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ABSTRACT. We consider the so-called Dickman subordinator, whose Lévy measure has
density % restricted to the interval (0,1). The marginal density of this process, known as
the Dickman function, appears in many areas of mathematics, from number theory to
combinatorics. In this paper, we study renewal processes in the domain of attraction of
the Dickman subordinator, for which we prove local renewal theorems. We then present
applications to marginally relevant disordered systems, such as pinning and directed
polymer models, and prove sharp second moment estimates on their partition functions.

1. INTRODUCTION AND MAIN RESULTS

1.1. MoTivATION. We consider the subordinator (increasing Lévy process) denoted by
Y = (Y5)s>0, which is pure jump with Lévy measure

V(dt) = %1(0,1)@) at . (1.1)

Equivalently, its Laplace transform is given by
NG Lo dt
E[e**] = exp{s J (e —1) T (1.2)
0

We call Y the Dickman subordinator (see Remark below). It is suggestive to view it as a
“truncated O-stable subordinator”, by analogy with the well known a-stable subordinator
whose Lévy measure is ﬂ%]l(o,oo)(t) dt, for a € (0,1). In our case a = 0 and the restriction
L(,1)(t) in (L) ensures that v is a legitimate Lévy measure, ie. {5(t% A 1) v(dt) < 0.

Interestingly, the Dickman subordinator admits an explicit marginal density

P(Ys € dt)
t) i = ——=
fult) o= S

which we recall in the following result.

for s,t € (0,00), (1.3)

Theorem 1.1 (Density of the Dickman subordinator). For all s € (0,00) one has

Sts—l e~ s
_ t 1
T for te (0.1],
fs(t) - s—1,—vs t—1 <14)
st e 7 st f Mda forte (1,00)
I(s+1) o (1+4a) T
where T'(-) denotes Euler’s gamma function and v = —SSO logue™du ~ 0.577 is the

FEuler-Mascheroni constant.
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Theorem follows from general results about self-decomposable Lévy processes [S99]ﬂWe
give the details in Appendix [B] where we also present an alternative, self-contained derivation
of the density fs(t), based on direct probabilistic arguments. We refer to [BKKK14] for
further examples of subordinators with explicit densities.

Remark 1.2 (Dickman function and Dickman distribution). The function

o(t) := € f1(t)
18 known as the Dickman function and plays an important role in number theory and
combinatorics [T95, [ABT03]. By (1.4) we see that o satisfies

ot)=1 for te(0,1], to(t)+ot—1)=0 for te(1,00), (1.5)
which is the classical definition of the Dickman function. Examples where o emerges are:

o If X,, denotes the largest prime factor of a uniformly chosen integer in {1,...,n},
then lim,_,o P(X, < n') = o(1/t) [D30].

e IfY, denotes the size of the longest cycle in a uniformly chosen permutation of n
elements, then lim, o, P(Y, < nt) = o(1/t) [K71].

Thus both (log X,/logn) and (Y,/n) converge in law as n — o to a random variable Ly
with P(L1 < t) = o(1/t). The density of L1 equals t *o(t™' — 1), by (L.5).

The marginal law Y1 of our subordinator, called the Dickman distribution in the literature,
also arises in many contexts, from logarithmic combinatorial structures [ABT03], Theorem 4.6]
to theoretical computer science [HT01]. We stress that Y1 and Ly are different — their laws
are supported in (0,00) and (0,1), respectively — though both are related to the Dickman
function: their densities are e 7 o(t) and t~'o(t~! — 1), respectively

In this paper, we present a novel application of the Dickman subordinator in the context
of disordered systems, such as pinning and directed polymer models. We will discuss the
details in Section [3 but let us give here the crux of the problem in an elementary way, which
can naturally arise in various other settings.

Given ¢, 7 € (0,00), let us consider the weighted series of convolutions

N 1
a Z I Z ni(ng —na)" - (g — ng—1)" (16)

k=1 O<ni<ne<..<np<N 1

We are interested in the following question: for a fixed exponent r € (0,0), can one
choose q = qn so that vy converges to a non-zero and finite limit limit as N — o0, i.e.
vy — v € (0,00)? The answer naturally depends on the exponent r.

If r < 1, we can, straightforwardly, use a Riemann sum approximation and by choosing
q = AN~ for fixed A € (0,0), we have that vy will converge to

S -dty 7qk+1
_I;Ak{ f J trtQ—tl (tk—tkl} Z*k FEenn) (00

o<ti<..<tp<l

where the last equality is deduced from the normalization of the Dirichlet distribution.

If r > 1, then, as it is readily seen, the Riemann sum approach falls as it leads to iterated
integrals wh1ch are infinite. The idea now is to express the series as a renewal function.

TWe thank Thomas Simon for pointing out this connection.
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The case r > 1 is easy: we can take a small, but fixed ¢ > 0, more precisely

1 1
0, — h R := — 0
w<,R) where > e,

neN

and consider the renewal process 7 = (7;)k>0 with inter-arrival law P(r; = n) =
n € N. We can then write

UN = Z (qR)kP(Tk < N)
k=1

# for

==

qR
v =
N—© 1*QR

€ (0,00).

The case r = 1 is more interestingﬂ This case is subtle because the normalization
R=3> N % = o0. The way around this problem is to first normalize % to a probability on
{1,2,..., N}. More precisely, we take

N
Ry := 2 % =10gN(1 —1—0(1)),

n=1

and consider the renewal process 7(N) = (TIEN))]CZ() with inter-arrival law
11
P(r™M =n)=— 2 forne{l,2,...,N}. 1.8
(1Y =n) = s formef } (1.9
Note that this renewal process is a discrete analogue of the Dickman subordinator. Choosing
q = A/Ry, with A < 1, we can see, via dominated convergence, that

o8]
on = S NP < N) vie 2 e (0,) (1.9)
k=1

because P(T,SN) < N) —>1as N — o, for any fixed k € N. But when A = 1, then vy — ©
and then finer questions emerge, e.g., at which rate does vy — 007 Or what happens if

instead of P(T]E,N) < N) we consider P(T]E,N) = N) in (L.9), i.e. if we fix ny = N in (L.6)?

To answer these questions, it is necessary to explore the domain of attraction of the
Dickman subordinator — to which 7(N) belongs, as we show below — and to prove renewal
theorems. Indeed, the left hand side of for A = 1 defines the renewal measure of 7(V).
Establishing results of this type is the core of our paper.

1.2. MAIN RESULTS. We study a class of renewal processes 7(™) which generalize (T.8).
Let us fix a sequence (1(n))pen such that

r(n) = i(1 +0o(1)) asn — o0, (1.10)
n
for some constant a € (0,0), so that
N
Ry := Z r(n) =alog N(1+ o(1)) as N — 0. (1.11)
n=1

For each N € N, we consider i.i.d. random variables (TZ-(N))Z-eN with distribution

P =)= Wiy (). (112

tIt can be called marginal or critical, due to its relations to disordered systems, see [CSZ17D] for the
relevant terminology and statistical mechanics background.
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(The precise value of the constant a is immaterial, since it gets simplified in (1.12)).)

Let 7(N) = (T/gN))keNg denote the associated random walk (renewal process):

k
=0, V=T (1.13)

We first show that 7(Y) is in the domain of attraction of the Dickman subordinator Y.

Proposition 1.3 (Convergence of rescaled renewal process). The rescaled process

(N)
(T[s log N | )
N
520

converges in distribution to the Dickman subordinator (Ys)s=0, as N — o0.

We then define an exponentially weighted renewal density Uy x(n) for 7(N) which is a
local version of the quantity which appears in (|1.9):

Una(n) = DA P(r™ =n)  for NneN, Ae (0,). (1.14)
k=0

We similarly define the corresponding quantity for the Dickman subordinator:

0
Go(t) ;:f ¢’ f()ds  for te(0,00), JER, (1.15)
0
which becomes more explicit for ¢t € (0, 1], by (1.4):
G TSt gy 0,1], ¥R 1.16
t) = —_— t . .
e R e e R (RN (1.16)

Our main result identifies the asymptotic behavior of the renewal density Uy x(n) for

large N and n = O(N). This is shown to be of the order E[Tl(N)]_1 ~ (lo]gVN)_l’ in analogy

with the classical renewal theorem, with a sharp prefactor given by Gy(% ).

Theorem 1.4 (Sharp renewal theorem). Fiz any ¥ € R and let (AN)nen satisfy

AN:1+IO§N(1+0(1)) as N — 0. (1.17)

For any fired 0 < d <T < oo, the following relation holds as N — oo:
Uy (n) = lof‘fVN Go(2)(1+0(1),  uwniformly for 6N <n <TN.  (L1g)
Moreover, for any fized T < oo, the following uniform bound holds, for a suitable C' € (0, 00):
Unay(n) < C IOJgVN Gy(%), Yo<n<TN. (1.19)

As anticipated, we will present an application to disordered systems in Section [3} for
pinning and directed polymer models, we derive the sharp asymptotic behavior of the second
moment of the partition function in the weak disorder regime (see Theorems and 3.3)).

We stress that Theorem extends the literature on renewal theorems in the case of
infinite mean. Typically, the cases studied in the literature correspond to renewal processes
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of the form 7,, = T1 + - -+ + T),, where the i.i.d. increments (7;);>1 have law
P(Ty = n) = ¢(n) n~ (), (1.20)

with ¢(-) a slowly varying function. In case a € (0, 1], limit theorems for the renewal density
U(n) = Y= P( = n) have been the subject of many works, e.g. [GL62], [E70], [D97],
just to mention a few of the most notable ones. The sharpest results in this direction have
been recently established in [CD19] when « € (0,1), and in [B19+] when o = 1.

In the case of with a = 0, results of the sorts of Theorem have been obtained
in [NWO08| IN12, [AB16]. One technical difference between these references and our result is
that we deal with a non-summable sequence 1/n, hence it is necessary to consider a family
of renewal processes 7N) whose law varies with N € N (triangular array) via a suitable
cutoff. This brings our renewal process out of the scope of the cited references.

We point out that it is possible to generalize our assumption to more general
renewals with inter-arrival decay exponent a = 0. More precisely, replace the constant
a therein by a slowly varying function ¢(n) such that ), _¢(n)/n = o, in which case
Ry = YN #(n)/n is also a slowly varying function with Ry/¢(N) — o (see [BGTRY,
Prop. 1.5.9a]). We expect that our results extend to this case with the same techniques, but
we prefer to stick to the simpler assumption , which considerably simplifies notation.

Let us give an overview of the proof of Theorem (see Section [6] for more details). In

order to prove the upper bound ([1.19)), a key tool is the following sharp estimate on the
local probability P(T]EN) = n). It suggests that the main contribution to {TIEN) = n} comes

from the strategy that a single increment 7V

; takes values close to n.

Proposition 1.5 (Sharp local estimate). Let us set logt(z) := (logz)*. There are
constants C € (0,00) and c € (0,1) such that for all N,k € N and n < N we have

P(T,EN) =n) < C’k:P(Tl(N) =n) P(Tl(N) < n)k_l ¢ sntT 8" Tgnt (1.21)

We point out that (1.21)) sharpens [ABI6| eq. (1.11) in Theorem 1.1], thanks to the last term
which decays super-exponentially in k. This will be essential for us, in order to counterbalance
the exponential weight \¥ in the renewal density U na(n), see (|1.14]).

In order to prove the local limit theorem , we use a strategy of independent interest:
we are going to deduce it from the weak convergence in Proposition[L.3] by exploiting recursive
formulas for the renewal densities Uy x and Gy, based on a decomposition according to
the jump that straddles a fixed site; see (6.13)) and (6.14)). These formulas provide integral
representations of the renewal densities Uy y and Gy which reduce a local limit behavior to
an averaged one, thus allowing to strengthen weak convergence results to local ones.

Finally, we establish fine asymptotic properties of the continuum renewal density Gy.

