiple sum over the u;’s in is bounded by the 1terated integral in ), by
monotonicity (note that if we replace u; by Nu;, with u; € £Z n (0,1), then we get the
correct prefactor 1/N™, thanks to the term 1/N? in (5.36])). Then

1
JNm) < A m (logN + C)\)m J;) ¢(m*2)(u) du < et (32¢)™ (loglN + Cx)m ; (5.38)

because the integral is at most 32, by (5.13) (see also (5.14))). Since Cy = Qﬁ%,
(5.12)), if we choose A and N large enough, then it is clear by (5.38) that JN™) decays
faster than any exponential in m. This proves

see

We next prove , for simplicity with ¢ = 1 This is easily guessed because I (d) V)
(see (5.2)) is close to a Rlemann sum for Tr’"I (d) ¥) (see (1.2))), by the asymptotic relations

T
ox ~ g NV Ba(d7) ~ D (F),  aiww) ~ ¥y o (), (5.39)
1 x lOgN b —
Balt @) ~ Ng”b(x/ﬁy)’ Un(b=ay —2) ~ =5 Gﬁ(w",yﬁ), (5.40)

see - -, and ( , ’mWe stress that plugging (5.39))-((5.40) into
t

we obtain the Correct prefactor 1 / hanks to the extra term 1/ N in (5.2).
To justify the replacements (5.39 -, we proceed by approximations. Henceforth

m > 2 is fixed. We define Ifm)’(a) (qﬁ, w) by restricting the integral in (4.2) to the set
{ai—bi-1=e VI<i<m+1l, b —a>¢c Vl<i<m}, (5.41)

where by := 0 and a;,,4+1 := 1. Note that I (gf) Y) — I(m ((;5 1) is small, if we choose
€ > 0 small, simply because the integrated integral I (qb ) is ﬁmte
We similarly define I](V (qﬁ, 1) by restricting the sum in ) to the set

{ai—bis12eN VI<i<m+1, b —a>eN v1<'<m} (5.42)

where by := 0 and a,,+1 := N. The difference I (qb ) — Nm () (¢, 1) is bounded by
the sum in ([5.31) restricted to the complementary set of ( - By the uniform bound
- this sum is bounded by the integral in ((5.7) restricted to the complementary set of

. Then I(Nm (¢, ) — Nm) (qﬁ, 1) is small, uniformly in large N, for ¢ > 0 small.
As a consequence, to prove it suffices to show that

lim IJ(VN’m)’(E)(QZ),I/J) = am IO (g 4h)  for each £ > 0.
—00

We next make a second approximation. For large M > 0, we define I£m)’(€’M)(gb, ¥) b
further restricting the integral in ) to the bounded set

{loa| < M, |y, —xzy < Mr/bi—a; VI<i<m,
s = yim1| < My/a; —bioy ¥2<i<m}.
We similarly define I(N’m)’(E’M) (¢,1), by further restricting the sum in to the set
{lz1] < MVN, |y — 25| < MA/b; —a; Y1 <
@i = yim1] < My/ai — b1 V2<z<m}.

For simplicity, in relations (5.40) we have omitted the “periodicity correction” 21, ,)ez3 3, see .

‘even

(5.43)

(5.44)

and (2.22), because this disappears upon summation.
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Clearly, lim MHOOI m)(e M)(gb Y) = ’(E)(gb, 1). We claim that, analogously,

lim hmsup\] (Vm), EM)(qb Y) — Nm) (E (¢,0)] =0. (5.45)

M—0 N

Then we can complete the proof of Lemma n the asymptotic relations and (| -
hold uniformly on the restricted sets and -, so by dominated convergence

for every e >0, M < o0 : A}im I( EM(QZ) 1/))—7TmI (EM)(qb ).
-0

It remains to prove (5.45)). We can upper bound the difference in (5.45)) as in ((5.31))-(5.34)):
we sum out the spatial variables recursively, starting from y,,, then x,,, then y,,_1, etc.

e When we sum out yp,, if |ym — m| > M+/by — am, then by (5.32)) and (2.23)) we pick
-

up at most a fraction 6(M) < C/M? of the upper bound in ({5.34)). The same applies
when we sum out y; for 2 <i <m — 1, if |y; — z;| > M/b; — a;.

e When we sum out x,, if |z, — ym—1| > Mr/am — by—1, then we restrict the sum
in (5.33) accordingly, and we pick up again at most a fraction §(M) < 1/M? of the
upper bound in (5.34), simply because >, 1.y m @n (%) = P(|Sn] > My/n) < 1/M2.

The same applies when we sum out z; for 3 < i < m — 1.

e The same argument applies to the sums over zo and yi, see the lines following (|5.34)).

e For the last sum over 1, if |z1| > M+/N, by (2.8) and the fact that ¢ has compact
support, we pick up at most a fraction 6(M) = O(1/M?) of the sum ([5.35)).

Since for fixed m, there are only finitely many cases that violate (5.44)), while (M) — 0 as
M — oo, then ((5.45) follows readily. O

6. FURTHER BOUNDS WITHOUT TRIPLE INTERSECTIONS

We recall that the centered third moment E[(Z, Nﬁ’\' (p,v) — E[Z, NﬁN (o, 1/1)]) ] of the
partition function averaged over both endpoints admlts the expansion 1} We then denoted
by Mﬁ;NT(qﬁ, ) the contribution to (4.3) coming from no triple intersecitons, see (4.4)).

We now consider the partition functions Z’ ”BN (w, ), Z Nﬁ”(qb, z) averaged over one

endpoint, see ., ., and also the pomt—to—pomt partition function Zf: Y(w, z), see (2.1))

761\7(

(we sometimes write Z, w, z), even though it carries no explicit dependence on N).

The centered third moment E[(ZN BN (%, 1) — ]E[Zévt’BN( ,T)])?’] for = € {¢,w} Te{y,z}

can be written as in , starting from the polynomial chaos expansions - In
analogy with (4.4)), we decornpose

E[(Z2% (+,1) — B[22 (+,1)])%] = MYNT (5, 1) + MY (5, 1) (6.1)

where M éﬁ’T(*, ) and M :;’NT(*, 1) are the contributions with and without triple intersections.
In this section we prove the following bounds, which will be used to prove Proposition
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Lemma 6.1 (Bounds without triple intersections). Let ¢ € C.(R?), v € Cy(R?) and
w,z € Z?. For anye >0, as N — o0, we have

MR (w, ) = O(NF), (6.2)
Yo My (w, 2) = 0(1), (6.3)

1<a<N 2€Z2

SN MY (6, 2) = O(N3H) (6.4)

1<a<N zeZ?

We prove relations ((6.2)—(6.4]) separately below. For the quantity M S]X;NT(*, 1), when both
arguments *, T are functions, we derived the representation (5.2)). Analogous representations
hold when one of the arguments #, T is a point. For instance, in the point-to-point case:

(e8]
Ms]X:’NT(w: z) = Z 3.2m-1 Iég’m) (w, z), where

N?
I;t m)(w’z) = GJQVm Z 4s,a1 (w>$1)2 QS,ag(w,xZ) .

s<ai1<bi<as<bo<..<am<bmnm<t
$17y17$27y27---,$m,ym622 (6 5)

~Un(b1 — a1,y1 — 1) Gby a0 (Y1, 22) Un (b2 — a2, y2 — 22) -

m

: H {Qbi,g,ai (Yi—2s %) Qb; 1,0, (Yi—1,73) UN (i — @i, yi — HCZ)} :
=3

: Qbm,l,t(ymfla 2) Qbm,t(yma Z)Q .

