
ON THE MAXIMUM OF CONDITIONED RANDOM WALKS

AND TIGHTNESS FOR PINNING MODELS

FRANCESCO CARAVENNA

Abstract. We consider real random walks with finite variance. We prove an optimal integrability
result for the diffusively rescaled maximum, when the walk or its bridge is conditioned to stay

positive, or to avoid zero. As an application, we prove tightness under diffusive rescaling for
general pinning and wetting models based on random walks.

1. Introduction

In this paper we deal with random walks on R, with zero mean and finite variance.

In Section 2 we consider the random walks, or their bridges, conditioned to stay positive on a
finite time interval. We prove that the maximum of the walk, diffusively rescaled, has a uniformly
integrable square. The same result is proved under the conditioning that the walk avoids zero.

In Section 3 we present an application to pinning and wetting models built over random walks.
More generally, we consider probabilities which admit suitable regeneration epochs, which cut the
path into independent “excursions”. We prove that these models, under diffusive rescaling, are tight
in the space of continuous functions. This fills a gap in the proof of [DGZ05, Lemma 4].

Sections 4, 5, 6 contain the proofs.

This paper generalizes and supersedes the unpublished manuscript [CGZ07b].

2. Random walks conditioned to stay positive, or to avoid zero

We use the conventions N := {1, 2, 3, . . .} and N0 := N ∪ {0}. Let (Xi)i∈N be i.i.d. real random
variables. Let (Sn)n∈N0

be the associated random walk:

S0 := 0 , Sn := X1 + . . .+Xn for n ∈ N .

Assumption 2.1. E[X1] = 0, E[X2
1 ] = σ2 <∞, and one of the following cases hold.

• Discrete case. The law of X1 is integer valued and, for simplicity, the random walk is
aperiodic, i.e. P(Sn = 0) > 0 for large n, say n ≥ n0.

• Continuous case. The law of X1 has a density with respect to the Lebesgue measure, and the
density of Sn is essentially bounded for some n ∈ N:

fn(x) :=
P(Sn ∈ dx)

dx
∈ L∞ .

It follows that for large n, say n ≥ n0, fn is bounded and continuous, and fn(0) > 0.

Let us denote by Pn the law of the first n steps of the walk:

Pn := P
(
(S0, S1, . . . , Sn) ∈ ·

)
. (2.1)
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Next we define the laws of the meander, bridge and excursion:

Pmea
n ( · ) := P

(
(S0, S1, . . . , Sn) ∈ ·

∣∣S1 > 0, S2 > 0, . . . , Sn > 0
)
,

Pbri
n ( · ) := P

(
(S0, S1, . . . , Sn) ∈ ·

∣∣Sn = 0
)
,

Pexc
n ( · ) := P

(
(S0, S1, . . . , Sn) ∈ ·

∣∣S1 > 0, S2 > 0, . . . , Sn−1 > 0, Sn = 0
)
.

(2.2)

In Remark 2.5 below we discuss the conditioning on {Sn = 0}, and periodicity issues.

Our main result concerns the integrability of the absolute maximum of the walk:

Mn := max
0≤i≤n

|Si| . (2.3)

Theorem 2.2. Let Assumption 2.1 hold. Then M2
n/n is uniformly integrable under any of the laws

Q ∈
{

Pn, Pbri
n , Pmea

n , Pexc
n

}
:

lim
K→∞

sup
n∈N

EQ

[
M2
n

n
1{M2

n
n >K

}] = 0 . (2.4)

The proof of Theorem 2.2, given in Section 4, comes in three steps. First we exploit local limit
theorems, to remove the conditioning on {Sn = 0} and just deal with Pn, Pmea

n . Then we use
martingale arguments, to get rid of the maximum Mn and focus on Sn. Finally we use fluctuation
theory, to perform sharp computations on the law of Sn.

Remark 2.3. For a symmetric random walk, the bound M2
n ≥ X2

n 1{Sn−1≥0, Xn≥0} gives

E

[
M2
n

n
1{M2

n
n >K

}] ≥ 1

4
E

[
X2

1

n
1{X2

1
n >K

}] . (2.5)

Given n ∈ N, we can choose the law of X1 so that the right hand side vanishes as slow as we wish,
as K →∞. Thus (2.4) cannot be improved, without further assumptions.

We next introduce the laws of the random walk and bridge conditioned to avoid zero:

Pmea2
n ( · ) := P

(
(S0, S1, . . . , Sn) ∈ ·

∣∣S1 6= 0, S2 6= 0, . . . , Sn 6= 0
)
,

Pexc2
n ( · ) := P

(
(S0, S1, . . . , Sn) ∈ ·

∣∣S1 6= 0, S2 6= 0, . . . , Sn−1 6= 0, Sn = 0
)
.

