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Abstract. Inspired by recent work of Alberts, Khanin and Quastel [AKQ14a], we formu-
late general conditions ensuring that a sequence of multi-linear polynomials of independent
random variables (called polynomial chaos expansions) converges to a limiting random
variable, given by a Wiener chaos expansion over the d-dimensional white noise. A key
ingredient in our approach is a Lindeberg principle for polynomial chaos expansions, which
extends earlier work of Mossel, O’Donnell and Oleszkiewicz [MOO10]. These results provide
a unified framework to study the continuum and weak disorder scaling limits of statistical
mechanics systems that are disorder relevant, including the disordered pinning model, the
(long-range) directed polymer model in dimension 1 + 1, and the two-dimensional random
field Ising model. This gives a new perspective in the study of disorder relevance, and
leads to interesting new continuum models that warrant further studies.
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1. Introduction

In this paper, we consider statistical mechanics models defined on a lattice, in which
disorder acts as an external “random field”. We focus on models that are disorder relevant, in
the sense that arbitrarily weak disorder changes the qualitative properties of the model. We
will show that, when the homogeneous model (without disorder) has a non-trivial continuum
limit, disorder relevance manifests itself via the convergence of the disordered model to a
disordered continuum limit, if the disorder strength and lattice mesh are suitably rescaled.

Our approach is inspired by recent work of Alberts, Khanin and Quastel [AKQ14a] on
the directed polymer model in dimension 1 + 1. Here we follow a different path, establishing
a general convergence result for polynomial chaos expansions based on a Lindeberg principle.
This extends earlier work of Mossel, O’Donnell and Oleszkiewicz [MOO10] to optimal
(second) moment assumptions, and is of independent interest.

In this section, we present somewhat informally the main ideas of our approach in a unified
framework, emphasizing the natural heuristic considerations. The precise formulation of our
results is given in Sections 2 and 3, which can be read independently (both of each other
and of the present one). The proofs are contained in Sections 4 to 8, while some technical
parts have been deferred to the Appendixes. Throughout the paper, we use the conventions
N := {1, 2, 3, . . .} and N0 := N ∪ {0}, and we denote by Leb the Lebesgue measure on Rd.

1.1. Continuum limits of disordered systems. Consider an open set Ω ⊆ Rd

and define the lattice 
δ := (δZ)d∩Ω, for δ > 0. Suppose that a reference probability measure
Pref

δ

is given on R
δ , which describes a real-valued field σ = (σx)x∈
δ . We focus on the case
when each σx takes two possible values (typically σx ∈ {0, 1} or σx ∈ {−1, 1}).

Let ω := (ωx)x∈
δ be i.i.d. random variables (also independent of σ) with zero mean, unit
variance, and locally finite exponential moments, which represent the disorder. Probability
and expectation for ω will be denoted respectively by P and E.

Given λ > 0, h ∈ R and a P-typical realization of the disorder ω, we define the disordered
model as the following probability measure Pω
δ;λ,h for the field σ = (σx)x∈
δ :

Pω
δ;λ,h(dσ) :=
e
∑
x∈
δ

(λωx+h)σx

Zω
δ;λ,h
Pref

δ (dσ) , (1.1)

where the normalizing constant, called the partition function, is defined by

Zω
δ;λ,h := Eref

δ

[
e
∑
x∈
δ

(λωx+h)σx
]
. (1.2)

The quenched free energy F (λ, h) of the model is defined as the rate of exponential growth
of Zω
δ;λ,h as Ω ↑ Rd for fixed δ (or equivalently,† as δ ↓ 0 for fixed Ω):

F (λ, h) := lim sup
Ω↑Rd

1

|
δ|
E
[

logZω
δ;λ,h
]

= lim sup
δ↓0

1

|
δ|
E
[

logZω
δ;λ,h
]
. (1.3)

Discontinuities in the derivatives of the free energy correspond to phase transitions. A
fundamental question is, does arbitrary disorder (i.e., λ > 0) radically change the behavior
of the homogeneous model (i.e., λ = 0), such as qualitative properties of the law of the field
σ and/or the smoothness of the free energy in h? When the answer is affirmative, the model
is called disorder relevant. In such cases, we will show that the disordered model typically
admits a non-trivial scaling limit as δ ↓ 0, provided λ, h→ 0 at appropriate rates.

†We assume the natural consistency condition that Pref
(c
)cδ

coincides with Pref

δ

, for any c > 0.
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Informally speaking, our key assumption is that the discrete field σ = (σx)x∈
δ , under
the reference law Pref


δ
and after a suitable rescaling, converges as δ ↓ 0 to a “continuum field”

σ = (σx)x∈Ω, possibly distribution-valued, with law Pref
Ω . (Our precise assumptions will be

about the convergence of correlation functions, see (1.11).) Although the approach we follow
is very general, we describe three specific models, to be discussed extensively in the sequel.

(1) The disordered pinning model (d = 1). Let τ = (τk)k≥0 be a renewal process on N
with P(τ1 = n) = n−(1+α)+o(1), with α ∈ (1

2 , 1). Take Ω = (0, 1), δ = 1
N for N ∈ N

and define Pref

δ

as the law of (σx := 1δτ (x))x∈
δ , where δτ = { 1
N τn}n≥0 is viewed as a

random subset of Ω. The continuum field Pref
Ω is (σx = 1τ (x))x∈(0,1) where τ denotes

the α-stable regenerative set (the zero level set of a Bessel(2(1− α)) process).

(2) The (long-range) directed polymer model. Let (Sn)n≥0 be a random walk on Z with
i.i.d. increments, in the domain of attraction of an α-stable law, with 1 < α ≤ 2. Take
Ω = (0, 1)×R, δ = 1

N for N ∈ N and, abusing notation, set 
δ :=
(
(δZ)× (δ1/αZ)

)
∩Ω.

The “effective dimension” for this model is therefore deff := 1+ 1
α . Define Pref


δ
as the law

of the field (σx := 1Aδ(x))x∈
δ , where Aδ := {( nN ,
Sn
N1/α )}n≥0 is viewed as a random

subset of Ω. The continuum field Pref
Ω is (σx = 1A(x))x∈(0,1)×R where A = {(t,Xt)}t≥0

and (Xt)t≥0 is an α-stable Lévy process (Brownian motion for α = 2).

(3) The random field Ising model (d = 2). Take any bounded and connected set Ω ⊆ R2

with smooth boundary and define Pref

δ

to be the critical Ising model on 
δ with inverse
temperature β = βc = 1

2 log(1 +
√

2) and + boundary condition. The (distribution
valued) continuum field Pref

Ω has been recently constructed in [CGN12, CGN13], using
breakthrough results on the scaling limit of correlation functions of the critical two-
dimensional Ising model, determined in [CHI12].

The restrictions on the dimensions and parameters of these models are linked precisely to
the disorder relevance issue, as it will be explained later.

Since the reference law Pref

δ

has a weak limit Pref
Ω as δ ↓ 0, a natural question emerges:

can one obtain a limit also for the disordered model Pω
δ;λ,h, under an appropriate scaling of
the coupling constants λ, h? (We mean, of course, a non-trivial limit, which keeps track of
λ, h; otherwise, it suffices to let λ, h→ 0 very fast to recover the “free case” Pref

Ω .)
A natural strategy is to look at the exponential weight in (1.1). As δ ↓ 0 the discrete

disorder ω = (ωx)x∈
δ approximates the white noise W (dx), which is a sort of random
signed measure on Ω (see Subsection 2.1 for more details). Then one might hope to define
the candidate continuum disordered model PW


δ;λ̂,ĥ
by

dPW
Ω;λ̂,ĥ

dPref
Ω

(σ) :=
e
∫
Ω σx(λ̂W (dx)+ĥdx)

ZW
Ω;λ̂,ĥ

, (1.4)

in analogy with (1.1), with ZW
Ω;λ̂,ĥ

defined accordingly, like in (1.2).

Unfortunately, formula (1.4) typically makes no sense for λ̂ 6= 0, because the configurations
of the continuum field σ = (σx)x∈Ω under Pref

Ω are too rough or “thin” for the integral over
W (dx) to be meaningful (cf. the three motivating models listed above). We stress here that
the difficulty is substantial and not just technical: for pinning and directed polymer models,
one can show [AKQ14b, CSZ14] that the scaling limit PW

Ω;λ̂,ĥ
of Pω
δ;λ,h exists, but for λ̂ 6= 0
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it is not absolutely continuous with respect to Pref
Ω . In particular, it is hopeless to define the

continuum disordered model through a Radon-Nikodym density, like in (1.4).

1.2. General strategy and results. In this paper we focus on the disordered
partition function Zω
δ;λ,h. We show that, when δ ↓ 0 and λ, h are scaled appropriately, the
partition function admits a non-trivial limit in distribution, which is explicit and universal
(i.e., it does not depend on the fine details of the model).

Switching from the random probability law Pω
δ;λ,h to the random number Zω
δ;λ,h is of
course a simplification, whose relevance may not be evident. It turns out that the partition
function contains the essential information on the model. In fact, the scaling limit of Zω
δ;λ,h,
for sufficiently many domains Ω and “boundary conditions”, allows to reconstruct the full
scaling limit of Pω
δ;λ,h. This task has been achieved in [AKQ14b] for the directed polymer
model based on simple random walk, and in [CSZ14] for the disordered pinning model. We
discuss the case of the long-range directed polymer model in Remark 3.9 below.

The scaling limit of Zω
δ;λ,h can also describe the universal behavior of the free energy
F (λ, h) as λ, h→ 0, cf. Subsection 1.3. This explains the key role of the partition function
and is a strong motivation for focusing on it in the first place.

We now describe our approach. The idea is to consider the so-called “high-temperature
expansion” (|λ|, |h| � 1) of the partition function Zω
δ;λ,h. When the field takes two values
(say σx ∈ {0, 1}, for simplicity), we can factorize and “linearize” the exponential in (1.2):

Zω
δ;λ,h = Eref

δ

[ ∏
x∈
δ

(
1 + εxσx

)]
, where εx := e(λωx+h) − 1 . (1.5)

Let us introduce the k-point correlation function ψ
(k)

δ

(x1, . . . , xk) of the field under the
reference law, defined for k ∈ N and distinct x1, . . . , xk ∈ Ω by

ψ
(k)

δ

(x1, . . . , xk) := Eref

δ

[
σx1 σx2 · · ·σxk

]
, (1.6)

where we set σx := σxδ with xδ being the point in 
δ closest to x ∈ Ω. (We define the
correlation function on all points of Ω for later convenience, and set it to be zero whenever
(xi)δ = (xj)δ for some i 6= j.) A binomial expansion of the product in (1.5) then yields

Zω
δ;λ,h = 1 +

|
δ|∑
k=1

1

k!

∑
(x1,x2,...,xk)∈(
δ)k

ψ
(k)

δ

(x1, . . . , xk)

k∏
i=1

εxi , (1.7)

where the k! accounts for the fact that we sum over ordered k-uples (x1, . . . , xk). We have
rewritten the partition function as a multi-linear polynomial of the independent random
variables (εx)x∈
δ (what is called a polynomial chaos expansion), with coefficients given by
the k-point correlation function of the reference field. Note that, by Taylor expansion,

E[εx] ' h+ 1
2λ

2 =: h′ , Var[εx] ' λ2 . (1.8)

The crucial fact is that, for |λ|, |h| � 1, the distribution of a polynomial chaos expansion,
like the right hand side of (1.7), is insensitive toward the marginal distribution of the random
variables (εx)x∈
δ , as long as mean and variance are kept fixed. A precise formulation of this
loosely stated invariance principle is given in Section 2, cf. Theorems 2.6 and 2.8, in the
form of a Lindeberg principle. Denoting by (ω̃x)x∈
δ a family of i.i.d. standard Gaussians,
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by (1.8) we can then approximate

Zω
δ;λ,h ' 1 +

|
δ|∑
k=1

1

k!

∑
(x1,x2,...,xk)∈(
δ)k

ψ
(k)

δ

(x1, . . . , xk)

k∏
i=1

(
λω̃xi + h′

)
. (1.9)

Let us now introduce white noise W (·) on Rd (see Subsection 2.1): setting ∆ := (− δ
2 ,

δ
2)d,

we replace each ω̃x by δ−d/2W (x+ ∆). Since h′ = h′δ−dLeb(x+ ∆), the inner sum in (1.9)
coincides, up to boundary terms, with the following (deterministic + stochastic) integral:∫

· · ·
∫

Ωk
ψ

(k)

δ

(x1, . . . , xk)
k∏
i=1

(
λ δ−d/2W (dxi) + h′ δ−d dxi

)
. (1.10)

(We recall that ψ(k)

δ

(x1, . . . , xk) is a piecewise constant function.)

We can now state our crucial assumption: we suppose that, for every k ∈ N, there exist a
symmetric function ψ(k)

Ω : (Rd)k → R and an exponent γ ∈ [0,∞) such that

(δ−γ)k ψ
(k)

δ

(x1, . . . , xk) −−→
δ↓0

ψ
(k)
Ω (x1, . . . , xk) in L2(Ωk) . (1.11)

By (1.10), if we fix λ̂ ≥ 0, ĥ ∈ R and rescale the coupling constants as follows:

λ = λ̂ δd/2−γ , h′ = ĥ δd−γ
(
where h′ := h+ λ2

2

)
, (1.12)

equations (1.9)-(1.10) suggest that Zω
δ;λ,h converges in distribution as δ ↓ 0 to a random
variable which admits a Wiener chaos expansion with respect to the white noise W (·):

Zω
δ;λ,h
d−−→
δ↓0

ZW
Ω;λ̂,ĥ

:= 1 +
∞∑
k=1

1

k!

∫
· · ·
∫

Ωk
ψ

(k)
Ω (x1, . . . , xk)

k∏
i=1

(
λ̂W (dxi) + ĥ dxi

)
.

(1.13)
This is precisely what happens, as it follows from our main convergence results described
in Section 2, cf. Theorems 2.3 and 2.5. It is natural to call the random variable ZW

Ω;λ̂,ĥ
in

(1.13) the continuum partition function, because it is the scaling limit of Zω
δ;λ,h.

Remark 1.1. The L2 convergence in (1.11) typically imposes γ < d
2 , cf. (1.16) below, which

means that the disorder coupling constants λ, h vanish as δ ↓ 0, by (1.12). The fact that the
continuum partition function ZW

Ω;λ̂,ĥ
in (1.13) is nevertheless a random object (for λ̂ > 0) is

a manifestation of disorder relevance. We elaborate more on this issue in Subsection 1.3.

Let us finally give a quick look at the three motivating models. The complete results are
described in Section 3, cf. Theorems 3.1, 3.8 and 3.14. Note that the scaling exponents in
(1.12) are determined by the dimension d and by the exponent γ appearing in (1.11).

(1) For the disordered pinning model (d = 1), one has γ = 1− α by renewal theory [D97].
Relation (1.12) (for δ = 1

N ) yields

λ =
λ̂

Nα− 1
2

, h′ =
ĥ

Nα
.

Notice that h′ = (const.)λ
2α

2α−1 is precisely the scaling of the critical curve [G10].
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(2) For the (long-range) directed polymer model (deff = 1+ 1
α), one has γ = 1

α by Gnedenko’s
local limit theorem [BGT87]. Therefore (1.12) (for δ = 1

N and d relpaced by deff) gives

λ =
λ̂

N
α−1
2α

, h′ =
ĥ

N
.

(The parameter h′ is actually irrelevant for this model, and one usually sets h′ ≡ 0,
i.e., h = −1

2λ
2.) In the case α = 2, when the underlying random walk has zero mean

and finite variance, one recovers the scaling λ ≈ N−1/4 determined in [AKQ14a].

(3) For the random field Ising model (d = 2) one has γ = 1
8 [CHI12], hence by (1.12)

λ = λ̂ δ
7
8 , h = ĥ δ

15
8 . (1.14)

(Note that h instead of h′ appears in this relation; moreover one should look at the
normalized partition function exp(−1

2λ
2|
δ|)Zω
δ;λ,h. This is because σx ∈ {−1,+1}

instead of {0, 1}, hence the starting relation (1.5) requires a correction.)

1.3. Discussion and perspectives. We now collect some comments and observa-
tions and point out some further directions of research.

1. (Disorder relevance). The main motivation of our approach is to understand the issue
of disorder relevance, i.e. whether the addition of a small amount of disorder modifies the
nature of the phase transition of the underlying homogeneous model. Remarkably, the key
condition (1.11), which determines the class of models to which our approach applies, is
consistent with the Harris criterion for disorder relevance, as we now discuss.

First we note that when γ > 0, which is the most interesting case, condition (1.11) indicates
that the reference law has polynomially decaying correlations, which is the signature that we
are at the critical point of a continuous phase transition. In our context, this means that the
order parameter mh := limδ↓0 |
δ|−1E
δ;0,h[

∑
x∈
δ σx] in the homogeneous model (λ = 0)

vanishes continuously, but non-analytically, as h→ 0, cf. (1.1) and (1.2).
When (1.11) holds pointwise, with γ > 0, the limiting correlation function typically

diverges polynomially on diagonals, with the same exponent γ:

ψ
(k)
Ω (x1, . . . , xk) ≈ ‖xi − xj‖−γ as xi → xj . (1.15)

To have finite L2 norm (which is necessary for L2 convergence in (1.11)), such a local
divergence must be locally square-integrable in Rd: this means that (d− 1)− 2γ > −1, i.e.

γ <
d

2
. (1.16)

(Note that (d2 − γ) is precisely the scaling exponent of the coupling constant λ in (1.12).)
Relation (1.16) matches with the Harris criterion for disorder relevance [H74]. This

was originally introduced in the context of the Ising model with bond disorder, but it can
be naturally rephrased for general disordered system (cf. [G10], [CCFS86]): denoting by
ν the correlation length exponent of the homogeneous system (λ = 0), it asserts that a
d-dimensional system is disorder-relevant when ν < 2

d and irrelevant when ν > 2
d (the

remaining case ν = 2
d being dubbed marginal). The exponent ν is usually defined in terms

of field correlations:∣∣E
δ;0,h(σxσy)− E
δ;0,h(σx)E
δ;0,h(σy)
∣∣ ≈
δ↓0

e
− |x−y|
δξ(h) , with ξ(h) ≈

h↓0
h−ν . (1.17)
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Since such an exponent can be difficult to compute, it is typical to consider alternative
notions of correlation length ξ(h), linked to finite size scaling [CCFS86, CCFS89]. In our
context, it is natural to define

ξ(h)−1 := max{δ > 0 : Z
δ;0,h > A} , (1.18)

where A > 0 is a fixed large constant, whose precise value is immaterial. Recalling (1.12),
we can rewrite (1.13) for λ = 0 as

lim
h↓0

ZΩδ;0,h = ZΩ;0,ĥ , with δ = δh,ĥ := (h/ĥ)1/(d−γ) .

If ĥ 7→ ZΩ;0,ĥ is increasing (e.g., when ψ(k)
Ω (x1, . . . , xk) ≥ 0, by (1.13)) denoting by ĥA the

unique solution to ZΩ;0,ĥ = A, under some natural regularity assumptions it follows that

ξ(h) ∼
h↓0

(
δh,ĥA

)−1
=

(
ĥA
h

)1/(d−γ)

≈ h−ν , with ν =
1

d− γ
.

This shows that Harris’ condition ν < 2
d coincides with the key condition γ < d

2 of our
approach, cf. (1.16), ensuring the square-integrability of the limiting correlations.

The correlation length (1.18) is expected to be equivalent to the classical one (1.17), in
the sense that it should have the same critical exponent (cf. [G07] for disordered pinning
models) when the phase transition is continuous, that is when γ > 0 in (1.15). When γ = 0,
which is the signature of a discontinuous (first-order) phase transition, our approach still
applies and gives the scaling limit of the disorder partition function, but there is no direct
link with disorder relevance (cf. (1.24) below and the following discussion).

In summary, our approach suggests an alternative view on disorder relevance, in which
the randomness survives in the continuum limit with vanishing coupling constants. In fact,
relation (1.13) can be seen as a rigorous finite size scaling relation [Car88] for disordered
systems (the special case of non-disordered pinning models is treated in [Soh09]).

Remark 1.2. We can now explain the parameter restrictions in the motivating models:
condition (1.16) is fulfilled by the disordered pinning model (d = 1, γ = 1− α) when α > 1

2 ,
by the (long-range) directed polymer model (deff = 1 + 1

α , γ = 1
α) when α > 1, and by the

critical random field Ising model (d = 2, γ = 1
8).

2. (Universality). The convergence in distribution of the discrete partition function Zω
δ;λ,h
toward its continuum counterpart ZW

Ω;λ̂,ĥ
, cf. (1.13), is an instance of universality. In fact:

• the details of the disorder distribution are irrelevant: any family (ωx)x∈
δ of i.i.d.
random variables with zero mean, finite variance and locally finite exponential moments
scales in the limit to the same continuum object, namely white noise W (·);

• also the fine details of the reference law Pref

δ

disappear in the limit: any family ψ(k)

δ

of
discrete k-point correlation functions converging to the same limit (1.11) yields the
same continuum partition function ZW

Ω;λ̂,ĥ
in (1.13).

At a deeper level, the continuum partition function sheds light on the discrete free energy
F (λ, h), cf. (1.3), in the weak disorder regime λ, h→ 0. Defining the continuum free energy

F (λ̂, ĥ) := lim sup
Ω↑Rd

1

Leb(Ω)
E
[

logZW
Ω;λ̂,ĥ

]
, (1.19)
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and setting λδ := δd/2−γ λ̂ and hδ := δd−γ ĥ− 1
2(λδ)

2, cf. (1.12), one is led to the following

Conjecture : lim
δ↓0

F (λδ, hδ)

δd
= F (λ̂, ĥ) .† (1.20)

The heuristics goes as follows: by (1.3) we can write (replacing lim sup by lim for simplicity)

lim
δ↓0

F (λδ, hδ)

δd
= lim

δ↓0
lim

Ω↑Rd
1

δd
1

|
δ|
E
[

logZω
δ;λδ,hδ
]

; (1.21)

on the other hand, applying (1.13) in (1.19) (assuming uniform integrability) and noting
that Leb(Ω) = limδ↓0 δ

d|
δ|, one gets

F (λ̂, ĥ) = lim
Ω↑Rd

lim
δ↓0

1

δd
1

|
δ|
E
[

logZω
δ;λδ,hδ
]
. (1.22)

Therefore proving (1.20) amounts to interchanging the infinite volume (Ω ↑ Rd) and contin-
uum and weak disorder (δ ↓ 0) limits. This is in principle a delicate issue, but we expect
relation (1.20) to hold in many interesting cases, such as the three motivating models in the
specified parameters range (and, more generally, when the continuum correlations are “non
trivial”; see the next point). This is an interesting open problem.

