POLYNOMIAL CHAOS AND
SCALING LIMITS OF DISORDERED SYSTEMS

FRANCESCO CARAVENNA, RONGFENG SUN, AND NIKOS ZYGOURAS

ABSTRACT. Inspired by recent work of Alberts, Khanin and Quastel [AKQ14a], we formu-
late general conditions ensuring that a sequence of multi-linear polynomials of independent
random variables (called polynomial chaos expansions) converges to a limiting random
variable, given by a Wiener chaos expansion over the d-dimensional white noise. A key
ingredient in our approach is a Lindeberg principle for polynomial chaos expansions, which
extends earlier work of Mossel, O’Donnell and Oleszkiewicz [MOOT0]. These results provide
a unified framework to study the continuum and weak disorder scaling limits of statistical
mechanics systems that are disorder relevant, including the disordered pinning model, the
(long-range) directed polymer model in dimension 1+ 1, and the two-dimensional random
field Ising model. This gives a new perspective in the study of disorder relevance, and
leads to interesting new continuum models that warrant further studies.
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1. INTRODUCTION

In this paper, we consider statistical mechanics models defined on a lattice, in which
disorder acts as an external “random field”. We focus on models that are disorder relevant, in
the sense that arbitrarily weak disorder changes the qualitative properties of the model. We
will show that, when the homogeneous model (without disorder) has a non-trivial continuum
limit, disorder relevance manifests itself via the convergence of the disordered model to a
disordered continuum limit, if the disorder strength and lattice mesh are suitably rescaled.

Our approach is inspired by recent work of Alberts, Khanin and Quastel [AKQI4a] on
the directed polymer model in dimension 1+ 1. Here we follow a different path, establishing
a general convergence result for polynomial chaos expansions based on a Lindeberg principle.
This extends earlier work of Mossel, O’Donnell and Oleszkiewicz [MOO10] to optimal
(second) moment assumptions, and is of independent interest.

In this section, we present somewhat informally the main ideas of our approach in a unified
framework, emphasizing the natural heuristic considerations. The precise formulation of our
results is given in Sections [2[ and |3] which can be read independently (both of each other
and of the present one). The proofs are contained in Sections [4f to , while some technical
parts have been deferred to the Appendixes. Throughout the paper, we use the conventions
N:={1,2,3,...} and Ng := NU {0}, and we denote by Leb the Lebesgue measure on R

1.1. CONTINUUM LIMITS OF DISORDERED SYSTEMS. Consider an open set 2 C R?
and define the lattice 4 := (6Z)?N4Q, for § > 0. Suppose that a reference probability measure
Preéf is given on R ¢, which describes a real-valued field o = (0)ze ,. We focus on the case
when each o, takes two possible values (typically o, € {0,1} or 0, € {—1,1}).

Let w := (wg)ze , be ii.d. random variables (also independent of o) with zero mean, unit
variance, and locally finite exponential moments, which represent the disorder. Probability
and expectation for w will be denoted respectively by P and E.

Given A > 0, h € R and a P-typical realization of the disorder w, we define the disordered
model as the following probability measure P, , for the field o = (02)ze 5

621606 ()\Wz +h)0‘z

Pwég)\’h(da) = 7w Preéf(do') s (11)
5:\h

where the normalizing constant, called the partition function, is defined by

Zw .)\, = Erej [QZzené(Awm—i_h)o—z] . (12)

]

The quenched free energy F(\, h) of the model is defined as the rate of exponential growth
of Zw(;;)\,h as Q1 R? for fixed § (or equivalentlyﬂ as ¢ J 0 for fixed Q):

F(X, h) := limsup LE[log Z¥ \p] = limsup LE[log Z% ) - (1.3)
QR4 | sl o slo | el o

Discontinuities in the derivatives of the free energy correspond to phase transitions. A
fundamental question is, does arbitrary disorder (i.e., A > 0) radically change the behavior
of the homogeneous model (i.e., A = 0), such as qualitative properties of the law of the field
o and/or the smoothness of the free energy in A7 When the answer is affirmative, the model
is called disorder relevant. In such cases, we will show that the disordered model typically
admits a non-trivial scaling limit as § | 0, provided A, h — 0 at appropriate rates.

fWe assume the natural consistency condition that PEE}C))C& coincides with P;f;, for any ¢ > 0.



POLYNOMIAL CHAOS AND SCALING LIMITS OF DISORDERED SYSTEMS 3

Informally speaking, our key assumption is that the discrete field o = (04)z¢ 4, under
the reference law Pr65f and after a suitable rescaling, converges as d J 0 to a “continuum field”
0 = (03)zeq, possibly distribution-valued, with law P?ef. (Our precise assumptions will be
about the convergence of correlation functions, see @ .) Although the approach we follow
is very general, we describe three specific models, to be discussed extensively in the sequel.

(1) The disordered pinning model (d = 1). Let 7 = (7%)r>0 be a renewal process on N
with P(my = n) = n~(0+a)+e0) with o € (3,1). Take @ = (0,1), § = & for N € N
and define Pr65f as the law of (0 1= 15-(2))ge ,, where 07 = {7, }n>0 is viewed as a
random subset of . The continuum field PS' is (o, = 1, (7))ze(0,1) Where T denotes
the a-stable regenerative set (the zero level set of a Bessel(2(1 — «)) process).

(2) The (long-range) directed polymer model. Let (Sy)n>0 be a random walk on Z with
i.i.d. increments, in the domain of attraction of an a-stable law, with 1 < o < 2. Take
Q= (0,1)xR, § = % for N € N and, abusing notation, set 4 := ((6Z) x (51/0‘2)) NaQ.
The “effective dimension” for this model is therefore deg := 1+ = L Define Pref as the law
of the field (0, := 14,(x))ze ;, where As := {(F, Nl/a)}n>0 is viewed as a random

subset of Q. The continuum field PS! is (o, = 1a(z T))ze(0,1)xR Where A = {(t, X¢) }i>0
and (X;)¢>0 is an a-stable Lévy process (Brownian motion for a = 2).

(3) The random field Ising model (d = 2). Take any bounded and connected set 2 C R?
with smooth boundary and define Pre;c to be the critical Ising model on 5 with inverse
temperature 8 = . = %log(l +4/2) and + boundary condition. The (distribution
valued) continuum field P%! has been recently constructed in [CGN12, [CGN13], using

breakthrough results on the scaling limit of correlation functions of the critical two-
dimensional Ising model, determined in [CHI12].

The restrictions on the dimensions and parameters of these models are linked precisely to
the disorder relevance issue, as it will be explained later.

Since the reference law Preéf has a weak limit Pref as 0 | 0, a natural question emerges:
can one obtain a limit also for the disordered model P under an appropriate scaling of
the coupling constants A, h? (We mean, of course, a non-trivial limit, which keeps track of
A, h; otherwise, it suffices to let A\, A — 0 very fast to recover the “free case” ng.)

A natural strategy is to look at the exponential weight in . As § | 0 the discrete
disorder w = (wz)ze , approximates the white noise W(dz), which is a sort of random
signed measure on 2 (see Subsection [2.1] E for more details). Then one might hope to define
the candidate continuum disordered model PV . . by

P
dngzv;\ i efﬂ oL (3\ W (dxz)+h dz)
)= S | (1)
& SHW)

in analogy with (1.1)), with ZgV)Vj\ & defined accordingly, like in (|1.2]).

Unfortunately, formula . 1.4]) typically makes no sense for A = 0, because the configurations
of the continuum field o = (64),eq under Pref are too rough or “thin” for the integral over
W (dx) to be meaningful (cf. the three motivating models listed above). We stress here that
the difficulty is substantial and not just technical: for pinning and directed polymer models,
one can show [AKQ14b| [CSZ14] that the scaling limit PWA ; of PY_ ), exists, but for A#£0
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it 1s not absolutely continuous with respect to szef. In particular, it is hopeless to define the
continuum disordered model through a Radon-Nikodym density, like in ([1.4)).

1.2. GENERAL STRATEGY AND RESULTS. In this paper we focus on the disordered
partition function Z%,. A We show that, when § | 0 and A, h are scaled appropriately, the
partition function admits a non-trivial limit in distribution, which is explicit and universal
(i.e., it does not depend on the fine details of the model).

SWltChmg from the random probability law P“_, , to the random number Z%_, ; is of
course a simplification, whose relevance may not be evident. It turns out that the partltlon
function contains the essential information on the model. In fact, the scaling limit of Z% SR
for sufficiently many domains §2 and “boundary conditions”, allows to reconstruct the full
scaling limit of P‘*’ A This task has been achieved in [AKQ14b] for the directed polymer
model based on Slmple random walk, and in |[CSZ14] for the disordered pinning model. We
discuss the case of the long-range directed polymer model in Remark below.

The scaling limit of 2%\ can also describe the universal behavior of the free energy
F(X\, h) as A\, h — 0, cf. Subsection This explains the key role of the partition function
and is a strong motivation for focusing on it in the first place.

We now describe our approach. The idea is to consider the so-called “high-temperature
expansion” (|A|, || < 1) of the partition function Z¢ , ;. When the field takes two values
(say o, € {0,1}, for simplicity), we can factorize and “hnearlze the exponential in ([1.2)):

7% on =B IT (1+ exax)] L where  gm et 1 (15)
TE §
Let us introduce the k-point correlation function 1/1(’? (z1,...,x) of the field under the
reference law, defined for £ € N and distinct z1,...,x; € Q by
k T
¢(5)(x1,...,xk) ::Ee;[agc1 Oz Oay| s (1.6)
where we set 0, 1= 05, with x5 being the point in 5 closest to z € Q. (We define the

correlation function on all points of €2 for later convenience, and set it to be zero whenever
(xi)s = (x5)s5 for some i # j.) A binomial expansion of the product in ([1.5]) then yields

| sl

Z¥ i = 1+Z 7 Z w(k (z1,...,¢ Hsm” (1.7)

(@1,@2,..,xk)E( 5)F

where the k! accounts for the fact that we sum over ordered k-uples (z1,...,xx). We have
rewritten the partition function as a multi-linear polynomial of the independent random
variables (e4)zc 5 (what is called a polynomial chaos expansion), with coefficients given by
the k-point correlation function of the reference field. Note that, by Taylor expansion,

Eles] ~h+ 3N =1/, Varle,] ~ 2. (1.8)

The crucial fact is that, for |A|,|h| < 1, the distribution of a polynomial chaos expansion,
like the right hand side of , is insensitive toward the marginal distribution of the random
variables (4)zc 4, as long as mean and variance are kept fixed. A precise formulation of this
loosely stated invariance principle is given in Section[d, cf. Theorems and 2.8, in the
form of a Lindeberg principle. Denoting by (Ws)ze , a family of i.i.d. standard Gaussians,
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by (|1.8) we can then approximate

| sl k
k -
aAh”lJrZ i > W @y, ) T O, + 1) (1.9)
(z1,22,..,x5)E( o)k i=1
Let us now introduce white noise W(-) on R? (see Subsection : setting A 1= (=3, 8)4,

we replace each @, by 6~42W (z + A). Since h' = W'§~%Leb(x + A), the inner sum in (L.9)
coincides, up to boundary terms, with the following (deterministic + stochastic) integral:

k
/ ¢ (@1, mn) [T (A2 W (das) + B 6 day) . (1.10)
Q i=1
(We recall that dj(’? (x1,...,x) is a piecewise constant function.)

We can now state our crucial assumption: we suppose that, for every k € N, there exist a
symmetric function '¢g€ ) (RY)® — R and an exponent vy € [0, 00) such that

O A CTI Y T YW@y, a) i LA(QF). (1.11)

By (1.10)), if we fix A > 0,h € R and rescale the coupling constants as follows:
A= Xo4E W =hét™7  (where B :=h+ %), (1.12)

equations ((1.9)-(1.10|) suggest that Z¥, .\, converges in distribution as d | 0 to a random
variable Wthh admlts a Wiener chaos eavpanswn with respect to the white noise W (-):

k
Z% s (leO) QAh' _|_Z k'/ / 1/; ml,...,xk)H(/\W(dxi)—i-hdxi).
=1

(1.13)
This is precisely what hap ns, as ﬁollows from our main convergence results described

in Section |4, cf. Theorems 2 and|2.5 It is natural to call the random variable ZQWA i in

- ) the continuum partztzon function, because it is the scaling limit of Z 5

Remark 1.1. The L? convergence in ([I.11)) typically imposes v < % cf. (1.16]) below, which
means that the disorder coupling constants A, h vanish as ¢ | 0, by (1.12]). The fact that the
QA p in (1.13) is nevertheless a random object (for A > 0) is

a manifestation of disorder relevance. We elaborate more on this issue in Subsection

continuum partition function ZW

Let us finally give a quick look at the three motivating models. The complete results are
described in Section[3, cf. Theorems and[3.14) Note that the scaling exponents in

(1.12)) are determined by the dimension d and by the exponent « appearing in ([{L.11]).
(1) For the disordered pinning model (d = 1), one has v = 1 — a by renewal theory [D97].

Relation (.12 (for 6 = 4) yields

A= =1
N3 Ne

Notice that h' = (const.))\&gil is precisely the scaling of the critical curve [G10].
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(2) For the (long-range) directed polymer model (degr = 1+ ), one has v = 1 by Gnedenko’s
local limit theorem [BGTRT7|. Therefore (1.12)) (for § = - and d relpaced by degt) gives

A h
A — T a1 h/ —_ - .
N2 N
(The parameter i’ is actually irrelevant for this model, and one usually sets b’ = 0,
ie., h= —%)\2.) In the case a = 2, when the underlying random walk has zero mean

and finite variance, one recovers the scaling A ~ N~/ determined in [AKQ14a).
(3) For the random field Ising model (d = 2) one has v = & [CHI12], hence by (L.12)

A=Xds, h=hov. (1.14)

(Note that h instead of A’ appears in this relation; moreover one should look at the
normalized partition function exp(—3A%| 5|) Z% \p- This is because o, € {—1,+1}
instead of {0, 1}, hence the starting relation (|1.5)) requires a correction.)

1.3. DISCUSSION AND PERSPECTIVES. We now collect some comments and observa-
tions and point out some further directions of research.

1. (Disorder relevance). The main motivation of our approach is to understand the issue
of disorder relevance, i.e. whether the addition of a small amount of disorder modifies the
nature of the phase transition of the underlying homogeneous model. Remarkably, the key
condition , which determines the class of models to which our approach applies, is
consistent with the Harris criterion for disorder relevance, as we now discuss.

First we note that when v > 0, which is the most interesting case, condition indicates
that the reference law has polynomially decaying correlations, which is the signature that we
are at the critical point of a continuous phase transition. In our context, this means that the
order parameter my, := limsjo| s/ 'E 50,82 e 5 0z] in the homogeneous model (A = 0)
vanishes continuously, but non-analytically, as h — 0, cf. and .

When holds pointwise, with v > 0, the limiting correlation function typically
diverges polynomially on diagonals, with the same exponent ~:

k _
¢§2)(x1,...,mk) ~ @y — ;]| as  x; — ;. (1.15)

To have finite L? norm (which is necessary for L? convergence in (I.11))), such a local
divergence must be locally square-integrable in R%: this means that (d — 1) — 2y > —1, i.e.

v < d . (1.16)
2
(Note that (g — ) is precisely the scaling exponent of the coupling constant A in )
Relation (L.16) matches with the Harris criterion for disorder relevance [H74]. This
was originally introduced in the context of the Ising model with bond disorder, but it can
be naturally rephrased for general disordered system (cf. [G10], [CCES86]): denoting by
v the correlation length exponent of the homogeneous system (A = 0), it asserts that a

d-dimensional system is disorder-relevant when v < % and irrelevant when v > % (the

remaining case v = % being dubbed marginal). The exponent v is usually defined in terms
of field correlations:

\E s0n(020y) —E 0n(02)E 5;07h(0'y)| 570 e~ Em with £(h) ﬁo RY . (1.17)
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Since such an exponent can be difficult to compute, it is typical to consider alternative
notions of correlation length £(h), linked to finite size scaling [CCES86, [CCEFS89]. In our
context, it is natural to define

) i=max{0>0: Z 04> A}, (1.18)

where A > 0 is a fixed large constant, whose precise value is immaterial. Recalling (1.12]),
we can rewrite ((1.13) for A =0 as

. . (L (d—
1/%?01 Zas0h = Lo jy with 6 =10, = (h/h) /=

If h ZQ;O,H is increasing (e.g., when wg) (x1,...,2x) > 0, by (1.13))) denoting by ha the
unique solution to Z, , ; = A, under some natural regularity assumptions it follows that

1/(d—v)
-1 (ha - . 1
é(h) ]—:I(] (5h,il,A) = <h) ~ h , with v = ﬁ .
This shows that Harris’ condition v < % cotncides with the key condition v < % of our
approach, cf. (1.16]), ensuring the square-integrability of the limiting correlations.

The correlation length is expected to be equivalent to the classical one , in
the sense that it should have the same critical exponent (cf. [GOT7] for disordered pinning
models) when the phase transition is continuous, that is when v > 0 in (1.15)). When v = 0,
which is the signature of a discontinuous (first-order) phase transition, our approach still
applies and gives the scaling limit of the disorder partition function, but there is no direct

link with disorder relevance (cf. ((1.24)) below and the following discussion).

In summary, our approach suggests an alternative view on disorder relevance, in which
the randomness survives in the continuum limit with vanishing coupling constants. In fact,
relation (1.13) can be seen as a rigorous finite size scaling relation |[Car88| for disordered
systems (the special case of non-disordered pinning models is treated in [Soh09]).

Remark 1.2. We can now explain the parameter restrictions in the motivating models:
condition is fulfilled by the disordered pinning model (d =1, v =1 — «) when a > %,
by the (long-range) directed polymer model (deg = 1 + é, v = é) when « > 1, and by the
critical random field Ising model (d =2, v = %)

2. (Universality). The convergence in distribution of the discrete partition function Z*_,

toward its continuum counterpart Zg:\ i cf. (1.13)), is an instance of universality. In fact:

e the details of the disorder distribution are irrelevant: any family (ws)ze , of i.i.d.

random variables with zero mean, finite variance and locally finite exponential moments
scales in the limit to the same continuum object, namely white noise W ();

e also the fine details of the reference law Preéf disappear in the limit: any family w(ké) of
discrete k-point correlation functions converging to the same limit (1.11)) yields the

same continuum partition function Zgj\ i in (1.13]).

