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Abstract. We consider the so-called Dickman subordinator, whose Lévy measure has
density 1

x
restricted to the interval p0, 1q. The marginal density of this process, known as

the Dickman function, appears in many areas of mathematics, from number theory to
combinatorics. In this paper, we study renewal processes in the domain of attraction of
the Dickman subordinator, for which we prove local renewal theorems. We then present
applications to marginally relevant disordered systems, such as pinning and directed
polymer models, and prove sharp second moment estimates on their partition functions.

1. Introduction and main results

1.1. Motivation. We consider the subordinator (increasing Lévy process) denoted by
Y “ pYsqsě0, which is pure jump with Lévy measure

νpdtq :“
1

t
1p0,1qptq dt . (1.1)

Equivalently, its Laplace transform is given by

EreλYss “ exp

"

s

ż 1

0
peλt ´ 1q

dt

t

*

. (1.2)

We call Y the Dickman subordinator (see Remark 1.2 below). It is suggestive to view it as a
“truncated 0-stable subordinator”, by analogy with the well known α-stable subordinator
whose Lévy measure is 1

t1`α
1p0,8qptq dt, for α P p0, 1q. In our case α “ 0 and the restriction

1p0,1qptq in (1.1) ensures that ν is a legitimate Lévy measure, i.e.
ş

Rpt
2 ^ 1q νpdtq ă 8.

Interestingly, the Dickman subordinator admits an explicit marginal density

fsptq :“
PpYs P dtq

dt
, for s, t P p0,8q , (1.3)

which we recall in the following result.

Theorem 1.1 (Density of the Dickman subordinator). For all s P p0,8q one has

fsptq “

$

’

’

’

&

’

’

’

%

s ts´1 e´γ s

Γps` 1q
for t P p0, 1s,

s ts´1e´γs

Γps` 1q
´ sts´1

ż t´1

0

fspaq

p1` aqs
da for t P p1,8q,

(1.4)

where Γp¨q denotes Euler’s gamma function and γ “ ´
ş8

0 log u e´u du » 0.577 is the
Euler-Mascheroni constant.
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Theorem 1.1 follows from general results about self-decomposable Lévy processes [S99].† We
give the details in Appendix B, where we also present an alternative, self-contained derivation
of the density fsptq, based on direct probabilistic arguments. We refer to [BKKK14] for
further examples of subordinators with explicit densities.

Remark 1.2 (Dickman function and Dickman distribution). The function

%ptq :“ eγ f1ptq

is known as the Dickman function and plays an important role in number theory and
combinatorics [T95, ABT03]. By (1.4) we see that % satisfies

%ptq ” 1 for t P p0, 1s , t %1ptq ` %pt´ 1q “ 0 for t P p1,8q , (1.5)

which is the classical definition of the Dickman function. Examples where % emerges are:

‚ If Xn denotes the largest prime factor of a uniformly chosen integer in t1, . . . , nu,
then limnÑ8 PpXn ď ntq “ %p1{tq [D30].

‚ If Yn denotes the size of the longest cycle in a uniformly chosen permutation of n
elements, then limnÑ8 PpYn ď ntq “ %p1{tq [K77].

Thus both plogXn{ log nq and pYn{nq converge in law as n Ñ 8 to a random variable L1

with PpL1 ď tq “ %p1{tq. The density of L1 equals t´1%pt´1 ´ 1q, by (1.5).
The marginal law Y1 of our subordinator, called the Dickman distribution in the literature,

also arises in many contexts, from logarithmic combinatorial structures [ABT03, Theorem 4.6]
to theoretical computer science [HT01]. We stress that Y1 and L1 are different – their laws
are supported in p0,8q and p0, 1q, respectively – though both are related to the Dickman
function: their densities are e´γ%ptq and t´1%pt´1 ´ 1q, respectively

In this paper, we present a novel application of the Dickman subordinator in the context
of disordered systems, such as pinning and directed polymer models. We will discuss the
details in Section 3, but let us give here the crux of the problem in an elementary way, which
can naturally arise in various other settings.

Given q, r P p0,8q, let us consider the weighted series of convolutions

vN :“
8
ÿ

k“1

qk
ÿ

0ăn1ăn2ă...ănkďN

1

nr1pn2 ´ n1q
r ¨ ¨ ¨ pnk ´ nk´1q

r
. (1.6)

We are interested in the following question: for a fixed exponent r P p0,8q, can one
choose q “ qN so that vN converges to a non-zero and finite limit limit as N Ñ 8, i.e.
vN Ñ v P p0,8q? The answer naturally depends on the exponent r.

If r ă 1, we can, straightforwardly, use a Riemann sum approximation and by choosing
q “ λN´1`r, for fixed λ P p0,8q, we have that vN will converge to

v :“
8
ÿ

k“1

λk

#

ż

¨ ¨ ¨

ż

0ăt1ă...ătkă1

dt1 ¨ ¨ ¨ dtk
tr1pt2 ´ t1q

r ¨ ¨ ¨ ptk ´ tk´1q
r

+

“

8
ÿ

k“1

λk
Γprqk`1

Γppk ` 1qrq (1.7)

where the last equality is deduced from the normalization of the Dirichlet distribution.
If r ě 1, then, as it is readily seen, the Riemann sum approach fails, as it leads to iterated

integrals which are infinite. The idea now is to express the series (1.6) as a renewal function.

†We thank Thomas Simon for pointing out this connection.
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The case r ą 1 is easy: we can take a small, but fixed q ą 0, more precisely

q P

ˆ

0,
1

R

˙

, where R :“
ÿ

nPN

1

nr
P p0,8q ,

and consider the renewal process τ “ pτkqkě0 with inter-arrival law Ppτ1 “ nq “ 1
R

1
nr for

n P N. We can then write

vN “
8
ÿ

k“1

`

qR
˘k

Ppτk ď Nq ÝÝÝÝÑ
NÑ8

v :“
qR

1´ qR
P p0,8q .

The case r “ 1 is more interesting†. This case is subtle because the normalization
R “

ř

nPN
1
n “ 8. The way around this problem is to first normalize 1

n to a probability on
t1, 2, . . . , Nu. More precisely, we take

RN :“
N
ÿ

n“1

1

n
“ logN

`

1` op1q
˘

,

and consider the renewal process τ pNq “ pτ pNqk qkě0 with inter-arrival law

P
`

τ
pNq
1 “ n

˘

“
1

RN

1

n
for n P t1, 2, . . . , Nu . (1.8)

Note that this renewal process is a discrete analogue of the Dickman subordinator. Choosing
q “ λ{RN , with λ ă 1, we can see, via dominated convergence, that

vN “
8
ÿ

k“1

λk Ppτ
pNq
k ď Nq ÝÝÝÝÑ

NÑ8
v :“

λ

1´ λ
P p0,8q (1.9)

because Ppτ
pNq
k ď Nq Ñ 1 as N Ñ8, for any fixed k P N. But when λ “ 1, then vN Ñ8

and then finer questions emerge, e.g., at which rate does vN Ñ 8? Or what happens if
instead of Ppτ

pNq
k ď Nq we consider Ppτ

pNq
k “ Nq in (1.9), i.e. if we fix nk “ N in (1.6)?

To answer these questions, it is necessary to explore the domain of attraction of the
Dickman subordinator — to which τ pNq belongs, as we show below — and to prove renewal
theorems. Indeed, the left hand side of (1.9) for λ “ 1 defines the renewal measure of τ pNq.
Establishing results of this type is the core of our paper.

1.2. Main results. We study a class of renewal processes τ pNq which generalize (1.8).
Let us fix a sequence prpnqqnPN such that

rpnq :“
a

n
p1` op1qq as nÑ8 , (1.10)

for some constant a P p0,8q, so that

RN :“
N
ÿ

n“1

rpnq “ a logNp1` op1qq as N Ñ8 . (1.11)

For each N P N, we consider i.i.d. random variables pT pNqi qiPN with distribution

PpT
pNq
i “ nq :“

rpnq

RN
1t1,...,Nupnq . (1.12)

†It can be called marginal or critical, due to its relations to disordered systems, see [CSZ17b] for the
relevant terminology and statistical mechanics background.
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(The precise value of the constant a is immaterial, since it gets simplified in (1.12).)
Let τ pNq “ pτ pNqk qkPN0 denote the associated random walk (renewal process):

τ
pNq
0 :“ 0 , τ

pNq
k :“

k
ÿ

i“1

T
pNq
i . (1.13)

We first show that τ pNq is in the domain of attraction of the Dickman subordinator Y .

Proposition 1.3 (Convergence of rescaled renewal process). The rescaled process
˜

τ
pNq
ts logNu

N

¸

sě0

converges in distribution to the Dickman subordinator pYsqsě0, as N Ñ8.

We then define an exponentially weighted renewal density UN,λpnq for τ pNq, which is a
local version of the quantity which appears in (1.9):

UN,λpnq :“
ÿ

kě0

λk Ppτ
pNq
k “ nq for N,n P N, λ P p0,8q . (1.14)

We similarly define the corresponding quantity for the Dickman subordinator:

Gϑptq :“

ż 8

0
eϑs fsptq ds for t P p0,8q , ϑ P R , (1.15)

which becomes more explicit for t P p0, 1s, by (1.4):

Gϑptq “

ż 8

0

epϑ´γqs s ts´1

Γps` 1q
ds for t P p0, 1s , ϑ P R . (1.16)

Our main result identifies the asymptotic behavior of the renewal density UN,λpnq for
large N and n “ OpNq. This is shown to be of the order ErT

pNq
1 s´1 „ p N

logN q
´1, in analogy

with the classical renewal theorem, with a sharp prefactor given by Gϑp nN q.

Theorem 1.4 (Sharp renewal theorem). Fix any ϑ P R and let pλN qNPN satisfy

λN “ 1`
ϑ

logN

`

1` op1q
˘

as N Ñ8 . (1.17)

For any fixed 0 ă δ ă T ă 8, the following relation holds as N Ñ8:

UN,λN pnq “
logN

N
Gϑp

n
N q p1` op1qq , uniformly for δN ď n ď TN . (1.18)

Moreover, for any fixed T ă 8, the following uniform bound holds, for a suitable C P p0,8q:

UN,λN pnq ď C
logN

N
Gϑp

n
N q , @0 ă n ď TN . (1.19)

As anticipated, we will present an application to disordered systems in Section 3: for
pinning and directed polymer models, we derive the sharp asymptotic behavior of the second
moment of the partition function in the weak disorder regime (see Theorems 3.1 and 3.3).

We stress that Theorem 1.4 extends the literature on renewal theorems in the case of
infinite mean. Typically, the cases studied in the literature correspond to renewal processes
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of the form τn “ T1 ` ¨ ¨ ¨ ` Tn, where the i.i.d. increments pTiqiě1 have law

PpT1 “ nq “ φpnqn´p1`αq, (1.20)

with φp¨q a slowly varying function. In case α P p0, 1s, limit theorems for the renewal density
Upnq “

ř

kě1 Ppτk “ nq have been the subject of many works, e.g. [GL62], [E70], [D97],
just to mention a few of the most notable ones. The sharpest results in this direction have
been recently established in [CD19] when α P p0, 1q, and in [B19+] when α “ 1.

In the case of (1.20) with α “ 0, results of the sorts of Theorem 1.4 have been obtained
in [NW08, N12, AB16]. One technical difference between these references and our result is
that we deal with a non-summable sequence 1{n, hence it is necessary to consider a family
of renewal processes τ pNq whose law varies with N P N (triangular array) via a suitable
cutoff. This brings our renewal process out of the scope of the cited references.

We point out that it is possible to generalize our assumption (1.10) to more general
renewals with inter-arrival decay exponent α “ 0. More precisely, replace the constant
a therein by a slowly varying function φpnq such that

ř

nPN φpnq{n “ 8, in which case
RN “

řN
n“1 φpnq{n is also a slowly varying function with RN{φpNq Ñ 8 (see [BGT89,

Prop. 1.5.9a]). We expect that our results extend to this case with the same techniques, but
we prefer to stick to the simpler assumption (1.10), which considerably simplifies notation.

Let us give an overview of the proof of Theorem 1.4 (see Section 6 for more details). In
order to prove the upper bound (1.19), a key tool is the following sharp estimate on the
local probability Ppτ

pNq
k “ nq. It suggests that the main contribution to tτ pNqk “ nu comes

from the strategy that a single increment T pNqi takes values close to n.

Proposition 1.5 (Sharp local estimate). Let us set log`pxq :“ plog xq`. There are
constants C P p0,8q and c P p0, 1q such that for all N, k P N and n ď N we have

P
`

τ
pNq
k “ n

˘

ď C kP
`

T
pNq
1 “ n

˘

P
`

T
pNq
1 ď n

˘k´1
e
´ c k

logn`1
log` c k

logn`1 . (1.21)

We point out that (1.21) sharpens [AB16, eq. (1.11) in Theorem 1.1], thanks to the last term
which decays super-exponentially in k. This will be essential for us, in order to counterbalance
the exponential weight λk in the renewal density UN,λpnq, see (1.14).

In order to prove the local limit theorem (1.18), we use a strategy of independent interest:
we are going to deduce it from the weak convergence in Proposition 1.3 by exploiting recursive
formulas for the renewal densities UN,λ and Gϑ, based on a decomposition according to
the jump that straddles a fixed site; see (6.13) and (6.14). These formulas provide integral
representations of the renewal densities UN,λ and Gϑ which reduce a local limit behavior to
an averaged one, thus allowing to strengthen weak convergence results to local ones.

Finally, we establish fine asymptotic properties of the continuum renewal density Gϑ.

Proposition 1.6. For any fixed ϑ P R, the function Gϑptq is continuous (actually C8) and
strictly positive for t P p0, 1s. As t Ó 0 we have Gϑptq Ñ 8, more precisely

Gϑptq “
1

tplog 1
t q

2

#

1`
2ϑ

log 1
t

` O

ˆ

1

plog 1
t q

2

˙

+

. (1.22)
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Remark 1.7. Our results also apply to renewal processes with a density. Fix a bounded
and continuous function r : r0,8q Ñ p0,8q with rptq “ a

t p1 ` op1qq as t Ñ 8, so that
RN :“

şN
0 rptq dt “ a logNp1` op1qq. If we consider the renewal process τ pNqk in (1.13) with

PpT
pNq
i P dtq “

rptq

RN
1r0,Nsptq dt ,

then Proposition 1.3, Theorem 1.4 and Proposition 1.5 still hold, provided P
`

τ
pNq
k “ n

˘

denotes the density of τ pNqk . The proofs can be easily adapted, replacing sums by integrals.

1.3. Organization of the paper. In Section 2 we present multi-dimensional exten-
sions of our main results, where we extend the subordinator and the renewal processes with
a spatial component. This is guided by applications to the directed polymer model.

In Section 3 we discuss the applications of our results to disordered systems and more
specifically to pinning and directed polymer models. A result of independent interest is
Proposition 3.2, where we prove sharp asymptotic results on the expected number of
encounters at the origin of two independent simple random walks on Z; this also gives the
expected number of encounters (anywhere) of two independent simple random walks on Z2.

The remaining sections 4-8 are devoted to the proofs. Appendix A contains results for
disordered systems, while Appendix B is devoted to the Dickman subordinator.