Relation (1.20) implies that the discrete free energy F (λ, h) has a universal shape for
weak disorder λ, h→ 0. This leads to sharp predictions on the asymptotic behavior of free
energy-related quantities, such as critical curves and order parameters. Consider, e.g., the
average magnetization 〈σ0〉βc,h in the critical Ising model on Z2 with a homogeneous external
field h > 0. If relation (1.20) holds (with d = 2, λδ = λ̂ δ

7
8 , hδ = ĥ δ

15
8 , cf. (1.14), and we

look at the case λ̂ = 0), differentiating both sides with respect to ĥ suggests that

lim
h↓0

〈σ0〉βc, h
h

1
15

=
∂F

∂ĥ
(0, 1) , (1.23)

which would sharpen the results in [CGN12b]. Analogous predictions can be formulated
for disorder pinning and directed polymer models (see Section 3). Of course, proving such
precise estimates is likely to require substantial additional work, but having a candidate for
the limiting constants, like in (1.23), can be of great help.

Remark 1.3. Relation (1.20) (in a stronger form) has been proved in [BdH97, CG10] for
the so-called disordered copolymer model, by means of a subtle coarse-graining procedure. We
mention that our approach can also be applied to the copolymer model, yielding a Wiener
chaos expansion as in (1.13) for the continuum partition function.

3. (First-order phase transitions). Relation (1.11) can hold with γ = 0 (i.e., the k-point
correlation function converges without rescaling) and with a “trivial” factorized limit:

ψ
(k)

δ

(x1, . . . , xk) −−→
δ↓0

ψ
(k)
Ω (x1, . . . , xk) := %k , with % ∈ (0,∞). (1.24)

This is typical for a system at the critical point of a first-order phase transitions (i.e.,
the order parameter mh := limδ↓0 |
δ|−1E
δ;0,h[

∑
x∈
δ σx], as a function of h, has a jump

discontinuity at h = 0). Examples include the pinning model for α > 1 and the Ising model

†A notational remark: for the directed polymer model, the denominator in (1.20) should be δ instead
of δd, due to a different normalization of the discrete free energy, cf. Subsection 3.2; for the random field
Ising model, one should set hδ := δd−γ ĥ without the “− 1

2
(λδ)

2 correction”, as already discussed after (1.14).
These notational details are discussed in Section 3 for each model, while here we keep a unified approach.
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for β > βc. Plugging (1.24) into (1.13) and performing the integration, cf. [J97, §3.2], one
gets

ZW
Ω;λ̂,ĥ

= exp

{
%λ̂W (Ω) +

(
%ĥ− 1

2
(%λ̂)2

)
Leb(Ω)

}
. (1.25)

This explicit formula allows exact asymptotic computations on the discrete model: e.g.,
relation (1.13) yields for suitable values of ζ ∈ R (when uniform integrability holds)

E
[(
Zω
δ;λ,h

)ζ] −−→
δ↓0

E
[(
ZW

Ω;λ̂,ĥ

)ζ]
= exp

{
%ζ

(
ĥ− 1

2
%λ̂2(1− ζ)

)
Leb(Ω)

}
. (1.26)

Incidentally, for disordered pinning models with α > 1, this estimate clarifies the strategy for
the sharp asymptotic behavior of the critical curve hc(λ) as λ ↓ 0, determined in [BCPSZ14]
(even though the proof therein is carried out with different techniques).

Unfortunately, the continuum partition function (1.25) can fail in capturing some key
properties of the discrete model, because it is shared by many “too different” models: relation
(1.24) asks that the field variables under the reference law Pref become uncorrelated as δ ↓ 0,
but is insensitive toward the correlation decay, which could be polynomial, exponential,
or even finite-range (like in the extreme case of a “trivial” reference law Pref , under which
(σx)x∈
δ are i.i.d. with Eref(σx) = %). Since the correlation decay can affect substantially
the discrete free energy, conjecture (1.20) usually fails under (1.24).

For example, for disordered pinning models with α > 1, one always has F (λ, h) ≥ 0 (there
is only a polynomial cost for the underlying renewal process not to return before time N ,
and the energy of such a renewal configuration is 0). On the other hand, if the renewal
jump distribution has finite exponential moments, then there is an exponential cost for the
renewal not to return before time N , and F (λ, h) < 0 if h is sufficiently negative. Both
models satisfy (1.24) with % = 1/E[τ1] and thus their continuum partition functions coincide,
but their free energies depend on finer detail of the renewal distribution (beyond the value
of E[τ1]) and are therefore radically different, causing (1.20) to fail. The continuum free
energy is F (λ̂, ĥ) = %ĥ− 1

2(%λ̂)2, cf. (1.25) and (1.19), which can attain negative values.

4. (Moment assumptions). In our convergence results, cf. Theorems 3.1, 3.8 and 3.14, we
assume that the disorder variables (ωx)x∈
δ have finite exponential moments, which guaran-
tees that the expectation and variance in (1.8) are well-defined. However, this assumption
can be relaxed to finite moments. The necessary number of moments depends on the model
and can be determined by the requirement that the typical maximum value of the variables
ωx “sampled” by the field does not exceed the reciprocal of the disorder strength λ (so that
a truncation of ωx at level λ−1 provides a good approximation).

For example, in the long-range directed polymer model, one expects that the path will
be confined (at weak disorder) in a box of size N ×N1/α. If the disorder variables have a
polynomial tail P(ωx > y) ≈ y−η as y ↑ ∞, their maximum in such a box is of the order
N

1
η

1+α
α . Since λ ≈ N−

α−1
2α for this model, cf. Theorem 3.8, one expects the validity of the

convergence result as long as N
1
η

1+α
α � N

α−1
2α , i.e. for η ≥ 2(α+ 1)/(α− 1). For α = 2, this

gives η ≥ 6, which was conjectured in [AKQ14a] and recently proved in [DZ].
Similarly, for the pinning model the number of relevant variables is of order N and

λ ≈ N−(α− 1
2

), cf. Theorem 3.1, leading to a conjectured value η ≥ 2/(2α− 1); for the RFIM,
the number of relevant variables is of order N2 and λ ≈ N−7/8, cf. Theorem 3.14, leading
to a conjectured value η ≥ 16/7.
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2. From polynomial to Wiener chaos via Lindeberg

In this section, which can be read independently of the previous one, we first recall
the main properties of white noise on Rd (Subsection 2.1) and define polynomial chaos
expansions (Subsection 2.2). We then formulate our main general theorem (Subsection 2.3),
ensuring convergence of polynomial chaos toward Wiener chaos expansions. This is based on
a Lindeberg principle (Subsection 2.4) which extends results in [MOO10] to optimal second
moment assumptions. Subsections 2.3 and 2.4 can be read independently.

The space of Lebesgue square-integrable functions f : Rd → R is denoted by L2(Rd), and
we set ‖f‖2

L2(Rd)
=
∫
Rd f(x)2dx. For more details on the white noise, we refer to [J97, PT10].

2.1. White noise in a nutshell. By white noise on Rd we mean a Gaussian process
W = (W (f))f∈L2(Rd) with E[W (f)] = 0 and Cov(W (f),W (g)) =

∫
Rd f(x)g(x)dx, defined

on some probability space (ΩW ,A,P). Since the specified covariance is a symmetric and
positive definite function, such a process exists (and is unique in law).

If A1, A2, . . . are disjoint Borel sets with finite Lebesgue measure, it follows that the
random variables (W (Ai) := W (1Ai))i=1,2,... are independent N (0, Leb(Ai)) and the relation
W (
⋃
i≥1Ai) =

∑
i≥1W (Ai) holds a.s.. Consequently, it is suggestive to use the notation∫

Rd
f(x)W (dx) := W (f) , (2.1)

even though W (·) is a.s. not a signed measure on Rd. For d = 1, W (f) coincides with the
usual Wiener integral

∫
f(t) dWt with respect to the Brownian motion Wt := W (1[0,t]).

One can define a multi-dimensional stochastic integral W⊗k(f), for k ∈ N and suitable
f : (Rd)k → R, as follows. For “special indicator functions” f = 1A1×...×Ak built over
disjoint bounded Borel sets A1, . . . , Ak ⊆ Rd, one poses W⊗k(f) := W (1A1) · · ·W (1Ak).
This definition is extended, by linearity, to the space Sk of “special simple functions”, i.e. finite
linear combinations of special indicator functions. Since a permutation of the arguments of
f leaves W⊗k(f) invariant, it is sufficient to consider symmetric functions f , which we do
henceforth. One then observes that E[W⊗k(f)] = 0 and the crucial Ito isometry is satisfied:†

Cov(W⊗k(f),W⊗l(g)) = k! 1{k=l}

∫
(Rd)k

f(x1, . . . , xk) g(x1, . . . , xk) dx1 · · · dxk . (2.2)

Since Sk is dense in L2((Rd)k), one can finally extend the definition of W⊗k(f) to every
symmetric f ∈ L2((Rd)k), in such a way that (2.2) still holds. Like in (2.1), we will write∫

· · ·
∫

(Rd)k
f(x1, . . . , xk)W (dx1) · · ·W (dxk) := W⊗k(f) . (2.3)

One also sets W⊗0(c) := c for c ∈ L2((Rd)0) := R.
Note that W⊗k(f) is a random variable defined on (ΩW ,A,P), with zero mean (for k ≥ 1)

and finite variance, which is measurable with respect to the σ-algebra σ(W ) generated by
the white noise W . (One can show that W⊗k(f) is non Gaussian for k > 1 and f 6≡ 0.)
Remarkably, every square-integrable random variable X defined on ΩW , which is measurable
with respect to σ(W ), can be written as the L2-convergent series

X =

∞∑
k=0

1

k!
W⊗k(fk) , (2.4)

†For the isometry (2.2) it is essential to “avoid diagonals”: this is the reason for taking special indicator
functions, corresponding to products of disjoint Borel sets.
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called Wiener chaos expansion, for a unique choice of symmetric functions fk ∈ L2((Rd)k)
satisfying

∑∞
k=0

1
k!‖fk‖

2
L2(Rd)

<∞, by (2.2). In other terms, the multiple stochastic integrals
W⊗k(f) span the whole Hilbert space L2(ΩW , σ(W ),P).

2.2. Polynomial chaos. Let T be a finite or countable index set (e.g., T = {1, . . . , N},
T = N, T = Zd). We set

Pfin(T) := {I ⊆ T : |I| <∞} .
Any function ψ : Pfin(T)→ R determines a (formal, if |T| =∞) multi-linear polynomial Ψ:

Ψ(x) =
∑

I∈Pfin(T)

ψ(I)xI , where xI :=
∏
i∈I

xi with x∅ := 1 . (2.5)

We say that ψ : Pfin(T)→ R is the kernel of Ψ.
Let now ζ := (ζi)i∈T be a family of independent (but not necessarily identically distributed)

random variables. We say that a random variable X admits a polynomial chaos expansion
with respect to ζ if it can be expressed as X = Ψ(ζ) = Ψ((ζi)i∈T) for some multi-linear
polynomial Ψ. Of course, when |T| =∞ some care is needed: by X = Ψ(ζ) we mean that
for any sequence ΛN ⊂ T with |ΛN | <∞ and ΛN ↑ T one has

X = lim
N→∞

∑
I⊆ΛN

ψ(I) ζI in probability . (2.6)

Remark 2.1. When Var(ζi) 6= 0 for all i ∈ T, we can assume that all the variances are
equal with no loss of generality: it suffices to redefine ψ(I)→ ψ(I)(

∏
i∈I Var(ζi))

−1/2.

Remark 2.2. When the independent random variables ζ := (ζi)i∈T have zero mean and
the same variance σ2, an easy sufficient condition for (2.6), with L2 convergence, is∑

I∈Pfin(T)

(σ2)|I|ψ(I)2 <∞ , (2.7)

because E[ζIζJ ] = 0 for I 6= J . For variables with non-zero mean µ := (µi)i∈T (always with
the same variance σ2), sharp conditions for L2 convergence in (2.6) involve µ and the kernel
ψ jointly. As we show below, practical sufficient “factorized” conditions are∑

i∈T
µ2
i <∞ ; ∃ε > 0 :

∑
I∈Pfin(T)

(1 + ε)|I|(σ2)|I|ψ(I)2 <∞ . (2.8)

2.3. Convergence of polynomial chaos to Wiener chaos. Consider for
δ ∈ (0, 1) an index set Tδ ⊂ Rd and a family of polynomial chaos expansions (Ψδ(ζδ))δ∈(0,1),
defined from kernels ψδ : Pfin(Tδ) → R and from independent random variables ζδ :=
(ζδ,x)x∈Tδ . If Tδ converges to the continuum Rd as δ ↓ 0 (e.g., Tδ := (δZ)d), then after
suitable scaling, the random variables (ζδ,x)x∈Tδ approximate the white noise W (dx) on Rd.
If the kernel ψδ, suitably rescaled, converges as δ ↓ 0 to a continuum kernel ψ0 : Pfin(Rd)→ R,
it is plausible that the polynomial chaos expansion Ψδ(ζδ) approximates a Wiener chaos
expansion Ψ0, cf. (2.3)-(2.4), with kernel ψ0. This is precisely what we are going to show.

First we introduce some notation. Each random variable ζx indexed by a point x in an
index set T ⊂ Rd will be associated with a cell in Rd containing x, and functions defined on
Tk will be extended to functions defined on (Rd)k.

• Let B(Rd) denote the Borel subsets of Rd. Given a locally finite set T ⊂ Rd, we call
C : T→ B(Rd) a tessellation of Rd indexed by T, if (C(x))x∈T form a disjoint partition
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of Rd such that x ∈ C(x) for each x ∈ T. We call C(x) the cell associated with x ∈ T.
In most cases, (C(x))x∈T will be the cells of a cubic lattice. However, there are natural
examples where this is not the case, such as the directed polymer model defined from
a simple symmetric random walk, or the Ising model defined on non-cubic lattices.

• Once a tessellation C is fixed, any function f : T → R is automatically extended to
f : Rd → R by assigning value f(y) := f(x) for all y ∈ C(x), for each x ∈ T. Note that
for such extensions ‖f‖2

L2(Rd)
=
∑

x∈T f(x)2 Leb(C(x)).

• Analogously, for any ψ : Pfin(T) → R, we first extend it to ψ :
⋃∞
k=0 T

k → R by
setting ψ(x1, . . . , xk) := ψ({x1, . . . , xk}) if the xi are distinct, and ψ(x1, . . . , xk) := 0
otherwise. We then extend it to ψ :

⋃∞
k=0(Rd)k → R by assigning value ψ(x1, . . . , xk)

to all points in C(x1)× · · · × C(xk), for each k ∈ N and x1, . . . , xk ∈ T.

• Given ψ : Pfin(Rd)→ R, its extension to ψ :
⋃∞
k=0(Rd)k → R is defined similarly (no

cells involved). It will be clear from the context which version of ψ is being used.

• Finally, given a measurable function ψ :
⋃∞
k=0(Rd)k → R, we denote by ‖ψ‖L2((Rd)k)

the L2 norm of the restriction of ψ to (Rd)k, i.e.

‖ψ‖2L2((Rd)k) =

∫
· · ·
∫

(Rd)k
ψ(x1, . . . , xk)

2 dx1 · · · dxk.

We are now ready to state our main convergence result, proved in Section 5.

Theorem 2.3 (Convergence of polynomial chaos to Wiener chaos, L2 case). As-
sume that for δ ∈ (0, 1) the following ingredients are given:

• Let Tδ be a locally finite subset of Rd;

• Let ζδ := (ζδ,x)x∈Tδ be independent random variables in L2 with the same variance,

E[ζδ,x] = µδ(x) and Var(ζδ,x) = σ2
δ ,

such that ((ζδ,x − E[ζδ,x])2)δ∈(0,1),x∈Tδ are uniformly integrable;

• Let Ψδ(z) be a formal multi-linear polynomial with kernel ψδ : Pfin(Tδ)→ R, cf. (2.5);

• Let Cδ be a tessellation of Rd indexed by Tδ, where every cell Cδ(x) has the same volume
vδ := Leb(Cδ(x)).

Assume that vδ → 0 as δ ↓ 0, and that the following conditions are satisfied:

(i) There exist σ0 ∈ (0,∞) and µ0 ∈ L2(Rd) such that

lim
δ↓0

σδ = σ0 , lim
δ↓0
‖µ̄δ − µ0‖L2(Rd) = 0, where µ̄δ(x) := v

−1/2
δ µδ(x); (2.9)

(ii) There exists ψ0 : Pfin(Rd)→ R, with ‖ψ0‖L2((Rd)k) <∞ for every k ∈ N0, such that

lim
δ↓0
‖ψ̄δ −ψ0‖2L2((Rd)k) = 0, where ψ̄δ(I) := v

−|I|/2
δ ψδ(I); (2.10)

(iii) For some ε > 0 (or even ε = 0, if µδ(x) ≡ 0)

lim
`→∞

lim sup
δ↓0

∑
I∈Pfin(Tδ),|I|>`

(1 + ε)|I| (σ2
δ )
|I|ψδ(I)2 = 0 . (2.11)
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Then the polynomial chaos expansion Ψδ(ζδ) is well-defined and converges in distribution as
δ ↓ 0 to a random variable Ψ0 with an explicit Wiener chaos expansion:

Ψδ(ζδ)
d−−→
δ↓0

Ψ0 :=

∞∑
k=0

1

k!

∫
· · ·
∫

(Rd)k
ψ0(y1, . . . , yk)

k∏
i=1

(
σ0W (dyi) + µ0(yi)dyi

)
, (2.12)

where W (·) denotes white noise on Rd.
The series in (2.12) converges in L2, and E[Ψδ(ζδ)

2] → E[Ψ2
0]. Consequently, for any

coupling of Ψδ(ζδ) and Ψ0 such that Ψδ(ζδ)→ Ψ0 a.s., one has E[|Ψδ(ζδ)−Ψ0|2]→ 0.
The convergence (2.12) extends to the joint distribution of a finite collection of polynomial

chaos expansions (Ψi,δ(ζδ))1≤i≤M , provided (Ψi,δ)δ∈(0,1) satisfies (ii)-(iii) above for each i.

Remark 2.4. Let us be more precise about the random variable Ψ0 in (2.12). Setting
ν(x) := µ0(x)/σ0, it can be rewritten as

Ψ0 =
∞∑
k=0

1

k!

∫
· · ·
∫

(Rd)k
ψ0(y1, . . . , yk)σ

k
0

k∏
i=1

(
W (dyi) + ν(yi)dyi

)
, (2.13)

which can be viewed as a “Wiener chaos expansion with respect to the biased white noise
Wν(dx) := W (dx) + ν(x)dx”. The rigorous definition of such an expansion goes as follows.
For every fixed k ∈ N, the integral over (Rd)k in (2.13) can be defined by expanding the
product and integrating out the “deterministic coordinates” (those corresponding to ν(yi)dyi),
obtaining a finite sum of well-defined (lower-dimensional) ordinary stochastic integrals, like
in (2.3). Regrouping the terms, the series in (2.13) becomes an ordinary Wiener chaos
expansion, like in (2.4). In analogy with the polynomial case (2.8), we show in Section 5 that
the L2-convergence of the series is ensured by the conditions that µ0 ∈ L2(Rd) and that

∃ ε > 0 :
∞∑
k=0

1

k!
(1 + ε)k (σ2

0)k ‖ψ0‖2L2((Rd)k) <∞ , (2.14)

which follow by assumptions (i)-(ii)-(iii) in Theorem 2.3.

2.3.1. Beyond the L2 case. There is a useful alternative interpretation of (2.12)-(2.13).
If (ΩW ,A,P) is the probability space on which the white noise W = (W (f))f∈L2(Rd) is
defined, for every ν ∈ L2(Rd) we introduce a new probability Pν on ΩW by

dPν
dP

:= eW (ν)− 1
2
E[W (ν)2] = e

∫
Rd
ν(x)W (dx)− 1

2

∫
Rd
ν(x)2dx . (2.15)

It turns out that the “biased stochastic integrals” in (2.13) have the same joint distribution
as the ordinary stochastic integrals (with ν replaced by 0) under the probability Pν , by the
Cameron-Martin theorem (cf. Appendix A). As a consequence, the random variable Ψ0 in
(2.12) enjoys the following equality in distribution, setting ν(x) := µ0(x)/σ0:

Ψ0
d
=

∞∑
k=0

1

k!

∫
· · ·
∫

(Rd)k
ψ0(y1, . . . , yk)σ

k
0 W (dy1) · · ·W (dyk) under Pν , (2.16)

provided the series (either in (2.12) or (2.16), equivalently) converges in probability.
Let us now assume the weaker version of relation (2.14) for ε = 0, i.e.

∞∑
k=0

1

k!
(σ2

0)k ‖ψ0‖L2((Rd)k) <∞ . (2.17)
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Under this condition, the series in (2.16) converges in L2 under the original probability P, by
the Itô isometry (2.2). Since the Radon-Nikodym density (2.15) has finite moments of all
orders, it follows by (2.16) and an application of Hölder inequality (see (5.11) for the details)
that the series in (2.12) defining Ψ0 converges in Lp for every p ∈ (0, 2) when (2.17) holds
(even though it might not converge in L2, if (2.14) fails).

As a consequence, by performing an Lp analysis for p < 2, we can weaken condition (iii)
in Theorem 2.3, setting ε = 0 in (2.11), under mild restrictions on the disorder distribution
(due to the implementation of a change of measure like in (2.16) for polynomial chaos).

Theorem 2.5. (Convergence of polynomial chaos to Wiener chaos, L2− case) Let
the same assumptions as in Theorem 2.3 hold, with condition (iii) therein weakened by setting
ε = 0 in (2.11). Assume further that limδ↓0 ‖µδ‖∞ = 0, and that either of the following two
conditions is satisfied:

(a) inf
δ∈(0,1),x∈Tδ

min
{
P(ζδ,x > 0),P(ζδ,x < 0),Var(ζδ,x|ζδ,x > 0),Var(ζδ,x|ζδ,x < 0)

}
> 0;

(b)

∀C > 0 : lim
δ↓0

∑
I∈Pfin(Tδ), |I|>‖µδ‖−1

∞

eC‖µδ‖∞|I|(σ2
δ )
|I|ψδ(I)2 = 0 . (2.18)

Then the polynomial chaos expansion Ψδ(ζδ) is well-defined and converges in distribution as
δ ↓ 0 to the random variable Ψ0 defined by (2.12), or equivalently (2.16). For all p ∈ (0, 2),
the series therein converges in Lp, and furthermore E[|Ψδ|p] → E[|Ψ0|p]. The conclusion
extends to a finite collection (Ψi,δ(ζδ))1≤i≤M .

2.4. Lindeberg principle for polynomial chaos. The key ingredients in our
proof of Theorem 2.3 are two Lindeberg principles for polynomial chaos. As we discuss in
Remark 2.7, they extend Theorem 3.18 in [MOO10] in two ways: firstly, we relax the finite
third moment assumption of [MOO10] to an optimal condition of uniform integrability of
the square of the random variables; secondly, we allow random variables with non-zero mean.

We point out that the first extension is actually not needed for our applications to
disordered systems, due to the assumption of finite exponential moments for the disorder
random variables. However, it is an extension of general interest and will be useful if one
attempts to weaken the moment assumptions on the disorder random variables, as discussed
at the end of Section 1.3. We remark that Lindeberg principles have also played crucial roles
in recent breakthrough results on random matrices [C06, TV11].