Note that in contrast to there is no factor N=3, because the definition of ZSBQ’ (w, 2),
unlike Z, ’6N (¢, ), contains no such factor, cf. and .

The 1dentity holds also for Mgt’NT(gb, z) (replace s o, (w, z;) by ¢, (¢, 2), i = 1,2)
and for Mﬁ’NT(w, 1Y) (replace gp, +(yi, 2) by qé\it(yi,w), i=m—1,m).

Proof of (6.2]). To estimate Ié]y\}m) (w, ), we replace ¢ by the constant |1y, and we take

|t)|osr < 1. We then focus on I(()]X}m)(w, 1), and we can set w = 0, by translation invariance.
By the analogue of (6.5 (note that qé\i’t(yi, ) =1 for ¢ =1), we get

N,
IEN™ (w, ) < o3 > Gay (£1)2Un (b1 — a1, y1 — 1) -
O<ai<bi<as<be<...<am<bm <N
T1,Y1,82,Y2, - Trm Ym EL? (6.6)
- }
: H {Qbi,g,ai (Yi—2, i) @b, _1.0s Wi—1,25) Un(bj — @i, y; — wi)},
i=2

where we stress that the product starts from ¢ = 2 and we set by := 0 and yo := 0. By the
definition of Uy in (2.15))-(2.16)), we have the following identity, for fixed by € N, y; € Z2:

ok Z a1 (71)? Un(b1 — a1,y1 — 21) = Un (b1, 11). (6.7)

O<ai<by, x1€Z2
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Therefore we can rewrite as

N, 2 —1
I(g,Nm) (’UJ, ¢) < O-J\gm ) 2 UN(blvyl) .
0<b1<a2<b2<'--<a7n<b7n<N
Y1,T2,Y2;5 T Ym ELZ (6 8)
m .
H{sz v (Yi—2,Ti) Qb; 1,0 (Yi—1,2:) Un (b — @i, ys —xi)}.
=2

We now sum out the spatial variables ¥, Tm, - .., Y2, T2, Y1, arguing as in ((5.32))-(5.33)),
to get the following upper bound, analogous to (5.31]), for a suitable ¢ < co:

TN (w,w) < emoy™ Y bln ai b 1><ai1biz>' (6:9)

O<bi<ao<ba<..
<am<bm<N

Then we set u; := a; —b;_1, v; := b;—a; for 2 < i < m, and we rename u; := by. This allows
to bound a; — bi_2 = u; + u;—1 for all i > 2 (including i = 2, since a; — bj—2 = as = ug + by).
Then, for A > 0, we insert the factor e* [T, e M%) > 1 and we estimate, as in (15.36)),

N m—1
Iéﬁ[\}m) (w,9) < et e™ ((712\, Z e_’\KfUN(v)> :
v=0

(6.10)

N m 1
{Z v 2 e }

The first parenthesis is < C(logN + C'A) see (9.37). Then we replace u; by Nu;, with u; € %Z,
and bound Riemann sums by integrals, by monotonicity. This yields (for a possibly larger c)

1

Ié%m) (w, ) < e ™ (loglN + C,\)m_

: U q T 6.11
{EZUN(N”f e L

O<ug,...,um<1 =2
11v<“1<1

The integral equals ¢(™~1) (u1 see - We bound Uy (Nuyp) < ¢ OgN ng (u1) by (2.21] -
and -, since u1 > 0. Recalling that ¢~ 1)( -) is decreasing, we get

m log N _
Iéf}f\} )(w,w) <erd™ (logN +C’,\) { 08 Z Gﬁ(ul)}gb(m 1)(%)

u1€ Z
0<u1<1

et ™ (loglN + CA)mfl (log N) Cy ¢(m*1)(%) ,

(6.12)

N

where for the last inequality, recalling that Gﬁ() is decreasing, we bounded the Riemann
sum in brackets by the integral S Gy(uy)duy < Cy, see (5.12).
Putting together (6.5) and (6.12)), we can finally estimate

Mo (w,9) <3 3 27 I™ (w,9) < 3¢ (log V) Y [2¢ (g + Ca)]" 6V (),

m=2 m=2
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and using the first inequality in (5.13)) we obtain

—_

MéY]’\I,\IT(w,z/J) < 3¢ (log N) 2 [64c (ﬁ +C))] Z = (5 log(e ))1

m=2 a!

< 3¢ (log N) Z %(% log(eZN))Z Z [64c (@ +Cy) "

=0 m2i

et 1 i
= ety o (08 N) X 5 (32 (i + €4) log(e* )

I ; :
o8 =0

320( +C>\)

log N

_ 3er 2
pE ey (log N) (¢°N)

Since limy ., Cy = 0, see (5.12), given € > 0 we can fix A large so that 32cCy < 5. Then
for large N the exponent of (e2NV) in the last term is < e, which proves (6.2)). O

Proof of (6.3). From the first line of (6.5) we can write

> 2 My () = Y32 N N I (w,2) (6.13)

1<a<N ze72 m=2 1<a<N zeZ2

To estimate D) c,< n Xez2 Ié]Z’m) (w, z), we use the representation (6.5 with s = 0 and
t = a. We may also set w = 0 (by translation invariance). We first perform the sum over a;
and b,,, using and the symmetric relation

0'12\7 Z UN(bm — Om,Ym — xm) qu,a(ym7 2)2 = UN(G —am, 2 — xm) . (614)

am<bm<a, ymEZ2

We then obtain

(N,m) 2(m—2)
D Iy (w,z) = oy > Un (b1, 91) -
1<as<N 0<bi<ag<bo<...<am<as<N
2€Z? Y1,%2,5 e Ym—1,Tm ,2E€L>

H {le 2.as (Yi—2, Ti) @b,y 0, (Yi—1, ) Un (b5 — aivyi_xz‘)} (6.15)

: {Qbm_g,am (ym—% xm) Qb _1,am (ym—la xm) UN(G — Am, % — wm)} Qbm_l,a(ym—la Z)
If we rename y,, := z and b, := a, then we see that (6.15] differs from only for the

factor U%m—% (instead of 0']2\[(m_1)) and for the presence of the last kernel qp,, | o(Ym—1,2) =
Qb1 b (Ym—1,Ym). The latter can be estimated using (|1.8):

C C

Qbm_l,a(ym—lyz> < b (616)

<
m bm—l bm — bm_1

for some suitable constant c¢. As in , we first sum out the spatial variables, getting

N (b — 1
I R A I i b )
1<a<N 0<bi<as<ba<... _bl 1)(al_bl 2 \/b — b 1
ZEZQ <y <bm <N

Then we set uq := b1 and u; := a; — b;_1, v; := b; — a; for 2 < ¢ < m, which allows to bound
a; —bj_o = u; +u;_q for i = 2, as well as b, — by,—1 = uy,. Then, for A > 0, we insert the
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factor e} [T, e MF) > 1 and, by (5.37), we obtain the following analogue of (6.10)):
Z I(Nm) )< cMe (log]\f)(—loglN+C’>\)m_1

1<as<N
2€7?