Proposition 1.6. For any fized 9 € R, the function Gy(t) is continuous (actually C*) and
strictly positive for t € (0,1]. Ast | 0 we have Gy(t) — oo, more precisely

1 29 1
Gy(t) = g 12 {1 + og 1 - 0<(log1)2) } : (1.22)



6 F. CARAVENNA, R. SUN, AND N. ZYGOURAS

Remark 1.7. Our results also apply to renewal processes with a density. Fix a bounded
and continuous function r : [0,00) — (0,00) with r(t) = 3(1 + o(1)) as t — o, so that

Ry := Sév r(t)dt = alog N(1+ o(1)). If we consider the renewal process T,iN) in (1.13]) with

r(t)

P(T™ e dt) = Ty 0N (t)dt,

]

then Proposition Theorem and Proposition still hold, provided P(TéN) = n)

denotes the density of T]gN). The proofs can be easily adapted, replacing sums by integrals.

1.3. ORGANIZATION OF THE PAPER. In Section 2] we present multi-dimensional exten-
sions of our main results, where we extend the subordinator and the renewal processes with
a spatial component. This is guided by applications to the directed polymer model.

In Section [3| we discuss the applications of our results to disordered systems and more
specifically to pinning and directed polymer models. A result of independent interest is
Proposition [3.2], where we prove sharp asymptotic results on the expected number of
encounters at the origin of two independent simple random walks on Z; this also gives the
expected number of encounters (anywhere) of two independent simple random walks on Z2.

The remaining sections are devoted to the proofs. Appendix [A] contains results for
disordered systems, while Appendix [B]is devoted to the Dickman subordinator.

2. MULTIDIMENSIONAL EXTENSIONS

We extend our subordinator Y by adding a spatial component, that for simplicity we
assume to be Gaussian. More precisely, we fix a dimension d € N and we let W = (Wt)te[o,oo)

denote a standard Brownian motion on R¢. Its density is given by

1 a2

gi(z) = WGXP(— 50 ) s (2.1)

where |z| is the Euclidean norm. Note that +/c W; has density gc:(z), for every c € (0, ).
Recall the definition (1.1]) of the measure v. We denote by Y := (Y$)s=0 = (Ys, V) s=0
the Lévy process on [0, ) x R? with zero drift, no Brownian component, and Lévy measure

Lo,1)(t)

v(dt,dx) ;= v(dt) gt () do = " get(x) dt dzx . (2.2)
Equivalently, for all A € R!*¢ and s € [0, ),
E[eMY9)] = exp {s f (eXE2) 1) get () dt d:r:} . (2.3)
(0,1) xRd t

We can identify the probability density of YS for s € [0,00) as follows.

Proposition 2.1 (Density of Lévy process). We have the following representation:

d
(Yseo0) = (Yo VEWY)) ccf0.0) »

with W independent of Y. Consequently, Y'$ has probability density (recall (1.3) and (2.1))
Fo(t,2) = [s(t) ger (@) - (2.4)
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We now define a family of random walks in the domain of attraction of Y¢. Recall that
r(n) was defined in (L.10]). We consider a family of probability kernels p(n, ) on Z¢, indexed
by n € N, which converge in law to y/c Wi when rescaled diffusively. More precisely, we
assume the following conditions:

(1) Z zipn,z) =0 fori=1,...,d

xeZd

)l plna) = Ofn) asn—co 25)
r€Z

(iii) j;lzrz)i |nd/2p(n,aj) - gc(%ﬂ =o0(l) asn— .

Note that c € (0,00) is the asymptotic variance of each component. Also note that, by (iii),

ilelg p(n,z) = O<n§/2> asn — . (2.6)
Then we define, for every N € N, the i.i.d. random variables (TZ-(N),XZ.(N)) e N x Z¢ by
P, X)) = () o= DT ), 27)
with 7(n), Ry as in (T.10), (T.1T). Let (), SV)) be the associated random walk, i.e.
2™ ™ e x N x (Y (2.8)

We have the following analogue of Proposition [1.3

Proposition 2.2 (Convergence of rescaled Lévy process). Assume that the conditions
in (2.5) hold. The rescaled process

(N) (N)
(T[s log N | S[s log N| )
N \/N s=0

converges in distribution to (Y := (Ys, VE))s=0, as N — .

We finally introduce the exponentially weighted renewal density
Uni(n,z) = 2 )\kP(T,EN) =n, S,(CN) =2x), (2.9)
k=0
as well as its continuum version:

Gy(t,z) = JOOO eV f.(t,x)ds = Gy(t) ger(z) for t € (0,00), zeR?, (2.10)

where the second equality follows by ([1.15) and Proposition Recall ((1.14) and observe
that

2 UNy)\(n,x) = UN’)\(TL) (2.11)
x€Z4

The following result is an extension of Theorem [I.4]

Theorem 2.3 (Space-time renewal theorem). Fiz any ¢ € R and let (A\ny)nen satisfy

VJ
)\N=1+@(1+0(1)) as N — .
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For any fired 0 < § <T < o, the following relation holds as N — oo:
log N n .
Unay(n,z) = N1+d/2 Gﬂ(ﬁ) 9e (ﬁ) (1 + 0(1)) ) (2.12)

uniformly for ON <n < TN, |z| < %\/N.
Moreover, for any fixred T < oo, the following uniform bound holds, for a suitable C' € (0,00):
logN 1
N nd/2
The bound (2.13)) is to be expected, in view of (2.12)), because sup,cpa g:(2) < td%' Finally,

% is concentrated on the diffusive scale O(y/n).

Unay(n,z) <C Go(%), Yo<n<TN, VxeZ®. (2.13)

we show that the probability

Theorem 2.4. There exists a constant C' € (0,0) such that for all N € N and X € (0, 0)

Z UN7>\(TZ,1’) < C

<—, VYneN, YM>0. 2.14
Una(n) e ne > ( )

TeZ%: |z|>M/n

3. APPLICATIONS TO DISORDERED SYSTEMS

In this section we discuss applications of our previous results to two marginally relevant
disordered systems: the pinning model with tail exponent 1/2 and the (2 + 1)-dimensional
directed polymer model. For simplicity, we focus on the case when these models are built
from the simple random walk on Z and on Z2, respectively.

Both models contain disorder, given by a family w = (w;);er of i.i.d. random variables;
T = N for the pinning model, T = N x Z? for the directed polymer model. We assume that

E[w;] =0, E[lw?] =1, A(B) :=logElexp(fw;)] <o V5 >0. (3.1)
An important role is played by

02 1= ARG _ 1, (3.2)

Before presenting our results, in order to put them into context and to provide motivation,
we discuss the key notion of relevance of disorder.

3.1. RELEVANCE OF DISORDER. Both the pinning model and the directed polymer
model are Gibbs measures on random walk paths, which depend on the realization of the
disorder. A key question for these models, and more generally for disordered systems, is
whether an arbitrarily small, but fixed amount of disorder is able to change the large scale
properties of the model without disorder. When the answer is positive (resp. negative), the
model is called disorder relevant (resp. irrelevant). In borderline cases, where the answer
depends on finer properties, the model is called marginally relevant or irrelevant.

Important progress has been obtained in recent years in the mathematical understanding
of the relevance of disorder, in particular for the pinning model, where the problem can be
cast in terms of critical point shift (and critical exponents). We refer to [G10| for a detailed
presentation of the key results and for the relevant literature.

The pinning model based on the simple random walk on Z is marginally relevant, as
shown in |[GLT10|. Sharp estimates on the critical point shift were more recently obtained in
[BLIS|. For the directed polymer model based on the simple random walk on Z2, analogous
sharp results are given in [BL17], in terms of free energy estimates.



THE DICKMAN SUBORDINATOR, RENEWAL THEOREMS, AND DISORDERED SYSTEMS 9

In [CSZ17a] we proposed a different approach to study disorder relevance: when a model
is disorder relevant, it should be possible to suitably rescale the disorder strength to zero,
as the system size diverges, and still obtain a non-trivial limiting model where disorder is
present. Such an intermediate disorder regime had been investigated in [AKQ14a), [AKQ14D|
for the directed polymer model based on the simple random walk on Z, which is disorder
relevant. The starting point to build a non-trivial limiting model is to determine the scaling
limits of the family of partition functions, which encode a great deal of information.

The scaling limits of partition functions were obtained in [CSZ17a| for several models
that are disorder relevant (see also [CSZ15|). However, the case of marginally relevant
models — which include the pinning model on Z and the directed polymer model on Z?
— is much more delicate. In [CSZ17b| we showed that for such models a phase transition
emerges on a suitable intermediate disorder scale, and below the critical point, the family
of partition functions converges to an explicit Gaussian random field (the solution of the
additive stochastic heat equation, in the case of the directed polmyer on Z?).

In this section we focus on a suitable window around the critical point which corresponds
to a precise way of scaling down the disorder strength to zero (see (3.9) and - below).
In this critical window, the partition functions are expected to converge to a non- tr1v1al
limiting random field, which has fundamental connections with singular stochastic PDEs
(see the discussion in [CSZIT7h]).

Our new results, described in Theorems[3.1] and [3.7 below, give sharp asymptotic estimates
for the second moment of partition functions. These estimates, besides providing an important
piece of information by themselves, are instrumental to investigate scaling limits. Indeed,
we proved in the recent paper [CSZI§| that the family of partition functions of the directed
polymer on Z? admits non-trivial random field limits, whose covariance exhibits logarithmic
divergence along the diagonal. This is achieved by a third moment computation on the
partition function, where the second moment estimates derived here play a crucial role.

3.2. PINNING MODEL. Let X = (X,,)nen, be the simple symmetric random walk on Z
with probability and expectation denoted by P(-) and E[-], respectively. We set

u(n) := P(X9, =0) = 2;1 <2:> = \/IE \/15 (1+0(1)) asn — 0. (3.3)

Fix a sequence of i.i.d. random variables w = (wp,)nen, independent of X, satisfying (3.1]).
The (constrained) partition function of the pinning model is defined as follows:

Zy =E [625;11(5%4(5))1{@:0} ]1{X2N=0}] : (3.4)

where we work with X5, rather than X,, to avoid periodicity issues.
Writing Zﬁ[ as a polynomial chaos expansion [CSZ17a] (we review the computation in
Appendix , we obtain the following expression for the second moment:

E[(Z3)*] = D, (oB)F" > u(n1)®u(ng —n1)* - ulng —ng-1)®, (3.5)

k=1 0<ni<...<np_1<nk:=N

where ag is defined in . Let us define

r(n) = u(n)? = — (1+0(1)), (3.6)
N N 2
Z r(n Z < >} = % log N (14 0(1)), (3.7)

n=1 n=1
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and denote by (T,&N)) keN, the renewal process with increments law given by (1.12). Then,
recalling (3.5) and ([1.14]), for every N € N and 1 < n < N we can write

1 k N
E[(Z)2 = — 3 (o} By) " P(r(Y) = n)

8 k=1 (3.8)
. .
= — Una(n), where A= ag Ry .

o
B
As a direct corollary of Theorem we have the following result.

Theorem 3.1 (Second moment asymptotics for pinning model). Let Z]’[f, be the
partition function of the pinning model based on the simple symmetric random walk on 7Z,

see (3.4). Define ag, by (3.2) and Ry by (3.7). Fiz 9 € R and rescale 5 = By so that

1 )
2

B = B <1 T iog N (1+ 0(1))> as N — 0. (3.9)
Then, for any fixed 6 > 0, the following relation holds as N — oo:

log N)?

E[(ZPV)?] = (OfN) Go(%)(1+0(1)),  uniformly for 6N <n<N. (3.10)
Moreover, the following uniform bound holds, for a suitable constant C € (0,00):
log N)?
E[(Z5%)?] < c(ogN) Go(%), Vi<n<N. (3.11)

In view of (3.7)), it is tempting to replace Ry by %logN in (3.9). However, to do this
properly, a sharper asymptotic estimate on Ry as N — o is needed. The following result,
of independent interest, is proved in Appendix [A-3]

Proposition 3.2. As N -

N 2
1 /2n log N + « _
Ry = 21{2%<n>} :T—i-o(l), with o :=~v+logle—7m, (3.12)
n—
where v = — SSO logue™ du ~ 0.577 is the Fuler-Mascheroni constant.