Given a polynomial chaos expansion Ψ(ζ) with respect to a family ζ := (ζi)i∈T of
independent random variables (cf. Subsection 2.2), we will control how the distribution of
Ψ(ζ) changes when we replace ζ by independent Gaussian random variables ξ := (ξi)i∈T
with the same mean and variance as ζ.

Given a multi-linear polynomial Ψ(x) = Ψ((xi)i∈T) as in (2.5), with kernel ψ, we set

CΨ :=
∑

I∈Pfin(T), I 6=∅

ψ(I)2 , (2.19)

and define the influence of the i-th variable xi on Ψ by

Infi[Ψ] :=
∑

I∈Pfin(T), I3i

ψ(I)2 . (2.20)
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Note that, if ζ = (ζi)i∈T are independent random variables with zero mean and unit variance,

CΨ = Var[Ψ(ζ)] , Infi[Ψ] = E
[
Var

[
Ψ(ζ)

∣∣(ζj)j∈T\{i}]],
which is just the influence of the random variable ζj on Ψ(ζ) introduced in [MOO10] (for
more on the notion of influence, see e.g. [KKL88, BKKKL92] and the references in [MOO10]).
We also define the degree ` truncations Ψ≤` and Ψ>` of the multi-linear polynomial Ψ by

Ψ≤`(x) :=
∑

I∈Pfin(T), |I|≤`

ψ(I)xI , Ψ>`(x) :=
∑

I∈Pfin(T), |I|>`

ψ(I)xI , (2.21)

whose kernels will be denoted by ψ≤`(I) = ψ(I)1{|I|≤`} and ψ>`(I) = ψ(I)1{|I|>`}.

We are now ready to state and comment on our Lindeberg principles, that will be proved
in Section 4.

Theorem 2.6 (Lindeberg principle, zero mean case). Let ζ = (ζi)i∈T and ξ = (ξi)i∈T
be two families of independent random variables, with zero mean and unit variance. Let
Ψ(x) be a multi-linear polynomial as in (2.5), with CΨ =

∑
I∈Pfin(T) ψ(I)2 <∞. Then the

polynomial chaos expansions Ψ(ζ), Ψ(ξ) are well-defined L2 random variables.
Defining for M ∈ [0,∞] the maximal truncated moments

m>M
2 := sup

X∈
⋃
i∈T{ζi,ξi}

E[X21|X|>M ] , m≤M3 := sup
X∈

⋃
i∈T{ζi,ξi}

E[|X|31|X|≤M ], (2.22)

the following relation holds: for every f : R→ R of class C 3 with

Cf := max{‖f ′‖∞, ‖f ′′‖∞, ‖f ′′′‖∞} <∞, (2.23)

for every ` ∈ N, and for every M ∈ (0,∞] large enough such that m>M
2 ≤ 1

4 , one has∣∣E[f(Ψ(ζ))
]
− E

[
f(Ψ(ξ))

]∣∣ ≤ Cf

{
2
√

CΨ>` + CΨ≤` 16`2m>M
2

+ CΨ≤` 70`+1
(
m≤M3

)`√
max
i∈T

(
Infi

[
Ψ≤`

])}
,

(2.24)

where C·, Infi[·] and Ψ≤`, Ψ>` are defined in (2.19), (2.20) and (2.21).

Intuitively, this theorem shows that Ψ(ζ) and Ψ(ξ) are close in distribution when the
right hand side of (2.24) is small. Despite its technical appearance, each of the three terms
inside the brackets can be easily controlled:

• The first term is controlled by CΨ>` =
∑
|I|>` ψ(I)2, which is small for ` large.

• The second term is controlled by m>M
2 , which is small for M large if the random

variables (ζi)i∈T and (ξi)i∈T have uniformly integrable squares (e.g., if they are i.i.d.).

• The third term is controlled by the maximal influence maxi∈T Infi
[
Ψ≤`

]
, which is

small if the multi-linear polynomial Ψ≤` is sufficiently “spread-out”.

In particular, we shall see that the conditions of Theorem 2.3 allow us to exploit (2.24).

Remark 2.7. When the polynomial Ψ = Ψ≤` has degree ` and the random variables ζi, ξi
have third absolute moments bounded by m3 <∞, relation (2.24) for M =∞ reduces to∣∣E[f(Ψ(ζ))

]
− E

[
f(Ψ(ξ))

]∣∣ ≤ Cf CΨ 70`+1 (m3)` max
i∈T

√
Infi[Ψ] .
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This is the key estimate proved by Mossel, O’Donnell and Oleszkiewicz in [MOO10], see
Theorem 3.18 under hypothesisH2, with the prefactor 70`+1 instead of 30`. Our Theorem 2.6
thus provides an extension of [MOO10, Theorem 3.18] to finite second-moment assumptions.

Some of the results in [MOO10] are formulated in the more general setting of multi-linear
polynomials over orthornormal ensembles. Although we stick for simplicity to the case
of independent random variables, our approach can be adapted to deal with orthonormal
ensembles. In fact, we follow the same line of proof of [MOO10], which is based on Lindeberg’s
original approach, with two refinements: a sharper approximation of the remainder in Taylor’s
expansion and a fine truncation on the random variables, cf. Section 4 for details.

As a corollary to Theorem 2.6, we can treat the case where we add non-zero mean to the
random variables (ζi)i∈T and (ξi)i∈T. The following result is also proved in Section 4.

Theorem 2.8 (Lindeberg principle, non-zero mean case). Let ζ = (ζi)i∈T and ξ =

(ξi)i∈T be as in Theorem 2.6, and define the maximal truncated moments m>M
2 , m≤M3 by

(2.22). Let µ := (µi)i∈T be a family of real numbers with

cµ :=
∑
i∈T

µ2
i <∞ , (2.25)

and define the µ-biased families ζ̃ := ζ + µ = (ζi + µi)i∈T and ξ̃ := ξ + µ = (ξi + µi)i∈T.
Let Ψ(x) be a multi-linear polynomial as in (2.5). Setting for ε > 0

Ψ(ε)(x) =
∑

I∈Pfin(T)

(1 + ε)|I|/2ψ(I)xI , (2.26)

assume that CΨ(ε) =
∑

I∈Pfin(T)(1 + ε)|I|ψ(I)2 < ∞ for some ε > 0. Then the polynomial
chaos expansions Ψ(ζ̃) and Ψ(ξ̃) are well-defined L2 random variables.

For every f : R→ R of class C 3 with Cf <∞, cf. (2.23), for every ` ∈ N and for every
M ∈ [0,∞] large enough such that m>M

2 ≤ 1
4 , the following relation holds:∣∣E[f(Ψ(ζ̃))

]
− E

[
f(Ψ(ξ̃))

]∣∣ ≤ e2cµ/εCf

{
2
√
CΨ(ε),>` + CΨ(ε),≤` 16`2m>M

2

+ CΨ(ε),≤` 70`+1
(
m≤M3

)`√
max
i∈T

(
Infi

[
Ψ(ε),≤`

])}
,

(2.27)

where C·, Infi[·] are defined in (2.19), (2.20) and Ψ(ε),>`, Ψ(ε),≤` are defined as in (2.21).

3. Scaling limits of disordered systems

In this section, which can be read independently of Sections 1 and 2, we consider three
much-studied statistical mechanics models: the disordered pinning model (Subsection 3.1),
the (long-range) directed polymer model in dimension 1 + 1 (Subsection 3.2), and the two-
dimensional random field Ising model (Subsection 3.3). For each model, we show that the
partition function has a non-trivial limit in distribution, in the continuum and weak disorder
regime, given by an explicit Wiener chaos expansion with respect to the white noise on Rd

(see Subsection 2.1 for some reminders). The proofs, given in Sections 6, 7 and 8, are based
on the general convergence results of Section 2 (cf. Theorem 2.3).

For each model, the disorder will be given by a countable family of i.i.d. random variables
ωi with zero mean, finite variance and locally finite exponential moments:

E[ωi] = 0, Var(ωi) = 1, ∃t0 > 0 : Λ(t) := logE[etωi ] <∞ for |t| < t0 . (3.1)
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Our approach actually works in the much more general setting when disorder is given
by a triangular array of independent (but not necessarily identically distributed) random
variables, in the spirit of Theorem 2.3, but we stick to the i.i.d. case for the sake of simplicity.

3.1. Disordered pinning model. Consider a discrete renewal process τ := {τn}n≥0,
that is τ0 = 0 and the increments {τn − τn−1}n≥1 are i.i.d. N-valued random variables. We
assume that τ is non-terminating, that is P(τ1 <∞) = 1, and that

P(τ1 = n) =
L(n)

n1+α
, ∀n ∈ N, (3.2)

where α ∈ [0,+∞) and L : (0,∞)→ (0,∞) is a slowly varying function [BGT87]. One could
also consider the periodic case, when (3.2) holds for n ∈ pN and P(τ1 = n) = 0 if n 6∈ pN,
for some period p ∈ N. For simplicity, we focus on the aperiodic case p = 1.

Let ω = (ωn)n∈N0 be a sequence of i.i.d. random variables, independent of τ , satisfying
(3.1). The disordered pinning model is the random probability law PωN,β,h on subsets on N0,
indexed by ω and by N ∈ N, β ≥ 0 and h ∈ R, defined by

dPωN,β,h(τ) :=
1

ZωN,β,h
e
∑N
n=1(βωn−Λ(β)+h)1{n∈τ}dP(τ) ,

where we recall that Λ(β) := logE[eβω1 ], and the partition function ZωN,β,h is defined by

ZωN,β,h := E
[
e
∑N
n=1(βωn−Λ(β)+h)1{n∈τ}

]
. (3.3)

We also consider the conditioned partition function

Zω,cN,β,h := E
[
e
∑N
n=1(βωn−Λ(β)+h)1{n∈τ}

∣∣∣N ∈ τ] . (3.4)

The disordered pinning model exhibits an interesting localization/delocalization phase
transition. This can be quantified via the (quenched) free energy, which is defined as

F (β, h) := lim
N→∞

1

N
logZωN,β,h = lim

N→∞

1

N
E
[

logZωN,β,h
]
, P(dω)–a.s. . (3.5)

By restricting the partition function to configurations such that τ ∩ [1, N ] = ∅, it is easily
seen that F (β, h) ≥ 0. The localized and delocalized regimes (L,D respectively) can be
defined as

L := {(β, h) : F (β, h) > 0}, D := {(β, h) : F (β, h) = 0}.
We refer to [G10] for more information on the structure of the phase transition and, in
particular, for quantitative estimates on the critical curve

hc(β) := sup{h ∈ R : F (β, h) = 0} = inf{h ∈ R : F (β, h) > 0} . (3.6)

We can now state our main result on the disordered pinning model, to be proved in
Section 6. To lighten notation, we write ZωNt,β,h to mean ZωbNtc,β,h.

Theorem 3.1 (Scaling limit of disordered pinning models). Let the aperiodic renewal
process τ either satisfy (3.2) for some α ∈ (1

2 , 1), or have finite mean E[τ1] < ∞ (which
happens, in particular, when (3.2) holds with α > 1). For N ∈ N, β̂ > 0 and ĥ ∈ R, set

βN =


β̂
L(N)

Nα−1/2
if 1

2 < α < 1

β̂
1√
N

if E[τ1] <∞
, hN =


ĥ
L(N)

Nα
if 1

2 < α < 1

ĥ
1

N
if E[τ1] <∞

. (3.7)
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Then, for every t ≥ 0, the conditioned partition function Zω,cNt,βN ,hN
of the disordered pinning

model converges in distribution as N →∞ to the random variable ZW,c

t,β̂,ĥ
given by

ZW,c

t,β̂,ĥ
:= 1 +

∞∑
k=1

1

k!

∫
· · ·
∫

[0,t]k

ψct(t1, . . . , tk)
k∏
i=1

(
β̂ W (dti) + ĥ dti

)
, (3.8)

where W (·) denotes white noise on R and ψct(t1, . . . , tk) is a symmetric function, defined
for 0 < t1 < · · · < tk < t by

ψct(t1, . . . , tk) =


Ckα t

1−α

t1−α1 (t2 − t1)1−α · · · (tk − tk−1)1−α(t− tk)1−α if 1
2 < α < 1

1

E[τ1]k
if E[τ1] <∞

,

(3.9)
where Cα := α sin(πα)

π . The series in (3.8) converges in L2, and one has the convergence of
the corresponding second moments: E[(Zω,cNt,βN ,hN

)2]→ E[(ZW,c

t,β̂,ĥ
)2] as N →∞.

An analogous statement holds for the free (unconditioned) partition function ZωNt,βN ,hN ,
where the limiting random variable ZW

t,β̂,ĥ
is defined as in (3.8), with kernel

ψ(t1, . . . , tk) :=


Ckα

t1−α1 (t2 − t1)1−α · · · (tk − tk−1)1−α if
1

2
< α < 1

1

E[τ1]k
if E[τ1] <∞

. (3.10)

When E[τ1] <∞, for both the free and conditioned case, the continuum partition function
has an explicit distribution: for every t ≥ 0

ZW,c

t,β̂,ĥ

d
= ZW

t,β̂,ĥ

d
= exp

{
β̂

E[τ1]
Wt +

(
ĥ

E[τ1]
− β̂2

2E[τ1]2

)
t

}
, (3.11)

where W = (Wt)t≥0 denotes a standard Brownian motion.

Remark 3.2. The stochastic integrals in (3.8) can be rewritten more directly as follows:
denoting by W = (Wt)t≥0 a standard Brownian motion, we have

ZW
t,β̂,ĥ

:= 1 +
∞∑
k=1

∫
· · ·
∫

0<t1<···<tk<t

ψt(t1, . . . , tk)
k∏
i=1

(
β̂ dWti + ĥ dti

)
, (3.12)

where the integrals can be viewed as ordinary Ito integrals: it suffices to first integrate over
(β̂dWt1 + ĥdt1) for t1 ∈ (0, t2), then over (β̂dWt2 + ĥdt2) for t2 ∈ (0, t3), etc.

Remark 3.3. Theorem 3.1 extends readily to the convergence of the joint distribution of a
finite collection of partition functions (conditioned or free). Analogously, the two parameter
family of partition functions

Zω,cβN ,hN
(Ns,Nt) := E

[
e
∑Nt−1
n=Ns+1(βωn−Λ(β)+h)1{n∈τ}

∣∣∣Ns, Nt ∈ τ] , for 0 < s < t , (3.13)

converges in finite-dimensional distributions to a two-parameter process (ZW,c

β̂,ĥ
(s, t))0<s<t.

In [CSZ14] we upgrade this result to a convergence in distribution in the space of continuous
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functions, equipped with the uniform topology. This allows to construct the continuum limit
of the disordered pinning measure PωN,β,h.

Remark 3.4. It is natural to call the random variable ZW
t,β̂,ĥ

in Theorem 3.1 the continuum
partition function and to define the corresponding continuum free energy

F (α)(β̂, ĥ) = lim
t→∞

1

t
E
[

logZW
t,β̂,ĥ

]
, (3.14)

where E denotes expectation with respect to the white noise W , provided the limit exists.
For 1

2 < α < 1, we expect that the continuum and discrete free energies are related via

F (α)(β̂, ĥ) = lim
δ↓0

F (δα−
1
2L(1

δ ) β̂ , δαL(1
δ ) ĥ)

δ
. (3.15)

This would follow if one could interchange the limits in the formal computation

F (α)(β̂, ĥ) = lim
t→∞

1

t
logZW

t,β̂,ĥ

d
= lim

t→∞

1

t
lim
N→∞

logZωtN,βN ,hN . (3.16)

where βN , hN scale as in (3.7). Such an interchange of limits has been made possible in the
related copolymer model, cf. [BdH97, CG10]. Proving the validity of relation (3.15) is a
very interesting open problem. Even the existence of the continuum free energy in (3.14)
—possibly also in the P-a.s. sense, like for the discrete case (3.5)— is a non-trivial issue.

Relation (3.15) is appealing because of its implication of universality: it states that the
discrete free energy F (β, h) has a universal shape in the weak disorder regime β, h → 0,
given by the continuum free energy, which depends only on the parameter α and not on
finer details of the renewal distribution. Inverting the relation β = δα−

1
2L(1

δ ), it is possible
to rewrite (3.15) for β̂ = 1 as

F (α)(1, ĥ) = lim
β↓0

F
(
β, L̃( 1

β )β
2α

2α−1 ĥ
)

L̂( 1
β )β

2
2α−1

, (3.17)

where L̃(·) and L̂(·) are suitable slowly varying functions determined by L(·).
Given a slowly varying function φ and γ > 0, we define the slowly varying functions φ̄γ and φ∗ by

φ̄γ(x) :=
1

φ(x1/γ)
, φ∗

(
xφ(x)

)
∼ 1

φ(x)
as x→∞ ,

where the existence of φ∗ is guaranteed by [BGT87, Theorems 1.5.13]. Then as β ↓ 0

δα−
1
2L( 1

δ ) = β =⇒ 1

δα−
1
2

L̄α− 1
2

(
1

δα−
1
2

)
∼ 1

β
=⇒ L

(
1

δ

)
∼
(
L̄α− 1

2

)∗( 1

β

)
,

hence by δα−
1
2L( 1

δ ) = β we obtain δ ∼ β
2

2α−1 L̂( 1
β ) and δαL( 1

δ ) ∼ β
2α

2α−1 L̃( 1
β ), where

L̂(x) := [(L̄α− 1
2
)∗(x)]−

2
2α−1 , L̃(x) := [(L̄α− 1

2
)∗(x)]−

1
2α−1 . (3.18)

Plugging this into (3.15) (with β̂ = 1), we get (3.17).

Defining the critical curve of the continuum free energy in analogy with (3.6), i.e.

h(α)
c (β̂) := sup{ĥ ∈ R : F (α)(β̂, ĥ) = 0} = inf{ĥ ∈ R : F (α)(β̂, ĥ) > 0}

relation (3.17) leads us to the following
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Conjecture 3.5. For any disordered pinning model satisfying (3.2) with α ∈ (1
2 , 1), the

critical curve hc(β) has the following universal asymptotic behavior (defining L̃(·) by (3.18)):

lim
β↓0

hc(β)

L̃( 1
β )β

2α
2α−1

= h(α)
c (1) .

Further support to this conjecture is provided by the fact that (non-matching) upper and
lower bounds for hc(β) of the order L̃( 1

β )β
2α

2α−1 were proved in [A08, AZ09].

Remark 3.6. The case when (3.2) holds with α = 1 and E[τ1] =∞, i.e.
∑

n∈N L(n)/n =∞,
can also be included in Theorem 3.1 (we have omitted it for notational lightness), setting

βN = β̂
`(N)√
N

, hN = ĥ
`(N)

N
, where `(N) :=

N∑
n=1

L(n)

n

is a slowly varying function, and with ψct(t1, . . . , tk) = ψ(t1, . . . , tk) ≡ 1. This is easily
checked from the proof in Section 6, because P(n ∈ τ) ∼ 1

`(n) , cf. [BGT87, Theorem 8.7.5].
On the other hand, the case α = 1/2 appears to be fundamentally different, because the

continuum kernels ψct , ψ are no longer L2 integrable and therefore the stochastic integrals
are not properly defined. When α = 1/2 and

∑
n∈N 1/(nL(n)2) =∞ —in particular, when

L(n) ∼ (const.) as n→∞, as for the simple random walk on Z— we expect that a nontrivial
continuum limit should exist. This appears to be a challenging open problem.

3.2. Directed polymer model. Consider a random walk S = (Sn)n∈N0 on Z, with
law P. Let ω = (ω(n, x))n∈N,x∈Z be a family of i.i.d. random variables, independent of
S, with zero mean, unit variance and locally finite exponential moments, cf. (3.1). The
(1 + 1)-dimensional directed polymer model is the random probability law PωN,β for the walk
S defined for N ∈ N and β ≥ 0 by

dPωN,β(S) :=
1

ZωN,β
e
∑N
n=1(βω(n,Sn)−Λ(β)) dP(S) , (3.19)

where we recall that Λ(β) := logE[eβωn,x ] and the partition function ZωN,β is defined by

ZωN,β = E
[
eβ

∑N
n=1 ω(n,Sn)

]
e−Λ(β)N . (3.20)

For y ∈ Z, we also define the constrained point-to-point partition function ZωN,β(y) and the
conditioned point-to-point partition function Zω,cN,β(y), setting

ZωN,β(y) = E
[
eβ

∑N
n=1 ω(n,Sn) 1{SN=y}

]
e−Λ(β)N ,

Zω,cN,β(y) = E
[
eβ

∑N
n=1 ω(n,Sn)

∣∣SN = y
]
e−Λ(β)N .

(3.21)

Plainly, ZωN,β =
∑

y∈Z Z
ω
N,β(y) =

∑
y∈Z Z

ω,c
N,β(y) P(SN = y).

When (Sn)n≥1 is the simple symmetric random walk on Z, we have the much-studied
Directed Polymer in Random Medium. First introduced in the physics literature in [HH85],
this model has received particular attention due to its connection to the Kardar-Parisi-Zhang
(KPZ) equation and its universality class, cf. [CSY04], [C12] for a review. In particular, the
point-to-point partition function can be thought of as an approximation of the solution of
the Stochastic Heat Equation (SHE), whose logarithm is the so-called Hopf-Cole solution
of the KPZ equation. This was made rigorous in [AKQ14a], showing that when β = βN is
scaled as N−1/4 (the so-called intermediate disorder regime) and y is scaled as N−1/2, the
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point-to-point partition function ZωNt,β(y) converges in distribution to a continuum process,
which solves the SHE.

Our approach allows to extend the results in [AKQ14a]. Not only can we deal with general
zero mean, finite variance random walks, which are the natural “universality class” of the
simple symmetric random walk on Z; we can also consider random walks attracted to stable
laws with index α ∈ (1, 2), exploring new universality classes. When allowing “big jumps”, it
is natural to call PωN,β the long-range directed polymer model.

Let us now state precisely our assumptions on the random walk.

Assumption 3.7. Let S = (Sn)n≥0 be a random walk on Z, with S0 = 0 and with i.i.d.
increments (Sn − Sn−1)n≥1, such that for some α ∈ (1, 2] the following holds:

• (Case α = 2): E[S1] = 0 and σ2 := Var(S1) <∞;

• (Case 1 < α < 2): E[S1] = 0 and there exist γ ∈ [−1, 1] and C ∈ (0,∞) such that

P(S1 > n) ∼
(
C 1+γ

2

) 1

nα
, P(S1 < −n) ∼

(
C 1−γ

2

) 1

nα
, as n→∞ . (3.22)

This means that the random walk S is in the domain of normal attraction of a stable law
of index α ∈ (1, 2] and (for α < 2) skewness parameter γ. (The adjective “normal” refers to
the absence of slowly varying functions.) In other words, Sn/n1/α converges in distribution
as n→∞ to a random variable Y , which has law N (0, σ2) if α = 2, while for 1 < α < 2

E[eitY ] = e−cαC |t|
α(1−iγ(sign t) tan πα

2
) , for a suitable cα > 0 . (3.23)

We remark that Y satisfies the same conditions as S1 in Assumption 3.7 and has an absolutely
continuous law, with a bounded and continuous density g(·). For t > 0 we set

gt(x) :=
1

t1/α
g

(
x

t1/α

)
. (3.24)

We stress that g(·) depends only on the parameters (α, σ2) or (α, γ, C) in Assumption 3.7.