At a deeper level, the continuum partition function sheds light on the discrete free energy
F(X\h), cf. (1.3), in the weak disorder regime A\, h — 0. Defining the continuum free energy

¢ s 1
F(\ h) :=limsup ———E[log Z

arri Leb() (1.19)

QW;S\,B} ’
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and setting s := 6927 and hy := 64 7h — 3(As)%, cf. (T.12), one is led to the following

F .
Congecture : 1611101 ()\(;Zhé) =F(\h) (1.20)
The heuristics goes as follows: by (|1.3)) we can write (replacing limsup by lim for simplicity)
. F(X\s,hs) w ,
lg}})l T = lélﬁ)l g]i#léld EWE[IOgZ 6§>\6:h6] N (121)

on the other hand, applying (1.13) in (1.19) (assuming uniform integrability) and noting
that Leb(2) = limgsjo 67| |, one gets

FOLR) = tm, T S
Therefore proving amounts to interchanging the infinite volume (Q 1 R?) and contin-
uum and weak disorder (6 | 0) limits. This is in principle a delicate issue, but we expect
relation to hold in many interesting cases, such as the three motivating models in the
specified parameters range (and, more generally, when the continuum correlations are “non
trivial”; see the next point). This is an interesting open problem.

Relation implies that the discrete free energy F'(\, h) has a universal shape for
weak disorder A\, h — 0. This leads to sharp predictions on the asymptotic behavior of free
energy-related quantities, such as critical curves and order parameters. Consider, e.g., the
average magnetization (oo)g,  in the critical Ising model on Z? with a homogeneous external
field h > 0. If relation holds (with d = 2, As = A&%, hs = ho ¥, cf. (T.14), and we
look at the case A = 0), differentiating both sides with respect to h suggests that
lim% _oF (0,1, (1.23)

RO pis oh
which would sharpen the results in [CGN12b|. Analogous predictions can be formulated
for disorder pinning and directed polymer models (see Section . Of course, proving such
precise estimates is likely to require substantial additional work, but having a candidate for
the limiting constants, like in , can be of great help.

E[log Z% .\, hs) - (1.22)

Remark 1.3. Relation (1.20) (in a stronger form) has been proved in [BdH97, ICG10] for
the so-called disordered copolymer model, by means of a subtle coarse-graining procedure. We
mention that our approach can also be applied to the copolymer model, yielding a Wiener
chaos expansion as in for the continuum partition function.

3. (First-order phase transitions). Relation (|1.11)) can hold with v = 0 (i.e., the k-point
correlation function converges without rescaling) and with a “trivial” factorized limit:

k k .
w(é)(xl,...,:rk) W@bg)(xl,...,xk) = o", with o € (0, 00). (1.24)
This is typical for a system at the critical point of a first-order phase transitions (i.e.,
the order parameter my, := limg)o| §|/7'E 508D ae 5 oz, as a function of h, has a jump

discontinuity at h = 0). Examples include the pinning model for e > 1 and the Ising model

TA notational remark: for the directed polymer model, the denominator in (|1.20) should be ¢ instead
of §¢, due to a different normalization of the discrete free energy, cf. Subsectio for the random field
Ising model, one should set hs := 6%=7h without the “—%()\5)2 correction”, as already discussed after .
These notational details are discussed in Section |3| for each model, while here we keep a unified approach.
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for 5 > B.. Plugging ((1.24]) into (1.13) and performing the integration, cf. [J97], §3.2], one
gets

2V, = exp {gj\W(Q) + <Qh _ ;(QX)2> Leb(Q)} . (1.25)

This explicit formula allows exact asymptotic computations on the discrete model: e.g.,
relation ([1.13)) yields for suitable values of ( € R (when uniform integrability holds)

E[(Zth)ﬂ - E[(ZWA ) } = exp {gg (ﬁ - %@2(1 - g)) Leb(Q)} . (1.26)
Incidentally, for disordered pinning models with e > 1, this estimate clarifies the strategy for
the sharp asymptotic behavior of the critical curve h.(A) as A | 0, determined in [BCPSZ14]
(even though the proof therein is carried out with different techniques).

Unfortunately, the continuum partition function can fail in capturing some key
properties of the discrete model, because it is shared by many “too different” models: relation
asks that the field variables under the reference law P become uncorrelated as § | 0,
but is insensitive toward the correlation decay, which could be polynomial, exponential,
or even finite-range (like in the extreme case of a “trivial” reference law Pref under which
(02)ze 4 are ii.d. with E*(0,) = o). Since the correlation decay can affect substantially
the discrete free energy, conjecture usually fails under .

For example, for disordered pinning models with o > 1, one always has F'(A, h) > 0 (there
is only a polynomial cost for the underlying renewal process not to return before time N,
and the energy of such a renewal configuration is 0). On the other hand, if the renewal
jump distribution has finite exponential moments, then there is an exponential cost for the
renewal not to return before time N, and F(\, h) < 0 if h is sufficiently negative. Both
models satisfy with ¢ = 1/E[r] and thus their continuum partition functions coincide,
but their free energies depend on finer detail of the renewal distribution (beyond the value
of E[r1]) and are therefore radically different causing ) to fail. The continuum free

energy is F()\ h) = gh 2 cf. and Wthh can attain negative values.

4. (Moment assumptions). In our convergence results, cf. Theorems and we
assume that the disorder variables (w;)ze ; have finite exponential moments, which guaran-
tees that the expectation and variance in are well-defined. However, this assumption
can be relaxed to finite moments. The necessary number of moments depends on the model
and can be determined by the requirement that the typical maximum value of the variables
w, “sampled” by the field does not exceed the reciprocal of the disorder strength A\ (so that
a truncation of w, at level A~! provides a good approximation).

For example, in the long-range directed polymer model, one expects that the path will
be confined (at weak disorder) in a box of size N x N/ If the disorder variables have a

polynomial tail P(w, > y) ~ y " as y T oo, their maximum in such a box is of the order
11l4a

N7 o Since A= N™ 2« for thlb model, cf Theorem @ one expects the validity of the
convergence result as long as Nv' o < N5 , e forn>2(a+1)/(a—1). For « = 2, this
gives n > 6, which was conjectured in |AKQ14aI and recently proved in [DZ].

Similarly, for the pinning model the number of relevant variables is of order N and
A~ N=(@=2), cf. Theorem . leading to a conjectured value n > 2/(2ac — 1); for the RFIM,
the number of relevant variables is of order N2 and A\ &~ N~7/8, ¢f. Theorem u 4} leading
to a conjectured value n > 16/7.
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2. FROM POLYNOMIAL TO WIENER CHAOS VIA LINDEBERG

In this section, which can be read independently of the previous one, we first recall
the main properties of white noise on R? (Subsection and define polynomial chaos
expansions (Subsection . We then formulate our main general theorem (Subsection ,
ensuring convergence of polynomial chaos toward Wiener chaos expansions. This is based on
a Lindeberg principle (Subsection [2.4]) which extends results in [MOO10] to optimal second
moment assumptions. Subsections [2.3] and [2.4] can be read independently.

The space of Lebesgue square 1ntegrab1e functions f : R? = R is denoted by L?(RY), and
we set HfHL2 Rd) = Jga f(x)?dz. For more details on the white noise, we refer to [J97, [PT10].

2.1. WHITE NOISE IN A NUTSHELL. By white noise on Rd We mean a Gaussian process
W = (W(f)) fer2ray with E[W(f)] = 0 and Cov(W (f),W = Jga f(2)g(x)dz, defined
on some probability space (Qy,.A, P). Since the spemﬁed covariance is a symmetrlc and
positive definite function, such a process exists (and is unique in law).

If Ay, As,... are disjoint Borel sets with finite Lebesgue measure, it follows that the
random variables (W (A;) := W(14,))i=1,2,... are independent N (0, Leb(A )) and the relation
W(U;>1 4i) =51 W(A;) holds as.. Consequently, it is suggestive to use the notation

y f(z) W(dz) :== W(f), (2.1)

even though W (-) is a.s. not a signed measure on R%. For d = 1, W (f) coincides with the
usual Wiener integral [ f(t) dW; with respect to the Brownian motion W; := W(1j94).
One can define a multi-dimensional stochastic integral W®*(f), for k € N and suitable
f: (Rd)k — R, as follows. For “special indicator functions” f = 14,x. x4, built over
disjoint bounded Borel sets Aj,..., A, C RY, one poses W&k (f) := W(la,) - W(la,).
This definition is extended, by linearity, to the space Sy of “special simple functions”, i.e. finite
linear combinations of special indicator functions. Since a permutation of the arguments of
f leaves W®F(f) invariant, it is sufficient to consider symmetric functions f, which we do
henceforth. One then observes that E[IW®*(f)] = 0 and the crucial [to isometry is satisﬁedﬂ

COV(W(X)k(f), W®l(g)) = k! l{k:l} (R f(l‘l, ey ack) g(.?Ul, cee ,:L‘k) d.%'l ce d.%'k . (2.2)
R
Since Sy, is dense in LQ((Rd)k), one can finally extend the definition of W®k( f) to every
symmetric f € L2((R?)*), in such a way that (2.2) still holds. Like in (2.1)), we will write

/.../(Rd)k P, o) W(da) - - W (dag) = WER(f). (2:3)

One also sets W®9(¢) := ¢ for ¢ € L2((R?)?) :=R.

Note that W®k(f) is a random variable defined on (Q, A, P), with zero mean (for k > 1)
and finite variance, which is measurable with respect to the o-algebra (W) generated by
the white noise W. (One can show that W®*(f) is non Gaussian for k > 1 and f # 0.)
Remarkably, every square-integrable random variable X defined on Qyy, which is measurable
with respect to o(W), can be written as the L2-convergent series

x=3 S (2.4)
=0

TFor the isometry (2.2)) it is essential to “avoid diagonals™ this is the reason for taking special indicator
functions, corresponding to products of disjoint Borel sets.
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called Wiener chaos expansion, for a unique choice of symmetric functions f € L2((R%)¥)
satisfying > 72 %H ka%Z, (Rd) < 00, by (2.2). In other terms, the multiple stochastic integrals

W®k(f) span the whole Hilbert space L?(Qyy, o(W),P).

2.2. POLYNOMIAL CHAOS. Let T be a finite or countable index set (e.g., T={1,..., N},
T=N,T=2%. We set

PIT) = {ICT: |I] <o}
Any function 9 : P8(T) — R determines a (formal, if |T| = oo) multi-linear polynomial V:

U(x) = Z o)zl where = 1_[:13Z with 2%:=1. (2.5)
IePfin(T) el

We say that ¢ : Pi%(T) — R is the kernel of W.

Let now ¢ := ((;)ieT be a family of independent (but not necessarily identically distributed)
random variables. We say that a random variable X admits a polynomial chaos expansion
with respect to ¢ if it can be expressed as X = ¥(() = ¥(((;)ieT) for some multi-linear
polynomial W. Of course, when |T| = co some care is needed: by X = ¥(() we mean that
for any sequence Ay C T with [Ax| < co and Ay 1 T one has

T I . -
X = ]\}gnoo Z (1) ¢ in probability . (2.6)
ICAN

Remark 2.1. When Var(¢;) # 0 for all ¢ € T, we can assume that all the variances are
equal with no loss of generality: it suffices to redefine 1 (1) — ¥(I)([ L;cs Var(¢;)) V2.

Remark 2.2. When the independent random variables ¢ := ((;);et have zero mean and
the same variance 02, an easy sufficient condition for (2.6]), with L? convergence, is

> (@)p(1)? < oo, (2.7)

IePfin(T)

because E[¢!¢7] = 0 for I # J. For variables with non-zero mean p := (u;)ict (always with
the same variance 2), sharp conditions for L? convergence in (2.6)) involve x4 and the kernel
1 jointly. As we show below, practical sufficient “factorized” conditions are

> pi < oo Fe>0: D 1+ )V(e)My(1)? < 0. (2.8)

i€T 1€Pfin(T)

2.3. CONVERGENCE OF POLYNOMIAL CHAOS TO WIENER CHAOS. Consider for
§ € (0,1) an index set Ts C R? and a family of polynomial chaos expansions (Vs(¢s))se(0,1)5
defined from kernels 15 : Pi*(Ts) — R and from independent random variables (5 :=
(Cs.z)zeTs- If Ts converges to the continuum R? as § | 0 (e.g., Ts := (6Z)%), then after
suitable scaling, the random variables (s )zeT, approximate the white noise W (dx) on RY.
If the kernel 1), suitably rescaled, converges as ¢ | 0 to a continuum kernel 4, : Pﬁn(Rd) — R,
it is plausible that the polynomial chaos expansion Ws((s) approximates a Wiener chaos
expansion W, cf. —, with kernel 1. This is precisely what we are going to show.

First we introduce some notation. Each random variable ¢, indexed by a point x in an
index set T C R? will be associated with a cell in R? containing z, and functions defined on
T* will be extended to functions defined on (R?)*.

e Let B(R?) denote the Borel subsets of R?. Given a locally finite set T C R, we call
C: T — B(R?) a tessellation of R? indexed by T, if (C(x))zeT form a disjoint partition
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of R? such that z € C(x) for each x € T. We call C(x) the cell associated with = € T.
In most cases, (C(x))gzet Will be the cells of a cubic lattice. However, there are natural
examples where this is not the case, such as the directed polymer model defined from
a simple symmetric random walk, or the Ising model defined on non-cubic lattices.

e Once a tessellation C is fixed, any function f : T — R is automatically extended to
f:R? — R by assigning value f(y) := f(z) for all y € C(z), for each 2 € T. Note that
for such extensions HfH%2<Rd> =Y et f(@)? Leb(C()).

e Analogously, for any v : Pi(T) — R, we first extend it to ¥ : Ureo TF — R by
setting ¥ (x1,...,xk) = Y({z1,...,x}) if the z; are distinct, and ¥ (x1,...,2%) ;=0
otherwise. We then extend it to 1 : UZOZO(RUZ)]’C — R by assigning value ¢ (x1, ..., zk)
to all points in C(x1) X - -+ x C(xy), for each k € N and xy,..., 25 € T.

e Given 1 : Pi(R?) — R, its extension to ¢ : |2 y(RY)¥ — R is defined similarly (no
cells involved). It will be clear from the context which version of v is being used.

e Finally, given a measurable function ¢ : [J7o,(R%)* — R, we denote by 191l £2((Rayr)
the L? norm of the restriction of 1 to (R%)*, i.e.

H¢H%2((Rd)k) = / e - (xy,. .., $k)2 dzy - - -dzy.

We are now ready to state our main convergence result, proved in Section [5

Theorem 2.3 (Convergence of polynomial chaos to Wiener chaos, L? case). As-
sume that for 6 € (0,1) the following ingredients are given:

o Let Ts be a locally finite subset of R%;

o Let (5 := ((5.2)zeT, be independent random variables in L? with the same variance,
E[Gs.2) = ps(x)  and  Var(Gsa) = 0,
such that (G — E[Cs2])?)se(0.1)aeT, are uniformly integrable;

o Let Ws(2) be a formal multi-linear polynomial with kernel 15 : Pi(Ts) — R, cf. [2.5);

o Let Cs be a tessellation of R? indexed by Ts, where every cell Cs(x) has the same volume
vs = Leb(Cs(x)).

Assume that vs — 0 as § | 0, and that the following conditions are satisfied:
(i) There exist g € (0,00) and py € L*(RY) such that

. - e _ NV .
limos =oo,  lim 15 — poll2ray =0, where fig(z) :=vs "“ps(x); (2.9)
(ii) There eists 1, : Pi*(R?) — R, with %0l 2((Rayry < o0 for every k € No, such that

15%1 s — "pOH%2((Rd)k) =0, where Ps(I) = va_l[‘/Qw(g(I); (2.10)
(iii) For some e >0 (or even e =0, if pus(x) =0)

Jim Jimsup Yo (4l e)ys(1)? =0. (2.11)
TS0 pephn(Ty) 1>
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Then the polynomial chaos expansion Vs((s) is well-defined and converges in distribution as
6 4 0 to a random variable ¥y with an explicit Wiener chaos expansion:

Us(Gp) = W = Z k'/ / Yo yl,---,yk)H (UOW(dyi) +u0(yi)dyi), (2.12)

where W (-) denotes white noise on R%.
The series in converges in L?, and E[U5(¢5)%] — E[W3]. Consequently, for any
coupling of Vs((s) and ®q such that Us((s) — ¥o a.s., one has E[|Ws((s) — ®ol?] — 0
The convergence (2.12)) extends to the joint distribution of a finite collection of polynomial
chaos expansions (V; 5(Cs))1<i<nmr, provided (V;5)se(0,1) satisfies (i)-() above for each i.

Remark 2.4. Let us be more precise about the random variable ¥ in (2.12)). Setting
v(z) = po(z)/o0, it can be rewritten as

k

Z k'/ 1/)0 Yly oo Yk) a”SH( (dy;) —i—l/(yl)dyZ), (2.13)

=1

which can be viewed as a “Wiener chaos expansion with respect to the biased white noise
Wy, (dz) := W(dz) + v(x)dz”. The rigorous definition of such an expansion goes as follows.
For every fived k € N, the integral over (R%)* in can be defined by expanding the
product and integrating out the “deterministic coordinates” (those corresponding to v(y;)dy;),
obtaining a finite sum of well-defined (lower-dimensional) ordinary stochastic integrals, like
in . Regrouping the terms, the series in becomes an ordinary Wiener chaos
expansion, like in . In analogy with the polynomial case , we show in Section || that
the L2-convergence of the series is ensured by the conditions that u, € L?(R?) and that
1
Je>0: kz 7 (1+8)" (08)" 9072 ((mayy < o0 (2.14)
0

which follow by assumptions —— in Theorem .