(6.17)

al m 1 1
. U ’
{Z AP I | Sy ey rm}

where the extra log N comes from having J%mﬂ) instead of a%mfl) (by and )

We now switch to macroscopic variables, replacing w; by Nu;, with u; € n (0,1),
and bound Uy (Nuy) < ¢1 logN Gg(ul) since uy > 0, by (2.21) and (2.25)). We then replace
the Riemann sum in brackets by the corresponding integrals, similar to , with an
important difference (for later purposes): since u; € %Z and u; > 0, we can restrict the

integration on u; > « L (possibly enlarging the value of c). This leads to

Z IO (logN) (logN + CA)
1<a<N
2€Z2
. u
VN () m
% ..... Um <1

where the factor l:)/g%v comes from the estimate on Uy (Nw;) and from the last kernel 1/, /ty,.

If we define $(k)(-) as the following modification of (5.11] m

~ 1
O) () := —_ and for k > 1: J (k b ds, 6.19
P =7 o e (619)
then, recalling (5.12]), we can rewrite as follows:
m log N)
Z I(()i\zf’ )(w,z) < eAcm(OgN m 1 f Gﬁ (m 1)( )du,
1<asN v (6.20)
z€Z

1 c
where we set C) n := logN—i-C’)\ logN+m'

Similar to Lemma we have the following bound on ¢*) that we prove later.

Lemma 6.2. For all k € N, the function gg(k) (v) is decreasing on (0,1), and satisfies

k 2 %
~ 1 (log(e?Nu))
() < 3o 3 L Losle M)
b 2 l! \/a
We need to estimate the integral in , when we plug in the bound (| - We first

consider the contribution from u < \/—N In thls case Gy (u) < (loécj%)g 1 see (2.25), hence

I (log(eZNu))i 7N (log(e zNu))i
|7 o B < f e

1 uz

32e VN,  Vue(4,1). (6.21)

u

N

46019 \ﬁ (log w) dw = 786619 VN 2isie™%ds = C VN

(logN) ws (log N)2 J, (log N)?
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where we first made the change of variables e2Nu = w, and then w = €2

C = 8ecy for short. Then it follows by (6.21)) that

, and denote

1
VN A ~ VN
(m—1) < m
Jl Gy(u) ¢ (w)du < C32"m Tog N2
N —_—
Am,N

We then consider the contribution from u > \/% Since Gy (u) < 52, we have

1 N 1 2N i o rl .
j ) Gﬂ(u)(og(e—u))du < ¢y (log(eQN))zf ) #du = 2¢y N1 (log(ezN))Z,

N Vu VE
hence by
() G myt S L 2 7))
Lﬂv Go(u) ¢ (u)du < C32™ N1 ; T (log(e*N))".

By (6.13) and (6.20)), we finally see that

log N2
% B €3 5327t e BT O 00 A + B
1<a<N zeZ? m=2 N

<C e’\{ D (64cCrn)™ ' m

m=2

m—2 .
+ 2(6400/\,N)m_1<(10g]1\r)2 ! (log(€2N>)Z>}a

T i
m=2 Ni  jm 2t

with C" := 3 - 32¢c. If we fix A large enough, then for large N we have 64cCy < 1 (recall
(6.20))), then the first sum in the RHS is finite, in agreement with our goal (6.3)). Concerning
the second sum, we can estimate it by

log N )2 1 i _
< (log ;) Z il (log(e2N)) Z (64CCA,N)m !
Nx i=0 24! m=i+2
i (64cCyn) (log N)? (e2N)32¢Chn

BN (log(e2N - .
N z,>02u'!(0g(e V1 6teCry ~ N1 1-6dcCin

If we fix A large enough, then for large /N we have that the exponent is 32cC)y y < %, hence
the last term is o(1) as N — oo. This completes the proof of (6.3)). O

In order to prove Lemma [6.2] we need the following analogue of Lemma [5.5

Lemma 6.3. For allie Ny and v € (%, 1),

fl (log(eQNs)))i ds < 2i+1 ,'Hl (log(eQNv))j'

0 das < : — 6.23
L sys+w ° ﬁz = 275! (6:23)
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Proof. We can bound

fl (log(e2Ns)))" ds < =
Losvs+o NG s ENG

< »
ng

B A

For B, we make the change of variable u = log(e?Ns) to obtain

log e ) 2 i+1
_ L f widu < Joge NV
O Vu(i+1)

For A, we make the change of variable y = %log e?Ns and apply (5.25)) to obtain

(6.24)

Ll gl j
A <2/ N J ylevdy < 27 eV/Ne 3 los?Ne 51 1 (7 log 62N21> . (6.25)
log e2Nv =0 .7' 2
Combined with the bound for B, this gives precisely (6.23)). O

Proof of Lemma [6.2l We follow the proof of Lemma We first show that for all k € N

S
?r

k.
2k i 1
7 ; Ch (log(e*Nv)) Yve (NJ), (6.26)
for suitable coefficients ¢ ;. For £ = 1, note that by (6.19)

~n (! 1 is ”Lls | log(2Nv)
”)‘Lmﬁd gf;vx/ﬂsd v Ee st

Therefore (6.26) holds for k£ = 1 with é; 9 =0 and é;; = 1.
Assume that we have established (6.26]) up to k£ — 1, then

50 (1) :f L Gy s < o 1kzl Ch— uj (10g(€2N8))id5' (6.27)
1 4/5(5_H;) 2t 4! L sVs+u

Applying Lemma [6.3], we obtain

k—1 4 i+1 i+l
b1 Ch—1 2 (log(e Nv (log e2Nw)J
s 2 Z 24 o Z 27 51 Z < Z Ch— “) 27 51 '

J=0 J=0 i=(-1)*

This shows that (6.26) holds, provided the coefficients ¢ ; satisfy the recursion

k—1

Crj = Z Cl—1,is (6.28)
i=(j-1)*

which differs from the recursion ) for ci; by a missing factor of 2. Note that ¢1,1 here is
also only half of ¢ 1 in Therefore we have the identity ¢, ; = 27 ke i, and Lemma .
gives the bound ¢ ; < 16k Substltutlng this bound into - then proves Lemma O
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Proof of (6.4)). We start from the analogue of (6.5]), with gs q,(w, z1), ¢s,q, (w, z1) replaced
by qévai(gb, x1), qé\fai(qb, x2). Applying relation (6.14]), we can write

(N 2m—1
I (g, 2) = oY 3 0y (6, 21)2 @)y (6, 22) -
1<a<N O<ai<bi<as<..<am<as<N
2€72 T1,Y1,T2,Y2;e 0T ,2E€ L2
“UN(b1 — a1, 91 — 1) @by a0 (Y1, 22)Un (b2 — a2, y2 — x2) - (6.29)
m
: H{Qbi_z,ai (Yi-2: @) @b, 1,05 (Yi—1,2:) Un (bi — @i, yi — l’i)}%m,l,a(ym—l, z).
i=3