Corollary 3.3. Relation (3.9) can be rewritten as follows, with a :=~ + log 16 — m:

9 T ¥ —a
= 1 1 1 N — 0. 3.13
T5y log N ( + log N (1+of ))) as 0 (3.13)

We stress that identifying the constant « in is subtle, because it is a non asymptotic
quantity (changing any single term of the sequence in brackets modifies the value of a!). To
accomplish the task, in Appendix we relate a to a truly asymptotic property, i.e. the
tail behavior of the first return to zero of the simple symmetric random walk on Z2.

Remark 3.4. From (3.8), we note that E[(ZﬁN)Q] is in fact the partition function of a
homogeneous pinning model, see [GO7|, with underlying renewal 7N which has inter-arrival
ezponent o = 0. Theorem [3.1] effectively identifies the “critical window” for such a pinning
model and determines the asymptotics of the partition function in this critical window.
Analogous results when o > 0 have been obtained in [S09).



THE DICKMAN SUBORDINATOR, RENEWAL THEOREMS, AND DISORDERED SYSTEMS 11

Remark 3.5. Relation (3.13|) can be made more explicit, by expressing G%N in terms of ﬂJQV.
The details are carried out in Appendiz[A.4}

Remark 3.6. If one removes the constraint {Xon = 0} from (3.4), then one obtains the

free partition function Zﬁ,’f, The asymptotic behavior of its second moment can be determined
explicitly, in analogy with Theorem [3.1], see Appendiz[A.3

3.3. DIRECTED POLYMER IN RANDOM ENVIRONMENT. Let S = (S))nen, be the
simple symmetric random walk on Z?2, with probability and expectation denoted by P(-)
and E[-], respectively. We set

qn(z) :==P(S, =), (3.14)
and note that, recalling the definition of u(n), we can write

> Ga(@)? = P(San = 0) = {2; (2”) }2 —: u(n)?, (3.15)

n
€72
where the second equality holds because the projections of S along the two main diagonals
are independent simple random walks on Z/+/2.
Note that COV[SY)7 S%j)] = %]l{i:j}, where Sfl) is the i-th component of S7, for i = 1, 2.

As a consequence, Sy, /4/n converges in distribution to the Gaussian law on R? with density
91 () (recall (2.1)). The random walk S is periodic, because (n,.S,) takes values in

even

Z3.. = {z = (21,20,23) €Z3: z1 4+ 2+ 23 € 2Z}.
Then the local central limit theorem gives that, as n — o0,

nap(r) = 91 (%) 21 pyezs,. .y + o(1), uniformly for = € Z? (3.16)

even

where the factor 2 is due to periodicity, because the constraint (n,z) € Z3 ., restricts x in a

even
sublattice of Z? whose cells have area equal to 2.

Fix now a sequence of ii.d. random variables w = (Wnz)(ng)enxz2 satisfying (3.1),
independent of S. The (constrained) partition function of the directed polymer in random
environment is defined as follows:

N-1
Z%(x) =B [eZn=1 (B, s —A(8)) ]l{SN=x}]

_ (3.17)
-k [622]:11 Y ez2 (Bwn 2= A(B) (s, =2} ]l{SN:ac}] )

In analogy with (3.5)) (see Appendix [A.1]), we have a representation for the second moment:
2 _
]EI:(Z/]B\T(‘T)) ] = Z (U%)k ! Z qnl(x1)2 Qng—nl(x2 —.'171)2‘

k=1 O<ni<...<ng_1<np=N
Z1,...,XRE€L%: Tp=1

(3.18)
o anf’nkfl(‘rk - $k—1)2 .
To apply the results in Section [2| we define for (n,z) € N x Z2
. qn(x)* ) 1 /2n
p(n,z) = w(n)? where u(n) = g2\ )
Note that p(n,-) is a probability kernel on Z2, by (3.15). Since g;(x)? = %ﬂtgm(a:) (see
[2-1)), it follows by (3.16)) and (3.3)) that, uniformly for = € Z2,

np(n,z) = g%(%) 21y (nwyezs,. y + o(l). (3.19)

even
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Thus p(n, -) fulfills condition (iii) in (2.5) with ¢ =  (the multiplicative factor 2 is a minor
correction, due to periodicity). Conditions (i) and (ii) in (2.5)) are also fulfilled.

Let (1(N), S(N)) = (T]EN), S’,EN));@() be the random walk with increment law given by (2.7)),
where r(n) and Ry are the same as in (3.6))-(3.7)). More explicitly:

N N 1
P, 81Y) = (n,2) = o an(@)* T,y (). (3.20)
Recalling (3.18)) and (2.9), we can write

1
E[(23@)*] = 55 3, (03 Bx) " P(r") = n. 5 = @)
B k=1

1
= <5 Upnna(n,7), where A= 0% Ry .

o
B
As a corollary of Theorem [2.3] taking into account periodicity, we have the following result.

(3.21)

Theorem 3.7 (Second moment asymptotics for directed polymer). Let Zﬁ,(m) be
the partition function of the directed polymer in random environment based on the simple

symmetric random walk on Z2, see (3.17)). Define 0[2_3 by (3.2) and Ry by (3.7). Fiz ¥ € R
and rescale 8 = By so that

1 Y
2
For any fixed § > 0, the following relation holds as N — o0:

o 2
B[(2@)*] = CET 6 (2) 0 () 21 ezt (1 +01),

(3.23)
uniformly for SN <n < N, |z| < %\/ﬁ

Remark 3.8. Relation (3.22)) can be equivalently rewritten as relation (3.13|), as explained
i Corollary . These conditions on O’%N can be explicitly reformulated in terms of 512\,, see
Appendiz[A.]] for details.

Remark 3.9. Also for the directed polymer model we can define a free partition function
Zfif’f, removing the constraint {San = x} from (3.17). The asymptotic behavior of its second
moment is determined in Appendiz[A.2

4. PRELIMINARY RESULTS

In this section we prove Propositions 2.1 and

We start with Propositions [I.3] and for which we prove convergence in the sense of
finite-dimensional distributions. It is not difficult to obtain convergence in the Skorokhod
topology, but we omit it for brevity, since we do not need such results.

Proof of Proposition We recall that the renewal process T]gN) was defined in (1.13]).

We set
()
Y .= % (4.1)
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Note that the process YS(N) has independent and stationary increments (for s € @NO),

hence the convergence of its finite-dimensional distributions follows if we show that
YN — ¥, in distribution (4.2)
N—0

for every fixed s € [0,00). This could be proved by checking the convergence of Laplace

transforms. We give a more direct proof, which will be useful in the proof of Proposition [2.2]

Fix ¢ > 0 and let Z() be a Poisson Point Process on [e, 1] with intensity measure s%.

More explicitly, we can write
—_ €
= — {7, o

where the number of points N©) has a Poisson distribution:

1
NE) ~ Pois(A) where A = f 5% =slogl/e, (4.3)
15

while (tiE))ieN are 1.i.d. random variables with law

1. &
Pt > 7) = §o5% _loga
¢ Sls% loge

€

for xe€le1]. (4.4)

We define
N

vO .= Y=Y, (4.5)
=e =l

which is a compound Poisson random variable. Its Laplace transform equals

1 ~At
e 1—
E[e—/\Ys( >] — exp < _ SJ :dt> :
13

from which it follows that lim._,o Y;(S) =Y in distribution (recall (1.2)).
Next we define
1
Y (Ve) = N Z Ti(N), where 1N — {1<i<|slogN]: Ti(N) >eN}. (4.6)
z‘eIﬁN’”
Note that, by (1.10)-(1.11]), for some constant C' € (0,00) we can write
1 log N
E [|Ys(N) _ y(N76)|] _ NE [ Z Tz'(N)] _ wE [Tl(N)]l

8 N {TfN)seN}]

I (4.7)
[eN]
|slog N| r(n) |slog N| |eN]|
= —0" — < (U—+——=< .
N ;”RN CN gy SO
Thus YS(N) and YS(N’E) are close in distribution for € > 0 small, uniformly in N € N.

The proof of (4.2)) will be completed if we show that limy_,«, YS(N’E) = YS(E) in distribution,
for any fixed € > 0. Let us define the point process

1
=) {th@ =™ e Igm},

so that we can write

YW = 3 i< Ve

s
(N,e)

te=(N:e) iell
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It remains to show that Z(V¢) converges in distribution to 2 as N — oo (recall (4.5)).

e The number of points |IS(N’E) | in 2() has a Binomial distribution Bin(n, p), with

log 1
n = |slog N|, p:P(Tl(N)>5N)~ foggjég’
hence as N — oo it converges in distribution to A€ ~ Pois(A(®)), see (@.3).

e Each point tZ(N ©) ¢ =(N2) has the law of %TI(N) conditioned on Tl(N) > eN, and it

follows by (1.10)-(|1.11)) that as N — oo this converges in distribution to tgs), see ({4.4)).
This completes the proof of Proposition [1.3 O

Proof of Proposition We recall that the random walk (T]gN), SIEN)) was introduced
in (2.8)). We introduce the shortcut

(N) ._ (v (N) (V) . Tl(sj\glg N] Sl(évllg N|
Y.V = (Y, )—( N N ), 5= 0. (4.8)
In analogy with , it suffices to show that for every fixed s € [0, o)

y V) ——— Y= (Y., V§) in distribution. (4.9)

Fix € > 0 and recall that Ys(s) was defined in (4.5). With Proposition in mind, we
define
VE = VW, (4.10)

where W is an independent Brownian motion on R%. Since lim._,q Ys(e) =Y, in distribution,
recalling Proposition we see that for every fixed s € [0, 00)

Y = (O, V) s v, = (v, VE).

e—0

Recall the definition (4.6)) of YS(N’g) and 1, §N’E). We define similarly

y(Ve) ::\/IN 3ox. (4.11)

iertV®)

We showed in (4.7 that Y;(N’E) approximates vV in L', for ¢ > 0 small. We are now going

to show that VSN’E) approximates VS(N) in L2. Recalling (2.7), (2.5), we can write
N)|2 | (N
E[‘Xl( )‘ |T1( ) = n| = Z lz|? p(n,z) < cn. (4.12)
€72

Since conditionally on (Ti(N))l. IV (XZ-(N))i (o) are independent with mean 0, we have

S

BV - vN9P] = GEl Y XM
ig1Ve)

(4.13)
c N
<vE[ X TM] = cE[y™) vV < cCes,
ig 1N
where we have applied (4.7]). This, together with (4.7, proves that we can approximate

YgN) by YgN’E) in distribution, uniformly in IV, by choosing € small.
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To complete the proof of (4.9)), it remains to show that, for every fixed ¢ > 0,
y(Ve) = (V) yNVe) — — v = (v© V) i distribution, (4.14)

N—wo S S ’ S
where Vg(a) was defined in (4.10)). In the proof of Proposition E we showed that =V
converges in distribution to ='¢) as N — oo0. By Skorohod’s representation theorem, we can
construct a coupling such that ZV2) converges almost surely to =), that is the number and
Ne)
YS( )

(N,s)
in

converge almost surely to those of YS(E). Given a sequence of jumps of
— ) for some jump tEE) of YS(E) , we have that Xl-(fvv) /v N converges

i

sizes of jumps of
(Ys(Nys))NeNa say 1

in distribution to a centered Gaussian random variable with covariance matrix (c tge) I), by

the definition of XZ-(JJVV) in (2.7) and the local limit theorem in (2.5)). Therefore, conditionally
on all the jumps, the random variables VS(N’E) in (4.11) converges in distribution to the
Gaussian law with covariance matrix

A

Mt =cvr,

=1
which is precisely the law of Vs(s) = ﬁWYS(e). This proves (4.14). O

Proof of Proposition Note that P(Y; < 1) = e77¥/T'(s + 1), by the first line of ([1.4).
With the change of variable u = (log %)s in (1.16]), we can write

1 °o]
Gy(t) = tjo seloet)s IS p(y, < 1)ds

1 © L Py
= WL ue elog(1/t) P(Yu/log(l/t) < 1) du
Note that P(Y, g1y < 1) = 1 — O(m) as t | 0, for any fixed u > 0, by (B.7).
Expanding the exponential, as ¢ | 0, we obtain by dominated convergence

Gy(t) ! foo “Udu + v ro Zevdu + 0< ! )

= —— ue U u’e U — ,

T Hlog 12 Jo log(1/) Jo (log(1/1))?

which coincides with ((1.22)). O

Proof of Proposition It suffices to compute the joint Laplace transform of (Yy, 1/c Wy,)
and show that it agrees with (2.3). For o € R?, s > 0, t > 0, by independence of Y an W,

E[e{eVeWr) | Y, = {] = E[eeVeWD] = EeVei@WD] = ezclol®t
Then for A € R,
E[eMY:HeveWy] = B[P +3ele®)Ya] = exp {S fl(e(HéCI@IQ)t ~1) % dt} :
0
where we have applied . It remains to observe that, by explicit computation,
eAracld®t _q fRQ(em@’f> —1) get(z) da, (4.15)

which gives (12.3)). O
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5. PROOF OF PROPOSITION [I.5]
This section is devoted to the proof of Proposition Let us rewrite relation ([1.21)):

P(r™ =n) < CEP(T™ = n) P(T™N <)t e minm 8w (5)

The strategy, as in [AB16], is to isolate the contribution of the largest increment Ti(N). Our

analysis is complicated by the fact that our renewal processes 7V) varies with N € N.