2.3.1. BEYOND THE L? CASE. There is a useful alternative interpretation of ([2.12))-(2.13).
If (Qw,A,P) is the probability space on which the white noise W = (W (f))scr2(re) is
defined, for every v € L?(R?) we introduce a new probability P,, on Qy by

APy W) LEW W) _ fra v@W (de) ] fpaviz)2ds (2.15)
dP

It turns out that the “biased stochastic integrals” in (2.13)) have the same joint distribution

as the ordinary stochastic integrals (with v replaced by 0) under the probability P,, by the

Cameron-Martin theorem (cf. Appendix . As a consequence, the random variable ¥ in
(2.12)) enjoys the following equality in distribution, setting v(z) := py(x)/0o0:

=1
¥ iZ:// Po(y1s- - yk) o W(dy1) ---W(dyy) under P,,  (2.16)
prd k! (Rd)k

provided the series (either in (2.12)) or (2.16]), equivalently) converges in probability.
Let us now assume the weaker version of relation (2.14]) for e = 0, i.e.

1

l?( a3)* 190l L2((Raye) < 00 (2.17)
k=
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Under this condition, the series in converges in L2 under the original probability P, by
the It6 isometry ([2.2). Since the Radon-Nikodym density has finite moments of all
orders, it follows by (12.16)) and an application of Holder inequality (see for the details)
that the series in (2.12) defining ¥o converges in LP for every p € (0,2) when holds
(even though it might not converge in L?, if fails).

As a consequence, by performing an L? analysis for p < 2, we can weaken condition
in Theorem setting € = 0 in , under mild restrictions on the disorder distribution
(due to the implementation of a change of measure like in for polynomial chaos).

Theorem 2.5. (Convergence of polynomial chaos to Wiener chaos, L?>~ case) Let
the same assumptions as in Theorem hold, with condition therein weakened by setting
e=0in , Assume further that lims g || pt5]|cc = 0, and that either of the following two
conditions is satisfied:

(a) inf min {P(C@m > 0),P(¢52 <0),Var((s2|Ge > 0), Var((sz|¢sz < 0)} > 0;
0€(0,1),x€T;s
(b)

YC >0 : lim > eClluslloll(o2) (12 = 0. (2.18)
IePIn(Ts), 11> sl

Then the polynomial chaos expansion Vs((s) is well-defined and converges in distribution as
0 | 0 to the random variable o defined by , or equivalently . For all p € (0,2),
the series therein converges in LP, and furthermore E[|Us|P] — E[|¥|P]. The conclusion
extends to a finite collection (W;5(s))1<i<m-

2.4. LINDEBERG PRINCIPLE FOR POLYNOMIAL CHAOS. The key ingredients in our
proof of Theorem [2.3] are two Lindeberg principles for polynomial chaos. As we discuss in
Remark they extend Theorem 3.18 in [MOOT0] in two ways: firstly, we relax the finite
third moment assumption of [MOOT0] to an optimal condition of uniform integrability of
the square of the random variables; secondly, we allow random variables with non-zero mean.

We point out that the first extension is actually not needed for our applications to
disordered systems, due to the assumption of finite exponential moments for the disorder
random variables. However, it is an extension of general interest and will be useful if one
attempts to weaken the moment assumptions on the disorder random variables, as discussed
at the end of Section We remark that Lindeberg principles have also played crucial roles
in recent breakthrough results on random matrices [C06l TV1I].

Given a polynomial chaos expansion W(¢) with respect to a family ¢ := ({;)iet of
independent random variables (cf. Subsection , we will control how the distribution of
U (¢) changes when we replace ¢ by independent Gaussian random variables £ := (&)t
with the same mean and variance as (.

Given a multi-linear polynomial ¥(z) = U((z;);et) as in (2.5), with kernel ¢, we set

Coi= > pI)?, (2.19)

IePin(T), 140

and define the influence of the i-th variable x; on ¥ by

Infi[¥]:= > (1), (2.20)

IePin(T), I>4
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Note that, if ¢ = ({;)ieT are independent random variables with zero mean and unit variance,

Co =Var[W(Q)],  Tnf;[] = E[Var [¥(0)](¢)jemin]],

which is just the influence of the random variable ¢; on ¥(¢) introduced in [MOO10] (for
more on the notion of influence, see e.g. [KKL88, BKKKL92| and the references in [MOO10]).
We also define the degree ¢ truncations U= and ¥>¢ of the multi-linear polynomial ¥ by

U=(z) = > e, U (z) == > e, (2.21)
IePin(T), |I]<¢ IePin(T), |I|>¢
whose kernels will be denoted by ¥=/(I) = (1)1 1<¢y and $=4(I) = (1)1 7503-
We are now ready to state and comment on our Lindeberg principles, that will be proved

in Section Ml

Theorem 2.6 (Lindeberg principle, zero mean case). Let ( = ((;)iet and & = (&)ieT
be two families of independent random variables, with zero mean and unit variance. Let
W(z) be a multi-linear polynomial as in (2.5)), with Cy = > rephn(T) Y(I)? < 0o. Then the
polynomial chaos expansions ¥(¢), W(€) are well-defined L? random variables.

Defining for M € [0, 0] the mazimal truncated moments

m;M = sup  E[X*Lxjsml, ms™ = sup  E[XPPLix<m],  (2.22)
XeU;erldi&it XeU;er{Gis&i}
the following relation holds: for every f : R — R of class 6> with
Cy == max{||flloo; [/ loc, | /" loc} < o0, (2.23)
for every £ € N, and for every M € (0,00] large enough such that m2>M < i, one has

E[F(w()] - E[f(w(©)]| < cf{z\ﬁcw b Cyer 162 m3M
(2.24)

+ Cyee 10T (m5 ™) \/me@rx (Inf; [@=<]) }

where C., Inf;[-] and =X, U>C are defined in ([2.19), (2.20) and [2.21)).

Intuitively, this theorem shows that U(¢{) and ¥(§) are close in distribution when the
right hand side of ([2.24)) is small. Despite its technical appearance, each of the three terms
inside the brackets can be easily controlled:

e The first term is controlled by Cy>e =3~ /15, ¥(I)?, which is small for ¢ large.

e The second term is controlled by my M which is small for M large if the random
variables ((;)iet and (&;)ieT have uniformly integrable squares (e.g., if they are i.i.d.).

e The third term is controlled by the mazimal influence max;ct Inf; [\Ifgq, which is
small if the multi-linear polynomial U=¢ is sufficiently “spread-out”.

In particular, we shall see that the conditions of Theorem allow us to exploit ([2.24)).

Remark 2.7. When the polynomial ¥ = U=¢ has degree ¢ and the random variables (;, &;
have third absolute moments bounded by m3 < oo, relation ([2.24]) for M = oo reduces to

[E[F(¥(0)] = B[/ (W(D)]| < Cy Cu 70 (my)" max /Infi[¥].

eT
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This is the key estimate proved by Mossel, O’Donnell and Oleszkiewicz in [MOO10|, see
Theorem 3.18 under hypothesis H2, with the prefactor 70¢*! instead of 30¢. Our Theorem
thus provides an extension of [MOO10, Theorem 3.18] to finite second-moment assumptions.
Some of the results in [MOO10] are formulated in the more general setting of multi-linear
polynomials over orthornormal ensembles. Although we stick for simplicity to the case
of independent random variables, our approach can be adapted to deal with orthonormal
ensembles. In fact, we follow the same line of proof of [MOO1I0], which is based on Lindeberg’s
original approach, with two refinements: a sharper approximation of the remainder in Taylor’s
expansion and a fine truncation on the random variables, cf. Section [4] for details.

As a corollary to Theorem [2.6] we can treat the case where we add non-zero mean to the
random variables ((;);et and (&;)iet. The following result is also proved in Section

Theorem 2.8 (Lindeberg principle, non-zero mean case). Let ( = ((;)ieT and £ =
(& )iet be as in Theorem m and define the mazimal truncated moments my™ m?M by

(2.22)). Let p:= (pi)ieT be a family of real numbers with
Cy = Z,u? < 00, (2.25)
€T
and define the u-biased families ¢ == ( + p = (G + wi)ieT and Ei=¢4pu= (& + pi)ieT-
Let ¥ (x) be a multi-linear polynomial as in (2.5)). Setting for e > 0
V@) = 3 (142l (2.26)
IePhin(T)
assume that Cy) = Y repan(ry(1 + e)Wlp(I)? < 0o for some e > 0. Then the polynomial

chaos expansions V(¢) and V(&) are well-defined L? random variables.
For every f : R — R of class € with Cy < oo, cf. ([2:23)), for every £ € N and for every
M € [0, 00] large enough such that m2>M < %, the following relation holds:

E[F(2(O)] - E[f(¥©)]] < e*/* Cf{Q VGt + Cyeoce 1662 mz ™

(2.27)
+ Cyorze 7011 (m?M)Z\/max (Inf; [¥().=f]) },

€T
where C., Inf;[-] are defined in ([2.19), (2.20) and WE)>t WE=L gre defined as in ([2.21)).

3. SCALING LIMITS OF DISORDERED SYSTEMS

In this section, which can be read independently of Sections [I] and |2, we consider three
much-studied statistical mechanics models: the disordered pinning model (Subsection ,
the (long-range) directed polymer model in dimension 1+ 1 (Subsection , and the two-
dimensional random field Ising model (Subsection . For each model, we show that the
partition function has a non-trivial limit in distribution, in the continuum and weak disorder
regime, given by an explicit Wiener chaos expansion with respect to the white noise on R?
(see Subsection for some reminders). The proofs, given in Sections |§|, and |8 are based
on the general convergence results of Section [2| (cf. Theorem [2.3)).

For each model, the disorder will be given by a countable family of i.i.d. random variables
w; with zero mean, finite variance and locally finite exponential moments:

Elw;] = 0, Var(w;) =1, Jto>0: A(t) :=logE[e™] < 00 for |t| <tp. (3.1
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Our approach actually works in the much more general setting when disorder is given
by a triangular array of independent (but not necessarily identically distributed) random
variables, in the spirit of Theorem [2:3] but we stick to the i.i.d. case for the sake of simplicity.

3.1. DISORDERED PINNING MODEL. Consider a discrete renewal process 7 := {7, }5>0,
that is 79 = 0 and the increments {7, — 7,—1 },>1 are i.i.d. N-valued random variables. We
assume that 7 is non-terminating, that is P(7 < co) = 1, and that

L(n)

P(Tl - n) - nlta’

Vn € N, (3.2)

where a € [0,400) and L : (0,00) — (0, 00) is a slowly varying function [BGT87]. One could
also consider the periodic case, when holds for n € pN and P(r; =n) =0 if n & pN,
for some period p € N. For simplicity, we focus on the aperiodic case p = 1.

Let w = (wn)nen, be a sequence of i.i.d. random variables, independent of 7, satisfying
. The disordered pinning model is the random probability law P% g, ON subsets on Ng,
indexed by w and by N € N, 8 > 0 and h € R, defined by

1
dP%757h(T) :

ZN 8.h

ezf:l(ﬁwan(ﬁ)Jrh)l{nET}dP(T) ,

where we recall that A(3) := logE[e®*], and the partition function Z% 5., 18 defined by
Z% 5 =E [625:1(ﬂwn—A(5)+h)l{7LeT}} . (3.3)
We also consider the conditioned partition function

24, =E [ezﬁzlwwn—A(m+h)1{neﬂ

Ne r} . (3.4)

The disordered pinning model exhibits an interesting localization /delocalization phase
transition. This can be quantified via the (quenched) free energy, which is defined as

. 1 W . 1 w
F(B, h) = ]\}E}noo N lOg ZN,ﬂ,h = ]\}E}noo NE[]Og ZN,ﬁ,h] y P(dw)*a.s. . (35)

By restricting the partition function to configurations such that 7 N [1, N] = (), it is easily
seen that F'(3,h) > 0. The localized and delocalized regimes (L, D respectively) can be
defined as

L:={(B,h): F(B,h) >0}, D:={(B,h): F(B,h) =0}.
We refer to [G10] for more information on the structure of the phase transition and, in
particular, for quantitative estimates on the critical curve

he(B) :==sup{h € R: F(B,h) =0} =inf{h € R: F(B,h) > 0}. (3.6)

We can now state our main result on the disordered pinning model, to be proved in
Section @ To lighten notation, we write Z3, 5, to mean Z{[JNH B

Theorem 3.1 (Scaling limit of disordered pinning models). Let the aperiodic renewal
process T either satisfy (3.2) for some o € (%, 1), or have finite mean E[11] < oo (which

happens, in particular, when (3.2)) holds with o > 1). For N € N, 3 >0 and h € R, set

5]\%{\92 if $<a<1 ELJSZ) if 1<a<1
BN = -1 5 hN - 1 . (37)
Bﬁ if Eln] <o hﬁ if E[m] < o0
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Then, for every t > 0, the conditioned partition function Z]f,tc B ha of the disordered pinning

model converges in distribution as N — oo to the random variable Z%cﬁ given by

> k
W,c 1 c ~ .
z)5 =1 [ [ i) TT(BW(dt) + hat) (3.8)
k=1 [0,4]* i=1
where W (-) denotes white noise on R and ¥§(t1,...,tx) is a symmetric function, defined
forO<ty<--<tp<thby
Ck tlfa .
- if s<a<l
c =t — )=t — g )10t — £ 2
Sty ... ty) = 11(2 1) (tk — te—1)' 7 (t — tx) |
-1k if E
Bt if Bln] < o
(3.9)

where Cy, := O‘Sir;(m‘). The series in converges in L?, and one has the convergence of
the corresponding second moments: E[(ZR’,tCﬂN )l = E[(ZWACA) ] as N — .

An analogous statement holds for the free (uncondztzoned) partztzon function ZF, 5, s
where the limiting random variable Z ~ - 1S defined as in , with kernel

7ﬁh
ck L1
— if —<a<l1
'l,b(tlwuytk) — t% a(tQ—t1>1_ai"(tk—tk71)1_a 2 ) (3_10)
il if E[n] <o

When E[11] < 0o, for both the free and conditioned case, the continuum partition function
has an explicit distribution: for every t > 0

We d w4 B h 5’
VA LAk Zt,ﬁ,h exp {E[ﬁ]Wt + (E[n] — 2E[71]2>t}’ (3.11)

where W = (Wy)i>0 denotes a standard Brownian motion.

Remark 3.2. The stochastic integrals in (3.8)) can be rewritten more directly as follows:
denoting by W = (W})>0 a standard Brownian motion, we have

o) k
2V, =1 Z // Giltr,- o te) [] (BdWs, + hdt), (3.12)
=1 o<ty <--<tp<t =1

where the integrals can be viewed as ordinary Ito integrals: it suffices to first integrate over

(BAW;, + hdty) for t; € (0,t2), then over (BdWy, + hdts) for ty € (0,t3), etc.

Remark 3.3. Theorem extends readily to the convergence of the joint distribution of a
finite collection of partition functions (conditioned or free). Analogously, the two parameter
family of partition functions

chh (NS,Nt) E [ n= Ns+1(6wn A(B)+h)Linery

N, Nter}, for 0<s<t, (3.13)

converges in finite-dimensional distributions to a two-parameter process (Z ZV:(S, t))o<s<t-

In [CSZ14] we upgrade this result to a convergence in distribution in the space of continuous
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functions, equipped with the uniform topology. This allows to construct the continuum limit
of the disordered pinning measure P; b

Remark 3.4. It is natural to call the random variable Z". LA in Theorem the continuum

partition function and to define the corresponding continuum free energy

FO(3,h) = lim - ! E[logz (3.14)

Mol

where E denotes expectation with respect to the white noise W, provided the limit exists.
For % < «a < 1, we expect that the continuum and discrete free energies are related via

F(0°72L(3) 3. 0°L(3) h)

h) =i 1
(8, 1) m 5 (3.15)
This would follow if one could interchange the limits in the formal computation
A 1 1
(a) = 1 — = —_
(B, h) th_{n log Zt,Bh th—glo " ngr(l)o log ZiN g iy - (3.16)

where Sy, hy scale as in . Such an interchange of limits has been made possible in the
related copolymer model, cf. [BAH97, [CG10|. Proving the validity of relation is a
very interesting open problem. Even the existence of the continuum free energy in
—possibly also in the P-a.s. sense, like for the discrete case (3.5)— is a non-trivial issue.

Relation (3.15]) is appealing because of its implication of universality: it states that the
discrete free energy F'(f3,h) has a universal shape in the weak disorder regime 3, h — 0,
given by the continuum free energy, which depends only on the parameter a and not on

finer details of the renewal distribution. Inverting the relation § = (50‘_%[1(%), it is possible

to rewrite (3.15)) for B=1as

F©)(1,h) = lim (B/’\ (
B10 L(%

: (3.17)

2a1

B)Bm 1h)
)

where L(-) and L(-) are suitable slowly varying functions determined by L(-).

Given a slowly varying function ¢ and v > 0, we define the slowly varying functions ¢, and ¢* by

- 1 1
o (2) 1= ——, o* (xd(x)) ~ —— asx — 00,
)= Sy @9) ~ 5
where the existence of ¢* is guaranteed by [BGT87, Theorems 1.5.13]. Then as 3 | 0
1 1

0 L(5) =8 =

- 1 1 1 = «f1
1 La—l — |~ = L{<]|~ La_l -1,
ertei(mr) s = 6) - ()
hence by 6“*%L(%) = /8 we obtain § ~ 5T{IE(%) and 0°L($) ~ ﬂ%E(%), where

)" (@) 7FT (3.18)

D@, L) = (L
Plugging this into 5) (with 3 = 1), we get B17).
Defining the critical curve of the continuum free energy in analogy with , ie.
R (B) :=sup{fh e R: F (3, h) =0} =inf{h e R: F (3 h) >0}
relation leads us to the following

E(x) = [(L

a—

Nl
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Conjecture 3.5. For any disordered pinning model satisfying (3.2) with a € (%, 1), the
critical curve he(B) has the following universal asymptotic behavior (defining L(-) by (3.18])):

hm% = hga)(l)
B Tg)ee

Further support to this conjecture is provided by the fact that (non-matching) upper and
~ 2
lower bounds for h.(8) of the order L(%)B 2a—T were proved in A0S, [AZ09].

