UNIVERSALITY IN MARGINALLY RELEVANT
DISORDERED SYSTEMS
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ABSTRACT. We consider disordered systems of directed polymer type, for which disorder
is so-called marginally relevant. These include the usual (short-range) directed polymer
model in dimension (2 + 1), the long-range directed polymer model with Cauchy tails
in dimension (1 + 1) and the disordered pinning model with tail exponent 1/2. We show
that in a suitable weak disorder and continuum limit, the partition functions of these
different models converge to a universal limit: a log-normal random field with a multi-scale
correlation structure, which undergoes a phase transition as the disorder strength varies. As
a by-product, we show that the solution of the two-dimensional Stochastic Heat Equation,
suitably regularized, converges to the same limit. The proof, which uses the celebrated
Fourth Moment Theorem, reveals an interesting chaos structure shared by all models in
the above class.
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1. INTRODUCTION

Many disordered systems arise as random perturbations of a pure (or homogeneous)
model. Examples include the random pinning model [G0O7], where the pure system is a
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renewal process, the directed polymer model [CSY04], where the pure system is a directed
random walk, the random field Ising model [B06| and the stochastic heat equation [BC95].
A fundamental question for such systems is: Does addition of disorder alter the qualitative
behavior of the pure model, such as its large-scale properties and/or critical exponents?

If the answer is yes, regardless of how small the disorder strength is, then the model is
called disorder relevant. If, on the other hand, disorder has to be strong enough to cause
a qualitative change, then the model is called disorder irrelevant. This difference can be
understood heuristically via renormalization transformations [B06l [G10]: if one rescales
space (coarse graining) and looks at the resulting renormalized disordered system on larger
and larger spatial scales, then one will observe that the “effective” strength of disorder will
asymptotically diverge if disorder is relevant, while it will vanish if disorder is irrelevant.

Whether a model is disorder relevant or irrelevant depends crucially on the spatial
dimension d and its correlation length exponent v. A milestone in the study of disordered
systems in the physics literature is the Harris criterion [H74], which asserts that if d < 2/v,
then disorder is relevant, while if d > 2/v, then it is irrelevant. In the critical case d = 2/v,
disorder is marginal and the Harris criterion is inconclusive: disorder can be either marginally
relevant or marginally irrelevant depending on the finer details of the model.

Inspired by the study of an intermediate disorder regime for directed polymers [AKQ14],
we proposed in [CSZ13| a new perspective on disorder relevance. The key observation is
that, if a model is disorder relevant, then it is possible to tune the strength of disorder down
to zero (weak disorder limit) at the same time as one rescales space (continuum limit), so as
to obtain a one-parameter family of disordered continuum models, indexed by a macroscopic
disorder strength parameter B > 0. In a sense, such continuum models interpolate between

the scaling limit of the pure model (8 = 0) and the scaling limit of the original disordered
model (5 = o), allowing one to study the onset of the effect of disorder.

The main step in the construction of such disordered continuum models is to identify
their partition functions. In [CSZ13], we formulated general conditions on the pure model
that are consistent with the Harris criterion d < 2/v for disorder relevance, which allowed us
to construct explicitly the continuum partition functions. However, the marginally relevant
case (d = 2/v in the Harris criterion) escapes the framework proposed in [CSZ13].

In the present work, we develop a novel approach to study the continuum limit of
marginally relevant systems of directed polymer type, which include the usual short-range
directed polymer model on Z2, the long-range directed polymer model on Z with Cauchy
tails, and the pinning model with tail exponent o = 1/2. We show that, surprisingly, there is
a common underlying structure among all these marginally relevant models (see Section
and Key Proposition , which leads to a number of universal phenomena. More precisely,

o A properly defined replica overlap Ry for each model diverges as a slowly varying
function (usually a logarithm) of the polymer length N — co.

o If the disorder strength is sent to 0 as Sy = ﬁ/\/RN for fixed ﬁ > 0, then the partition
function has a universal limit in distribution, irrespective of the model:

(1.1)

d d )log-normal if B <1
ZN?ﬁN ZA = { g

with the log-normal variable depending on the parameter B .
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e A process-level version of also holds: for ﬁ < 1, the family of log partition
functions log Zy g, (x), indexed by the starting point = of the polymer, converges
to a limiting Gaussian random field (depending on B) with an explicit multi-scale
covariance structure.

The transition from a non-degenerate limit Z 5> 0 to a degenerate limit Z 5= 0, as

B increases, marks a transition from weak disorder to strong disorder. We emphasize that
such a transition for marginally relevant models, in particular, the (2 + 1)-dimensional
directed polymer, is new and has not been anticipated. Previously, it was only known (see
e.g. [CSY04]) that for the directed polymer in dimension d + 1, there is a transition from
weak to strong disorder at a critical 8.(d), with S.(d) > 0 when d > 3 (corresponding to
disorder irrelevance) and f.(d) = 0 when d = 1,2 (corresponding to disorder relevance).
(For d = 2 the polymer was shown in [F12] to be diffusive if Sy « 1/4/Ry.)

Interestingly, our results show that in the marginal dimension d = 2, there is still a
transition on the finer scale of 3 = B /v/Ry, with critical value Bc = 1. This appears to be a
special feature of marginality, since no such transition exists at any finer scale of disorder in
dimension d = 1 [AKQ14].

Another point worth remarking is that the explicitly identified critical point B =1is
actually the point where the L? norm of the partition functions blow up in the limit. This is
in contrast to the directed polymer in dimension d + 1 with d > 3 (see e.g. [BS10]), or the
log-correlated Gaussian Multiplicative Chaos [RV13] which also undergoes a weak to strong
disorder transition. For these two models, their critical points are strictly larger than their
respective L? critical points.

Our results unify different polymer models that are classified as marginally relevant.
However, beyond this universality, even more interesting is the method we develop, which
reveals a multi-scale and Gaussian chaos structure that is common to all the models we
consider. In particular, the partition functions can be approximated by a sum of stochastic
integrals involving white noises in all possible dimensions, which through resummation, can
be seen as the exponential of a Gaussian (see Section {4 for an outline of the main steps). The
key technical ingredients include a non-trivial combinatorial argument (Proposition ,
and the application of a version of the Fourth Moment Theorem [dJ90, NP05| for Gaussian
approximation.

An interesting corollary of our results is that they link marginal relevant models to a
class of singular SPDEs at the critical dimension. In particular, they bring new insights
on how to define the solution of the two-dimensional Stochastic Heat Equation (2d SHE),
which is formally written as

ou(t, x)
ot
for (¢,x) € [0,00) x R2, 3> 0 and W is the space-time white noise.

Rigorously defining the solution of ([1.2)) remains a difficult open problem due to ill-defined
terms such as Wu. In special cases, such as the one-dimensional SHE, it was shown in [BC95|

1

= %Au(t, z) + BW (t, x) u(t, x), u(0,-) =1, (1.2)

that a solution can be defined by first mollifying W and then sending the mollification
parameter to zero. But there was no systematic approach to make sense of singular SPDEs
until recent breakthroughs by Hairer [H13, [H14], through Regularity Structures, and by
Gubinelli, Imkeller and Perkowski |[GIP15], through Paracontrolled Distributions (see also
Kupiainen [K14] for field theoretic approach). However, these approaches do not cover the
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critical dimension two for the SHE, and the singular SPDEs that can be treated so far are
all known as sub-critical (or super-renormalizable in the physics literature [K14]).

It turns out that the notion of sub-criticality for singular SPDEs matches with the notion
of disorder relevance, while criticality corresponds to the case where the effect of disorder is
marginal. To illustrate this fact for the SHE, consider the change of variables

(t,x) = To(t, %) := (e 2,7 13),

which for small € > 0 corresponds to a space-time coarse graining transformation. Looking
at (1.2)), it is easily seen that U(%, ¥) := u(T.(f, %)) formally solves the SPDE
aii = lAﬂ + 55%—1VT@, w(0,) =1, (1.3)
ot 2
where W is a new space-time White noise obtained from W via scaling. Therefore, coarse-
graining space-time for the SHE has the effect of changing the strength of the noise to
£51 B which, as ¢ — 0, diverges for d = 1 (disorder relevance), vanishes for d > 3 (disorder
irrelevance), and remains unchanged for d = 2 (marginality).

Since the difficulties in studying the regularity properties of an SPDE are related to small
scale divergences, it is interesting to blow up space-time, i.e. consider the change of variables
(t,x) = T.—1(t, ). This leads to a renormalized equation which is just with & replaced
by 7!, hence blowing-up space time produces an effective noise strength which behaves

reciprocally with respect to coarse-graining, i.e. vanishes as € — 0 for d = 1 and diverges for
d = 3. This explains why the SHE with d = 1 can be analyzed by [H14, |GIP15] [K14].

Since the solution of the SHE can be interpreted as the partition function of a continuum
directed polymer via a generalized Feynman-Kac formula [BC95|, our result for the two-
dimensional directed polymer implies a similar result for the 2d SHE. More precisely, if we
consider the mollified 2d SHE

ouf
ot

1 .
= §Au5 + BWEus, u®(0,) =1, (1.4)
where W is the space-mollification of W via convolution with a smooth probability density

27 Q
Toge=T for some 5 > 0,

jo(z) := e72j(z/¢) on R2, and the noise strength is scaled as 8. =

then for each (¢,7) € (0,0) x R?, uf(t,x) converges (as ¢ — 0) in distribution to the same
universal limit Z 4 in ((1.1) as for the other marginally relevant models.

We hope that the method we develop and the universal structure we have uncovered
opens the door to further understanding of marginally relevant models in general, including
both statistical mechanics models that are not of directed polymer type, as well as critical
singular SPDEs with non-linearity. In particular, our results suggest that for marginally
relevant models there is a transition in the effect of disorder on an intermediate disorder
scale. Establishing this transition in general, as well as understanding the behavior of the
models at and above the transition point, will be the key challenges next.

2. THE MODELS AND OUR RESULTS

In this section we define our models of interest and state our main results. We will denote

N:={1,2,3,...} and Ny := N u {0}.
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2.1. THE MODELS. We first introduce the disorder w. Let w = (w,) be a family of i.i.d.
random variables, indexed by X € N or X = (z,n) € Z? x Ny, depending on the model.
Probability and expectation for w will be denoted respectively by P and E. We assume that

Elwi] =0, Var[wi] =1, 360> 0: A(B) :=logE[e?'] < o0 V|B| < fo.

Next we define the class of models we consider. We fix a reference probability law P
(which will typically be the law of a random walk or a renewal process) representing the
“pure” model. The disordered model is then a Gibbs perturbation PR 5 of P, indexed by the
parameters N € N (polymer length), 8 > 0 (disorder strength) and the disorder w:

dPy efis0)
ap = Z%

for a suitable Hamiltonian H]“\’,’ 3 The normalizing constant
Z%5:=E [eHﬁﬂ]

is the disordered partition function and will be the focus of this paper.
Different reference laws P and Hamiltonians HY 5 give rise to different models. The first

class of models we will consider are directed polymers in random environment on Z+1.

Definition 2.1 (Directed polymers on Z%*1). Let S = (S,)nen, be a random walk on
Z® with i.i.d. increments. For (x,t) € Z% x Ny we denote by P ; the law of (S,),>; started
at x at time ¢, and we denote P := Py o for simplicity. The partition function of the directed
polymer in random environment is defined by

2% 5(x,t) = By [625:z+1(6w(n,sn)—>\(ﬂ))] (2.1)

We will also consider pinning models, which can be viewed as directed polymers on Z4+1
with disorder present only at x = 0 (i.e. w(n,x) = 0 for z # 0). In this case, what really
matters are the return times of the random walk S to 0, which form a renewal process.

Definition 2.2 (Pinning models). Let (7 = (7,,)nen,, Pt) be a renewal process started
at t € N, i.e., Py(19 = t) = 1 and (7, — Tn—1)nen are i.i.d. N-valued random variables. If
t = 0 we write P = Pg. The partition function of the pinning model started at t € Ny equals

Z]“\)[ﬁ(t) - Et I:eZnN:t+1(6Wn*)‘(B))ﬂ{ne-r}] , (22)
with Z 5 := Z% 5(0), where we have identified 7 with the random set {7, 71, ...} = No.

Remark 2.3. In the pinning model it is customary to have a bias parameter h € R, i.e.
—X\(B) is replaced by —A(8) + h in (2.2)). In this paper we set h = 0 because in the regime
we are interested in, the effects of S and h can be decoupled. This will be treated elsewhere.

Note that Z% 5 in (2.1)—(2.2) has been normalized so that E[ZF 5] = 1 (due to —A(3)).
The key question we consider (in connection with disorder relevance) is the following:

Q. Can one tune the disorder strength 8 = By — 0 as N — o in such a way that the
partition function waN converges in law to a non-degenerate random variable?
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The answer depends crucially on the random walk S and the renewal process 7. Assume
that S and 7 are in the domain of attraction of a stable law, with respective index « € (0, 2]
and a € (0, 1). Informally, this means that P(|S1| > n) ~ n=® and P(11 > n) ~ n™% (except
for a = 2, where E[|S1]?] < o0 or, more generally,  ~— E[|Sl\2]1{‘51|<x}] is slowly varying).

It was shown in [CSZ13]| that question Q.| has an affirmative answer for directed polymers
on Z'™! with « € (1,2] and for pinning models with o € (1/2, 1), which is a manifestation of
disorder relevance; while disorder is irrelevant for directed polymers on Z'*! with o € (0,1)
and for pinning models with « € (0, 1/2). However, the marginal cases

(a) directed polymers on Z**! with a = 2 (e.g., finite variance);
(b) directed polymers on Z'*! with a = 1 (e.g., Cauchy tails);
(c) pinning models with tail exponent o« = 1/2 (e.g., the renewal arising from the return

times of the simple symmetric random walk on Z to the origin),

fall out of the scope of the method in [CSZ13].

In this paper, we develop a novel approach to answer question affirmatively for
marginally relevant models. Even though our techniques are of wider applicability, we stick
for simplicity to models of type @f above. Let us state our precise assumptions, in
the form of local limit theorems, where we allow for arbitrary slowly varying function L(-).
However, we suggest to keep in mind the basic case when L(-) is constant, say L(-) = 1.

Hypothesis 2.4 (Local Limit Theorem). Assume that the directed polymer in Defini-
tion and the pinning model in Definition satisfy the following local limit theorems,
for some slowly varying function L.

(a) |d = 2] Directed polymer on Z*** with o = 2 (short range).

e {H =)o ) f =

where g(x) := %6_%"”2 denotes the standard Gaussian density on R?.

(b) [d = 1] Directed polymer on Z'*! with o = 1 (long-range with Cauchy tails).

sup {L(n)2n P(S, = ) — g(L(rf)Qn) } ——0, (2.4)

2€Z

where g(x) := %1 +1$2 denotes the Cauchy density on R.
(c) [d = 0] Pinning model with o = 3.
L(n)v/nP(ner) ——cCE€ (0,00). (2.5)
n—

Remark 2.5. Conditions (2.3)(2.4) hold whenever S is an aperiodic random walk on Z%
in the domain of attraction of the Gaussian (d = 2), resp. Cauchy (d = 1) distribution:

E((;Z)) —>::Jiaolz g(x)dx with é(n) = (L(n)2 n) 1/d, (2.6)

by Gnedenko’s local limit theorem, cf. [BGT89, Theorem 8.4.1] (we denote by L(:) the law
of a random variable).

Condition (2.5) holds whenever P(r; = n) ~ ¢ fbg’/;) as n — oo [D97, Thm. B|.
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Remark 2.6 (2d Simple random walk). When S is the simple symmetric random walk
on Z?, due to periodicity, still holds (with L(-) = 1) provided the sup is restricted
to the sub-lattice z € {(a,b) € Z? : a + b = n (mod 2)} (whose cells have area 2) and g(-)
is replaced by 2¢(-). Consequently, relation holds with C' = 2| g||3. Our main results
Theorems [2.8] 2.12] and [2.13] below apply with no further change.

A crucial common feature among all models @— above concerns the so-called expected
replica overlap, defined for a general random walk S or renewal process 7 by

B| i Usimsy] = 2 PSi=a)?