Before proving Proposition [1.5] we derive some useful consequences. We recall that the
renewal process (T,iN)) k>0 was defined in (1.13]).

Proposition 5.1. There are constants C € (0,0), c € (0,1) and, for every e >0, N. € N
such that for all N = N., s € (0,00) N @N, te(0,1] n +N we have

Ny i S (1—g)s —cs log™ (cs)
P(T o =tN) < O3t e : (5.2)
Recalling that f4(t) is the density of Ys, see (1.4), it follows that for N € N large enough
1
P(r v =tN) < ¢’ 5 fes(®) (5.3)

Proof. Let us prove (5.3). Since I'(s + 1) = es(logs=D+og(v2ms)(1 4 5(1)) as s — o, by
Stirling’s formula, and since v ~ 0.577 < 1, it follows by ([1.4]) that there is ¢; > 0 such that

Fot) = 1 %ss e~ 8" e (0,1], Vs e (0,00). (5.4)

Then, if we choose ¢ = 1 — ¢ in (5.2]), we see that (5.3)) follows (with C" = C'/(ccy)).
In order to prove (5.2), let us derive some estimates. We denote by ¢y, ca, ... generic

absolute constants in (0,0). By (1.12)-(1.11)),
R, log r

P(TW™) <r) = 27 < 22 Vr.NeN. 5.5
(O <r) = Ry <Oigne NE (5:5)
At the same time
R, Ry — R,  _Rx—Rr
P(TN <r) LA (5.6)

" Ry Ry

By (1.10]), we can fix n > 0 small enough so that RJ\]’%;RT =7 loi(gNA/,r) for all r, N € N with
r < N. Plugging this into (5.6]), we obtain a bound that will be useful later:

n
log N
P(TfN)er(@ T, VWNeN Wr=1...N. (5.7)
We can sharpen this bound. For every € > 0, let us show that there is N. < oo such that
1—e¢
log N
e« (), wamonoran s

We first consider the range r < NV, where 9 := e~ /c1. Then, by (5.5)),

P <r) <PV < N') erd = = ()57 < () %7 < (1)
Next we take > NV. Then RA&%;RT > (1—¢) % for N large enough, by (|1.10)), which
plugged into ([5.6)) completes the proof of (5.8). We point out that the bounds (5.7)), (5.8) are

poor for small 7, but they provide a simple and unified expression, valid for all » = 1,..., N.
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We can finally show that (| . ) follows by . (from Proposmon where we plug
k= slogN and n = tN, for s € (0,00) N 17;xNo and ¢ € (0,1] n +N. Indeed note that:

e by (1.12)-(1.11)) we have kP(TI( ) = n) < ¢ (logkN) = co ]{, +
e since 1ogl1€1+1 > log]li/+1 > cgs for n < N, the last term in (5.1) matches with the
corresponding term in (5.2));

e by (B:8) we have P(T\N) < n)"™ < t0-95 1 mw < 1-9)s (L) "mew = gp(1-o)s,
because t > %, hence (j5.2)) is deduced. O

Before starting with the proof of Proposition we derive some large deviation estimates.
We start by giving an upper bound on the upper tail P(T]E,m) > n) for arbitrary m, k,n € N.

This is a Fuk-Nagaev type inequality, see [N79, Theorem 1.1].

Lemma 5.2. There exists a constant C' € (1,00) such that for allm e N and s,t € [0, 0)

(m) —t logt (&
P(Tiaiogm 1)) = tm) < 78 ), (5.9)

Proof. We are going to prove that for all m,n,k e N

n (logm + 1)

which is just a rewriting of (5.9). For some ¢; < o we have E[Tl(m)] < €l gty See

- - Since T]. m we can estimate
m N : Moo m Am)’
B[ )]:1+Z*E[(())]<1+27m3_1E[71( Neiq oy @m)

| J! = logm+1j>1 4!

C1

(5.10)

m

* logm + 1 c
This yields, by Markov inequality, for all A = 0

m)
P(r" = n) < e B[ ]F = e (14 e e

< e Mexp (logclTkHe)‘m). (5.11)

We now choose A such that
k_ m _ - X _ k \om
log m+1 e %’ that is € - (n(logm-i-l)) :

If n(#fl“) > 1 relation ((5.10)) holds trivially, so we assume #ﬁwl) < 1,s0that A >0
This choice of A, when plugged into (5.11)), gives (5.10) with C = e“1F1, O

Remark 5.3. Heuristically, the upper bound (5.10) corresponds to requiring that among
the k increments Tl(m),T;m), e ,T,Em) there are £ := - “big jumps” of size comparable to m.

To be more precise, let us first recall the standard Cramer large deviations bound

P(Pois(\) > t) < e 008x—D — (' yxA¢>0.
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Now fix a € (0,1) and note that P(Tl(m) > am) ~ Py = (where ¢ = log L ). If we

log m

denote by N qm the number of increments Ti(m) of size at least am, we can write

¢
P(Nim = £) = P(Bin(k, pr) = £) ~ P(Pois(kpm) =€) < <€k€pm) .

If we choose £ = I, we obtain the same bound as in (5.10). This indicates that the strategy

just outlined captures the essential contribution to the event {T]Em) = n}.

We complement Lemma [5.2{ with a bound on the lower tail P(T’gm) < n).

Lemma 5.4. There exists a constant c € (0,1) such that for all m € N and s,t € [0, 00)

m —cs logT (&
P(T[(s(llgm—&-l)J <tm) < e log™ ()., (5.12)

Proof. We are going to prove that there exists ¢ € (0,1) such that for all m,n, ke N

ck
logm + 1) Togm+1
Pl <) < (14 | 5.13
(Tk n) ckm A ) ( )
which is just a rewriting of (5.12)). For A = 0 we have
(m) (m)
P(T,Em) <n) =P =e ) <M E[eM )R, (5.14)
Next we evaluate, by m-m,
m m m —\n
(™ _ (n) c1 l1—e
E ATy _ )\n _ )\n <1-— ’
Le ] 7;1 ¢ g R, logm + 1 7;1 n
for some ¢; € (0,1). Since the function = — =2 is decreasing for z > 0, we can bound
(m) m+l | _ oAt A(m+1) 1—e @
Ele " <1 - —2 f c dt=1—61f ° dz.
logm + 1 t logm + 1 x

We are going to fix % < A < 1. Restricting the integration to the interval 1 < x < Am and

bounding 1 —e™* > (1 — e~ !) we obtain, for ¢y := (1 — e 1)y,
c2

Ble "] <1 - log(Am) < ¢ Tem 1o8m) _ ($> e

log m+1 m

Looking back at ([5.14]), we obtain

o —F
P(T,im) <n) <M (ﬁ) F oL (5.15)
We are ready to prove ([5.13]). Assume first that £ < n and let A := m < 1. We

may assume that A\ > i because for Am < 1 the right hand side of 5.13)) equals 1 and
there is nothing to prove We then have i < X < 1. Plugging A\ into o)) gives

1 k

€c2 n (logm + 1) )CQ Tog m+1

Al ,
km

P(T,im) <n) < <

where we inserted “ A1” because the left hand side is a probability. Since z = e~ /% for 2 > 0,
in the exponent we can replace ¢ by ¢ := e~ /2 which yields (5.13).
Finally, for £ > n the left hand side of (5.13]) vanishes, because Tlgm) > k. O
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Remark 5.5. For renewal processes with a density, see Remark[1.7], the proof of Lemma[5.7)

can be easily adapted, replacing sums by integrals. The only difference is that we no longer

have T]gm) >k, so the case k > n needs a separate treatment. To this purpose, we note that

m 0
E[e—ATf >] _ f Y r(t) qt < 0 J e Mgp o O
0 0

1
R,  logm+1 T logm 41N
for some ¢y € (1,0). If we set A = %, by (b.14) we get

k k
(m) _ oy (T e co
P(r, \n)\<k> <logm+1 . (5.16)

We now give a lower bound on the right hand side of (5.13]). We assume that the fraction
therein is < 1, otherwise there is nothing to prove. Since c € (0,1), for k > n we can bound

ck ck k ck k k
n \ logm+1 logm + 1)\ logm+1 n 1 logm+1 n ek n _k
= =TT > (- (=) ec*= (=) e*.
k cm k m+1 k k

This is larger than the right hand side of (5.16)), if we take m = mg := |exp(e? co)| (so that
Togmil < e~1). This shows that (5.16)) holds for k > n and m = my.
It remains to consider the case k > n and m < mg. Note that lowering ¢ increases

the right hand side of (5.13), so we can assume that ¢ < . Since m +— log%“ 18
decreasing for m = 1, we can bound the right hand side of (5.13)) from below (assuming that

the fraction therein is < 1) as follows, for k > n and m < my:

ck ck ck
n log mo —+ 1 log m+1 n logm+1 n ecy log m+1
T = | —-eco > - — ,
k cmg k k logm+1

which is larger than the right hand side of (5.16)). This completes the proof of (5.13) for
renewal processes with a density, as in Remark[1.7}

Proof of Proposition We have to prove relation (5.1)) for all N, k,n € N with n < N.
Let us set

M,EN) := max TZ-(N) ,
1<i<k

and note that {T,gN) =n}c {M,gN) < n}. This yields
P =)
P(1") < n)*

N

:P(T]g ) =n|M,£N) <n) =P(T,§n) =n), (5.17)

where the last equality holds because the random variables TZ-(N), conditioned on {7}’ < n},
k

have the same law as Ti(n), see (|1.12)). Let us now divide both sides of (5.1f) by P(Tl(N) <n

The equality (5.17) and the observation that P(TI(N) =n) /P(Tl(N) <n)= P(Tl(n) =n)
show that (5.1)) is implied by

(N)

1 ck + ck
p(+™ — < Ok—— " ¢ Tognt1 18 Tognit )
(m =n) nlogn+1) < ’ (5.18)

Note that there is no longer dependence on N.
It remains to prove (5.18)). By Lemma [5.4] more precisely by (5.13)), we can bound

ck
logn c c
P(T;gn) =n) < P(T;gn) <n) < <lognk+ L. 1> T 2 e 08T e
Cc
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This shows that holds for every k € N if we take C' = C(n) := n (logn + 1). Then, for
any fixed n € N, we can set C' := max,<; C(n) and relation holds for all n < n and
k € N. As a consequence, it remains to prove that there is another constant C' < oo such
that relation holds for all n = n and k € N. Note that n € N is arbitrary.