2. Multidimensional extensions

We extend our subordinator Y by adding a spatial component, that for simplicity we
assume to be Gaussian. More precisely, we fix a dimension d P N and we let W “ pWtqtPr0,8q

denote a standard Brownian motion on Rd. Its density is given by

gtpxq :“
1

p2πtqd{2
expp´ |x|

2

2t q , (2.1)

where |x| is the Euclidean norm. Note that
?
cWt has density gctpxq, for every c P p0,8q.

Recall the definition (1.1) of the measure ν. We denote by Y c :“ pY c
sqsě0 “ pYs, V

c
s qsě0

the Lévy process on r0,8qˆRd with zero drift, no Brownian component, and Lévy measure

νpdt,dxq :“ νpdtq gctpxq dx “
1p0,1qptq

t
gctpxq dt dx . (2.2)

Equivalently, for all λ P R1`d and s P r0,8q,

Erexλ,Y
c
sys “ exp

"

s

ż

p0,1qˆRd
pexλ,pt,xqy ´ 1q

gctpxq

t
dt dx

*

. (2.3)

We can identify the probability density of Y c
s for s P r0,8q as follows.

Proposition 2.1 (Density of Lévy process). We have the following representation:

pY c
sqsPr0,8q

d
“

`

pYs,
?
cWYsq

˘

sPr0,8q
,

with W independent of Y . Consequently, Y c
s has probability density (recall (1.3) and (2.1))

f spt, xq “ fsptq gctpxq . (2.4)
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We now define a family of random walks in the domain of attraction of Y c. Recall that
rpnq was defined in (1.10). We consider a family of probability kernels ppn, ¨q on Zd, indexed
by n P N, which converge in law to

?
cW1 when rescaled diffusively. More precisely, we

assume the following conditions:

piq
ÿ

xPZd
xi ppn, xq “ 0 for i “ 1, . . . , d

piiq
ÿ

xPZd
|x|2 ppn, xq “ Opnq as nÑ8

piiiq sup
xPZd

ˇ

ˇnd{2 ppn, xq ´ gc
`

x?
n

˘ˇ

ˇ “ op1q as nÑ8 .

(2.5)

Note that c P p0,8q is the asymptotic variance of each component. Also note that, by (iii),

sup
xPZ

ppn, xq “ O

ˆ

1

nd{2

˙

as nÑ8 . (2.6)

Then we define, for every N P N, the i.i.d. random variables pT pNqi , X
pNq
i q P Nˆ Zd by

P
`

pT
pNq
i , X

pNq
i q “ pn, xq

˘

:“
rpnq ppn, xq

RN
1t1,...,Nupnq , (2.7)

with rpnq, RN as in (1.10), (1.11). Let pτ pNq, SpNqq be the associated random walk, i.e.

τ
pNq
k :“ T

pNq
1 ` . . .` T

pNq
k , S

pNq
k :“ X

pNq
1 ` . . .`X

pNq
k . (2.8)

We have the following analogue of Proposition 1.3.

Proposition 2.2 (Convergence of rescaled Lévy process). Assume that the conditions
in (2.5) hold. The rescaled process

˜

τ
pNq
ts logNu

N
,
S
pNq
ts logNu
?
N

¸

sě0

converges in distribution to pY c
s :“ pYs, V

c
s qqsě0, as N Ñ8.

We finally introduce the exponentially weighted renewal density

UN,λpn, xq :“
ÿ

kě0

λk Ppτ
pNq
k “ n, S

pNq
k “ xq , (2.9)

as well as its continuum version:

Gϑpt, xq :“

ż 8

0
eϑs f spt, xq ds “ Gϑptq gctpxq for t P p0,8q , x P Rd , (2.10)

where the second equality follows by (1.15) and Proposition 2.1. Recall (1.14) and observe
that

ÿ

xPZd
UN,λpn, xq “ UN,λpnq (2.11)

The following result is an extension of Theorem 1.4.

Theorem 2.3 (Space-time renewal theorem). Fix any ϑ P R and let pλN qNPN satisfy

λN “ 1`
ϑ

logN

`

1` op1q
˘

as N Ñ8 .
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For any fixed 0 ă δ ă T ă 8, the following relation holds as N Ñ8:

UN,λN pn, xq “
logN

N1`d{2
Gϑ

`

n
N

˘

gc n
N

`

x?
N

˘`

1` op1q
˘

,

uniformly for δN ď n ď TN, |x| ď 1
δ

?
N .

(2.12)

Moreover, for any fixed T ă 8, the following uniform bound holds, for a suitable C P p0,8q:

UN,λN pn, xq ď C
logN

N

1

nd{2
Gϑp

n
N q , @0 ă n ď TN , @x P Zd . (2.13)

The bound (2.13) is to be expected, in view of (2.12), because supzPRd gtpzq ď
C
td{2

. Finally,

we show that the probability UN,λpn,¨q
UN,λpnq

is concentrated on the diffusive scale Op
?
nq.

Theorem 2.4. There exists a constant C P p0,8q such that for all N P N and λ P p0,8q
ÿ

xPZd: |x|ąM
?
n

UN,λpn, xq

UN,λpnq
ď

C

M2
, @n P N , @M ą 0 . (2.14)

3. Applications to disordered systems

In this section we discuss applications of our previous results to two marginally relevant
disordered systems: the pinning model with tail exponent 1{2 and the p2` 1q-dimensional
directed polymer model. For simplicity, we focus on the case when these models are built
from the simple random walk on Z and on Z2, respectively.

Both models contain disorder, given by a family ω “ pωiqiPT of i.i.d. random variables;
T “ N for the pinning model, T “ Nˆ Z2 for the directed polymer model. We assume that

Erωis “ 0 , Erω2
i s “ 1 , λpβq :“ logErexppβωiqs ă 8 @β ą 0 . (3.1)

An important role is played by

σ2
β :“ eλp2βq´2λpβq ´ 1 . (3.2)

Before presenting our results, in order to put them into context and to provide motivation,
we discuss the key notion of relevance of disorder.

3.1. Relevance of disorder. Both the pinning model and the directed polymer
model are Gibbs measures on random walk paths, which depend on the realization of the
disorder. A key question for these models, and more generally for disordered systems, is
whether an arbitrarily small, but fixed amount of disorder is able to change the large scale
properties of the model without disorder. When the answer is positive (resp. negative), the
model is called disorder relevant (resp. irrelevant). In borderline cases, where the answer
depends on finer properties, the model is called marginally relevant or irrelevant.

Important progress has been obtained in recent years in the mathematical understanding
of the relevance of disorder, in particular for the pinning model, where the problem can be
cast in terms of critical point shift (and critical exponents). We refer to [G10] for a detailed
presentation of the key results and for the relevant literature.

The pinning model based on the simple random walk on Z is marginally relevant, as
shown in [GLT10]. Sharp estimates on the critical point shift were more recently obtained in
[BL18]. For the directed polymer model based on the simple random walk on Z2, analogous
sharp results are given in [BL17], in terms of free energy estimates.
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In [CSZ17a] we proposed a different approach to study disorder relevance: when a model
is disorder relevant, it should be possible to suitably rescale the disorder strength to zero,
as the system size diverges, and still obtain a non-trivial limiting model where disorder is
present. Such an intermediate disorder regime had been investigated in [AKQ14a, AKQ14b]
for the directed polymer model based on the simple random walk on Z, which is disorder
relevant. The starting point to build a non-trivial limiting model is to determine the scaling
limits of the family of partition functions, which encode a great deal of information.

The scaling limits of partition functions were obtained in [CSZ17a] for several models
that are disorder relevant (see also [CSZ15]). However, the case of marginally relevant
models — which include the pinning model on Z and the directed polymer model on Z2

— is much more delicate. In [CSZ17b] we showed that for such models a phase transition
emerges on a suitable intermediate disorder scale, and below the critical point, the family
of partition functions converges to an explicit Gaussian random field (the solution of the
additive stochastic heat equation, in the case of the directed polmyer on Z2).

In this section we focus on a suitable window around the critical point, which corresponds
to a precise way of scaling down the disorder strength to zero (see (3.9) and (3.22) below).
In this critical window, the partition functions are expected to converge to a non-trivial
limiting random field, which has fundamental connections with singular stochastic PDEs
(see the discussion in [CSZ17b]).

Our new results, described in Theorems 3.1 and 3.7 below, give sharp asymptotic estimates
for the second moment of partition functions. These estimates, besides providing an important
piece of information by themselves, are instrumental to investigate scaling limits. Indeed,
we proved in the recent paper [CSZ18] that the family of partition functions of the directed
polymer on Z2 admits non-trivial random field limits, whose covariance exhibits logarithmic
divergence along the diagonal. This is achieved by a third moment computation on the
partition function, where the second moment estimates derived here play a crucial role.

3.2. Pinning model. Let X “ pXnqnPN0 be the simple symmetric random walk on Z
with probability and expectation denoted by Pp¨q and Er¨s, respectively. We set

upnq :“ PpX2n “ 0q “
1

22n

ˆ

2n

n

˙

“
1
?
π

1
?
n

`

1` op1q
˘

as nÑ8 . (3.3)

Fix a sequence of i.i.d. random variables ω “ pωnqnPN, independent of X, satisfying (3.1).
The (constrained) partition function of the pinning model is defined as follows:

ZβN :“ E
”

e
řN´1
n“1 pβωn´λpβqq1tX2n“0u 1tX2N“0u

ı

, (3.4)

where we work with X2n rather than Xn to avoid periodicity issues.
Writing ZβN as a polynomial chaos expansion [CSZ17a] (we review the computation in

Appendix A.1), we obtain the following expression for the second moment:

ErpZβN q
2s “

ÿ

kě1

pσ2
βq
k´1

ÿ

0ăn1ă...ănk´1ănk:“N

upn1q
2 upn2 ´ n1q

2 ¨ ¨ ¨ upnk ´ nk´1q
2 , (3.5)

where σ2
β is defined in (3.2). Let us define

rpnq :“ upnq2 “
1

π n

`

1` op1q
˘

, (3.6)

RN :“
N
ÿ

n“1

rpnq “
N
ÿ

n“1

"

1

22n

ˆ

2n

n

˙*2

“
1

π
logN

`

1` op1q
˘

, (3.7)
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and denote by pτ pNqk qkPN0 the renewal process with increments law given by (1.12). Then,
recalling (3.5) and (1.14), for every N P N and 1 ď n ď N we can write

ErpZβn q2s “
1

σ2
β

ÿ

kě1

`

σ2
β RN

˘k
Ppτ

pNq
k “ nq

“
1

σ2
β

UN,λpnq , where λ :“ σ2
β RN .

(3.8)

As a direct corollary of Theorem 1.4, we have the following result.

Theorem 3.1 (Second moment asymptotics for pinning model). Let ZβN be the
partition function of the pinning model based on the simple symmetric random walk on Z,
see (3.4). Define σ2

β by (3.2) and RN by (3.7). Fix ϑ P R and rescale β “ βN so that

σ2
βN
“

1

RN

ˆ

1`
ϑ

logN

`

1` op1q
˘

˙

as N Ñ8 . (3.9)

Then, for any fixed δ ą 0, the following relation holds as N Ñ8:

ErpZβNn q2s “
plogNq2

πN
Gϑp

n
N q p1` op1qq , uniformly for δN ď n ď N . (3.10)

Moreover, the following uniform bound holds, for a suitable constant C P p0,8q:

ErpZβNn q2s ď C
plogNq2

N
Gϑp

n
N q , @1 ď n ď N . (3.11)

In view of (3.7), it is tempting to replace RN by 1
π logN in (3.9). However, to do this

properly, a sharper asymptotic estimate on RN as N Ñ8 is needed. The following result,
of independent interest, is proved in Appendix A.3.

Proposition 3.2. As N Ñ8

RN :“
N
ÿ

n“1

"

1

22n

ˆ

2n

n

˙*2

“
logN ` α

π
` op1q , with α :“ γ ` log 16´ π , (3.12)

where γ “ ´
ş8

0 log u e´u du » 0.577 is the Euler-Mascheroni constant.

Corollary 3.3. Relation (3.9) can be rewritten as follows, with α :“ γ ` log 16´ π:

σ2
βN
“

π

logN

ˆ

1`
ϑ´ α

logN

`

1` op1q
˘

˙

as N Ñ8 . (3.13)

We stress that identifying the constant α in (3.12) is subtle, because it is a non asymptotic
quantity (changing any single term of the sequence in brackets modifies the value of α!). To
accomplish the task, in Appendix A.3 we relate α to a truly asymptotic property, i.e. the
tail behavior of the first return to zero of the simple symmetric random walk on Z2.

Remark 3.4. From (3.8), we note that ErpZβNn q2s is in fact the partition function of a
homogeneous pinning model, see [G07], with underlying renewal τ pNq, which has inter-arrival
exponent α “ 0. Theorem 3.1 effectively identifies the “critical window” for such a pinning
model and determines the asymptotics of the partition function in this critical window.
Analogous results when α ą 0 have been obtained in [S09].
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Remark 3.5. Relation (3.13) can be made more explicit, by expressing σ2
βN

in terms of β2
N .

The details are carried out in Appendix A.4.

Remark 3.6. If one removes the constraint tX2N “ 0u from (3.4), then one obtains the
free partition function Zβ,fN . The asymptotic behavior of its second moment can be determined
explicitly, in analogy with Theorem 3.1, see Appendix A.2.

3.3. Directed polymer in random environment. Let S “ pSnqnPN0 be the
simple symmetric random walk on Z2, with probability and expectation denoted by Pp¨q
and Er¨s, respectively. We set

qnpxq :“ PpSn “ xq , (3.14)
and note that, recalling the definition (3.3) of upnq, we can write

ÿ

xPZ2

qnpxq
2 “ PpS2n “ 0q “

"

1

22n

ˆ

2n

n

˙*2

“: upnq2 , (3.15)

where the second equality holds because the projections of S along the two main diagonals
are independent simple random walks on Z{

?
2.

Note that CovrS
piq
1 , S

pjq
1 s “ 1

2 1ti“ju, where S
piq
1 is the i-th component of S1, for i “ 1, 2.

As a consequence, Sn{
?
n converges in distribution to the Gaussian law on R2 with density

g 1
2
p¨q (recall (2.1)). The random walk S is periodic, because pn, Snq takes values in

Z3
even :“

 

z “ pz1, z2, z3q P Z3 : z1 ` z2 ` z3 P 2Z
(

.

Then the local central limit theorem gives that, as nÑ8,

n qnpxq “ g 1
2

`

x?
n

˘

21tpn,xqPZ3
evenu

` op1q , uniformly for x P Z2 , (3.16)

where the factor 2 is due to periodicity, because the constraint pn, xq P Z3
even restricts x in a

sublattice of Z2 whose cells have area equal to 2.
Fix now a sequence of i.i.d. random variables ω “ pωn,xqpn,xqPNˆZ2 satisfying (3.1),

independent of S. The (constrained) partition function of the directed polymer in random
environment is defined as follows:

Zβ
N pxq :“ E

”

e
řN´1
n“1 pβωn,Sn´λpβqq 1tSN“xu

ı

“ E
”

e
řN´1
n“1

ř

zPZ2 pβωn,z´λpβqq1tSn“zu 1tSN“xu

ı

.
(3.17)

In analogy with (3.5) (see Appendix A.1), we have a representation for the second moment:

E
“`

Zβ
N pxq

˘2‰
“

ÿ

kě1

pσ2
βq
k´1

ÿ

0ăn1ă...ănk´1ănk“N

x1,...,xkPZ2: xk“x

qn1px1q
2 qn2´n1px2 ´ x1q

2 ¨

¨ ¨ ¨ qnk´nk´1
pxk ´ xk´1q

2 .