Remark 3.6. The case when holds with o = 1 and E[r1] = o0, i.e. 3, o\ L(n)/n = oo,
can also be included in Theorem (we have omitted it for notational lightness), setting
N
By = ﬂg(\/]%), hy = hg(]]\y), where  ((N):=)" LE:‘)
is a slowly varying function, and with ©§(t1,...,tx) = ¥(t1,...,t,) = 1. This is easily
checked from the proof in Section |§|7 because P(n € 7) ~ Wln)v cf. [BGT87, Theorem 8.7.5].
On the other hand, the case & = 1/2 appears to be fundamentally different, because the
continuum kernels ¢, 1 are no longer L? integrable and therefore the stochastic integrals
are not properly defined. When o = 1/2 and Y, . 1/(n L(n)?) = co —in particular, when
L(n) ~ (const.) as n — o0, as for the simple random walk on Z— we expect that a nontrivial
continuum limit should exist. This appears to be a challenging open problem.

n=1

3.2. DIRECTED POLYMER MODEL. Consider a random walk S = (S, )nen, on Z, with
law P. Let w = (w(n,2))neN,zez be a family of i.i.d. random variables, independent of
S, with zero mean, unit variance and locally finite exponential moments, cf. . The
(1 + 1)-dimensional directed polymer model is the random probability law P%, 3 for the walk
S defined for N € N and 8 > 0 by

1
dP5;5(8) = eXn=1(Be(n5n)=AB) 4p () | (3.19)
N7ﬁ

where we recall that A(3) := log E[e#*n+] and the partition function Z% 5 is defined by

7% 5 = B[ef Tz w(uSn)] o AON (3.20)

For y € Z, we also define the constrained point-to-point partition function Z% ﬁ(y) and the
conditioned point-to-point partition function Z;’,’Cﬁ(y), setting

N
w,c N wun —
ZN:ﬁ(y) _ E[eﬁzn:l (n,Sn) | Sy = y}e ABN

Plainly, Z§ 5 = 30, c7 Z5% () = 2 yez Zn3(y) P(Sn = y).

When (S,)n>1 is the simple symmetric random walk on Z, we have the much-studied
Directed Polymer in Random Medium. First introduced in the physics literature in [HH85],
this model has received particular attention due to its connection to the Kardar-Parisi-Zhang
(KPZ) equation and its universality class, cf. [CSY04], [C12] for a review. In particular, the
point-to-point partition function can be thought of as an approximation of the solution of
the Stochastic Heat Equation (SHE), whose logarithm is the so-called Hopf-Cole solution
of the KPZ equation. This was made rigorous in [AKQ14a], showing that when 5 = By is
scaled as N—1/4 (the so-called intermediate disorder regime) and y is scaled as N —1/2 the

(3.21)
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point-to-point partition function Z]‘*\’,u B(y) converges in distribution to a continuum process,
which solves the SHE.

Our approach allows to extend the results in [AKQ14a]. Not only can we deal with general
zero mean, finite variance random walks, which are the natural “universality class” of the
simple symmetric random walk on Z; we can also consider random walks attracted to stable
laws with index « € (1,2), exploring new universality classes. When allowing “big jumps”; it
is natural to call Py 5 the long-range directed polymer model.

Let us now state precisely our assumptions on the random walk.

Assumption 3.7. Let S = (Sp)n>0 be a random walk on Z, with Sy = 0 and with i.i.d.
increments (Sy, — Sp—1)n>1, such that for some a € (1,2] the following holds:

e (Case a =2): E[S1] =0 and 02 := Var(S;) < oo;
o (Case 1 < a < 2): E[S1] =0 and there exist v € [-1,1] and C € (0,00) such that

1 1

1 1—

P(S1 >n) ~ (C#)nia’ P(S1 < —n) ~ (C%)n—a, asmn — oo. (3.22)
This means that the random walk S is in the domain of normal attraction of a stable law

of index a € (1,2] and (for av < 2) skewness parameter . (The adjective “normal” refers to

the absence of slowly varying functions.) In other words, S,/ n/® converges in distribution

as n — oo to a random variable Y, which has law A(0,02) if a = 2, while for 1 < a < 2
EleY] = ¢ caClH* (—ir(signt) tan 52) | for a suitable ¢, > 0. (3.23)

We remark that Y satisfies the same conditions as S7 in Assumption [3.7]and has an absolutely
continuous law, with a bounded and continuous density g(-). For ¢ > 0 we set

ge(w) = tll/ag(ﬂgja) : (3.24)

We stress that g(-) depends only on the parameters («,o?) or (a,7,C) in Assumption

The period of a random walk S on Z is the largest p € N such that P(S; € pZ+7r) =1,
for some r € {0,...,p — 1}. For instance, the simple symmetric random walk on Z has
period p = 2, because P(S] € 2Z + 1) = 1. To lighten notation, given (s,y) € Rt x R, we
write Z¢ 5 (y) to mean Z»;fg(gj), where 5 := [s| and y := max{z € pZ+71r5: z < y}.

We are ready to state our main result for this model, to be proved in Section [7}

Theorem 3.8 (Scaling limits of directed polymer models). Let S be a random walk
on Z satisfying Assumptionfor some a € (1,2]. For N € N and 8 > 0, set

s
ﬁN = a=1 °
NQ&

For every t > 0 and x € R, the conditioned point-to-point partition function ZJU\J,’EBN (Nl/o‘:n)

converges in distribution as N — oo to the random variable Zmi,c(x) given by

0 Ak k
2% (a) = H;i! / / Wi (b)) [[Widtidey),  (325)
- (

[0,1]xR)k =1
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where W (-) denotes space-time white noise (i.e., white noise on R%) and the symmetric
function Y7, ((t1,21), ..., (tg, k) is defined for 0 <ty <--- <t <t by

k
Pf (b, 31), . (b o)) = <H VP Gti—t; 4 (xi — xi1)> gtt’“gifm; k) : (3.26)
i1

where xy := 0 and p € N is the period of the random walk. The series in (3.25) converges in
W,
L? and furthermore E[(Zy) 5 (NVex))?] — E[(Zt’Bc(x))Q] as N = oo.
An analogous statement holds for the free partition function Zy, e where the limiting

random variable ZZVB is defined as in (3.25)), with kernel

k
it m), - (b aw)) = [ [ VPGt (i — ica).
=1

Remark 3.9. Theorem extends to the convergence of the joint distribution of a finite
collection of partition functions (conditioned or free). In particular, the four-parameter
family Zy< v, By (N/eg NVoy) defined for (s,z) and (t,y) in RT x R by

Zzu\)fthﬂN (NVog, NVey) .= E[ezgiz_vlsﬂ(ﬁw(nﬂn)—/\(ﬁ)) | Sns = NYey Sy = Nl/ay] 7

converges in finite-dimensional distributions to a four-parameter family of continuum condi-
tioned partition functions {Z:‘;;(x, Y)}(s,2),(t.0)ERF xR

Similar to the case a = 2 studied in [AKQI4b], we expect that this convergence can be
upgraded to a convergence in distribution in the space of continuous functions, equipped
with the uniform topology. We can then use these partition functions to define a continuum
long-range directed polymer model (which corresponds intuitively to an “a-stable Lévy
process in a white noise random medium”), by specifying its finite-dimensional distributions
as done in [AKQ14Db] for the Brownian case a = 2.

Remark 3.10. The free energy of the (discrete) directed polymer model is defined by

.1 w
F(B) := lim NE[logZN’B],

N—o0

where we expect that the limit exists (also P-a.s. and in L!(dP)), as in the usual setting. It
is natural to define the free energy of the continuum model analogously, i.e.

A 1 W
F(B) = g&EE[log z,5,

assuming of course that the limit exists. We stress that F'(-) is a universal quantity, which
depends only on the parameters (o, o?) or (a,v,C) in Assumption (furthermore, the
parameters o2, C' enter as simple scale factors). We also note that F(ﬁ) = F(1) é (%1, by an
easy scaling argument. In analogy with Remark we are led to the following

Conjecture 3.11. For any directed polymer model satisfying Assumption the free
energy F(8) has the following universal asymptotic behavior for weak disorder:
F(5%)

limF(Qf) = lim——~ = F(1).
BlO gasT 510 1)
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When a = 2 we would then get F(3) ~ F(1)3*, which is supported by the (non-matching)
upper and lower bounds on F'(3) obtained in [L10].

Remark 3.12. For 1 < a < 2, the function g;(-) in (3.24)) is the marginal density of the
a-stable Lévy process (X;);cr+ whose infinitesimal generator is given by a multiple of

+0o0 —
a2 f(a) = [ (@t 9) = £@) =l @) (s Loso + e Leor) du- (320)

In the symmetric case v = 0, this reduces to the much studied fractional Laplacian
(0% > 1
A2 f(a) = [ (Fla+9) = 1) = 0 @) s . (3.29)

Let us stick for simplicity to the symmetric case v = 0. It is natural to call Z W “(z)

in - the continuum conditioned point-to-point partition function. Introducing the
continuum constrained point-to-point partition function by

Z)(x) = Z, (@) gla)

one can check that the process u(t,z) = Z W( ) has a version that is continuous in (¢, x)
and, up to a scaling factor, it is a mild solution to the one dimensional stochastic PDE

Ou = A2y + \/f?BWu

u(0,-) = do() ’
which we can call the stochastic fractional heat equation (SFHE), generalizing the usual
SHE (which corresponds to a = 2). Uniqueness of mild solutions for the SFHE follows from

standard techniques, see discussions in [CJKS14| and references therein.
Let us also consider the process 4 B<) = log ZYV/B() When o = 2, this is the cross-

(3.29)

over process studied in [ACQ11} [SS10|, which owes its name to the fact that its one-point
marginals interpolate between the Gaussian distribution (in the limit B — 0) and the
Tracy-Widom GUE distribution (in the limit B — 00). When a < 2, it is easy to see that
Am 5() is again asymptotically Gaussian for 3 — 0 (the contribution from the first stochastic
integral in its Wiener chaos expansion is dominant over the iterated integrals, which are

multiplied by higher powers of B) However, it is far from obvious whether A 6() converges

to some asymptotic process Aq oo(:) as B — 00 and whether such a process describes some
universality class for long-range random polymers, last passage percolation and growth
models, generalizing the the so-called Airy process obtained for v = 2. Besides a very recent
work on the limit shapes of long-range first-passage percolation model [CD13|, long-range
polymer type models do not appear to have been studied systematically before.

3.3. RANDOM FIELD ISING MODEL. Given a bounded C Z2, we set
0 ={xeZ® :lz—y|=1forsomeyec }.

For a fixed parameter 8 > 0, representing the “inverse temperature”, the Ising model on
with + boundary condition (and zero external field) is the probability measure P* on the
set of spin configurations {£1} , where each 0 := (0;),c € {£1} has probability

P+( ) exp{ﬁ Z Uxay} H 1{gm:+1}~ (330)

r~yEe U0 x€0
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Here & ~ y denotes an unordered nearest-neighbor pair in Z2, and Z* is the normalizing
constant. The value of 3 will soon be fixed, which is why we do not indicate it in P™.

Remark 3.13. It is well-known that as 1 Z2, the sequence of probability measures P

7, which of course depends on 3, such that

has a unique infinite volume limit PZ,,

1
EJZFQ(UO) >0 ifandonlyif B> f.:= §log(1 +2).

By an obvious symmetry, for 8 > f. there also exists an infinite volume Gibbs measure P,
satisfying E,(09) < 0. Given the coexistence of multiple infinite volume Gibbs measures,
the Ising model is said to have a first order phase transition for 5 > (.. The same result
holds in higher dimensions, with different values of f..

A question that attracted significant interest was whether this picture will be altered by
the addition of a small random external field. After long debates, this question was settled by
Bricmont and Kupiainen [BKS88]|, who showed that the first order phase transition persists
for the random field Ising model in dimensions d > 3 at low temperatures (i.e., for large 53),
and by Aizenman and Wehr [AW90] who showed the absence of first order phase transition
in dimension 2 at any temperature. See [B06L Chap. 7| for an overview.

Henceforth we fix 8 = 3. := %log(l +v/2), so that P denotes the two-dimensional
critical Ising model. Let w 1= (wz)zez2 be a family of i.i.d. random variables satisfying ,
representing the disorder. Given X\ := (Ag)zez2 > 0 and h := (hs),cz2 € R, representing
the disorder strength and bias respectively, the random field Ising model (RFIM) is the
probability measure P+7’;: pon {£1} with

P, (0) ! exp { > et + hz)%} P (o), (3.31)

p— 7_’_7‘*)
Z7\h e

where the normalizing constant, called partition function, is given by

Z+§Jh =E"

exp { > aws + hx)ax}] : (3.32)

e

Note that we allow the disorder strength A and bias h to vary from site to site. Also observe
that choosing P as a “reference law” means that Z+’§Jh =1for \,h =0 (with 8 = f,).

Fix now a bounded open set Q C R? with piecewise smooth boundary, and define the
rescaled lattice 5 := QN (6Z)2, for § > 0. We are going to obtain a non-trivial limit in
distribution for the partition function Z +5°j\ 5, in the continuum and weak disorder regime
0, A, h — 0. We build on recent results of Cﬁeikak, Hongler and Izyurov [CHI12, Theorem 1.3]
on the continuum limit of the spin correlations under P*{S (the two-dimensional critical Ising
model with + boundary condition): for all n € N and distinct x1,..., 2z, € Q

lﬁiirol 6% EJF(s [Opy 00, =C" 4 (21, ..., 20), (3.33)
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where (,‘bg : Unen2” — R is a symmetric function and C := 2%6754/(71), with ¢’ denoting
the derivative of Riemann’s zeta functionﬂ (For simplicity, in we have set o, := 0y,
where x5 denotes the point in 4 closest to x € §2.)

We can complement with a uniform bound (see Lemma below): there exists
C € (0,00) such that for alln € N, z1,...,2, € Q and § € (0,1)

0< 0 8ET [o0, 00, <[] ¢ -, (3.34)
i1 A2, 0Q Uz, ...,z P\ {xi})s

where d(z, A) := infyea ||z — y|| and the RHS is shown to be in L? in Lemma below.
Therefore the convergence (3.33)) also holds in L?(Q2), and ||¢4 || r2(qny < oo for every n € N.

We can now state our main result for the RFIM, to be proved in Section

Theorem 3.14 (Scaling limits of RFIM). Let Q2 C R? be bounded and simply connected
open set with piecewise smooth boundary, and define s := QN (6Z)%, for § > 0.
Let w := (wg)zez2 be i.i.d. random variables Satzsfymg . and deﬁne ws = (Wsz)ae s

by s,z := wy/5. Gven two continuous functions 20— (0,00) and h:Q— R, define
Nsw 1= A@) 0%, hggi=h(z)55 . (3.35)
and set A\s = (Ns.z)ze 5, hs = (hsz)ze 5. Then the rescaled partition function
SN2, 67
~2lAllL2 ) Z ;Jfé’hé (3.36)

converges in distribution as 0 | 0 to a random variable Z W with Wiener chaos expansion

37Ny

Zgzvh - 1+2_:1(;;//m ¢$($1,---,l‘n)H [(Na))W (day) + h(x;)da;],  (3.37)

=1

~.

where W (-) denotes white noise on R? and ¢ (+), C are as in (3-33).

Remark 3.15. We impose the continuity on A and h and the strict positivity on \ for
technical simplicity: these conditions can be relaxed with a more careful analysis.

We call the random variable Z+ I in - the continuum RFIM partition function.

The fact that the continuum correlatlon function ¢Q is conformally covariant, proved in
Z+ W

[CHI12, Theorem 1.3], allows to deduce the conformal covariance of Q5 h

Corollary 3.16 (Conformal covariance). Let Q,Q C R? be two bounded and simply
gonnected open sets }uith piecewise smooth boundaries, and let @ : Q3 — Q be conformal. Let
A:Q — (0,00) and h: Q — R be continuous functions. Then

ztW 4 gt W
QA QN R’

0]~

where we set MN(2) = |¢/(2)|5 Mp(2)) and h(z) := |cp’(z)\% h(g(2)) for all z € Q.

In [CHIT2], the mesh size of 5 is /2§ instead of &, which accounts for the difference between our formula
for C and that in [CHII2] (1.3)]. Exact formulas for ¢&(x1,...,2n) are available for n = 1,2 when Q is the
upper half plane H, cf. [CHI12] (1.4)]. The general case ¢, can be obtained from ¢;; via conformal map.
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Remark 3.17. Recently, Camia, Garban and Newman [CGN12, [CGN13| showed that for a

deterministic external field, more precisely A5, = 0 and hs, = hés for fixed h € R, the Ising
measure PJF(s A hy CODVErges as 6 | 0 (in a suitable sense) to a limiting distribution-valued

process @g’h. Theorem |3.14] can be regarded as a first step towards the extension of this
convergence to the case of a random external field, where Z ;th plays the role of the partition
function of a continuum Ising model with random external field (A(z)W (dz) + h(x)dz) and
+ boundary condition. The next step towards the construction of such a continuum model

E’E\Vﬁ)nb (note that
they are random variables which are functions of the disorder W) for a large enough family
of sub-domains I' C €2 and “boundary conditions” b.

would be to identify the joint distribution of the partition functions (Z

Remark 3.18. Consider the case when the disorder strength and bias are constant, i.e.
Az =X >0and hy = h € R. The free energy F(\, h) of the critical random field Ising model

can be defined as follows: setting Q := (—3, 3)? and Ay := (NQ)NZ* = {[—%1, cee ng 32

2

Eflog Zy ) ] = lim L Ellog 2" ,] (3.38)

F(\ h) = li

1
N—oco N 2|Q|
where the limit exists by standard super-additivity arguments and is independent of the
choice of Q. Note that F'(0,0) = 0, that is F'(\, h) represents the excess free energy with
respect to the critical Ising model, cf. (3.32]).
It is natural to define a continuum free energy F(A, h) for A > 0, h € R by
.. 1 W
F(A\ ) = li 7E{1 zZ" } :
A1) = lim T Bl Zasa

provided the limit exists (at least along sufficiently nice domains Q 1 R?), where E denotes
expectation with respect to the white noise W (-). In analogy with Remark Theorem
suggests the following conjecture on the universal behavior of the free energy F'(A, h) in the
weak disorder regime A, h — 0.