We start by estimating, for any m € (1,n] (possibly not an integer, for later convenience)

P(T]En) =n, M,gn) € (e_lm,m])

<k 2 P(Tl(”) :T)P(T,gri)l =n-—r, M,Sz)l <r)
re(e=Im,m] (519)
<k max P =r) P <m)"t N P =n—r| M <m).

re(e~1m,m)] re(e=Tmm]
b

Since Tl-(n) conditioned on Ti(n) < m is distributed as Ti(m) = T-(lmJ), we get, by (1.12)-(1.11]),

P(T,E”) =n, M,gn) € (e_lm,m])
o
m (logn + 1)

_ 5.20

< ak P(Tl(n)Sm)k 1P(n—m<T,§Ti<n—6_1m). ( )
(n) k—1 m ak1) my . 0 -

We bound P(T7" < m)" ™ < () lesn < e()en, by (5.7). Choosing m = e~"n in ([5.20))

and summing over 0 < ¢ < logn, we obtain the key bound

[log n]
P(T,gn) =n) = Z P(T,En) =n, M,gn) e (e " n, efen])
=0
1 Y ) ¢ \k—1 ¢ (e~*n) (e+1)
< — P(T" <e” p(l—eHn< e _ (e .
C4kn(logn+1) ;] e P(Ty e ‘n) ((1 e <t <(l-e )n)

(5.21)

To complete the proof of (5.18]), we show that, for suitable C' € (0,00) and ¢ € (0, 1),
[lognj k—1 —¢ ck + ck
Z eZP(Tln) < efgn) a P((l —eHn < T]ie_l " < n) < Ce Toanti 8 Tognit | (5.22)
(=0

Let c€ (0,1) be the constant in Lemma . We recall that we may fix 7 arbitrarily and

focus on n = fi. We fix ¢/ € (0,1) with ¢’ > ¢, and we choose 71 so that, by (5.8) with N =n

and r = e n,

P(Tl(n)ée_en) <(e_£)1ocﬁ Vn=n, V0=0,1,...,|logn]|.
Then ((5.22) is reduced to showing that for alln >nand k=1,...,n

|logn| ,
(k—1) - —ck__ —LE
D1 el (eh) Toen P((l —e )n< Tlge_lfn) < n) < O e TownTT 8T gnr (5.23)
=0

We first consider the regime of k € N such that

k>1+ 7= (logn+1). (5.24)
We use Lemma to bound the probability in (5.23)). More precisely, we apply relation
(5.12) with m = e~ *n, s = —~51— t = e’ and with log™ replaced by log, to get an upper

log(e=*tn)+1’
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¢

bound. Since e™*n < n, we get by monotonicity

__ c(k=1) ) c(k—1) _c(k—-1) —¢ c(k—1)
P(Tk(:e 1?’L) < n) < e log(efzn)+1 10g<e log(efzn)+1> < e log n+1 lOg(e logn+1>

c(k—1) c(k—1) c(k—1)
= {eilogni»ll & 10gn+1} (6 logn )e .

Since k — 1> % for k = 2, if we redefine ¢/2 as ¢, we see that the term in brackets in
matches with the right hand 51de of - (where we can replace log™ by log, by and
). The other term in , when inserted in the left hand side of (| , gives a
contrlbutlon to the sum which is uniformly bounded, by :

(5.25)

UOgnJ ’ 0
c'(k—1) c(k—1)
E ez (e_é) logn (e logn )e < E (el_(c logn E e
=0 £=0

This completes the proof of (5.23|) under the assumption (|5.24]).
Next we consider the complementary regime of (5.24]), that is
k< Alogn + B, (5.26)
for suitably fixed constants A, B. In this case the right hand side of (5.23)) is uniformly
bounded from below by a positive constant. Therefore it suffices to show that
|logn| »
Z e£P<% < T,gil " < n) <C, (5.27)
/=1
where, in order to lighten notation, we removed from ((5.22)) the term ¢ = 0 (which contributes
at most one) and then bounded (1 — e “)n > 2 for £ > 1.
We apply Lemma (with the constant C renamed D, to avoid confusion with (5.27))).
k

Relation (5.9) with m = e ‘n, s = Toa(e=fm) 71 t= 2e gives

— eZ ogn—{
P(T]E,e p) > %) < 6—752 log* ( log = +1) _ 6—e€{% log+(% i)}’ (528)
where we have introduced the shorthand
e—/
For / such that z, < ﬁ the right hand side of ([5.28)) is at most e~¢. We claim that
1y < 5p  forall >0, where  (:= [log (4(A+ B)De®)] +1. (5.30)

This completes the proof of - because the sum is at most Zg el + Yes 41 ele < .
It remains to prove that relation ) holds in regime . We recall that we may
assume that n is large enough. C0n51der ﬁrst the range 3 i logn < E < |log n|: then

- k. Alogn+B
x5<k6 <\/ﬁ<7\/ﬁ E’ 0,

hence we have x; < for n large enough. Consider finally the range ¢ < % 5 logn: then

2D 2De?
k —/ Alogn+B 1
xe< %logne gﬁ (A+B) < 2De2
by the definition (5.30)) of /. This completes the proof. O

We conclude this section by extending Proposition to the multidimensional setting.

We recall that (7 (N), SIEN)) is defined in ({2.8).
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(0,1) and, for everye >0, N. € N
L7 we have

22
Proposition 5.6. There are constants C € (0,0), c €
such that for all N = Ng, s € (0,00) N logNN te(0,1]n +N and z € i

(V) () L 8 (1-e)s —cslog*(es
P(TslogN =tN SslogN = :L‘\/N) < C T i (1-e)s og™ (cs) (5.31)
It follows that for N € N large enough
N) (N ;1 1
=tN, S = t).
slogN .’L‘\/i) N (Nt)g fcs( ) (532)

. (5.33)

(
P( slogN -
Proof. We follow closely the proof of Proposition . Relation follows from

with € = 1 — ¢, thanks to the bound (| ., so we focus on ([5.31)).
We will prove an analog of relation (5.1 . for all N, k,n € N with n < N and for all z € Z¢
k _
P(r™ —n, M —2) < ¢ L P = n) (TN < n)" ! e mnrt 1087 e
n2
Note that the only difference with respect to (5.1]) is the term n2 in the denominator
In the proof of Proposition we showed that (5.2)) follows from (5.1). In exactly the

" T
same way, relation ([5.31)) follows from (5.33), by choosing k = slog N, n = Nt, z = 2/N
It remains to prove Arguing as in (5.17)), we remove the dependence on N and it
ck
(5.34)

i .33).
suffices to prove the following analog of (5.18): for all n, k € N and for all z € Z¢
1 e_logcfllc-H 10g+ logn+1 |

) _ g _ oy R
Sy z) = Cn%n(logn—l—l)

P(n" =
To this purpose, we claim that we can modify ({5.20)) as follows
(5.35)

Pl =, S =, M e (et
k 1 n 1 m B
<CZLETTL(Iogn—Fl) P(Tl()gm) P(n_mgT’g—%<n_e ‘m).
This is because, arguing as in ([5.19), we can write
P(T,in) =n, S,(:) =z, M(n) e (e lm ,m])
7 _ (n) _ (n) _ (n) _ . _ (n)
<k Z P(T} , X3 PR =n—r, 8" =z—y, M;"", <r)
re(e~1m,m] , yeZd
(n) _ (n) _ (n) k-1
sk {re(eflrnil%,yezdP(Tl =X )} P(Tl <m)
Z P(T,gi)lzn—ﬂM,gri)l\m),
re(e~tm,m]
and it follows by (2.7), (2.6) and (1.10)-(1.11)) that
(n) (n) c 1
PI =r, Xy =y) < )
(1 r, 1 y) 10gn+1m1+%
llog n], as in (5.21]).

max

re(e~tm,m],yeZd
We can now plug m = e ‘n into (5.35) and sum over ¢ = 0, 1,

This leads to our goal - provided we prove the following analog of -
(eién) < n) < CeilOgCTkH log log n+1

llog 7] .
én) B P((l — 67€>n < Tk—l

e+ p(1 <

£=0
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The only difference with respect to (5.22)) is the term e+ ingtead of ¢! in the sum. Tt is
straightforward to adapt the lines following (5.22) and complete the proof. O

6. PROOF OF THEOREM [1.4: CASE T =1

In this section we prove Theorem for T = 1. The case T' > 1 will be deduced in the
next Section [7l We prove separately the uniform upper bound (|1.19)) and the local limit
theorem (|1.18)), assuming throughout the section that n < N (because T' = 1).

For later use, we state an immediate corollary of Lemma
Lemma 6.1. There is a constant c € (0,1) such that for all N € N and s,t € [0, )

N s—cslog 2
P(T[(slcngj SEN) < etTeslost, (6.1)

6.1. PrOOF OF (1.19). Recall the definition (4.1} of Y™ From the definition (1.14) of
Un(n) and the upper bound (5.3)) (which we can apply for § < 1), we get for large N

log N
U ¥p(y®) %) <c MNf oo (m .
N)\ ’€Z>:0 log N N N ].OgN Z IOEN (N) (6 2)
We now choose A = Ay as in ([1.17)). Then for some A € (0,00) we have
Av<1+Aply <e@y,  YNeN,
hence
log N 1 _k_ Ay n
Unpw (n) < C— {logN ];)el N fe () ¢ (6.3)

The bracket is a Riemann sum, which converges as N — o0 to the corresponding integral. It
follows that for every N € N we can write, recalling (1.15]),

log N sAD ¢ (m C’ log N "
UN,)\N( ) <O —— N {J;) fcs(ﬁ) dS} = - N G%ﬁ(ﬁ) ; (6.4)
for some constant C’. (The fact that C’ is uniform over 1 < n < N is proved below.)

To complete the proof of , we can replace GA19( ) by qu( ) possibly enlarging

the constant C’, because the function t — Gy(t) is th‘lCtly positive, continuous and its
asymptotic behavior as t — 0 for different values of ¥ is comparable, by Proposition
(Note that in Theorem [1.4] the parameter ¢ is fixed.)

We finally prove the following claim we can bound the Riemann sum m 6.3) by a multiple
of the coresponding integral in , uniformly over 1 < n < N. By (1.4) we can write

e fos(t) = % exp ((logt - éﬁ —7)es — log I‘(cs)) . (6.5)

Since log I'(-) is smooth and strictly convex, given any ¢ € (0, 0), the function s — €547 f,(t)
is increasing for s < § and decreasing for s > s, where 5 = §(¢, A9, ¢) is characterized by

A
(logT)'(c5) = logt + - 9 —. (6.6)

Henceforth we fix t = &, with 1 <n < N.
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Let us now define sy, : IOLN and write
1 kA A9
Z e e (§) = Z e €Y fesi (R) - 6.7
log N = g N = g (6.7)
If we set k := max{k > 0 : sy < 5}, so that s; < 5 < s;,,, we note that each term

in the sum with & < k — 1 (resp. with k¥ > k + 2) can be bounded from above by
the corresponding integral on the interval [sg, sg+1) (resp. on the interval [si_1,sk)), by
monotonicity of the function s — e%4Y f..(t). For the two remaining terms, corresponding
to k =k and k = k + 1, we replace s;, by 5 where the maximum is achieved. This yields

1 k. 00 i
e SO et () < [ b0+ gV L) (69

It remains to deal with the last term Recall that s+ €547 fes(3) is maximized for s = 5.
We will show that shifting 5 by oz N ~ decreases the maximum by a multiplicative constant:

§Aﬁfc§(%)
ci= sup e < . (6.9)
e 1z STRPAT )

Since s ~— 547 fes(F¢) is decreasing for s > 5, we can bound the last term in as follows:

- 1
+logN

S

2 SAY
ay e () < 2 |
S

which completes the proof of the claim.
It remains to prove . By the representation (6.5)), the ratio in equals

exp{ — (log & + 40 — )y + (logT'(c5 + poy) — logT'(c8)) }
< exp {O(l) + logCN (IOgF),(Cg + log?N)}’

by 1 < n < N and by convexity of log I'(+). It follows by that § is uniformly bounded
from above (indeed 5 < A¥/c —~, because t = & < 1 and (logT')’(+) is increasing). Then
(logT')(cs + o57) < (logI')'(AV — ey + 57 ) is also uniformly bounded from above. [

0
s fes(3) ds < 2¢ J s fes (%) ds,
0

6.2. PrOOF OF (1.18). We organize the proof in three steps.

Step 1. We first prove an “integrated version” of (1.18)). Let us define a measure GE\N) on

[0, 00) as follows:

M)y .o
G : 1ogN2 na(n)dn(-), (6.10)

where 6;(-) is the Dirac mass at ¢, and Uy x(-) is defined in (1.14]). Recall also (1.15).