(3.18)

To apply the results in Section 2, we define for pn, xq P Nˆ Z2

ppn, xq :“
qnpxq

2

upnq2
, where upnq :“

1

22n

ˆ

2n

n

˙

.

Note that ppn, ¨q is a probability kernel on Z2, by (3.15). Since gtpxq2 “ 1
4πtgt{2pxq (see

(2.1)), it follows by (3.16) and (3.3) that, uniformly for x P Z2,

n ppn, xq “ g 1
4

`

x?
n

˘

21tpn,xqPZ3
evenu

` op1q . (3.19)
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Thus ppn, ¨q fulfills condition (iii) in (2.5) with c “ 1
4 (the multiplicative factor 2 is a minor

correction, due to periodicity). Conditions (i) and (ii) in (2.5) are also fulfilled.
Let pτ pNq, SpNqq “ pτ pNqk , S

pNq
k qkě0 be the random walk with increment law given by (2.7),

where rpnq and RN are the same as in (3.6)-(3.7). More explicitly:

P
`

pτ
pNq
1 , S

pNq
1 q “ pn, xq

˘

:“
1

RN
qnpxq

2 1t1,...,Nupnq . (3.20)

Recalling (3.18) and (2.9), we can write

E
“`

Zβ
npxq

˘2‰
“

1

σ2
β

ÿ

kě1

`

σ2
β RN

˘k
Ppτ

pNq
k “ n, S

pNq
k “ xq

“
1

σ2
β

UN,λpn, xq , where λ :“ σ2
β RN .

(3.21)

As a corollary of Theorem 2.3, taking into account periodicity, we have the following result.

Theorem 3.7 (Second moment asymptotics for directed polymer). Let Zβ
N pxq be

the partition function of the directed polymer in random environment based on the simple
symmetric random walk on Z2, see (3.17). Define σ2

β by (3.2) and RN by (3.7). Fix ϑ P R
and rescale β “ βN so that

σ2
βN
“

1

RN

ˆ

1`
ϑ

logN

`

1` op1q
˘

˙

as N Ñ8 . (3.22)

For any fixed δ ą 0, the following relation holds as N Ñ8:

E
“`

ZβN
n pxq

˘2‰
“
plogNq2

πN2
Gϑ

`

n
N

˘

g n
4N

`

x?
N

˘

21tpn,xqPZ3
evenu

p1` op1qq ,

uniformly for δN ď n ď N, |x| ď 1
δ

?
N .

(3.23)

Remark 3.8. Relation (3.22) can be equivalently rewritten as relation (3.13), as explained
in Corollary 3.3. These conditions on σ2

βN
can be explicitly reformulated in terms of β2

N , see
Appendix A.4 for details.

Remark 3.9. Also for the directed polymer model we can define a free partition function
Zβ,f
N , removing the constraint tS2N “ xu from (3.17). The asymptotic behavior of its second

moment is determined in Appendix A.2.

4. Preliminary results

In this section we prove Propositions 1.3, 1.6, 2.1, and 2.2.
We start with Propositions 1.3 and 2.2, for which we prove convergence in the sense of

finite-dimensional distributions. It is not difficult to obtain convergence in the Skorokhod
topology, but we omit it for brevity, since we do not need such results.

Proof of Proposition 1.3. We recall that the renewal process τ pNqk was defined in (1.13).
We set

Y pNqs :“
τ
pNq
ts logNu

N
. (4.1)
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Note that the process Y pNqs has independent and stationary increments (for s P 1
logNN0),

hence the convergence of its finite-dimensional distributions follows if we show that

Y pNqs ÝÝÝÝÑ
NÑ8

Ys in distribution (4.2)

for every fixed s P r0,8q. This could be proved by checking the convergence of Laplace
transforms. We give a more direct proof, which will be useful in the proof of Proposition 2.2.

Fix ε ą 0 and let Ξpεq be a Poisson Point Process on rε, 1s with intensity measure sdt
t .

More explicitly, we can write
Ξpεq “ tt

pεq
i ui“1,...,N pεq ,

where the number of points N pεq has a Poisson distribution:

N pεq „ Poispλpεqq , where λpεq “

ż 1

ε
s

dt

t
“ s log 1{ε , (4.3)

while ptpεqi qiPN are i.i.d. random variables with law

Ppt
pεq
i ą xq “

ş1
x s

dt
t

ş1
ε s

dt
t

“
log x

log ε
for x P rε, 1s . (4.4)

We define

Y pεqs :“
ÿ

tPΞpεq

t “
N pεq
ÿ

i“1

t
pεq
i , (4.5)

which is a compound Poisson random variable. Its Laplace transform equals

Ere´λY
pεq
s s “ exp

ˆ

´ s

ż 1

ε

1´ e´λt

t
dt

˙

,

from which it follows that limεÑ0 Y
pεq
s “ Y s in distribution (recall (1.2)).

Next we define

Y pN,εqs :“
1

N

ÿ

iPI
pN,εq
s

T
pNq
i , where IpN,εqs :“

 

1 ď i ď ts logN u : T
pNq
i ą εN

(

. (4.6)

Note that, by (1.10)-(1.11), for some constant C P p0,8q we can write

E
“ˇ

ˇY pNqs ´ Y pN,εqs

ˇ

ˇ

‰

“
1

N
E

«

ÿ

iRI
pN,εq
s

T
pNq
i

ff

“
ts logN u

N
E
”

T
pNq
1 1

tT
pNq
1 ďεNu

ı

“
ts logN u

N

tεNu
ÿ

n“1

n
rpnq

RN
ď C

ts logN u

N

tεN u

logN
ď C εs .

(4.7)

Thus Y pNqs and Y pN,εqs are close in distribution for ε ą 0 small, uniformly in N P N.
The proof of (4.2) will be completed if we show that limNÑ8 Y

pN,εq
s “ Y

pεq
s in distribution,

for any fixed ε ą 0. Let us define the point process

ΞpN,εq :“

"

t
pN,εq
i :“

1

N
T
pNq
i : i P IpN,εqs

*

,

so that we can write
Y pN,εqs :“

ÿ

tPΞpN,εq

t “
ÿ

iPI
pN,εq
s

t
pN,εq
i .
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It remains to show that ΞpN,εq converges in distribution to Ξpεq as N Ñ8 (recall (4.5)).

‚ The number of points |IpN,εqs | in Ξpεq has a Binomial distribution Binpn, pq, with

n “ ts logN u , p “ PpT
pNq
1 ą εNq „

log 1{ε

logN
,

hence as N Ñ8 it converges in distribution to N pεq „ Poispλpεqq, see (4.3).

‚ Each point tpN,εqi P ΞpN,εq has the law of 1
N T

pNq
1 conditioned on T pNq1 ą εN , and it

follows by (1.10)-(1.11) that as N Ñ8 this converges in distribution to tpεq1 , see (4.4).

This completes the proof of Proposition 1.3. �

Proof of Proposition 2.2. We recall that the random walk pτ pNqk , S
pNq
k q was introduced

in (2.8). We introduce the shortcut

Y pNqs :“ pY pNqs , V pNqs q :“

˜

τ
pNq
ts logNu

N
,
S
pNq
ts logNu
?
N

¸

, s ě 0. (4.8)

In analogy with (4.2), it suffices to show that for every fixed s P r0,8q

Y pNqs ÝÝÝÝÑ
NÑ8

Y s :“ pYs, V
c
s q in distribution . (4.9)

Fix ε ą 0 and recall that Y pεqs was defined in (4.5). With Proposition 2.1 in mind, we
define

V pεqs :“
?
cW

Y
pεq
s
, (4.10)

where W is an independent Brownian motion on Rd. Since limεÑ0 Y
pεq
s “ Ys in distribution,

recalling Proposition 2.1 we see that for every fixed s P r0,8q

Y pεqs :“ pY pεqs , V pεqs q
d

ÝÝÝÑ
εÑ0

Y s “ pYs, V
c
s q .

Recall the definition (4.6) of Y pN,εqs and IpN,εqs . We define similarly

V pN,εqs :“
1
?
N

ÿ

iPI
pN,εq
s

X
pNq
i . (4.11)

We showed in (4.7) that Y pN,εqs approximates Y pNqs in L1, for ε ą 0 small. We are now going
to show that V pN,εqs approximates V pNqs in L2. Recalling (2.7), (2.5), we can write

E
“ˇ

ˇX
pNq
1

ˇ

ˇ

2 ˇ
ˇT
pNq
1 “ n

‰

“
ÿ

xPZ2

|x|2 ppn, xq ď c n . (4.12)

Since conditionally on pT pNqi q
iRI

pN,εq
s

, pXpNqi q
iRI

pN,εq
s

are independent with mean 0, we have

E
“
ˇ

ˇV pNqs ´ V pN,εqs

ˇ

ˇ

2‰
“

1

N
E
“
ˇ

ˇ

ÿ

iRI
pN,εq
s

X
pNq
i

ˇ

ˇ

2‰

ď
c

N
E
“

ÿ

iRI
pN,εq
s

T
pNq
i

‰

“ cErY pNqs ´ Y pN,εqs s ď cC ε s ,
(4.13)

where we have applied (4.7). This, together with (4.7), proves that we can approximate
Y
pNq
s by Y pN,εqs in distribution, uniformly in N , by choosing ε small.
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To complete the proof of (4.9), it remains to show that, for every fixed ε ą 0,

Y pN,εqs :“
`

Y pN,εqs , V pN,εqs

˘

ÝÝÝÝÑ
NÑ8

Y pεqs “ pY pεqs , V pεqs q in distribution , (4.14)

where V pεqs was defined in (4.10). In the proof of Proposition 1.3 we showed that ΞpN,εq

converges in distribution to Ξpεq as N Ñ8. By Skorohod’s representation theorem, we can
construct a coupling such that ΞpN,εq converges almost surely to Ξpεq, that is the number and
sizes of jumps of Y pN,εqs converge almost surely to those of Y pεqs . Given a sequence of jumps of
pY
pN,εq
s qNPN, say t

pN,εq
iN

Ñ t
pεq
i for some jump tpεqi of Y pεqs , we have that XpNqiN

{
?
N converges

in distribution to a centered Gaussian random variable with covariance matrix pc tpεqi Iq, by
the definition of XpNqiN

in (2.7) and the local limit theorem in (2.5). Therefore, conditionally

on all the jumps, the random variables V pN,εqs in (4.11) converges in distribution to the
Gaussian law with covariance matrix

N pεq
ÿ

i“1

pc t
pεq
i Iq “ cY pεqs I ,

which is precisely the law of V pεqs :“
?
cW

Y
pεq
s

. This proves (4.14). �

Proof of Proposition 1.6. Note that PpYs ď 1q “ e´γs{Γps` 1q, by the first line of (1.4).
With the change of variable u “ plog 1

t qs in (1.16), we can write

Gϑptq “
1

t

ż 8

0
s eplog tqs eϑs PpYs ď 1qds

“
1

tplog 1
t q

2

ż 8

0
u e´u e

ϑ
logp1{tq

u
PpYu{ logp1{tq ď 1qdu .

Note that PpYu{ logp1{tq ď 1q “ 1 ´ Op 1
plogp1{tqq2

q as t Ó 0, for any fixed u ą 0, by (B.7).
Expanding the exponential, as t Ó 0, we obtain by dominated convergence

Gϑptq “
1

tplog 1
t q

2

#

ż 8

0
u e´u du `

ϑ

logp1{tq

ż 8

0
u2 e´u du ` O

ˆ

1

plogp1{tqq2

˙

+

,

which coincides with (1.22). �

Proof of Proposition 2.1. It suffices to compute the joint Laplace transform of pYs,
?
cWYsq

and show that it agrees with (2.3). For % P R2, s ě 0, t ą 0, by independence of Y an W ,

Erex%,
?
cWYsy |Ys “ ts “ Erex%,

?
cWtys “ Ere

?
c t x%,W1ys “ e

1
2
c|%|2t .

Then for λ P R,

EreλYs`x%,
?
cWYsys “ Erepλ`

1
2
c|%|2qYss “ exp

"

s

ż 1

0
pepλ`

1
2
c|%|2qt ´ 1q

1

t
dt

*

,

where we have applied (1.2). It remains to observe that, by explicit computation,

epλ`
1
2
c|%|2qt ´ 1 “

ż

R2

peλt`x%,xy ´ 1q gctpxq dx , (4.15)

which gives (2.3). �
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5. Proof of Proposition 1.5

This section is devoted to the proof of Proposition 1.5. Let us rewrite relation (1.21):

P
`

τ
pNq
k “ n

˘

ď C kP
`

T
pNq
1 “ n

˘

P
`

T
pNq
1 ď n

˘k´1
e
´ c k

logn`1
log` c k

logn`1 . (5.1)

The strategy, as in [AB16], is to isolate the contribution of the largest increment T pNqi . Our
analysis is complicated by the fact that our renewal processes τ pNq varies with N P N.

Before proving Proposition 1.5, we derive some useful consequences. We recall that the
renewal process pτ pNqk qkě0 was defined in (1.13).

Proposition 5.1. There are constants C P p0,8q, c P p0, 1q and, for every ε ą 0, Nε P N
such that for all N ě Nε, s P p0,8q X 1

logNN, t P p0, 1s X 1
NN we have

P
`

τ
pNq
s logN “ tN

˘

ď C
1

N

s

t
tp1´εqs e´cs log`pcsq . (5.2)

Recalling that fsptq is the density of Ys, see (1.4), it follows that for N P N large enough

P
`

τ
pNq
s logN “ tN

˘

ď C 1
1

N
fcsptq . (5.3)

Proof. Let us prove (5.3). Since Γps ` 1q “ esplog s´1q`logp
?