The period of a random walk S on Z is the largest p ∈ N such that P(S1 ∈ pZ + r) = 1,
for some r ∈ {0, . . . , p − 1}. For instance, the simple symmetric random walk on Z has
period p = 2, because P(S1 ∈ 2Z + 1) = 1. To lighten notation, given (s, y) ∈ R+ × R, we
write Zω,cs,β (y) to mean Zω,cs̃,β (ỹ), where s̃ := bsc and ỹ := max{z ∈ pZ + rs̃ : z ≤ y}.

We are ready to state our main result for this model, to be proved in Section 7.

Theorem 3.8 (Scaling limits of directed polymer models). Let S be a random walk
on Z satisfying Assumption 3.7 for some α ∈ (1, 2]. For N ∈ N and β̂ > 0, set

βN :=
β̂

N
α−1
2α

.

For every t ≥ 0 and x ∈ R, the conditioned point-to-point partition function Zω,cNt,βN
(N1/αx)

converges in distribution as N →∞ to the random variable ZW,c

t,β̂
(x) given by

ZW,c

t,β̂
(x) := 1 +

∞∑
k=1

β̂k

k!

∫
· · ·
∫

([0,t]×R)k

ψct,x
(
(t1, x1), . . . , (tk, xk)

) k∏
i=1

W (dti dxi) , (3.25)
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where W (·) denotes space-time white noise (i.e., white noise on R2) and the symmetric
function ψct,x

(
(t1, x1), . . . , (tk, xk)

)
is defined for 0 < t1 < · · · < tk < t by

ψct,x
(
(t1, x1), . . . , (tk, xk)

)
:=

(
k∏
i=1

√
p gti−ti−1(xi − xi−1)

)
gt−tk(x− xk)

gt(x)
, (3.26)

where x0 := 0 and p ∈ N is the period of the random walk. The series in (3.25) converges in
L2 and furthermore E[(Zω,cNt,βN

(N1/αx))2]→ E[(ZW,c

t,β̂
(x))2] as N →∞.

An analogous statement holds for the free partition function ZωNt,βN , where the limiting
random variable ZW

t,β̂
is defined as in (3.25), with kernel

ψt
(
(t1, x1), . . . , (tk, xk)

)
:=

k∏
i=1

√
p gti−ti−1(xi − xi−1) .

Remark 3.9. Theorem 3.8 extends to the convergence of the joint distribution of a finite
collection of partition functions (conditioned or free). In particular, the four-parameter
family Zω,cNs,Nt,βN

(N1/αx,N1/αy), defined for (s, x) and (t, y) in R+ × R by

Zω,cNs,Nt;βN
(N1/αx,N1/αy) := E

[
e
∑Nt−1
n=Ns+1(βω(n,Sn)−Λ(β))

∣∣SNs = N1/αx, SNt = N1/αy
]
,

converges in finite-dimensional distributions to a four-parameter family of continuum condi-
tioned partition functions {ZW,c

s,t;β̂
(x, y)}(s,x),(t,y)∈R+×R.

Similar to the case α = 2 studied in [AKQ14b], we expect that this convergence can be
upgraded to a convergence in distribution in the space of continuous functions, equipped
with the uniform topology. We can then use these partition functions to define a continuum
long-range directed polymer model (which corresponds intuitively to an “α-stable Lévy
process in a white noise random medium”), by specifying its finite-dimensional distributions
as done in [AKQ14b] for the Brownian case α = 2.

Remark 3.10. The free energy of the (discrete) directed polymer model is defined by

F (β) := lim
N→∞

1

N
E
[

logZωN,β
]
,

where we expect that the limit exists (also P-a.s. and in L1(dP)), as in the usual setting. It
is natural to define the free energy of the continuum model analogously, i.e.

F (β̂) := lim
t→∞

1

t
E
[

logZW
t,β̂

]
,

assuming of course that the limit exists. We stress that F (·) is a universal quantity, which
depends only on the parameters (α, σ2) or (α, γ, C) in Assumption 3.7 (furthermore, the
parameters σ2, C enter as simple scale factors). We also note that F (β̂) = F (1)β̂

α−1
2α , by an

easy scaling argument. In analogy with Remark 3.4, we are led to the following

Conjecture 3.11. For any directed polymer model satisfying Assumption 3.7, the free
energy F (β) has the following universal asymptotic behavior for weak disorder:

lim
β↓0

F (β)

β
2α
α−1

= lim
δ↓0

F (δ
α−1
2α )

δ
= F (1).
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When α = 2 we would then get F (β) ∼ F (1)β4, which is supported by the (non-matching)
upper and lower bounds on F (β) obtained in [L10].

Remark 3.12. For 1 < α < 2, the function gt(·) in (3.24) is the marginal density of the
α-stable Lévy process (Xt)t∈R+ whose infinitesimal generator is given by a multiple of

∆α/2,γf(x) :=

∫ +∞

−∞

(
f(x+ y)− f(x)− yf ′(x)

)( 1 + γ

|y|1+α
1{y>0}+

1− γ
|y|1+α

1{y<0}

)
dy . (3.27)

In the symmetric case γ = 0, this reduces to the much studied fractional Laplacian

∆α/2f(x) :=

∫ ∞
−∞

(
f(x+ y)− f(x)− yf ′(x)

) 1

|y|1+α
dy . (3.28)

Let us stick for simplicity to the symmetric case γ = 0. It is natural to call ZW,c

t,β̂
(x)

in (3.25) the continuum conditioned point-to-point partition function. Introducing the
continuum constrained point-to-point partition function by

ZW
t,β̂

(x) := ZW,c

t,β̂
(x) gt(x) ,

one can check that the process u(t, x) = ZW
t,β̂

(x) has a version that is continuous in (t, x)

and, up to a scaling factor, it is a mild solution to the one dimensional stochastic PDE{
∂tu = ∆α/2 u+

√
pβ̂ Ẇ u

u(0, ·) = δ0(·)
, (3.29)

which we can call the stochastic fractional heat equation (SFHE), generalizing the usual
SHE (which corresponds to α = 2). Uniqueness of mild solutions for the SFHE follows from
standard techniques, see discussions in [CJKS14] and references therein.

Let us also consider the process Aα,β̂(·) := logZW
1,β̂

(·). When α = 2, this is the cross-
over process studied in [ACQ11, SS10], which owes its name to the fact that its one-point
marginals interpolate between the Gaussian distribution (in the limit β̂ → 0) and the
Tracy-Widom GUE distribution (in the limit β̂ →∞). When α < 2, it is easy to see that
Aα,β̂(·) is again asymptotically Gaussian for β̂ → 0 (the contribution from the first stochastic
integral in its Wiener chaos expansion is dominant over the iterated integrals, which are
multiplied by higher powers of β̂). However, it is far from obvious whether Aα,β̂(·) converges
to some asymptotic process Aα,∞(·) as β̂ →∞ and whether such a process describes some
universality class for long-range random polymers, last passage percolation and growth
models, generalizing the the so-called Airy process obtained for α = 2. Besides a very recent
work on the limit shapes of long-range first-passage percolation model [CD13], long-range
polymer type models do not appear to have been studied systematically before.

3.3. Random field Ising model. Given a bounded 
 ⊆ Z2, we set

∂
 := {x ∈ Z2\
 : ‖x− y‖ = 1 for some y ∈ 
}.
For a fixed parameter β ≥ 0, representing the “inverse temperature”, the Ising model on 

with + boundary condition (and zero external field) is the probability measure P+


 on the
set of spin configurations {±1}
, where each σ := (σx)x∈
 ∈ {±1}
 has probability

P+

 (σ) :=

1

Z+



exp

{
β

∑
x∼y∈
∪∂


σxσy

} ∏
x∈∂


1{σx=+1}. (3.30)
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Here x ∼ y denotes an unordered nearest-neighbor pair in Z2, and Z+

 is the normalizing

constant. The value of β will soon be fixed, which is why we do not indicate it in P+

 .

Remark 3.13. It is well-known that as 
 ↑ Z2, the sequence of probability measures P+



has a unique infinite volume limit P+
Z2 , which of course depends on β, such that

E+
Z2(σ0) > 0 if and only if β > βc :=

1

2
log(1 +

√
2).

By an obvious symmetry, for β > βc there also exists an infinite volume Gibbs measure P−Z2

satisfying E−Z2(σ0) < 0. Given the coexistence of multiple infinite volume Gibbs measures,
the Ising model is said to have a first order phase transition for β > βc. The same result
holds in higher dimensions, with different values of βc.

A question that attracted significant interest was whether this picture will be altered by
the addition of a small random external field. After long debates, this question was settled by
Bricmont and Kupiainen [BK88], who showed that the first order phase transition persists
for the random field Ising model in dimensions d ≥ 3 at low temperatures (i.e., for large β),
and by Aizenman and Wehr [AW90] who showed the absence of first order phase transition
in dimension 2 at any temperature. See [B06, Chap. 7] for an overview.

Henceforth we fix β = βc := 1
2 log(1 +

√
2), so that P+


 denotes the two-dimensional
critical Ising model. Let ω := (ωx)x∈Z2 be a family of i.i.d. random variables satisfying (3.1),
representing the disorder. Given λ := (λx)x∈Z2 ≥ 0 and h := (hx)x∈Z2 ∈ R, representing
the disorder strength and bias respectively, the random field Ising model (RFIM) is the
probability measure P+,ω


,λ,h on {±1}
 with

P+,ω

,λ,h(σ) =

1

Z+,ω

,λ,h

exp

{∑
x∈


(λxωx + hx)σx

}
P+

 (σ), (3.31)

where the normalizing constant, called partition function, is given by

Z+,ω

,λ,h = E+




[
exp

{∑
x∈


(λxωx + hx)σx

}]
. (3.32)

Note that we allow the disorder strength λ and bias h to vary from site to site. Also observe
that choosing P+


 as a “reference law” means that Z+,ω

,λ,h = 1 for λ, h ≡ 0 (with β = βc).

Fix now a bounded open set Ω ⊆ R2 with piecewise smooth boundary, and define the
rescaled lattice 
δ := Ω ∩ (δZ)2, for δ > 0. We are going to obtain a non-trivial limit in
distribution for the partition function Z+,ω


δ,λ,h
, in the continuum and weak disorder regime

δ, λ, h→ 0. We build on recent results of Chelkak, Hongler and Izyurov [CHI12, Theorem 1.3]
on the continuum limit of the spin correlations under P+


δ
(the two-dimensional critical Ising

model with + boundary condition): for all n ∈ N and distinct x1, . . . , xn ∈ Ω

lim
δ↓0

δ−
n
8 E+


δ
[σx1 · · ·σxn ] = Cnφ+

Ω(x1, . . . , xn), (3.33)
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where φ+
Ω : ∪n∈NΩn → R is a symmetric function and C := 2

5
48 e−

3
2
ζ′(−1), with ζ ′ denoting

the derivative of Riemann’s zeta function.† (For simplicity, in (3.33) we have set σx := σxδ ,
where xδ denotes the point in 
δ closest to x ∈ Ω.)

We can complement (3.33) with a uniform bound (see Lemma 8.1 below): there exists
C ∈ (0,∞) such that for all n ∈ N, x1, . . . , xn ∈ Ω and δ ∈ (0, 1)

0 ≤ δ−
n
8 E+


δ
[σx1 · · ·σxn ] ≤

n∏
i=1

C

d(xi, ∂Ω ∪ {x1, . . . , xn}\{xi})
1
8

, (3.34)

where d(x,A) := infy∈A ‖x − y‖ and the RHS is shown to be in L2 in Lemma 8.3 below.
Therefore the convergence (3.33) also holds in L2(Ω), and ‖φ+

Ω‖L2(Ωn) <∞ for every n ∈ N.
We can now state our main result for the RFIM, to be proved in Section 8.

Theorem 3.14 (Scaling limits of RFIM). Let Ω ⊆ R2 be bounded and simply connected
open set with piecewise smooth boundary, and define 
δ := Ω ∩ (δZ)2, for δ > 0.

Let ω := (ωx)x∈Z2 be i.i.d. random variables satisfying (3.1) and define ωδ = (ωδ,x)x∈
δ
by ωδ,x := ωx/δ. Given two continuous functions λ̂ : Ω→ (0,∞) and ĥ : Ω→ R, define

λδ,x := λ̂(x) δ
7
8 , hδ,x := ĥ(x) δ

15
8 . (3.35)

and set λδ = (λδ,x)x∈
δ , hδ = (hδ,x)x∈
δ . Then the rescaled partition function

e
− 1

2
‖λ̂‖2

L2(Ω)
δ−1/4

Z+,ωδ

δ,λδ,hδ

(3.36)

converges in distribution as δ ↓ 0 to a random variable Z+,W

Ω,λ̂,ĥ
with Wiener chaos expansion

Z+,W

Ω,λ̂,ĥ
= 1 +

∞∑
n=1

Cn

n!

∫
· · ·
∫

Ωn
φ+

Ω(x1, . . . , xn)
n∏
i=1

[
λ̂(xi)W (dxi) + ĥ(xi)dxi

]
, (3.37)

where W (·) denotes white noise on R2 and φ+
Ω(·), C are as in (3.33).

Remark 3.15. We impose the continuity on λ̂ and ĥ and the strict positivity on λ̂ for
technical simplicity: these conditions can be relaxed with a more careful analysis.

We call the random variable Z+,W

Ω,λ̂,ĥ
in (3.37) the continuum RFIM partition function.

The fact that the continuum correlation function φ+
Ω is conformally covariant, proved in

[CHI12, Theorem 1.3], allows to deduce the conformal covariance of Z+,W

Ω,λ̂,ĥ
.

Corollary 3.16 (Conformal covariance). Let Ω, Ω̃ ⊆ R2 be two bounded and simply
connected open sets with piecewise smooth boundaries, and let ϕ : Ω̃→ Ω be conformal. Let
λ̂ : Ω→ (0,∞) and ĥ : Ω→ R be continuous functions. Then

Z+,W

Ω,λ̂,ĥ

d
= Z+,W

Ω̃,λ̃,h̃
,

where we set λ̃(z) := |ϕ′(z)|
7
8 λ̂(ϕ(z)) and h̃(z) := |ϕ′(z)|

15
8 ĥ(ϕ(z)) for all z ∈ Ω̃.

†In [CHI12], the mesh size of 
δ is
√

2δ instead of δ, which accounts for the difference between our formula
for C and that in [CHI12, (1.3)]. Exact formulas for φ+

Ω(x1, . . . , xn) are available for n = 1, 2 when Ω is the
upper half plane H, cf. [CHI12, (1.4)]. The general case φ+

Ω can be obtained from φ+
H
via conformal map.
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Remark 3.17. Recently, Camia, Garban and Newman [CGN12, CGN13] showed that for a
deterministic external field, more precisely λδ,x ≡ 0 and hδ,x ≡ ĥδ

15
8 for fixed ĥ ∈ R, the Ising

measure P+

δ,λδ,hδ

converges as δ ↓ 0 (in a suitable sense) to a limiting distribution-valued

process Φ∞,ĥΩ . Theorem 3.14 can be regarded as a first step towards the extension of this
convergence to the case of a random external field, where Z+,W

Ω,λ̂,ĥ
plays the role of the partition

function of a continuum Ising model with random external field (λ̂(x)W (dx) + ĥ(x)dx) and
+ boundary condition. The next step towards the construction of such a continuum model
would be to identify the joint distribution of the partition functions (Zb,W

Γ,λ̂,ĥ
)Γ,b (note that

they are random variables which are functions of the disorder W ) for a large enough family
of sub-domains Γ ⊆ Ω and “boundary conditions” b.

Remark 3.18. Consider the case when the disorder strength and bias are constant, i.e.
λx ≡ λ ≥ 0 and hx ≡ h ∈ R. The free energy F (λ, h) of the critical random field Ising model
can be defined as follows: setting Ω := (−1

2 ,
1
2)2 and ΛN := (NΩ)∩Z2 = {d−N

2 e, . . . , b
N
2 c}

2,

F (λ, h) := lim
N→∞

1

N2|Ω|
E
[

logZ+,ω
ΛN ,λ,h

]
= lim

δ↓0

δ2

|Ω|
E
[

logZ+,ω

δ,λ,h

]
, (3.38)

where the limit exists by standard super-additivity arguments and is independent of the
choice of Ω. Note that F (0, 0) = 0, that is F (λ, h) represents the excess free energy with
respect to the critical Ising model, cf. (3.32).

It is natural to define a continuum free energy F (λ̂, ĥ) for λ̂ ≥ 0, ĥ ∈ R by

F (λ̂, ĥ) := lim
Ω↑R2

1

Leb(Ω)
E
[

logZ+,W

Ω,λ̂,ĥ

]
,

provided the limit exists (at least along sufficiently nice domains Ω ↑ R2), where E denotes
expectation with respect to the white noise W (·). In analogy with Remark 3.4, Theorem 3.14
suggests the following conjecture on the universal behavior of the free energy F (λ, h) in the
weak disorder regime λ, h→ 0.

Conjecture 3.19. The following asymptotic relation holds:

lim
δ↓0

F
(
λ̂δ

7
8 , ĥδ

15
8

)
δ2

= F (λ̂, ĥ) , ∀λ̂ ≥ 0, ĥ ∈ R . (3.39)

One can go one step further: differentiating both sides of (3.39) with respect to ĥ and setting
δ = h

8
15 , for ĥ = 1 one would obtain

lim
h→0

〈
σ0

〉
λ̂h

7
15 ,h

h
1
15

=
∂F

∂ĥ
(λ̂, 1) , (3.40)

where 〈σ0〉λ,h := ∂F
∂h (λ, h) = limN→∞ E

[
E+,ω

ΛN ,λ,h
[σ0]
]
represents the average magnetization

in the infinite-volume random field critical Ising model, cf. (3.38) and (3.31). Relation (3.40)
is supported by (non-matching) upper and lower bounds of the order h

1
15 for 〈σ0〉λ,h in the

non-disordered case λ = 0, recently proved by Camia, Garban and Newman [CGN12b].

In light of Theorem 3.14, and the fact that for the two-dimensional Ising model below the
critical temperature a disordered external field smoothens the phase transition [AW90], it is
natural to conjecture that a similar smoothing effect occurs at the critical temperature:
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Conjecture 3.20. For any fixed λ > 0, the average magnetization in the infinite-volume
random field critical Ising model on Z2 satisfies

〈σ0〉λ,h ∼ Chγ as h ↓ 0 for some γ >
1

15
. (3.41)

4. Proof of the Lindeberg principle

In this section, we prove Theorems 2.6 and 2.8 on the Lindeberg principle for polynomial
chaos expansions. We first deduce Theorem 2.8 from Theorem 2.6, starting with the following
lemma which controls how a multi-linear polynomial Ψ(x) = Ψ((xi)i∈T) is affected by a shift
x 7→ x+ µ, where µ := (µi)i∈T.

Lemma 4.1 (Effect of adding a mean). Let Ψ(x) = Ψ((xi)i∈T) be a multi-linear
polynomial as in (2.5), with kernel ψ, and let µ := (µi)i∈T be a family of real numbers. Then
Ψ̃(x) := Ψ(x+ µ) is a multi-linear polynomial, i.e. Ψ̃(x) =

∑
J∈Pfin(T) ψ̃(J)xJ , with kernel

ψ̃(J) =
∑

I∈Pfin(T): I⊇J

ψ(I)µI\J . (4.1)

For ε > 0, let Ψ(ε)(x) be defined as in (2.26), and recall the definitions of CΨ from (2.19)
and Infj [Ψ] from (2.20). Then, setting cµ :=

∑
i∈T µ

2
i , for any ε > 0 we have

C
Ψ̃
≤ ecµ/ε CΨ(ε) , Infj [Ψ̃] ≤ ecµ/ε Infj [Ψ

(ε)] . (4.2)

Proof. Note that (4.1) follows from the expansion

Ψ̃(x) = Ψ(x+ µ) =
∑
I

ψ(I)(x+ µ)I =
∑
I

ψ(I)
∑
J⊆I

µI\J xJ =
∑
J

(∑
I⊇J

ψ(I)µI\J
)
xJ .

For any ε > 0, we can apply Cauchy-Schwarz to write

ψ̃(J)2 ≤
(∑
I⊇J

(ε−1µ2)I\J
)(∑

I⊇J
ε|I\J |ψ(I)2

)
= (1 + ε−1µ2)T\J

(∑
I⊇J

ε|I\J |ψ(I)2

)
, (4.3)

and note that

(1 + ε−1µ2)T\J ≤ (1 + ε−1µ2)T ≤ ecµ/ε .

Therefore

C
Ψ̃

:=
∑
J

ψ̃(J)2 ≤ ecµ/ε
∑
I

(∑
J⊆I

ε|I\J |
)
ψ(I)2 = ecµ/ε

∑
I

(1 + ε)|I|ψ(I)2 =: ecµ/ε CΨ(ε) ,

proving the first relation in (4.2). The second relation is obtained similarly:

Infj [Ψ̃] :=
∑
J3j

ψ̃(J)2 ≤ ecµ/ε
∑
I3j

( ∑
J :j∈J⊆I

ε|I\J |
)
ψ(I)2

≤ ecµ/ε
∑
I3j

(1 + ε)|I|ψ(I)2 =: ecµ/ε Infj [Ψ
(ε)] .

(4.4)

This concludes the proof of the lemma. �
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Proof of Theorem 2.8. Since Ψ(ζ̃) = Ψ(ζ + µ) =: Ψ̃(ζ), by Lemma 4.1 the conditions
cµ <∞ and CΨ(ε) <∞ ensure that C

Ψ̃
<∞. The polynomial chaos expansion Ψ(ζ̃) is then

a well-defined L2 random variable, by Remark 2.2, and the same holds for Ψ(ξ̃).
To prove (2.27), we are first going to truncate Ψ to degree `, i.e. we consider Ψ≤` and

Ψ>`, defined in (2.21). Note that∣∣E[f(Ψ(ζ̃))− f(Ψ≤`(ζ̃))]
∣∣ ≤ ‖f ′‖∞ E[|Ψ(ζ̃)−Ψ≤`(ζ̃)|] ≤ ‖f ′‖∞ E[|Ψ>`(ζ̃)|2]

1
2 , (4.5)

and the same bound holds when ζ̃ is replaced by ξ̃, therefore∣∣E[f(Ψ(ζ̃))]− E[f(Ψ(ξ̃))]
∣∣ ≤ 2‖f ′‖∞E[|Ψ>`(ζ̃)|2]

1
2 +

∣∣E[f(Ψ≤`(ζ̃))]− E[f(Ψ≤`(ξ̃))]
∣∣, (4.6)

where we use the fact that, since ζ and ξ are independent with zero mean,

E[|Ψ>`(ζ)|2] = E[|Ψ>`(ξ)|2] =
∑
|I|>`

ψ(I)2 = CΨ>` .

To bound the first term in (4.6), we write Ψ̃>`(x) := Ψ>`(x+ µ), which has kernel ψ̃>`
(note that first we truncate the kernel and then we shift x 7→ x+µ). Since ζ are independent
with zero mean and variance one, by Lemma 4.1 we have

E[|Ψ>`(ζ̃)|2] = E[|Ψ̃>`(ζ)|2] =
∑
J

ψ̃>`(J)2 =: C
Ψ̃>`
≤ ecµ/ε CΨ(ε),>` .