Lemma 6.2. Fiz ¢ € R and choose A\ = Ay as in - As N — oo, the measure Gg\]]\fv)
converges vaguely to Gy(t)dt, i.e. for every compactly supported continuous ¢ : [0,00) — R

f o(1) — f o(t) G (1) (6.11)
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Proof. Recalling the definition ([1.14) of Uy x(n), we can write
RPPRIY Y
. s ean - 1og N 2 U
(N)
- logN g [ N )] (6.12)

0 +N)
J ()N B [ (Telgen) | as

0

Note that limpy_, (An)#18 N = ¢¥s by (1.17). Similarly, by Proposition

Jim B[o(d)| - B[o(v)].

Interchanging limit and integral, which we justify in a moment, we obtain from (6.12))

lim J " s0) G(;]VV (dt) = JOO ¢’ E[¢(Ys)] ds.

N—0 0

If we write E[ ( )] = SO t) dt, we have proved - (recall -

Let us finally justify that we can bring the limit inside the integral in . Since
()\N)[S log N| < ¢C5 for some constant C, by , and since ¢ is bounded, we can apply
dominated convergence on any bounded interval s € [0, M]. It remains to show that the
integral restricted to s € [M, o0) is small for large M, uniformly in N € N. To this purpose,
we use Lemma since ¢ is compactly supported, say in [0, A], the bound yields

0
|¢|oof e P g vy < AN ds < [6]c fM e5(CH1=elog %) g
If we take M large, so that clog % > C + 2, the integral is at most S;‘\j e—Sds — e M O

Step 2. We now derive representation formulas for Uy x(n) and Gy(t): for any 7, € (0, 00)

Unatn)=A D Una@ P =m 1) Uyp(n—m) ¥neNn (@,0), (6.13)
o<l<n<m<n

1 _
Gy(t) = f Gy(u) Lo,1y(v —u) Gy(t —v)dudv, Vte (t,0). (6.14)
O<u<it<v<t v—u

(Note that for ¢ € (0,1] the indicator function 1y ;)(v —u) =1 disappears.)
Relation (6.13) is obtained through a renewal decomposition: if we sum over the unique

(N)

index i € {1,...,k} such that T,L-(ivl) < n while 7,7/ > n, we can write

k
P(T,EN) =n)= Z P(TZ-(Nl) <n, N> n, T,EN) = n)

I
H
X
L=z
I
~o
=
2
|
3
!
)—U
o
I
3
!
2

o<i<n<m<n i=1

Plugging this into the definition of Un (1), we obtain (6.13)).
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Next we prove ([6.14]). Define the stopping time 7 := inf{r € [0,0) : Y, > ¢} and note
that Y,_ <, Y; > t. The joint law of (7,Y,_,Y;) is explicit: for r € (0,0) and u <t <wv

P(redr, Y,_ edu, Y; € dv) = drP(Y; € du) v(dv — u)

1
= drP(Y; € du) T Lio1)(v —u)do,

by a slight generalization of [Ber96, Prop. 2 in Ch. III|. By the strong Markov property

P(Ysedt) = (redr, Yr— edu, Y; € dv) P(Ys_, e dt — v)

f(O,S)X(Of)X(t,t)
S
1
= j drf P(Y, € du) Toy(v—u)dvP(Ys_ € dt —v),
O<u<t<v<t v—u
which yields a corresponding relation between densities:

f drf fr(u) ! Lo,y(v —u) fs—p(t —v)dudv.
O<u<it<v<t —u

[

Multiplying by e”* = ¢?"e?(s=") and 1ntegrat1ng over s € (0,0), we get (6.14) (recall (L.15))).

Step 3. The final step in the proof of (| consists in combining formulas —-
with Lemma First of all we note that in order to prove ([1.18)) uniformly for 5N <n<N,
it suffices to consider an arbitrary but fixed sequence n = ny such that

ny
=—_— 1 1
tN N N te(0,1], (6.15)
and prove that
li U = . 1
Nlm log N NN (nn) Gy(t) (6.16)

This implies (1.18)), as one can prove by contradiction.
Let us prove ([6.16]). Recalling (6.10)), we first rewrite (6.13)), with 7 = ny /2, as a double
integral, setting u := I/N and v := m/N, as follows (we recall that ty = %):

N (V) (V)
log 7 UV (nn) = AN f G\ (du) ¢ (u,0) G (ty — dv),  (6.17)
O<u< L <<ty
where we set, for 0 < u < v <1,
oM (u, v) := (N log N) P(Tl(N) = [Nv] — | Nul).

Note that, by (1.12)-(1.11)), we have

1
(N) —
]\}linoo o\ (u,v) = P(u,v) : T (6.18)
By Lemma and ((6.15)), we have the vague convergence of the product measure
N N v
GV (du) GV (ty — dv) —— Gylw) Gy(t —v) dudv. (6.19)

Since Ay — 1, see (|1.17)), by (6.18) and (6.19)) it is natural to expect that the right hand
side of ([6.17]) converges to the right hand side of (6.14) with ¢ = % This is indeed the case,
as we now show, which would complete the proof of (6.16|), hence of Theorem

We are left with justifying the convergence of the right hand side of (6.17]). The delicate
point is that ¢(u,v) in (6.18]) diverges as v — u | 0. Fix € > 0 and consider the domain

D :={(u,v): v—u=>=cet}. (6.20)
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The convergence in holds uniformly over (u,v) € D, and the limiting function ﬁ is
bounded and continuous on D.. Then, by , the integral in the right hand side of
restricted on D, converges to the integral in the right hand side of restricted on D,.

To complete the proof, it remains to show that the integral in the right hand side of

(6.17) restricted on DS = {v —u < et} is small for £ > 0 small, uniformly in (large) N € N.
By the definition (6.10)) of G&N)(-), as well as ([1.12))-(1.11)), this contribution is bounded by

Unpy(Nu) 1 Unyy(N(tn —v))
@ Z logN v—u log N ’
u,ve%NO: & g (621)
Osu< D <w<ty, v—u<et
where Cq, Co, ... are generic constants. By the upper bound ((1.19)), this is at most

1

C2 772 Z Go(u) ——— Go(ty —v). (6.22)

u,veﬁNO:

t
o<u< TN <v<ty , v—u<et

Since ty — t, see (6.15)), we can bound this Riemann sum by the corresponding integral:

1
Cs f Gg(u)v_uGﬁ(t—v)dudv.
0<u<%$v<t, v—u<etl

Finally, if we let £ | 0, this integral vanishes by dominated convergence (recall (6.14)). O

7. PROOF OF THEOREM [1.4: CcASE T > 1

In this section we prove Theorem [I.4] in case T' > 1. Without loss of generality, we may
assume that 7' € N. The case T' = 1 was already treated in Section [6] Proceeding inductively,
we assume that Theorem [I.4] holds for some fixed value of T € N, and our goal is to prove

that relations (1.18)) and (1.19) hold for TN <n < (T + 1)N.
Let us rewrite relation (6.13) for 7 = TN and (6.14)) for ¢ = T

Unan) =AY UnaP@Y =m—)Uxa(n—m),  Vn>TN, (7.1)
0<I<TN<m<n
1
Gy(t) = J Gy(u) ]l(o,l)(v —u) Gy(t —v)dudv, vVt >T. (7.2)
O<u<T<v<t v—u

7.1. PrROOF OF (1.18)). Since we focus on the range TN <n < (T + 1)N, in (7.1) we
have both [ < TN and n —m < N, hence we can bound Uy , (I) and Uy x, (n —m) using

(1.18), by the inductive assumption. Bounding P(Tl(N) =m — 1) by (1.10)-(1.12)), we get

© ? m —1
Unan() < BTEN 51 Gy 0N Gy,

0<I<TN<m<n

for some constants C1, Cy (possibly depending on T'). By Riemann sum approximation

log N 1 _ _
Unay(n) < Cy N3 Z Gﬂ(%) 1 1(0,1](%[) Go("§")
0<I<TN<m<n ( N )

log N 1

N O<u<T<v<% v—=u

The integral equals Gy () by (7.2), so relation ([1.18) is proved.

< Oy
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(To check that the Riemann sum approximation constant Co is uniform for TN < n <
(T'+1)N, one can argue as in Step 3 of Section@: just repeat the above steps for an arbitrary
but fixed sequence n = ny such that 5 — t e [T, T + 1]. We omit the details.) O

7.2. PROOF OF ([.19). We can follow Step 3 of Section [f] almost verbatim: the only
difference is that for TN < n < (T'+ 1)N we have 5§ — t € [T, T + 1]. To pass from ([6.21])

to (6.22]), we can apply the upper bound ({ -, by the inductive assumption. O

8. PROOF OF THEOREMS [2.4] AND [2.3

We first prove Theorem , i.e. relation , which is easy. We then reduce the proof
of Theorem [2.3] to that of Theorem [I.4] given in Section [0, proving separately the upper
bound and the local limit theorem . We assume for simplicity that T' =1, i.e.
we focus on n < N, because the case T' > 1 can be deduced arguing as in Section [7]

8.1. PROOF OF . By (2.7) and (2.5)), conditioned on the T( ) ’s, the random variables
XZ.(N) are 1ndependent w1th Zero mean and E [‘Xi(N ‘ ‘Ti(N = nz] < ¢n; for some ¢ < o0,

see (4.12)). Recalling ({2.8)), we then have

E [|S](€N)|2 ‘TI(N) = nl,...,T,EN) = nk] = Zk:E [|XZ.(N)|2 ‘Ti(N) = nz] < c(m +...~|—nk),

1=
for any choice of nq,...,n; € N. It follows that E [|S,(§N)| | n] < cn, hence
(N) (N) (N) (N (N)
Z P(Tk =n, S, =l‘)=P(7’k =n, |S; |>Mf)<M2P( n),
x€Z?: |z|>M+/n
by Markov’s inequality. Multiplying by A*¥ and summing over k, we obtain (2.14]). O

8.2. PROOF OF (2.13). Recall the definition (4.8)) of Y™ From the definition (12.9) of
U n (1, z) and the upper bound ([5.32)), we get for large N and n < N

logN 1
Unamz) = 3, \'P (Y(N _(%’x/iﬁ))gco}g\f nd/z{logNZ o ﬁ[}

k=0 log N

The bracket is the same as in (6.2). We showed in Subsection E that, if A = Ay is chosen
as in , the bracket is at most a constant times Gy(47). This proves (2.13]). O

8.3. PROOF OF (2.12). We proceed in three steps.

Step 1. We first prove an “integrated version” of (2.12). We define a measure GE\N) on
[0,00) x R? by setting

n=0 xeZ?

where we recall that Uy »(-) is defined in . Recall also the definition of Gy(t,x).

log N

Lemma 8.1. Fiz 9 € R and choose A = Ay as in (1.17)). For every bounded and continuous
¢ : [0,00) x R? — R, which is compactly supported in the first variable,

f o(t,2) GV (dt,dw) —— H(t,z) Gy(t, ) dt dz. (8.2)
[0,00) x R2 N—oo  J[0,00) xR2
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Proof. Arguing as in (6.12), we can write
(N) (N)

J qi)(t,l‘) GS\N)(dt,dgg) _ JOO()\N)[SlogNJ E [¢(LN€NJ7 M)] ds.
[0,00) x R2 N 0 vy

We can exchange limpy_,o, with the integral by dominated convergence, thanks to Lemma 6.1
as shown in the proof of Lemma [6.2] Then we get, by Proposition [2:2]

o0
lim o(t, ) G (dt, dz :J e’ E[¢(Ys, V)] ds
N=0 J[0,00) x R2 () Gyl ) 0 L#( )
Q0
= f evs (J o(t,z) fq(t,x) dtdx)ds,
0 [0,00) x R2
which coincides with the right hand side of ({8.2) (recall (2.10))). O

Step 2. Next we give representation formulas for Uy x(n, z), Gy(t, x): for any n,t € (0, 0)

Unatnz) =X Y Unxal.y) P(IY =m =1, XM =2 =) Uya(n—m,z - 2)

o<i<n<m<n

y,2€72
Vn e Nn (n,0), (8.3)
. Je(v—u) (Z - y) I
Gy(t,x) = Gy(u,y) o Gyt — v,z — z)dudv Vt e (t,00). (8.4)
O<u<t<v<t
y,zeR?