RN — n;l 1<n<N, zeZd , (27)
E [ Z ]l{nETmT’}] = Z P(n € T)2
n=1 1<n<N

where S” and 7/ are independent copies of S and 7. For models satisfying Hypothesis a
Riemann sum approximation using (2.3)—(2.5)) yields

N .
1 ~ Jlgl3 (directed polymers)
RN N:oo C T; W N where C = { 2 . (28)

c (pinning)

This shows that N — Ry is a slowly varying function, cf. [BGT89, Proposition 1.5.9a], a
fact which plays a crucial in our analysis. Whether R stays bounded or diverges as N — o
will determine whether disorder is relevant or irrelevant. This leads to

Definition 2.7 (Marginal overlap condition). A directed polymer or a pinning model
is said to satisfy the marginal overlap condition, if Ry — o0 as a slowly varying function
when N — o0, where Ry is defined in ([2.7)).

Under Hypothesis the marginal overlap condition is satisfied when Ry — oo, which by
(2.8)) holds if L(n) stays bounded, or more generally, does not grow too fast as n — c0. We
suggest the reader to keep in mind the basic case L(n) = 1, for which Ry ~ C'log N.

Our main result, to be stated in the next subsection, is that question has an affirmative
answer for models of directed polymer type which satisfy Hypothesis [2:4] and the marginal
overlap condition. This is a signature of marginal disorder relevance in the spirit of [CSZ13].
The recent results of Berger and Lacoin [BL15al, BLI5b] on free energy and critical curves
reinforce this picture.

2.2. RESULTS FOR DIRECTED POLYMER AND PINNING MODELS. We are now ready
to state our main results: Theorem 2.8 on the convergence of partition function with a
fixed starting point; Theorem on the joint limit of partition functions with different
starting points, where multi-scale correlations emerge; and Theorem [2.13] on the Gaussian
fluctuations of the partition functions as a random field indexed by the starting points.

Theorem 2.8 (Limit of partition functions). Let ZNi e the partition function of a

directed polymer or a pinning model (cf Deﬁmtzons 2.1 and|2.2). Assume that Hypotheszs
holds and the replica overlap Ry in and (2.8)) diverges as N — oo0. Then, defining

By = , with 3 € (0,0), (2.9)

i g
=2
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the following convergence in distribution holds:

o2

exp <O'BW1—QB> z'f/3’<1

ZJU\JT,BN Z = (2.10)
k) s ﬂ ~
N=o 0 ifB>1
where W1 is a standard Gaussian random variable and
1
2 . _

o .—logl_B2 . (2.11)

Moreover, for 3 <1 one has imy_, o E[(Z% BN)Q] = ]E[(ZB)2]'

Remark 2.9. Note that for B <1, ZB is log-normal. Let (W});>0 be a standard Brownian
motion. We will in fact prove that

T 1
w d B _ 1 B2 4 7
ZNvBN N exp (L ,71_B2t th 3 JO 1—B2t dt) = Z,B . (212)
This more involved expression for Z 5 hints at a remarkable underlying multi-scale and
chaos structure, which is common to all models that satisfy Hypothesis and the marginal

overlap condition. The heuristics for this structure will be explained in Sec. [3|
It is even possible to identify the limiting distribution of the whole process (Z]"\’, BN>

pe(0,1)"
Denoting by (Wf”)gomeN a countable family of independent Brownian motions, we have
the convergence in distribution of Z gy 88 N — oo, jointly for 3 € (0, 1), to the process

© 1 - 1
[Texp (f grT aw” — ;J B2t dt> L2z, (2.13)
r=1 0 0

This can be extracted from the proof of Lemma and we will omit the details.
It is worth noting the non-trivial dependence of aé on (3, cf. (2.11). On the one hand it

distinguishes from other scalings such as Sy « 1/4/Ry, which lead to a trivial behavior, and
on the other hand it marks the transition from weak (Z; > 0) to strong (Z 5 = 0) disorder.

Remark 2.10. During the completion of this paper, Alberts, Clark and Koci¢ showed in
[AKST5] that for the marginally relevant directed polymer model on the diamond hierarchical
lattice, with either edge or site disorder, there is also a transition for the partition function
in an intermediate disorder regime with some critical value Bc. Their proof relies on the
recursive structure of the hierarchical lattice. A difference with respect to our results is that,
for B < BC, the partition function converges to 1 and has Gaussian fluctuations. It would be
interesting to apply our approach to better understand the source of this difference.

Remark 2.11. One may wonder whether the assumption of finite exponential moments
E[ef“1] < oo can be relaxed. Indeed, for the usual (short-range) directed polymer model
in dimension d = 1, in the intermediate disorder regime it is enough to assume finite six
moments, as conjectured in Alberts-Khanin-Quastel [AKQ14] and proved by Dey-Zygouras
[DZ16]. The heuristic in dimension d = 1 is that if P(w; > t) ~ t~%, the typical maximum
of the disorder random variables visited by the random walk by time N is N 50, The
intermediate disorder scaling in dimension d =1 is Sy = BN_1/4, so one has ﬂNN% — 0
when a > 6, allowing for a truncation argument. In dimension d = 2, the typical maximum
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is N%/a while By = B/«/log N, so By N2 — o irrespective of a. This suggests that in the
critical dimension d = 2, things are more subtle and we are reluctant to make any claim.

Next we study the partition functions Z]°\’,, ﬁ(X) as a random field, indexed by the polymer’s
starting position X = (z,t) € Z? x Ny with d € {1,2} (for directed polymers), resp. X = ¢ € Ny
(for pinning models). Assuming Hypothesis with a slowly varying L(-) and a divergent
overlap Ry, and recalling , we define

¢ (|z]) == min{neNy: ¢(n) > |z|} = min{neNy: (nL(n)?)"? > lzl}.  (2.14)

By (2.6), o~ (|z|) is the time at which the random walk S has a fluctuation of order |z|.
Then, for each X = (x,t) € Z¢ x Ny with d € {0, 1,2}, we set

t ifd=0
X == - 1o (2.15)
tvo(z]) ifd=1,2

We suggest to keep in mind the special case L(n) = 1, for which || X|| = ¢ v |z|?.

Theorem gives the limiting distribution of the individual partition functions Z%; B (X),
and it is natural to ask about the joint distributions. In the special case L(n) = 1, i.e.
Ry ~ Clog N, partition functions Z% 5 (X) and Z% 5 (X") with macroscopically distant
starting points |[X — X'|| = N'+°() become asymptotically independent as N — co, while
an interesting correlation structure emerges on all intermediate scales ||X — X[ = N¢+e(),
for any ¢ € (0,1). For general slowly varying functions L(n), when Ry is not necessarily
logarithmic, intermediate scales are encoded by Rx_x/||/Rx = (+0(1). This is the content
of the next theorem, where we use the shorthand notation : ¥ : = Y =3 VarlY]

Theorem 2.12 (Multi-scale correlations). Let ZJU\J/B(X) be the partition function of a

directed polymer (or pinning) model started at X = (z,t) € Z¢ x Ny (cf. Def. and ,
such that Hypothesz’s holds and the replica overlap Ry in (2.7)—(2.8) diverges as N — oo.

Consider a finite collection of space-time points (X%))Kigr, such that as N — o0,
Vi<kl<r: Rth(k)/RN:1_O(1)7
N (2.16)
R yw_yo, /Ry =G +o(1) for some (€ [0,1].
X" =Xl

Then, for By = B/\/RN with B € (0,1), the following joint convergence in distribution holds:

w (4) d .Yl
(ZNﬂN(XN))léiST N ( e )1@‘@’ (2-17)
where (Y;)1<i<r are jointly Gaussian random variables with
1— 532G
E[Y] =0,  CovlY; Y] - loglﬁﬁgw (2.18)

Lastly, we study Z% 5 (X) as a space-time random field on the macroscopic scale |[X|| ~ N,
showing that it satisfies a law of large numbers with Gaussian fluctuations. For X = (z,t) €
7% x Ng, we define space-time rescaled variables as follows (recall L(-) from Hypothesis

and ¢(-) from (2.6)):

~

XN = (jN,fN) = <¢(x]\[) 5 ]i[) 5 (219)
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where pinning models correspond to d = 0 and we drop x. We first observe that Ry L(N)? —
o as N — o0, by (2.8) and [BGT89, Prop. 1.5.9a]. We are going to show that one has

1 ~
AN, X)x1l+ ——=G(X 2.20

where G(-) is a generalized Gaussian random field on R? x [0, 1], with a logarithmically
divergent covariance kernel (see (12.23) below). To make (2.20) precise, we fix a continuous
test function v : R? x [0,1] — R with compact support and define

J%::<ﬂA%@V 3 {\URNLUVP(Z%ﬁNOQ——D}#(XN), (2.21)

XeZ4xNy

where the pre-factor is the correct Riemann-sum normalization, in agreement with ([2.19)).
We can now formulate our next result.

Theorem 2.13 (Fluctuations of the rescaled field). Let Z]“\’,ﬁ(X) be the partition
function of a directed polymer or pinning model started at X € Z% x Ng (cf. Def. and ,
such that Hypothesz's holds and the replica overlap Ry in f diverges as N — 0.

Fiz any continuous function v : R? x [0,1] — R with compact support, and let fn =
B/m with B < 1. Then J}f, mn converges in distribution as N — o0 to a centered
Gaussian random variable N (0, O'i) with variance

22
O'w = B ~
1- 42

f bl t) K ((2,0), () (o, ) dardt da’ de | (2.22)
(]Rdx [0,1])2

where the covariance kernel is given by
1 2-(t1+t2) 1 xr1 — X2
= —g| ——— ) ds (directed polymers
2L1_t2| Sg( ~1/d ) ( polymers)
1 2
¢ ds (pinning)
t1 vt '\/5 - tl'\/S - t2
Remark 2.14. Observe that the kernel K diverges logarithmically near the diagonal:
1
K t t ~C1 t1) — t2)| — 0.
((301, 1), (22, 2)) 0g (21, 11) — (22, 1) as  |(x1,t1) — (z2,t2)]

Note that Gaussian fields with such logarithmically divergent covariance kernels have played
a central role in the theory of Gaussian Multiplicative Chaos (see e.g. [RV13]).

K((z1,t1), (22, t2)) = (2.23)

2.3. RESULTS FOR THE 2D STOCHASTIC HEAT EQUATION. We now state the ana-

logues of Theorems and for the 2d SHE

1 :
aa:; = iAu + BuW, u(0,z) =1 VxeR? (2.24)
To make sense of (2.24), we first mollify the space-time white noise W. Let j € C2 (IR
be a probability density on R? with j(x) = j(—z), and let J :=j=j. Fore >0, let Je(x) :=
£72j(z/e). The mollified noise W* is defined formally by We(t,z) := (g2 je(z — y)W (¢, y)dy,
so that

J;RXRQ ft,x)We(t, z)dtde == J

( f(t,m)jg(y—a:)dx)W(t,y)dtdy Y f € L*(RxR?).
RxR2 R2
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For fixed x, the process t — Sé We(s,z)ds is a Brownian motion with variance ||j]3. Then
we consider the mollified equation (with Itd integration, and S = (. possibly depending
on ¢)

W Law g gt (0. =1, (2.25)

whose solution admits the generalized Feynman-Kac representation [BC95| Sec. 3 and (3.22)]

ut(t,x) = Ey [exp {ﬂg Lt We(t — s, Bg)ds — %ﬁg E[(Lt We(t — s, Bs)ds)z] }], (2.26)

where E, is expectation w.r.t. (Bs)s>0, a standard Brownian motion in R? with By = x and
E denotes the expectation with respect to the White noise. By a time reversal in W€, we
note that u®(¢,x) has the same distribution (for fixed (¢,z)) as

u(t,x) == Eg [exp {,6’5 fot We(s, By)ds — %Bf E [(J: We(s, Bs)ds)2]}]

= [ {5 [ [ 0.8, - W supasdy — 5211513)]
=Eﬂ4aw&f%kgwrmﬁﬁwmwéﬁw%mﬂy (227)

where in the last step we made the change of variables (7, 25) := (y, s), and W (&, y)dsdy :=
e72W (25, 7)d(e23)d(ef)) is another two-dimensional space-time white noise. (One can
actually extend so that the equality in law between u® (¢, x) and @¢(¢, ) holds jointly
for all t € [0,1] and z € R?, see below.)

Relation suggests that we can interpret @°(¢,x) as the partition function of a
directed Brownian polymer in R? in a white noise space-time random environment at inverse
temperature f., with starting point e 'z and polymer length e=2t. A consequence of our
results for the short-range directed polymer on Z? is the following analogue of Theorems
and combined into a single theorem. Let us agree that || X|| :=t v |=|2.

Theorem 2.15 (Limits of regularized solutions). Let u®(t,x) be the solution of the
reqularized 2d SHE (2.25)), with . = & 21 for some f3 € (0,00). Following the notation

loge—1

n Theorem consider a finite collection of space-time points Xgi) = (wg), tg)), 1<i<r,
such that as € — 0,

Vi,je{l,...,r}: 8 =W IXO - XW|| = 20=6)+W) for some ¢ 5 € [0,1].

Then forﬁ <1, (us(x?)))lgigr converge in joint distribution to the same limit (: evi: )1<i<r

as in (2.17) as e — 0, with E[(ua(x?)))Q] — E[(: e¥i:)?]; while for § > 1, uE(Xg)) = 0.

Remark 2.16. Applying Hopf-Cole transformation to , we note that h®(t,z) :=
log u®(t, x) is the solution of the regularized 2d KPZ equation
oh®
ot
where the last term —32e72|j|2 is the Ito correction. Theorem can therefore be

reformulated for the 2d KPZ equation, showing that when B € (0,1), the solution h® has
pointiwse Gaussian limits as € — 0.

1 1 .
— SR + VR + B — B2 23, b0, = . (2.28)
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Here is the analogue of Theorem [2.13]

Theorem 2.17 (Fluctuations of the solution field). Let u®(t,z) be as in Theorem|[2.15]
with B € (0,1). Let ¢ : R? x [0,1] — R be continuous with compact support, and let

—1
TV g | 08E J (uS(t, ) — 1)z, 1 — t) dzdt. (2.29)
2 Jr2x(0,1]

Then J¥ converges in distribution as € — 0 to the same Gaussian random variable N (0, ai)
as in Theoremfor the directed polymer model on Z>*'.

Remark 2.18. For simplicity, we have formulated our results for the 2d SHE with (0, -) =
1. However, it can be easily extended to general u(0,-). As it will become clear in the proof
(or the heuristics in Section , for B < 1, the limit of u¢ (t,z) depends only on the white noise
W in an infinitesimal time window [t — o(1),t] as e — 0 (for directed polymer of length N,
the partition function similarly depends only on the disorder in a time window [1, N1=°(1]).
Therefore if we set the noise to be zero in the time window [0,¢ — o(1)], then apply the
Feynman-Kac formula first from time ¢ to t — o(1), and then to 0, then we will see
that the limit of u®(¢, z) depends on the initial condition only via a factor E,[u®(0, By)].

Remark 2.19. Bertini-Cancrini [BC98| showed that if in (2.25)), f; := \/ 1052—1 + (IOgA

571)2
for some A\ € R, which corresponds to a finer window around B = 1 in our notation, then u®
is tight in a suitable space of distributions, and the two-point function E[u® (¢, z)u®(¢,y)]
converges to a non-trivial limit. However, they could not identify the limit of u®. Combined
with our result that u®(¢,z) converges in probability to 0 for each € R? when B = 1, this
suggests that the random measure u®(t, z)dx may have a non-trivial limit as € — 0, which
is singular w.r.t. the Lebesgue measure.