We rename Y, := 2, by, := a and bound g, , o(Ym—1,2) < (c\/bm — bm—1) !, asin .
Next we sum over the space variables y,,,, p,, . . . until y3, x3, 42, as in —, which has
the effect of replacing Un (b; — a4, yi — ;) by Un(b; —a;) and gb, a0, (Yi—2, i) @b,y ,0; (Yi—1, T4)
by ¢(+/(a; — bi—1)(a; — bi—2))~!. Then we bound qé\fag(qﬁ,xg) < |¢|oo, see (2.8]), after which
the sum over zo gives 1, the sum over y; gives Uy (b — a1), and the sum over z; is bounded

by ¢ N, as in ([5.35)). This leads to estimate the RHS of (6.29) by
U N(b- ) 1
- bz 2 \/b - bm 1

¢ Noy™ " N Un(br —a1) Un(bs — a2) ]_[
0<a1 bl< \/
...<am<bm<N

We now set u; := a; — b;_1 and v; := b; — a; for 1 < i < m, with by := 0, and bound
a; — bi_g = u; + uj_1, while by, — bpy—1 = Um,. Then we insert the factor e? HZZI e MF) > 1,
for A > 0, and by (5.37) we bound the last display by

(6.30)

™ e* N (log N) (e + Cy)™
(logN ) 0<u17%m<N11_£ / U1+Uz 1 ﬁum

which is an analogue of (6.17). The exponent of (ﬁ + C)) equals m, because we have m
factors Uy (b; — a;), and the extra log N comes from having m — 1 powers of 012\,.

We now switch to macroscopic variables, replacing u; by Nu;, with u; € %Z n (0,1), and
replace the Riemann sum in brackets by the corresponding integrals, where as in we
restrict the integration on u; > % (possibly enlarging the value of ¢). This leads to

Z I(Nm) )< " N(logN)( N—I—C)\)

1<a<N
2€72

(6.31)

N{ [ (M) )

1
ﬁsul,uz,...,um<1

where the factor N'3 arises by matching the normalization factor N~ of the Riemann sum

and the term N~ (m=2-3 generated by the square roots, when we set u; v~ Nu;.
Note that the variable u; does not appear in the function to be integrated in (6.31]), so

the integral over u; is at most 1. Recalling the definition (6.19) of qg(k) we have

Z INm )< N2 (IOgN)( N+C/\ J ¢(m 2(UQ)dUQ

1<asN
272
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By Lemma [6.2] we have

PN = (log(e?Nu))! (log(e?N))?
(m=2) < 32m—2 gi < 32m—2 gig
J}V P wdu <3 ; 2%! Judus Z 5771

Therefore, if we set Cy y := Cy y := logN + C, as in (6.20)), recalling (6.5) we get

Z MNNT <3 Z gm Z INm ’

1<a<N m=2 1<a<N
2€72 2€72
m
5 10g N))
<3¢’ Nz (logN) 2(6400,\]\/ 2721
m=2 =0
A Ar3 (log(e m
<3e*N2 (logN) Z T 21(6400)\71\[)
120 m=i
3e 5 (32¢Cy log(eQN))i
<—+——N2(logN :
T —6dcCyy 1 Uoe )i;) il
3el 5
_ N7 1 N 2N 3200)\71\/ .
ooy V(s M) (@)
Given € > 0 we can fix A large so that 32¢C) < 5. Then we have Cy y = loglN +C)\ < %5
for large N. This concludes the proof of . O

7. BOUNDS ON TRIPLE INTERSECTIONS

In this section, we prove Proposition First we derive a representation for M, g;T(qb, V),
which denotes the sum in ([£.3) restricted to A n B n C # & (recall (4.4)).

We denote by D = (Dy,...,D\p|) :== An B n C, with D; = (d;,w;), the locations of
the triple intersections. If we fix two consecutive triple intersections, say D;_; = (a,w) and
D, = (b, z), the contribution to is given by

E[(ZCZLYI;BN (’LU, z))3] - Mgl;T(wv Z) )

where M(Z;T(w, z) is defined in (6.1)), together with Mé\fb’T(qﬁ, z) and Mgl;T(w, ¥). Then we
obtain from (4.3]) the following representation for M S]?;’T(gﬁ, ) (where E[¢7] := E[&} .]):

MG =m0 EIEIP (BN 60)] - MY (6 wn))
Dc{s+1,...,t—1}x22
|D|>1

D] N ; - (7.1)
’ H (E[(Zd;_llydz (wi_l’ wz)) ] - Mdilhdi (wi_17 wZ)) ’
=2

(ELEZ 2 @i 0)*] = M (i 0)

To prove Proposition we may assume t = 1, by Remark and also ¢ = 0,9 >0
(otherwise just replace ¢ by |¢| and 1 by [¢| to obtain upper bounds). If we rename
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(d1,w1) = (a,r) and (d|p|,w)p|) = (b,y) in (7.1)), we get the upper bound

TG0 < EIEN 55 3 (B 6.00)] - M (6,0))

1<a<N
zeZ2

N - _
0 (7.2)
(Y ok) - sup (B2 (0.0)°] = My (0,0))
n=0 e
By
where we set
on = [ELEN Y (B[ (0.9)"] - M0 (0,2)) (73)

Note that E[¢3] actually depends on N, and vanishes as N — oo Indeed recalling that
€n, = INn=mABN) 1 and A\(B) = 252 +0(p%) as B — 0, see ) and ., we have

E[¢3] = AN =3ABN) _ 3 A28M)=2XBN) 9 — 0(83) = O((log N)_i) ’ (7.4)

where the last equality holds by ((1.14)) and ([1.10)).
Then, to prove Proposition , by the bound ([7.2)) it would suffice to show that

limsup Ay - By < @ and limsupoy <1,
N—oo N—0

so that the series >, o% = (1 — on) ! is bounded. We are going to prove the following
stronger result, which implies the bound |Mévj’\,T(¢, P)| = o( N~1/241) | for any fixed n > 0.

Lemma 7.1. The following relations hold as N — oo, for any fixed € > 0:
(a) Ay = O(Na—l/Z)’.
(b) By = o(N?);
(c) on = O((log N)~1/?).