Conjecture 3.19. The following asymptotic relation holds:
_ F(A\6%,ha)
im———=

im ———— = F(\h),  ¥Az0, heR. (3.39)

One can go one step further: differentiating both sides of (3.39) with respect to h and setting
o= h%, for h = 1 one would obtain

(00) 5, 15 F .
lim — 2R 0 (A1), (3.40)

h—0 his - %

where (og)x 5 = %—Z(A, h) =limy_ 0 E[EX:’J s nloo]] represents the average magnetization

in the infinite-volume random field critical Ising model, cf. (3.38) and (3.31]). Relation ([3.40))

is supported by (non-matching) upper and lower bounds of the order his for (og),p in the
non-disordered case A\ = 0, recently proved by Camia, Garban and Newman [CGNI12b].

In light of Theorem and the fact that for the two-dimensional Ising model below the
critical temperature a disordered external field smoothens the phase transition [AW90), it is
natural to conjecture that a similar smoothing effect occurs at the critical temperature:
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Conjecture 3.20. For any fired A > 0, the average magnetization in the infinite-volume
random field critical Ising model on Z? satisfies

1
(00)an ~ Ch” ash 0 for some vy > IR (3.41)

4. PROOF OF THE LINDEBERG PRINCIPLE

In this section, we prove Theorems [2.6] and 2:8 on the Lindeberg principle for polynomial
chaos expansions. We first deduce Theorem [2:8]from Theorem [2.0] starting with the following
lemma which controls how a multi-linear polynomial ¥(x) = U((z;);eT) is affected by a shift
x +— =+ p, where p:= (1;)ieT-

Lemma 4.1 (Effect of adding a mean). Let ¥(z) = U((x;)iet) be a multi-linear
polynomial as in , with kernel ¥, and let p:= (u;)iet be a family of real numbers. Then
U(z) == W(z + p) is a multi-linear polynomial, i.e. ¥(x) = 3 jepan(T) ()’ with kernel

=S eV, (4.1)

IePin(T): IDJ

Fore >0, let ) (z) be defined as in (2.26), and recall the definitions of Cy from
2]

and Inf;[¥] from (). Then, setting c,, := > ;o7 p2, for any e > 0 we have
Cg < e/ Cyey,  Infj[W] < e/ Inf;[TE)]. (4.2)

Proof. Note that (4.1)) follows from the expansion

V() = W(z+p) = Zw (x + p)! Z¢ ZMI\JxJ:Z<Z¢ I\J>

JCI 1DJ

For any € > 0, we can apply Cauchy-Schwarz to write

s () () - (S ). o
oJ

IDJ IDJ
and note that
(1 +E—1M2>T\J < (1 +€—1M2)T < ecu/a‘
Therefore
Co= S0P < /oY (Z Ef\ﬂ)w(nz 314 (D) = /7 Cy
J I NJCI I

proving the first relation in (4.2). The second relation is obtained similarly:

Inf;[0]) = > " 4)(J) <ec»a/ez( D \I\J|)

J3j I35 J:jeJCI (4 4)
< /=Y (14 e)lp(I)? =: /= Inf; [WE)].
IEY;

This concludes the proof of the lemma. O



28 F.CARAVENNA, R.SUN, AND N.ZYGOURAS

Proof of Theorem 2.8, Since ¥(¢) = ¥(¢ + ) =: ¥(¢), by Lemma [4.1] the conditions
¢, < 0o and Cy() < oo ensure that Cg < oo. The polynomial chaos expansion W(() is then
a well-defined L? random variable, by Remark and the same holds for ¥(¢).

To prove ([2.27), we are first going to truncate ¥ to degree ¢, i.e. we consider ¥=¢ and
U=, defined in (2.21)). Note that

[ELF(2(C)) = =N < [1F 1o EIR(O) = =] < [I£ o E[E ()2, (4.5)

and the same bound holds when C is replaced by §~, therefore
E[F(2(C)] — ELF(ZE)]] < 201 £ |El ¥ (Q)IP)Z + [ELF(T=())] — E[f(¥=4(€))]|, (4.6)

where we use the fact that, since ( and £ are independent with zero mean,

E[U(C)P] = W) = 3 w(1)® = Cyor.

[1|>¢

To bound the first term in (4.6)), we write U>¢(z) := U>¢(z + x), which has kernel ¢>*
(note that first we truncate the kernel and then we shift = — x + ). Since ¢ are independent
with zero mean and variance one, by Lemma [£.1] we have

E[[W>(OP] = E[¥(OP] = Y v7(J)* = Cgor < €4/ Cy e
J

Substituting this bound into (4.6]) then leads to the first term in ([2.27)).

To bound the second term in (4.6), we write U<¢(z) := U<{(z + ), and then apply
Theorem 2.6] to obtain

[ELF(T=(O)] — ELF(T=4ED]| = [ELF(T=1(O))] — E[F(T=())]]

< Oy Cee (1662 m3™ + 704 (™) mave Tt [5=1] ).
1€

Applying the bounds in Lemma to WS¢ then gives the remaining terms in (2.27), where
we have combined and upper bounded factors of /<. O

Proof of Theorem [2.6l We note that it is sufficient to prove the theorem in the case
IT| < oo, because the general case follows by considering finite Ay 1 T. For notational
simplicity, we assume that T = [N]:={1,...,N}.

Step 1. We first truncate ¥ to a degree ¢ polynomial U<, By the same calculations as in

(4.5) and (4.6]), we have
[E[£ (% ()] — ELF(WED]] < 211 £ [ENNw> (P2 + [E[F(¥=4(C))] — ELF(U=A(€))]]. (47)
This leads to the first term in the right hand side of m
Step 2. For a fixed f € C}(R), we denote
FO=4(2)) =: g(x1,22,...,2N).
For a vector € RV and y € R, we also set

h]w(y) = g(Ila sy L1, Y, i1y - - - axN)‘
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Using this notation, we can write

N
FOENO) = FEFE) = D9 Gbnns-E8) = 9(C - Go1s G- W)
J=1

N
= > (1 (G) - h(E)), (4.8)
7j=1
where we have used the notation
X = (X, X%) = (G Gt €N (4.9)
Next, we will be Taylor expanding each term in (4.8]). For this we note that for y € R
dh¥ y2 d°nY

hf(y):hf(o)wd (0)

where the remainder term has the form

RY = ydghit t)2dt 1(12}137() 2 dehit t)dt
T =3 | G Ou- =T+ [T -t

from which it follows that
} . (4.10)
oo

g O,

31x
dhs
dy3

21
A
dy?

)

v Lyl
| Rj(y) | < mln{ﬁ

Inserting the Taylor expansion into (4.8) we obtain

<t <¢ - X7 hﬁ( j CJZ thJX j XJ
FEO) = Fr=) = Y {00+ 6520 + S50+ BV ()
i=1
; dhX’ € d?ny ;
SO - 650~ F 0 -’ @)}

Since (; and &; both have zero mean and unit variance, taking expectation, we get

iE[Rfj«j) - B (g)]

j=1

ELS(U=4(0))] — ELF(@="(©))]| =

N (4.11)
<STE[IRF @] + Z (G
j=1
Since the estimates for both sums are identical, we will focus on the first one.
Step 3. The derivatives of hf(-) are easily computed:
d"hs OUSH (21, T 1, Y Tjids ey TN\
j _ (m)(\ljgg ] ) )( 1 sy Lj—1,Y, Tj4+1, 3 N)
dym (y) f (‘/Ela sy Lj—1,Y, Tj41, 7$N) ay
. m
= f(m) (\Ilge(xl,...,xj,l,y,:errl,...,:EN))( Z 1[)(])1']\{]})

I35, [1|<¢

Then, setting C = max{|| f'||oos || /@0, ”f(3)||oo} we can apply (4.10) to bound

ﬁ: E[1RY ()] < cfZE (4.12)

7j=1
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where X7 was introduced in (4.9), and we define

$3
go(x)::min{,|x]2}, Li(z):= Y D)z’ (4.13)

I>j,|11<¢

Notice that L;(x) includes the variable x; in the product as a result of absorbing the powers
of y in (4.10)). Also note that p(z) = ¢(|z|) and

4
pla+b) < p(2max{lal, [b]}) < @(2]al) + @(2[b]) < 4lal* + g!blg-

Writing L;(X7) = (Lj(X7) — L;j(X77)) + L;j(X77), where X/~ := (X]7,..., X} ) is a
suitably truncated version of X7, we then obtain

(L (X)) < 4E[(L;(000) — (X)) 4+ SENL (0O . (419)

The two terms in the right hand side will give rise respectively to the two terms in the right

hand side of ([2.24]).

Step 4. We now describe the truncation procedure. This new ingredient, with respect to
[IMOO10], is tailored to control random variables with finite second moments and uniformly
integrable squares. Fix M € (0,00). We want to decompose any real-valued random variable
Y with zero mean and finite variance in the following way:

Y=Y +YT, (4.15)
where Y, Y are functions of Y and possibly of some extra randomness, such that
E[Y ]=E[Yt] =0, Y Yt =0,

Y | <|Y|1 E[(Y1)?] < 2E[Y?21 (4.16)
Y7 <Y|1gyvi<my (YY) ] <2E[Y Lyisan] -

If E[Y 1 p<y<my] = 0 we are done: just choose Y~ := Y1 ycy<ppand Y=Y Y.
If, on the other hand, E[Y'1y_j<y<ps3] > 0 (the strictly negative case is analogous), we set

Note that E[Yl{—MgYST}] > 0, because T +— E[Y1{_j<y<ry] is right-continuous. If
E[Y1 7M§Y§T}] =0, defining Y~ := Yl{—MngT} and Y :=Y — Y, all the properties
in (4.16) are clearly satisfied, except the last one that will be checked below. Finally, we
consider the case E[Y'1,_ ),y 7] > 0 (then necessarily T' > 0). Since E[Y1,_ oy ] <0

by definition of T, we must have P(Y = T) > 0. Then take a random variable U uniformly
distributed in (0,1) and independent of Y, and define

_E[Yl{—M§Y<T}]
TP(Y =T)

Setting Y := Y — Y, all the properties (4.16)) but the last one are clearly satisfied.
For the last property, we write

E[(YT)?] = E[(Y ") Lgyvisary] + EIY D)Ly i<an] = EV 2Ly san] + EIY ) Lgyvi<an]

because YT =Y on the event {|Y| > M}. For the second term, since 0 < YT < M on
the event {|Y| < M}, we can write (Y1)? < MY™* (no absolute value needed). Since
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Y™ =Y " 1lyy|<umy has zero mean by (4.16), we obtain
E[(Y ) Lvi<an] < MEY " 1gyican] = ME[(YT +Y 7)1y ican]
= ME[Y1yyi<an) = M (—E[Y Lyisan)) <EY1gypsan],
where we have used the fact that E[Y] = 0 by assumption, and Markov’s inequality. The
last relation in (4.16]) is proved.

Step 5. We apply the decomposition (4.15)) to the random variables (XZJ )z’e[ N, defined in
(4.9), where the extra randomness used in the construction is taken independently for each
variable: then we write
. - n

X =X]"+X]7,

and the properties in (4.16]) are satisfied. Note that by (4.13) we can write
LX) - Li(X77) = Y W) Y (X))

I3j,[1<¢ TCL|0>1
Since the random variables X{ o, X{+, Xg_, X§+, ... are orthogonal in L? by construction,
setting o ; := E[(X7%)2] and observing that 0% ;+ 0% ;= Var(X]) = 1, we obtain

E[(Li(X) - LX)’ = Y w@)? Y (62)F(e?)\"

I35, |1|<¢ rCr, (N1
= Y w@Pa-(H) < Y w@?(-a-a)),
I>j,|11<¢ I>j, [1]1<¢
where
74 = max of; = max E[(X)] <2 max E[(XD* 1310, < 2m5™

having used (@.16) and the definition of m5™ in (2.22)) (recall [@.9)). Since 1 — (1 —p)" < np,

we obtain
N N
S E[(L (%) - L0 ) < 2m2>Mz( S uww)
j=1 j=1 \1I>3j,|1|<¢t
< 2mpM 2y (1)

[1]<¢

Tracing back through (4.7)), (4.11)), (4.12) and (4.14]), we note that this gives the first term
in the right hand side of ([2.24]).

Step 6. We finally consider the contribution of the second term in (4.14). We apply the
hypercontractivity results in [MOOI0]: by Propositions 3.16 and 3.12 therein, denoting by
|Y|lq := E[|Y|9]"/9 the usual L? norm, for every ¢ > 2 we have

125 (X7 )l < (B)* 115 (X772, (4.17)

where

b
B, = 2\/m max 1% o

i€lN) | X772
Let us set Y := Xf for short and choose ¢ = 3. Since |Y | < M, by (4.16), we have
_ 1/3
1Y~ lls < ENY PLyyiean]® < (m5™) 2,
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where we recall (4.9) and the definition of m?M from 1' On the other hand, again by
[L19),
IY=IZ =11V 13 = 1Y I3 = E[Y?] = E[(Y™)?] = E[Y?] - 2E[Y "1y 01y
M
=1 2E[(X7)? {‘XJ|>M}] >1-2m5™",

hence

1/3
Bg<2\f7( ) < 4(mzM)'?
A/ 11— 2m2>M

provided m(>21)\4 < %, as in the assumptions of Theorem Therefore, (4.17) for ¢ = 3 yields

Y

3/2

E[|L;(X77)P] < 64° (mz™) E [L;(X77)?]

(X7
Note that, since E[(X77)2] < E[(X7)?] = 1, we have

E[LX7)?) = > o@JJEXI)T< D () =Inf;[w=].

I3g,|1|<t iel DJ,U\S@
Therefore
N
D E[L O] < 64 (m5 ™) (o /1nk )Y Y v
j=1 Jj=11I3j,|1|<¢ (418)
0 (. <M\?¢ o<t 2
< 064" (ms™M) (g%\/lnﬂ[\ﬂ ) qugzj(l)

This gives the third term in the right hand side of (2.24) (because %6 64" < 701), which
completes the proof. O

5. PROOF OF THE CONVERGENCE TO WIENER CHAOS

In this section, we prove Theorems and on the convergence of polynomial chaos
expansions to Wiener chaos expansions.

Proof of Theorem 2.3l Let W(-) be the d-dimensional white noise used to define the
Wiener chaos expansion for ¥q in Theorem Given the tessellation C5 indexed by Tg,
where each cell Cs(x) has the same volume vy, for each x € Ty, we define

€50 = pis(x) + v, —1/2 » )a(gW(dy) = Uél/Q/C . (05W(dy) + ﬂ(s(y)dy), (5.1)
s\ s(x

where we recall that s := v(;l/Qu(g by (2.9). Note that & := ({5.2)zeT is a family of
independent Gaussian random variables with the same mean and variance as (s = ((5.2)zeT,-

We recall that our goal is to show that Ws((5) — W in distribution. The strategy is first
to focus on Ws(&s) instead of Ws((s): we can write Us(&s) as a Wiener chaos expansion with
respect to W (-), like Wy, and show that E[|Ws(s5) — Wol?] — 0 as & | 0; then we use the
Lindeberg principle, Theorem to replace Us(&s5) by Ws((s).

Step 1. We first show that for each degree k € Ny,
. k k
lim E[0; (&) — 3] = 0, (5.2)
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(k)

where Wy is a polynomial with kernel 1/J§k)(f ) = ¥s(I)1y 1=k}, and similarly, ¥ ( ) is defined

as Wo in (2.12)), except the kernel 9, therein is replaced by ¢0 )( I):=y(I )1{\1| —r} (that

is, we take the k-th term in the sum). Recalling from ([2.10) that ts(1) := v(s_ul/Qw(;(I), and

extending 15 to a function defined on R¥, as discussed before Theorem we can write

v = Y ws(Del = / / s yl,...,ymH(adW(dyi)+a5<yi>dyi)
IePflin(Ty),|I|=k
1

_ - k—|I| 7 o ‘
=R > /(Rd)k_l </(Rd)1"5 ¢5(yla--~ayk)nﬂé(yz)dyz> ‘H W (dy;).
IC[k]:={1,....,k} iel JERIN

A similar expansion holds for \I'ék) with s, fis, os replaced respectively by v, g, oo.

Comparing the two expansions term by term for each I C [k], we then obtain, by the triangle
inequality and the Ito isometry (2.2,

[l (&) — w7 (5.3)
1
2
< 05 (Lo L G T - oo o) T | TT )
rcpk) \Y RO LI RO icl icl icl JERNT

To see that each term above tends to 0 as § | 0, let us assume w.l.o.g. that either I = () or
I = [n] for some 1 < n < k. We then write in a telescopic sum

oy s [ [ Ba(wi) — o6 "o [ [ o)
= ! (5.4)

n

n n—1
= Ao [ [ (i) + o6 o1 [ (i) + -+ + o6 "o [ ] 10 (i) An,

i=1 =2 i=1

where Ag := 06 ahs — 0'0 "py and A; = ,u(;(yl) po(yi) for i = 1,...,n. The contribution
of each term from (5.4 . ) to the integrals in can be bounded by applying Cauchy-Schwarz
to the inner integral, in such a way that the 1/) term is separated from the product of the u’s.
It is then easily seen that all terms tend to 0 as § | 0 by the assumptions in Theorem
that fis — pg and s — 1 in L?, together with o5 — oo € (0,00). This implies .

Step 2. We next give a uniform L? bound on the tail of the series for ¥s((s) and ¥q. More

precisely, for any £ < N, let \I/(g N = ehen Vs % and \IJ(E N =D ckeN lI!é ). Denote
\I!6>Z and \115 ¢ for the case N = oo. We will show that

o
lim lim sup E[|¥54(¢5)[%] = 0, and ¥, = Z \Il(()k) converges in L% (5.5)
{—00 510

Together with (5.2) and the fact that E[¥{"™)(¢5)2] = E[@™ (¢5)2] for all 0 < £ < N < o,
it follows that

E[Ws(s)?] = E[Ws(&5)%] — E[®5]  asd L0,
which is one of the claims in Theorem 2.3
If we denote &5, = ps(x) + &, and let ‘lfge’N) (z) := \IISSZ’N) (z + ps), then for e > 0 as
specified in Theorem we can apply Lemma (actually a modification of it, where
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we take into account that the random variables do not have normalized variance) to obtain

1 2
LN ¢,N 7 2eery Mo(T)
B[S (&)[?) = BTV (E)P) < eod T > +e)ll @) ys(n?. (5.6)
IePin(Ty)
L<|I|l<N
Similar relation as (5.6) holds for (s replacing &s. Since > 1, ps(z )% = | fas||2 (RY) (recall
the extension of f : Ts — R to f : R? — R as specified before Theorem [2.3), the assumptions
in Theorem and immediately imply the first limit in (5.5)) if we let N 1 oo in
1) It also shows that Ws(&5) = > po, \IJ (55) as well as Ws((s), are L? convergent series.
By (5.2), we can take the limit 6 | 0 in . to obtain

£ ] = m E e ()R] < 8 20 fimeup 37 (14 o) (02 ()2
o0 MO rephinry)
|I|>¢

By assumptions and of Theorem ﬁ this implies that ¥y =Y 72 \Il[()k) is an L?
convergent series, proving the second relation in .