2πsqp1 ` op1qq as s Ñ 8, by
Stirling’s formula, and since γ » 0.577 ă 1, it follows by (1.4) that there is c1 ą 0 such that

fsptq ě c1
s

t
ts e´s log`psq , @t P p0, 1s , @s P p0,8q . (5.4)

Then, if we choose ε “ 1´ c in (5.2), we see that (5.3) follows (with C 1 “ C{pcc1q).
In order to prove (5.2), let us derive some estimates. We denote by c1, c2, . . . generic

absolute constants in p0,8q. By (1.12)-(1.11),

P
`

T
pNq
1 ď r

˘

“
Rr
RN

ď c1
log r

logN
, @r,N P N . (5.5)

At the same time

P
`

T
pNq
1 ď r

˘

“
Rr
RN

“ 1´
RN ´Rr
RN

ď e
´
RN´Rr
RN . (5.6)

By (1.10), we can fix η ą 0 small enough so that RN´Rr
RN

ě η logpN{rq
logN for all r,N P N with

r ď N . Plugging this into (5.6), we obtain a bound that will be useful later:

P
`

T
pNq
1 ď r

˘

ď

ˆ

r

N

˙

η
logN

, @N P N, @r “ 1, . . . , N . (5.7)

We can sharpen this bound. For every ε ą 0, let us show that there is Nε ă 8 such that

P
`

T
pNq
1 ď r

˘

ď

ˆ

r

N

˙
1´ε
logN

, @N ě Nε , @r “ 1, 2, . . . , N . (5.8)

We first consider the range r ď Nϑ, where ϑ :“ e´1{c1. Then, by (5.5),

P
`

T
pNq
1 ď r

˘

ď P
`

T
pNq
1 ď Nϑ

˘

ď c1 ϑ “ e´1 “
`

1
N

˘
1

logN ď
`

r
N

˘
1

logN ď
`

r
N

˘
1´ε
logN .

Next we take r ě Nϑ. Then RN´Rr
RN

ě p1´ εq logpN{rq
logN for N large enough, by (1.10), which

plugged into (5.6) completes the proof of (5.8). We point out that the bounds (5.7), (5.8) are
poor for small r, but they provide a simple and unified expression, valid for all r “ 1, . . . , N .
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We can finally show that (5.2) follows by (5.1) (from Proposition 1.5) where we plug
k “ s logN and n “ tN , for s P p0,8q X 1

logNN0 and t P p0, 1s X 1
NN. Indeed, note that:

‚ by (1.12)-(1.11) we have kP
`

T
pNq
1 “ n

˘

ď c2
k

plogNqn “ c2
1
N

s
t ;

‚ since k
logn`1 ě

k
logN`1 ě c3 s for n ď N , the last term in (5.1) matches with the

corresponding term in (5.2);

‚ by (5.8) we have P
`

T
pNq
1 ď n

˘k´1
ď tp1´εqs t

´ 1
logN ď tp1´εqs p 1

N q
´ 1

logN “ e tp1´εqs,
because t ě 1

N , hence (5.2) is deduced. �

Before starting with the proof of Proposition 1.5, we derive some large deviation estimates.
We start by giving an upper bound on the upper tail Ppτ

pmq
k ě nq for arbitrary m, k, n P N.

This is a Fuk-Nagaev type inequality, see [N79, Theorem 1.1].

Lemma 5.2. There exists a constant C P p1,8q such that for all m P N and s, t P r0,8q

P
`

τ
pmq
tsplogm`1qu ě tm

˘

ď e´t log`p t
Cs
q . (5.9)

Proof. We are going to prove that for all m,n, k P N

P
`

τ
pmq
k ě n

˘

ď

ˆ

C km

n plogm` 1q
^ 1

˙
n
m

, (5.10)

which is just a rewriting of (5.9). For some c1 ă 8 we have Erτ
pmq
1 s ď c1

m
logm`1 , see

(1.10)-(1.12). Since τ pmq1 ď m, we can estimate

E
“

eλτ
pmq
1

‰

“ 1`
ÿ

jě1

λj

j!
Erpτ

pmq
1 qjs ď 1`

ÿ

jě1

λj

j!
mj´1 Erτ

pmq
1 s ď 1`

c1

logm` 1

ÿ

jě1

pλmqj

j!

ď 1`
c1

logm` 1
eλm .

This yields, by Markov inequality, for all λ ě 0,

P
`

τ
pmq
k ě n

˘

ď e´λn E
“

eλτ
pmq
1

‰k
“ e´λn

`

1` c1
logm`1e

λm
˘k

ď e´λn exp
`

c1 k
logm`1e

λm
˘

. (5.11)

We now choose λ such that

k
logm`1 e

λm “ n
m , that is e´λ “

`

mk
n plogm`1q

˘
1
m .

If mk
n plogm`1q ą 1 relation (5.10) holds trivially, so we assume mk

n plogm`1q ď 1, so that λ ě 0.
This choice of λ, when plugged into (5.11), gives (5.10) with C “ ec1`1. �

Remark 5.3. Heuristically, the upper bound (5.10) corresponds to requiring that among
the k increments T pmq1 , T

pmq
2 , . . . , T

pmq
k there are ` :“ n

m “big jumps” of size comparable to m.
To be more precise, let us first recall the standard Cramer large deviations bound

PpPoispλq ą tq ď e´tplog t
λ
´1q “

`

eλ
t

˘t
, @λ, t ą 0 .
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Now fix a P p0, 1q and note that PpT
pmq
1 ą amq „ pm :“ c

logm (where c “ log 1
a). If we

denote by Nk,am the number of increments T pmqi of size at least am, we can write

PpNk,m ě `q “ PpBinpk, pmq ě `q « PpPoispk pmq ě `q ď
´e k pm

`

¯`
.

If we choose ` “ n
m , we obtain the same bound as in (5.10). This indicates that the strategy

just outlined captures the essential contribution to the event tτ pmqk ě nu.

We complement Lemma 5.2 with a bound on the lower tail Ppτ
pmq
k ď nq.

Lemma 5.4. There exists a constant c P p0, 1q such that for all m P N and s, t P r0,8q

P
`

τ
pmq
tsplogm`1qu ď tm

˘

ď e´c s log`p cs
t
q . (5.12)

Proof. We are going to prove that there exists c P p0, 1q such that for all m,n, k P N

P
`

τ
pmq
k ď n

˘

ď

ˆ

n plogm` 1q

c km
^ 1

˙
c k

logm`1

, (5.13)

which is just a rewriting of (5.12). For λ ě 0 we have

Ppτ
pmq
k ď nq “ Ppe´λτ

pmq
k ě e´λnq ď eλn Ere´λT

pmq
1 sk . (5.14)

Next we evaluate, by (1.10)-(1.11),

Ere´λT
pmq
1 s “

m
ÿ

n“1

e´λn
rpnq

Rm
“ 1´

m
ÿ

n“1

p1´ e´λnq
rpnq

Rm
ď 1´

c1

logm` 1

m
ÿ

n“1

1´ e´λn

n
,

for some c1 P p0, 1q. Since the function x ÞÑ 1´e´x

x is decreasing for x ě 0, we can bound

Ere´λT
pmq
1 s ď 1´

c1

logm` 1

ż m`1

1

1´ e´λt

t
dt “ 1´

c1

logm` 1

ż λpm`1q

λ

1´ e´x

x
dx .

We are going to fix 1
m ď λ ď 1. Restricting the integration to the interval 1 ď x ď λm and

bounding 1´ e´x ě p1´ e´1q we obtain, for c2 :“ p1´ e´1qc1,

Ere´λT
pmq
1 s ď 1´ c2

logm`1 logpλmq ď e
´

c2
logm`1

logpλmq
“

´

1
λm

¯

c2
logm`1

.

Looking back at (5.14), we obtain

Ppτ
pmq
k ď nq ď eλn

´

1
λm

¯c2
k

logm`1
. (5.15)

We are ready to prove (5.13). Assume first that k ď n and let λ :“ k
n plogm`1q ď 1. We

may assume that λ ě 1
m , because for λm ă 1 the right hand side of (5.13) equals 1 and

there is nothing to prove. We then have 1
m ď λ ď 1. Plugging λ into (5.15) gives

Ppτ
pmq
k ď nq ď

ˆ

e
1
c2 n plogm` 1q

km
^ 1

˙c2
k

logm`1

,

where we inserted “^1” because the left hand side is a probability. Since x ě e´1{x for x ě 0,
in the exponent we can replace c2 by c :“ e´1{c2 , which yields (5.13).

Finally, for k ą n the left hand side of (5.13) vanishes, because τ pmqk ě k. �
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Remark 5.5. For renewal processes with a density, see Remark 1.7, the proof of Lemma 5.4
can be easily adapted, replacing sums by integrals. The only difference is that we no longer
have τ pmqk ě k, so the case k ą n needs a separate treatment. To this purpose, we note that

Ere´λT
pmq
1 s “

ż m

0
e´λt

rptq

Rm
dt ď

c0

logm` 1

ż 8

0
e´λt dt “

c0

logm` 1

1

λ
,

for some c0 P p1,8q. If we set λ “ k
n , by (5.14) we get

Ppτ
pmq
k ď nq ď

ˆ

n

k

˙k ˆ e c0

logm` 1

˙k

. (5.16)

We now give a lower bound on the right hand side of (5.13). We assume that the fraction
therein is ď 1, otherwise there is nothing to prove. Since c P p0, 1q, for k ą n we can bound
ˆ

n

k

˙
c k

logm`1
ˆ

logm` 1

cm

˙
c k

logm`1

ě

ˆ

n

k

˙k ˆ 1

m` 1

˙
c k

logm`1

“

ˆ

n

k

˙k

e´c k ě

ˆ

n

k

˙k

e´k .

This is larger than the right hand side of (5.16), if we take m ě m0 :“ texppe2 c0qu (so that
e c0

logm`1 ď e´1). This shows that (5.16) holds for k ą n and m ě m0.
It remains to consider the case k ą n and m ă m0. Note that lowering c increases

the right hand side of (5.13), so we can assume that c ď logm0`1
e c0m0

. Since m ÞÑ
logm`1

m is
decreasing for m ě 1, we can bound the right hand side of (5.13) from below (assuming that
the fraction therein is ď 1) as follows, for k ą n and m ă m0:

ˆ

n

k

logm0 ` 1

cm0

˙
c k

logm`1

ě

ˆ

n

k
e c0

˙
c k

logm`1

ě

ˆ

n

k

e c0

logm` 1

˙
c k

logm`1

,

which is larger than the right hand side of (5.16). This completes the proof of (5.13) for
renewal processes with a density, as in Remark 1.7.

Proof of Proposition 1.5. We have to prove relation (5.1) for all N, k, n P N with n ď N .
Let us set

M
pNq
k :“ max

1ďiďk
T
pNq
i ,

and note that tτ pNqk “ nu Ď tM
pNq
k ď nu. This yields

P
`

τ
pNq
k “ n

˘

P
`

T
pNq
1 ď n

˘k
“ P

`

τ
pNq
k “ n

ˇ

ˇM
pNq
k ď n

˘

“ P
`

τ
pnq
k “ n

˘

, (5.17)

where the last equality holds because the random variables T pNqi , conditioned on tT pNqi ď nu,
have the same law as T pnqi , see (1.12). Let us now divide both sides of (5.1) by P

`

T
pNq
1 ď n

˘k.
The equality (5.17) and the observation that PpT

pNq
1 “ nq{PpT

pNq
1 ď nq “ PpT

pnq
1 “ nq

show that (5.1) is implied by

P
`

τ
pnq
k “ n

˘

ď C k
1

n plog n` 1q
e
´ c k

logn`1
log` c k

logn`1 . (5.18)

Note that there is no longer dependence on N .
It remains to prove (5.18). By Lemma 5.4, more precisely by (5.13), we can bound

P
`

τ
pnq
k “ n

˘

ď P
`

τ
pnq
k ď n

˘

ď

ˆ

log n` 1

c k
^ 1

˙
c k

logn`1

“ e
´ c k

logn`1
log` c k

logn`1 .
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This shows that (5.18) holds for every k P N if we take C “ Cpnq :“ n plog n` 1q. Then, for
any fixed n̄ P N, we can set C :“ maxnďn̄Cpnq and relation (5.18) holds for all n ď n̄ and
k P N. As a consequence, it remains to prove that there is another constant C ă 8 such
that relation (5.18) holds for all n ě n̄ and k P N. Note that n̄ P N is arbitrary.

We start by estimating, for any m P p1, ns (possibly not an integer, for later convenience)

P
`

τ
pnq
k “ n , M

pnq
k P pe´1m,ms

˘

ď k
ÿ

rPpe´1m,ms

PpT
pnq
1 “ rqP

`

τ
pnq
k´1 “ n´ r , M

pnq
k´1 ď r

˘

ď k max
rPpe´1m,ms

PpT
pnq
1 “ rq P

`

T
pnq
1 ď m

˘k´1
ÿ

rPpe´1m,ms

P
`

τ
pnq
k´1 “ n´ r

ˇ

ˇM
pnq
k´1 ď m

˘

.

(5.19)

Since T pnqi conditioned on T pnqi ď m is distributed as T pmqi :“ T
ptmuq

i , we get, by (1.12)-(1.11),

P
`

τ
pnq
k “ n , M

pnq
k P pe´1m,ms

˘

ď c4 k
1

m plog n` 1q
P
`

T
pnq
1 ď m

˘k´1
P
`

n´m ď τ
pmq
k´1 ă n´ e´1m

˘

.
(5.20)

We bound PpT
pnq
1 ď mqk´1 ď pmn q

ηpk´1q
logn ď e pmn q

ηk
logn , by (5.7). Choosing m “ e´`n in (5.20)

and summing over 0 ď ` ď log n, we obtain the key bound

P
`

τ
pnq
k “ n

˘

“

tlognu
ÿ

`“0

P
`

τ
pnq
k “ n , M

pnq
k P pe´`´1n, e´`ns

˘

ď c4 k
1

n plog n` 1q

tlognu
ÿ

`“0

e` P
`

T
pnq
1 ď e´`n

˘k´1
P
´

p1´ e´`qn ď τ
pe´`nq
k´1 ă p1´ e´p``1qqn

¯

.

(5.21)

To complete the proof of (5.18), we show that, for suitable C P p0,8q and c P p0, 1q,
tlognu
ÿ

`“0

e` P
`

T
pnq
1 ď e´`n

˘k´1
P
´

p1´ e´`qn ď τ
pe´`nq
k´1 ă n

¯

ď C e
´ c k

logn`1
log` c k

logn`1 . (5.22)

Let c P p0, 1q be the constant in Lemma 5.4. We recall that we may fix n̄ arbitrarily and
focus on n ě n̄. We fix c1 P p0, 1q with c1 ą c, and we choose n̄ so that, by (5.8) with N “ n
and r “ e´`n,

P
`

T
pnq
1 ď e´`n

˘

ď pe´`q
c1

logn @n ě n̄ , @` “ 0, 1, . . . , tlog nu .

Then (5.22) is reduced to showing that for all n ě n̄ and k “ 1, . . . , n

tlognu
ÿ

`“0

e` pe´`q
c1pk´1q
logn P

´

p1´ e´`qn ď τ
pe´`nq
k´1 ă n

¯

ď C e
´ c k

logn`1
log` c k

logn`1 . (5.23)

We first consider the regime of k P N such that

k ą 1` 2
c1´c plog n` 1q . (5.24)

We use Lemma 5.4 to bound the probability in (5.23). More precisely, we apply relation
(5.12) with m “ e´`n, s “ k´1

logpe´`nq`1
, t “ e` and with log` replaced by log, to get an upper
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bound. Since e´`n ď n, we get by monotonicity

P
`

τ
pe´`nq
k´1 ă n

˘

ď e
´

c pk´1q

logpe´`nq`1
log

´

e´` c pk´1q

logpe´`nq`1

¯

ď e
´
c pk´1q
logn`1

log
´

e´` c pk´1q
logn`1

¯

“

!

e
´
c pk´1q
logn`1

log c pk´1q
logn`1

)

`

e
c pk´1q
logn

˘`
.