Before the proof, we recall that E[(ZN BN( ,T)—qi\{b(*, T))3] = Mé\be( T)~I—MN N 1),
for any * € {w, ¢}, T € {z,9}, hence

E[(Z05™ (=, 1)"] = My (1)
= g (e, 1)° + 300 (e, 1) Var (2357 (6, 1) + MG (5, 1).
Also note that MN NT( #,1) =0, see and (6.5).
Proof of Lemma [T.1l We first prove point (]E[) By definition, see ,

G (Y, Z an—b(z — y)¥( ZN) < |9 oo-

2€72

If we replace ¢ by the constant 1 in the averaged partition function Zy N N.Bv (y, 1) we obtain
the point-to-plane partition function fo\ib( ), see (2.4) and (L.4). Then, by (1.32),

Var (Zy0™ (y,1)) < E[Z37N (v, 9)?] < |03 E[Z]%N,b@)?] = O(log N). (7.6)
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Lastly, by (6.2)), we have
N,NT
My (y,¥) = O(N®).
It suffices to plug these estimates into (|7.5)) with = =y, = ¢ and point (]E[} follows.
Next we prove point . First note that

5 2 duent= 1m 2 (Y e(nt-v)

= i e
<’¢|oozqu_ () |¢|OOZZ¢L

~ a
N
1<a<N yeZ2 \/7 1<a<N yeZ?2 \/7

:!qblooz (e <1)

where the last sum converges to S(ﬁ(:c)dx by Riemann sum approximation. Next note that
we can bound Var (Zé\;’lﬁN(qb, z)) < |9l E[Zg’v (:c)Q] = O(log N), arguing as in ([7.6]), hence

1

F 2 Ghaldm) Var (29,7 (9,) —N Y. 6(Z5)dal@ —y) O(log N)
1<a<N 1<a<N
zez2 T yeZ2
1 log N
=+ O(logN) ¢%)—0<N).

yeZ?
Lastly, by (6.4]), we have

— > M (¢,2) = O(N3).
1<a<N
z€Z2

Plugging these estimates into (7.5 with * = ¢ and = x, point @) follows.

We finally prove point (d). By the local limit theorem ([I.8) we have g,(z) < ¢ for some
¢ < oo, uniformly in @ € N and x € Z2. Therefore, recalling (7.4), we have

2

B[] D) 00a(0.2)° <E[E"] Y, Sau(x) =E["] )] 5 =O((logN)~*").

e e IsosN
Next we bound Var (Z&‘L’(O z)) < on> Un(a, 2), see ([2:15), and note that
log N
Z Un(a,z) =Un(a) < Ccy —F 57,
=, a log(e?N/a)

by (2-18), (2-20) and (2:25). Bounding g,(z) < < and o = O(log N), see (L.14) and (L.10)),

we obtain

E[E] D) ad(0,2) Var (2337 (0,2)) < /E[¢}] D]

1<asN 1<a<N

1 (logN)?
a? log(e2N/a)

For a < +/N we can bound log(e?N/a) > log(e*v/N) > 3log N, while for VN < a < N
we can simply bound log(e2N /a) > loge? = 2. This shows that the last sum is uniformly
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bounded, since Y}, 2 IZE;N + DN (102;55\2/) = O(log N) + O((l(:g/%)2 ). We thus obtain
E[E] D) ad(0,2) Var (2337 (0,2)) = O(E[¢*] log N) = O((log N)~Y/?).

1<a<N
2672

Lastly, by , we also have
1Y, Mo (0,2) = E[E*]O(1) = O((log N)~*%) .

1<a<N
2€72

If we plug the previous bounds into (7.5) with * = 0 and = 2, point is proved. O

8. PROOF FOR THE STOCHASTIC HEAT EQUATION

In this section we prove Theorems [I.7] and [I.9] on the variance and third moment of the
solution to the stochastic heat equation.

We first give a useful representation of u® = SRQ d(x)us(t,x) dz. By a Feynman—Kac
representation and the definition of the chk exponentlal (see [CSZ17h| for details), it
follows that u®(¢, ¢) is equal in distribution to the Wiener chaos expansion

f e dx+26rf ﬁW(dtidxiy

r>1 O<ti<---<tr.<e—2t J(R2 L

. {JRQ dz 2¢(cx) J(R? Hgt o (B, &) (8 — ) diy } (8.1)

with the convention that ty := 0 and zg = x.

Expression is the starting point to prove both Theorems and To analyze this
expression, we first need to extend the renewal theory framework, described in Subsections[I.3|
and [2:2] to continuum distributions. The key results, described in the next subsection, are
analogous to those obtained in the discrete setting, see [CSZ18, Remark 1.7].

8.1. RENEWAL FRAMEWORK. Fix a continuous function r : [0,00) — (0, c0) such thatﬂ

1
r(t) 47t

)
For £ > 0, we consider i.i.d. random variables ( 5)i>1 with density
) 1

r(t

)

—(1+0(1)) ast— . (8.2)

P(’];E e dt ) [0 572](t) dt, (8.3)

where R, := So t) dt is the normalization constant. Note that 7% +. +T€ is a continuum

analogue of 7']5 in (|1.43|), see (|1.41)-(1.42), with the identification N =~
Let us quote some relevant results from [CSZ18| that will be needed in the sequel.

e By [CSZI8| Proposition 1.3|, we have the convergence in distribution

<€2(7-1€ +7[310g6 J)>s>0 L) (Y;>5207 (84)

e—0

where (Y5)s>0 is the Dickman subordinator, whose marginal density is given by ((1.45)).

TThe precise constant 47 in (8.2) is the one relevant for us, but any other positive constant would do.
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e By [CSZI8| Lemma 6.1], the following large deviations bound holds, with ¢ € (0,1):

(7-1 Tsloga < 572) < 6570510g8, Ve € (07 1)? Vs € [07 OO) : <8'5)
Let us now take A such that
Aei=1+ log o2 (1 + 0(1)) , for some 9 e R. (8.6)

Then it follows by Riemann sum approximation (set 7 = s loge~2) that for all T € [0, 1]
1 0

— Z A P(TE+...+ T <e?T) — . e P(Y, <T)du. (8.7)

This relation will play a crucial role. We now list some approximations that we can make
in the left hand side of (8.7} @, without affecting the convergence.

(1) We can restrict the sum to r < K loge™2, for large K > 0. Indeed, it is easily seen
by (8.5 . and - that the contribution of 7 > K loge ™2 to the sum in is small,

uniformly in ¢, for K large.

(2) We can restrict the probability to the event “there are no consecutive short increments”,
where we say that an increment 7 is short if and only if 77 < (log £72)2. Indeed, the
probability that an increment is short is, by ({8.2))-(8.3)),

(loge™2)? -2
t)dt log(1
(7;6 (loge 2)2) _ J0 - T( ) _ 0( Og( Ogi; )> ’ (8.8)
o r(t)ydt loge

hence the probability of having two consecutive short increments among 77, ..., 77 is

r—1 —92\) 2

< —2\2 2\2 2 r (log(loge™2))

P<i_U1{7E < (loge™)%, T3 < (loge™ >}) <rpg<0( log=27 )

which vanishes as € — 0, when we restrict to r < K loge™2.

(3) We can further restrict the probability to the event “the first increment TF is long, i.e.
not short”, simply because p. — 0 as ¢ — 0, see ({8.8).