Remark 2.20. We note a formal connection between the 2d SHE and Gaussian multiplica-
tive chaos (GMC), which typically considers random measures Mg(dx) := P Xa—P*EIXT]/24y
on [0,1]¢ for some Gaussian field (X2)ze0,17¢- When the covariance kernel of X is divergent
on the diagonal, X is a generalized function and to define Mz(dx), one first replaces X by
its mollified version X¢ and defines Mj(dz) and then takes the limit ¢ — 0 (see [RV13] for
a survey). For the 2d SHE, the exponential weight in can be seen as the analogue of
eBX=BE(X2)*)/2 for the mollified Gaussian field X €, except now the Gaussian field X¢ is
indexed by C([0,t],R?) endowed with the Wiener measure. As € — 0, its covariance kernel
KE®(-,-) can be seen to diverge logarithmically in probability, if it is regarded as a random
variable defined on C([0,¢],R?)? endowed with the product Wiener measure. We note that
shortly after the completion of this paper, Mukherjee et al. [MSZ16] used techniques from
GMC to prove the existence of a weak to strong disorder transition for the SHE in d > 3.

3. HEURISTICS

In this section we illustrate the core of our approach, emphasizing the main ideas and
keeping the exposition at a heuristic level. In §3.1| we recall the approach developed in
[CSZ13| to deal with the disorder relevant regime, then in we explain how it fails for

marginally relevant models and how does the marginal overlap condition arise.
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3.1. HEURISTICS FOR DISORDER RELEVANT REGIME. For simplicity, we use the
pinning model to illustrate the general approach developed in [CSZ13| to identify limits of
partition functions in a suitable continuum and weak disorder limit.

We first rewrite the partition function for t = 0: since e®liner) =1 4 (&* — D1 jpery
for all x € R, we get

N Bwn=A(B) _ 1
" e
ZN,ﬁ =E H (1 + By ]l{neT}) where n, = # (3-1)
n=1

A binomial expansion of the product in (3.1)) then yields (setting ng = 0)

N
Zyp=1+ Z Bk Z H Gn;—nj_ Hnnl where ¢, :=P(ner). (3.2
k=1 ISni<--<np<N j=1
We have thus rewritten Z%; 5 asa multi-linear polynomial of the i.i.d. random variables
(Mn)nen, sometimes called a polynomial chaos expansion.
Assume for simplicity that the underlying renewal process 7 satisfies

C
P(rp —m=n) ~ Tra as n — oo (3.3)

for some C' > 0 and « € (0, 1), which implies the local limit theorem [D97, Thm. B].

C asin(ra) 1
Gn :=P(ner)~ s (3.4)

Recalling (3.1]), we have E[n,] = 0, and by Taylor expansion,
Var[n,] ~ 1 as 3 — 0. (3.5)

Since the “influence” of each 7, on Z% N 18 small, we can apply a Lindeberg principle
(see e.g. [CSZ13, MOO10, NPR10]) to replace (n,)nen by i.i.d. standard Gaussian random
variables without changing the limiting distribution of Zyzas N — .

Standard i.i.d. Gaussian (7, )nen can be defined from a white noise W (dt) on [0, c0), with

n+1

- \/Nf Y W(s), neN (3.6)

n

N
Setting ¢; := n;/N for each i € N, the series (3.2]) then becomes a series of stochastic integrals
k

k
Zhg ~ 1+Z 5N2 JJ H N?fjJ—U\“fjflJI_IW/(dtZ

O<ty<-<tp<1 I=1 =1
k k
~ 14 Z (AN 5)F ff [t -t [[Wt),  (G.7)
O<ti<---<tp<l J=1 i=1
where we have applied (3.4) that gy ~ C (Nt)>— L
In the disorder relevant regime « € (1/2,1), we note that g(t) := t*~! is square-integrable
in ¢t € [0, 1] and the stochastic integrals in (3.7 are all well-defined. In particular, in the
weak disorder limit

BN = G'Nﬁa—é’ with 3 € (0,00), (3.8)
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relation (3.7 suggests that as N — oo, the partition function Z% gy converges in law to

k

0 k
- Z Bk Jj [Tt =t [[wiat). (3.9)

O<ti<-<tp<1 I=1 =1
The limit ZEV can then be used to define a continuum disordered pinning model [CSZ16].

For the marginal case o = 1/2, the above approach breaks down because 1/+/t just fails
to be square-integrable in [0, 1] and the stochastic integrals in become undefined.
Nevertheless, for each k € N, we note that the second moment of the k-th term in
diverges as N — o0, which hints at marginal relevance of disorder.

For directed polymer models, exactly the same phenomenon appears. The approach
of [CSZ13] sketched above applies to the short-range directed polymer on Z!'*! and the
long-range directed polymer on Z!*! with tail exponent o € (1,2), and breaks down exactly
at the marginal cases, which include the short-range directed polymer on Z2*! and the
long-range directed polymer on Z'*! with tail exponent a = 1.

3.2. HEURISTICS FOR MARGINAL RELEVANT REGIME. We now sketch the heuristics
behind our proof of Theorem Again, we use the pinning model to illustrate our approach,
focusing on the marginal case where the renewal process satisfies (3.3) with o = 1/2.

For simplicity, while retaining the key features, we assume that (7, )nen are i.i.d. standard
normal, and in light of (3.4), we assume for simplicity that ¢, = 1/y/n. Then Zy p in (3-2])

simplifies to

N
Zy =1+ Bk > 1_[ nj_nj - (3.10)

k=1 I<ni<---<np<N j=1
The first observation, which follows from a direct calculation, is that for each k € N, the
associated inner sum in Zy has second moment

E[( 3 1_[ )2] = > ﬁl ~ (log N)* ~ R,

— N;
1<ni<--<ny<N j= 1V~ -1 1<ni<--<ng<N j=1 J—1

where R is the expected replica overlap defined in and satisfies the marginal overlap
condition. This suggests that if there is a non—trivial Weak disorder limit for Zy, then we

should choose Sy := /Ry for some 3 > 0. Furthermore, note that E[Z%] - (1 - B2t
for 3 € (0,1) and E[Z%] — o for § > 1, with a transition occurring at Be=1.

We assume from now on By := 3/v/Iog N ~ 3/v/Ry in ([3.10) with 3 € (0,1), so that

N
5 1
Zy =1+ 320 with 20 = —— %) H
k=1 (10gN>2 1<ni<--<np<N j=1 W

To prove Theorem that Zn converges in law to a log-normal random variable, we will

(3.11)

identify the limit of Z](\/;c) for each k € N, where an interesting structure appears. Below are
the key observations.

(A) An elementary observation. Let (W (t))i=0 be a standard Brownian motion on R. For
any § > 0, let W(t) := W (dt)/+/9, which is another standard Brownian motion correlated
with W. A simple covariance calculation then shows that as § | 0, W and Ws become
asymptotically independent. Such asymptotic independence due to separation of scales also
extends to higher-dimensional white noise, which will be crucial in our analysis.
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(B) Identifying the time scale. Next, we identify the intrinsic time scale appearing in
the limit of Z{ ), and Zj(\lf) in general. Note that for any 0 <a <b <1 \/W Zn Na T
converges in distribution to a Gaussian random variable with mean zero and variance b — a.
Therefore to approximate the sum in Z](\})
change of variable n = N® which gives

by a stochastic integral, we should make the

NP b

1 Mn 1)
— =~ | WW(d Vo<a<b<l, 3.12
where W is a standard Brownian motion. In particular, Z ~ SO W1( ). This

indicates that the correct time scale is exponential ¢ — N* rather than hnear t — Nt.

(C) Identifying the structure. Finally, we identify the limit of Z (2), where the key structure
already emerges. An L? calculation shows that as N — o0, we can relax the range of
summation:

1 In im 1 n 1 ni+n
7@ _ ~ L e (313
N " log N Z Vnym—n  4/log NO<; n1 \4/log N ooy V12 (3.13)

O<n<m<N 1<N

Using the approximation (3.12)) with n; =: N®! and similarly for the sum over ny =: N52,
2) TIN®1+n (2;
73 ~ f dW(l ( T Z 2 f WM (ds) f W21 (dss), (3.14)

0<n2<N
where given s;, W(51) is a standard Brownian motion with

N s W (). (3.15)

(1)

To understand the relation between Wy’ and T/Vs(z2 1) and make sense of the stochastic
integral in (3.14]), we distinguish between the cases s3 < s1 and s9 > s7.

e Case sy < s;: In this case, N%2 « N*®1 and observation (A) shows that in the limit
N — oo, the white noise (W (%51)(dsy))o<s,<s; becomes asymptotically independent
of (WM (ds1))o<s;<1- Indeed, by (3.12) and (3.15)), we note that the increments of
W) in a small time window [so,so + A] is defined from 7, with n € [N +
N%2 NSt + N 52+A], which is an infinitesimal window contained in the range of indices
[N®1, N51t2] used to define the increments of W) on [sy,s; + A]. In other words,
the white noise (W%51) (dsy))o<s,<s; is effectively obtained by sampling W) (ds;) in
an infinitesimal window in [s1,s; + A]. A covariance calculation as in (A) shows that
in the limit N — oo, W1 (ds;) and W(%51)(dsy) are independent for all a, s1 € [0, 1]
and b € [0, s1]. Furthermore, using the Fourth Moment Theorem, it can be shown that

(T(ds1,dsz) := W (dsy) - WED) (dsy))

(3.16)

0<sgo<s1<1

is a two-dimensional white noise, independent of (dWS(ll))()gslgl.

e Case sy > s1: In this case, N°1 « N*2 as N — 0. Therefore, the range of indices
[Nt 4 N%2 N°t 4+ N*2+2] essentially coincide with [N*2, N*2*2] which are the indices
of n used to define respectively the increments of W(Zs1) and W1 in a small window
[s2, 52 + A]. This implies that in the limit N — o0, we have W21 (dsy) = W1 (dss).
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By the above considerations, we can now rewrite the approximation (3.14]) as

7% ~ J T(dsy,dss) + J W (dsy) dW D (ds,) , (3.17)
0<sg9<s1<1 0<s1<s9<1

where the first term is a normal random variable with mean zero and variance 1/2, indepen-

dent of the second term, which can be rewritten as

1 s2 1 (1) 2 _
[ s ([Fwrasn) = [ e wias) - CEEL

When we consider the limit of Z](\If) for k > 3, similar separation of scales appears when

we make the change of time scale n; = N®. The limit of Z](\l;) admits a decomposition similar
to (3.17) (but more complicated), involving independent white noises of various different
dimensions up to dimension k.

So far we focused on pinning models, but everything can be extended to directed polymer
models, whose partition function admits a polynomial chaos expansion analogous to (3.2)): see
(4.1) below. Remarkably, the structure is the same as for the pinning model: if we make the

1/d

change of time variable n; = N% and a change of space variable z; = x;n;’" (assuming L(-) =
1 in Hypothesis , then similar to , Z](\P can be approximated by Sé SRd W(l)(dt dz)
for a white noise W on R? x [0,0). Concerning Z (2), in analogy with , for each
s1 > 0 and z; € R%, we have an independent white noise (W (25121 (ds, dz2)) s5e[0,51],26R %>

which is effectively obtained by sampling W) in an infinitesimal space-time window around
(Sla xl)) while (W(Q;Sl’wl) (d82 dx2))82>81,(£2€Rd = (W(l) (d52 dx?))32>sl,mgeRd'

4. PROOF STEPS FOR THEOREM [2.8|

Since the proof of Theorem (for 3 € (0,1)) is long and modular, we list here the
proof steps. These contain four approximations (A1)—(A4), plus one key step (K) which
identifies the building blocks of the limiting partition function. The local limit theorems
(2-3)-(2.5) in Hypothesis will only be used in the approximation step (A3). The other
steps only use the marginal overlap condition, i.e.;, Ry is a divergent slowly varying function.

The proof steps are the same for pinning (d = 0) and directed polymer models (d = 1,2),
so we follow a unified notation. The starting point is a polynomial chaos expansion for the
partition function of directed polymers, in analogy with — for pinning;:

N
Zay =1+ 2. 0%2Y),  (By = B/VRY),

k=1
k (4.1)
=1

k
k 1
where Zz(v) = k2 Z H an—nj,l(zj — Zj-1) Hn(m,zi) ,
RN 1<ni<---<np<N j=1 3

21,224...,2LELY
with ng := 0, zp := 0 and
ePNW(n,)—ABN) _ 1
BN

Note that relation (4.1]) applies also to the pinning model, if we view it as a directed polymer
on Z° := {0} (cf. Hypothesis and identify ¢, (0) with ¢, = P(n e 7).

N
Qn(Z) = P(Sn = Z)? NMn,z) = n((n;) =

(4.2)
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As a preliminary step, we can approximate Z% By from ([4.1)) in L? (uniformly in N) by
Z]“\),’IB(N =1+ Ziil BkZ](\’f) if K is large, but fixed, since for § € (0,1),

N 0

. K . A k . 5
dim |25, = 255 3= lm o Y 23 < lim o Y F =0, (43)
k=K+1 E=K+1

where we used the fact that ||Z](\lf) |3 < 1, as one checks by (4.1]) and (2.7)) (see (6.4) below).
We can therefore focus on identifying the limit Z]"\J/gN as N — o, and send K — oo later.

Our first step is to approximate Z](\];) in (4.1]) as follows.

(A1) For each k € N, define 2](\1;) by enlarging the range of summation for Z( in ,
allowing the time increments ny, no — ny, ..., ng — nk_1 to vary freely in {1, e N}7
and show that HZ](\’f) - 2](\];) |2 —0as N — o0.

Note that this allows us to replace ZK,? by

(A 3k 7 K (A1
Z¢) =1+ Z B2, with | Z35, ZMNH2 — . (4.4)
Let us now consider M arbitrary and for each Zz(v) partition the range {1,..., N} for each
variable ny, ng —ny, ..., ng — ng—q into M blocks Iy, I5,--- , I, defined by (with tg := 0)

I = (ti_l,ti] with t; = th’M := min {m e{l,....,.N}: R, > ﬁ'RN}. (4.5)

Note that for Ry = log N we have [; = (N%,NJ\L] We can then write

sk _ 1 N;M
Zy' = E Z @il,...,ik7 where
M= <ip,eeig <M
k/2 k
GN;M . M
itk T\ Ry qn] nj1 (2 = 2j=1) | | Mniz0) 5
niy— 7“L0€I2 n27n1€I¢ i=1

2,...,7’Lk*’ﬂk,1€[ik Jj=1

21,22,...,2,ELY
(4.6)
where (ng, z0) = (0,0).
Remark 4.1. The intervals (I;)1<;<p encode the right time scale, as explalned in (B) in

Sectlon because Ry, =Ry, |, ~ MRN- The sum over i1, ..., in Zz(v) in (4.6)) corresponds
to a discretization of the stochastic integrals that will arise in the limit N — 0.

To ensure a proper separation of scales later on, define
{1, MY} o= {i = (i1, ...,ix) € {1,..., M}" : |ij —ip| > 2 for all j # j'}. (4.7)
Our second approximation shows that the contributions to Zj(\lf) in (4.6) from summation
indices i € {1,..., M}*\{1,..., M};f is small for large M, uniformly in large N, i.e.,

T Nm 2
2 r ©;
i€ {1, MR\(1,..., M}F 2 2

(A2) lim limsup

M—-w N«

= 0.
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Therefore we can restrict the sum over ¢ in 21(\5) tote{l,..., M}éC Note that this implies

we can further replace Z](VAﬁlji in (4.4) by

ok
(A2 5 N;M . L Al A2
N/313r =1+ E E ©;’", with 1\/1[1—>moo lim sup HZj(V’ng )||2 =0. (4.8)
2 k N—
ze{l,...,M}Ij

We now try to identify the limit of @éV;M as N — o0. The heuristics sketched in Section
for Z](\}) and Z](\?) suggest the following;:

e Case k = 1: the family (@lN;M)KKM converges in distribution to i.i.d. standard
normal random variables ((;)1<i<n-

e Case k = 2: for i1 <192 — 2, the famlly @“;Z]\j converges in distribution to (;, (;,, while

for i1 = i + 2, the family 911 i, converges in distribution to a family of i.i.d. standard

normal random variables (;, ;, independent of (¢;)1<i<m-

For k > 3, the limit of @ also turns out to be a product of independent standard

Zk
normal random variables (., Wlth one (. for each running mazima in the sequence (i1, ..., ).