Substituting this bound into (4.6) then leads to the first term in (2.27).
To bound the second term in (4.6), we write Ψ̃≤`(x) := Ψ≤`(x + µ), and then apply

Theorem 2.6 to obtain∣∣E[f(Ψ≤`(ζ̃))]− E[f(Ψ≤`(ξ̃))]
∣∣ =

∣∣E[f(Ψ̃≤`(ζ))]− E[f(Ψ̃≤`(ξ))]
∣∣

≤ Cf CΨ̃≤`

(
16`2m>M

2 + 70`+1
(
m≤M3

)`
max
i∈T

√
Infi

[
Ψ̃≤`

] )
.

Applying the bounds in Lemma 4.1 to Ψ≤` then gives the remaining terms in (2.27), where
we have combined and upper bounded factors of ecµ/ε. �

Proof of Theorem 2.6. We note that it is sufficient to prove the theorem in the case
|T| < ∞, because the general case follows by considering finite ΛN ↑ T. For notational
simplicity, we assume that T = [N ] := {1, . . . , N}.

Step 1. We first truncate Ψ to a degree ` polynomial Ψ≤`. By the same calculations as in
(4.5) and (4.6), we have∣∣E[f(Ψ(ζ))]− E[f(Ψ(ξ))]

∣∣ ≤ 2‖f ′‖∞E[|Ψ>`(ζ)|2]
1
2 +

∣∣E[f(Ψ≤`(ζ))]− E[f(Ψ≤`(ξ))]
∣∣. (4.7)

This leads to the first term in the right hand side of (2.24).

Step 2. For a fixed f ∈ C3
b (R), we denote

f(Ψ≤`(x)) =: g(x1, x2, . . . , xN ).

For a vector x ∈ RN and y ∈ R, we also set

hxj (y) = g(x1, . . . , xj−1, y, xj+1, . . . , xN ).



POLYNOMIAL CHAOS AND SCALING LIMITS OF DISORDERED SYSTEMS 29

Using this notation, we can write

f(Ψ≤`(ζ))− f(Ψ≤`(ξ)) =

N∑
j=1

g(ζ1, . . . , ζj , ξj+1, . . . , ξN )− g(ζ1, . . . , ζj−1, ξj , . . . , ξN )

=
N∑
j=1

(
hX

j

j (ζj)− hX
j

j (ξj)
)
, (4.8)

where we have used the notation

Xj := (Xj
1 , . . . , X

j
N ) := (ζ1, . . . , ζj , ξj+1, . . . , ξN ) . (4.9)

Next, we will be Taylor expanding each term in (4.8). For this we note that for y ∈ R

hxj (y) = hxj (0) + y
dhxj
dy

(0) +
y2

2

d2hxj
dy2

(0) +Rxj (y) ,

where the remainder term has the form

Rxj (y) =
1

2

∫ y

0

d3hxj
dy3

(t)(y − t)2dt =
1

2

d2hxj
dy2

(0) y2 +

∫ y

0

d2hxj
dy2

(t) (y − t) dt,

from which it follows that

|Rxj (y) | ≤ min

{
|y|3

6

∥∥∥∥∥d3hxj
dy3

∥∥∥∥∥
∞

, y2

∥∥∥∥∥d2hxj
dy2

∥∥∥∥∥
∞

}
. (4.10)

Inserting the Taylor expansion into (4.8) we obtain

f(Ψ≤`(ζ))− f(Ψ≤`(ξ)) =

N∑
j=1

{
hX

j

j (0) + ζj
dhXj

j

dy
(0) +

ζ2
j

2

d2hX
j

j

dy2
(0) +RX

j

j (ζj)

− hXj

j (0)− ξj
dhXj

j

dy
(0)−

ξ2
j

2

d2hX
j

j

dy2
(0)−RXj

j (ξj)

}
.

Since ζi and ξi both have zero mean and unit variance, taking expectation, we get∣∣∣E[f(Ψ≤`(ζ))]− E[f(Ψ≤`(ξ))]
∣∣∣ =

∣∣∣∣∣
N∑
j=1

E
[
RX

j

j (ζj)−RX
j

j (ξj)
]∣∣∣∣∣

≤
N∑
j=1

E
[
|RXj

j (ζj)|
]

+

N∑
j=1

E
[
|RXj

j (ξj)|
]
.

(4.11)

Since the estimates for both sums are identical, we will focus on the first one.

Step 3. The derivatives of hxj (·) are easily computed:

dmhxj
dym

(y) = f (m)
(
Ψ≤`(x1, . . . , xj−1, y, xj+1, . . . , xN )

)(∂Ψ≤`(x1, . . . , xj−1, y, xj+1, . . . , xN )

∂y

)m
= f (m)

(
Ψ≤`(x1, . . . , xj−1, y, xj+1, . . . , xN )

)( ∑
I3j, |I|≤`

ψ(I)xI\{j}
)m

.

Then, setting Cf = max{‖f ′‖∞, ‖f (2)‖∞, ‖f (3)‖∞}, we can apply (4.10) to bound
N∑
j=1

E
[
|RXj

j (ζj)|
]
≤ Cf

N∑
j=1

E
[
ϕ(Lj(X

j))
]
, (4.12)
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where Xj was introduced in (4.9), and we define

ϕ(x) := min

{
|x|3

6
, |x|2

}
, Lj(x) :=

∑
I3j, |I|≤`

ψ(I)xI . (4.13)

Notice that Lj(x) includes the variable xj in the product as a result of absorbing the powers
of y in (4.10). Also note that ϕ(x) = ϕ(|x|) and

ϕ(a+ b) ≤ ϕ(2 max{|a|, |b|}) ≤ ϕ(2|a|) + ϕ(2|b|) ≤ 4|a|2 +
4

3
|b|3 .

Writing Lj(Xj) = (Lj(X
j) − Lj(Xj−)) + Lj(X

j−), where Xj− := (Xj−
1 , . . . , Xj−

N ) is a
suitably truncated version of Xj , we then obtain

E
[
ϕ(Lj(X

j))
]
≤ 4E

[(
Lj(X

j)− Lj(Xj−)
)2]

+
4

3
E
[
|Lj(Xj−)|3

]
. (4.14)

The two terms in the right hand side will give rise respectively to the two terms in the right
hand side of (2.24).

Step 4. We now describe the truncation procedure. This new ingredient, with respect to
[MOO10], is tailored to control random variables with finite second moments and uniformly
integrable squares. Fix M ∈ (0,∞). We want to decompose any real-valued random variable
Y with zero mean and finite variance in the following way:

Y = Y − + Y + , (4.15)

where Y −, Y + are functions of Y and possibly of some extra randomness, such that

E[Y −] = E[Y +] = 0 , Y −Y + = 0 ,

|Y −| ≤ |Y | 1{|Y |≤M} , E[(Y +)2] ≤ 2E[Y 21{|Y |>M}] .
(4.16)

If E[Y 1{−M≤Y≤M}] = 0 we are done: just choose Y − := Y 1{−M≤Y≤M} and Y + := Y − Y −.
If, on the other hand, E[Y 1{−M≤Y≤M}] > 0 (the strictly negative case is analogous), we set

T := sup{T ∈ [0,M ] : E[Y 1{−M≤Y≤T}] ≤ 0} ∈ [0,M ] .

Note that E[Y 1{−M≤Y≤T}] ≥ 0, because T 7→ E[Y 1{−M≤Y≤T}] is right-continuous. If
E[Y 1{−M≤Y≤T}] = 0, defining Y − := Y 1{−M≤Y≤T} and Y

+ := Y − Y −, all the properties
in (4.16) are clearly satisfied, except the last one that will be checked below. Finally, we
consider the case E[Y 1{−M≤Y≤T}] > 0 (then necessarily T > 0). Since E[Y 1{−M≤Y <T}] ≤ 0

by definition of T , we must have P(Y = T ) > 0. Then take a random variable U uniformly
distributed in (0, 1) and independent of Y , and define

Y − := Y
(
1{−M≤Y <T} + 1{Y=T , U≤%}

)
, where % :=

−E[Y 1{−M≤Y <T}]

T P(Y = T )
∈ (0, 1) .

Setting Y + := Y − Y −, all the properties (4.16) but the last one are clearly satisfied.
For the last property, we write

E[(Y +)2] = E[(Y +)21{|Y |>M}] + E[(Y +)21{|Y |≤M}] = E[Y 21{|Y |>M}] + E[(Y +)21{|Y |≤M}] ,

because Y + = Y on the event {|Y | > M}. For the second term, since 0 ≤ Y + ≤ M on
the event {|Y | ≤ M}, we can write (Y +)2 ≤ MY + (no absolute value needed). Since
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Y − = Y −1{|Y |≤M} has zero mean by (4.16), we obtain

E[(Y +)21{|Y |≤M}] ≤M E[Y +1{|Y |≤M}] = M E[(Y + + Y −)1{|Y |≤M}]

= M E[Y 1{|Y |≤M}] = M (−E[Y 1{|Y |>M}]) ≤ E[Y 21{|Y |>M}] ,

where we have used the fact that E[Y ] = 0 by assumption, and Markov’s inequality. The
last relation in (4.16) is proved.

Step 5. We apply the decomposition (4.15) to the random variables (Xj
i )i∈[N ], defined in

(4.9), where the extra randomness used in the construction is taken independently for each
variable: then we write

Xj
i = Xj−

i +Xj+
i ,

and the properties in (4.16) are satisfied. Note that by (4.13) we can write

Lj(X
j)− Lj(Xj−) =

∑
I3j, |I|≤`

ψ(I)
∑

Γ⊆I, |Γ|≥1

(Xj+)Γ(Xj−)I\Γ .

Since the random variables Xj−
1 , Xj+

1 , Xj−
2 , Xj+

2 , . . . are orthogonal in L2 by construction,
setting σ2

±,i := E[(Xj±
i )2] and observing that σ2

−,i + σ2
+,i = Var(Xj

i ) = 1, we obtain

E
[(
Lj(X

j)− Lj(Xj−)
)2]

=
∑

I3j, |I|≤`

ψ(I)2
∑

Γ⊆I, |Γ|≥1

(σ2
+)Γ(σ2

−)I\Γ

=
∑

I3j, |I|≤`

ψ(I)2
(
1− (σ2

−)I
)
≤

∑
I3j, |I|≤`

ψ(I)2
(
1− (1− σ2

+)|I|
)
,

where

σ2
+ := max

i=1,...,N
σ2

+,i = max
i=1,...,N

E[(Xj+
i )2] ≤ 2 max

i=1,...,N
E[(Xj

i )2 1{|Xj
i |>M}

] ≤ 2m>M
2 ,

having used (4.16) and the definition of m>M
2 in (2.22) (recall (4.9)). Since 1− (1−p)n ≤ np,

we obtain
N∑
j=1

E
[(
Lj(X

j)− Lj(Xj−)
)2] ≤ 2m>M

2

N∑
j=1

( ∑
I3j, |I|≤`

|I|ψ(I)2

)

≤ 2m>M
2 `2

∑
|I|≤`

ψ(I)2 .

Tracing back through (4.7), (4.11), (4.12) and (4.14), we note that this gives the first term
in the right hand side of (2.24).

Step 6. We finally consider the contribution of the second term in (4.14). We apply the
hypercontractivity results in [MOO10]: by Propositions 3.16 and 3.12 therein, denoting by
‖Y ‖q := E[|Y |q]1/q the usual Lq norm, for every q > 2 we have

‖Lj(Xj−)‖q ≤ (Bq)
` ‖Lj(Xj−)‖2 , (4.17)

where

Bq := 2
√
q − 1 max

i∈[N ]

‖Xj−
i ‖q

‖Xj−
i ‖2

.

Let us set Y := Xj
i for short and choose q = 3. Since |Y −| ≤M , by (4.16), we have

‖Y −‖3 ≤ E[|Y |31{|Y |≤M}]1/3 ≤
(
m≤M3

)1/3
,
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where we recall (4.9) and the definition of m≤M3 from (2.22). On the other hand, again by
(4.16),

‖Y −‖22 = ‖Y ‖22 − ‖Y +‖22 = E[Y 2]− E[(Y +)2] ≥ E[Y 2]− 2E[Y 21{|Y |>M}]

= 1− 2E[(Xj
i )21{|Xj

i |>M}
] ≥ 1− 2m>M

2 ,

hence

B3 ≤ 2
√

2

(
m≤M3

)1/3√
1− 2m>M

2

≤ 4
(
m≤M3

)1/3
,

provided m(2)
>M ≤

1
4 , as in the assumptions of Theorem 2.6. Therefore, (4.17) for q = 3 yields

E
[
|Lj(Xj−)|3

]
≤ 64`

(
m≤M3

)`
E
[
Lj(X

j−)2
]3/2

.

Note that, since E[(Xj−
i )2] ≤ E[(Xj

i )2] = 1, we have

E
[
Lj(X

j−)2
]

=
∑

I3j, |I|≤`

ψ(I)2
∏
i∈I

E[(Xj−
i )2] ≤

∑
I3j, |I|≤`

ψ(I)2 = Infj [Ψ
≤`] .

Therefore
N∑
j=1

E
[
|Lj(Xj−)|3

]
≤ 64`

(
m≤M3

)` (
max
i∈[N ]

√
Infi[Ψ≤`]

) N∑
j=1

∑
I3j, |I|≤`

ψ(I)2

≤ ` 64`
(
m≤M3

)` (
max
i∈[N ]

√
Infi[Ψ≤`]

) ∑
|I|≤`

ψ(I)2 .

(4.18)

This gives the third term in the right hand side of (2.24) (because 8
3` 64` ≤ 70`+1), which

completes the proof. �

5. Proof of the convergence to Wiener chaos

In this section, we prove Theorems 2.3 and 2.5 on the convergence of polynomial chaos
expansions to Wiener chaos expansions.

Proof of Theorem 2.3. Let W (·) be the d-dimensional white noise used to define the
Wiener chaos expansion for Ψ0 in Theorem 2.3. Given the tessellation Cδ indexed by Tδ,
where each cell Cδ(x) has the same volume vδ, for each x ∈ Tδ, we define

ξδ,x := µδ(x) + v
−1/2
δ

∫
Cδ(x)

σδW (dy) = v
−1/2
δ

∫
Cδ(x)

(
σδW (dy) + µ̄δ(y)dy

)
, (5.1)

where we recall that µ̄δ := v
−1/2
δ µδ by (2.9). Note that ξδ := (ξδ,x)x∈T is a family of

independent Gaussian random variables with the same mean and variance as ζδ = (ζδ,x)x∈Tδ .
We recall that our goal is to show that Ψδ(ζδ)→ Ψ0 in distribution. The strategy is first

to focus on Ψδ(ξδ) instead of Ψδ(ζδ): we can write Ψδ(ξδ) as a Wiener chaos expansion with
respect to W (·), like Ψ0, and show that E[|Ψδ(ξδ) −Ψ0|2] → 0 as δ ↓ 0; then we use the
Lindeberg principle, Theorem 2.8, to replace Ψδ(ξδ) by Ψδ(ζδ).

Step 1. We first show that for each degree k ∈ N0,

lim
δ↓0

E[|Ψ(k)
δ (ξδ)−Ψ

(k)
0 |

2] = 0, (5.2)
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where Ψ
(k)
δ is a polynomial with kernel ψ(k)

δ (I) := ψδ(I)1{|I|=k}, and similarly, Ψ
(k)
0 is defined

as Ψ0 in (2.12), except the kernel ψ0 therein is replaced by ψ(k)
0 (I) := ψ0(I)1{|I|=k} (that

is, we take the k-th term in the sum). Recalling from (2.10) that ψ̄δ(I) := v
−|I|/2
δ ψδ(I), and

extending ψ̄δ to a function defined on Rk, as discussed before Theorem 2.3, we can write

Ψ
(k)
δ (ξδ) =

∑
I∈Pfin(Tδ),|I|=k

ψδ(I)ξIδ =
1

k!

∫
· · ·
∫

(Rd)k
ψ̄δ(y1, . . . , yk)

k∏
i=1

(
σδW (dyi) + µ̄δ(yi)dyi

)
=

1

k!

∑
I⊂[k]:={1,...,k}

∫
(Rd)k−|I|

(∫
(Rd)|I|

σ
k−|I|
δ ψ̄δ(y1, . . . , yk)

∏
i∈I

µ̄δ(yi)dyi
) ∏
j∈[k]\I

W (dyj).

A similar expansion holds for Ψ
(k)
0 with ψ̄δ, µ̄δ, σδ replaced respectively by ψ0, µ0, σ0.

Comparing the two expansions term by term for each I ⊂ [k], we then obtain, by the triangle
inequality and the Ito isometry (2.2),

E[|Ψ(k)
δ (ξδ)−Ψ

(k)
0 |

2]
1
2 (5.3)

≤ 1

k!

∑
I⊂[k]

(∫
(Rd)k−|I|

{∫
(Rd)|I|

(
σ
k−|I|
δ ψ̄δ

∏
i∈I

µ̄δ(yi)− σ
k−|I|
0 ψ0

∏
i∈I
µ0(yi)

)∏
i∈I

dyi

}2 ∏
j∈[k]\I

dyj

) 1
2

.

To see that each term above tends to 0 as δ ↓ 0, let us assume w.l.o.g. that either I = ∅ or
I = [n] for some 1 ≤ n ≤ k. We then write in a telescopic sum

σk−nδ ψ̄δ

n∏
i=1

µ̄δ(yi)− σk−n0 ψ0

n∏
i=1

µ0(yi)

= ∆0

n∏
i=1

µ̄δ(yi) + σk−n0 ψ0∆1

n∏
i=2

µ̄δ(yi) + · · ·+ σk−n0 ψ0

n−1∏
i=1

µ0(yi)∆n,

(5.4)

where ∆0 := σk−nδ ψ̄δ−σk−n0 ψ0 and ∆i := µ̄δ(yi)−µ0(yi) for i = 1, . . . , n. The contribution
of each term from (5.4) to the integrals in (5.3) can be bounded by applying Cauchy-Schwarz
to the inner integral, in such a way that the ψ term is separated from the product of the µ’s.
It is then easily seen that all terms tend to 0 as δ ↓ 0 by the assumptions in Theorem 2.3
that µ̄δ → µ0 and ψ̄δ → ψ0 in L2, together with σδ → σ0 ∈ (0,∞). This implies (5.2).

Step 2. We next give a uniform L2 bound on the tail of the series for Ψδ(ζδ) and Ψ0. More
precisely, for any ` < N , let Ψ

(`,N)
δ :=

∑
`<k<N Ψ

(k)
δ and Ψ

(`,N)
0 :=

∑
`<k<N Ψ

(k)
0 . Denote

Ψ>`
δ and Ψ>`

0 for the case N =∞. We will show that

lim
`→∞

lim sup
δ↓0

E[|Ψ>`
δ (ζδ)|2] = 0, and Ψ0 =

∞∑
k=0

Ψ
(k)
0 converges in L2. (5.5)

Together with (5.2) and the fact that E[Ψ
(`,N)
δ (ξδ)

2] = E[Ψ
(`,N)
δ (ζδ)

2] for all 0 ≤ ` < N ≤ ∞,
it follows that

E[Ψδ(ζδ)
2] = E[Ψδ(ξδ)

2]→ E[Ψ2
0] as δ ↓ 0,

which is one of the claims in Theorem 2.3.
If we denote ξδ,x = µδ(x) + ξ̃δ,x and let Ψ̃

(`,N)
δ (x) := Ψ

(`,N)
δ (x + µδ), then for ε > 0 as

specified in Theorem 2.3 (iii) we can apply Lemma 4.1 (actually a modification of it, where
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we take into account that the random variables do not have normalized variance) to obtain

E[|Ψ(`,N)
δ (ξδ)|2] = E[|Ψ̃(`,N)

δ (ξ̃δ)|2] ≤ e
1

εσ2
δ

∑
x∈Tδ

µδ(x)2 ∑
I∈Pfin(Tδ)
`<|I|<N

(1 + ε)|I|(σ2
δ )
|I| ψδ(I)2. (5.6)

Similar relation as (5.6) holds for ζδ replacing ξδ. Since
∑

x∈Tδ µδ(x)2 = ‖µ̄δ‖2L2(Rd)
(recall

the extension of f : Tδ → R to f : Rd → R as specified before Theorem 2.3), the assumptions
in Theorem 2.3 (i) and (iii) immediately imply the first limit in (5.5) if we let N ↑ ∞ in
(5.6). It also shows that Ψδ(ξδ) =

∑∞
k=0 Ψ

(k)
δ (ξδ), as well as Ψδ(ζδ), are L2 convergent series.

By (5.2), we can take the limit δ ↓ 0 in (5.6) to obtain

E[|Ψ(`,N)
0 |2] = lim

δ↓0
E[|Ψ(`,N)

δ (ξδ)|2] ≤ e
1

εσ2
0
‖µ0‖2L2(Rd) lim sup

δ↓0

∑
I∈Pfin(Tδ)
|I|>`

(1 + ε)|I|(σ2
δ )
|I| ψδ(I)2.

By assumptions (i) and (iii) of Theorem 2.3, this implies that Ψ0 =
∑∞

k=0 Ψ
(k)
0 is an L2

convergent series, proving the second relation in (5.5).
We also observe that if µδ(x) ≡ 0 there is no need to apply Lemma 4.1: relation (5.6)

holds without the exponential pre-factor and with ε = 0, because ξδ(x), x ∈ Tδ are random
variables with zero mean and finite variance σδ (cf. Remark 5.5).

Step 3. We now use the Lindeberg principle, Theorem 2.8, to show that for each ` ∈ N0,
Ψ≤`δ (ζδ) :=

∑`
k=0 Ψ

(k)
δ (ζδ) has the same limiting distribution as Ψ≤`δ (ξδ) as δ ↓ 0. Together

with the L2 convergence of Ψ≤`δ (ξδ) to Ψ≤`0 :=
∑`

k=0 Ψ
(k)
0 proved in Step 1, cf. (5.2), as well

as the uniform L2 bound on Ψ>`
δ (ζδ) and Ψ>`

0 shown in Step 2, cf. (5.5), this implies that
Ψδ(ζδ) converges in distribution to Ψ0 as δ ↓ 0.

It suffices to show that for all f ∈ C 3 with Cf := max{‖f ′‖∞, ‖f ′′‖∞, ‖f ′′′‖∞} <∞,

lim
δ↓0

∣∣E[f(Ψ≤`δ (ζδ))− f(Ψ≤`δ (ξδ))
]∣∣ = 0. (5.7)

With ε as specified in Theorem 2.3 (iii), we can apply Theorem 2.8 (actually a slight
modification of it, taking into account the non normalized variance σδ of the variables used
here): the absolute value in the left hand side of (5.7) is bounded by

e
2

εσ2
δ

‖µ̄δ‖2
L2(Rd) Cf ĈΨ

(ε),≤`
δ

(
16`2

m>M
2

σ2
δ

+ 70`+1

(
m≤M3

σ3
δ

)`
max
i∈Tδ

√
Înfi

[
Ψ

(ε),≤`
δ

])
, (5.8)

where

Ĉ
Ψ

(ε),≤`
δ

:=
∑
|I|≤`

(1 + ε)|I|(σ2
δ )
|I| ψδ(I)2 =

∑̀
k=0

(1 + ε)k
1

k!