(5.25)

Since k ´ 1 ě k
2 for k ě 2, if we redefine c{2 as c, we see that the term in brackets in (5.25)

matches with the right hand side of (5.23) (where we can replace log` by log, by (5.24) and
2

c1´c ą c). The other term in (5.25), when inserted in the left hand side of (5.23), gives a
contribution to the sum which is uniformly bounded, by (5.24):

tlognu
ÿ

`“0

e` pe´`q
c1pk´1q
logn

`

e
c pk´1q
logn

˘`
ď

8
ÿ

`“0

`

e
1´pc1´cq k

logn
˘`
ď

8
ÿ

`“0

e´` ă 8 .

This completes the proof of (5.23) under the assumption (5.24).
Next we consider the complementary regime of (5.24), that is

k ď A log n`B , (5.26)

for suitably fixed constants A,B. In this case the right hand side of (5.23) is uniformly
bounded from below by a positive constant. Therefore it suffices to show that

tlognu
ÿ

`“1

e` P
´

n
2 ď τ

pe´`nq
k´1 ă n

¯

ď C , (5.27)

where, in order to lighten notation, we removed from (5.22) the term ` “ 0 (which contributes
at most one) and then bounded p1´ e´`qn ě n

2 for ` ě 1.
We apply Lemma 5.2 (with the constant C renamed D, to avoid confusion with (5.27)).

Relation (5.9) with m “ e´`n, s “ k
logpe´`nq`1

, t “ 1
2e
` gives

P
`

τ
pe´`nq
k ě n

2

˘

ď e
´ 1

2
e` log`

´

e`

2D
logn´``1

k

¯

“ e
´e`

!

1
2

log`
´

1
2D

1
x`

¯)

, (5.28)

where we have introduced the shorthand

x` :“ k e´`

logn´``1 . (5.29)

For ` such that x` ă 1
2De2

the right hand side of (5.28) is at most e´e` . We claim that

x` ă
1

2De2
for all ` ě ¯̀, where ¯̀ :“ tlog

`

4pA`BqDe2qu` 1 . (5.30)

This completes the proof of (5.27), because the sum is at most
ř¯̀

`“1 e
``

ř8
`“ ¯̀̀ 1 e

` e´e
`
ă 8.

It remains to prove that relation (5.30) holds in regime (5.26). We recall that we may
assume that n is large enough. Consider first the range 1

2 log n ď ` ď tlog nu: then

x` ď k e´` ď k?
n
ď

A logn`B
?
n

ÝÝÝÑ
nÑ8

0 ,

hence we have x` ă 1
2De2

for n large enough. Consider finally the range ` ă 1
2 log n: then

x` ď
k

1
2

logn
e´` ď A logn`B

1
2

logn
e´` ď 2pA`Bq e´

¯̀
ď 1

2De2
,

by the definition (5.30) of ¯̀. This completes the proof. �

We conclude this section by extending Proposition 5.1 to the multidimensional setting.
We recall that pτ pNqk , S

pNq
k q is defined in (2.8).



22 F. CARAVENNA, R. SUN, AND N. ZYGOURAS

Proposition 5.6. There are constants C P p0,8q, c P p0, 1q and, for every ε ą 0, Nε P N
such that for all N ě Nε, s P p0,8q X 1

logNN, t P p0, 1s X 1
NN and x P 1?

N
Zd we have

P
`

τ
pNq
s logN “ tN , S

pNq
s logN “ x

?
N

˘

ď C
1

N1` d
2

s

t1`
d
2

tp1´εqs e´cs log`pcsq . (5.31)

It follows that for N P N large enough

P
`

τ
pNq
s logN “ tN , S

pNq
s logN “ x

?
N

˘

ď C 1
1

N

1

pNtq
d
2

fcsptq . (5.32)

Proof. We follow closely the proof of Proposition 5.1. Relation (5.32) follows from (5.31)
with ε “ 1´ c, thanks to the bound (5.4), so we focus on (5.31).

We will prove an analog of relation (5.1): for all N, k, n P N with n ď N and for all z P Zd

P
`

τ
pNq
k “ n , S

pNq
k “ z

˘

ď C
k

n
d
2

P
`

T
pNq
1 “ n

˘

P
`

T
pNq
1 ď n

˘k´1
e
´ c k

logn`1
log` c k

logn`1 . (5.33)

Note that the only difference with respect to (5.1) is the term n
d
2 in the denominator.

In the proof of Proposition 5.1 we showed that (5.2) follows from (5.1). In exactly the
same way, relation (5.31) follows from (5.33), by choosing k “ s logN , n “ Nt, z “ x

?
N .

It remains to prove (5.33). Arguing as in (5.17), we remove the dependence on N and it
suffices to prove the following analog of (5.18): for all n, k P N and for all z P Zd

P
`

τ
pnq
k “ n , S

pnq
k “ z

˘

ď C
k

n
d
2

1

n plog n` 1q
e
´ c k

logn`1
log` c k

logn`1 . (5.34)

To this purpose, we claim that we can modify (5.20) as follows:

P
`

τ
pnq
k “ n , S

pnq
k “ z , M

pnq
k P pe´1m,ms

˘

ď c4
k

m
d
2

1

m plog n` 1q
P
`

T
pnq
1 ď m

˘k´1
P
`

n´m ď τ
pmq
k´1 ă n´ e´1m

˘

.
(5.35)

This is because, arguing as in (5.19), we can write

P
`

τ
pnq
k “ n , S

pnq
k “ x , M

pnq
k P pe´1m,ms

˘

ď k
ÿ

rPpe´1m,ms , yPZd
PpT

pnq
1 “ r , X

pnq
1 “ yqP

`

τ
pnq
k´1 “ n´ r , S

pnq
k´1 “ x´ y , M

pnq
k´1 ď r

˘

ď k
!

max
rPpe´1m,ms , yPZd

PpT
pnq
1 “ r , X

pnq
1 “ yq

)

P
`

T
pnq
1 ď m

˘k´1

ÿ

rPpe´1m,ms

P
`

τ
pnq
k´1 “ n´ r

ˇ

ˇM
pnq
k´1 ď m

˘

,

and it follows by (2.7), (2.6) and (1.10)-(1.11) that

max
rPpe´1m,ms , yPZd

PpT
pnq
1 “ r , X

pnq
1 “ yq ď

C

log n` 1

1

m1` d
2

.

We can now plug m “ e´`n into (5.35) and sum over ` “ 0, 1, . . . , tlog nu, as in (5.21).
This leads to our goal (5.34), provided we prove the following analog of (5.22):

tlognu
ÿ

`“0

ep1`
d
2
q` P

`

T
pnq
1 ď e´`n

˘k´1
P
´

p1´ e´`qn ď τ
pe´`nq
k´1 ă n

¯

ď C e
´ c k

logn`1
log` c k

logn`1 .
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The only difference with respect to (5.22) is the term ep1`
d
2
q` instead of e` in the sum. It is

straightforward to adapt the lines following (5.22) and complete the proof. �

6. Proof of Theorem 1.4: case T “ 1

In this section we prove Theorem 1.4 for T “ 1. The case T ą 1 will be deduced in the
next Section 7. We prove separately the uniform upper bound (1.19) and the local limit
theorem (1.18), assuming throughout the section that n ď N (because T “ 1).

For later use, we state an immediate corollary of Lemma 5.4.

Lemma 6.1. There is a constant c P p0, 1q such that for all N P N and s, t P r0,8q

P
`

τ
pNq
ts logNu

ď tN
˘

ď es´c s log s
t . (6.1)

6.1. Proof of (1.19). Recall the definition (4.1) of Y pNqs . From the definition (1.14) of
UN,λpnq and the upper bound (5.3) (which we can apply for n

N ď 1), we get for large N

UN,λpnq “
ÿ

kě0

λk P
´

Y
pNq
k

logN

“ n
N

¯

ď C
logN

N

#

1

logN

ÿ

kě0

λk fc k
logN

`

n
N

˘

+

. (6.2)

We now choose λ “ λN as in (1.17). Then for some A P p0,8q we have

λN ď 1`A ϑ
logN ď e

A ϑ
logN , @N P N ,

hence

UN,λN pnq ď C
logN

N

#

1

logN

ÿ

kě0

e
k

logN
Aϑ

fc k
logN

`

n
N

˘

+

. (6.3)

The bracket is a Riemann sum, which converges as N Ñ8 to the corresponding integral. It
follows that for every N P N we can write, recalling (1.15),

UN,λN pnq ď C 1
logN

N

"
ż 8

0
esAϑ fcs

`

n
N

˘

ds

*

“
C 1

c

logN

N
GA

c
ϑ

`

n
N

˘

, (6.4)

for some constant C 1. (The fact that C 1 is uniform over 1 ď n ď N is proved below.)
To complete the proof of (1.19), we can replace GA

c
ϑ

`

n
N

˘

by Gϑ
`

n
N

˘

, possibly enlarging
the constant C 1, because the function t ÞÑ Gϑptq is strictly positive, continuous and its
asymptotic behavior as t Ñ 0 for different values of ϑ is comparable, by Proposition 1.6.
(Note that in Theorem 1.4 the parameter ϑ is fixed.)

We finally prove the following claim: we can bound the Riemann sum in (6.3) by a multiple
of the coresponding integral in (6.4), uniformly over 1 ď n ď N . By (1.4) we can write

esAϑ fcsptq “
1

t
exp

´

`

log t`
A

c
ϑ´ γ

˘

cs´ log Γpcsq
¯

. (6.5)

Since log Γp¨q is smooth and strictly convex, given any t P p0,8q, the function s ÞÑ esAϑ fcsptq
is increasing for s ď s̄ and decreasing for s ě s̄, where s̄ “ s̄pt, Aϑ, cq is characterized by

plog Γq1pcs̄q “ log t`
A

c
ϑ´ γ . (6.6)

Henceforth we fix t “ n
N , with 1 ď n ď N .
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Let us now define sk :“ k
logN and write

1

logN

ÿ

kě0

e
k

logN
Aϑ

fc k
logN

`

n
N

˘

“
ÿ

kě0

1
logN esk Aϑ fcsk

`

n
N

˘

. (6.7)

If we set k̄ :“ maxtk ě 0 : sk ď s̄u, so that sk̄ ď s̄ ă sk̄`1, we note that each term
in the sum (6.7) with k ď k̄ ´ 1 (resp. with k ě k̄ ` 2) can be bounded from above by
the corresponding integral on the interval rsk, sk`1q (resp. on the interval rsk´1, skq), by
monotonicity of the function s ÞÑ esAϑ fcsptq. For the two remaining terms, corresponding
to k “ k̄ and k “ k̄ ` 1, we replace sk by s̄ where the maximum is achieved. This yields

1

logN

ÿ

kě0

e
k

logN
Aϑ

fc k
logN

`

n
N

˘

ď

ż 8

0
esAϑ fcs

`

n
N

˘

ds ` 2
logN es̄Aϑ fcs̄

`

n
N

˘

. (6.8)

It remains to deal with the last term. Recall that s ÞÑ esAϑfcsp
n
N q is maximized for s “ s̄.

We will show that shifting s̄ by 1
logN decreases the maximum by a multiplicative constant:

c :“ sup
NPN, 1ďnďN

es̄ A ϑ fcs̄p
n
N q

e
ps̄` 1

logN
qAϑ

fcps̄` 1
logN

qp
n
N q

ă 8 . (6.9)

Since s ÞÑ esAϑfcsp
n
N q is decreasing for s ě s̄, we can bound the last term in (6.8) as follows:

2
logN es̄ A ϑ fcs̄

`

n
N

˘

ď 2c

ż s̄` 1
logN

s̄
esAϑ fcs

`

n
N

˘

ds ď 2c

ż 8

0
esAϑ fcs

`

n
N

˘

ds ,

which completes the proof of the claim.
It remains to prove (6.9). By the representation (6.5), the ratio in (6.9) equals

exp
 

´
`

log n
N `

A
c ϑ´ γ

˘

c
logN `

`

log Γpcs̄` c
logN q ´ log Γpcs̄q

˘(

ď exp
 

Op1q ` c
logN plog Γq1pcs̄` c

logN q
(

,

by 1 ď n ď N and by convexity of log Γp¨q. It follows by (6.6) that s̄ is uniformly bounded
from above (indeed s̄ ď Aϑ{c´ γ, because t “ n

N ď 1 and plog Γq1p¨q is increasing). Then
plog Γq1pcs̄` c

logN q ď plog Γq1pAϑ´ cγ ` c
logN q is also uniformly bounded from above. �

6.2. Proof of (1.18). We organize the proof in three steps.

Step 1. We first prove an “integrated version” of (1.18). Let us define a measure GpNqλ on
r0,8q as follows:

G
pNq
λ p ¨ q :“

1

logN

8
ÿ

n“0

UN,λpnq δ n
N
p ¨ q , (6.10)

where δtp ¨ q is the Dirac mass at t, and UN,λp¨q is defined in (1.14). Recall also (1.15).

Lemma 6.2. Fix ϑ P R and choose λ “ λN as in (1.17). As N Ñ 8, the measure GpNqλN
converges vaguely to Gϑptq dt, i.e. for every compactly supported continuous φ : r0,8q Ñ R

ż 8

0
φptqG

pNq
λN
pdtq ÝÝÝÝÑ

NÑ8

ż 8

0
φptqGϑptq dt . (6.11)
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Proof. Recalling the definition (1.14) of UN,λpnq, we can write
ż 8

0
φptqG

pNq
λN
pdtq “

1

logN

8
ÿ

n“0

UN,λpnqφ
`

n
N

˘

“
1

logN

ÿ

kě0

pλN q
k E

”

φ
` τ
pNq
k
N

˘

ı

“

ż 8

0
pλN q

ts logNu E
”

φ
` τ
pNq
ts logNu

N

˘

ı

ds .

(6.12)

Note that limNÑ8pλN q
ts logNu “ eϑs, by (1.17). Similarly, by Proposition 1.3

lim
NÑ8

E
”

φ
` τ
pNq
ts logNu

N

˘

ı

“ E
“

φ
`

Ys
˘‰

.

Interchanging limit and integral, which we justify in a moment, we obtain from (6.12)

lim
NÑ8

ż 8

0
φptqG

pNq
λN
pdtq “

ż 8

0
eϑs E

“

φ
`

Ys
˘‰

ds .

If we write E
“

φ
`

Ys
˘‰

“
ş8

0 φptq fsptq dt, we have proved (6.11) (recall (1.15)).
Let us finally justify that we can bring the limit inside the integral in (6.12). Since

pλN q
ts logNu ď eCs for some constant C, by (1.17), and since φ is bounded, we can apply

dominated convergence on any bounded interval s P r0,M s. It remains to show that the
integral restricted to s P rM,8q is small for large M , uniformly in N P N. To this purpose,
we use Lemma 6.1: since φ is compactly supported, say in r0, As, the bound (6.1) yields

}φ}8

ż 8

M
eCs Ppτ

pNq
ts logNu

ď ANq ds ď }φ}8

ż 8

M
espC`1´c log s

A
q ds .