More precisely, let us say that

i:=(i1,...,ix) € {1..., M}¥ is a dominated sequence if iy > ia, ..., . (4.9)
Then each ¢ € {1,..., M }é“ can be divided into consecutive dominated sequences (1) :=
(11, 00y—1), i® = (Togy vy l5—1), - -, i = (T0y---»ik), Where ip, = i1 < -+ < g,
are the successive running maxima of (i, ..., ).

Our third approximation step shows that the random variable @?;M in (4.6) admits the
following asymptotic factorization:

(A3) For all M,k e N and for each 4 := (i1,...,ix) € {1...,M}§,

. N;M N;M
lim HGZ — 0.5 o”
N—0 7

N el H (4.10)

where (i1, ..., i™) is the decomposition of ¢ into dominated sequences.

Note that this allows us to further replace ZZ(VA;; in (4.8) by

B N:M . (A3)
_1+Z T > @zu) 1(2) "'@iw with HZMN ZNﬁNHQ—;Oo.
ie{1,.. ’M}ﬁ
(4.11)

We are now reduced to identifying the limit of @éV;M when ¢ are dominated sequences.
Denote

Dy = {1, e Ui {1, M}Q“ : 1 is a dominated sequence} . (4.12)
Here is the key step in the proof of Theorem

(K) As N — oo, the family of random variables (@éV;M)ie D, converges in distribution to
a family of i.i.d. standard normal random variables ((;)iep,, -
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In particular, this implies that

K m(¢)
R AASTE0 I 3 Y () (113)

ze{1, LMY =1

\ |

To complete the proof of Theorem for 5 € (0,1), we first take the limit K — co. By
the fact that 8 < 1, it is clear that ZB’ . converges as K — o0 to

L m(4)
E Z H G, (4.14)

1 M2 Ty =1

Z?ﬁ:1+

T8

uniformly in L? with respect to M. Therefore it only remains to take the limit M — oo and
show that

(A4) ZzWM 4, Z; _efo Vi- [32f W3 o 7552 thdt'
B M—w0

We will prove the key step (K) in Section 5] The approximation steps (A1)—(A4) will
be carried out in Section @ which then implies Theorem [2.8, The main tool to prove (K)
is a fourth moment theorem for polynomial chaos expansions, due to de Jong [dJ87. |d.J90],
Nualart and Peccati [NP05| and Nourdin, Peccati and Reinert [NPR10]. The following
versions is an extension to random variables with possibly unbounded third moment, based
on the Lindeberg principle proved in [CSZ13| (which extends [R79, MOO10]).

Theorem 4.2 (Fourth moment theorem). For each N € N, let (nn )t be independent
random variables with mean 0 and variance 1, indexed by a countable set T. Assume that
(7712v¢)NeN,teT are uniformly integrable. Fix k € N and dy,...,dp € N. For each 1 <1i < k,

let @%) (nn,.) be a multi-linear polynomial in (nn )T of degree d;, i.e.,
@%) (nN,.) = 2 qﬁg\i,) (I) Hm\/,t for some real-valued qﬁg\zf)()
ICT, |I|=d; tel
Assume further that:
(i) For all1 <i,j <k, E[é(i)( 7.)<I>(])(77N )] — V(i,j) for some matriz V as N — oo;
(ii) For each 1 < i < k, E[® ()(5.) ] = 3V (i,i)? as N — o, where we have replaced
(NN ¢ )teT by 4.1 d standard normal random variables (&)ier;
(iii) The mazimal influence of each variable nn ¢ on the polynomials of degree one among

(@%) (NN ) )1<i<k is asymptotically negligible, i.e., for each 1 <i <k,
I?ax\d) ({t})] — 0 as N — . (4.15)
eT

Then (@g\i,) (NN ,-))1<i<k converge in law to a centered Gaussian vector with covariance V.

Proof. If we replace (nn¢)tweT by standard Gaussians (& )er,, Theorem holds without
the need of assuming condition (iii), thanks to [NPRI10, Theorem 7.6], which is a multi-
dimensional extension of the fourth moment theorem [dJ90, NP05].

To justify the replacement with Gaussians, we show that the vectors (@%) (NN ,-) ) 1<i<k
and (@5\1,) (£.))1<i<k have the same limit in law as N — 0. By the Cramer-Wold device,
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it is enough to consider a linear combination ®n = >, clcb N » Which is a multilinear
polynomial with degree d := max;<;<x d; and with variance 0%, < Z 22[2'11‘ ¢§\Z;)(I )2

(by Cauchy-Schwarz). By the Lindeberg principle in [CSZ13, Theorem 2. 6] for any smooth
and bounded f : R — R there is C'= Cy y < o0 such that for every M > 0

‘E[f(@N(??N,~)] - E[f(@N(f-)]‘ < CUJQV{ My M max Inft(q)N)}

where  mz™M = max E[X21 ; Infy(®n) = N
? XelUpen,ter{nn,e, &t} [ {‘X|>M}] t Zzlé N

By the uniform integrability assumption on 77]2\,t, we can fix M > 0 large enough so that

m5 M is as small as we wish. Since sup yey 0% < o0 by assumption (i), the proof is completed

if we show that maxer A/Inf;(®n) — 0 as N — 0. For polynomials (I>§V) of degree d; = 1

this holds by assumption (iii), while for d; > 2 it is a consequence of the fourth-moment
assumption (ii), as shown in [NPR10, Proposition 1.6 and (1.9)]. O

5. PROOF OF KEY STEP FOR THEOREM [2.8]

In this section we prove the key step (K) in the proof of Theorem formulated in
Section [l which asserts that the building blocks of the chaos expansion have asymptotic
Gaussian behavior. This result actually holds in great generality and is of independent
interest, so it is worth stating explicitly the assumptions we need.

We work on Z¢ for fixed d € Ny (with Z° := {0}). For every n € N, we fix a function
gn(+) € L?(Z%) —not necessarily a probability kernel— and we define (cf. (2:7))

Z lanl? = Z (Z qn(x)2> . (5.1)

n=1 \geZzZd

In the following sections we will focus on the special cases when ¢,(z) = P(S, = z) or
gn = P(n € 1), with S or 7 satisfying the local limit theorems in Hypothesis However,
in this section we only need to assume that Ry is a slowly varying function which diverges
as N — 0. The basic case to keep in mind is Ry ~ C'log N.

Let us fix M € N and split

{1,2,...,N}=11UIQU-"UIM, (52)

where the intervals I; are defined by (4.5)). This definition ensures that each I; contributes
equally to Ry, smceﬂ

R

2 N

E =R, — Ry, 5.3
= qu“ t; ti—1 N o 7‘[ < )

Definition 5.1. Let Efi* .= Uren E be the set of all finite sequences z = (21,.. ., 2x)
taking values in a given set E. For z € E¥ € E™ we denote by |z| = k the length of z.
We also let N"Tf be the subset of increasing sequences m € N¥, i.e., nj <mno <...<ny, and

analogously we set N?n = Uken N’T“.

TNote that R, —R,._1 = o(Ry) as n — 0, by the slowly varying property, hence Ry, ~ ALIRN'
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We focus on the random variables @f\ll;M introduced in (4.6]), which can be conveniently

yeeerbk
reformulated as follows. Given i € {1,..., M}" we define a set of increasing sequences
n e N?n that are compatible with ¢, denoted by n < 1, as follows:

n<1 — |n| = ‘Z‘ and n; —ng€ Iil, ceey Mg — NYg—1 € Iili\ y (54)
where ng = 0. We can then define
%]
M\ 2
oyM .~ () > Qn,  with (5.5)
Ry .
neN‘;‘“: n<1i
|n|
Qn = Z H nj—n; 1 (Tj — Tj-1) Nnjx;) = Z n (@) Nn.z) ; (5.6)
ze(zd)Inl j=1 ze(24)Inl
where ng = x¢g = 0 and we have introduced the further abbreviations
In| In|
qu(w) = H an—nj_l (aj] - .Tj_l) ) n(’n,,w) = H n(nj,fl‘j) . (57)
j=1 J=1

Here (1)(n,2)) (n,z)enxz¢ are independent random variables with E[ng, ,)] = 0, Var[n, )] = 1.
(In our case, cf. (4.2)), we actually have Var[n, »)] = 1+ o(1) as N — o0, because

exp(A(28n) — 2A(Bn)) — 1
B

since A(8) = 562 + O(8%) as 8 — 0. To lighten notation, we assume that Var[n, )] = 1.)

We allow 7, o) = n((N) to depend on N € N, as in . We only need to assume that

the squares ((n(N) )%) Nen, (na)eNxzd are uniformly integrable. Note that this holds for [@.2),

Var[n(n,x)] = =1+ O(BN) ’

n,xT)
(n,z)
as one easily checks by showing boundedness of E[(ngiy;))‘l], see [CSZ13, eq. (6.27)].

We now state our main result, which generalizes the key step (K) in Section Recall that
the space Dy € {1,..., M} of dominated sequences is defined as (cf. (£.7) and (£.12))):

Dy = {iE {1,...,M}ﬁn: 1 >i2,i3,...,i|i|, ‘ij—ij/| =2V 75]',}. (5.8)

Proposition 5.2. Assume that Ry in (5.1)) is a slowly varying function which diverges as

N — . For every fixed M € N, the random variables (@ﬁV’M)ieDM indexed by dominated
sequences in Dy, converge jointly in law as N — o0 to i.i.d. standard Gaussians ((;)iep,, -

Proof. We observe that, by (5.6)),

E[Qn] =0,  E[QnQn] = lan|* Lin-ns, (5.9)
|| ||
2 2 2
where gnl? = [ [ lgny—n, 12 = ]| (2 Gy (2) ) . (5.10)
=1 =1 \aezd
We stress that E[Qpn Qn/] = 0 for n # n/, because n = (nq,. .., N|n|) then contains some

value, say n;, which does not appear in n' (or the other way around), so the random variables
N(n;,z;) aPpearing in the product Qn Q4 are unpaired and the expectation yields zero.



22 F.CARAVENNA, R.SUN, AND N.ZYGOURAS

It is now easy to see that the random variables @éV’M, for 2 € Dy, are uncorrelated and

have asymptotically (as N — oo for fixed M) unit variance. In fact

E[o; Mol =0  vizd,

(]

because if n < 4 and n’ < ¢/, then n # n’ by (5.4)), and hence E[Qy Q] = 0 by (5.9).
Next, by (5.5) and (5.9),

4] i 4l
2l = (a) Dot = (m) TT( & ok |10 510

n<i j=1 \mel(i;)

where in the last step we used ([5.3)).
We now apply the multi-dimensional version of the fourth moment theorem, Theorem [£.2]
to prove that (@éV’M)iepM converge to i.i.d. standard Gaussians. We have just verified

condition (i) in Theoremm7 and the influence condition (iii) on @éV’M with |¢| = 1 clearly
holds. It only remains to verify condition (ii), i.e., assuming that (T](nﬂ;))(n,x)eNxzd are i.i.d.
standard normal, we need to show that

lim E[(©)")*] =3 VieDy. (5.12)

N—o0 1’

Recalling , we can write
_ a7\ 2l
E[(6;")"] = () > E[QaQbQcQal, (5.13)

where by and ,
E[Qa Qb Qe Qd] = Z Qa(x> Qb(y) QC(Z) Qd(w) E[n(a@) N(b,y) "(e,z) n(d,w)] : (5'14)

m7y7z,w€(zd)‘i‘

Let (a,x) = ((a1,71), (az, 22), ..., (a;, 7)) € (N x ZH I denote the sequence of space-
time points determined by a and x, and let p € N be the number of distinct space-time
points in the union of the four sequences (a,x), (b,y), (¢, z), (d, w):

p=ll@x)u @y ulcz)udw)|= 3 Luje@ovbyoeso@w) (615)
(n,r)eNxZd

The first step toward ((5.12)) is to show that we can restrict the two sums in (5.13])-(5.14))
to configurations of (a,x), (b,y), (¢, 2), (d, w) satisfying

p=2i. (5.16)
Indeed, we can rule out the two cases p > 2|i| and p < 2|¢| as follows.

Case 1. p > 2|i|. Since there are 4[¢| space-time points (including multiplicity) in the
four sequences (a,x), (b,y), (¢, 2), (d,w), there must be at least one space-time point, say
(@, Tm,), which will not be matched in pair with one of the elements in (b, y) U (c, z) U (d, w).
Then the expectation in vanishes because 74, ,,) I not paired to any other n random
variable in 1 ), M(e,z) OF N(d,w) (recall ) Therefore the contribution to the sum in
(5.13)) is zero in this case. O



UNIVERSALITY IN MARGINALLY RELEVANT DISORDERED SYSTEMS 23

Case 2. p < 2|i|. Recalling (5.15)), for each 1 < p < 2|i|, set

M 2[4
S](\?) = (RJV> Z Qa(m) Qb(y) QC(Z) Qd(w) E[n(a,m) N(b,y) N(c,z) n(d,w)] . (5'17)
(a7x)7(b7y)7(c’z)
(d,w) such that p=p

It suffices to show that SJ(\I;) — 0 as N — oo, for each p < 2[|.
To lighten notation, we assume that g,(xz) = 0 (just replace g,(z) by |gn(z)| in the
following arguments). Furthermore, we first consider the simplifying case when

an(z) < 1. (5.18)

We will use the fact that E[n(a ) M(b,y) Ne,2) T(d, w)] = (0 unless the individual n variables
match in pairs or quadruples, since We have assumed the n’s to be i.i.d. standard normals in
our attempt to verify Theorem [4.2) - ii). In any event, note that

1B [1(a.e) Nb.y) Ne.x) Mdw)]| < 3. (5.19)

pr =D, then we can relabel (a" .’L')U(b, y)U(C, Z)U(d, ’lU) = {(f17 h1)7 (f?) h?)a ceey (fpu hp)}v
with f1 < fo < -+ < fp, and we set fy := 0 (since (fj, h;) are distinct space-time points,

when f; = fit1 we must have h; # h;y1). The sums in (5.13) and (5.14) can then be

rewritten as sums over (fj, hj)i<j<p, With another sum over all admissible assignments of
(a,z), (b,y), (¢, 2), (d, w) to points in (fj? hj)1§j<p‘

We start by summing over all admissible values of (fp,hp). Denoting by m € {2,4}
the number of space-time points in (a,x), (b,y), (¢, 2), (d, w) assigned to (fp,h,) (for

m € {1, 3}, the expectation in ([5.14)) vanishes). The factors in (5.14) involving (f,, hp) are

[ Tas-s., (hp = 1)
=1

for some r1,...,7r, € {0,1,...,p — 1}. Using the assumption (5.18) that ¢, < 1, we get

STl at-r, (e =) < D appo, (hp = ) g gy, (Bp — By
(fp,hp) i=1 (fpshp)
1/2 1/2

5.20
< Z qufle (hp - hrl)2 Z qu*frg (hp - h7"2)2 ( )
(fpshp) (fpshp)

Y, > @) =R

1<n<N gzezd

The last inequality holds because the range of f, — f, is contained in {1,..., N}, by (5.4)).
We can iterate this estimate, summing successively over (fp—1,hp—1), (fp—2, hp—2), ...,
(f1,h1). This, together with ((5.19)), shows that for fixed M € N, as N — o0,

) <5 (M) i
S® <3¢ (RN> R}, - O(RE ), (5.21)
where C depends only on |i| and p and bounds the number of ways of assigning (a, z), (b, y),
(c,2), (d,w) to (fr, he)1<e<p- Since p < 2|i|, relation (5.21) shows that S](\Z;) converges to

zero as N tends to infinity.
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We now show how to remove the assumption ¢, < 1 in (5.18]). Setting

lan oo = max gn (), (5.22)

the r.h.s. of (5.20) is replaced by Ry (maxi<n<n [¢n]% ). As we sum over (fp, hyp), ...,
(f1,p1), we collect exactly 4|¢| —2p factors of maxi<n<n [|gn /- Consequently, (5.21)) becomes

s =O<R1]”V_2|i|( max uqnuoo)‘*'i"?p). (5.23)

1<n<N
However, by (5.1)) and ([5.22)),
max |gn[% < max (R, — Ry, 1) = o(Ry), (5.24)

1<n<N 1<n<N

since Ry is slowly varying and divergent. Therefore S](\I;) — 0 also in the general case. [

Continuing with the proof of (5.12), we may now restrict the sums in (5.13)) and (5.14) to
configurations satisfying p = 2|¢| (recall (5.15))). This means that the 4|| space-time points
among (a,x), (b,y), (¢, z), (d,w) match exactly in pairs (i.e. coincide two by two).