∥∥σδ ψ̄δ∥∥2

L2((Rd)k)

Înfi
[
Ψ

(ε),≤`
δ

]
:=

∑
I:I3i,|I|≤`

(1 + ε)|I|(σ2
δ )
|I| ψδ(I)2 =

∑̀
k=1

(1 + ε)k

(k − 1)!
(σ2
δ )
k
∥∥ψ̄δ1{x1∈Cδ(i)}

∥∥2

L2((Rd)k)
,

and we recall that Cδ(i) ⊂ Rd is the cell indexed by i ∈ Tδ in the tessellation Cδ. We are left
with showing that (5.8) vanishes as δ ↓ 0. Note that

• Ĉ
Ψ

(ε),≤`
δ

is uniformly bounded by Theorem 2.3 (ii)-(iii);

• ‖µ̄δ‖2L2(Rd)
→ ‖µ0‖2L2(Rd)

and σδ → σ0 > 0 by Theorem 2.3 (i);
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• m≤M3 ≤ M3 and m>M
2 can be made arbitrarily small by choosing M large, by the

definition (2.22) (to be applied to the centered variables ζδ,x − E[ζδ,x]) and the fact
that ((ζδ,x − E[ζδ,x])2)δ∈(0,1), x∈Tδ are uniformly integrable by assumption.

It only remains to verify that Înfi
[
Ψ

(ε),≤`
δ

]
vanishes as δ ↓ 0, uniformly in i ∈ Tδ. Since

Înfi
[
Ψ

(ε),≤`
δ

]
≤ 2

∑̀
k=1

(1 + ε)k

(k − 1)!
(σ2
δ )
k
(∥∥ψ̄δ −ψ0

∥∥2

L2((Rd)k)
+ ‖ψ01{x1∈Cδ(i)}‖

2
L2((Rd)k)

)
,

one has
∥∥ψ̄δ − ψ0

∥∥2

L2((Rd)k)
→ 0 by Theorem 2.3 (ii), and ‖ψ01{x1∈C(i)}‖2L2((Rd)k)

→ 0

uniformly in i ∈ Tδ because Leb(Cδ(i)) = vδ ↓ 0 uniformly in i ∈ Tδ. This completes Step 3
and establishes the convergence of Ψδ(ζδ) to Ψ0 in distribution.

Step 4. Lastly, to show that the convergence of Ψδ(ζδ) to Ψ0 in distribution extends to the
joint distribution of a finite collection of polynomial chaos expansions (Ψi,δ(ζδ))1≤i≤M , we
note that by the Cramér-Wold device, it suffices to show the convergence of

∑M
i=1 ciΨi,δ(ζδ)

to
∑M

i=1 ciΨi,0 for any c1, . . . , cm ∈ R. This follows from what we have proved so far, since∑M
i=1 ciΨi,δ(x) is also a polynomial that satisfies all the required conditions. �

Proof of Theorem 2.5. Instead of performing an L2 estimate on the tail series Ψ>`
δ (ζδ)

as done in Step 2 in the proof of Theorem 2.3, we shall give an Lp estimate for any p ∈ (0, 2).
More precisely, we replace relation (5.5) by the following one: for any p ∈ (0, 2),

Ψ0 =

∞∑
k=0

Ψ
(k)
0 converges in Lp, and lim

`→∞
lim sup
δ↓0

E[|Ψ>`
δ (ζδ)|p] = 0, (5.9)

and we show that this holds under either condition (a) or (b) in Theorem 2.5. The rest of
the proof of Theorem 2.3 then carries over without change.

The key to proving (5.9) is a change of measure argument. For ` < N , let Ψ
(`,N)
0 and

Ψ
(`,N)
δ be defined as in Step 2 in the proof of Theorem 2.3. Note that Ψ

(`,N)
0 is a finite sum

of stochastic integrals with respect to the biased white noise σ0W (dx) + µ0(x)dx. By the
discussion in Subsection 2.3.1, cf. (2.15), the joint distribution of these stochastic integrals
is absolutely continuous with respect to the unbiased case µ0(x) ≡ 0, with Radon-Nikodym
derivative

f(W ) := exp
{ 1

σ0

∫
µ0(y)W (dy)− 1

2σ2
0

∫
µ2

0(y)dy
}
. (5.10)

Therefore, using Ψ
(`,N)
0,µ0≡0 to denote Ψ

(`,N)
0 with µ0(x) ≡ 0, for any p ∈ (0, 2) we have

E
[
|Ψ(`,N)

0 |p
]

= E
[
f(W )|Ψ(`,N)

0,µ0≡0|
p
]
≤ E

[
f(W )

2
2−p
] 2−p

2 E
[
|Ψ(`,N)

0,µ0≡0|
2
] p

2

= e
p

2(2−p)‖µ0/σ0‖2
L2(Rd)E

[
|Ψ(`,N)

0,µ0≡0|
2
] p

2 ,
(5.11)

by Hölder’s inequality. By Theorem 2.3, when µδ = µ0 ≡ 0 it is enough to assume that
condition (iii) therein holds with ε = 0 to guarantee that Ψ0,µ0≡0 =

∑∞
k=0 Ψ

(k)
0,µ0≡0 is an

L2 convergent series. Therefore Ψ0 =
∑∞

k=0 Ψ
(k)
0 is convergent in Lp, by (5.11).

To control E[|Ψ>`
δ (ζδ)|p] via a change of measure for ζδ is more subtle, since (ζδ,i)i∈Tδ are

not assumed to have finite exponential moments. We will instead perform an exponential
change of measure on a bounded subset of the support of ζδ,i. Since by assumption ‖µδ‖∞ → 0
and ((ζδ,i − µδ)2)i∈Tδ are uniformly integrable, also (ζ2

δ,i)i∈Tδ are uniformly integrable. We
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can then apply Lemma B.1 in Appendix B: there exist independent random variables ζ̃δ,i,
whose law is absolutely continuous with respect to the law of ζδ,i, with density fδ,i(x), which
satisfy (B.1)-(B.3). We can then write

E
[
|Ψ(`,N)

δ (ζδ)|p
]

= E
[ ∏
i∈Tδ

fδ,i(ζδ,i)
p
2 |Ψ(`,N)

δ (ζδ)|p
∏
i∈Tδ

fδ,i(ζδ,i)
− p

2

]
≤ E

[ ∏
i∈Tδ

fδ,i(ζδ,i)|Ψ
(`,N)
δ (ζδ)|2

] p
2
E
[ ∏
i∈Tδ

fδ,i(ζδ,i)
− p

2−p
] 2−p

2

= E
[
|Ψ(`,N)

δ (ζ̃δ)|2
] p

2
∏
i∈Tδ

E
[
fδ,i(ζδ,i)

− p
2−p
] 2−p

2 . (5.12)

Applying (B.1), we have∏
i∈Tδ

E
[
fδ,i(ζδ,i)

− p
2−p
] 2−p

2 ≤ eCp
2−p

2

∑
i∈Tδ

µδ(i)
2

= e
Cp

2−p
2
‖µ̄δ‖2

L2(Rd) ,

which is uniformly bounded for δ close to 0 (recall that µ̄δ → µ0 in L2). To bound the first
factor in (5.12), we use the fact that (ζ̃δ,i)i∈Tδ are independent with zero mean to obtain

E
[
|Ψ(`,N)

δ (ζ̃δ)|2
]

=
∑

`<|I|<N

(∏
i∈I

E[ζ̃2
δ,i]
)
ψδ(I)2 ≤

∑
`<|I|<N

e
C′

∑
i∈Tδ

µδ(i)
2

(σ2
δ )
|I|ψδ(I)2,

(5.13)
where in the inequality we applied (B.3), provided ζ satisfies condition (a) in Theorem 2.5.
Combined with the assumption in Theorem 2.5 that (2.11) holds with ε = 0, and tracing
back to (5.12), we then obtain the desired Lp bound on Ψ>`

δ (ζδ) in (5.9).
If we assume instead condition (b) in Theorem 2.5, then we can modify the calculation in

(5.13) by applying the bound E[ζ̃2
δ,i] ≤ σ2

δ (1 + Cµδ(i)), stated in (B.1), to obtain

E
[
|Ψ(`,N)

δ (ζ̃δ)|2
]
≤

∑
`<|I|<N

eC‖µδ‖∞|I|(σ2
δ )
|I|ψδ(I)2. (5.14)

Theorem 2.5 (b) and condition (2.11) with ε = 0 then give the desired bound in (5.9). �

6. Proof for disordered pinning model

In this section we prove Theorem 3.1. We recall that τ = (τk)k≥0 is an aperiodic renewal
process such that either E[τ1] <∞, or relation (3.2) holds for some α ∈ (1

2 , 1). Note that

u(n) := P(n ∈ τ) ∼


1

E[τ1]
if E[τ1] <∞

Cα
L(n)n1−α if 1

2 < α < 1 (where Cα := α sin(πα)
π ) ,

(6.1)

where the first asymptotic relation is the classical renewal theorem, while the second one
is due to Doney [D97, Thm. B] (see also [G07, §A.5]). We also recall that ω = (ωn)n∈N,
representing the disorder, is an i.i.d. sequence of random variables satisfying (3.1).

Proof of Theorem 3.1. It suffices to rewrite the partition function as a polynomial chaos
expansion and then to check that all the conditions of Theorem 2.3 are satisfied. We only
consider the conditioned partition function Zω,cNt,βN ,hN

, as the proof for the free one follows
the same lines. We also set t = 1, to lighten notation.
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Step 1. Consider for N ∈ N the lattice TN := 1
NN. Note that in Section 2 we used the

notation Tδ (where δ would equal 1
N ): here we prefer TN , as it indicates the size of the

polymer. Consequently, all the quantities in this section will be indexed by N instead of δ.
For each t ∈ TN we define the cell CN (t) := (t− 1

N , t], which has volume vN = 1
N .

Step 2. We now rewrite the conditioned partition function Zω,cN,β,h, cf. (3.4), as a polynomial
chaos expansion. This was already done in (1.5)-(1.7), in terms of the random variables
εi = eβωi−Λ(β)+h − 1. It is actually convenient to rescale the εi so that their variance is of
order one, in order to apply Theorem 2.3. Since Var(εi) ∼ β2 as β ↓ 0, recalling (3.7) we set

aN =


1√
N

if E[τ1] <∞

L(N)

Nα−1/2
if 1

2 < α < 1

, (6.2)

so that βN = β̂aN , and we define the random variables ζN = (ζN,t)t∈TN by

ζN,t :=
1

aN

(
eβNωNt−Λ(βN )+hN − 1

)
. (6.3)

In this way, arguing as in (1.5)-(1.7), we can write

Zω,cN,βN ,hN
= ΨN (ζN ) := 1 +

N∑
k=1

1

k!

∑
(t1,...,tk)∈(TN )k

ψcN
(
t1, . . . , tk

) k∏
i=1

ζN,ti , (6.4)

where the kernel ψcN (t1, . . . , tk) is a symmetric function, which vanishes when ti = tj for
some i 6= j or when some ti 6∈ (0, 1], and for 0 =: t0 < t1 < · · · < tk ≤ 1 is defined by

ψcN
(
t1, . . . , tk

)
:= akN P({Nt1, . . . , Ntk} ⊆ τ |N ∈ τ)

=
u(N(1− tk))

u(N)

k∏
i=1

aNu(N(ti − ti−1)) ,
(6.5)

recall (6.1). We extend ψcN (t1, . . . , tk) from (TN )k to Rk in the usual way, as a piecewise
constant function on products of cells. The same is done for (s, t) 7→ u(N(t− s)).

Step 3. We now verify that the conditions of Theorem 2.3 are satisfied. By our assumptions
(3.1) on the disorder, for every fixed N ∈ N the random variables (ζN,t)t∈TN are i.i.d. with
mean and variance given by

µN := E(ζN,t) =
1

σN

(
ehN − 1

)
∼ ĥ√

N
,

σ2
N := Var(ζN,t) =

1

a2
N

(
eΛ(2βN )−2Λ(βN ) − 1

)
e2hN ∼

β2
N

a2
N

−→ β̂2 , as N →∞ .

(6.6)

Since vN = 1
N , condition (i) of Theorem 2.3 is satisfied with σ0 = β̂ and µ0(t) = ĥ1(0,1](t).

(More precisely, redefining ζN,t as (ζN,t − E[ζN,t]) when t 6∈ (0, 1] —which is harmless, since
such values of t do not contribute to (6.4)— one has µN (t) = µN1(0,1](t)→ µ0(t) in L2(R).)

To prove that the random variables ((ζN,t − µN )2)N∈N,t∈TN are uniformly integrable, we
show that the moments E[(ζN,t − µN )4] are uniformly bounded. Since Λ(β) = O(β) as β ↓ 0,
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by (3.1), for every k ∈ N we can estimate

E
[(
eβω−Λ(β) − 1

)2k] ≤ 22ke−2kΛ(β)E
[(
eβω − 1

)2k]
+ 22k

(
1− e−Λ(β)

)2k (6.7)

= 22ke−2kΛ(β)E

[(∫ β

0
ωetωdt

)2k]
+ 22k

(
1− e−Λ(β)

)2k
≤ 22ke−2kΛ(β)β2k

∫ β

0
E[ω2ke2ktω]

dt
β

+ 22k
(
1− e−Λ(β)

)2k
= O(β2k) .

Recalling that βN = β̂aN and hN = o(1), we obtain the desired bound:

E
[
(ζN,t − µN )4

]
≤ e4hN

a4
N

O(β4
N ) = O(1) .

Let us check condition (ii) of Theorem 2.3. The renewal estimates in (6.1) imply that, for
fixed 0 < s < t,

lim
N→∞

√
N aN u

(
N(t− s)

)
=


1

E[τ1]
if E[τ1] <∞

Cα
(t− s)1−α if 1

2 < α < 1

. (6.8)

Recalling the definitions (6.5), (3.9) of the discrete and continuum kernels ψcN , ψct (for t = 1),
as well as the fact that vN = 1

N , it follows that for every fixed k ∈ N the convergence

v
−k/2
N ψcN (t1, . . . , tk) −−−−→

N→∞
ψc1(t1, . . . , tk) (6.9)

holds pointwise, for distinct points t1, . . . , tk. To obtain the required L2 convergence, it
suffices to exhibit an L2 domination. The case E[τ1] < ∞ is easy: by (6.1) there exists
A ∈ (0,∞) such that 1

A ≤ u(n) ≤ A for every n ∈ N, and since v−1/2
N aN = 1 it follows that

v
−k/2
N ψcN (t1, . . . , tk) ≤ Ak+2 1(0,1]k(t1, . . . , tk) . (6.10)

We now focus on the case 1
2 < α < 1. By Karamata’s representation theorem for slowly

varying functions [BGT87, Theorem 1.3.1], we can write L(n) = c(n) exp(
∫ n

1
ε(u)
u du) for

some functions c(x)→ c > 0 and ε(x)→ 0 as x→∞. It follows that for any η > 0 there
exits a constant A′ = A′η ∈ (0,∞) such that

1

A′

(
n

m

)−η
≤ L(n)

L(m)
≤ A′

(
n

m

)η
, ∀n,m ∈ N with m ≤ n .

Recalling (6.1) and (6.2), for possibly a larger constant A ∈ (0,∞) we have

Cα
A (t− s)1−α−η ≤

√
N aN u

(
N(t− s)

)
≤ ACα

(t− s)1−α+η
, (6.11)

which plugged into (6.5) yields that for 0 < t1 < . . . < tk ≤ 1

v
−k/2
N ψcN (t1, . . . , tk) ≤

Ak+2Ckα

t1−α
′

1 · · · (tk − tk−1)1−α′(1− tk)1−α′
, (6.12)

where we set α′ := α − η for short. If we choose η > 0 sufficiently small, so that α′ > 1
2

(recall that α > 1
2), we have obtained the required L2 domination.
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We finally check condition (iii) of Theorem 2.3, that is relation (2.11). Since σ2
N is bounded,

cf. (6.6), we let B ∈ (0,∞) denote a constant such that (1 + ε)σ2
N ≤ B, so that∑

I⊆TN , |I|>`

(1 + ε)|I|(σ2
N )|I| ψcN (I)2 ≤

∑
k>`

Bk
∑

(t1,...,tk)∈(TN )k

0<t1<···<tk≤1

ψcN (t1, . . . , tk)
2 . (6.13)

If E[τ1] <∞, applying (6.10) and recalling that vN = 1
N , this expression is bounded by∑

k>`

Bk A2(k+2) (vN )k
Nk

k!
=
∑
k>`

A2(k+2)Bk

k!
,

which is arbitrarily small for ` large, proving (2.11). If α ∈ (1
2 , 1) we apply (6.12): setting

χ := 2(1− α′) < 1 for short and bounding the sums by integrals, we estimate (6.13) by∑
k>`

BkA2(k+2)C2k
α

∫
· · ·
∫

0<t1<···<tk<1

dt1 · · · dtk
tχ1 · · · (tk − tk−1)χ(1− tk)χ

≤
∑
k>`

BkA2(k+2)C2k
α c1 e

−c2k log k ,

where for the last inequality we have applied Lemma B.3 below (we recall that χ < 1).
Again, the sum can be made arbitrarily small by choosing ` large, proving (2.11).

Step 4. Lastly, we prove formula (3.11), when E[τ1] <∞. Since ψct(t1, . . . , tk) = ( 1
E[τ1])

k in

this case, formula (3.8) for ĥ = 0 yields

ZW,c

t,β̂,0
= 1 +

∞∑
k=1

1

k!

(
β̂k

E[τ1]

)k ∫
· · ·
∫

[0,t]k

W (dt1) · · ·W (dtk) = e
β̂

E[τ1]
W ([0,t])− 1

2

(
β̂

E[τ1]

)2
t
, (6.14)

where the second equality follows by [J97, Theorem 3.33 and Example 7.12]. This shows
that (3.11) holds for ĥ = 0, because W ([0, t]) ∼ N (0, t). In the general case, we introduce
the tilted law P̃ defined by dP̃/dP = exp{( ĥ

β̂
)W ([0, t])− 1

2( ĥ
β̂

)2t} and note that ZW,c

t,β̂,ĥ
under

P has the same law as ZW,c

t,β̂,0
under P̃, cf. (2.15) and (2.16). Since W ([0, t]) ∼ N ( ĥ

β̂
t, t) under

P̃, formula (3.11) is proved also when ĥ 6= 0. �

7. Proof for directed polymer model

In this section we prove Theorem 3.8. We recall that S = (Sn)n≥0 is a random walk on
Z satisfying Assumption 3.7. We denote by p ∈ N the period of the random walk, so that
P(S1 ∈ pZ + r) = 1 for some r ∈ {0, . . . , p− 1}. Introducing the lattice

T := {(n, k) ∈ Z2 : k ∈ pZ + rn}, (7.1)

we have P(S = (Sn)n≥0 ∈ T) = 1. Defining

qn(k) := P(Sn = k) , ∀n ≥ 0, k ∈ Z , (7.2)

Gnedenko’s local limit theorem [BGT87, Theorem 8.4.1] yields

sup
k∈Z: (n,k)∈T

∣∣n1/αqn
(
k
)
− p g

(
k/n1/α

)∣∣ −−−→
n→∞

0 , (7.3)

where g(·) denotes the density of the stable law to which S is attracted. We also recall that
ω = (ω(n, k))n∈N, k∈Z is an i.i.d. sequence of random variables satisfying (3.1).
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Proof of Theorem 3.8. As in the proof of Theorem 3.1, the strategy is to rewrite the
partition function as a polynomial chaos expansion and then to apply Theorem 2.3. We
focus on the conditioned point-to-point partition function Zω,cNt,βN

(N1/αx), as the free one
follows the same lines. For notational simplicity, we set t = 1.

Step 1. We introduce for N ∈ N the rescaled lattice

TN := {(N−1n,N−1/αk) : (n, k) ∈ T} ⊆ R2 ,

cf. (7.1). Note that we use N instead of δ := 1
N as a subscript, as it indicates the “length” of

the polymer. For each (t, x) ∈ TN , we define the cell CN ((t, x)) := (t− 1
N , t]× (x− p

N1/α , x],
which has volume vN = pN−(1+1/α).

Step 2. We rewrite the conditioned partition function Zω,cN,βN
(N1/αx), defined in (3.21), as

a polynomial chaos expansion, using the random variables ζN = (ζN (s, y))(s,y)∈TN given by

ζN (s, y) := N
α−1
2α

(
eβNω(Ns,N1/αy)−Λ(βN ) − 1

)
, (7.4)

where the prefactor has been chosen so that Var(ζN (s, y)) = O(1), see below. Arguing as in
(1.5)-(1.7), we can write

Zω,cN,βN
(N1/αx) = ΨN (ζN ) := 1 +

N∑
k=1

1

k!

∑
(z1,...,zk)∈(TN )k

ψcN,(1,x)(z1, . . . , zk)
k∏
i=1

ζN (zi) ,

where ψcN,(1,x) is a symmetric function of (z1, . . . , zk) ∈ (TN )k, which vanishes when zi = zj
for some i 6= j or when some zi 6∈ (0, 1]× R, and for distinct z1 = (t1, x1), . . . , zk = (tk, xk),
say with 0 < t1 < · · · < tk ≤ 1, is defined by (recall (7.2))

ψcN,(1,x)

(
(t1, x1), . . . , (tk, xk)

)
:=

P
(
SNt1 = N1/αx1, . . . , SNtk = N1/αxk

∣∣SN = x
)

(N
α−1
2α )k

=
qN(1−tk)

(
N1/α(x− xk)

)
qN
(
N1/αx

) k∏
i=1

(
N−

α−1
2α qN(ti−ti−1)

(
N1/α(xi − xi−1)

))
,

(7.5)

where (t0, x0) := (0, 0). The kernel ψcN,(1,x)(z1, . . . , zk) is extended from (TN )k to (R2)k in
the usual way, as a piecewise constant function which is constant on every product of cells.
The same extension is done for the function ((s, x), (t, y)) 7→ qN(t−s)(N

1/α(y − x)).

Step 3. We now check the assumptions of Theorem 2.3. Recalling (3.1) and the fact that
βN = β̂N−

α−1
2α , cf. Theorem 3.8, for every fixed N ∈ N the random variables (ζN (z))z∈TN

are i.i.d. with zero mean µN (z) ≡ 0 and variance given by

σ2
N = Var(ζN (z)) = N

α−1
α eΛ(2βN )−2Λ(βN ) ∼ N

α−1
α β2

N −−−−→
N→∞

β̂2 . (7.6)

Condition (i) of Theorem 2.3 is thus satisfied with µ0(z) ≡ 0 and σ0 = β̂. The uniform
integrability of (ζN (z)2)N∈N,z∈TN is easily checked as for the pinning model, cf. (6.7).