If we take M large, so that c log M
A ě C ` 2, the integral is at most

ş8

M e´s ds “ e´M . �

Step 2. We now derive representation formulas for UN,λpnq and Gϑptq: for any n̄, t̄ P p0,8q

UN,λpnq “ λ
ÿ

0ďlăn̄ďmďn

UN,λplqPpT
pNq
1 “ m´ lqUN,λpn´mq @n P NX pn̄,8q, (6.13)

Gϑptq “

ż

0ăuăt̄ďvăt
Gϑpuq

1

v ´ u
1p0,1qpv ´ uqGϑpt´ vqdudv , @t P pt̄,8q . (6.14)

(Note that for t P p0, 1s the indicator function 1p0,1qpv ´ uq ” 1 disappears.)
Relation (6.13) is obtained through a renewal decomposition: if we sum over the unique

index i P t1, . . . , ku such that τ pNqi´1 ă n̄ while τ pNqi ě n̄, we can write

Ppτ
pNq
k “ nq “

k
ÿ

i“1

P
`

τ
pNq
i´1 ă n̄, τ

pNq
i ě n̄, τ

pNq
k “ n

˘

“
ÿ

0ďlăn̄ďmďn

k
ÿ

i“1

P
`

τ
pNq
i´1 “ lqP

`

T
pNq
1 “ m´ l

˘

P
`

τ
pNq
k´i “ n´m

˘

.

Plugging this into the definition (1.14) of UN,λpnq, we obtain (6.13).
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Next we prove (6.14). Define the stopping time τ :“ inftr P r0,8q : Yr ą t̄u and note
that Yτ´ ď t̄, Yτ ą t̄. The joint law of pτ, Yτ´, Yτ q is explicit: for r P p0,8q and u ď t̄ ă v

Ppτ P dr, Yτ´ P du, Yτ P dvq “ drPpYr P duq νpdv ´ uq

“ drPpYr P duq
1

v ´ u
1p0,1qpv ´ uq dv ,

by a slight generalization of [Ber96, Prop. 2 in Ch. III]. By the strong Markov property

PpYs P dtq “

ż

p0,sqˆp0,t̄qˆpt̄,tq
Ppτ P dr, Yτ´ P du, Yτ P dvqPpYs´r P dt´ vq

“

ż s

0
dr

ż

0ăuăt̄ăvăt
PpYr P duq

1

v ´ u
1p0,1qpv ´ uqdvPpYs´r P dt´ vq ,

which yields a corresponding relation between densities:

fsptq “

ż s

0
dr

ż

0ăuăt̄ăvăt
frpuq

1

v ´ u
1p0,1qpv ´ uq fs´rpt´ vqdudv .

Multiplying by eϑs “ eϑreϑps´rq and integrating over s P p0,8q, we get (6.14) (recall (1.15)).

Step 3. The final step in the proof of (1.18) consists in combining formulas (6.13)-(6.14)
with Lemma 6.2. First of all we note that in order to prove (1.18) uniformly for δN ď n ď N ,
it suffices to consider an arbitrary but fixed sequence n “ nN such that

tN :“
nN
N
ÝÝÝÝÑ
NÑ8

t P p0, 1s , (6.15)

and prove that

lim
NÑ8

N

logN
UN,λN pnN q “ Gϑptq . (6.16)

This implies (1.18), as one can prove by contradiction.
Let us prove (6.16). Recalling (6.10), we first rewrite (6.13), with n̄ “ nN{2, as a double

integral, setting u :“ l{N and v :“ m{N , as follows (we recall that tN “ nN
N ):

N

logN
UN,λN pnN q “ λN

ż

0ďuă
tN
2
ďvďtN

G
pNq
λN

`

du
˘

φpNqpu, vq G
pNq
λN

`

tN ´ dv
˘

, (6.17)

where we set, for 0 ď u ă v ď 1,

φpNqpu, vq :“
`

N logN
˘

P
`

T
pNq
1 “ tNvu´ tNuu

˘

.

Note that, by (1.12)-(1.11), we have

lim
NÑ8

φpNqpu, vq “ φpu, vq :“
1

v ´ u
. (6.18)

By Lemma 6.2 and (6.15), we have the vague convergence of the product measure

G
pNq
λN

`

du
˘

G
pNq
λN

`

tN ´ dv
˘ v
ÝÝÝÝÑ
NÑ8

GϑpuqGϑpt´ vqdudv . (6.19)

Since λN Ñ 1, see (1.17), by (6.18) and (6.19) it is natural to expect that the right hand
side of (6.17) converges to the right hand side of (6.14) with t̄ “ t

2 . This is indeed the case,
as we now show, which would complete the proof of (6.16), hence of Theorem 1.4.

We are left with justifying the convergence of the right hand side of (6.17). The delicate
point is that φpu, vq in (6.18) diverges as v ´ u Ó 0. Fix ε ą 0 and consider the domain

Dε :“
 

pu, vq : v ´ u ě ε t
(

. (6.20)
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The convergence in (6.18) holds uniformly over pu, vq P Dε, and the limiting function 1
v´u is

bounded and continuous on Dε. Then, by (6.19), the integral in the right hand side of (6.17)
restricted on Dε converges to the integral in the right hand side of (6.14) restricted on Dε.

To complete the proof, it remains to show that the integral in the right hand side of
(6.17) restricted on Dc

ε “ tv ´ u ď ε tu is small for ε ą 0 small, uniformly in (large) N P N.
By the definition (6.10) of GpNqλ p¨q, as well as (1.12)-(1.11), this contribution is bounded by

C1

ÿ

u,vP 1
N
N0:

0ďuă
tN
2
ďvďtN , v´uďεt

UN,λN pNuq

logN

1

v ´ u

UN,λN pNptN ´ vqq

logN
,

(6.21)

where C1, C2, . . . are generic constants. By the upper bound (1.19), this is at most

C2
1

N2

ÿ

u,vP 1
N
N0:

0ďuă
tN
2
ďvďtN , v´uďεt

Gϑpuq
1

v ´ u
GϑptN ´ vq . (6.22)

Since tN Ñ t, see (6.15), we can bound this Riemann sum by the corresponding integral:

C3

ż

0ăuă t
2
ďvăt , v´uďε t

Gϑpuq
1

v ´ u
Gϑpt´ vqdudv .

Finally, if we let ε Ó 0, this integral vanishes by dominated convergence (recall (6.14)). �

7. Proof of Theorem 1.4: case T ą 1

In this section we prove Theorem 1.4 in case T ą 1. Without loss of generality, we may
assume that T P N. The case T “ 1 was already treated in Section 6. Proceeding inductively,
we assume that Theorem 1.4 holds for some fixed value of T P N, and our goal is to prove
that relations (1.18) and (1.19) hold for TN ă n ď pT ` 1qN .

Let us rewrite relation (6.13) for n̄ “ TN and (6.14) for t̄ “ T :

UN,λpnq “ λ
ÿ

0ďlăTNďmďn

UN,λplqPpT
pNq
1 “ m´ lqUN,λpn´mq , @n ą TN , (7.1)

Gϑptq “

ż

0ăuăTďvăt
Gϑpuq

1

v ´ u
1p0,1qpv ´ uqGϑpt´ vq dudv , @t ą T . (7.2)

7.1. Proof of (1.18). Since we focus on the range TN ă n ď pT ` 1qN , in (7.1) we
have both l ď TN and n´m ď N , hence we can bound UN,λN plq and UN,λN pn´mq using
(1.18), by the inductive assumption. Bounding PpT

pNq
1 “ m´ lq by (1.10)-(1.12), we get

UN,λN pnq ď C1
plogNq2

N2
λ

ÿ

0ďlăTNďmďn

Gϑp
l
N q

1p0,Nspm´ lq

plogNqpm´ lq
Gϑp

n´m
N q ,

for some constants C1, C2 (possibly depending on T ). By Riemann sum approximation

UN,λN pnq ď C1
logN

N3

ÿ

0ďlăTNďmďn

Gϑp
l
N q

1

pm´lN q
1p0,1sp

m´l
N qGϑp

n´m
N q

ď C2
logN

N

ż

0ăuăTďvă n
N

Gϑpuq
1

v ´ u
1p0,1qpv ´ uqGϑp

n
N ´ vq dudv .

The integral equals Gϑp nN q by (7.2), so relation (1.18) is proved.
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(To check that the Riemann sum approximation constant C2 is uniform for TN ă n ď
pT `1qN , one can argue as in Step 3 of Section 6: just repeat the above steps for an arbitrary
but fixed sequence n “ nN such that nN

N Ñ t P rT, T ` 1s. We omit the details.) �

7.2. Proof of (1.19). We can follow Step 3 of Section 6 almost verbatim: the only
difference is that for TN ă n ď pT ` 1qN we have nN

N Ñ t P rT, T ` 1s. To pass from (6.21)
to (6.22), we can apply the upper bound (1.19), by the inductive assumption. �

8. Proof of Theorems 2.4 and 2.3

We first prove Theorem 2.4, i.e. relation (2.14), which is easy. We then reduce the proof
of Theorem 2.3 to that of Theorem 1.4, given in Section 6, proving separately the upper
bound (2.13) and the local limit theorem (2.12). We assume for simplicity that T “ 1, i.e.
we focus on n ď N , because the case T ą 1 can be deduced arguing as in Section 7.

8.1. Proof of (2.14). By (2.7) and (2.5), conditioned on the T pNqi ’s, the random variables
X
pNq
i are independent with zero mean and E

“ˇ

ˇX
pNq
i

ˇ

ˇ

2 ˇ
ˇT
pNq
i “ ni

‰

ď c ni for some c ă 8,
see (4.12). Recalling (2.8), we then have

E
”

ˇ

ˇS
pNq
k

ˇ

ˇ

2
ˇ

ˇ

ˇ
T
pNq
1 “ n1, . . . , T

pNq
k “ nk

ı

“

k
ÿ

i“1

E
”

ˇ

ˇX
pNq
i

ˇ

ˇ

2
ˇ

ˇ

ˇ
T
pNq
i “ ni

ı

ď c
`

n1 ` . . .` nk
˘

,

for any choice of n1, . . . , nk P N. It follows that E
“ˇ

ˇS
pNq
k

ˇ

ˇ

2 ˇ
ˇ τ
pNq
k “ n

‰

ď c n, hence
ÿ

xPZ2: |x|ąM
?
n

P
`

τ
pNq
k “ n , S

pNq
k “ x

˘

“ P
`

τ
pNq
k “ n , |S

pNq
k | ąM

?
n
˘

ď
c

M2
P
`

τ
pNq
k “ n

˘

,

by Markov’s inequality. Multiplying by λk and summing over k, we obtain (2.14). �

8.2. Proof of (2.13). Recall the definition (4.8) of Y pNqs . From the definition (2.9) of
UN,λpn, xq and the upper bound (5.32), we get for large N and n ď N

UN,λpn, xq “
ÿ

kě0

λk P
´

Y
pNq
k

logN

“ p nN ,
x?
N
q

¯

ď C
logN

N

1

nd{2

#

1

logN

ÿ

kě0

λk fc k
logN

`

n
N

˘

+

.

The bracket is the same as in (6.2). We showed in Subsection 6.1 that, if λ “ λN is chosen
as in (1.17), the bracket is at most a constant times Gϑp nN q. This proves (2.13). �

8.3. Proof of (2.12). We proceed in three steps.

Step 1. We first prove an “integrated version” of (2.12). We define a measure GpNqλ on
r0,8q ˆ R2 by setting

G
pNq
λ p ¨ q :“

1

logN

8
ÿ

n“0

ÿ

xPZ2

UN,λpn, xq δp n
N
, x?
N
qp ¨ q , (8.1)

where we recall that UN,λp¨q is defined in (2.9). Recall also the definition (2.10) of Gϑpt, xq.

Lemma 8.1. Fix ϑ P R and choose λ “ λN as in (1.17). For every bounded and continuous
φ : r0,8q ˆ R2 Ñ R, which is compactly supported in the first variable,

ż

r0,8qˆR2

φpt, xqG
pNq
λN
pdt,dxq ÝÝÝÝÑ

NÑ8

ż

r0,8qˆR2

φpt, xqGϑpt, xqdtdx . (8.2)
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Proof. Arguing as in (6.12), we can write
ż

r0,8qˆR2

φpt, xqG
pNq
λN
pdt,dxq “

ż 8

0
pλN q

ts logNu E
”

φ
´

τ
pNq
ts logNu

N ,
S
pNq
ts logNu
?
N

¯ı

ds .

We can exchange limNÑ8 with the integral by dominated convergence, thanks to Lemma 6.1,
as shown in the proof of Lemma 6.2. Then we get, by Proposition 2.2,

lim
NÑ8

ż

r0,8qˆR2

φpt, xqG
pNq
λN
pdt,dxq “

ż 8

0
eϑs E

“

φ
`

Ys, V
c
s

˘‰

ds

“

ż 8

0
eϑs

ˆ
ż

r0,8qˆR2

φpt, xqf spt, xqdt dx

˙

ds ,

which coincides with the right hand side of (8.2) (recall (2.10)). �

Step 2. Next we give representation formulas for UN,λpn, zq, Gϑpt, xq: for any n̄, t̄ P p0,8q

UN,λpn, xq “ λ
ÿ

0ďlăn̄ďmďn
y,zPZ2

UN,λpl, yqP
`

T
pNq
1 “ m´ l,X

pNq
1 “ z ´ y

˘

UN,λpn´m,x´ zq

@n P NX pn̄,8q , (8.3)

Gϑpt, xq “

ż

0ăuăt̄ďvăt
y,xPR2

Gϑpu, yq
gcpv´uqpz ´ yq

v ´ u
Gϑpt´ v, x´ zqdudv @t P pt̄,8q . (8.4)

These relations are proved in the same way as (6.13) and (6.14).

Step 3. We finally prove (2.12) by combining formulas (8.3)-(8.4) with Lemma 8.1. It
suffices to fix arbitrary sequences n “ nN P t1, . . . , Nu and x “ xN P Z2 such that

tN :“
nN
N
ÝÝÝÝÑ
NÑ8

t P p0, 1s , wN :“
xN
?
N
ÝÝÝÝÑ
NÑ8

w P R2 , (8.5)

and prove that

lim
NÑ8

N1`d{2

logN
UN,λN pnN , wN q “ Gϑpt, wq “ Gϑptq gcϑpwq . (8.6)

To prove (8.6), we rewrite the sums in (8.3) with n̄ “ n
2 as integrals, recalling (8.1):

N1`d{2

logN
UN,λN pnN , wN q

“ λN

ż

0ďuă
tN
2
ďvďtN

y,zPR2

G
pNq
λN

`

du,dy
˘

φpNqpu, v; y, zq G
pNq
λN

`

tN ´ dv, wN ´ dz
˘

, (8.7)

where we set, for 0 ď u ă v ď 1 and y, z P R2,

φpNqpu, v; y, zq :“ N1`d{2 logN P
`

T
pNq
1 “ tNvu´ tNuu, X

pNq
1 “ t

?
Nzu´ t

?
Nyu

˘

.