As before, let (fi, hi)i<i<p, With f1 < fo < ... < f, and p = 2|¢|, be the distinct space-
time points occupied by (a,x) v (b,y) U (¢, z) U (d, w). In principle one could have f; = f;11
(necessarily with h; # h;11), but such configurations give a negligible contribution in (5.13]),
because this leaves at most p—1 free coordinates f; to sum over, each of which gives by (5.20))
a contribution of at most Ry (assuming ¢, < 1; otherwise use ), while the prefactor
in decays as R]_Vp . As a consequence, we may assume that f; < fo < ... < fp, which
means that the time points among a, b, c,d have to match exactly in pairs.

We now make a further restriction. Let [a] := [a1,a);] S R be the smallest interval
containing all the points in the (increasing) sequence a = (a1, az, ..., a). Then [a] U [b] U
[c] U [d] is a union of disjoint closed intervals (connected components) whose number can
range from one to four. We now show that we can restrict the sum in to configurations
of a, b, c,d with exactly two connected components. We distinguish between two cases.

Case 3. Three or four connected components. Since |a| = |b| = |c| = |d| = |i|, we must have
laubucud| =3,
therefore also p = 3|¢|, cf. (5.15)), which has been excluded in Case 1. O

Case 4. One connected component. Similar to (5.17)), it suffices to focus on

A a7\ 2l
v = () 5 G(@) () 4e(2) qalw) (529
N (a,2),(b:y).(c.2),(dw)

matching in pairs and
forming one connected component

and show that Sy — 0 as N — o0 (note that E[n(a@) N(b,y) Ne,z) "7(d,w)] = 1 because of the
“matching in pairs” condition). We will show that the “one connected component” condition
effectively leads to the loss of a degree of freedom in the summation.

Without loss of generality, assume that a; = min{ay, b1, c1,d;} is the smallest among
all time indices in a,b, c,d. Then it has to match either by, ¢; or di. Say a1 = by = f1.
It follows that ¢; = f, for some u € {2,...,p}. The constraints of matching in pairs and
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[a] U [b] U [c] U [d] having one connected component imply that either c1 < aj or ¢ < by
for some k > 2; w.l.o.g., assume that ¢; < ag. Since a < ¢, by (4.5) and ( . this implies

fi=a1 < fu=c < ap < a1 +t, +t; + R

< f1+(];3—1)ti1_2 < f1+|’l:|ti1_2,

where the last inequality holds because iy < iy — 2 for all £ € {2,... ]|}, since 7 is a
dominated sequence, cf. (5.8). Also note f1 = a; > t;;_1, again by (4.5) and (5.4]). Therefore
f1 =a1 =24, and fu =1 € (fl,fl + ml] , where my := "L‘ ti,—2. (5.26)

We can now sum ([5.25|) over the variables (fi,h1),..., (fp, hp) subject to (5.26) for some
2 < u < p. The sum over (fp,h,) has already been estimated in (5.20) with m = 2,

and is bounded by Ry. The same bound Ry applies to the sum over (f;, hy) for each
C=p—1,p—2,...,u+ 1. The sum over (fy, hy), in view of ([5.26)), is bounded by

2 2 qfu_frl (hu - hrl) qu—er (h’u - hT‘Q) )
fu€(f1,f1+m1] hyeZ?

for some r1,79 € {0,...,u — 1}. Since f,, = ¢; is the first index of the sequence ¢, we have
either r; = 0 or ro = 0; w.l.o.g., assume r; = 0. We then have (recall (5.7))

Y h (A gpa gy (= hry)
fu€(f1,f1+m1]

hy€Z4
1/2 1/2
< Z af, (hu)2 Z Afu—fry (P — hrz)2 597
ue(fifa 4] FuE(fi o] (5.27)
AL h.€Z?
1/2 12
< Z q?z(l‘) Z q,%(:z) = Rf1+ﬁ11 _Rf1m-
fi<n<fi+m 1<n<N
zeZ? zeZ?
Let us recall from (4.5) that t; = tNM satisfies Ry, ~ RN as N — oo (for ﬁxed M e N).

It follows that if j < 4, then t; = o(t;) as N — ooﬂ Slnce m1 = |¢|ti,—2 by (5.26) while
fi=a1 >t 1, it follows that my = o(f1), and hence Ry +m, ~ Ry, This nnphes that the

r.h.s. ofequalsq/ )R VRN =0(1)Ry as N — .

We can now sum over the remaining varlables (fe,he) for 6 =u—1,u—2,...,1 as we

did before, with each sum bounded by Ry as shown in (5.20]), which gives

C (é{v)m | R% o(1), (5.28)

where C is again a combinatorial factor independent of N. Since p = 2|i|, for any fixed
M e N, the r.h.s. of (5.28)) vanishes as N — co. O

To complete the proof of (5.12)), it only remains to show that ([5.12]) holds if the joint
sums in (5.13)) and (5.14]) are restricted such that |(a,x) U (b,y) U (¢, z) U (d,w)| = 2|i]

and [a] U [b] U [c] U [d] contains two connected components.

Sy

N

1t tj € [ets, t;] for € > 0, the slowly varying property of Ry would yield Ry; ~ Ry, contradicting (4.5).
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Case 5. Two connected components. In this case, a, b, ¢, d must coincide two by two, i.e.,
a=b and c=d, or a=c and b=4d, or a=d and b=c. (5.29)

This extends further to (a,x), (b,vy), (¢, 2z), (d,w). By symmetry, each of the three cases
gives the same contribution, which leads to the factor 3 in the r.h.s. of (5.12]). We can thus

focus on the case (a,x) = (b y) (c,z) = (d,w).
Restricting the sums in and - ) to (a,xz) = (b,y) # (¢, z) = (d,w), we obtain

2|4
<é{v> S ge(@)?a=)?. (5.30)

a,c<1t, a:,ze(Zd)|i|

[a]n[e]=g

Note that if we ignore the restriction [a] N [¢] = &, then the sum factorizes and we obtain

23|
<1i{v> 2 qa(alc)2 Z qc(z)2 ml (5.31)

a<i, xeZd c<i, zeZ4

by the same variance calculation as in (5.11]). This proves (5.12]), because the terms in ([5.30))
with [a] N [c] # & are negligible by the same bounds as in Case 4 (cf. (5.27))), where
O]

[a] U [b] U [€] U [d] contains one connected component.

6. PROOF OF THEOREM [2.8]

In this section we will first prove the approximation steps (A1)—(A4) outlined in Section[d]
and then conclude the proof of Theorem

Recall that the first step (A1) enlarges the range of summation for Z](\’;) in (4.1) to
1<ny,ng—nyg,...,np—ng_1 < N.

Lemma 6.1 (Approximation (A1l)). For each ke N, let Z(k) be as in (4.1), and let

k
Z](V) = T/Q Z anj_n] 1 Z] 1) Hn(nz,zl) (61)
RN 1<nino—ni,...np—nip_1<N j=1 i=1
21,22,...,Zk€Zd
Then
lim E[(Z) - ZzW)?] = o. (6.2)

N—00
Proof. Recall from (5.6)) that for n = (nq,...,nx) € N’IT€ ={neN:.n; <ng <. <m},

|

Qn = Z H An;—n;_ 1 ( R 1) N(nj,x;) (with ng = 29 = 0). (6.3)
ze(Z)Inl j=1

We can then write the dlfference

N N k/2 1<n1—no,...,nk—nk_1<N - ]10<n1<-~~<nk<N)Qn-
neNk

Since E[QnQn'] = Lin_n,|gn|? for n,n’ e N’ITC by (5.9), we observe that

E[(ZY-2)?] = B[(Z{)Y]-E[(20))?]-2B[(2) - 23" 23] = B[(Z3)*]-E[(2))?].
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On the other hand, recalling ,

k
B[(24)7) < E[(20)] - - D [Ty (25 = 251

N 1<ni,no—n1,..np—np_1 <N j=1
21,22,..,2K €LY

To prove ([6.2)), it then suffices to show that liminfy_,q E[(Z](\]f))z] > 1, which holds since

k 1
E(Z0)] = o 2 locmeo ey lan]®
N neNy
1 R?V/k
2

= Dk Z ]llsnl—no ..... nk—nn,lg%HQnH = RT:

N 'neNlTC N
which tends to 1 as N — o0 by the assumption that Ry is slowly varying in N. O

The approximation step (A2) in Section {4 bounds the contributions of near-diagonal
terms when the summations in Z](\];) in (6.1]) are divided into blocks.

Lemma 6.2 (Approximation (A2)). Recall from (4.6)) the definition of the block variables

e, ::(RN) > Qn, = C(i1,...,i) €{1,...,M}* (6.5

nlelil, ...,nk—nk_lelik

with Qp as in (6.3), and I; = (ti,l,ti] defined as in (4.5)) such that R, ~ ﬁ Ry. Then

L 1 2\
A}lm hmsupE[< Z % G)éV’M> ] =0, (6.6)

—00
N—oo (L MYR\(1,... 0} M2

where {1, ,Z\J}ég was defined in (4.7), which consists of 4 with |i; —iy| =2 for all j # j'.

Proof. Denote {1,..., M}¥ := {1,..., M}*\{1, ,M}é§ Note that

A8, o) S, T

ie{l,...,.M}% 2 ie{l,...,M}E m€liy, ..., ng—np_1€l;;

Recall from (5.3) that 3,7, [aml® ~ Rav/M as N = oo, while g = TT}) [an,-n, |
we can therefore sum ng,ng_1, ..., 1 successively to obtain

2
limsupE[< Z 1 @ﬁV;M> ]< Z %,

E
N—w® ie{l,.., M}k M ie{l,.., M}k

which tends to 0 as M — oo, since the constraint 4 € {1,..., M}*\{1, ,M}é€ reduces the
number of free indices in ¢ = (i1,. .., ). O
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The approximation step (A3) concerns the asymptotic factorization of @éV;M into a
product of G)i\([])M, indexed by dominated sequences i(l), e ,i(m) forming 7 (cf. (4.9))). Recall

that each @ = (i1,...,1;) € {1,... ,M}{f can be divided into m = m(¢) consecutive dominated

(1 . . (2 . . . . .
sequences 1) ;= (015 yipy—1)s i® = (Toyy - slog—1)s -, i = (i¢,,---,1k), where
Qg =11 <ig, <--- <ig, are the successive running maxima of (i, ..., ).

Lemma 6.3 (Approximation (A3)). For each i = (i1,...,i;) € {1...,M}l§, we have

: N:M  AN;M o N;M NiM 2]
zx}inooE[(@i o @iu) @i@) "'@Z«m(i))) ] =0, (6.7)
where (39, ..., i™®)) is the decomposition of i into dominated sequences.

Proof. We first prove (6.7)) for m(¢) = 2, with ¢; = 1 and ¢5 denoting the indices of the two
running maxima of 2. Recall that

k

Y M k/2 k
@il,‘..,ik = RiN Z H nj—n;_, (xj - :Ujfl) E N(ng ;) (6~8)

nleIil,...,nk—nk,leIik 7=1
xl,...,kaZd
Note that if we replace gn,,—n,, (e, —Ze,-1) By Gn,, (2¢,) and replace the range of sum-

mation ng, —ng,—1 € I% by ng, € I%, then the above expression for @éV;M becomes that
for @i\(flf\/[@i\éfv‘[ We will show that these replacements are justified because using that ¢ is
a running maximum of ¢, one has ny, » ny,_; and the local limit theorem of Hypothesis
can then be applied to replace gn,, 777/(271(3762 — y,—1) by Any, (xp,)-

First note that the summands in for @éV;M are all orthogonal, and the dominant L?
contribution comes from 1, ...,z with |x; — 2;_1] of the order

d
$(nj —nj-1) := ((nj = nj—1)L(n; —nj1)*)"

for each 1 < j < k. Indeed, by the local limit theorem of Hypothesis and a Riemann
sum approximation,

EKZMSK‘;S(") q”(x)”(",x)f] _ Dal<kgpm ()" . Soj<x 97 (2)da 1
EKqun(“J)’?(n,x))Q] T S (@) e (@(@)dr Koo

Therefore by choosing K large, we can approximate @éV;M arbitrarily closely in L? by

SN M M k2 : :
6™ = (Ro > | |Ian*nj71(:L’j —zj-1) | 1| Mnie:)-
j= =

n1eli1 yeeny nkfnk,lelik
[z1|<SK@(n1),. |z —zp—1|<SKd(ng—ng_1)

Similarly we can approximate @i\(flf\/[@i\éfw arbitrarily closely in L? by éﬁlf‘”éi\@f‘”, which
differs from @éV;M in:
e the factor gy, (x¢,) instead of Gny, ,nerl(x@ — Tpy1);

e the range of summation ny, € I;,, and |ze,| < K¢(ng,), instead of ng, —ng,—1 € L,
and |xp, — zp,—1| < Ko(ne, — ne,—1).
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We now show that these differences are negligible in L? contributions. By assumption,
n; —Mnj—1€ Ii]. = (tij—latij] forall 1 < j</fly—1,

where t, is chosen with Ry, ~ 17 Rn. Since Ry is slowly varying and divergent, we have

11 K tg €« t3 € -+ as N — 0. In particular, we have the uniform bound
lo—1 lo—1
ng—1 = Y, (nj —mnj_1) Z ti, = O(ti,) = olti,, 1), (6.9)
j=1
where the last bound holds because the assumption 'L' e{l,....M }k and /o being a running
maximum ensures that ¢; < i < 142 —1foralll< 62 — 1 Therefore when we switch
from the range of summation in @i M from Ng, € Npy—1 + (t%_l, t%] to ny, € (tizz—btizz]v

the difference is negligible in L? as N — oo.
Similarly, we have the uniform bound

la—1 lo—1 lo—1
e | < D)y —a | <K ) d(ng—nj1) S K Y é(ty) < blty, 1), (6.10)
j=1 j=1 J=1
and when we switch the range of summation in é from |xp, — zp,—1] < Kd(ngy, — ngy—1)

to |xe,| < K¢(ng,), the difference is again neghglble in L? as N — oo (recall that by
construction I% S Ngy — Npy—1 = t%_l).