8.2. PROOF OF THEOREM [1.7]. It follows from the expansion (8.1]) that E[u®(t,¢)] =
{g2 @(x) dz and that the variance of u®(t, ¢) is given by

Var (u*(t, ) = &* me@ b(ci) ¢(ci) KE(#,7) dis di (8.9)

where, using the conventions &y = &, &9 = & and t = (t,...,t,), we define

K8(#, %) = 527"f di f dx,f d#; di;
t( ) Z O<t;<--<tr<e~2t R2)" H (R2)2r H

r=1 i=1

: H Gti—tios (Tim1, B) Gty (Timr, T0) J (80 — 4) § (i — i)

=1
dr f dz; dz;
<672t (RQ)QT 711

|
€
: H Gt;—t;_1 (;%’i—17 jl) Gti—t;_1 (j}i—la il) J(*’%Z - il) )

r>1 O<ty<---<tr
i=1

(8.10)
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where the second equality holds because j(—x) = j(z) and we recall that J = j * j.
We now exploit the identity

9t(z) gt(y) = 4 gar(z — y) g2 (x + y) - (8.11)

If we set Z; — T; =: z; and Z; + T; = w; and take into account that the Jacobian of the
transformation (z,y) — (z —y,z + ) on (R?)? equals 1/4, we obtain, with 29 = & — 7,

Ki(2,3) = Y, B2 f dt’ f dz dw
r>1 O<ti<---<tpr<e—2t (R2)2r

HgQ(ti—ti_l)(wi - wifl) g?(ti—ti_1)(’zi - Zifl) J(ZZ) (812)

=Z£ﬁ

r>1 O<ti<---<tp.<e 2t

dt d — i— J i) -
. zHgM i = 7i1) J(2)

Note that variables z; with 4 > 1 lie in supp(.J), which is a compact subset of R?, while
20 = & — & is of order e71, in view of . For this reason, it is convenient to isolate the
integrals over ¢, z; and change variable t; — £72t;. Observing that g.2,(z) = £2g;(ex),
and renaming (1, 21) as (s, z), we obtain

stf Az gou(e(z — (& — #))) J(2) K5_o(2). (8.13)
]R2

where we define the new kernel K7%.(z) as follows:

Z g2r+1) J

r=0 0

T

dff A2 [ | g2i—ti0)(zi — 1) J(21), (8.14)
<t1<..<tp<e 2T (R2)T 211 2(t ti_ 1)

where zg := z and we agree that for » = 0 the integrals equal 1.
This key expression will be analyzed using renewal theory. Note that by ([1.9))

4rt

so the dependence on the space variables z; in (8.14]) should decouple. We can make this
precise using the approximations described in Subsection [8.1] We proceed in three steps.

Step 1: First approximation. Note that (., see (1.35)), may be rewritten as follows:
9 Am 40+ o(1)

1 1
gy —z) = — + O<7§2> ast — o, uniformly in z,y € supp(J), (8.15)

- 8.16
Pe loge=2  (loge=2)2 (8.16)
We first obtain a domination of K7.(z) by a renewal quantity. Let us define
7(t) := sup J gor(z — 2') J(2) dz. (8.17)
2'esupp(J) JR2
Note that 7(t) = ;& + O(t%) as t — o0, thanks to (8.15]), hence
g2 1
R. = 7(t)dt = —loge™2 + O(1) ase — 0. (8.18)
0 47
If we denote by (’7; )ien 1.i.d. random variables defined as in , more precisely
- Pt
p(7 e dt) = -1 L. 2() dt, (8.19)

Re



42 F.CARAVENNA, R.SUN, AND N.ZYGOURAS

we can bound K%(z) from above for T' < 1, uniformly in z € supp(J), as follows:

sup K57(z 6826 J Hr —ti_qy)dt

zesupp(J) >0 O<ty<..<trp<e 2T ;_7
=B Y (BR)P(TE + ...+ T <e°T) (8.20)
r=0
< 1ogc‘;*2 Z (1 + 1og6372)7a P(7_-1€ +...+ 7_;‘5 < 572T> )
r=0

where the last inequality holds by (8.16]) and (8.18)), for suitable cl, ez € (0,00).

The last line of 1} is comparable to the left hand side of (8.7} so we can apply the
approximations — ) described in Subsection E In terms of K e ), see - these
approximations correspond to restricting the sum to r < K loge 2 for a large constant
K >0, by , and to restricting the integral over t to the following set, by -:

37 = {O <tp<---<tp<e 2 T: t; > (loge ')? and, for every 1 <i <r —1,
_2)2 or tiy1 —1t; > (10g6_2)2 } .
Summarizing, when we send € — 0 followed by K — 00, we can write

K5(z) = Kpx(2) +o(1)  uniformly for z € supp(J), (8.22)

where we define, with ¢g := 0 and zg := z,

. (8.21)
either t; —t;—1 > (loge

Kloge—2

Kiw@= 3, o0 [ ar | o) S 629
r=0 Ir "=

Step 2: Second approximation. Given r € N, let us denote by S, and L. the subsets of
indexes i € {1,...,r} corresponding to short and long increments:

Sc:={ie{l,...,7}: t; —t;_1 < (loge2)?},

Lo:={ie{l,....r}: t; —t;_1 > (loge ?)%}.
We can then decompose the last product in as follows:

r

[ [92000—ti0)(zi — 2i1) = [ 20-tin) (@i — 2zio1) T ] 920 —zi1) [ [J(z).
i1

1€Se i€le i=1
We now make replacements and integrations, in order to simplify this expression.
For each i € L. we replace go«t,—¢, ,)(2i — zi—1) by r(t; — ti—1), where we set

r(t) = (g ) = j f 2)gan( — )T (y) da dy (8.24)

The error from each such replacement is exp {O( loge™ 1)*2)}, since one easily sees that
92(t;—t;_ 1)(2 Zi—1) = 92t —t:— 1)({[} —y) exp{O( t; — ti—1) 1)} and we have t; — t;_1 >
(loge=2)? (recall that z — 3 and z;,1 — 2; are in the support of J, which is compact). Since
we are restricted to r < K loge ™2, see (8.23)), we have |L.| < K loge~2, hence the total error
from all these replacements is exp {O((loge™')™!)} = (1 + o(1)). We have shown that

HQQ(ti—ti_l)(zi —2i-1) J(21) = (1 + of H 92(ti—t:-1)(2i — 2i-1) H r(ti —ti-1) H J(2i) -
i=1 i=1

1€Se i€le

We now proceed by integrating successively dz; for i = r,r —1,...,1 as follows:
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e for ¢ € L. the integral over dz; amounts to SRZ J(z)dz = 1;
e for i € S. we integrate both dz;_; and dz; which gives, see (8.24)),

J(RQ)Q J(2) Gati—t; 1) (2 — zi1) I (20) dzim1 dzi = (T, goy—t; 1)) = 7(ti — ti1)

This sequence of integrations is consistent, i.e. it does not result to integrating a variable dz;
twice, because on the set 77, see (8.23) and (8.21)), there are not two consecutive indices ¢
in S.. Therefore, uniformly for r < K loge~2, we have shown that
T T
J( . dz Hgg(ti_ti_l)(zi —zi-1) J(z) = (L+0(1)) [ [rts —tiz). (8.25)
R =1 i=1
Note that r(t) = 47rt ), by (8.24] and , so we can consider i.i.d. random

variables 7, with law 1.} When we plug mto , the approxnnatlons . .
described in Subsection [8.1| show that we can remove the restrlctlons r < Kloge?2 on the

sum and ¢ € J% on the 1ntegral. Recalling (8 , we have finally shown that as e — 0

K%(z) = (1+0(1)) K + o(1) uniformly for z € supp(J), (8.26)
where, recalling (8.16)), we define
K; = ﬁg Z ﬂgr j ) ’I“(ti - tifl) df?
r=0 o<t1<..<tp<e—2T i=1
(8.27)
-2
= (47 + o(1) 10 E_QZﬁa A TE<e T).