Note that by (2.5), (2.7) and (1.12)-(1.11) we have

lim
NÑ8

φpNqpu, v; y, zq “ φpu, v; y, zq :“
gcpv´uqpz ´ yq

v ´ u
. (8.8)
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Moreover, by Lemma 8.1 and (8.5) we have the convergence of the product measure

G
pNq
λN

`

du,dy
˘

G
pNq
λN

`

tN ´dv, wN ´dz
˘

ÝÝÝÝÑ
NÑ8

Gϑpu, yqGϑpt´v, w´zq du dy dv dz . (8.9)

Since λN Ñ 1 (see (1.17)), we expect by (8.8) and (8.9) that the right hand side of (8.7)
converges to the right hand side of (8.4) as N Ñ8, proving our goal (8.6).

The difficulty is that the function φpNqpu, v; y, zq converges to a function φpu, v; y, zq
which is singular as v´uÑ 0, see (8.8). This can be controlled as in the proof of Theorem 1.4,
see the paragraphs following (6.19).

‚ First we fix ε ą 0 and restrict the integral in (8.7) to the domain Dε “ tv ´ u ě ε tu.
Here we can apply the convergence (8.9), because φpu, v; y, zq is bounded and the
convergence φpNqpu, v; y, zq Ñ φpu, v; y, zq is uniform.

‚ Then we consider the contribution to the integral in (8.7) from Dc
ε “ tv ´ u ă ε tu.

Recalling (8.1), this contribution can be written as follows:
ÿ

u,vP 1
N
N0, y,zP

1?
N
Z2

0ďuă
tN
2
ďvďtN , v´uăεt

UN,λN

`

Nu,
?
Ny

˘

logN
φpNqpu, v; y, zq

UN,λN

`

NptN ´ vq,
?
NpwN ´ zq

˘

logN
.

(8.10)
We need to show that this is small for ε ą 0 small, uniformly in large N P N.

By (2.13) we can bound, uniformly in z P 1?
N
Z2,

UN,λN

`

NptN ´ vq,
?
NpwN ´ zq

˘

logN
ď C

1

N1` d
2

1

ptN ´ vq
d
2

Gϑ
`

tN ´ v
˘

,

and note that tN ´ v ě tN
2 ´ ε. Next, by definition of φpNq and by (1.12)-(1.11),

ÿ

zP 1?
N
Z2

φpNqpu, v; y, zq “ N1` d
2 plogNqP

`

T
pNq
1 “ tNvu´ tNuu

˘

ď C1
N

d
2

v ´ u
.

Finally we observe that, by (1.14), (2.9) and (1.19),
ÿ

yP 1?
N
Z2

UN,λN

`

Nu,
?
Ny

˘

logN
“
UN,λN pNuq

logN
ď C

1

N
Gϑpuq .

These bounds show that (8.10) is bounded by a constant times
1

N2

1

p
tN
2 ´ εq

d
2

ÿ

u,vP 1
N
N0

0ďuă
tN
2
ďvďtN , v´uăεt

Gϑpuq
1

v ´ u
GϑptN ´ vq . (8.11)

Since tN Ñ t, we have tN
2 ą t

3 for N large, and if we take ε ă t
6 we see that the

prefactor p tN2 ´εq
´d{2 ď p t6q

´d{2 is bounded (recall that t is fixed). The sum in (8.11) is
the same as that in (6.22), which we had shown to be small for ε ą 0 small, uniformly
in large N P N. This completes the proof. �

Appendix A. Additional results for disordered systems

In this appendix we prove some results for disordered systems, stated in Section 3.
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A.1. Proof of relations (3.5) and (3.18). We recall the polynomial chaos expansion
used in [CSZ17a, CSZ17b]. Let us introduce the random variables

ηi :“
eβωi´λpβq

σβ
, where σ2

β :“ eλp2βq´2λpβq ´ 1 , (A.1)

so that pηiq are i.i.d. with zero mean and unit variance (recall (3.1)).
Recall the definition (3.4) of ZβN and note that we can write

epβωn´λpβqq1tX2n“0u “ 1` σβ ηn 1tX2n“0u . (A.2)

We now write the exponential in (3.4) as a product and perform an expansion, exploiting
(A.2). Recalling the definition (3.3) of upnq, we obtain:

ZβN “ E

«

N´1
ź

n“1

epβωn´λpβqq1tX2n“0u 1tX2N“0u

ff

“

N
ÿ

k“1

pσβq
k´1

ÿ

0ăn1ă...ănk´1ănk:“N

upn1qupn2 ´ n1q ¨ ¨ ¨ upnk ´ nk´1q

¨ ηn1 ηn2 ¨ ¨ ¨ ηnk´1
.

(A.3)

This formula expresses ZβN as a multilinear polynomial of the random variables. Since the
monomials for different k are orthogonal in L2pPq, we get (3.5).

The proof of (3.18) is similar, because we can represent Zβ
N pxq in (3.17) as follows:

Zβ
N pxq “

N
ÿ

k“1

pσβq
k´1

ÿ

0ăn1ă...ănk´1ănk:“N

x1,...,xkPZ2: xk“x

qn1px1q qn2´n1px2 ´ x1q ¨ ¨ ¨ qnk´nk´1
pxk ´ xk´1q

¨ ηn1,x1 ηn2,x2 ¨ ¨ ¨ ηnk´1,xk´1
.

(A.4)

This completes the proof. �

A.2. Free partition function. For the pinning model, one can consider the free
partition function Zβ,fN , in which the constraint tX2N “ 0u is removed from (3.4), and the
sum is extended up to N :

Zβ,fN :“ E
”

e
řN
n“1pβωn´λpβqq1tX2n“0u

ı

. (A.5)

Then we have the following analogue of Theorem 3.1. Let us set, recalling (1.15)-(1.16),

Gϑpuq :“

ż u

0
Gϑptq dt “

ż 8

0

epϑ´γqs us

Γps` 1q
ds , for u P p0, 1s . (A.6)

Proposition A.1 (Free pinning model partition function). Rescale β “ βN as in
(3.9). Then, for any fixed δ ą 0, the following relation holds as N Ñ8:

ErpZβN ,fn q2s “ plogNqGϑp
n
N q p1` op1qq , uniformly for δN ď n ď N , (A.7)

with Gp¨q defined in (A.6). Moreover, the following bound holds, for a suitable C P p0,8q:

ErpZβN ,fn q2s ď C plogNqGϑp
n
N q , @1 ď n ď N . (A.8)

Finally, since ErZβN ,fn s “ 1, relations (A.7) and (A.8) holds also for VarrZβN ,fn s.
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Proof. Arguing as in §A.1, one can write a decomposition for Zβ,fn similar to (A.3). As a
consequence, the second moment of Zβ,fn is given by an expression similar to (3.5), namely

ErpZβ,fn q2s “ 1`
ÿ

kě1

pσ2
βq
k

ÿ

0ăn1ă...ănkďn

upn1q
2 upn2 ´ n1q

2 ¨ ¨ ¨ upnk ´ nk´1q
2 , (A.9)

which yields an analogue of relation (3.8):

ErpZβ,fn q2s “ 1`
ÿ

kě1

`

σ2
β RN

˘k
Ppτ

pNq
k ď nq “ 1`

n
ÿ

`“1

ÿ

kě1

`

σ2
β RN

˘k
Ppτ

pNq
k “ `q

“ 1 `
n
ÿ

`“1

UN,λp`q , where λ :“ σ2
β RN .

It then suffices to apply (1.18) and (1.19) to get (A.7) and (A.8). �

Also for the directed polymer in random environment we can consider the free (or point-
to-plane) partition function Zβ,f

N , in which the constraint tSN “ xu is removed from (3.17),
and the sum is extended up to N :

Zβ,f
N :“ E

”

e
řN
n“1pβωn,Sn´λpβqq

ı

“ E
”

e
řN
n“1

ř

zPZ2 pβωn,z´λpβqq1tSn“zu
ı

. (A.10)

The second moment of Zβ,f
N turns out to be identical to that of Zβ,fN (pinning model).

Proposition A.2 (Free directed polymer partition function). Rescale β “ βN as in
(3.22). Then relations (A.7) and (A.8) hold verbatim for the free partition function ZβN ,f

n

of the directed polymer in random environment, defined in (A.10).

Proof. Arguing as in §A.1, one can write a decomposition for Zβ,f
n similar to (A.4). Then

the second moment of Zβ,f
n can be represented as follows:

E
“

pZβ,f
n q

2
‰

“ 1`
ÿ

kě1

pσ2
βq
k

ÿ

0ăn1ă...ănkďN
x1,...,xkPZ2

qn1px1q
2 qn2´n1px2 ´ x1q

2 ¨

¨ ¨ ¨ qnk´nk´1
pxk ´ xk´1q

2 .

(A.11)

Since
ř

xPZ2 qnpxq
2 “ upnq2, see (3.15), we can sum over xk, xk´1, . . . , x1 in (A.11) to obtain

precisely the same expression as in (A.9). In other words, the free partition functions of the
pinning and directed polymer models have the same second moment :

E
“

pZβ,f
n q

2
‰

“ E
“

pZβ,fn q2
‰

.

This completes the proof. �

A.3. Proof of Proposition 3.2. Let T :“ mintm P N : Sm “ 0u denote the first
return time to the origin of the simple symmetric random walk on Z2. Let pξiqiPN be i.i.d.
random variables distributed as T {2. We define

LN :“
N
ÿ

n“1

1tS2n“0u “ max
 

k P N0 : ξ1 ` . . .` ξk ď N
(

,

so that, recalling (3.15) and the definition (3.12) of RN , we can write

RN “
N
ÿ

n“1

PpS2n “ 0q “ ErLN s “
N
ÿ

k“1

PpLN ě kq “
N
ÿ

k“1

Ppξ1 ` . . .` ξk ď Nq .
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Let pξpNqi qiPN be i.i.d. random variables with the law of ξ1 conditionally on tξ1 ď Nu. Then
we have the following key representation of RN :

RN “
N
ÿ

k“1

Ppξ1 ď Nqk Ppξ
pNq
1 ` . . .` ξ

pNq
k ď Nq

“

N
ÿ

k“1

Ppξ1 ď Nqk ´
N
ÿ

k“1

Ppξ1 ď Nqk Ppξ
pNq
1 ` . . .` ξ

pNq
k ą Nq .

(A.12)

We are going to show that the first sum gives the leading contribution to the right hand
side of (3.12), while the second sum is negligible.

We need estimates on the law of ξ1. By Corollary 1.2 and Remark 4 in [U11], we have

Ppξ1 “ kq “ PpT “ 2kq “
π

k

ˆ

1

plog 16kq2
´

2γ

plog 16kq3
`O

ˆ

1

plog 16kq4

˙˙

“
π

kplog kq2
´

2πpγ ` log 16q

kplog kq3
`O

ˆ

1

plog kq4

˙

,

Ppξ1 ě kq “ PpT ě 2kq “
π

log k
´
πpγ ` log 16q

plog kq2
`O

ˆ

1

plog kq3

˙

,

(A.13)

as k Ñ8, where γ is the Euler-Mascheroni constant. Then, as N Ñ8, we can write

Ppξ1 ď Nq

Ppξ1 ą Nq
“

1´ π
logN `Op

1
plogNq2

q

π
logN

`

1´ pγ`log 16q
plogNq `O

`

1
plogNq2

˘˘

“
logN

π
`

ˆ

γ ` log 16

π
´ 1

˙

` op1q ,

Ppξ1 ď NqN “
`

1´ π
logN `Op

1
plogNq2

q
˘N
“ e

´ πN
logN

p1`op1qq
“ o

ˆ

1

logN

˙

.

From this we deduce the asymptotic behavior of the first sum in the last line of (A.12):
N
ÿ

k“1

Ppξ1 ď Nqk “
Ppξ1 ď Nq

Ppξ1 ą Nq

`

1´ Ppξ1 ď NqN
˘

“
logN

π
`

ˆ

γ ` log 16

π
´ 1

˙

` op1q ,

which matches with the right hand side of (3.12). It remains to show that the second sum
in the last line of (A.12) is asymptotically vanishing, i.e.

lim
NÑ8

%N “ 0 , where %N :“
N
ÿ

k“1

Ppξ1 ď Nqk Ppξ
pNq
1 ` . . .` ξ

pNq
k ą Nq . (A.14)

Denoting by C1, C2 suitable absolute constants, we have by relation (A.13)

E
”

ξ
pNq
1

ı

“
1

Ppξ1 ď Nq

N
ÿ

`“1

`Ppξ1 “ `q ď C1

N
ÿ

`“1

1

plog `q2
ď C2

N

plogNq2
, (A.15)

hence by Markov’s inequality

P
`

ξ
pNq
1 ` . . .` ξ

pNq
k ą N

˘

ď C2
k

plogNq2
.

Since Ppξ1 ď Nq ď e
´ 1

logN for large N , by (A.13), we can control the tail of %N in (A.14) by

%ąAN :“
ÿ

kąA logN

Ppξ1 ď NqkPpξ
pNq
1 ` . . .` ξ

pNq
k ą Nq ď C2

ÿ

kąA logN

e
´ k

logN
k

plogNq2
.
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By a Riemann sum approximation, the last sum converges to
ş8

A x e
´x dx “ p1`Aqe´A as

N Ñ8. In particular, for every fixed A P p0,8q, we have shown that

lim sup
NÑ8

%ąAN ď p1`Aqe´A . (A.16)

Next we focus on the contribution %ďAN of the terms with k ď A logN , i.e.

%ďAN :“
ÿ

kďA logN

Ppξ1 ď Nqk Ppξ
pNq
1 ` . . .` ξ

pNq
k ą Nq

ď pA logNqPpξ
pNq
1 ` . . .` ξ

pNq
A logN ą Nq .

(A.17)

We fix ε P p0, 1
2q and write

ξ
pNq
1 ` . . .` ξ

pNq
k “

k
ÿ

i“1

ξ
pNq
i 1

tξ
pNq
i ďε2Nu

`

k
ÿ

i“1

ξ
pNq
i 1

tξ
pNq
i ąε2Nu

“: U´ ` U` ,

so that we can decompose

Ppξ
pNq
1 ` . . .` ξ

pNq
k ą Nq ď PpU´ ą εNq ` PpU` ą p1´ εqNq , (A.18)

and we estimate separately each term. In analogy with (A.15) we have

E
”

U´

ı

“ kE
”

ξ
pNq
1 1

tξ
pNq
1 ďε2Nu

ı

“ k
ε2N
ÿ

`“1

`Ppξ1 “ `q

Ppξ1 ď Nq
ď k

ε2N
ÿ

`“1

C1

plog `q2
ď C2

ε2Nk

plogpε2Nqq2
,

hence by Markov’s inequality

P
`

U´ ą εN
˘

ď C2
εk

plogpε2Nqq2
. (A.19)

Next we observe that

tU` ą p1´ εqNu Ď

ˆ k
ď

i“1

tξ
pNq
i ą p1´ εqNu

˙

Y

ˆ

ď

1ďiăjďk

tξ
pNq
i ą ε2N, ξ

pNq
j ą ε2Nu

˙

,

because either ξpNqi ą p1´ εqN for a single i, or necessarily ξpNqi ą ε2N and ξpNqj ą ε2N for
at least two distinct i ‰ j (otherwise U` vanishes). Since for fixed c P p0, 1q

Ppξ
pNq
1 ą cNq ď C1

N
ÿ

`“cN

1

` plog `q2
ď C1

1

plog cNq2

N
ÿ

`“cN

1

`
ď C1

log 1
c

plog cNq2
,

it follows that

PpU` ą p1´ εqNq ď k C1

log 1
1´ε

plogpp1´ εqNqq2
`
kpk ´ 1q

2

„

C1
log 1

ε2

plogpε2Nqq2

2

.