We also observe that if ps(x) = 0 there is no need to apply Lemma : relation ([5.6)
holds without the exponential pre-factor and with € = 0, because &s(x), € Ts are random
variables with zero mean and finite variance o5 (cf. Remark .

Step 3. We now use the Lindeberg principle, Theorem to show that for each ¢ € Ng,
\I'(SSE(C(;) = Zi:o \Ilgk)(g;) has the same limiting distribution as \I'<Z(§5) as ¢ | 0. Together
with the L? convergence of \11535(56) to \Il(g : Zk o proved in Step 1, cf. (5.2), as well
as the uniform L? bound on \I/(?é(gg) and \Il>€ shown in Step 2, cf. { -, this implies that

Us5(¢s) converges in distribution to ¥y as ¢ i 0.
It suffices to show that for all f € €3 with C := max{|| f'[|oo, || /" |locs || /" [|ec} < 0,

lim [E[f(¥5(G)) = F(95 (&))]| = 0. (5.7)

With e as specified in Theorem , we can apply Theorem (actually a slight
modification of it, taking into account the non normalized variance oy of the variables used
here): the absolute value in the left hand side of (§ is bounded by

gtz o 2 pose <16€ mg " ot j o I/n\f[\I/(g)’gD (5.8)
! ‘76 Ug’ i€Ts LT ’
where
l
N 1 g
C\I/((;E%SZ = |§<:€(1 + 5)”'( 1 Ys(1 kz_o + 6)kg Haé w6HL2((Rd)k)
V4
Tt (e), <6 I I (1 +
Infi [\Ijé ] '—IIZII<£(1 —i—g)' i( | |w5 Zl (k; 05 Hwél{xlecé }HLQ( Rd) )
HETRVARS

and we recall that Cs(7) C R? is the cell indexed by i € T; in the tessellation C5. We are left
with showing that (5.8)) vanishes as § | 0. Note that

° E\P((;),ge is uniformly bounded by Theorem -;

o ||ﬂ5||iQ(Rd) — HMOH%Z(RUZ) and o5 — o9 > 0 by Theorem (@);
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° m?M < M3 and ms M can be made arbitrarily small by choosing M large, by the
definition ([2.22)) (to be applied to the centered variables (5, — E[(5.]) and the fact
that ((¢s — E[Cs.])? )se(0,1), zeT, are uniformly integrable by assumption.

It only remains to verify that Infi [\I,((;:),_ ] vanishes as ¢ | 0, uniformly in ¢ € Ts. Since
¢ k
A RAOBY L+ a7 2 2
Inf; [\1156 ] < 2 Z (k - 1)! (06) (H% - ¢0HL2((Rd)k) + H’lp()l{xlecg(i)}HLQ((Rd)k))7
k=1

— 2 e
one has H% - 'lpOHLz((Rd)k) — 0 by Theorem a and ||’¢01{x1ec(i)}||%2((Rd)k) — 0
uniformly in ¢ € T because Leb(Cs(i)) = vs | 0 uniformly in ¢ € Ts. This completes Step 3
and establishes the convergence of WUs((s5) to ¥¢ in distribution.

Step 4. Lastly, to show that the convergence of ¥s((s) to ¥y in distribution extends to the
joint distribution of a finite collection of polynomial chaos expansions (¥; 5((5))1<i<m, we
note that by the Cramér-Wold device, it suffices to show the convergence of Zf\i 16V 5(Cs)
to Zi‘il c;¥; o for any ci, ..., ¢, € R. This follows from what we have proved so far, since
Zf\i 1 ¢V s(x) is also a polynomial that satisfies all the required conditions. O

Proof of Theorem 2.5 Instead of performing an L? estimate on the tail series \115%((5)
as done in Step 2 in the proof of Theorem we shall give an LP estimate for any p € (0, 2).
More precisely, we replace relation (5.5 by the following one: for any p € (0, 2),

£— o0

T, = Z \Ilgk) converges in LP, and lim hn;isoup E[W;4(¢s)IP] =0, (5.9)

and we show that this holds under either condition @ or (]ED in Theorem . The rest of

the proof of Theorem [2.3] then carries over without change.
The key to proving 1) is a change of measure argument. For £ < N, let \I!gg’N) and

\IJC(SK’N) be defined as in Step 2 in the proof of Theorem Note that \Il[()e’N) is a finite sum
of stochastic integrals with respect to the biased white noise oW (dx) + py(z)dz. By the
discussion in Subsection cf. , the joint distribution of these stochastic integrals
is absolutely continuous with respect to the unbiased case pg(z) = 0, with Radon-Nikodym
derivative

)= exo{ - [ momwian - ooy [ i) (5.10)

Therefore, using lI!é 5),0 to denote \Ilé’ ) with po(z) =0, for any p € (0,2) we have
2,N) o,N 2 (e,N z
E[NwS ™) = E[f(W) [N 7] < E[f)75] T E[[w Y2} )

ezl oola e gl (0 278,

by Holder’s inequality. By Theorem [2.3] when p5 = py = 0 it is enough to assume that
condition therein holds with € = 0 to guarantee that o ,, =0 = Yo \Il(()]fLOEO is an

L? convergent series. Therefore ¥y = Yoro \Ilgk) is convergent in LP, by .

To control E[|¥5%(¢s5)[P] via a change of measure for (s is more subtle, since ((s;)ieT; are
not assumed to have finite exponential moments. We will instead perform an exponential
change of measure on a bounded subset of the support of (s;. Since by assumption ||zt5]|oc — 0
and ((Csi — ps)?)ieT, are uniformly integrable, also (Cgﬂ-)ieTé are uniformly integrable. We
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can then apply Lemma in Appendix : there exist independent random variables ngi,
whose law is absolutely continuous with respect to the law of (s;, with density fs;(x), which

satisfy (B.1)-(B.3). We can then write
e[l = | TT foatG 5o @ TT it % |

i€Ts iGT(g
(¢,N
< [Hféz Céz |\IJ ) ] |:Hf6z Cz?z 7”]
i€Ts i€Ts
(¢,N 2—p
[|\II ) H E féz C&z) 2= p] . (5.12)
i€Ts
Applying (B.1), we have
— 2— —
H E f&z C&z) 2— p] 2p < ecp 2 Zzevé Hé() — eCPTpHﬂéH2L2(Rd)’

i€Ts

which is uniformly bounded for § close to 0 (recall that jis — g in L?). To bound the first
factor in 1| we use the fact that ((5;)icT, are independent with zero mean to obtain

eGP = Y (TTERD)ust? s Y B iy,
L<|I|<N i€l €<|I|<N
(5.13)
where in the inequality we applied , provided ( satisfies condition @ in Theorem
Combined with the assumption in Theorem that holds with € = 0, and tracing
back to , we then obtain the desired L? bound on \I’(?e((g) in 1}

If we assume instead condition (]ED in Theorem then we can modify the calculation in

1' by applying the bound E[Egz] < 02(1+ Cus(i)), stated in 1' to obtain
[|\IJ ZN)(C )‘ ] < Z 60“#6“00‘”(Ug)m?,z)(j(l)z. (514)

L<|I|<N
Theorem (b) and condition (2.11)) with € = 0 then give the desired bound in (5.9). O

6. PROOF FOR DISORDERED PINNING MODEL

In this section we prove Theorem We recall that 7 = (73)>0 is an aperiodic renewal
process such that either E[r] < oo, or relation (3.2)) holds for some a € (1,1). Note that

1
— it E[11] < o0
E[r] il
u(n) :==P(n €7) o e (6.1)
« . asI(mTo
W 1f%<0{<1 (Where CO( = pou )7

where the first asymptotic relation is the classical renewal theorem, while the second one
is due to Doney [D97, Thm. B] (see also [GOT, §A.5]). We also recall that w = (wn)neN;
representing the disorder, is an i.i.d. sequence of random variables satisfying (3.1)).

Proof of Theorem [3.1] It suffices to rewrite the partition function as a polynomial chaos
expansion and then to check that all the conditions of Theorem are satisfied. We only
consider the conditioned partition function Z% N’t By B8 the proof for the free one follows
the same lines. We also set t = 1, to lighten notation.
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Step 1. Consider for N € N the lattice Ty := NN Note that in Sectlon I we used the
notation Ts (where § would equal %) here we prefer Ty, as it indicates the size of the
polymer. Consequently, all the quantities in this section will be indexed by N instead of 9.
For each t € Ty we define the cell Cy(t) := (t — +,t], which has volume vy = .

Step 2. We now rewrite the conditioned partition function Z]“\’,CB ns cf. (3.4), as a polynomial
chaos expansion. This was already done in (1.5)-(1.7), in terms of the random variables

g; = ePwi=AB)+h _ 1 Tt is actually convenient to rescale the &; so that their variance is of
order one, in order to apply Theorem Since Var(g;) ~ 8% as (8 | 0, recalling (3.7)) we set

1
— if Eln]<oo
B \/N [ 1]
aN = y (6.2)
LIN) ¢ 1 cq et
No—1/2 2
so that By = Bay, and we define the random variables (N = (CNt)teTy by
(Np = i(eﬁNWNt_A(BN)""hN _ 1) ' (6.3)
K aN
In this way, arguing as in ((1.5)-(1.7)), we can write
ARy
DNy = UN(N) =14 ) >, k(. HCNt ;o (64)
E=1 " (t1,..,tp)e(Tn)E
where the kernel ¢ (t1,...,t;) is a symmetric function, which vanishes when t; = t; for

some i # j or when some t; ¢ (0,1], and for 0 =: tg < t1 < -+ < tx <1 is defined by

Vi (t, .- t) == ay P({Nt1,..., Nt} C 1IN € 1)
k
= WOV I)) TT (N (8 — t:1), (65)
=1

u(N)

recall (6.1). We extend 4% (t1,...,t) from (Ty)* to R* in the usual way, as a piecewise
constant function on products of cells. The same is done for (s,t) — u(N(t — s)).

Step 3. We now verify that the conditions of Theorem [2.3] are satisfied. By our assumptions
(3.1) on the disorder, for every fixed N € N the random variables ({n )T, are i.i.d. with
mean and variance given by

h
= E( eV 1) 7
UN CNt ( ) VN 66)
1 2 R ‘
o2 = Var(Cny) = T(GA(QﬂN)*W\(BN) _ 1)62hN ~ /BTN 2, as N — oo
N N

Since vy = 4, condition (f}) of Theorem [2.3|is satisfied with o¢ = B and py(t) = lAll(O’l] (t).
(More precisely, redefining (n+ as ((n — E[Cnv¢]) when ¢ ¢ (0,1] —which is harmless, since
such values of ¢ do not contribute to (6.4)— one has pun () = pn1(1)(t) = po(t) in L*(R).)

To prove that the random variables (((y+ — pun)?)NeNteTy are uniformly integrable, we
show that the moments E[((y; — un)%] are uniformly bounded. Since A(8) = O(8) as 8 {0,
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by (3.1)), for every k € N we can estimate

E [(eﬂw—A(m - 1)2’“] 92k —2kA(B)E [(eﬁw - 1)2’“} + 22k (1 — M) (6.7)

Jél 2k
_ 22ke—2kA(ﬁ)E[</ wet“dt> ] +22k(1 _e_A(g))%
0

IN

B
< 22k€72kl\(ﬁ)/82k / E[w2k62ktw] g + 22k(1 o e—A(IB))Qk _ O(/@Qk) .

0 B
Recalling that By = Bay and hy = o(1), we obtain the desired bound:
4 64hN A
E[(Cve —nn)'] < —-0(By) = 0(1)
N

Let us check condition of Theorem The renewal estimates in ((6.1)) imply that, for
fixed 0 < s < ¢,

1

Jim axu(vie— ) = 7L

Recalling the definitions (6.5)), (3.9) of the discrete and continuum kernels 9%, ¥¢ (for t = 1),
as well as the fact that vy = %, it follows that for every fixed £ € N the convergence

if E[r1] < o0
(6.8)
ifi<a<i

—k/2

Uy Qﬂjcv(tl,...,tk) —>¢§(t1,...,tk) (6.9)
N—o00
holds pointwise, for distinct points ti,...,t;. To obtain the required L? convergence, it

suffices to exhibit an L? domination. The case E[r1] < oo is easy: by (6.1)) there exists
A € (0,00) such that % < u(n) < A for every n € N, and since UX,I/QaN =1 it follows that

,U];k/Q w]CV<t17 s 7tk) < ARF? 1(071]k<t1’ T 7tk) ’ (610)

We now focus on the case % < a < 1. By Karamata’s representation theorem for slowly

varying functions [BGT87, Theorem 1.3.1], we can write L(n) = c(n) exp( [/’ L:L)du) for
some functions ¢(z) — ¢ > 0 and e(z) — 0 as x — co. It follows that for any 1 > 0 there

exits a constant A’ = A} € (0,00) such that

- 1
Lir <L(n) <Al , Vn,m € N with m <n.
A'\'m

— L(m) m
Recalling (6.1]) and (6.2)), for possibly a larger constant A € (0, 00) we have
Cy, AC,
— <N N(t — < 6.11
A(t—s)l—a—ﬁ >~ \/7aNrUz( ( 3)) = (t_S)l_OH_n ) ( )
which plugged into (6.5)) yields that for 0 <¢; < ... <t <1
k)2 Ak+2 Cﬁ

Uy ¢]CV(t17'-'7tk) < (612)

- t%_o‘l . (tk _ tk_l)l—a’(l _ tk)l—o/ ’

where we set o/ := a — 7 for short. If we choose n > 0 sufficiently small, so that o/ > %
(recall that oo > %), we have obtained the required L? domination.
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We finally check condition ({iii]) of Theorem. 3l that is relation . Since 0%; is bounded,
cf. (6.6)), we let B € (0,00) denote a constant such that (1 4 E)O’N < B, so that

S+ eMyi(D* <> B YT Ykt ) (6.13)

ICT N, |I|>¢ k>t (t1se-stp)E(T K
0<ty < <tp <1

If E[r1] < oo, applying (6.10)) and recalling that vy = %, this expression is bounded by
A2(k+2) gk

ZBkA2(k+2)( )kNik_Zi
UND T T Ko

k>t ' k>t

which is arbitrarily small for ¢ large, proving (2.11). If « € (%, 1) we apply (6.12)): setting
X :=2(1 —a’) <1 for short and bounding the sums by integrals, we estimate (6.13]) by

Z Bk’AQ k+2)02k5 / / e dtk Z BkA2 k+2)02k e —coklogk
- tk—tk DX = )X — 7

k>t 0<ty < <tp<l k>t

where for the last inequality we have applied Lemma below (we recall that x < 1).
Again, the sum can be made arbitrarily small by choosing ¢ large, proving (2.11]).

Step 4. Lastly, we prove formula (3.11)), when E[r] < oo. Since ¥§(t1,...,tx) =
this case, formula (| @ ) for h=0 yields

ok 5 (5 \?
Z$CO—1+Zk,< g ) / /W (dty) - W(dty) = eBrm”” (01 3 (ef) L (6.14)

[0,4]*

(gy)" in

where the second equality follows by [J97, Theorem 3.33 and Example 7.12]. This shows
that (3.11) holds for h = 0, because W ([0, t]) ~ N (0,?). In the general case, we introduce
the tilted law P defined by dP/dP = exp{(%) ([0,¢]) — ( )2t} and note that Z b . under

)

P has the same law as Z LA ¢ under P, cf. ([2.15) and (2.16). Slnce W([0,t]) ~ N(Bt t) under
P, formula ([3.11]) is proved also when h #0. O

7. PROOF FOR DIRECTED POLYMER MODEL

In this section we prove Theorem We recall that S = (S,,)n>0 is a random walk on
Z satisfying Assumption We denote by p € N the period of the random walk, so that
P(S;1 € pZ+1r) =1 for some r € {0,...,p — 1}. Introducing the lattice

T:={(n,k)€Z?: k€pZ+rn}, (7.1)
we have P(S = (Sy,)n>0 € T) = 1. Defining
an(k) =P(S, =k), Vn>0, keZ, (7.2)
Gnedenko’s local limit theorem [BGT87, Theorem 8.4.1| yields
5 ) b )] 0 2

where g(-) denotes the density of the stable law to which S is attracted. We also recall that
w = (w(n, k))neN, kez is an i.i.d. sequence of random variables satisfying (J3.1).
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Proof of Theorem [3.8. As in the proof of Theorem [3.1] the strategy is to rewrite the
partition function as a polynomial chaos expansion and then to apply Theorem [2:3] We
focus on the conditioned point-to-point partition function Zﬁ’gﬁN (Nl/o‘:v), as the free one
follows the same lines. For notational simplicity, we set ¢t = 1.

Step 1. We introduce for N € N the rescaled lattice

= {(N"In, N"Vk): (n,k) € T} CR?,
cf. (7.1]). Note that we use N instead of § := % as a subscript, as it indicates the “length” of
the polymer. For each (t,z) € Ty, we define the cell Cy((t,2)) := (t — %, t] X (z
which has volume vy = pN—(+1/a),

Step 2. We rewrite the conditioned partition function Zy; (N /ey, defined in (3.21)), as
a polynomial chaos expansion, using the random Varlables C N = (CN(8,9))(s,y)eTy 8iven by

—ﬁ,fﬁL

C(s,y) = N (ePeNaN o =A) _ ), (7.4)

where the prefactor has been chosen so that Var(¢y(s,y)) = O(1), see below. Arguing as in

(1.5)-(1.7), we can write

N
ZJO(]:/CBN (Nl/a ) \IJN(CN = Z kf Z wN ,(1,x) Zl’ SRR H CN Zz )
k=1 (Zl> 7Zk) (TN)k
where ¥, (1,2) is a symmetric function of (z1,...,2) € (Tn)*, which vanishes when z; = zj
for some i # j or when some z; € (0,1] x R, and for distinct z1 = (t1, 1), ..., 2k = (tk, Tk),

say with 0 < ¢ < --- <t <1, is defined by (recall ([7.2))
P(S’Nt1 = Nl/o‘xl,...,SNtk = Nl/o‘xk|SN :x)
(N )k

w]c\/,(l,a:) ((th 1)y .., (g, xk)) =

(7.5)
IN(1—t )(Nl/a(x — zy)) k a1 X

B ZN(NI/O‘CE) 11 (N 2 gty (N (@ — 562'71))) ,

=1

where (to,zo) := (0,0). The kernel YN (1,2) (21,...,2) is extended from (Tx)* to (R%)¥
the usual way, as a piecewise constant function which is constant on every product of cells.
The same extension is done for the function ((s, ), (¢,y)) = qn(—s) (Nl/o‘(y —x)).