These relations are proved in the same way as (6.13)) and (6.14)).
Step 3. We finally prove (2.12) by combining formulas (8.3))-(8.4) with Lemma It

suffices to fix arbitrary sequences n = ny € {1,..., N} and x = )y € Z? such that
nn TN 2
ty i = — ——te (0,1 = eR .
N N N—o0 (07 ] ’ wN \/N N—o0 w ’ (8 5)

and prove that
N1+d/2
lim
N—w0 logN
To prove , we rewrite the sums in (8.3) with n = § as integrals, recalling (8.1)):

Unay(ny,wy) = Gy(t,w) = Gy(t) geg(w). (8.6)

N1+d/2
log N Unay(nn,wn)
= AN f GE\? (du, dy) qb(N) (u,v; y, 2) GE\JIVV) (tN —dv,wy — dz) , (8.7)

t
O<u<L<v<ty

y,2€R2
where we set, for 0 < v < v <1 and y, 2z € R?,
oM (u, vy, 2) = NIFI2 logNP(Tl(N) = |Nv| — | Nul, Xl(N) = |VNz| - [\/Nyj) .
Note that by , and — we have
Ie(w—u)(Z — V)

lim ¢ (u,v;y,2) = dlu,v;y, 2) 1= "2 (8.8)

N—o v—1U
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Moreover, by Lemma and (8.5)) we have the convergence of the product measure
N N
Gg\N) (du, dy) Gg\N) (tny —dv,wy —dz) ~ Gy(u,y) Gy(t—v,w—2z)dudydvdz. (8.9)

Since Ay — 1 (see (1.17))), we expect by (8.8) and that the right hand side of
converges to the right hand side of (8.4) as N — oo, proving our goal .

The difficulty is that the function ¢™ (u,v;y,z) converges to a function ¢(u,v;y, z)
which is singular as v—u — 0, see (8.8)). This can be controlled as in the proof of Theorem
see the paragraphs following (6.19)).

e First we fix € > 0 and restrict the integral in (8.7)) to the domain D, = {v —u > e t}.
Here we can apply the convergence , because ¢(u,v;y,z) is bounded and the
convergence qb(N) (u,v;y,2) = ¢(u,v;y, z) is uniform.

e Then we consider the contribution to the integral in from DS = {v —u < et}
Recalling (8.1)), this contribution can be written as follows:

Z UNvAN(Nu,\/Ny) UNj)\N(N(tN—v),\/N(wN—z)) .

(N) .
IOgN d) (u7 U? y7z) lOgN

1 1
u,ve - No, y,zeﬁZQ

t
O<u< L <v<ty, v—u<et

(8.10)
We need to show that this is small for € > 0 small, uniformly in large N € N.
By (2.13) we can bound, uniformly in z € \/LNZQ,
U Nty —v),VvN — 1 1
Ny (Nty = 0), VN(wy = 2)) <C y 7 Go(tn —v),
IOgN N1+§ (tN—U)E
and note that ty —v > %N — ¢. Next, by definition of ¢™) and by (1.12)-(1.11}),
d
Ne
N M (u,v; y,2) = N2 (log N) P(TY) = | No| - [Nuf) < Oy —— .
zeﬁZQ v
Finally we observe that, by (1.14)), (2.9) and (1.19)),
Uny (Nu,v/Ny)  Unay(Nu) 1
> = <C—Gylu).
=~ log N log N N
yeﬁZ
These bounds show that (8.10) is bounded by a constant times
1 1 1
e S sam— G Gy(tny —v). 8.11
el 2 o(u) ——— Gylty —v) (8.11)
2 u,ve 7 No
0<u<t7N<”U<tN, v—u<et

Since ty — t, we have %N > % for N large, and if we take ¢ < % we see that the

prefactor (4 —g)~42 < (%)*d/ 2 is bounded (recall that ¢ is fixed). The sum in (8.11)) is
the same as that in (6.22)), which we had shown to be small for ¢ > 0 small, uniformly
in large N € N. This completes the proof. (I

APPENDIX A. ADDITIONAL RESULTS FOR DISORDERED SYSTEMS

In this appendix we prove some results for disordered systems, stated in Section
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A.1. PROOF OF RELATIONS (3.5) AND (3.18]). We recall the polynomial chaos expansion
used in [CSZ17al [CSZI7D]. Let us introduce the random variables

Buwi—A(B)
N = - , where Jg = 2028 _q | (A1)
op
so that (n;) are i.i.d. with zero mean and unit variance (recall (3.1])).
Recall the definition (3.4)) of Zf, and note that we can write
GonAENEn=0) = 1 + 05 1y Ly, 0) - (A-2)

We now write the exponential in (3.4]) as a product and perform an expansion, exploiting
(A.2). Recalling the definition (3.3)) of u(n), we obtain:

N-1
Z% =F [ [ [ el exanmar ]1{X2N=0}]

n=1

N A3
=Y (op)"! > u(ny)u(ng —na) - - u(ng — ng-1) -

k=1 0<ni<..<np_1<ng:=N
. nnl 77”2 “ e nnk71 .
This formula expresses Zf, as a multilinear polynomial of the random variables. Since the

monomials for different k are orthogonal in L?(P), we get (3.5).
The proof of (3.18) is similar, because we can represent Z(:n) in (3.17) as follows:

N
Z]ﬁ\,(a:) = 2 (Uﬁ)kil 2 Gy (1) Gno—ny (T2 = 1)+ Gng—ny_; (Tk — Tp—1)
k=1 0<ny<..<np_i<ng:=N (A.4)
Z1,...,XREL%: Tp=1

* Moy ng,ze " Mnge_,@p—1

This completes the proof. O

A.2. FREE PARTITION FUNCTION. For the pinning model, one can consider the free
partition function Zj%f, in which the constraint {Xaoy = 0} is removed from (3.4), and the
sum is extended up to IV:

288 = [ezlewwn—x(ﬁ>>n<x%=m] : (A.5)

Then we have the following analogue of Theorem Let us set, recalling ([1.15])-(1.16)),

JOO e(P=7)s 48

o m ds s for u € (0, 1] . (A6)

Golu) = f: Got) dt —

Proposition A.1 (Free pinning model partition function). Rescale § = [y as in
(3.9). Then, for any fixed 6 > 0, the following relation holds as N — oo:

E[(Z5~1)?] = (log N) Gy(%) (1 +0(1)), uniformly for SN <n <N, (A.7)
with G(-) defined in (A.6). Moreover, the following bound holds, for a suitable C € (0, 0):
E[(Z0v12] < C (log N) Go(Z), V1<n<N. (A.8)

Finally, since E[ZgN’f] =1, relations (A.7) and (A.8|) holds also for Var[ZﬁN’f].
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Proof. Arguing as in ﬁ one can write a decomposition for ZB" similar to (A.3). As a
consequence, the second moment of Z,BL’f is given by an expression similar to (3.5)), namely

E[(Z)]=1+ ) (o3 > w(ni)?u(ng —n1)? - u(ng —np—1)?,  (A.9)
k=1 O<ni<...<nip<n
which yields an analogue of relation (3.8)):
BL(Z) = 1+ 3 (73 Rw) P <) =14 33 3 (o ) P = 0
k>1 0=1k>1
n
=1+ ZUN,,\(K), where A= O'%RN
(=1
It then suffices to apply (1.18]) and (1.19) to get (A.7]) and (A.g]). O

Also for the directed polymer in random environment we can consider the free (or point-

to-plane) partition function Z% in which the constraint {Sn = x} is removed from (3.17)),
and the sum is extended up to N:

Z%0 =B [ezﬁzlwwn,sn—x(ﬁ»] —E [ezﬁ:l Y.ez2 <ﬁwn,z—A<ﬁ>>ﬂ{sn:z}] . (A.10)

The second moment of Z?\;f turns out to be identical to that of Zﬁ;f (pinning model).

Proposition A.2 (Free directed polymer partition function). Rescale f = Oy as in

(3.22)). Then relations (A.7) and (A.8) hold verbatim for the free partition function Zﬁ’\”f
of the directed polymer in random environment, defined in (A.10)).

Proof. Arguing as in § one can write a decomposition for Zg’f similar to (A.4)). Then
the second moment of Z can be represented as follows:

E[(Zﬁf =1+ Z UB Z Gnq (x1> Qny—nq (.732 - xl)Q ’
S (A11)

: an—nk,1 (‘I.k - mk*l)Q .

Since Y72 qn(2)? = u(n)?, see (3.15), we can sum over zg, xx_1, ..., 21 in (A.11) to obtain

precisely the same expression as in (A.9)). In other words, the free partition functions of the
pinning and directed polymer models have the same second moment:

E[(254)?] - E[(Z2)7].
This completes the proof. O

A.3. PROOF OF PROPOSITION [3.2] Let T := min{m € N: S,, = 0} denote the first
return time to the origin of the simple symmetric random walk on Z2. Let (&;);en be i.i.d.
random variables distributed as 7'/2. We define

N
Ly := Z 1{52”10} :max{keNO: S+ ...+ & <N},
n=1
so that, recalling (3.15]) and the definition (3.12)) of Ry, we can write
N N
RN:Z P(S2, =0) = ZP > k)= P& +...+& < N).

n=1 k=1
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Let (52-(N))ieN be i.i.d. random variables with the law of & conditionally on {{; < N}. Then
we have the following key representation of Ry:

N (A.12)

S P < NFPEN + .+ > N).

N
Ry =Y P& < NFPEM ...+ 6V <)
k=1
N
= 2 P(& < N)F —
k=1 k=1

We are going to show that the first sum gives the leading contribution to the right hand
side of (3.12), while the second sum is negligible.

We need estimates on the law of £;. By Corollary 1.2 and Remark 4 in [U11], we have

T 1 2y 1
P61 =k) =P(T'=2k) = <(log 16k)2  (log 16k)7 O<(log16k)4>)

T 27(y + log 16) 1
" k(logk)?  k(logk)? + O<(logk)4> , (A.13)

log 16 1
P(§1 = k) =P(T = 2k) = 1021{; o F(ZIZgZ?Q : * O(W’) ’

as k — oo, where v is the Euler-Mascheroni constant. Then, as N — o0, we can write

Pe@<N) _ '~ ioew *Olirp) _logN (7 R 1) +o(1)
= (7+log 16) B N 7
P(fl > N) Tog N (1 — 7(10;)%\/) + O((loglN)Q)) T 8
N . LW sy _ (1
P <N)™ = (1 - g + Omgap))” = ¢ ™7 _0<10gN |
From this we deduce the asymptotic behavior of the first sum in the last line of (A.12)):
N
P(¢ < N) N log N v + log 16
k;l (& ) P > N)( (& ™) —— - +o(1)

which matches with the right hand side of (3.12). It remains to show that the second sum
in the last line of (A.12)) is asymptotically vanishing, i.e.

N
A}im on =0, where ON = Z P(& < N)kP(égN) +...+ §,(€N) >N). (A.14)
—00
k=1
Denoting by C7, Cy suitable absolute constants, we have by relation (A.13)
N N

(N) 1 1 N
E =—— Y /P& =) < < , A.15
|6"] P&, < V) ; (& =0<C ; (log 02 < P (iog N2 (A.15)
hence by Markov’s inequality
N N k
PEM 4.+ > W) <CQW.

Since P(§1 < N) < e TN for large N, by (A.13), we can control the tail of g in (A.14)) by

N
o= Y P <NPEY
k>Alog N k>Alog N

(V) < o L
+oH G SN)SCy ), e e Stk
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By a Riemann sum approximation, the last sum converges to Sf rxe *dr=(1+ A)e‘A as
N — . In particular, for every fixed A € (0,0), we have shown that

limsup o3 < (1 + A)e ™. (A.16)

N—o0

Next we focus on the contribution QfVA of the terms with £ < Alog N, i.e.

o= Y P <N PEM +. 1M >N
k<Alog N (A.17)

< (Alog N)P(E™ + .+ € v > N).