Recalling (A.17)-(A.18)-(A.19) and plugging k “ A logN , we get

lim sup
NÑ8

%ďAN ď A2
`

C2 ε` C1 log 1
1´ε

˘

.

By (A.16), since %N “ %ďAN ` %ąAN , we obtain (A.14) by letting εÑ 0 and then AÑ8. �
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A.4. Explicit asymptotics in terms of β. Relation (3.9) (equivalently (3.22))
and relation (3.13) can be rewritten more explicitly in terms of βN . To this purpose, we
need the cumulants κ3, κ4 of the distribution of ωi (recall (3.1)), defined by

λpβq “
1

2
β2 `

κ3

3!
β3 `

κ4

4!
β4 `Opβ5q as β Ñ 0 . (A.20)

By direct computation σ2
β “ β2 ` κ3 β

3 `
`

1
2 `

7
12κ4

˘

β4 `Opβ5q as β Ñ 0, hence

σ2
β “ ε ùñ β2 “ ε´ κ3 ε

3{2 ` p3
2κ

2
3 ´

7
12κ4 ´

1
2q ε

2 ` opε2q as εÑ 0 . (A.21)

As a consequence, we can rewrite (3.13) as follows, with α :“ γ ` log 16´ π:

β2
N “

π

logN
´

κ3 π
3{2

plogNq3{2
`
πpϑ´ αq ` π2p3

2κ
2
3 ´

1
2 ´

7
12κ4q

plogNq2
`

1` op1q
˘

.

Appendix B. On the Dickman subordinator

Theorem 1.1 on the density of the Dickman subordinator can be deduced from general
results about self-decomposable Lévy processes, see [S99, §53].

‚ Let us first derive (1.4) for t P p0, 1s. The law of Ys satisfies the assumptions of [S99,
Lemma 53.2] with n “ 1, a1 “ 1 and c “ s, which yields fsptq “ Kts´1 for t P p0, 1s.
To show that K “ e´γs{Γpsq, as in (1.4), one can apply [S99, Theorem 53.6] which
gives fsptq “ p1` op1qqκ ts´1{Γpsq as t Ó 0, with κ “ exptsp

ş1
0
e´x´1
x dx`

ş8

1
e´x

x dxqu.
The identification κ “ expt´γsu follows by [GR07, Entry 8.367 (12), page 906].

‚ We then deduce (1.4) for t P p1,8q. We can apply [S99, Theorem 51.1], which reads
as follows (where νpdtq “ s

t 1p0,1qptq dt, γ0 “ 0 and fsptq is the density of Ys):
ż t

0
y fspyqdy “

ż t

0

ˆ
ż t´y

0
fspuq du

˙

y
s

y
1p0,1qpyqdy .

Differentiating with respect to t, for t ą 1, we get tfsptq “ s
ş1
0 fspt ´ yqdy, which

already shows that fsptq can be deduced from tfspuq : u P pt ´ 1, tqu. To obtain
(1.4), we further differentiate this relation (note that fsp¨q P C1 on p1,8q, by [S99,
Lemma 53.2]) to get fsptq ` tf 1sptq “ s pfsptq ´ fspt´ 1qq, which can be rewritten as
pt1´sfsptqq

1 “ ´s t´s fspt´ 1q. Integrating on p0, tq, since t1´sfsptq Ñ K “ e´γs{Γpsq

as t Ó 0, we obtain t1´sfsptq ´K “ s
şt
0
fspu´1q
us du, which coincides with the second

line of (1.4) (note that fsptq ” 0 for t ă 0).

This completes the proof of (1.4).†

We now present an alternative proof of Theorem 1.1, which exploits a key scale invariance
property of the Dickman subordinator Y . Let Ms denote the maximal jump up to time s:

Ms :“ max
uPp0,ss

∆Yu , where ∆Yu :“ Yu ´ Yu´ “ Yu ´ lim
εÓ0

Yu´ε . (B.1)

We first prove the following result.

†This proof was kindly provided to us by Thomas Simon.



36 F. CARAVENNA, R. SUN, AND N. ZYGOURAS

Proposition B.1 (Scale-invariance). Fix s P p0,8q, t P p0, 1q. Conditional on all jumps
of Y up to time s being smaller than t, the random variable Ys{t has the same law as Ys, i.e.

P

ˆ

Ys
t
P ¨

ˇ

ˇ

ˇ

ˇ

Ms ă t

˙

“ PpYs P ¨q . (B.2)

Proof. We use the standard representation of the Lévy process Y “ pYsqsPr0,8q in terms of
a Poisson Point Process (PPP). Let Π be a PPP on r0,8q ˆ p0, 1q with intensity measure

µpdx,dyq :“ Lebpdxq b νpdyq “ dxb
1p0,1qpyq

y
dy . (B.3)

We recall that Π is a random countable subset of r0,8q ˆ p0, 1q, whose points we denote by
psi, tiq. Let us define

Πps,tq :“ ΠX pr0, ss ˆ p0, tqq , Y ptqs :“
ÿ

psi,tiqPΠps,tq

ti . (B.4)

Then we can represent our Lévy process Ys in terms of Π as follows:

Ys
d
“ Y p1qs . (B.5)

Let us identify Ys with Y
p1q
s . Note that ∆Ys “ t ‰ 0 if and only if ps, tq P Π, see (B.1).

On the event tMs ă tu “ tΠX pr0, ss ˆ rt, 1qq “ Hu we have Y p1qs “ Y
ptq
s , hence

P

ˆ

Ys
t
P ¨

ˇ

ˇ

ˇ

ˇ

Ms ă t

˙

“ P

ˆ

Y
ptq
s

t
P ¨

ˇ

ˇ

ˇ

ˇ

ΠX pr0, ss ˆ rt, 1qq “ H

˙

“ P

ˆ

Y
ptq
s

t
P ¨

˙

,

because Y ptqs is a function of Πps,tq, which is independent of ΠX pr0, ss ˆ rt, 1qq, by definition
of PPP. To prove our goal (B.2), it remains to show that

P

ˆ

Y
ptq
s

t
P ¨

˙

“ P
`

Y p1qs P ¨
˘

.

By (B.4), it suffices to prove the following property: if we denote by φt : R2 Ñ R2 the map
px, yq ÞÑ px, 1

t yq, then the random set φtpΠps,tqq has the same law as Πps,1q.
Note that Πps,tq is a PPP with intensity measure µps,tq given by the original intensity

measure µ restricted on r0, ss ˆ p0, tq (see (B.3)). We also observe that the random set
φtpΠ

ps,tqq is a PPP with intensity measure given by µps,tq ˝ φ´1
t , i.e. the image law of µps,tq

under φt. The proof is completed by noting that φt sends µps,tq to µps,1q, because the map
y ÞÑ y{t sends the measure 1

y 1p0,tqpyqdy to the measure 1
y 1p0,1qpyq dy. �

In our proof of Theorem 1.1, we will also need the following estimate. This can be deduced
from [RW02, Lemma 6], but we give a direct proof in our setting.

Lemma B.2. As s Ó 0 we have

PpYs ą 1q “ opsq . (B.6)

Remark B.3. The bound (B.6) is an intermediate step in establishing Theorem 1.1 and it
is not optimal. Indeed, it is a consequence of Theorem 1.1 that the optimal estimate is

PpYs ą 1q “ Ops2q as s Ó 0 , (B.7)

because PpYs ď 1q “ e´γs{Γps` 1q, by (1.4), and we note that as s Ó 0 we have

Γps` 1q “ Γp1q ` Γ1p1qs`Ops2q “ 1´ γs`Ops2q , (B.8)
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since Γ1p1q “
ş8

0 log u e´u du “ ´γ. Relation (B.7) then follows.

Proof of Lemma B.2. Fix a function αs Ñ 8 as s Ñ 0, to be determined later. Recall
the definition (B.1) of ∆Yu “ Yu ´ Yu´ and define

Ns :“
ÿ

uPp0,ss

1t∆Yuą 1
αs
u “ number of jumps of Y of size ą 1

αs
in the interval p0, ss .

We recall that Y only increases by jumps, that is Ys “
ř

uPp0,ss∆Yu. We denote by Y ąs the
contribution to Ys given by jumps of size ą 1

αs
, and Y ďs :“ Ys ´ Y

ą
s . Then we bound

PpYs ą 1q ď PpNs ě 2q ` PpNs “ 1, Ys ą 1q ` PpNs “ 0, Y ďs ą 1q (B.9)

For the first term, we note that Ns „ Poispλsq with λs “ s
ş1
1{αs

1
x dx “ s logαs, hence

PpNs ě 2q “ Opλ2
sq “ Ops2plogαsq

2q .

For the third term, since pY ďs qsě0 has Lévy measure 1
x 1p0, 1

αs
qpxq dx, we can bound

PpY ďs ą 1q ď ErY ďs s “ s

ż 1
αs

0
x

1

x
dx “

s

αs
. (B.10)

We fix αs “ 1{s, so that both PpNs ě 2q and PpY ďs ą 1q are Ops3{2q.
It remains to estimate the second term in the right hand side of (B.9). On the event

tNs “ 1u, the random variable W :“ Y ąs has density 1
logαs

1
x 1p 1

αs
,1qpxq. Also note that Y ďs

is independent of Ns. If we fix %s P p1, 2q, to be determined later, we can write

PpNs “ 1, Ys ą 1q ď PpNs “ 1, Y ąs ą 1
%s
q ` PpNs “ 1, Y ąs ď 1

%s
, Y ďs ą 1´ 1

%s
q

ď PpNs “ 1q
 

PpW ą 1
%s
q ` PpY ďs ą

%s´1
%s
q
(

ď λs

"

log %s
logαs

`
%s

%s ´ 1
ErY ďs s

*

,

because Ns „ Poispλsq. Since λs “ s logαs and ErY ďs s “
s
αs
, see (B.10), we get

PpNs “ 1, Ys ą 1q ď s logαs

"

log %s
logαs

`
2s

αsp%s ´ 1q

*

“ s log %s `
logαs
αs

2s2

%s ´ 1

Note that limsÑ0
logαs
αs

“ 0, because we have fixed αs “ 1{s. We now choose %s “ 1`
?
s to

get PpNs “ 1, Ys ą 1q “ Ops3{2q, which completes the proof. �

Proof of Theorem 1.1. We start proving the first line of (1.4), so we assume t P p0, 1q.
Recall that Ms was defined in (B.1). Plainly, we can write

PpYs ď tq “ PpYs ď t, Ms ă tq “ PpMs ă tqPpYs ď t |Ms ă tq .

We use the PPP representation of Ys that we introduced in the proof of Proposition B.1. In
particular, if Π denotes a PPP with intensity measure µ in (B.3), we can write

PpMs ă tq “ PpΠX pr0, ss ˆ rt, 1qq “ Hq “ e´µpr0,ssˆrt,1qq “ e
´s

ş1
t

1
y

dy
“ ts .

For t P p0, 1q we have PpYs ď t |Ms ă tq “ PpYs ď 1q, by Proposition B.1, hence

PpYs ď tq “ ts PpYs ď 1q for t P p0, 1q . (B.11)

This leads to

fsptq “ s ts´1 Fsp1q for t P p0, 1q , where Fsptq :“ PpYs ď tq. (B.12)
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It remains to identify Fsp1q. Since pYsqsě0 has stationary and independent increments,
for any n P N, the density fs is the convolution of fs{n with itself n times. Then for any
t P p0, 1q we can write, by (B.12),

fsptq “

ż

0ăt1ă...ătn´1ăt

f s
n
pt1q f s

n
pt2 ´ t1q ¨ ¨ ¨ f s

n
pt´ tn´1qdt1 . . . dtn´1

“
`

s
n F s

n
p1q

˘n
ż

0ăt1ă...ătn´1ăt

t
s
n
´1

1 pt2 ´ t1q
s
n
´1 ¨ ¨ ¨ pt´ tn´1q

s
n
´1 dt1 . . . dtn´1

“
`

s
n F s

n
p1q

˘n
ts´1

ż

0ău1ă...ăun´1ă1

u
s
n
´1

1 pu2 ´ u1q
s
n
´1 ¨ ¨ ¨ p1´ un´1q

s
n
´1 du1 . . . dun´1

“
`

s
n F s

n
p1q

˘n
ts´1 Γp snq

n

Γpsq
“

`

F s
n
p1q

˘n
ts´1 Γp1` s

nq
n

Γpsq
,

where we recognized the density of the Dirichlet distribution (with parameters n and s
n)

and, in the last step, we used the property Γp1` xq “ xΓpxq. By (B.8)

Γp1` s
nq
n ÝÝÝÑ

nÑ8
e´γ s .

Since Fup1q “ 1´ opuq as uÑ 0, by Lemma B.2, we have
`

F s
n
p1q

˘n
Ñ 1. This yields

fsptq “ lim
nÑ8

`

F s
n
p1q

˘n
ts´1 Γp1` s

nq
n

Γpsq
“
ts´1 e´γ s

Γpsq
“
s ts´1 e´γ s

Γps` 1q
,

which proves the first line of (1.4).
It remains to prove the second line of (1.4). We exploit the PPP construction of Ys, see

(B.3)-(B.5). By identifying the largest jump Ms “ u, see (B.1), we have for any t P p0,8q

PpYs P dtq “

ż t^1

0
PpYs P dt |Ms “ uqPpMs P duq

“

ż t^1

0

!

1
u fs

`

t´u
u

˘

dt
)!

s
u e
´s

ş1
u

dx
x du

)

“

ˆ
ż t^1

0
fs
`

t´u
u

˘

s us´2 du

˙

dt .

(B.13)

The second equality holds for the following reasons.

‚ Ys conditioned on tMs ă uu has the same law as uYs, by Proposition B.1, hence

PpYs P dt |Ms “ uq “ PpYs P dt´ u |Ms ă uq “ 1
u fs

`

t´u
u q du .

‚ s
u is the Poisson intensity of finding a jump of size u in the time interval r0, ss, while
e´s

ş1
u

dx
x “ us is the probability that all other jumps are smaller than u, hence

PpMs P duq “ µpr0, ss ˆ duq e´µpr0,ssˆpu,1qq “ s
u du e´s

ş1
u

1
x

dx .

Making the change of variable a :“ t´u
u , we can rewrite (B.13) as

fsptq “ s ts´1

ż 8

pt´1q`

fspaq

p1` aqs
da

“ s ts´1

ˆ
ż 8

0

fspaq

p1` aqs
da´

ż pt´1q`

0

fspaq

p1` aqs
da

˙

.

(B.14)
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For t P p0, 1q, the second integral equals 0, while fsptq “ s ts´1 e´γ s

Γps`1q by the first line of (1.4),

that we have already proved. This implies that the first integral must equal e´γ s

Γps`1q . This
concludes the proof of the second line of (1.4). �
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