Step 3. We now check the assumptions of Theorem [2.3 . Recalling (3.1) and the fact that

By = BN~"% , cf. Theorem E for every fixed N € N the random varlables (CN(2))zeTy
are i.i.d. with zero mean py(z) = 0 and variance given by

0% = Var((n(2) = N& AP0« NI 5 —— 52 (7.6)

Condition ({ij) of Theorem is thus satisfied with po(z) = 0 and o9 = 3. The uniform
integrability of ((n(2)?)neN,.eTy is easily checked as for the pinning model, cf. (6.7).

Let us check condition . Recalling the definition ([3.24)) of the function g¢(-), we observe
that by (7.3)), for fixed 0 < s < t and x,y € R,

: 1/« Ve, _ — _
A}gnooN an—s) Ny —2)) =pgi—s(y — ).
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Recalling the definition (3.26]) of the continuum kernel 9y , (for ¢ = 1), since vy = pN —1=1/e
it follows by ([7.5]) that for every k& € N one has the pointwise convergence

lim U;/'k/2 ¢]CV7(17x) ((tla :El)v SRR (tk‘a :Ek‘)) = ¢({,$((t17 :L‘l)a SER) (tka :L‘k)) : (77)

N—oo

We need to show that this convergence also holds in L2. Since the density g(-) is bounded,
relation (7.3)) yields that for some constant A € (0, c0)

(k) < An~V* VneNy, keZ. (7.8)

For fixed = € R, one has qy(NV%z) > gg(x)/Nl/O‘ for large IV, again by ([7.3), hence the
prefactor in ([7.5)) is upper bounded as

oy (NYe (g —
aNa tk)( (z mk)) < Ca , where Cy = 24
qN (Nl/ax) (1 _ tk)l/oz

Applying ([7.8]) to each term in the product in (7.5 and recalling that vy = pN —1-1/a for
O0<t; <...<tr <1 we get

—k/2 2 Cy AN (1—ty) (NYe (2 — zy))
[UN 171}]CV7(1,$)((751’:E1)7--'?(tkamk))] < (1 _tk)l/a QN(Nl/aIIZ‘)
i 1/2 —1,2 A
< [T r? N5 <N1/a(t' ~ 1>1/a>qfv<tit“> (NY*(a; —2i1)  (7.9)
i=1 v

g P(Snt, = NYeay, ..., Sny, = NV, | Sy = NY/oz)
11 (b — b))V (b, — b))V (1 — )V

—Cl (N2)

where we set Cl/wc = AFp~kC,. A further application of (7.§) also yields

k)2 2 AR Oy,
oy TN e (B T), o (k)| < - -
o Y ) 2%ty — t1)2/ - (1, — ty1) 2/ (1 — t3,)2/
(7.10)
We now decompose the domain {0 < t; < ... <t <1} X R* as Dy U Dy U D3, where
k
Dy = ({ti—ticr >n, |zl < M} {1 =t >},
i=1
k k
Dy = | J{ti—tios <n}U{l—tx <n}, Ds:=| J{|wl > M},
i=1 i=1

for fixed n, M € (0,00). Relation ([7.10|) shows that the rescaled kernel v;[kmchv (1 x)() is
uniformly bounded on the (bounded) set D1, hence the convergence (7.7)) holds in L? on D;.
If we show that the integrals of [v;,kﬂw]cv (1 z)(-)]2 and of [ ,(-)]? over the sets Dy and Ds

can be made arbitrarily small, for suitable 1, M, we are done. Since v, , € L2(]0,1]%F x RF),
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by (3.24)), there is nothing to prove for 1] ,(-) and we may focus on ¥ 1 gc)() By (7.9)

/D|’“/2wN1x<>|2= DS @ N 0 (). () )

(t1,21) .oy (s ) E(T )

1 1
< Cllg;cpk YA Z - ’
N (t1esti)EEN ty o ot — tp_) Vo (1 — t) Ve

0<t1<...<tp<1
t;i—t;—1<n for some i

(7.11)

dtq---dt
Scllc,xpk // 1o ! k )
ty " (t — te) Ve (1= )V

0<ty <<t <1
t;—t;—1<n for some 1

which vanishes as 7 | 0 (recall that « > 1). Analogously, using again ([7.9)), we get

_ dty - - - dig
0 O < Gt [
/Da ma 5 £/ (b — tg) Ve (1 — 1) /e

0<t1 < <tp<1

1/a _ anl/a
xP(Og%N\Sn\zN M|Sy=N a;)
(7.12)

As N — oo, the last probability converges to P(supg<;<; |X¢| > M| X1, = z), where
X = (X;)>0 is the stable Lévy process to which the random walk is attracted, cf. [Lig68],
hence it can be made as small as one wishes, uniformly in N € N, by choosing M large.
This completes the verification of condition in Theorem

Finally, we check condition (ii). Since % is bounded, cf. (7.6), we have (1 +¢)o% < B
for some B € (0,00) (we can even set € = 0, because puy = 0 in this case). Applying ([7.11])
for n = 1, i.e. with no restriction on t; — t; 1 (equivalently, (7.12) with M = 0), we obtain

S (4o o)y g <ZB’“ S @)’

ICTnN, |1]>¢ k>t " (21ye2k) E(TN)*

—k/2
= B’LII P20 o Bareys)
k>¢

- dty---dt L
D R < 3 Bhoy et

Bl gchicciy<t 1 (e — eV (L= tp)Ve 12

where, recalling that C} = AFp=kC,. we have set B,:=BA /P max{l, C,}?, which is a
finite constant for every fixed x € R, and we have applied Lemma [B-3] for the last inequality.
This shows that (2.11)) holds, hence condition in Theorem is verified. O

8. PROOF FOR RANDOM FIELD ISING MODEL

In this section we prove Theorem [3.14] and Corollary [3.16] We recall that the disordered
partition function ZJF(S Np by 18 deﬁned as in (3.32), where 5 := QN (62)% (with @ C R?

being a fixed bounded, simply connected open set with piecewise smooth boundary) and
where:

° P+5 (with expectation E+5) denotes the critical Ising model on Z?2, defined as in (3.30));
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e w5 = (Wsz)ze , is an i.i.d. family of random variables satisfying (3.1));
o \s = (Asz)ae 5o hs = (hsz)ze ;5 are defined by

>\5,:r: = 5‘('%') 5% ) hé,a} = iL(.ﬁ) 6% ) (81)
cf. (3.35), where A : Q — (0,00) and h : © — R are fixed continuous functions.

The heart of our proof are pointwise and L? estimates for the critical Ising correlation
functions, in particular near the diagonals (see Lemmas below). Complementary L*
estimates have been recently established in [CGN12l, Prop.3.9].

Proof of Theorem [3.14l We are going to apply Theorem with v5 = 62, rewriting the
partition function in terms of a polynomial chaos expansion.

Step 1. By relation (3.32), we can write

zt0 =B | J] (cosh(éss) + 0n sinh(€5,)) |

ve s (8.2)
where 55733 = )\&zw&x + h(;,x .
Recalling the notation of := [I.cr @z, a binomial expansion of the product yields
1 1
SIAI12 4 SN2, 671 .
Pl g = e e N cosh(gs,) oV BT [of] sinh(gs,)!
IC
— 152 (rl
— e M T ooshes) ¢ ST BT [of] tanh(gs.) . (8.3)

IC
We first show that the pre-factor before the sum converges to 1 in probability as § | 0.
Recalling the definition (8.2)) of &5, and the fact that ws, have zero mean, unit variance
and locally finite exponential moments, cf. (3.1]), a Taylor expansion yields
A2 A2
2 O3, + M) = )

T
2

E[log cosh(&s,)] = 5T+ 0(672), (8.4)

where the term 0(5%) is uniform over x € 4, by the continuity of 5\, h. Therefore, as 0 | 0,

Lo< _1
D Ellogeosh(&s)] = 5 A 720677 + (1), (8.5)

rE §

and the pre-factor in (8.3)) can be rewritten as

exp { Z <log cosh(&s5 ) — E[log cosh(&gm)]) } (1+o0(1)).

rE §

The sum is over | s/ = O(672) i.i.d. centered random variables, hence it converges to zero
in probability provided Var[log cosh(&s )] = 0(6%). This is checked by a Taylor expansion:

Var[log cosh(&s,,)] < E[(log cosh(£5,))%] = O(AL,) = O(67) = o(8?).
Step 2. It remains to verify that the sum in (8.3) converges to the desired Wiener chaos
expansion, namely (3.37)). Defining the family (5 = ((s5.2)ze 5 DY

o tanh(fé,w)
G = Var(tanh(&s . ))1/2’
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the sum in can be written as a polynomial chaos expansion Ws((s) :== D7 , ¥s({) Cé.,
where .
5(1) = Var(tanh(&5,.)) 2 EY o], IC 5. (8.6)
We are thus left with checking that the conditions in Theorem [2.3] are satisfied.
By a Taylor expansion, as 0 | 0 one has
Eltanh(0)] = hoo + O(hY, +X3,) = h(z) 6% +0(5%).

. (8.7)
Eftanh(&s,)?] = A3, + O(h3, + Ad,) = M(2)? 67 + 0(67)

where the O(+) terms are uniform in z, by the continuity of 5\, h. Therefore, uniformly in z,
h(z
ps(z) == El(sz) = A( ) J+o0(9), 03 :==Var[Gs.] = 1.
A(z)
Recalling that vs = 62 and 20— 0, 00) is continuous (hence uniformly bounded away
from zero), condition (i) of Theorem [2.3|is satisfied, with o9 = 1 and pg(z) := h(x)/A(z).
The uniform integrability of ((Cse — #s(2))*)se(0,1)0e 5 holds because the moments
E[(Cs — ps(x))?] are uniformly bounded, as for the disordered pinning model, cf. (6.7).

Step 3. It remains to check conditions and of Theorem . By (8.7)
Var[tanh(¢s,)] = A(z)2 67 + O(52)
hence for fixed I = {z1,...,z,} C Q, by (8.6),
~ ZTL
Ys(I) = A SSET [0]) = A1) -+ Man) 05" B[00, -+ 04, ).

Recalling that vs = 62, relation -, that was recently proved by Chelkak, Hongler and
Izyurov |[CHI12|, yields immediately that for every n € N and distinct z1,...,z, € Q

gigug%g({xl,. ) = Ax1) - A@n) C g (21, ) = Po({z1,- - an)}) . (8.8)

(Incidentally, since o9 = 1 and po(x) := h(z)/A(z), the Wiener chaos expansion of Theo-

rem cf. (2.12), matches with the one of Theorem cf. (3.37).)

To extend the pointwise convergence (8.8) to L? convergence, we need uniform bounds
on 1s(I). By Lemma below, we have the following bound uniformly in ¢ € (0,1):

]|

_ 1 N
vy 2 P5(1) < (CAoo) = (ClIMlo)" fa (1, -y pp),  (8.9)
’ H d(zi, 0 U T\ {z;}) > .
where by Lemma [8.3] E below, given |I| = n for any n € N,
1 _3
—fal3sny < C(al) (8.10)
Combined with ({8.8]), it follows that conditions and of Theorem are satisfied
and this completes the proof of Theorem [3.14 O

We next state and prove the lemmas needed to establish and (8.10)).

Lemma 8.1. Let ), s ford >0, and E+5 be as introduced at the beginning of this section.
Then there exists C = C(Q2) € (0,00) such that for any I = {z1,...,x,} C Q with |I| =n

. 1
0<ET [04 - 0z,] <C"63 , (8.11
slom ] Ed(wi,ﬁﬁul\{mi})é )
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where for any x € Q we define 0, == 0,5, with xs being the point in s closest to x, and we
set d(x, A) = infyca ||z — y|.

Proof. If B(x;r) denotes a ball of radius 7 centered at x, and B(z;7)s := B(x;7r) N (62)?,
then (3.33) with Q = B(0;1), n =1 and z; = 0 implies that for some C € (0, 00)

B o),l00] < €5 for all 6 € (0,1). (8.12)

Then, for any x € Q, by imposing + boundary condition on the ball B(z;r) with radius
r:=d(x,0Q) and applying the FKG inequality [G06, Chapter 2|, we obtain

ET [0a] < Eg(w)é[am] = EJBF(O;T)(S[JO] = E;(O;l)w [o0) < C—~ = ——, (8.13)

where in the last inequality we applied

(8.12)).
Relation (8.11)) follows by applying (8.13)) and Lemma below, choosing ; therein to
be €; N (6Z)%, where €; is the ball centered at x; with radius 1d(z;, 09 U I\{z;}). O

Lemma 8.2. Letzy,...,x, € C Z2 and suppose thatz; € ; €, with ;N( ;U9 ;) =10
for alli # j. Then

n
0<E oy, - 0u,] < [[E" [04]: (8.14)

-1
Proof. Relation is a consequence of the Griffiths-Kelly-Sherman (GKS) inequalities
(see e.g. [E06, Chapter V.3]). We recall that P denotes the Ising measure on {+1}% with
inverse temperature 5 € (0,00) and zero external field, cf. . (The fact that g = B, is
immaterial for this proof, and we could even include a positive external field in P*.) Given
h = (hg)ze , let Pfrf“,‘; denote the Ising measure with external (site-dependent) field h, i.e.

. 1
P hlo) = Zf?exp{ Z Bozoy + th%} .
B,k xr~VYye S
Since P = Pfre;;r with the choice b} := B|{y € A : y ~ x}|, we may focus on Pfre;;.
Let I :={z1,...,2,} and 07 := 04, -+ 04,. If R >0 (that is, h, >0 for all z € ),

E"Glor] > 0,
by the first GKS inequality, proving the first bound in (8.14)). Always for h > 0,
OET (o]

S = E"lor0,] - E"}[o1]E™[0,) 20, Wye
Yy

by the second GKS inequality. Therefore Efrf,‘j [o7] is increasing in h, for every y € . Starting
with h = A" and increasing hy to +oo for each y € U ;0 ;, the resulting Ising measure
is equivalent to imposing + boundary condition on U} ;0 ;. Under this limiting measure,

the distribution of the spin configurations on the disjoint subdomains ( ;)1<i<n factorizes,
leading to the second bound in (8.14)). O

Lemma 8.3. For any n € N and distinct z1,...,x, € Q , set I :=={x1,...,x,} and define

n

1
Tlyee.,Ty) 1= . 8.15
faten ) g d(x;, 0QU I\{zi})s 1)
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Then there exists C = C(2) < oo, such that for all n € N,

1
IfallZz@m < C™(n))1. (8.16)

Proof. To prove (8.16)), it suffices to show that for all n € N
Ifall2qm < Cntllfaldzgn ), (8.17)

where HfQH%Q(QO) = 1.
Note that in
| foll72 0y / / ~dzy - - day, (8.18)
i d(zi, 0Q U I\{xz})i

we can divide the domain of integration € for x,, into disjoint open sets Qq, ..., Q,—1 (modulo

a set of measure 0), such that
xn € Qo ifand only if  d(x,, QU I\{z,}) = d(x,, 0Q),

8.19
zn € Q; if and only if d(xn, QU IN\{z,}) = d(zn,z), 1<i<n-—1. ( )
We next bound fq(z1,...,z,) in terms of fqo(z1,...,x,—1). First consider the case
Tp € Q. For each 1 <i <n — 1, either
d(a:z,(?QUI\{:c,}) = d(l‘l,aQ U I/\{{L'Z}), (8.20)
where I' := {x1,..., 21}, Or
d(x;, QU I\{z;}) = d(zi, zy). (8.21)
In the later case, by the triangle inequality and the assumption x,, € {2y, we find that
d(x;, 00) < d(xi, xp) + d(xn, 0Q) < 2d(zi, Tp), (8.22)
and hence
1 1 2 2
(8.23)

= < < .
d(x;, 0QUIN\{z;})  d(xi,zpn) — d(x;, 0Q) ~ d(z, 02U I'\{z;})
If Ny denotes the number of points among {x1,...,z,—1} such that (8.21) holds, then

fa(x Tp) < Q%f2 (x Tp—1) ! (8.24)
1y---9dn) > 1yeeesdbn—1)— 71 - .
N ¢ Ay, 09) T
We claim that Ng < 6, which would then imply
3 dx,
o [ B oy do < 28 ol [ (8.25)
/ / ) PO Ja d(a,, 00)}

Qr=1xQq
where the last integral is bounded by some constant C3(2) < oo, because €2 is assumed to
be a bounded simply connected domain with a piecewise smooth boundary.