Having justified the switch of the range of summation for ny, and z,, in ééV;M to ny, € I%
and |zg,| < K¢(nyg,), we note finally that switching ¢n,, —n,, (Tt — Te,—1) t0 g, (2,) also

leads to a negligible difference in L? as N — oo, because uniformly in zy, 1 and ng, 1 with
bounds as in and (6.10)), and uniformly in ng, € I;, and |zg,| < Ké(ng,), we have

Anpy—mng, 1\ Tty — Tiy—
Ty~ 1( 2 2 1) 1| — o, (6.11)
Qne, (xfz) N—w©

which follows readily from the local limit theorem for ¢(-) in Hypothesis

This completes the proof of when ¢ has two running maxima. In general when 2
has m running maxima, occurring at indices ¢; = 1, fa, ..., ¥y, the argument is the same:
we just replace Gn, _n[rl(azgj —@g,-1) by Gny, (w¢;) and replace the range of summation
ng; —ng;—1 € Iig]. by ny; € I%_, one j at a time. O

As explained in Section {4} for a fixed M € N, which is the number of blocks (I;)1<i<m

that partition [1, N] (cf. (5.2)), the polymer partition function Zy 5 (with By = B/vVRN
for some 3 < 1) is approximated in distribution in the N — oo limit by the random variable
Z%M) in (4.14). The last step (A4) is to show that as M — oo, Z;;M) converges to the

log-normal random variable Z; in Theorem @

Lemma 6.4 (Step (A4)). Let (¢;)iep,, be i.i.d. standard normal random variables indexed
by finite dominated sequences in Dys as defined in (4.12)). Let Be (0,1), and let

M) _ 14 Z Z H G, (6.12)

k=1 ie{1,., M} M3 =1
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where (i(l), ... ,i(m(i))) is the decomposition of © into dominated sequences. Then
1 3 1 32
1
zM) _d_,Zﬁzexp J BdW(t)—J 6A2 dt |, (6.13)
B M—w0 0 1 3215 2 o 1— B t

where W is a standard one dimensional Wiener process.
Proof. Grouping @ = (i1, ..., i) according to the indices of its running maxima ¢; = 1 <
ly < ---ly, < k, as well as the values of the running maxima 1 < iy, < --- <1y, < M,

which we denote by @ ~ (Z, i7), we can write (with £y,41 1=k + 1)

. i
) 2 >0 T iy (6.14)

M 1=l1 <<l <k ie{l,..., M}éC J=1
1Sigl <ie2 <~~~<’ijSM

M

(D) 0 k
Z] =1+ > >
k=1m=1

i~(Lip)
Let us replace the constraints z € {1,. .., M}Q“ and 7 ~ (lz i7) by sum over (g, 41, .. ,%¢,,,-1) €
{L,... i, — 1}45+176 =1 for each 1 < j < m, i.e., approximate Z%M) by

(M) 5w B .
ZB = 1+;€Zl Z:ll Z Z HC(igj,...,igj+l_1)7 (6.15)

M ) Al:Z1‘<~~<¢m<k o (i[r+1,...7igr+1_1) j=1
g, <tp, <-<tp,, < ) —lp—
<igy <ig, e SM o i — 1)1t

for r=1,....m

[ME

where we have extended the i.i.d. family ((;)iep,, to include new independent standard
normals (g, . 4,) indexed by dominated sequences (a1, -+, a,) € {1,..., M}"\{1,..., M}}.
(M)

(M
Note that Z (B ) contains more summands than Z 5 and the summands are orthogonal.

~(M A “
A simple calculation shows that both HZ,(B )H% and HZ%M) |3 tend to 1+ 57, B2 = (1-p%) !

as M — oo. Therefore

SM) L (M)2
125" - 207 — o
For a € N and r € N, let us now denote
ér(a) = Z C(a,ag,...,ar)- (616)

(ag,...,ar)e{l,....,a—1}7—1
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as

¢j (with £y 41 := k + 1) and a; := iy, we can then rewrite Z

> [ T¢01-¢,(a))

Denoting r; := £; 1
o k Ak
A _ "
AP
k=1m=1 M>= 1=li<-<bm<k j=1
I<ai<as<--<am<M
o k Bk m
=1+ 2 X 2 [T &)
1m=1 M r1,...TmEN  1<ai<as<--<am<M j=1
ri+-+rm=k
m Brj
H 75 grj(aj)
M=

y 3

D)
m=1 ri,..,rmeN1<a <azs<...<am<M
m A1
pi
H T grj(Mt])

2

o0
1+
m=1 ry,..rmeN0<t;<ta<..<tm<l j=1 M=
t1,tm€ N
o0 m
= 1)) H{Z :
m=10<t1<te2<..<tm<l j=1 ‘reN M>
t1,tmEAr N

where we could interchange summations because the series is L? convergent when 3 € (0, 1)
We note that (8/v/M)7¢,(Mt) are independent normal random variables for different

i (
valuesof re Nand t e M 1N and hence the collection of random variables
0,1 —N
( Y ] N M Y

Siei= Y o ﬁr

(6.17)

1+ €M(t)

TGN
are also independent normal with mean zero and variance
5 T 527’ o 32
Var(= Z Var(&(Mt) = > (Mt — 1) = =
rEN reN M 1 - /82t
where
1 1
lem ()] = = < - :
M(1-p5%)+1 1-p5%)+1
which tends to 0 uniformly in ¢ € [0,1] as M tends to oo, provided S < 1. Therefore we can
represent =/ ; in terms of a standard Wiener process W:
3(1 ) [t 1
B +em(®) f aw,,  te[0,1]n N (6.18)
t—L

EMp = —F——"
A/1— 32t M
We can then write
0 m £
5 (M 1 + et J
Z, > H f AW (6.19)
A/1 fBQt ti—ar

)
143
m=10<t1<t2<.. <tm<1 j=1

t1,.. ’tmeAlN
For ﬁ < 1, it is easily seen that
B 1
S ] T oo [
1 i=14/1 = B2t 0 4/1—p32t

O<t1< <tm<

dW(t)} :,

=~

Z
M —0o0
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where the last equality holds by the properties of the Wick exponential [J97, §3.2]. Since
the last expression is precisely Z A the proof is completed. O

Proof of Theorem [Z.8. When 3 € (0,1), the convergence of Z3 gy to Z 5 follows readily
from the approximation steps (A1)—(A4) and the key step (K), as explained in Section
The convergence of the second moment E[(Z%; BN)2] — E[(ZB)Q] = (0,1) is a

simple calculation, using (4.4]) and E[(Z (k))Q] =1 (recall (6.4)).

When 3 > 1, the convergence in law Zy gy — 0 follows a standard argument, which we
include for completeness. Note that it suffices to show that for some ¥ € (0, 1), the fractional
moment E[(Z3 ,BN)ﬂ] converges to zero as N — o0.

First we show that E[(Z% /3)19] is non-increasing in 3. Indeed,

d N

EIZ,5)") - mE[ E [ (e — X(3)) er—ﬂMn-W] <zm>ﬁ-1]

n=1
B [IE[
where we have interpreted eXila (B, TF)‘(/B)) as a probability density for a new law P which

exponentially tllts Wiz, for each 1 < ¢ < N. Note that (wy 4, — A'(8)) is increasing in wy, 4,,
while (Z% ﬁ) s decreasing in wy, ,,, because 9 € (0, 1). Therefore by the FKG inequality,

Wz, — ) ezﬁil(ﬁwi,mi—)\(g)) (Z]u\,w)ﬁ_l]]

- 2 (@nen = X(8)) (25, )]]

SBE (75.5)"] Z |E wmn—xw)]ﬁ[(zwﬂ‘l]] =0,

since
~ d
_\ — _ Bwn,zy, —A(B) ﬁwn an—AB) | —_
Elwnz, = N(8)] = E| (wnan — X (8))e | =58l | -0
; w w 2 aroQ;
We have just shown that E[(ZNB/F) ] < E[(ZNﬁ/F) ], for any 8 <1 < /3. Since
z% ByEy converges in distribution to Z; when B <1, and (2% N.IVE F) is uniformly
integrable, because ¥ € (0,1) and E[Z NB/F] 1, by the first part of Theorem we
then have
lljglj;pE[(ZNﬁ/r) < h]rvnjipE[(ZNﬁ/r) |
1 A 1 A2
9
= E[exp (19 LdW(t) - j BA dt)]
0 /132t 2Jo 1-p2
v —1) [+ B2 o\ P@=1)
- A 1- T
eXp( 5 L1—62d> (1-5%)"
Letting 3/ 1 then shows that E[(Z% ) ] - 0 as N — oo whenever 3’ > 1. O

Nj/VR



UNIVERSALITY IN MARGINALLY RELEVANT DISORDERED SYSTEMS 33

7. PROOF OF THEOREM [2.12]

To prove Theorem [2.12] we first need to extend Proposition [5.2] to random variables
@év;M which form the building blocks of partition functions Zy 5(X) with starting points
X = (z,t) other than the origin. More precisely, as in (4.6, define

e

s A\ K2 k
01~ () 3 [Tn sz = 20) [ [

nl—noeIil,nz—nleIiQ,...,nk—nk,lelik j=1 i=1
zl,zg,...,zkEZd
(7.1)
except here (zp,ng) is defined to be X instead of the origin.
For X = (z,t) € Z¢ x Ny with d € {0,1, 2}, recall the definition of || X|| from (2.15). We
then have the following extension of Proposition [5.2}

Proposition 7.1. Assume that Hypothesis holds and Ry in (2.7)—(2.8) diverges as
N — . For1 <k <r, let Xg\’;) = (xg\’;),tg\];)) be points in Z¢ x Ny, such that

Vi<kl<r: R . o /RN =(rg + 0(1) for some (i€ [0, 1] . (7.2)
XN =Xl ’ '

For M € N, let us denote by Dy be the set of dominated sequences i € Dy, cf. (5.8), for
which i1 /M is well separated from all the (i in the following sense:

Dar:={i€ Dy : |ir/M — Gyl > 1/M Y1 < k, 1 <7} (7.3)

Then the vector (@iV;M(XS\I;)))KkQ’iEBM converges in law as N — o to a centered Gaussian
()

vector (G) ) <per, ic

B with covariance matrix
M

k)
Cov[¢) D)= Lioin s =) - (7.4)

Proof. The random variable @éV;M((l’, t)) has the same law as ©Y " ((0,0)). Therefore, the

%

proof of Proposition readily implies that for each 7 € Dyrand 1 <k < r,

Var(@Y M (x¥)) — 1 and E[(ONM(XI)Y] — 3.

i N—oo N—

By the (multidimensional) Fourth Moment Theorem it then only remains to show that

Cov(O M (X, 00 M (X)) — i lgymsgy V1<kI<r i,ieDy. (7.5)

H ? N—o
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Note that when the dominated sequences 4,4 are different, there are unmatched n’s and
consequently Cov(©} M(Xg\]}c)), 6§;M(X§\l))) = 0; and when 4 = 4/, we have

k
. k I M
B[O} (X)) o (xP)] = (RN) T Tl (1~ 2, ol — o)
EI 21€Z

ny— t( )GI

x Z Hq"j_”ﬂ (25 = 2j-1)?

n2—’n1€]¢2, vy nk—nk_lefik ] 2

Z2,...,Zk€Zd
M k
? oD, L (21— EV))q o —ay), (7.6)
t( ) el; zleZd
ny— t( )GI

where in the last step we used (12.7)) (recall that ¢, (x) = P(S,, = x) and we write f(N) ~ g(N)
as a shorthand for limy_,o f(N)/g(N) =
We first consider the case i1/M > (j;, which implies (i1 — 1)/M > (i since 4 € Dy In

. . k . .
this case, since I;; 3 ny — tgv) =n; —ngo = t;; 1, recalling assumption ([7.2)) we have

ny — 8 5 1) ¢ ”|

By Hypothesis the dominant contribution to ) then comes from z; with

(l)’

|21 — xg\lﬁ)| > \x%;) as N — 0.

By the same argument as in the proof of Lemma [6.3] we can apply the local limit theorem
in Hypothesis and replace (xg\l,),tg\l,)) in ((7.6) by (:cg\lf), t(k)) which implies that
lim B[N M (X)) oMM x({)] = lim E[@N M2 = 1.

N—w0

We next consider the case i1/M < (j;, which implies (i1 + 1)/M < (; since ¢ € Dys. By
the definitions (7.2) and (2.15)) of (;; and [|X|| , this implies

either R ) o /Ry =Cu+o(l); or R, aw__o,/Rn=Ce+o(l), (7.7)
[t —tn | ’ d(lzy —zx 1) ’

where we recall by and that ¢ (|z|) := min{n € Ny : ¢(n) = |z|} with
#(n) := (nL(n)?)/¢. We now show that forces either n; or z; to vary in intervals with
empty intersection.

In the first case in (7.7)), we have ]tg\]f) - tg\l,)\ » tiy+1 » |I;;| as N — oo, where we recall
that I;; = (t;j;—1,t;,] with Ry, ~ Z'MlRN. Therefore the constraints n; — ty\;) € I;, and
ny — tg\l,) el; in are incompatible and the sum equals zero.

In the second case in (7.7)), we have <Z>‘_(|x (k) (l)]) » ti,+1, and hence |x§]\;) - a:%)\ >
¢(ti; +1). Therefore for N large for any fixed C' > 0

{2’1 S Zd: |2:1 —HTN | < C(Zs(til_,_l)} N {Zl S Zd : |2:1 —(L'%)‘ < C¢(ti1+1)} = .

By Hypothesis uniformly in n € I;; = (t;;—1,t;, ], the dominant contribution to , ¢»(2)
and Y. q2(z) come from the region |z| < C¢(t;,+1). Partitioning the sum in (7.6)) according
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to whether |z — xgv | < Cop(tiy+1), or |z1 — ajgv | < Cp(ti,+1), or neither, it then follows that
the quantity in . tends to 0 as N — oo, which concludes the proof of (|7.5)). U

Proof of Theorem [2.12] The approximation steps (A1)—(A3) for the partition function
2y gy outlined in Section (and proved in Section @ also applies if the starting point of the
polymer is different from the origin. For the step (A1), in order to show that the constraint
ng <ni <...<ng <N can be replaced by 1 < n1 —ng,...,nE —nNgp—1 < N, we need to

use the assumptlon Rthg\’,“)/RN =1-o0(1) in (2.16).

It follows that we can approximate the partition functions (Z% B (X%)))lgjgr jointly in
L? (with an error uniformly small in N, when M is large, cf. (4.11)) by

yo
AR =1+ X TS oMM XM (x) oM (XD, 1< <,
k=1 ze{l, ’M}ti

w\a

(7.8)
where we recall that G)éV;M(XS\][) ) is defined in (7.1

By Proposition as N — o0, (Z](VA[;?, (X(])))1<j<r converge jointly in distribution to

M A
Z000) B ) Lo
g +2 E Z Cu)C C<m), <j
k=

2 i€{l,..., M}

A

T.

It only remains to prove the analogue of Lemma and show that as M — oo, (Z EM’j))1< j<r

converge jointly to the family of log-normal random variables (: €Y7 : )1<j<, in [2-17)-(2:18).
Following the same steps as in the proof of Lemma up to the resummation procedure

in (6.17), we can approximate Z(AM’j) in L? (as M — o) by

m

2 : *1+Z Z HES\‘QQ?

m=10<t;<te<..<t;,<l i=1

t1,tm€ 2 N
where
=0) .~ 3P0 1 U) () - ()
Eiie =2 (Mt) forte[0,1]n—N, and &9(a):= )] ¢ .
) 5 M (a,a2,...,ar)
reN ((LQ7,..,(1/7—)5{17..,,(1—1}7‘_1

Similar to , we can encode the family of jointly Gaussian random variables _E\J/l) , as

_) _ BL+0(1)) Jt ()

=Y = dWwy

Mt N s
Ny

where (W(j))lsj@ is a family of correlated Brownian motions (the explicit form of the
correlations will be derived in a moment). Therefore for all 1 < j <,

5(M,j) J ﬁ (1+o0 ti () L? A7
Zg _1+Z Z HWJ dwy’ oo eV,

Ly, (7.9)

1
€ [0, ]mM

m=10<ti1<ta<..<tm,m<1l i=1
t1,tm€F N
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where Y; := S(l) \/IdeWt@ ) Tt now only remains to find the covariance between (Y;)i<j<r.