Let us check condition (ii). Recalling the definition (3.24) of the function gt(·), we observe
that by (7.3), for fixed 0 < s < t and x, y ∈ R,

lim
N→∞

N1/α qN(t−s)
(
N1/α(y − x)

)
= p gt−s(y − x) .
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Recalling the definition (3.26) of the continuum kernel ψct,x (for t = 1), since vN = pN−1−1/α,
it follows by (7.5) that for every k ∈ N one has the pointwise convergence

lim
N→∞

v
−k/2
N ψcN,(1,x)

(
(t1, x1), . . . , (tk, xk)

)
= ψc1,x

(
(t1, x1), . . . , (tk, xk)

)
. (7.7)

We need to show that this convergence also holds in L2. Since the density g(·) is bounded,
relation (7.3) yields that for some constant A ∈ (0,∞)

qn(k) ≤ An−1/α , ∀n ∈ N0, k ∈ Z . (7.8)

For fixed x ∈ R, one has qN (N1/αx) ≥ p
2g(x)/N1/α for large N , again by (7.3), hence the

prefactor in (7.5) is upper bounded as

qN(1−tk)

(
N1/α(x− xk)

)
qN
(
N1/αx

) ≤ Cx

(1− tk)1/α
, where Cx :=

2A

(pg(x))
.

Applying (7.8) to each term in the product in (7.5) and recalling that vN = pN−1−1/α, for
0 < t1 < . . . < tk ≤ 1 we get

[
v
−k/2
N ψcN,(1,x)

(
(t1, x1), . . . , (tk, xk)

)]2 ≤ Cx

(1− tk)1/α

qN(1−tk)

(
N1/α(x− xk)

)
qN
(
N1/αx

)
×

k∏
i=1

(
v
−1/2
N N−

α−1
2α
)2( A

N1/α(ti − ti−1)1/α

)
qN(ti−ti−1)

(
N1/α(xi − xi−1)

)
= C ′k,x

(
N1/α

)k P(SNt1 = N1/αx1, . . . , SNtk = N1/αxk
∣∣SN = N1/αx)

t
1/α
1 (t2 − t1)1/α · · · (tk − tk−1)1/α (1− tk)1/α

,

(7.9)

where we set C ′k,x := Akp−kCx. A further application of (7.8) also yields

[
v
−k/2
N ψcN,(1,x)

(
(t1, x1), . . . , (tk, xk)

)]2 ≤ Ak C ′k,x

t
2/α
1 (t2 − t1)2/α · · · (tk − tk−1)2/α (1− tk)2/α

.

(7.10)
We now decompose the domain {0 < t1 < . . . < tk < 1} × Rk as D1 ∪D2 ∪D3, where

D1 :=

k⋂
i=1

{ti − ti−1 > η, |xi| < M} ∩ {1− tk > η} ,

D2 :=

k⋃
i=1

{ti − ti−1 ≤ η} ∪ {1− tk ≤ η} , D3 :=

k⋃
i=1

{|xi| ≥M} ,

for fixed η,M ∈ (0,∞). Relation (7.10) shows that the rescaled kernel v−k/2N ψcN,(1,x)(·) is
uniformly bounded on the (bounded) set D1, hence the convergence (7.7) holds in L2 on D1.
If we show that the integrals of [v

−k/2
N ψcN,(1,x)(·)]

2 and of [ψc1,x(·)]2 over the sets D2 and D3

can be made arbitrarily small, for suitable η,M , we are done. Since ψ1,x ∈ L2([0, 1]k × Rk),
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by (3.24), there is nothing to prove for ψc1,x(·) and we may focus on ψcN,(1,x)(·). By (7.9)∫
D2

|v−k/2N ψcN,(1,x)(·)|
2 =

∑
(t1,x1),...,(tk,xk)∈(TN )k

(vN )k
[
v
−k/2
N ψcN,(1,x)

(
(t1, x1), . . . , (tk, xk)

)]2
≤ C ′k,x pk

1

Nk

∑
(t1,...,tk)∈ 1

N
N

0<t1<...<tk≤1
ti−ti−1≤η for some i

1

t
1/α
1 · · · (tk − tk−1)1/α (1− tk)1/α

,

(7.11)

≤ C ′k,x pk
∫
· · ·
∫

0<t1<···<tk<1
ti−ti−1≤η for some i

dt1 · · · dtk
t
1/α
1 · · · (tk − tk−1)1/α (1− tk)1/α

,

which vanishes as η ↓ 0 (recall that α > 1). Analogously, using again (7.9), we get∫
D3

|v−k/2N ψcN,(1,x)(·)|
2 ≤ C ′k,x pk

( ∫
· · ·
∫

0<t1<···<tk<1

dt1 · · · dtk
t
1/α
1 · · · (tk − tk−1)1/α (1− tk)1/α

)

× P
(

max
0≤n≤N

|Sn| ≥ N1/αM
∣∣SN = N1/αx

)
.

(7.12)

As N → ∞, the last probability converges to P(sup0≤t≤1 |Xt| ≥ M |X1 = x), where
X = (Xt)t≥0 is the stable Lévy process to which the random walk is attracted, cf. [Lig68],
hence it can be made as small as one wishes, uniformly in N ∈ N, by choosing M large.
This completes the verification of condition (ii) in Theorem 2.3.

Finally, we check condition (iii). Since σ2
N is bounded, cf. (7.6), we have (1 + ε)σ2

N ≤ B
for some B ∈ (0,∞) (we can even set ε = 0, because µN ≡ 0 in this case). Applying (7.11)
for η = 1, i.e. with no restriction on ti − ti−1 (equivalently, (7.12) with M = 0), we obtain∑

I⊂TN , |I|>`

(1 + ε)|I|(σ2
N )|I|ψcN,(1,x)(I)2 ≤

∑
k>`

Bk 1

k!

∑
(z1,...,zk)∈(TN )k

ψcN,(1,x)(z1, . . . , zk)
2

=
∑
k>`

Bk 1

k!
‖v−k/2N ψcN,(1,x)‖

2
L2((R2)k)

≤
∑
k>`

B̃k
x

∫
· · ·
∫

0<t1<···<tk<1

dt1 · · · dtk
t
1/α
1 · · · (tk − tk−1)1/α (1− tk)1/α

≤
∑
k>`

B̃k
x c1 e

−c2k log k ,

where, recalling that C ′k,x = Akp−kCx, we have set B̃x := BA
√
p max{1, Cx}2, which is a

finite constant for every fixed x ∈ R, and we have applied Lemma B.3 for the last inequality.
This shows that (2.11) holds, hence condition (iii) in Theorem 2.3 is verified. �

8. Proof for random field Ising model

In this section we prove Theorem 3.14 and Corollary 3.16. We recall that the disordered
partition function Z+,ωδ


δ,λδ,hδ
is defined as in (3.32), where 
δ := Ω ∩ (δZ)2 (with Ω ⊆ R2

being a fixed bounded, simply connected open set with piecewise smooth boundary) and
where:

• P+

δ

(with expectation E+

δ
) denotes the critical Ising model on Z2, defined as in (3.30);



POLYNOMIAL CHAOS AND SCALING LIMITS OF DISORDERED SYSTEMS 43

• ωδ = (ωδ,x)x∈
δ is an i.i.d. family of random variables satisfying (3.1);

• λδ = (λδ,x)x∈
δ , hδ = (hδ,x)x∈
δ are defined by

λδ,x := λ̂(x) δ
7
8 , hδ,x := ĥ(x) δ

15
8 , (8.1)

cf. (3.35), where λ̂ : Ω→ (0,∞) and ĥ : Ω→ R are fixed continuous functions.

The heart of our proof are pointwise and L2 estimates for the critical Ising correlation
functions, in particular near the diagonals (see Lemmas 8.1–8.3 below). Complementary L1

estimates have been recently established in [CGN12, Prop.3.9].

Proof of Theorem 3.14. We are going to apply Theorem 2.3, with vδ = δ2, rewriting the
partition function in terms of a polynomial chaos expansion.

Step 1. By relation (3.32), we can write

Z+,ωδ

δ,λδ,hδ

= E+

δ

[ ∏
x∈
δ

(
cosh(ξδ,x) + σx sinh(ξδ,x)

)]
,

where ξδ,x := λδ,xωδ,x + hδ,x .

(8.2)

Recalling the notation αI :=
∏
x∈I αx, a binomial expansion of the product yields

e
− 1

2
‖λ̂‖2

L2(Ω)
δ−

1
4

Z+,ωδ

δ,λδ,hδ

= e
− 1

2
‖λ̂‖2

L2(Ω)
δ−

1
4 ∑
I⊆
δ

cosh(ξδ,·)

δ\I E+


δ
[σI· ] sinh(ξδ,·)

I

= e
− 1

2
‖λ̂‖2

L2(Ω)
δ−

1
4

cosh(ξδ,·)

δ
∑
I⊆
δ

E+

δ

[σI· ] tanh(ξδ,·)
I . (8.3)

We first show that the pre-factor before the sum converges to 1 in probability as δ ↓ 0.
Recalling the definition (8.2) of ξδ,x and the fact that ωδ,x have zero mean, unit variance

and locally finite exponential moments, cf. (3.1), a Taylor expansion yields

E[log cosh(ξδ,x)] =
λ2
δ,x

2
+O(h2

δ,x + λ4
δ,x) =

λ̂(x)2

2
δ

7
4 +O(δ

7
2 ), (8.4)

where the term O(δ
7
2 ) is uniform over x ∈ 
δ, by the continuity of λ̂, ĥ. Therefore, as δ ↓ 0,∑

x∈
δ

E[log cosh(ξδ,x)] =
1

2
‖λ̂‖2L2(Ω) δ

− 1
4 + o(1) , (8.5)

and the pre-factor in (8.3) can be rewritten as

exp

{ ∑
x∈
δ

(
log cosh(ξδ,x)− E[log cosh(ξδ,x)]

)}(
1 + o(1)

)
.

The sum is over |
δ| = O(δ−2) i.i.d. centered random variables, hence it converges to zero
in probability provided Var[log cosh(ξδ,x)] = o(δ2). This is checked by a Taylor expansion:

Var[log cosh(ξδ,x)] ≤ E[(log cosh(ξδ,x))2] = O(λ4
δ,x) = O(δ

7
2 ) = o(δ2) .

Step 2. It remains to verify that the sum in (8.3) converges to the desired Wiener chaos
expansion, namely (3.37). Defining the family ζδ = (ζδ,x)x∈
δ by

ζδ,x :=
tanh(ξδ,x)

Var(tanh(ξδ,x))1/2
,



44 F.CARAVENNA, R.SUN, AND N.ZYGOURAS

the sum in (8.3) can be written as a polynomial chaos expansion Ψδ(ζδ) :=
∑

I⊆
δ ψδ(I) ζIδ,·,
where

ψδ(I) := Var(tanh(ξδ,·))
|I|
2 E+


δ
[σI ] , I ⊆ 
δ . (8.6)

We are thus left with checking that the conditions in Theorem 2.3 are satisfied.
By a Taylor expansion, as δ ↓ 0 one has

E[tanh(ξδ,x)] = hδ,x +O(h3
δ,x + λ3

δ,x) = ĥ(x) δ
15
8 +O(δ

21
8 ) ,

E[tanh(ξδ,x)2] = λ2
δ,x +O(h2

δ,x + λ4
δ,x) = λ̂(x)2 δ

7
4 +O(δ

7
2 ) ,

(8.7)

where the O(·) terms are uniform in x, by the continuity of λ̂, ĥ. Therefore, uniformly in x,

µδ(x) := E[ζδ,x] =
ĥ(x)

λ̂(x)
δ + o(δ) , σ2

δ := Var[ζδ,x] = 1 .

Recalling that vδ = δ2 and λ̂ : Ω→ (0,∞) is continuous (hence uniformly bounded away
from zero), condition (i) of Theorem 2.3 is satisfied, with σ0 = 1 and µ0(x) := ĥ(x)/λ̂(x).

The uniform integrability of ((ζδ,x − µδ(x))2)δ∈(0,1),x∈
δ holds because the moments
E[(ζδ,x − µδ(x))4] are uniformly bounded, as for the disordered pinning model, cf. (6.7).

Step 3. It remains to check conditions (ii) and (iii) of Theorem 2.3. By (8.7)

Var[tanh(ξδ,x)] = λ̂(x)2 δ
7
4 +O(δ

7
2 ) ,

hence for fixed I = {x1, . . . , xn} ⊆ Ω, by (8.6),

ψδ(I) = λ̂(·)|I| δ
7
8
|I| E+


δ
[σI· ] = λ̂(x1) · · · λ̂(xn) δ

7
8
n E+


δ
[σx1 · · ·σxn ] .

Recalling that vδ = δ2, relation (3.33), that was recently proved by Chelkak, Hongler and
Izyurov [CHI12], yields immediately that for every n ∈ N and distinct x1, . . . , xn ∈ Ω

lim
δ↓0

v
−n

2
δ ψδ({x1, . . . , xn}) = λ̂(x1) · · · λ̂(xn) Cnφ+

Ω(x1, . . . , xn) =: ψ0({x1, . . . , xn}) . (8.8)

(Incidentally, since σ0 = 1 and µ0(x) := ĥ(x)/λ̂(x), the Wiener chaos expansion of Theo-
rem 2.3, cf. (2.12), matches with the one of Theorem 3.14, cf. (3.37).)

To extend the pointwise convergence (8.8) to L2 convergence, we need uniform bounds
on ψδ(I). By Lemma 8.1 below, we have the following bound uniformly in δ ∈ (0, 1):

v
− |I|

2
δ ψδ(I) ≤ (C‖λ̂‖∞)|I|

|I|∏
i=1

1

d(xi, ∂Ω ∪ I\{xi})
1
8

=: (C‖λ̂‖∞)|I|fΩ(x1, . . . , x|I|), (8.9)

where by Lemma 8.3 below, given |I| = n for any n ∈ N,
1

n!
‖fΩ‖2L2(Ωn) ≤ C

n(n!)−
3
4 . (8.10)

Combined with (8.8), it follows that conditions (ii) and (iii) of Theorem 2.3 are satisfied
and this completes the proof of Theorem 3.14. �

We next state and prove the lemmas needed to establish (8.9) and (8.10).

Lemma 8.1. Let Ω, 
δ for δ > 0, and E+

δ

be as introduced at the beginning of this section.
Then there exists C = C(Ω) ∈ (0,∞) such that for any I = {x1, . . . , xn} ⊆ Ω with |I| = n

0 ≤ E+

δ

[σx1 · · ·σxn ] ≤ Cnδ
n
8

n∏
i=1

1

d(xi, ∂Ω ∪ I\{xi})
1
8

, (8.11)
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where for any x ∈ Ω we define σx := σxδ , with xδ being the point in 
δ closest to x, and we
set d(x,A) := infy∈A ‖x− y‖.

Proof. If B(x; r) denotes a ball of radius r centered at x, and B(x; r)δ := B(x; r) ∩ (δZ)2,
then (3.33) with Ω = B(0; 1), n = 1 and x1 = 0 implies that for some C ∈ (0,∞)

E+
B(0;1)δ

[σ0] ≤ Cδ
1
8 for all δ ∈ (0, 1). (8.12)

Then, for any x ∈ Ω, by imposing + boundary condition on the ball B(x; r) with radius
r := d(x, ∂Ω) and applying the FKG inequality [G06, Chapter 2], we obtain

E+

δ

[σx] ≤ E+
B(x;r)δ

[σx] = E+
B(0;r)δ

[σ0] = E+
B(0;1)δ/r

[σ0] ≤ C δ
1
8

r
1
8

=
C δ

1
8

d(x, ∂Ω)
1
8

, (8.13)

where in the last inequality we applied (8.12).
Relation (8.11) follows by applying (8.13) and Lemma 8.2 below, choosing 
i therein to

be Ωi ∩ (δZ)2, where Ωi is the ball centered at xi with radius 1
4d(xi, ∂Ω ∪ I\{xi}). �

Lemma 8.2. Let x1, . . . , xn ∈ 
 ⊆ Z2 and suppose that xi ∈ 
i ⊆ 
, with 
i∩(
j∪∂
j) = ∅
for all i 6= j. Then

0 ≤ E+

 [σx1 · · ·σxn ] ≤

n∏
i=1

E+

i

[σi]. (8.14)

Proof. Relation (8.14) is a consequence of the Griffiths-Kelly-Sherman (GKS) inequalities
(see e.g. [E06, Chapter V.3]). We recall that P+


 denotes the Ising measure on {±1}Ω with
inverse temperature β ∈ (0,∞) and zero external field, cf. (3.30). (The fact that β = βc is
immaterial for this proof, and we could even include a positive external field in P+


 .) Given
h = (hx)x∈
, let Pfree


,h denote the Ising measure with external (site-dependent) field h, i.e.

Pfree

,h(σ) =

1

Z free

,β,h

exp
{ ∑
x∼y∈


βσxσy +
∑
x∈


hxσx

}
.

Since P+

 = Pfree


,h+ with the choice h+
x := β|{y ∈ ∂Λ : y ∼ x}|, we may focus on Pfree


,h .
Let I := {x1, . . . , xn} and σI := σx1 · · ·σxn . If h ≥ 0 (that is, hx ≥ 0 for all x ∈ 
),

Efree

,h [σI ] ≥ 0,

by the first GKS inequality, proving the first bound in (8.14). Always for h ≥ 0,

∂Efree

,h [σI ]

∂hy
= Efree


,h [σIσy]− Efree

,h [σI ]E

free

,h [σy] ≥ 0, ∀y ∈ 
,

by the second GKS inequality. Therefore Efree

,h [σI ] is increasing in hy for every y ∈ 
. Starting

with h = h+ and increasing hy to +∞ for each y ∈ ∪ni=1∂
i, the resulting Ising measure
is equivalent to imposing + boundary condition on ∪ni=1∂
i. Under this limiting measure,
the distribution of the spin configurations on the disjoint subdomains (
i)1≤i≤n factorizes,
leading to the second bound in (8.14). �

Lemma 8.3. For any n ∈ N and distinct x1, . . . , xn ∈ Ω , set I := {x1, . . . , xn} and define

fΩ(x1, . . . , xn) :=

n∏
i=1

1

d(xi, ∂Ω ∪ I\{xi})
1
8

. (8.15)
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Then there exists C = C(Ω) <∞, such that for all n ∈ N,

‖fΩ‖2L2(Ωn) ≤ C
n(n!)

1
4 . (8.16)

Proof. To prove (8.16), it suffices to show that for all n ∈ N

‖fΩ‖2L2(Ωn) ≤ C n
1
4 ‖fΩ‖2L2(Ωn−1), (8.17)

where ‖fΩ‖2L2(Ω0) := 1.
Note that in

‖fΩ‖2L2(Ωn) =

∫
· · ·
∫

Ωn

n∏
i=1

1

d(xi, ∂Ω ∪ I\{xi})
1
4

dx1 · · · dxn, (8.18)

we can divide the domain of integration Ω for xn into disjoint open sets Ω0, . . . ,Ωn−1 (modulo
a set of measure 0), such that

xn ∈ Ω0 if and only if d(xn, ∂Ω ∪ I\{xn}) = d(xn, ∂Ω),

xn ∈ Ωi if and only if d(xn, ∂Ω ∪ I\{xn}) = d(xn, xi), 1 ≤ i ≤ n− 1.
(8.19)

We next bound fΩ(x1, . . . , xn) in terms of fΩ(x1, . . . , xn−1). First consider the case
xn ∈ Ω0. For each 1 ≤ i ≤ n− 1, either

d(xi, ∂Ω ∪ I\{xi}) = d(xi, ∂Ω ∪ I ′\{xi}), (8.20)

where I ′ := {x1, . . . , xn−1}, or
d(xi, ∂Ω ∪ I\{xi}) = d(xi, xn). (8.21)

In the later case, by the triangle inequality and the assumption xn ∈ Ω0, we find that

d(xi, ∂Ω) ≤ d(xi, xn) + d(xn, ∂Ω) ≤ 2d(xi, xn), (8.22)

and hence
1

d(xi, ∂Ω ∪ I\{xi})
=

1

d(xi, xn)
≤ 2

d(xi, ∂Ω)
≤ 2

d(xi, ∂Ω ∪ I ′\{xi})
. (8.23)

If N0 denotes the number of points among {x1, . . . , xn−1} such that (8.21) holds, then

f2
Ω(x1, . . . , xn) ≤ 2

N0
4 f2

Ω(x1, . . . , xn−1)
1

d(xn, ∂Ω)
1
4

. (8.24)

We claim that N0 ≤ 6, which would then imply∫
· · ·
∫

Ωn−1×Ω0

f2
Ω(x1, . . . , xn)dx1 · · · dxn ≤ 2

3
2 ‖fΩ‖2L2(Ωn−1)

∫
Ω

dxn

d(xn, ∂Ω)
1
4

, (8.25)

where the last integral is bounded by some constant C3(Ω) <∞, because Ω is assumed to
be a bounded simply connected domain with a piecewise smooth boundary.

To verify the claim that N0 ≤ 6, assume without loss of generality that x1, . . . , xk are
the points which satisfy (8.21). In particular, d(xi, xn) ≤ d(xi, xj) for all 1 ≤ i 6= j ≤ k. We
may shift the origin to xn and assume without loss of generality that xi ∈ R2 has polar
coordinates (ri, ϑi), and the directional vectors eiϑ1 , . . . , eiϑk are ordered counter clockwise
on the unit circle. For any two adjacent eiϑj and eiϑj+1 on the unit circle, in order to satisfy

max{d(xj , 0), d(xj+1, 0)} ≤ d(xj , xj+1),

it is necessary that the angle between eiϑj and eiϑj+1 is at least π
3 . It then follows that there

can be at most 6 such points.
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We now consider the case xn ∈ Ωi for 1 ≤ i ≤ n − 1 (recall (8.19)). Without loss of
generality, assume that xn ∈ Ω1. By the same reasoning as above, for each 1 ≤ i ≤ n− 1,
either relation (8.20) or relation (8.21) holds; in the latter case we can replace (8.22) by

d(xi, x1) ≤ d(xi, xn) + d(xn, x1) ≤ 2d(xi, xn) ,

because xn ∈ Ω1. Thus for i ≥ 2 relation (8.23) still holds if we replace d(xi, ∂Ω) by d(xi, x1)
therein. The case i = 1 needs to be dealt with separately: for this we simply bound

1

d(x1, ∂Ω ∪ I\{x1})
1
4

≤ 1

d(x1, ∂Ω ∪ I ′\{x1})
1
4

+
1

d(x1, xn)
1
4

=
1

d(x1, ∂Ω ∪ I ′\{x1})
1
4

(
1 +

d(x1, ∂Ω ∪ I ′\{x1})
1
4

d(x1, xn)
1
4

)
.

We thus obtain the following analogue of (8.24) (with N0 ≤ 6) when xn ∈ Ω1:

f2
Ω(x1, . . . , xn) ≤ 2

3
2 f2

Ω(x1, . . . , xn−1)

{(
1 +

d(x1, ∂Ω ∪ I ′\{x1})
1
4

d(x1, xn)
1
4

)
1

d(xn, x1)
1
4

}
.