To verify the claim that Ny < 6, assume without loss of generality that z1, ...,z are
the points which satisfy - In particular, d(z;, z,) < d(z;,z;) for all 1 <@ # j < k. We
may shift the origin to z, and assume without loss of generality that x; € R? has polar
coordinates (r,79;), and the directional vectors e™V1,. .. e’ are ordered counter clockwise
on the unit circle. For any two adjacent e*’s and e*’7+! on the unit circle, in order to satisfy

max{d(z;,0),d(x;11,0)} < d(zj, zj11),

it is necessary that the angle between e’ and e’’i+1 is at least 7. It then follows that there
can be at most 6 such points.
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We now consider the case z, € Q; for 1 <i < n —1 (recall (8.19)). Without loss of
generality, assume that x,, € ;. By the same reasoning as above, for each 1 <i <n —1,

either relation (8.20)) or relation (8.21]) holds; in the latter case we can replace (8.22)) by
d(xi, x1) < d(xi, xp) + d(xg, 1) < 2d(x4, 24

because x,, € ;. Thus for ¢ > 2 relation (8.23)) still holds if we replace d(x;,99Q) by d(z;, x1)
therein. The case ¢ = 1 needs to be dealt with separately: for this we simply bound

! r < ! T+ ! T
d(z1,00UI\{x1})1  d(x1,0QUI"\{z1})7  d(z1,2,)%
_ 1 1<1+d@h89UI\?qu>
d(x1,0QU I'"\{x1})1 d(x1,xn)%

We thus obtain the following analogue of (8.24) (with Ny < 6) when z,, € Qy:

3 d(zy,0Q U I'\{z i
fg%(xl,...,xn) < 22fg22(x1,...,xn_1){<1+ (1 d(:quijIn\){zll 1}) )d(xn’lxl)i }

Bounding the term in brackets by Cy(€2)/d(z1, l‘n)%, for some Cy(£2) < oo (recall that €2 is
a bounded set), we obtain

/ /mmw. D)z - - dan < 22 C4(Q) / /kx“'%”mld
xn7$1

Qr—1xQ, Qr—1xy
< C5() [ fal 22 gt (8.26)

for some C5(Q2) < oo, where we applied the Hardy-Littlewood rearrangement inequality (see
e.g. [LLO1, Theorem 3.4|) to bound

Tx
/ A 1 S/ den 1 :/ 27270(17":%7&‘91’%’
0 d(zp,21)?2 Q5 d(zp,0)2 0o 72 3

1

where Q% is the ball centered at the origin with the same area |Q}| = 772 as ;.

Combining (8.25) and (8.26]), and the analogue for z,, € ; with 2 < i <n — 1, we obtain

3 3
I fall72ony < Co() (1 + Q17 + - + 1] 7))l fall72(gn-1)

Qi+ Q= 3
< co(@(1+ (- (Bl e

1
< Cy()ni ”fQH%Q(Qn—l)u (8.27)

where we applied Jensen’s inequality to the function g(z) = 1. This establishes 1) and
concludes the proof of Theorem O

Proof of Corollary Let ¢/(+) denote the complex derivative of the conformal map
@ : 0 — Q. Since |¢'(2)|? equals the Jacobian determinant of ¢, for all f, g € L?(£) we have

2
/Q f(@)g(x)dz = / () g(e(2)¢ (2)2dz, (8.28)

by the change of variables formula. As a consequence if W (-) denotes white noise on R?,
the processes ([q f(2)W(dx)) rer2o) and ([fg f(2(2))]¢'(2)| W(d2)) fer2(o) have the same
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distribution: they are both centered Gaussian processes with the same covariance ([8.28]).
This extends to an equality in distribution for multiple integrals (recall Subsection [2.1))

/ an(xl,...,xn)il;[lW(da:i) i/~--/ﬁnf(cp(zl),...,cp(zn))l_[ [|<p’(zz)]W(dzZ)],

i=1

jointly for n € N and symmetric f € L?(Q"). Informally, we have W (dg(2)) 4 | (2)|W (d2),
which is the stochastic analogue of dy(z) = |¢'(2)|?dz. Recalling (3.37)), it follows that

swod N E(o(z ) T Ble) 19/ “i
Z: 4 +;m/ L et DI REE) P EwE -

+ h(p(z) I (20)” dzi).
By |CHI12, Theorem 1.3|, the function d)g is conformally covariant with

db(e(21), ..., 0(zn)) = zl, cy 2 H (zi)] %, (8.30)

hence Z¥, £ Z0W with A(2) = [0 (2)F A((2)) and hz) i= ¢/ () ¥ (). O

APPENDIX A. THE CAMERON-MARTIN SHIFT

Recalling Subsection ﬁ’ let W = (W(f))gecr2ray be a white noise on R? defined on the
probability space (Qy, A, P). We denote by L° := L°(Qy, o(W), P) the space of (equivalence
classes of) a.s. finite random variables that are measurable with respect to the o-algebra
generated by W, equipped with the topology of convergence in probability. Note that all
the multi-dimensional stochastic integrals W®*(f) belong to L°.

Let us now fix v € L?(R?), representing the bias. Given k € N and a symmetric square-
integrable function f : (R¥)* — R, the “biased stochastic integral”

k
WP (f) = / - /( S ) [T (W (de) + v(ai)dz:) (A1)

R i=1
was defined in Remark by expanding the product and integrating out the deterministic
variables corresponding to v(z;)dz;, thus reducing to a sum of lower-dimensional ordinary

(unbiased) stochastic integrals. In particular, for k = 1 we can write W, (f) = W2L(f) as
W (f) :==W(f) + g f@v(z)de =W(f) +EW(f)¢],  with &:=W(v), (A2)

by the It6 isometry .

Thus W, (f) = 0¢(W(f)), where we define the map p¢(X) := X + E[X{] for every one-
dimensional stochastic integral X. By [J97, Theorem 14.1], such a map admits a unique
extension g¢ : LY — LY called the Cameron-Martin shift, which is continuous, linear and
satisfies

oe() =1,  0e(XY) = 0e(X)oe(Y) VX,Y €L’ (A.3)
As a consequence, the multi-dimensional biased stochastic integrals (A.1]) correspond to
WEH(S) = 0c(WEH(P) - (A4)

This is easily checked for “special simple functions” f (recall Subsection using (A.2)-(A.3)),
and is extended to general symmetric f € L?((R?)) using the continuity of 0¢.
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For any X € LY the random variable g¢(X) has the same distribution as X under the
probability P, defined in (2.15)), by [J97, Theorem 14.1 (iii)-(iv)]. In particular, choosing for
X the series in (2.13]), whenever it converges in probability, one obtains relation ([2.16)).

APPENDIX B. TECHNICAL LEMMAS

The following lemma is used in the proof of Theorem 2.5

Lemma B.1 (Exponential tilting). Let (Cs:)se(0,1),ieTs be a family of independent random
variables in L?, with mean ps(i) and variance o3, with o5 — oo € (0,00) and ||uslle =
sup;et, s (i)] — 0 as 6 | 0. Assume further that (C§,)se0,1),eT, are uniformly integrable.

Then one can construct independent random variables ((s.i)se(0,1),ieT, Such that

P(Csi € dz) = fsi(2)P(Csy € d),
and there exist 8y, C' € (0,00), and Cp, € (0,00) for every p € R, such that
E[Gil =0, E[G] <o3(1+Clus(@)), and E[fsi(Csi)"] <1+ Cpps(i)®,  (B.1)
for all § € (0,60) and i € Ts5. Furthermore, if

inf _ min {P(¢s; > 0),P (¢ < 0),Var(Cssl¢si > 0),Var(Cslés; < 0)} >0, (B.2)
56(0,1),i€T5

then there exists C' € (0,00) such that the following improved bound holds:
EIG3:] < 03 (1+C'us(i)?). (B.3)

The proof of Lemma [B.I]is an easy corollary of the following general result, which concerns
exponential tilting of a single random variable in order to shift its mean to zero (since
the random variables are not assumed to have finite exponential moments, the tilting is
performed on a bounded subset). The assumptions in Lemma guarantee that conditions

(B.5) and are fulfilled, and the constants in (2.15]), (B.7)), (B.10) are uniformly bounded.

Theorem B.2. Let X be a square-integrable random variable and let A > 0 be such that

1
E[X?1{x)>43] < ZE[X2]' (B.4)
Assume that E[X] is sufficiently small, more precisely,
E[X2]2
EX)| <e:= . B.
Then one can define a random variable X, such that P(X € dz) = f(x)P(X € dz), satisfying
4elP!
E[f(X)"] <14+ C,EX]> VpeR,  with Cp:= st’ (B.6)
~ ~ A3/2
E[X]=0, E[X%<E[X?+CIEX]|, with C:= N (B.7)
IfE[X] >0, and A is chosen such that
1
E[X*1{x>ay] < ZE[XQJ-{XZO}L (B.8)
(replace X by —X if E[X] <0), and further assume that
E[X?|X > 0]
E[X|X > 0] < & o BN =01 (B.9)

144 A3 ’
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then we can define X such that holds with & replaced by €', while 1s improved to
A

E[X]=0, EX’<EX’+CEX], with C':= wxsoe (B0

Proof. Without loss of generality, we assume that E[X] > 0 (otherwise consider —X).

Step 1 (Strategy). We will fix I C R, which is either [-A, A] (assuming (B.4))-(B.5])), or
[0, A] (assuming —), and we define random variables Y, Z with laws

PYe)=PXe-|Xel), P(Ze):=P(Xe - |X¢&I). (B.11)
Taking independent copies of X,Y, Z, we have the following equality in distribution:
dist

We then exponentially tilt Y, defining for A € R a random variable Y, with law
P(Yy € dz) := M TN P(Y e da), where F(\) :=logE[e*Y]. (B.13)
As we will show at the end of the proof, we can choose A\ = X € R such that
P(X &1)
E[Yy] = - ——-"F<E[7]. B.14
If we define X replacing Y by Y5 in the definition (B.12), that is
X:: 1{X€I}YX + 1{X€I}Za (B15)
then E[X] = 0 by construction. Moreover P(X € dz) = f(2)P(X € dz) with density
f(x) = eXfo(X) 1{3:61} + 1{x€R\I} =1+ (eXI*F(X) — 1)1{9061} . (B.16)

The rest of the proof is devoted to estimating E[X2] and E[f(X)P]. We are going to use
the following bounds on A, which will be proved at the very end:

[E[X]|

I:=[-A, A], assuming (B.4)-(B.5): |X| < W; (B.17)
: o [ELX])]
I :=10, A], assuming (B.8|)- : Al < ; (B.18
0.4 g A V643/2\/e\/P(X € T)P(X > 0) (B.18)
~ 1
i : < —. .
In either case |A| < 571 (B.19)

Step 2 (Bounds on E[X2]). Denote G(\) := E[Y?] = E[Y2e*Y]/E[e*Y]. Recalling (B-I5)
and (B.12), we can write

E[X?] = E[X®] + P(X € I)(E[Y]] — E[Y?]) =E[X*| + P(X € ) /A G'(A)dr.  (B.20)

Since G'(A\) = E[(Y))?] — E[(Y))?E[Y)] and |Y)| < A, we have |G’(\)| < 243, and hence
E[X?) < E[X? 4 24%P(X € I)|)\|. (B.21)
Applying (B.17), we obtain precisely the second bound in (B.7]).
To prove (B.10)), let us assume (B.§)-(B.9) and set I := [0, A]. By (B.12)—(B.14), we have
E[X]

E[YX] = E[Y] - m,

(B.22)
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and hence E[Y3] < E[Y]. Since E[Y)] = F'()) is increasing in A (because F()) = Var[Y)] >
0), it follows that A < 0. We then refine (B.20) as follows:

_ " A A

Ewﬂ:ﬂXﬂ+HXeDMﬂ®+WX€D/n</(y@d%dx (B.23)
0 0
Note that G'(0) = E[Y3] — E[Y2]E[Y] > 0, because Y € [0, A] and hence Y2 and Y are
positively correlated. Therefore the second term in (B.23]) is bounded by 0. Also note that
G"(\) = E[(Ya)"] — 2E[(Ya)|E[Ya] + 2E[(Y2)?|E[YA]? — E[(YA)?)?,

and hence |G”()\)| < 6A%. Substituting into (B.23)) then yields

E[X? < E[X? 4+ 3A4'P(X € I)X2. (B.24)
Applying (B.18)), we obtain precisely (B.10)).

Step 3 (Bounds on E[f(X)]). Recall f from (B.16) and F'(A) from (B.13). Since £'(0) = 0
and |F'(\)] = |[E[YA]| < A4, cf. (B.13), we have |F(\)| < A|A| and hence ])\y;— (N)| < 247
for every z € I C [—A, A]. Applying (B.19)), we obtain

e 22T < fx) < 27T Vz eR. (B.25)

For any p € R, Taylor expansion gives y? < 1+p(y—1) +Cz’)(y —1)2forally € [6—2/27’ (32/27]7
with ,
Cpi=  max |p(p— 1)y ?| = |p(p—1)]ex "2 <26l (B-26)

yEle—2/27 £2/27]

Therefore
F@)P <1+p(f(2) = 1) + C(f(2) — 1)°
=1+ (p—2C})(f(x) = 1) + Cp (772D — 1)1{161}
Since f is a probability density, recalling the definition of F' from , we obtain
Qﬂxw]§1+cngeIxJ“®4”®—1y (B.27)
Since |F”(X\)| = |E[Y?] — E[Y)]?| < 242, the Mean Value Theorem and yield
OSF@®72ﬂ®=ﬁF®D—F@Dfu%b—an§¢¥V§§%§l, (B.28)

where the first inequality holds by convexity of F (note that F” ()\) Var[Y,] > 0).
Consider ﬁrst the case | = A A] assuming (B.4)-(B.F)): since e* —1 < 2z for 0 < z < 1,

applying (B.2§] and we obtain
~ ~ ~ 4elp!
EU1XV}g1+2CﬂF@Ay—ﬂwm)§1+cg&¥A2g1+ °

Ae
proving (B.6)).
The case [ = [0 A] assuming -(B.9), is similar: we keep the term P(X € I) in (B.27)

when writing (B , so that applylng B. ]8 gives

E[X]?, (B.29)

16elP! 4elpl
E[X]?<1
6Ae’ AP =<1+ A’

which coincides with , where ¢ is replaced by €’.

Step 4 (Bounds on \). We finally show that one can choose A = A so that (B.14) holds
and the bounds (B.17)-(B.18])-(B.19) are satisfied.

E[f(X)"] <1+CLP(X € [)8A°X2 < 1+ ELX,
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Since F'(A\) = E[Y)], cf. (B.13)), we can rewrite (B.14), cf. (B.22)), as
~ E|X
F'(\) - F'(0) =17, where z = _P(X[E]I) . (B.30)

Since F"(X\) = E[Y}] — 3E[YA]JE[Y?] + 2E[Y,]® and |Y)| < A, we have |[F”'()\)] < 6A3.
Therefore

F//(o)

F// V Y
F'(N) 2 F/(0) = 6% = ==~ forall A <ci= (0) _ Var(Y)

1243 1243 °
In particular, equation (B.30|) has exactly one solution e [—c, ¢], provided

. F"0) ) P(X € I)Var(Y)?
|z| < 5 © that is E[X]| < 2143 )

(B.31)

in which case \ satisfies
N |z| 2|E[X]]
A< = . B.32
A< LF7(0)  P(X eI)Var(Y) (B:32)

It only remains to check that condition is indeed satisfied, under either assumptions
— or —, and to show that yields the bounds (B.17))-(B.18])-(B.19).
For this we need to estimate P(X € I) and Var(Y).

In order to avoid repetitions, let P* denote the original law P when we assume —
or the conditional law P(-| X > 0) when we assume (B.8)-(B.9). In either case I = [~ A4, A]
or I =[0,A] we can write P(Y € - ) :=P(X €| X € I) =P*(X € -||X| < A), therefore

Var(Y) = Var* (X | | X| < A). (B.33)
Note that assumptions (B.4)-(B.F]) and (B.8)-(B.9) can be written as follows:
1 E*[X2]2
* 2 * 2 *
E' X Lxsm] < JEIXT], B X< 40 (B.34)
Since E*[X21{|X\§A}] < A2P*(’X’ < A), it follows that
3 E*[X?) 3
A2 > 1 > TE¥[X?). B.
We thus get
E* [ X211 x> Ef[X?] _ 2
* < =1—-P* >1-— >1-— > — .
P(X|<A)=1-P(X|>A)>1 12 >1 1Az 23 (B.36)
. B (X" 1yxo ] _ EVX?) _ VEXT
E* X 1xpsa3]] < Y <=1 < N

Together with (B.34) and (B.35]), this gives

(1)

[E"[X1x<ny]| < [E X))+ [E* [(XLxs ] < ( T 2\1/3)\/5*[)(2] < %\/ E*[X7],

which yields

e i < 4 = sl L g

Pr(IX|<A) ~ 2
Applying one more time (B.34) we get

E*[X?1 Al 3
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which finally yields, cf. (B.33)),
Var(Y) = E'[X? || X| < 4] — E*[X || X| < AJ2 >

By (B.5)) and ( -, and applying (B.37)) and ( , we obtain
E*[X?]? Var(Y)2 P*(|X| < A) Var(Y)?
| < < <
144 A3 36 A3 24 A3
Consider first the case I = [—A, A], assuming (B.4)-(B.5)): since P*(|X| < A) =P(X € I),
relation (B.38)) concides precisely with the condition (B.31)) to be checked. Next we consider

the case I = [0, 4], assuming (B.8)-(B.9), where we recall that P*(-) = P(-| X > 0). By
assumption E[X] > 0, we have |E[X]| < |E[X1{X20f” = P(X > 0)|E*[X]|. Since we can

E*[X?]. (B.37)

[\DM—~

[E*[X]

(B.38)

write P*(|X| < A)=P(X € I)/P(X > > 0), relation (B.38)) again yields (B.31]).

To conclude, for the case I =[—A, A], applying (B.36) and (B.37) to (B.32) and recalling
the definition of € in gives (]E For the case I = [0, A], the bound (B.18) follows
similarly, recalling the deﬁmtlon of ¢ in @Eb and observing that P(X cl)>35P(X >0)

by (B.36)). Finally, to obtain ( - ) from (B.17] -, apply (B.35)) and the assumptlons
(B:4), 1- O

Finally, we prove the following bound on iterated integrals.

Lemma B.3. Let x € [0,1). Then there exist c1,co > 0 such that for all k € N,

dtg
/ / tX (tg — tg—1)X = cle_@klogk, (B.39)

0<t1 < <tp<1

by dty -
< C2R 108 % B.40
/ / - k*tk 1)X(1 = t)x = ae ( )

0<ty <--<tg<l

Proof. It is enough to prove (B.40)), since the integral therein bounds (B.39)). Recognizing
the density of the Dirichlet distribution (with parameters k+ 1 and 1 — ) allows to evaluate
/ dty - - - ditg . NG X)k+1
e (e = te—)X(L=t)X D((k+1)(1=x))’

and

0<ty<---<tp<1

and (B.40) follows by standard properties of the gamma function I'(-). O
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