Step 3: Variance computation. We can finally complete the proof of Theorem [I.7], by
proving relation (|1.37)). Assume that we have shown that, for some 9 € R,

0
2
BER.=1+ 1Og?(l +0o(1)). (8.28)
Then, by and (8.27)), we can write
o0
lim K, =4r f " P(Y, <T)du , (8.29)
E—> 0

and the convergence is uniform in 7" € [0, 1] (because both sides are increasing and the right
hand side is continuous in 7). Looking back at , (8.13) and (8.26)), after the change of

variables &, % — e~ '#,e 1%, we obtain

Var (u®(t,¢)) = (1+ o(1)) f d# dz ¢(2) o(Z)

R2 xRR2

J ds | dzgos(ez— (2 — 7)) J(z)K,_, + o(1).
0 R2

Recalling (8.29)), since SRQ J(z)dz = 1, we have shown that

lim Var (uf (1, 6)) = f di d 6(2) 6(7) Q@ — ),
e~ R2 xR2

where
t

0
ds gas(2) f e P(Y, <t—s)du.
0

Q) = 47rf

0
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Recalling that f,(-) denotes the density of Y, see ([1.45)), and using the definition (1.18]) of
Gy(+), we can rewrite Q(x) as follows:

rt Q0 t—s
Q) = an [ dsg(o) [ ([ ) au

0 0 0
rt t—s

=4r J ds g2s(z) Gy(r)dr = 4n f g2s(x) Gy(v — s)dsdv
0 0 O<s<w<t
-

=2 J 9s(x/V/2) Gy(v — s)dsdv.
O<s<wv<t

A look at (T.20) shows that Q(z) = 2K, 9(z/+/2), hence relation (1.37) is proved.
It only remains to prove (8.28]) and to identify ). Note that by (|1.9)

2 -2 lo—y|?

Jf 1 £ e @ 1 Q0 efu

—)dt = — dt = — —d
. g2t(x — y) Az J, t Am Je2le vl !

Using the following representation of the Euler-Mascheroni constant:

G =)=

see [GRO7, Entry 8.367 (9), page 906], and since

fooldt—fool LY log(1 +a™1)
Lter )\ T ) T8 ’

we see that as € — 0,

—2

N 1 4
- = —Jlog(l1+———)— )b,
Jy oo = hion (14 ) <o o

Recalling the definition (8.24)) of (), we have

-2 -2

Re = fs r(t)dt = J‘(IRQ)Q J(x)J(y) JE g2t(z — y) dt dzdy

0

1
= — log52+log4+2f J x) log J(y)dedy —v+o0(1) ¢ .
in - F

Finally, recalling (8.16)), we obtain

log4 + 2 x)log J(y)dxdy — v+ o/
B2R. — 1+ Sz Sa J ( log\xg yl (14 0(1)).

This shows that (8.28) holds, with the expression in (|1.38]) for ¥. O

8.3. PROOF OF THEOREM [1.9] We use the expansion (8.1) to evaluate

E [(us(t, $) — fge 6() dx>3] . (8.30)

We are going to expand the third power and compute the expectation, which amounts to
“pairwise matchings” of the instances of the noise W (dt; dx;) (note that “triple matchings”
are automatically ruled out, because Gaussians have vanishing third moment). This will
lead to an expression, see below, which is similar to the one we found for the directed
polymer, cf. , with some additional complications due to the continuous setting.
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210 o
05 \\\Eti,u)_‘ L RIS
. BIIOI0
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FIGURE 2. Diagramatic representation of the expansion of the third
moment of the solution of SHE. Due to the space-mollification of the noise,
we have non trivial correlations between space-time points (¢;, &;) and (¢;, ;)
— which intuitively belong to two copies of the continuum polymer path, i.e.
Brownian motion — only when #; — Z; is in the support of J(-). This is
slightly different from the lattice case, cf. the corresponding expansion
for the directed polymer, where non trivial correlations occur only if z; = Z;,
i.e. two copies of the polymer exactly meet. The disks represent the support
of J(-) and should be understood as disks in space R? (we drew them in
space-time for graphical clarity). An array of consecutive disks represents the
quantity U (s, t;x,y) in (8.31)), with (s,z) and (¢,y) corresponding to space
time location of the points inside the first and the last disk in a sequence.
They are the analogues of the wiggled lines in Figure

Before entering the technical details, let us give the heuristic picture, which is represented
in Figure . When taking the third power of the expansion , we have three sets of
coordinates, that we may label a, b, ¢, that have to match in pairs. Each matching can be of
three types ab, bc, ac, and we say that consecutive matching of the same type form a stretch.
The contribution of each stretch is encoded by a quantity Ue(s, t; x,y).

The rest of the proof is divided in two steps.

e In the first step, we define the single-stretch quantity U-(s,¢; x,y) and we provide
some key estimates on it, based on local renewal theorems obtained in [CSZ18].

e In the second step, we express the centered third moment (8.30) as a sum over the
contributions of stretches, see (8.39)). We then derive the asymptotic behavior of this
expression and show that it is bounded, completing the proof of Theorem

Step 1: Single stretch. We introduce a quantity U (s,t;x,y) which is an analogue of
Un(t — s,y —x) in the discrete setting, see (2.15]), linked to the point-to-point variance. Due
to the presence of the mollifier, the space variables are couples = (£, 2),y = (9,9) € (R?)2.
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Here is the definition:
Us(s, b, y) i= B2 go—s(E,9) gi—s(Z,9) J(§ — §)

+ 82> B f ﬁdti J Hdzz dz;

r=1 s<t]<--<tr<t i=1 (R2)2r i=1

gt —s(Z,21) g1 —s(Z, 21) J (21 — Z1) - (8.31)

.
: Hgtifti,l(éiflv 2) Gti—ti1 (Zie1, 2) J (2 — %) -
i=2

“ Gt (20, 9) 91—, (%, 9) J(§ — ),
where we recall that J = j = j and we agree that the product equals 1 for r = 1.
Let us now evaluate S(RQ)Q U-(s,t;x,y) dy. We use the identity and make the change
of variables w; 1= 2;+ Z;, z; := 2, — Z; fori = 1,...,r, aswell as wy 41 := §+ 9, 2r41 := §— 4.
Integrating out all the w;’s for i =r + 1,r,...,1, as we did in —, we obtain

J(RZ)ZUE(S,t;w,y) dy = g2 ) B2 f Hdtl J Hdzi

r20 o <t<tp<t =1 (R2)r+1 i=1
92(-) (21 — (& = 7)) T (21) (8.32)
r+1
] T 92—ty (2 — 2im1) T (22)
=2
where we set t,1 := t. We can rewrite this relation more compactly as follows:
J U (s, tx,y)dy =U(t —s;8 — 7), (8.33)
(R2)2
where we set, with ¢y := 0 and 2y := z,
r+1
z) = Z 53(r+1) j dt j dz Hg2(tl_tl (=i = zim1) I (i) - (8.34)

r=0 O<ti<io<tp<t  (R2)r+1

Note that U.(t; z) looks similar to K§(z), see (8.14)), with an important difference: the
product in includes one more term i = r + 1. This extra term makes U.(t; z) close to
a local renewal function, as we now explain.