Note that for each 1 < k,I < r and s,t € [0,1] n ﬁN, by the definition of §£j)
Proposition [7.1} we have

[ ‘—‘5\12),16 Ms Z MT k) Mt)g()(MS)]

reN
627“
]l{t s} Z Z [C(Mt az,.. ,ar)C Mt,az,. )]
TEN (ag,...,aT)E{l,...,Mt—l}T 1
62’“ Limsog B2(1+0(1))
= L=y 2 Z Lgsy = M = 1— 2t
TEN (ag ..... ar)e{l,..,.Mt—1}r—1

Therefore for all s,t € [0,1] N ﬁN, we have

t
E[ J dw P J awh] - S,
t—ﬁ s—ﬁ

M
and hence E[W®)(T)W STAS dt for all 0 < S < T < 1. This implies that
1 d 1 54 U] 1 52 1— 32
Cov (Y, Vi) :IE[ B Vf@ . f dw; ;] :J BAQ dt:logLi’“’l,
0 (1—62?‘5)2 0 (1—,82t)2 CkJ]-_ﬂt 1_5
which concludes the proof. O

8. PROOF OF THEOREM [2.13]

In this section, we prove Theorem [2 First we prove an analogue of Proposition [5.2} the
key step (K) in the proof of Theorem - The difference here is that we need to average
over the starting point of the partition function. As in Theorem [2.13 u 3l let ¢ : R x [0,1] - R
be a continuous function with compact support. For any finite strictly increasing sequence
n = (n,... n‘n|) and 0 < ng < ny, we then modify the definition of @, in as follows:

~

Qoo = 20 2 (an] s (85 = 251) W, ) ) R, (8.1)

zo€Z? xe(Zd)Inl  j=1

where

S o) o wi — 2 l/d_
Rim (S 0] with 0N = (L)

To decompose J}f, in (2.21)) as we decomposed the partition function in terms of the ©’s, for
ie{l,...,M}* we need to modify the definition of @N’M in (5.5)) as follows:

[¢]—1

. L(N M 2
QM QS(J(W)N <RN> S Y@ (8.2)

0<no<N n<1

The following analogue of Proposition [5.2]is the key step in the proof of Theorem [2.13]

Proposition 8.1. Assume that Hypothesis holds, and Ry in (2.7) is a slowly varying

function which diverges as N — co. For each M € N and 1 € C.(R? x [0,1]), the random

variables (9?’M’w)ieDM converge in joint distribution to a family of independent Gaussian
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random variables (Cf’)ieDM with C;p =0ifi1 < M; and if i1 = M, then Cép has mean zero
and variance

VY J la, VK (1), (!, ), ¢ )dedtda’dt, (8.3)
(Rex[0,1])

where K is defined in (2.23)).

Proof. The proof is similar to that of Proposition [5.2] We will only highlight the changes
in the proof. For simplicity, we assume d # 0. The case d = 0 can be treated similarly.

N, M -

First note that we can rewrite ©; in the following form:

[i]—1
@N7M§¢ _ (%) :

' $(N)?

2 2 qg(x)n(n,wﬁ (84)

N xe(Z4)lil 1<m<N
no—ni1€l; n|i|_n\i\—1e]\i\

N|w

2

27y

where 1 z) = [ 17 1n, ) and g (@) == ¢V "% (1) [Ty Gny—n,_, (27 — 2j-1) with

i) no
q’f:[,:fl (1‘1) = Z w(¢(N)a ﬁ)qanno(xl - 1‘0). (85)
onZd
nOE[O,nl)r\(nl—Iil)

Note that the constraint n; — ng € I;, appearing in (8.2)) (inside n < %) has been moved to
. For simplicity, we will denote the summation constraints on n in (8.4) also by n < 4.
Note that we have just casted @NM ¥ in the same form as @éV’M in (5.5).

N,M;p

Variance Calculations. We first show that when i1 < M, ©; — (0 because its variance

tends to 0. Note that

(M)M*l l4]
Var (@N M; ¢) W 2 q“m 2 H CInj—n] 1 - Tj— 1)2' (8'6)

n<i
A

Note that given (n1, 1), the sum over (ng, x2), ..., (n)4, 7|;) asymptotically equals (WN)‘ i1
by the same calculations as in (5.11)). Therefore

Var (@M% = 11O sh v (2

(b(N)dN?) z1€Z%
1<ni<N
1+0(1) . -,
~ B(N)IN? 2 Y XN YXN) G- (@1 = 20)an, my (w1 — 25). (8.7)

21€Z% 0<ng ,noenl IZ
1<ni<N

mo,mOeZd

Since 1) € C.(R% x [0, 1]), we can choose A > 0 large enough such that supp(y)) < [—A4, A]? x
[0,1]. Then in (8.7), we can restrict the sums to |zg|ex, |24|e < A@(NV). By the local limit
theorem for ¢, () in Hypothesis we observe that the dominant contribution in (8.7))
comes from z1 € Z% with |z1]| < Ap(N) if A is large enough. By first summing over (zg,n)
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and (z(, n(), we then have

C
Var (@N e 1/1) < W Z W]‘go Z Gny—no (T1 — «TO)in—nf) (1 — $6)

|21 /oo <A(N) w0,z el
1<mi<N 1<”07n6€"1—1i1
¢ 2
= SV Mok
|21 )00 <A(N) 1<no,npeni—Ii
1<mi<N
C|w|c2>o d 2
< gavyins NN o 0 (8.8)

where the convergence holds because Ry, /Rn ~i1/M < 1 implies that [I;;| < t;;, = o(V).

We next check that when iy = M, @?;M;w has the correct limiting variance. Note that
because I;; = (ty—1,tam] = (tapr—1, N] with tyy—1 « N, by the same bound as in , we
can enlarge the range of summation of ng, n in to 0 < ng, nj < ny without changing
the limiting variance. Moreover, by the local limit theorem for ¢, in Hypothesis we have

Var (O 1) = Sl S ) Kt 1 — 0 g1~ )

0<ng,ny<n1 <N
x1,20,2HEZY

xr1— IO
1+0(1) 9 7/ ( (17111 337;)0)9( P(n1— n))
= s W (Xn) o (Xy ¢
¢(N)dN3 0<n0,7§<n1<N ( ) ( )¢(n1 - no)d ¢<n1 - nO)d
xl,xo,mand

(8.9)

0 X ! g(xlixo/(nlino)é)g T1—) (nl—né)é)
:<b1(JJ\;)3‘51J\)73 3 () (Xy) =2 G/ (Fx

ni—ng ni—nyg ’
0<ng,nj<ni<N N N
z1,20,2H€ZY

where in the last equality we have replaced ¢(n; — ng) and ¢(n; — n() respectively by
qﬁ(N)(%)l/d and (ﬁ(N)(m%né’)l/d. This is justified when n; — ng,n1 — n{, > eN for any
fixed € > 0, because ¢(n) = (L(n)?n)"? and L(-) is slowly varying; while on the other
hand, the contributions to from ng, ngy,n1 with ny —ng < eN or n; —nj < eN can
be made arbitrarily small by choosing € small, thanks to the same estimates as in . A
Riemann sum approximation with y := xo/¢(N), v/ := z(/p(N), z := x1/p(N), s = ng/N,
s :=ngy/N and t := n1/N then gives

9 () 9 (5
Var (6] ;M””)N—ﬁ;oJ---Jw(y,s)w(y/,s’) <“ )w) <“ il )dzdtdydydsds

t—s t—s
vy, 2eRd
0<s,s /<t<1
f Jd) Y, s ,8), (SN, 8 )dydy'dsds’ = V', (8.10)
v,y zeRd

0<s,s'<1
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where
1 g 17 ( 2;1// )
K((y,s) f (t )1 d D7)
svs JRA t—s t— ¢
1
= f ,JRd gt— Y)gi—s (2 y’)dzdt = f / Got—s—st (Y — y’)dt
- f o )l/d) ot = 1FSSI 905 4, (8.11)
- SV S 2t —s— ¢ _2 \st/| U . )

Here we used the fact that the transition density g; of a Brownian motion in R? (or a Cauchy
process in R) is symmetric and scaling invariant, and g = g;. Note that K agrees with the
kernel in (2.23)), which completes the variance verification.

Fourth moment calculations. We now apply the fourth moment theorem Theorem to
prove Proposition By the variance calculations above, it suffices to restrict our attention
to (@iV’M'¢),eDA4 with iy = M. For distinct ¢,4' € Dy with iy = i = M, it is easily seen
that E[@NMwGNMw] = 0. Therefore condition (i) in Theorem H is satisfied. Clearly
condition (iii) also holds. It only remains to verify the fourth moment condition:

lim E[(O) M) =3V¥  Vie Dy with i = M, (8.12)

N—
assuming that (1, 2))nen zeze are i.i.d. standard normal.

Using the representation for @N M n (8.4)), we have a similar expansion of the fourth-

moment as in ((5.13]) and (5.14):

20| —2
N,M: (By)
E[(©;" ") = m Z g2 (x)qy (¥)a¥ (2)a (W) E[0(a.2) by N e.x) Ndw) s (8:13)
a,b,c,d<i
x,Y,2, we(Zd)

where ¢f) () := qM ny (T1) H' ‘2 Gn;—nj_y (Tj — xj-1) with q (ml) defined as in (8.5)).
Note that the only dlﬁerence between the expansion in and the expansion for

E[(@iVM )*] in (.13)—(5.14) is that the factors gn, (1) are replaced by qM m(xl) and the
corresponding normahzmg constant Y. cza , er,, ni (£1)* ~ Ry/M is replaced by

2 dnr3
S5 D) @) ~ ()N, (8.14)
zlezd
1<ni <N
where this asymptotic relation follows from the variance calculations in (8.7) and ({8.10]).
The verification of the fourth moment condition (8.12)) now follows the same argument as

that for @iV’M in Section |5l Recall from (5.15) that

pi=|a,z)u by ulcz)udw)l= > Lneas)obyoic)od)
(n,r)eNxZd

and we relabel (a,xz) U (b,y) U (¢, z) U (d,w) = {(f1, 1), (f2,h2),..., (fp, hp)}, with f1 <
f2 << fp-

In the proof of Proposition we considered 5 cases. Case 1 with p > 2|¢| can be
treated exactly the same way here.
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For Case 2 with p < 2|¢|, we can follow the same arguments up to (5.20) (note that
0 < gn(x) < 1 under our assumptions). If there are only two factors of ¢ and ¢™*¥ in the
L.h.s. of that involve (fp, hp), then we apply Cauchy-Schwartz exactly as in (5.20)),
which gives the desired factors of (Ry/M)"Y? or (¢(N)?N3)'/2. If there are four factors of ¢
and ¢, then we can pick any two factors and bound the factor of ¢ by 1, and bound the
factor of ¢¥'¥ by N ||, since

N . To To

A, (@) = 6 (a2 ) G —na(@1 = 0) < Nlbc.

M,ny xéd (Z)(N) N 1 0 00
no€[0,n1)n(n1—Inr)

Note that the pre-factor in will be cancelled out exactly when each ¢ contributes a
factor of (Ry/M)"? to the sum, and each ¢V* contributes a factor of (¢(N)?N3)Y/2. Each
replacement of ¢ by 1 in leads to the loss of a factor (Ry/M)'Y? in the bound for
SJ(\I;) in , and similarly, each replacement of ¢™% by N« leads to the loss of a factor
(P(N)AIN3)2 /N |t o. Summing successively over (fp—1,hp—1), (fo—2,hp—2), -, (f1,h1)
then gives a similar bound as in , so that the contributions in this case is negligible.

For Case 3 where [a] U [b] U [¢] U [d] consists of three or four connected components, it
again reduces to Case 1.

For Case 4 where [a] U [b] U [c] U [d] consists of a single connected component, we follow

the same calculations up to :5.27), where we note that because f,, = ¢y is the first index of
the sequence ¢, the first factor in the r.h.s. of (5.27) should be replaced by

S @)

CEEZd,fl <n<f1 +m1

T < (Cm @AY (N 1) = o((6(NYINY)2),

where the inequality follows the same calculations as in (8.8), and the last equality holds
since |Ip/| < N and my = [¢|tpr—2 = o(N), by its definition in (5.26]). This implies a similar
bound as in and shows that this case is also negligible.

Case 5 where [a] U [b] U [c] U [d] consists of two connected components gives the full

contribution to the limiting fourth moment of Gf’M;w in (8.12)), and the argument is exactly
the same as in the proof of Proposition [5.2] O

Proof of Theorem [2.13 Recall from (2.21)) that
1 y .
TG = SN 3 VRyL(N)? (ZNﬂN(X) - 1)w(xN).

XeZd xNg

To prove Theorem , i.e., show that J}f, converges in distribution to a Gaussian random
variable with mean zero and variance given in (2.22))—(2.23)), we plug in the polynomial chaos
expansion of Z% 5 (X) from (4.1) (with (z9,n9) := X) and rewrite J;\b, as

- oy S 8 e[ I
Iy = d k—1)/2 ;" (1) Gnj—n;_, (Tj — Tj-1) Nni)s (8:15)
¢(N) Nio Rgv / 1<n1<--~<nk<11\/ J=2 n i=1
:pl,:pg,...,xkeZd

an V(1) = 3 ¢<¢wo @>qm_n0(m1 — 20). (8.16)

To€Z,0<ng<n
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The approximation steps (A1)-(A3), described for the partition function Zy 5 i

Sectlonl and proved in Section @), can also be performed for J}\b, with only minor differences.
Similar to (4.11]), we can therefore approximate J}(’, by

M Ak

7 IS N;M;p AN;M N;:M

TN ._ZiM(k_l)/Q G R PR A (8.17)
k=1 z‘e{1,...,M}§

where i(l) ’L(m) is the decomposition of mto dominated sequences and G)NMtp as

defined in . Taking the limit N — o0 in and applying Proposition as done in
(4.13), we obtain

0 A m(%) © A
TNar o Z > LI 0= Z > (8.18)
* k=1 ze{l7 ,M}’“ =1 = ie{} ,,,,, M}";

where we used the fact that by Proposition only C;p with 41 = M are non-zero. Again, by

(M)

Proposition we note that J 5 is a normal random variable (as a sum of independent

normal variables) with mean zero and variance

any _ s B - " B
Var(J )ZI;]\WHzE{l,...,M}ﬁ:zle}|V M?wﬁv,

which is exactly the variance 03) in (2.22). Therefore J %M) converges to a normal random

variable with mean zero and variance 2. This is the analogue of step (A4) in Section ,
which concludes the proof of Theorem ]

9. PROOF FOR THE 2d STOCHASTIC HEAT EQUATION

In this section, we prove Theorems [2.15] and [2.17] for the regularized 2d Stochastic Heat
Equation . The basic strategy is to compare the solution u® with the partition function
of a directed polymer on Z**1, so that we can apply Theorems and

The starting point is the Feynman-Kac representation for uf(t,x), which has the
same distribution as u®(t, ), but differs by a time reversal in the Feynman-Kac formula
(2-26). We can extend this representation jointly to all (7°(t, ))tef0,1],zer?- Namely, let

e—2

. . ~ 1o o
W(ta) = B[ {8 [ | (B - n)W(as,ay) - 52 213]]

e=2(1-t)
o2

B row{ || i -pWasa) ] o

e=2(1-t)

where E(, ) denotes expectation for a Brownian motion B starting at y at time s. It is then
clear that (U°(t,))se[0,1],2er? has the same distribution as (u®(t, 7))we[0,1],zer?-
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Furthermore, by the definition of the Wick exponential : exp : [JO7, §3.2], we can write

ta:_1+§j@ J‘ ff alﬂgl)HT' ]fPVd%d% ) (9.2)

e 2(1-t)<t1<- <tk<a—2 i=1

=1+ Z ﬂg J J fRQk JR% Hpt i Wi —Yic1)d (i — xi)d§> }jw(dti,dwi),

1 —t)<t1<- <tp<e—?2

where p;(-) is the probability density for By, (to, yo) = (€ 2(1—t),e 'z), and dif = dy; - - - dyp.
We are now ready to give the proofs.

Proof of Theorem 2.15l Let B < 1. We will perform a series of approximations, eventually
approximating ﬁe(tg), acg)) by Z7_, 5 (e 13:9, *2(1—1‘/?))), 1 <4 < r, the partition functions
of a directed polymer model on ZQH Since our approximations will be carried out in L? on
the same probability space, it suffices to consider a single term ﬂf(tﬁf),xé“), or just u°(1,0).