We fix ¢ € (0, 3) and write

k
N N N
5% ) f( ) Z§ {g(N)<52N}+Z€z’( )1{5§N)>52N} =U_+Uy,
i=1
so that we can decompose
P 4. 1™ S N)<PU_>eN)+PU, > (1-¢)N), (A.18)

and we estimate separately each term. In analogy with (A.15)) we have

N 2
. (N EP 61 = 5) g Cl e“Nk
BlU-| = kB[ 1 g _any| = 5 Z PE < N) S k; (log 02 < P llogine”

hence by Markov’s inequality

ek
Next we observe that
Uy >(1-e)N} (U{f }) U ( U € >N eV > e2N}>,
1<i<j<k

because either §§N) > (1 —¢)N for a single 4, or necessarily fz-(N) > e2N and §](-N) > e2N for
at least two distinct ¢ # j (otherwise Uy vanishes). Since for fixed c € (0,1)

(N) 1 1 log =
P N) < <O N s <
(& >eN) <O [_ZC:N ¢ (log £)? G (logeN)? E_ZCN 1 = (logeN)?

it follows that

log 1~ k(k—1) log & i
P> (=N kO mE - 2 [Claog(a?zv))?] |

Recalling (A.17)-(A.18)-(A.19)) and plugging k = Alog N, we get

lim sup QfVA < A2(026 + C1 log 17:5) :

N—w

By (A.16), since o = QEA + 03!, we obtain (A.14) by letting ¢ — 0 and then A — o0. O
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A.4. EXPLICIT ASYMPTOTICS IN TERMS OF [3. Relation (3.9) (equivalently (3.22))
and relation (3.13)) can be rewritten more explicitly in terms of . To this purpose, we
need the cumulants k3, k4 of the distribution of w; (recall (3.1))), defined by

A(B) = %62 + %63 + %ﬁ‘* +0(8%)  asf—0. (A.20)
By direct computation 0[23 =32+ k3 B3+ (% + %54)64 + O(B%) as 8 — 0, hence
op=¢ = Br=e—rze? + + (3K3 — Gka — 3) €% + 0(e?) ase— 0. (A21)
As a consequence, we can rewrite as follows, with a := v + log 16 — 7:

s K3 /2 7(¥ — a) + 72 (3 /ﬁ%—l— 17254

)
o = log N (log N)3/2 (log N)2 (1+0(1)).

APPENDIX B. ON THE DICKMAN SUBORDINATOR

Theorem on the density of the Dickman subordinator can be deduced from general
results about self-decomposable Lévy processes, see [S99) §53].

e Let us first derive for t € (0,1]. The law of Y; satisfies the assumptions of [S99)
Lemma 53.2] with n =1, a; = 1 and ¢ = s, which yields f,(¢t) = Kt*~! for t € (0,1].
To show that K = e 7%/T'(s), as in ([1.4]), one can apply [899 Theorem 53. 6] which
gives fs(t) = (1 4+ 0(1))kt*"1/T(s) as t | 0, with k = exp{s(s —Ldz + <= da)}.
The identification k = exp{—-s} follows by [GR07, Entry 8.367 (12) page 906]

e We then deduce for t € (1,0). We can apply [S99, Theorem 51.1], which reads
as follows (where v(dt) = 3 1(g1)(t) dt, 70 = 0 and fs(t) is the density of Yj):

f:yfs(y) dy = Jt< e du> yg]l(o’l)(y) dy .

0 0

Differentiating with respect to ¢, for ¢t > 1, we get tfs(t) = SS fs(t —y) dy, which
already shows that f(¢) can be deduced from {fs(u) : uwe (t -1 t)} To obtain
(L.4), we further differentiate this relation (note that f(-) € C' on (1, o), by [S99,
Lemma 53.2|) to get fs(t) + tfi(t) = s (fs(t) — fs(t — 1)), which can be rewritten as
(=5 fs(t) = —st75 fo(t — 1) Integrating on (O t), since t! S f(t) — K = e77%/T(5)
as t | 0, we obtain t'75f,(t) =3 St fo(u=l) E du which coincides with the second
line of (1.4 . (note that fs(t) =0 for t <0).

This completes the proof of .m

We now present an alternative proof of Theorem [I.1] which exploits a key scale invariance
property of the Dickman subordinator Y. Let Mg denote the maximal jump up to time s:

M, := max AY,, where AY,=Y,-Y,_=Y,—-1limY,_.. (B.1)
ue(0,s] €l0

We first prove the following result.

TThis proof was kindly provided to us by Thomas Simon.
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Proposition B.1 (Scale-invariance). Fiz s € (0,0), t € (0,1). Conditional on all jumps
of Y up to time s being smaller than t, the random variable Y/t has the same law as Y, i.e.

P<%e~‘Ms<t)=P(Yse-). (B.2)

Proof. We use the standard representation of the Lévy process Y = (Y5) se[0,00) 10 terms of
a Poisson Point Process (PPP). Let IT be a PPP on [0,00) x (0,1) with intensity measure
Tio,1y(¥)
Y

We recall that II is a random countable subset of [0,00) x (0, 1), whose points we denote by
(84,t;). Let us define

I =T ([0,s] x (0,8), Y= > . (B.4)

(si,t:)ell(=1)

wu(dz,dy) := Leb(dz) ® v(dy) = dz ® dy. (B.3)

Then we can represent our Lévy process Y in terms of II as follows:
v, £y, (B.5)

Let us identify Y with Ys(l). Note that AY; =t # 0 if and only if (s,t) € II, see (B.1)).
On the event {M; <t} = {II n ([0,s] x [t,1)) = &} we have v = Ys(t), hence

() (t)
e A Y e N P ) W

because Y{") is a function of 11(58) | which is independent of II n ([0, s] x [t, 1)), by definition
of PPP. To prove our goal (B.2)), it remains to show that

By (B.4), it suffices to prove the following property: if we denote by ¢; : R?> — R? the map
(z,y) — (z, 1y), then the random set o (I has the same law as TI*1),

Note that II(*?) is a PPP with intensity measure pu(*? given by the original intensity
measure p restricted on [0,s] x (0,¢) (see (B.3])). We also observe that the random set
gbt(H(s’t)) is a PPP with intensity measure given by pu(* o gbt_l, i.e. the image law of p(5t)

under ¢;. The proof is completed by noting that ¢; sends x>t to (Y because the map

y — y/t sends the measure 511(07,5) (y) dy to the measure %1(071)(y) dy. O

In our proof of Theorem [I.1] we will also need the following estimate. This can be deduced
from [RW02, Lemma 6], but we give a direct proof in our setting.
Lemma B.2. As s | 0 we have
P(Y; > 1) =o0(s). (B.6)
Remark B.3. The bound 1s an intermediate step in establishing Theorem and it
is not optimal. Indeed, it is a consequence of Theorem [1.1] that the optimal estimate is
P(Ys>1)=0(s*) ass|O0, (B.7)
because P(Ys < 1) = e 7/I'(s + 1), by (1.4), and we note that as s | 0 we have
T(s+1)=T1) +T'(1)s + O(s*) = 1 — s + O(s?), (B.8)
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since T'(1) = SSO logue " du = —v. Relation (B.7) then follows.

Proof of Lemma [B.2l Fix a function oy — 00 as s — 0, to be determined later. Recall
the definition (B.1]) of AY;,, =Y, —Y,_ and define
Ng = Z Liny,>1y = number of jumps of Y of size > O%S in the interval (0, s] .
ue(0,s] o
We recall that Y only increases by jumps, that isYs =2 (0,5] AY We denote by Y,” the
contribution to Yy given by jumps of size > a—s and YS :=Y; — Y. Then we bound

P(Y,>1) < P(N,>2) +P(N, = 1,Y, > 1) + P(N, = 0,Y< > 1) (B.9)
For the first term, we note that Ny ~ Pois(\s) with Ay = SSl/as %dw = slog o, hence

P(N; > 2) = O(\2) = O(s*(log a,)?)..

For the third term, since (Y,S)s>0 has Lévy measure 2 L, 1y(x)dz, we can bound

1
as 1
PVS>1) <E[YS]=s| " 2o-de=-". (B.10)
0 X Qg
We fix oy = 1/s, so that both P(Ng = 2) and P(Y.S > 1) are O(s%?).

It remains to estimate the second term in the right hand side of . On the event
{Ns = 1}, the random variable W :=Y;” has density log%S 1 L1 3y(x). Also note that V.S
is independent of Ny. If we fix g5 € (1,2), to be determined lauters7 we can write

P(Ny=1,Ys > 1) S P(Ny=1,Y > ) +P(Ns =1, V7 < -, VS >1- 1)

<SP(N, = D{P(W > L) + P(Y;S > &)}

log 05 Os <
<A E|Y S|,
S{logas+951 [S]

because Ny ~ Pois(\s). Since A\; = slogas and E[YS] = o, see , we get

logas  as(os —1) as 05— 1
Note that lims_,o loi% = 0, because we have fixed as = 1/s. We now choose g; = 1+ 4/s to
get P(N, = 1,Y, > 1) = O(s%?), which completes the proof. O

1 2 1 25
P(Ns =1,Y; > 1) < slogas{ 98 0 i }zsloggSJr oeds

Proof of Theorem [I.Il We start proving the first line of (1.4]), so we assume t € (0, 1).
Recall that M, was defined in (B.1}). Plainly, we can write

PYs<t)=P(Ys<t, My <t)=P(Ms; <t)P(Ys <t|Ms<t).

We use the PPP representation of Y that we introduced in the proof of Proposition In
particular, if IT denotes a PPP with intensity measure y in , we can write

P(M, < t) = P(IL A ([0, 5] x [t, 1)) = @) = e #D0sIx[6D) — =5 5y _ s
For ¢t € (0,1) we have P(Y; < t| M <t) = P(Y; < 1), by Proposition hence

P(Y;<t)=t°P(Ys; < 1) for t € (0,1). (B.11)

This leads to

fs(t) = st~ Fy(1) for t € (0,1), where Fi(t) :=P(Y; <t). (B.12)
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It remains to identify Fs(1). Since (Ys)s>0 has stationary and independent increments,
for any n € N, the density fs is the convolution of f,/, with itself n times. Then for any

t € (0,1) we can write, by (B.12),

fO= | RS L ) dn b
O<t1<..<tp_1<t
= (£ F=(1))" J tr (b —t)n e (= tyg)n T dty . dEy

O<t1<...<tp—1<t

et [ e

o<ur<...<up—1<1

(UQ — ul)%fl cee (1 — un_l)%il duq ...du,—1

— (3 s n,s—1 F(%)n _ R n 5_1M
= (s F=(1)"t T () (Fs=(1))"t O

where we recognized the density of the Dirichlet distribution (with parameters n and )
and, in the last step, we used the property I'(1 + x) = = T'(z). By (B.8)

F1+32)" —— e 77,
Since Fy,(1) =1 —o(u) as u — 0, by Lemma we have (F%(l))n — 1. This yields

I‘(l + ﬁ)n ts—1eg=7s sts—Lers
t) = lim (Fs(1))" ¢t n/_ _ =
fo®) = Jim (1)) T(s) T(s) T(s+1)
which proves the first line of (|1.4)).

It remains to prove the second line of ([1.4)). We exploit the PPP construction of Yj, see
(B.3)-(B.5)). By identifying the largest jump My = u, see (B.1]), we have for any t € (0, 0)

tal
P(Y; edt) = J P(Y; e dt| My = u) P(M; € du)
0

_ Lm {% (L) dt} {5 N du} (B.13)
= (JMI fs (%) sut? du) dt.
0

The second equality holds for the following reasons.
e Y, conditioned on {M; < u} has the same law as uY;, by Proposition hence
P(Yyedt| M, =u) =P(Ysedt —u| M, <u) = f,(E%) du.

u

e 2 is the Poisson intensity of finding a jump of size u in the time interval [0, s], while

e’ L% = u® is the probability that all other jumps are smaller than u, hence
P(M, € du) = u([0, 5] x du) e=#10s]x(wD) — 2 du e~shuzde,
Making the change of variable a := “T“, we can rewrite (B.13)) as

_ s—1 “ fS(a’)
fS(t) = st J‘(t1)+ (1 + a)sda

e[ [T )

(B.14)
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For ¢ € (0, 1), the second integral equals 0, while fs(t) = st e 7" by the first line of (11.4),

I(s+1)
that we have already proved. This implies that the first integral must equal % This
concludes the proof of the second line of (1.4]). O
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