Bounding the term in brackets by C4(Ω)/d(x1, xn)
1
2 , for some C4(Ω) <∞ (recall that Ω is

a bounded set), we obtain∫
· · ·
∫

Ωn−1×Ω1

f2
Ω(x1, . . . , xn)dx1 · · · dxn ≤ 2

3
2 C4(Ω)

∫
· · ·
∫

Ωn−1×Ω1

f2
Ω(x1, . . . , xn−1)

d(xn, x1)
1
2

dx1 · · · dxn

≤ C5(Ω) |Ω1|
3
4 ‖fΩ‖2L2(Ωn−1), (8.26)

for some C5(Ω) <∞, where we applied the Hardy-Littlewood rearrangement inequality (see
e.g. [LL01, Theorem 3.4]) to bound∫

Ω1

dxn

d(xn, x1)
1
2

≤
∫

Ω∗1

dxn

d(xn, 0)
1
2

=

∫ r∗

0

2πr

r
1
2

dr =
4

3
π

1
4 |Ω1|

3
4 ,

where Ω∗1 is the ball centered at the origin with the same area |Ω∗1| = πr2
∗ as Ω1.

Combining (8.25) and (8.26), and the analogue for xn ∈ Ωi with 2 ≤ i ≤ n− 1, we obtain

‖fΩ‖2L2(Ωn) ≤ C6(Ω)
(
1 + |Ω1|

3
4 + · · ·+ |Ωn−1|

3
4
)
‖fΩ‖2L2(Ωn−1)

≤ C6(Ω)
(

1 + (n− 1)
( |Ω1|+ · · · |Ωn−1|

n− 1

) 3
4
)
‖fΩ‖2L2(Ωn−1)

≤ C2(Ω)n
1
4 ‖fΩ‖2L2(Ωn−1), (8.27)

where we applied Jensen’s inequality to the function g(x) = x
3
4 . This establishes (8.17) and

concludes the proof of Theorem 3.14. �

Proof of Corollary 3.16. Let ϕ′(·) denote the complex derivative of the conformal map
ϕ : Ω̃→ Ω. Since |ϕ′(z)|2 equals the Jacobian determinant of ϕ, for all f, g ∈ L2(Ω) we have∫

Ω
f(x)g(x)dx =

∫
Ω̃
f(ϕ(z))g(ϕ(z))|ϕ′(z)|2dz , (8.28)

by the change of variables formula. As a consequence, if W (·) denotes white noise on R2,
the processes (

∫
Ω f(x)W (dx))f∈L2(Ω) and (

∫
Ω̃
f(ϕ(z))|ϕ′(z)|W (dz))f∈L2(Ω) have the same
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distribution: they are both centered Gaussian processes with the same covariance (8.28).
This extends to an equality in distribution for multiple integrals (recall Subsection 2.1):∫

· · ·
∫

Ωn
f(x1, . . . , xn)

n∏
i=1

W (dxi)
d
=

∫
· · ·
∫

Ω̃n
f(ϕ(z1), . . . , ϕ(zn))

n∏
i=1

[
|ϕ′(zi)|W (dzi)

]
,

jointly for n ∈ N and symmetric f ∈ L2(Ωn). Informally, we have W (dϕ(z))
d
= |ϕ′(z)|W (dz),

which is the stochastic analogue of dϕ(z) = |ϕ′(z)|2dz. Recalling (3.37), it follows that

Z+,W

Ω,λ̂,ĥ

d
= 1 +

∞∑
n=1

Cn

n!

∫
· · ·
∫

Ω̃n
φ+

Ω

(
ϕ(z1), . . . , ϕ(zn)

) n∏
i=1

[
λ̂
(
ϕ(zi)

)
|ϕ′(zi)|W (dzi)

+ ĥ
(
ϕ(zi)

)
|ϕ′(zi)|2 dzi

]
.

(8.29)

By [CHI12, Theorem 1.3], the function φ+
Ω is conformally covariant with

φ+
Ω

(
ϕ(z1), . . . , ϕ(zn)

)
= φ+

Ω̃
(z1, . . . , zn)

n∏
i=1

|ϕ′(zi)|−
1
8 , (8.30)

hence Z+,W

Ω,λ̂,ĥ

d
= Z+,W

Ω̃,λ̃,h̃
, with λ̃(z) := |ϕ′(z)|

7
8 λ̂(ϕ(z)) and h̃(z) := |ϕ′(z)|

15
8 ĥ(ϕ(z)). �

Appendix A. The Cameron-Martin shift

Recalling Subsection 2.1, let W = (W (f))f∈L2(Rd) be a white noise on Rd defined on the
probability space (ΩW ,A,P). We denote by L0 := L0(ΩW , σ(W ),P) the space of (equivalence
classes of) a.s. finite random variables that are measurable with respect to the σ-algebra
generated by W , equipped with the topology of convergence in probability. Note that all
the multi-dimensional stochastic integrals W⊗k(f) belong to L0.

Let us now fix ν ∈ L2(Rd), representing the bias. Given k ∈ N and a symmetric square-
integrable function f : (Rd)k → R, the “biased stochastic integral”

W⊗kν (f) =

∫
· · ·
∫

(Rd)k
f(x1, . . . , xk)

k∏
i=1

(
W (dxi) + ν(xi)dxi

)
(A.1)

was defined in Remark 2.4 by expanding the product and integrating out the deterministic
variables corresponding to ν(xi)dxi, thus reducing to a sum of lower-dimensional ordinary
(unbiased) stochastic integrals. In particular, for k = 1 we can write Wν(f) = W⊗1

ν (f) as

Wν(f) := W (f) +

∫
Rd
f(x)ν(x)dx = W (f) + E[W (f) ξ] , with ξ := W (ν) , (A.2)

by the Itô isometry (2.2).
Thus Wν(f) = %ξ(W (f)), where we define the map %ξ(X) := X + E[Xξ] for every one-

dimensional stochastic integral X. By [J97, Theorem 14.1], such a map admits a unique
extension %ξ : L0 → L0, called the Cameron-Martin shift, which is continuous, linear and
satisfies

%ξ(1) = 1 , %ξ(XY ) = %ξ(X)%ξ(Y ) ∀X,Y ∈ L0 . (A.3)
As a consequence, the multi-dimensional biased stochastic integrals (A.1) correspond to

W⊗kν (f) = %ξ(W
⊗k(f)) . (A.4)

This is easily checked for “special simple functions” f (recall Subsection 2.1) using (A.2)-(A.3),
and is extended to general symmetric f ∈ L2((Rd)k) using the continuity of %ξ.



POLYNOMIAL CHAOS AND SCALING LIMITS OF DISORDERED SYSTEMS 49

For any X ∈ L0, the random variable %ξ(X) has the same distribution as X under the
probability Pν defined in (2.15), by [J97, Theorem 14.1 (iii)-(iv)]. In particular, choosing for
X the series in (2.13), whenever it converges in probability, one obtains relation (2.16).

Appendix B. Technical lemmas

The following lemma is used in the proof of Theorem 2.5.

Lemma B.1 (Exponential tilting). Let (ζδ,i)δ∈(0,1),i∈Tδ be a family of independent random
variables in L2, with mean µδ(i) and variance σ2

δ , with σδ → σ0 ∈ (0,∞) and ‖µδ‖∞ :=
supi∈Tδ |µδ(i)| → 0 as δ ↓ 0. Assume further that (ζ2

δ,i)δ∈(0,1),i∈Tδ are uniformly integrable.
Then one can construct independent random variables (ζ̃δ,i)δ∈(0,1),i∈Tδ such that

P(ζ̃δ,i ∈ dx) = fδ,i(x)P(ζδ,i ∈ dx) ,

and there exist δ0, C ∈ (0,∞), and Cp ∈ (0,∞) for every p ∈ R, such that

E[ζ̃δ,i] = 0, E[ζ̃2
δ,i] ≤ σ2

δ

(
1 + C|µδ(i)|

)
, and E[fδ,i(ζδ,i)

p] ≤ 1 + Cp µδ(i)
2 , (B.1)

for all δ ∈ (0, δ0) and i ∈ Tδ. Furthermore, if

inf
δ∈(0,1),i∈Tδ

min
{
P(ζδ,i > 0),P(ζδ,i < 0),Var(ζδ,i|ζδ,i > 0),Var(ζδ,i|ζδ,i < 0)

}
> 0, (B.2)

then there exists C ′ ∈ (0,∞) such that the following improved bound holds:

E[ζ̃2
δ,i] ≤ σ2

δ

(
1 + C ′µδ(i)

2
)
. (B.3)

The proof of Lemma B.1 is an easy corollary of the following general result, which concerns
exponential tilting of a single random variable in order to shift its mean to zero (since
the random variables are not assumed to have finite exponential moments, the tilting is
performed on a bounded subset). The assumptions in Lemma B.1 guarantee that conditions
(B.5) and (B.9) are fulfilled, and the constants in (2.15), (B.7), (B.10) are uniformly bounded.

Theorem B.2. Let X be a square-integrable random variable and let A > 0 be such that

E[X21{|X|>A}] ≤
1

4
E[X2] . (B.4)

Assume that E[X] is sufficiently small, more precisely,

|E(X)| ≤ ε :=
E[X2]2

144A3
. (B.5)

Then one can define a random variable X̃, such that P(X̃ ∈ dx) = f(x)P(X ∈ dx), satisfying

E
[
f(X)p

]
≤ 1 + Cp E[X]2 ∀p ∈ R , with Cp :=

4e|p|

Aε
, (B.6)

E[X̃] = 0 , E[X̃2] ≤ E[X2] + C |E[X]| , with C :=
A3/2

√
ε
. (B.7)

If E[X] ≥ 0, and A is chosen such that

E[X21{X>A}] ≤
1

4
E[X21{X≥0}] , (B.8)

(replace X by −X if E[X] ≤ 0), and further assume that

|E[X|X ≥ 0]| ≤ ε′ := E[X2|X ≥ 0]2

144A3
, (B.9)
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then we can define X̃ such that (B.6) holds with ε replaced by ε′, while (B.7) is improved to

E[X̃] = 0 , E[X̃2] ≤ E[X2] + C ′ E[X]2 , with C ′ :=
A

2P(X ≥ 0)ε′
. (B.10)

Proof. Without loss of generality, we assume that E[X] ≥ 0 (otherwise consider −X).

Step 1 (Strategy). We will fix I ⊆ R, which is either [−A,A] (assuming (B.4)-(B.5)), or
[0, A] (assuming (B.8)-(B.9)), and we define random variables Y , Z with laws

P(Y ∈ ·) := P(X ∈ · |X ∈ I) , P(Z ∈ ·) := P(X ∈ · |X 6∈ I) . (B.11)

Taking independent copies of X,Y, Z, we have the following equality in distribution:

X
dist
= 1{X∈I} Y + 1{X 6∈I} Z , (note that |Y | ≤ A). (B.12)

We then exponentially tilt Y , defining for λ ∈ R a random variable Yλ with law

P(Yλ ∈ dx) := eλx−F (λ) P(Y ∈ dx) , where F (λ) := logE[eλY ] . (B.13)

As we will show at the end of the proof, we can choose λ = λ̃ ∈ R such that

E[Y
λ̃
] = −P(X 6∈ I)

P(X ∈ I)
E[Z] . (B.14)

If we define X̃ replacing Y by Y
λ̃
in the definition (B.12), that is

X̃ := 1{X∈I} Yλ̃ + 1{X 6∈I} Z , (B.15)

then E[X̃] = 0 by construction. Moreover P(X̃ ∈ dx) = f(x)P(X ∈ dx) with density

f(x) = eλ̃x−F (λ̃) 1{x∈I} + 1{x∈R\I} = 1 +
(
eλ̃x−F (λ̃) − 1

)
1{x∈I} . (B.16)

The rest of the proof is devoted to estimating E[X̃2] and E[f(X)p]. We are going to use
the following bounds on λ̃, which will be proved at the very end:

I := [−A,A], assuming (B.4)-(B.5): |λ̃| ≤ |E[X]|
2A3/2

√
ε

; (B.17)

I := [0, A], assuming (B.8)-(B.9): |λ̃| ≤ |E[X]|√
6A3/2

√
ε′
√
P(X ∈ I)P(X ≥ 0)

; (B.18)

In either case: |λ̃| ≤ 1

27A
. (B.19)

Step 2 (Bounds on E[X̃2]). Denote G(λ) := E[Y 2
λ ] = E[Y 2 eλY ]/E[eλY ]. Recalling (B.15)

and (B.12), we can write

E[X̃2] = E[X2] + P(X ∈ I)
(
E[Y 2

λ̃
]− E[Y 2]

)
= E[X2] + P(X ∈ I)

∫ λ̃

0
G′(λ) dλ . (B.20)

Since G′(λ) = E[(Yλ)3]− E[(Yλ)2]E[Yλ] and |Yλ| ≤ A, we have |G′(λ)| ≤ 2A3, and hence

E[X̃2] ≤ E[X2] + 2A3P(X ∈ I)|λ̃|. (B.21)

Applying (B.17), we obtain precisely the second bound in (B.7).
To prove (B.10), let us assume (B.8)-(B.9) and set I := [0, A]. By (B.12)–(B.14), we have

E[Y
λ̃
] = E[Y ]− E[X]

P(X ∈ I)
, (B.22)
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and hence E[Y
λ̃
] ≤ E[Y ]. Since E[Yλ] = F ′(λ) is increasing in λ (because F ′′(λ) = Var[Yλ] ≥

0), it follows that λ̃ ≤ 0. We then refine (B.20) as follows:

E[X̃2] = E[X2] + P(X ∈ I)λ̃G′(0) + P(X ∈ I)

∫ λ̃

0

(∫ λ

0
G′′(s) ds

)
dλ . (B.23)

Note that G′(0) = E[Y 3] − E[Y 2]E[Y ] ≥ 0, because Y ∈ [0, A] and hence Y 2 and Y are
positively correlated. Therefore the second term in (B.23) is bounded by 0. Also note that

G′′(λ) = E[(Yλ)4]− 2E[(Yλ)3]E[Yλ] + 2E[(Yλ)2]E[Yλ]2 − E[(Yλ)2]2 ,

and hence |G′′(λ)| ≤ 6A4. Substituting into (B.23) then yields

E[X̃2] ≤ E[X2] + 3A4P(X ∈ I)λ̃2 . (B.24)

Applying (B.18), we obtain precisely (B.10).

Step 3 (Bounds on E[f(X)p]). Recall f from (B.16) and F (λ) from (B.13). Since F (0) = 0

and |F ′(λ)| = |E[Yλ]| ≤ A, cf. (B.13), we have |F (λ̃)| ≤ A|λ̃| and hence |λ̃x−F (λ̃)| ≤ 2A|λ̃|
for every x ∈ I ⊆ [−A,A]. Applying (B.19), we obtain

e−2/27 ≤ f(x) ≤ e2/27 , ∀x ∈ R . (B.25)

For any p ∈ R, Taylor expansion gives yp ≤ 1+p(y−1)+C ′p(y−1)2 for all y ∈ [e−2/27, e2/27],
with

C ′p := max
y∈[e−2/27,e2/27]

|p(p− 1)yp−2| = |p(p− 1)|e
2
27
|p−2| ≤ 2 e|p| . (B.26)

Therefore
f(x)p ≤ 1 + p(f(x)− 1) + C ′p(f(x)− 1)2

= 1 + (p− 2C ′p)(f(x)− 1) + C ′p
(
e2λ̃x−2F (λ̃) − 1

)
1{x∈I} .

Since f is a probability density, recalling the definition of F from (B.13), we obtain

E
[
f(X)p

]
≤ 1 + C ′p P(X ∈ I)

(
eF (2λ̃)−2F (λ̃) − 1

)
. (B.27)

Since |F ′′(λ)| = |E[Y 2
λ ]− E[Yλ]2| ≤ 2A2, the Mean Value Theorem and (B.19) yield

0 ≤ F (2λ̃)− 2F (λ̃) =
(
F (2λ̃)− F (λ̃)

)
−
(
F (λ̃)− F (0)

)
≤ 4A2λ̃2 ≤ 4

272
≤ 1 , (B.28)

where the first inequality holds by convexity of F (note that F ′′(λ) = Var[Yλ] ≥ 0).
Consider first the case I = [−A,A], assuming (B.4)-(B.5): since ex−1 ≤ 2x for 0 ≤ x ≤ 1,

applying (B.28), (B.17) and (B.26) we obtain

E
[
f(X)p

]
≤ 1 + 2C ′p

(
F (2λ̃)− 2F (λ̃)

)
≤ 1 + C ′p 8A2λ̃2 ≤ 1 +

4e|p|

Aε
E[X]2 , (B.29)

proving (B.6).
The case I = [0, A], assuming (B.8)-(B.9), is similar: we keep the term P(X ∈ I) in (B.27)

when writing (B.29), so that applying (B.18) gives

E
[
f(X)p

]
≤ 1 + C ′p P(X ∈ I) 8A2λ̃2 ≤ 1 +

16e|p|

6Aε′
E[X]2 ≤ 1 +

4e|p|

Aε′
E[X]2 ,

which coincides with (B.6), where ε is replaced by ε′.

Step 4 (Bounds on λ̃). We finally show that one can choose λ = λ̃ so that (B.14) holds
and the bounds (B.17)-(B.18)-(B.19) are satisfied.
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Since F ′(λ) = E[Yλ], cf. (B.13), we can rewrite (B.14), cf. (B.22), as

F ′(λ̃)− F ′(0) = x̃ , where x̃ := − E[X]

P(X ∈ I)
. (B.30)

Since F ′′′(λ) = E[Y 3
λ ] − 3E[Yλ]E[Y 2

λ ] + 2E[Yλ]3 and |Yλ| ≤ A, we have |F ′′′(λ)| ≤ 6A3.
Therefore

F ′′(λ) ≥ F ′′(0)− 6A3|λ| ≥ F ′′(0)

2
for all |λ| ≤ c :=

F ′′(0)

12A3
=

Var(Y )

12A3
.

In particular, equation (B.30) has exactly one solution λ̃ ∈ [−c, c], provided

|x̃| ≤ F ′′(0)

2
c , that is |E[X]| ≤ P(X ∈ I)Var(Y )2

24A3
, (B.31)

in which case λ̃ satisfies

|λ̃| ≤ |x̃|
1
2F
′′(0)

=
2|E[X]|

P(X ∈ I)Var(Y )
. (B.32)

It only remains to check that condition (B.31) is indeed satisfied, under either assumptions
(B.4)-(B.5) or (B.8)-(B.9), and to show that (B.32) yields the bounds (B.17)-(B.18)-(B.19).
For this we need to estimate P(X ∈ I) and Var(Y ).

In order to avoid repetitions, let P∗ denote the original law P when we assume (B.4)-(B.5)
or the conditional law P( · |X ≥ 0) when we assume (B.8)-(B.9). In either case I = [−A,A]
or I = [0, A] we can write P(Y ∈ · ) := P(X ∈ · |X ∈ I) = P∗(X ∈ · | |X| ≤ A), therefore

Var(Y ) = Var∗(X | |X| ≤ A) . (B.33)

Note that assumptions (B.4)-(B.5) and (B.8)-(B.9) can be written as follows:

E∗[X21{|X|>A}] ≤
1

4
E∗[X2] , |E∗(X)| ≤ E∗[X2]2

144A3
. (B.34)

Since E∗[X21{|X|≤A}] ≤ A2P∗(|X| ≤ A), it follows that

A2 ≥ 3

4

E∗[X2]

P∗(|X| ≤ A)
≥ 3

4
E∗[X2] . (B.35)

We thus get

P∗(|X| ≤ A) = 1− P∗(|X| > A) ≥ 1−
E∗[X21{|X|>A}]

A2
≥ 1− E∗[X2]

4A2
≥ 2

3
, (B.36)∣∣E∗[X1{|X|>A}]

∣∣ ≤ E∗[X21{|X|>A}]

A
≤ E∗[X2]

4A
≤
√
E∗[X2]

2
√

3
.

Together with (B.34) and (B.35), this gives∣∣E∗[X1{|X|≤A}]
∣∣ ≤ ∣∣E∗[X]

∣∣+
∣∣E∗[X1{|X|>A}]

∣∣ ≤ ((4
3)3/2

144
+

1

2
√

3

)√
E∗[X2] ≤ 1

3

√
E∗[X2] ,

which yields ∣∣E∗[X | |X| ≤ A]
∣∣ =

∣∣E∗[X1{|X|≤A}]
∣∣

P∗(|X| ≤ A)
≤ 1

2

√
E∗[X2].

Applying one more time (B.34) we get

E∗[X2 | |X| ≤ A] =

∣∣E∗[X21{|X|≤A}]
∣∣

P∗(|X| ≤ A)
≥ 3

4
E∗[X2] ,
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which finally yields, cf. (B.33),

Var(Y ) = E∗[X2 | |X| ≤ A]− E∗[X | |X| ≤ A]2 ≥ 1

2
E∗[X2] . (B.37)

By (B.5) and (B.9), and applying (B.37) and (B.36), we obtain

|E∗[X]| ≤ E∗[X2]2

144A3
≤ Var(Y )2

36A3
≤ P∗(|X| ≤ A) Var(Y )2

24A3
. (B.38)

Consider first the case I = [−A,A], assuming (B.4)-(B.5): since P∗(|X| ≤ A) = P(X ∈ I),
relation (B.38) concides precisely with the condition (B.31) to be checked. Next we consider
the case I = [0, A], assuming (B.8)-(B.9), where we recall that P∗( · ) = P( · |X ≥ 0). By
assumption E[X] ≥ 0, we have |E[X]| ≤ |E[X1{X≥0}]| = P(X ≥ 0)|E∗[X]|. Since we can
write P∗(|X| ≤ A) = P(X ∈ I)/P(X ≥ 0), relation (B.38) again yields (B.31).

To conclude, for the case I = [−A,A], applying (B.36) and (B.37) to (B.32) and recalling
the definition of ε in (B.5) gives (B.17). For the case I = [0, A], the bound (B.18) follows
similarly, recalling the definition of ε′ in (B.9) and observing that P(X ∈ I) ≥ 2

3P(X ≥ 0)
by (B.36). Finally, to obtain (B.19) from (B.17)-(B.18), apply (B.35) and the assumptions
(B.4), (B.8). �

Finally, we prove the following bound on iterated integrals.

Lemma B.3. Let χ ∈ [0, 1). Then there exist c1, c2 > 0 such that for all k ∈ N,∫
· · ·
∫

0<t1<···<tk<1

dt1 · · · dtk
tχ1 · · · (tk − tk−1)χ

≤ c1e
−c2k log k, (B.39)

and ∫
· · ·
∫

0<t1<···<tk<1

dt1 · · · dtk
tχ1 · · · (tk − tk−1)χ(1− tk)χ

≤ c1e
−c2k log k. (B.40)

Proof. It is enough to prove (B.40), since the integral therein bounds (B.39). Recognizing
the density of the Dirichlet distribution (with parameters k+ 1 and 1−χ) allows to evaluate∫

· · ·
∫

0<t1<···<tk<1

dt1 · · · dtk
tχ1 · · · (tk − tk−1)χ(1− tk)χ

=
Γ(1− χ)k+1

Γ
(
(k + 1)(1− χ)

) ,
and (B.40) follows by standard properties of the gamma function Γ(·). �
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