Step 1. First we show that %°(1,0) can be approximated in L? if for each k € N, the integral
over t := (t1,...,t;) in (0.2) is restricted to the set

Tk,g = {(tl, R ,tk) € (0,2’572)]€ 1t —tio1 =/ loga_l V1<i< k} (9.3)

This is necessary because in the L? approximations that follow, § p%i,tF L (yi —yi—1)dy; is not
integrable in ¢; due to the singularity when ¢; is near ¢;_;. We thus approximate u(1,0) by

k
JR% JR% Hpt tia (Wi — Y1) (yi — 2 dy) HW dt;, dx;).
i=1

(9.4)
By It6 isometry and the orthogonality of terms in different orders of the Wiener chaos,

m.4+2@f

Tk €

~e e N2, -
B[(2°(1,0) — v*(1,0))" “BZ’“ Jo L fR%Hm b (91— i) s — 20)7) A

Given f € Ti ., let I (#):={1<i<k:t;—t;1 <+/loge~1} < {1,...,k}. We can then
rewrite the integrand ]_[2 1 Pti—ti 1 (Wi — yi—1)j(yi — ;) above as

< [ et =) T i — > ( [ pteswi—vic) ] iws —:L‘z'))-

i€l (1) i¢I(t) 0] el (t)
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Taking the first factor as a probability density for ¢/ while taking the second factor as the
integrand, we can then apply Jensen’s inequality to obtain the bound

E[(@(1,0) — v°(1,0))?] (9.5)
< ZB% f 1197t i = vi) [ [72i — ) | [pti—tics (i = wim1) | [3(vi — wi)dZdgiat,
Tc Rk () iel (1) iel () i¢1(t)
J- 2/1(1)
- 28 f [ O = ) [Tt = i)
k=1 . R2* i¢ (%) iel (%)
o Clyi— yz 112 \y(l Yi— 1\)
1) o NPTt
¢
DL ffuu HW“M;H% 5y
k=1 _R2H igI(f) iel
[oe}
2|1(t g
Y- fn O] iy
R=1 1 ig1(f)
0 a2k 111 (log(e—2) \ k=111
< 8% Y (133vioge )" (2 —)
k=1 I+
Ic{1,..., k}
0 — _
5 2t Nk(/, . log(e72)\k  /log(e2)\*
_ 2k 2 —1 _ A N
5 () (s SN (S o

where in the last step we used a binomial expansion and the last convergence follows from
the dominated convergence theorem, since g < 1.

Step 2. We next show that v°(1,0) can be approximated in L? by w(1,0), where we replace
Pti—t;— 1(?J Yi—1) in . by pt;—t;_ 1(% — Tj— 1) Le.,

k
w(1,0) = 1+ Z Bk kaE JR% JR% Hpt —t; (i —xiz1)j(yi — i) dy) EW (dt;, dz;)
k
= 1+ Z @fff f Hptl_tl (@i — i) [ [W(dt, day). (9.7)
k=1 YT JR2E i=1

Indeed, by Jensen

[(v°(1,0) = w?(1,0))%]

0 k i 2 )
Z JT R2% JR% Hpt tio (Yi — Yi-1) Hpt ti1 (T — @i 1))1_[]( i—xi)dgj} dzdt
k=1 k,e X

e e}

=0

ﬁ

=

Ea

k
2 .
f _— | |ptz—tz L (Yi — yi-1) | |Pt1—tz (T — mim 1)) | |j(yz'—=’1?z‘)d17dfdt- (9.8)
e XR2F xR

=1

To show that this bound goes to 0 as ¢ | 0, we will divide the integral over 7 into two parts.
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Using (a + b)? < 2(a? + b?), we can bound by
k

k k
2 Z B2k J <le%i—ti—1(yi —¥Yi-1) + Hpi—t,-_l(ﬂ - xi—1)>Hj(yi — x;)dgdzdt  (9.9)
i=1

L gy o xE2k g2k =] i=1

0 k
Lo 1 o
a3 [ T - weamai=a 3, 2 | Pt
k=1 i=1 v
Tk,e

k=1 T, XRka:l

ZO:: <log5 1) (H10g4 > 425%

i=1

which is finite since ﬂ < 1. Firstly, this calculation implies that it suffices to show that each
summand on the r.h.s. of , for a fixed k € N, tends to 0 as € — 0. Secondly, given
te T}, ¢, if we restrict the integral over & and ¥ in to the set

E, = Ek(ﬂ = {(f, g) e R%* x R?* . |yi — yi_1| < |ti — ti_1|% Vi<i< k}, (9.10)

then it is easily seen that the k-th term in still converges to the same limit as € | 0,
because the dominant contribution to {g» p?(y)dy comes from |y| of the order /. Therefore
if the k-th integral over & and ¥ in is restricted to E¢, then the k-th term in
tends to 0 as € | 0, and the same is true for the k-th term in .

It then only remains to consider the k-th term in 7 where the integral over Z and i is
restricted to Eg. This can be bounded by

k

2 —

52k J <Hpt,—tl (@ —x5-1) Hpt,—tl \Yi — Yi— 1)) Hj(yi—xi)dg’dj:’dt
i=1

TyexEy
o 2y —ys 1|2 k
Hpt it 1 yi71)<62§=1 = ;ztli‘*:iljli) vl )21_[ i — T dydxdt
The x B~
Ck 9 k
< f ]_[pt N yi—l)(e(logs—l)l/g _ 1) [ 15w —wi)dgazaf — o, (9.11)
Thoe x By’ ™~ i=1

where the convergence follows easily from the domination by , and to obtain the
inequality, we argued as follows. If we fix A > O such that the support of j(-) is contained
in a ball of radius A, the factor j(y; — x;) in entails |y; — ;| < A, for all 1 <i < k.
Then, writing |a|? — |b|2 la — b|% + 2|b||a — b| we obtaln

i — 2io1)? — |y — yie1]? - (24)2 + 4Aly; — yi—1| - C
2(757; — ti—l) Q(tl — ti—l) (log 571)%

for any C' > 0 when e > 0 is sufficiently small. Finally, we note that (e* — 1) < (el*l — 1)2.
This concludes the proof that the bound in tends to 0 as € | 0, which shows that
v®(1,0) and w*(1,0) have the same limiting distribution.

e—2 ,Be Zn72 Be (070)7
the partition function of a directed polymer on Z2*! starting at (0, 0), defined on the same

probability space as w°®.

Step 3. We now show that w®(1,0) can be approximated in L? by Z"
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Let (Sp)n>0 be an irreducible aperiodic random walk on 7Z? with n-step increment
distribution p,(-), such that So = 0 and E[S1(i)S1(j)] = 1g—; for i,j = 1,2, where Sy (i)
denotes the i-th coordinate of S7. Recall from that the partition function of a directed
polymer model constructed from S and i.i.d. space-time disorder 7, with parameter 5. and
polymer length ¢~2, admits the following polynomial chaos expansion:

Z77

2
e28. = 1+§155 > Hpm ns (T — i1 H%w (9.12)

1<ny <-<np<e~2 i=1
Tyeney zkeZQ

where (7,2 ) nen pez2 are i.i.d. random variables with mean 0. For our purposes, we will let 7

be i.i.d. standard normal variables defined from the space-time white noise W in the chaos
expansion for w®(1,0) in (9.7)):

Mo = |  W(ds,dy), neN z=(z(1),2(2)) ez (9.13)
An,:c
where A, :=[n—1,n] x [z(1) — 1,2(1)] x [(2) — 1,2(2)].
We can then rewrite as

k
Ze2p, —HZ& f f f (il = e ) [ W (At day), (9.14)
=1

0<t1< <tp<e~ 2

where we set po(-) = 0.
By Gnedenko’s local limit theorem (see e.g. [BGT89, Theorem 8.4.1])

1 lz|? 1
pn(x) = — (e_W + 0(1)) = pn(x) + 0(—) uniformly in z € Z? as n — 0, (9.15)
2mn n
where we recall that p,(x) in the right hand side is the transition kernel of Brownian motion.
By similar calculations as those leading to , we can restrict the integral over (t1,...,tx)
to Tj - as in the definition of v*(1,0) and w®(1,0) in and (9.7), ie.,
k

0 k
e T W [To-puca el = D [[ W @ ae). 010
k=1 Tk € (R ) =1
thenE[(Z”,QB 2225)]—>0&S€l0.

We can now bound the L? distance between w®(1,0) and 2;7,2 8

E[(w"(1,0) - Z_Q,ﬁ 7]

0 k 2
— 2k _ i Bri 1l = [zie dzdt, (9.1
kglﬁe JT“ R%(Hm ti (Ti — Tiz1) Ep[m_[tl_ﬂ([ﬂ?] B 11)) Zdt, (9.17)

and we will separate the integration over & into two sets for each k € N.
Given t € Ty, . and L > 0, let

Epp=Epp(®) = {ZeR* |z, — 2, | < L\ti —ti1 V1 <i < (9.18)

By the same calculations as for (9.9)), we note that when the integrals over # in (9.17) are
restricted to By for each k € N, the resulting series converges to a limit (as € | 0) that can
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be made arbitrarily small by choosing L large. On the other hand, for any fixed L > 0,

E oo
t -t x| — [z
uniformly in t€ T}, and € Ej 1, 1— l_[ Brei e (@] = [2i-1]) 0
i=1 Pti—ti 4 (% - %;1) e—0
(9.19)

by the local central limit theorem (9.15). Therefore when the integrals over & in (9.17)) are
restricted to Ej 1, the resulting series also tends to 0 as € | 0, as in (9.11). In conclusion,

the series in (9.17)) tends to 0 as € | 0 and we can approximate w®(1,0) by Z:,Q

Step 4. When B < 1, we just showed that each u°¢ (tg),xg)) can be approximated in L?

by Z", 5. (e lxgi),e_Q(l — tg))). Identifying e~2 with N, the convergence in Theorem [2.15
then follows by applying Theorem [2.12|to Z_, 5. (e ’1:U§Z), e 21— tgi))) for 1 <i<r.

For B > 1, the proof for uf(1,0) = 0 as ¢ | 0 is the same as that for the pinning
and directed polymer models in Theorem [2.8] Proving that for 0 < ¢ < 1 the quantity

E[(ﬂs(t, O))ﬁ] is decreasing in B is even simpler and proceeds as follows. Note that by (2.27)),

9

&a(t’ 0) _ EO [eﬂSSJ(BS—y)W(ds,dy) 2 ”JHL2(]R><]RCZ):| — EO [eﬁGW(B)—%fQVar[GW(B)]]

where, for a fix realization of B = (Bs)s>0, the random variable G (B) has a centered
Gaussian distribution with variance HjHig(Rde). For 5% = 37 + 3 we can write

2 2
’lNLE(t, 0) i EO [eﬁlGWI (B)—/%1 Var[GWl (B)] GBQGWQ (B)_% Var[GWQ (B)]]

where W7, Wy are two independent space-time white noise, and we used the fact that

W dist B1W1 + BaWs. Using Jensen’s inequality to pass the expectation w.r.t. W5 inside

the fractional root in E[(@F(¢,0))”] then gives the desired monotonicity in 3 as well as £,
since the two differ by a constant factor. O

Proof of Theorem Since (4°(t, x))se[0,1],0er2 defined in (9.1)) has the same distribu-
tion as (u®(t, T))we[0,1],0er2, We note that JY in (2.29) has the same distribution as

> loge™1\1/2
. . B -
Je ( 2 ) JRQX[Ol](u (t,2) — 1) ¢(z, 1 —t) dtda.

Applying the chaos expansion (9.2) with tg = e 2(1 —t) and x¢ = yo = ¢~ 'z gives

¥ & Sk o4 2 %
T =3 pre (log5_1> (9.20)

k=1
k
f J J ptl yl Hpt —t;_ 1 —Yi— 1) — Xy dy) HW dtzadxz
=1

T]yeeey mkERz RQI"
0<ty<---<tp<e™

A 2 )1/2

where we have plugged in . = B(loga_l , changed variables (t,z) = (1 — £%tg, o)

producing the pre-factor £, and

P (1) = J (g0, €%t0) Pry—to (41 — yo) dyodto. (9.21)
R2 [0 t1]
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Note that - has the same form as the expansion for u°(1,0) in (9.2), except that the
77/)(

factor py, (y1) therein is now replaced by p, " (y1), and a pre-factor of (logzg,l)l/ ? has been

replaced by €*. We can now carry out the same steps as in the proof of Theorem to
approximate Jg) by J;\ZJ, for a directed polymer on Z?2, so that Theorem can be applied.

In Step 1 of the proof of Theorem [2.15| we restricted the range of integration of ¢1,..., 1
in (9.2)) so that t; —t;—1 = +/log E_l for all 1 < ¢ < k. This is necessary because in the
L? approximations that follow, §p? Pr—t,_, (Vi — yz,l)dyZ is not integrable in ¢; due to the

singularity when ¢; is near ¢;—;.There is no such singularity for p;, ’¢(y1), and in fact,

I = f (02 (1) 2dyndty (9.22)
R2x[0,e72]

f fﬂJ(ﬁyo, et0) ¥ (e, €20) Pir—to (Y1 — Y0) Pry—ey (91 — Yo) dyodtodypdtodyidty
(R2)3t1€(0,e=2)
t0,t(E(0,t1)
can be bounded in the same way as its discrete counterpart qMﬂfll(azl) from ({8.5)) (see the

variance calculations in (8.8)—(8.10) and (8.14)), with N = 72, ¢(N) = ¢~!), which gives
[pe Ce™* as ¢ — 0. Therefore in our current setting, we need to restrict ¢i,...,t; to

Tre = {(t1,...,tx) € (0,e72)* : 1y > tg, t; —t;i1 =+/loge=! V2<i<k}.  (9.23)

The rest of the calculations in Step 1 carry through once we take into account that |p*
is of the order =4, which cancels the pre-factor £* in ([9.20).

In Step 2 of the proof of Theorem we replaced py, ¢, | (Yi—Yi—1) by pt,—t,_, (Ti—wi—1)

for each 1 < i < k, using the fact that y; — x; must lie in the support of j(-). The same

applies here, except that we also need to replace p;; (yl) by pt ( 1)

More precisely, we can first apply the same calculations as in . - to replace
Dti—t; (Yi — Yi—1) bY pt;—t,_,(x; — xi—1) for each 2 < ¢ < k. The only change we need to
make is to redefine the set Ej in by

Ek = {(f, g) e R%F x R . |yz — yi71| < |ti — ti,1|% V2<i1< k‘} (924)
After making these replacements, it only remains to bound the following simpler analogue

of (9.11)):
2T k-1 X P k k —
€8( _1> f (05" (1) = p (@) | [ 22—y (i — wi1) | [ (ys — i) dgid @t
=2 =1

loge

,‘Z'Y’]“EXE]C

c | i) - i @) Pl - o)dpdandn — 0 (9.25)
4x[0,e72]

N

where in the inequality, we applied the same calculations as for , and the convergence
to 0 can be easily deduced from the definition of pta’w(y) in (9.21)).
We can therefore approximate Jg’b in L? by

0 k
A 2T
= 3 A () j i Hpt e [[ Wt ). 020

k=1 i=
Tk e xR2k
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Following Step 3 in the proof of Theorem [2.15] we now introduce a directed polymer on
72, where the n-step transitional kernel p,(-) of the underlying random walk S satisfies the

local limit theorem in (9.15]), so that Hypothesis [2.4 holds with L(-) = 1. As in (8.15]), and
with N = &72 and ¢(N) = (L(N)2N)"/? = 1, we can define

T L
M ¢(N>2N A RED? Pn, ni—ny1 (25 = 2j-1) [ | Nni)

1<ni<---<np<N j=2 =1
x1,x2,...,xkeZd

= 2 ,8 9 (W) Z pnl’ H nj—m;_ 1 P l'j_l) H?’](n“xz) (927)
k=1

I<ni<--<np<e -2 Jj=2 i=1
xl,xg,...,xkeZd

where we used Ry = R.—2 ~ loge™!/27 by (2.8)), and
PR ()= ). b(em0,€7n0) Pny—no (11 — T0). (9.28)

:E[)EZd,O<TLO <ni

Note that pp, ’w( 1) is a discrete sum approximation of pﬂw(xl) in (9.21)), and if we let
(M(n,z) )nen,zez2 be Gaussian random variables defined from W as in (9.13), then J;\p, in (9.27))
is just a discrete sum approximation of J¥ in (9.26). The L? difference HJX’, - fg’“% can be

shown to vanish as e — 0, similar to (9.16)—(9.19)), and we will omit the details.
Similar to Step 4 in the proof of Theorem [2.15, we can finally apply Theorem (for

the directed polymer on Z2) to J}\p, and conclude that J ¢, and hence also J;p , converge in
distribution to a Gaussian random variable with mean zero and variance 01211. O
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