Since we content ourselves with an upper bound, recalling the definition (8.17)) of 7(¢),
we can estimate

r+1
sup Uc(t; 2) Z BEr+1) f dt’ H T(ti —ti—1). (8.35)
zesupp(J) r>0 i=1

O<ti<--<tr<t

Let us introduce i.i.d. random variables (7;%);en as in (8.19)), and denote by f£(t) the density
of the associated random walk:

P(TE+...+TEedt)

fE(t) =
() =
We can then rewrite (8.35]) as follows:
sup Uc(t; 2) Z AL (), where A= B2 R.. (8.36)

zesupp(J) =0
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The right hand side can be Viewed as a (weighted) renewal function: it is the continuum
version of the quantity Uy (n) in 8) (with the usual identification N = ¢=2). We already

remarked that \. = 1 + O<10 = 2) by (8.16) and (8.18]). Proposition [2.1| holds in this
h

continuum setting [CSZ18|, Remark 1.7], hence by the analogue of relation (2.21)) we get

loge—2
2

sup U.(t;2) < C
zesupp(J)

Gy(e?t). (8.37)
In conclusion, by (8.33]), we have proved the crucial upper bound

sup f U(s,t;x,y)dy < Ce? loge 2 Gy(e*(t — s)). (8.38)
xe(R2)2: 2—7 e supp(J) J(R?)?

Step 2: Third moment computation. We expand the third power in (8.30]) using the
Wiener chaos representation (8.1]). We then compute the expectation, which forces pairwise
matchings of the instances of the noise W (dt; dz;). Since

fRz (@ —x;) § (T — @) day = J (2 — T4)

we obtain the following expression (analogous to the directed polymer case, see ([5.2))), where
U:(a;, b;;x;,y,;) are the contributions of stretches of consecutive pairwise matchings:

E[(ua(t,gb) e 6(2) )] 231“” with

It(a’m) = gm f . J da db A& dy f dzy dzo dzz €8 ¢(ez1)p(ez2) ple23) -

O<ay<bi<as<ba<...<Gm <bm<ec 2t (R2)3
ZT1,Y15H8m Yy € (RZ)Q

- Gay (21, 21) Gay (22, 1) J (81 — Z1) U (a1, b1; 21, Y1) -

(8.39)
D Gan(28,52) Gag—, (Y1, £2) J (B2 — F2) Ue(az, ba; @2, Ys)
Yie{g1,91}
m N ~
> Jai—bi_1 (Yio1,2:) Ga;—b; o (Yio2,%i) -
1=3

B Yi1€{fi—1 ,171'—1}
Yi 2€{Pi—2,5i—2}\{Yi—2}

- J (& — T) U(ag, by i, y;) -

Remark 8.1. This formula looks actually slightly different than the corresponding expansion
for the directed polymer (5.2)), for the presence of the sums over Y;_1 and Yi_s. The reason
1s that, each time that two copies of the continuum polymers “spilt” (i.e. at the end of each
stretch) we have to decide which one will meet the unmatched copy and which one will wait
until the next split. But since the two continuum polymers do not match exactly but rather
lie inside the support of J(-), the symmetry that was present in the discrete case is broken.
This gives rise to the sum over Y;_1 € {fi—1,5i—1} and Yi_g € {Di—2, Gi—2}\{Yi_2}.

We estimate It(s’m) as follows. We start by integrating vy,,, using (8.38)), to get

j US(amv bmv L, ym) dym < 052 IOg 8_2 G0(52(bm - am)) ’
(R2)2
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uniformly over the allowed x,,. Next we integrate over Z,, and Z,,, to get:

~ ~

LR2)2 dzp, dzpm, Jam—bm—_1 (mela im) 9a,m—bm—_o (Ym72a i‘m)J(i'm - xm)
= (gam*bm 1 * '] * gam*bm 2)(?77’6—1 - Yfm—?)
= (G200 b1 -2 * J) (Ym—1 — Yin—2)

\ HgQaszbm—lfbrn—Q * J“OO = HQQ(Im*bm—l*bm—Z HCD
27 (2am, — bp—1 — by—2) 47r\/ —bm—1) (@m — bm—2) 7

having used 2zy < 22 4 y? in the last equality.
We iterate this procedure for ¢ = m —1,m — 2,... until ¢ = 3: we can first integrate out
y; and then &; and 7;. This replaces U.(a;, b;; xi,y;) by Ce? loge™2 Gy(e?(b; — a;)) and

Gai—b;_4 (Yi_l, Ti) Ga;—b;_o (Yi_o,%;) by (47r\/(ai —b;_1) (a; — bi_2))~!. We also recall that
B2 < C(loge=2)7!, see (8.16)). Looking back at (8.39)), we obtain for some C < oo

TE™ < (B2)2(C g2 ff da db d dg szldz*gdzg 8 p(ez1)d(ez2)(e23) -

0<ai<bi<agz<ba<...<@m<bm<e~ 2t (R2)3
Z1,Y1,L2,Yo € (RQ)Q

- Gay (21, 21) Ga, (22, 21) J (21 — Z1) Ue(ar, bi; 21, Y,) -

D Gan (28, %2) Gay—by (Y1, £2) J (B2 — E2) Ue(az, ba; @2, Ys)
Yie{g,41}

| (b — a,))
H - bm 1) (am - bm—Q) '

We can now conclude with the last bounds.

e We integrate out y,, replacing Us(az, ba; T2, ys) by Ce? loge™2 Gy(2(by — a)), see
(8.38]). Then we bound ¢(c23) < |¢]s and we integrate out z3 (which makes gq, (23, Z2)
disappear) followed by Z2 and &2 (which make gq,—p, (Y1, Z2) J(Z2 — T2) disappear).

e We integrate out yy, replacing U.(ay, bi;x1,y;) by Ce? loge™2 Gy(2(by — a1)), see
(8-38)). Then we bound ¢(e21) < |¢[w and we integrate out 21 (which makes gq, (21,71)
disappear) followed by Z; and #; (which make g,, (22, 21) J(Z1 — 1) disappear). Lastly,
we integrate out z;, which turns the factor €% into .

This leads to

TEM < (0 e2)m et J J a2 dB Go(e2(b1 — ar)) Gy (2(bs — as)) -

O<ai<bi<as<ba<..<@m<bm<e—2t

5 e?(bi — a;))
H _bm 1)( _bm—Q) '

=3
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Finally, the change of variables a; — ¢ 2a;, b; — £~ 2b; gives

=™ < om f : f d@db Gy(by — ay) Gy(by — as) -

O<ai<bi<as<ba<..<@m<bm<t

e Gy(b; — a;)
lei \/(a’m - bm—l) (am - bm—Z) '

Note that the right hand side, which carries no dependence on e, coincides for ¢t = 1 with J (m)
defined in (5.7). We already showed that J (m) decays super-exponentially fast as m — oo,
see (5.14))-(5.15)). Looking at the first line of (8.39)), we see that the proof is completed. [
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