(2.6)

In the continuous case P(Sn 6= 0) = 1, so we have trivially Pmea2
n = Pn and Pexc2

n = Pbri
n . In the

discrete case, however, the conditioning on {Sn 6= 0} has a substantial effect: Pmea2
n and Pexc2

n are
close to “two-sided versions” of Pmea

n and Pexc
n (see [Bel72, Kai76]).

We prove the following analogue of Theorem 2.2.

Theorem 2.4. Let Assumption 2.1 hold. Then M2
n/n under Pexc2

n or Pmea2
n is uniformly integrable.

Theorem 2.4 is proved in Section 5. We first use local limit theorems to reduce the analysis to
Pmea2
n , as for Theorem 2.2, but we can no longer apply martingale techniques. We then exploit

direct path arguments to deduce Theorem 2.4 from Theorem 2.2.

Remark 2.5. The laws Pbri
n , Pexc

n , Pexc2
n are well-defined for n ≥ n0 — since P(Sn = 0) > 0 or

fn(0) > 0, see Assumption 2.1 — but not obviously for n < n0. This is quite immaterial for our
goals, since uniform integrability is essentially an asymptotic property: we can take any definition
for these laws for n < n0, as long as we have Mn ∈ L2.

We also stress that we require aperiodicity in Assumption 2.1 only for notational convenience.
If a discrete random walk has period T ≥ 2, then Theorems 2.2 and 2.4 still hold, with essentially
no change in the proofs, but for the the laws Pbri

n , Pexc
n , Pexc2

n to be well-defined we have to restrict
n ∈ TN, to ensure that P(Sn = 0) > 0 for large n.
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3. Tightness for pinning and wetting models

We prove tightness under diffusive rescaling for pinning and wetting models, see Subsection 3.2,
exploiting the property that these models have independent excursions†, conditionally on their zero
level set. It is simpler and more transparent to work with general probabilities which enjoy (a
generalization of) this property, that we now define.

3.1. A sharp criterion for tightness based on excursions. Given t ∈ N, we use the shorthands

[t] := {0, 1, . . . , t} , R[t] = {x = (x0, x1, . . . , xt) : xi ∈ R} ' Rt+1 .

We consider probabilities PN on paths x = (x0, . . . , xN ) ∈ R[N ] which admit regeneration epochs in
their zero level set. To define PN , we need three ingredients:

• the regeneration law pN is a probability on the space of subsets of [N ] which contain 0;
• the bulk excursion laws P bulk

t , t ∈ N, are probabilities on R[t] with P bulk
t (x0 = xt = 0) = 1;

• the final excursion laws P fin
t , t ∈ N, are probabilities on R[t] with P fin

t (x0 = 0) = 1.

Definition 3.1. The law PN is the probability on R[N ] under which the path x = (x0, x1, . . . , xN )
is built as follows.

(1) First sample the number n and the locations 0 =: t1 < . . . < tn ≤ N of the regeneration
epochs, with probabilities pN ({t1, . . . , tn}).

(2) Then write the path x as a concatenation of n excursions x(i), with i = 1, . . . , n:

x(i) := (xti , . . . , xti+1
) , with tn+1 := N .

(3) Finally, given the regeneration epochs, sample the excursions x(i) independently, with
marginal laws P bulk

ti+1−ti for i = 1, . . . , n− 1 and (in case tn < N) P fin
N−tn for i = n.

Let C([0, 1]) be the space of continuous functions f : [0, 1] → R, with the topology of uniform
convergence. We define the diffusive rescaling operator RN : R[N ] → C([0, 1])

RN (x) :=
{

linear interpolation of 1√
N
xNt for t ∈

{
0, 1

N , . . . ,
N−1
N , 1

}}
We give optimal conditions under which the laws PN ◦ R−1

N , called diffusive rescalings of PN , are
tight. Remarkably, we make no assumption on the regeneration laws pN .

Theorem 3.2. Let PN be as in Definition 3.1. The diffusive rescalings (PN ◦ R−1
N )N∈N are tight

in C([0, 1]), for an arbitrary choice of the regeneration laws (pN )N∈N, if and only if the following
conditions hold:

(1) the diffusive rescalings (P bulk
t ◦ R−1

t )t∈N and (P fin
t ◦ R−1

t )t∈N are tight in C([0, 1]);
(2) the bulk excursion law satisfies the following integrability bound:

sup
t∈N

P bulk
t

(
max0≤i≤t |xi|√

t
> a

)
= o

(
1

a2

)
as a ↑ ∞ . (3.1)

We point out that a slightly weaker version of Theorem 3.2 was proved in [CGZ07b].

To make a link with the previous section, we set Mt := max0≤i≤t |xi| and observe that

P bulk
t

(
max0≤i≤t |xi|√

t
> a

)
≤ 1

a2
Ebulk
t

[
M2
t

t
1{M2

t
t >a

}] .
Thus condition (2) in Theorem 3.2 is satisfied if M2

t /t is uniformly integrable under P bulk
t . We then

obtain the following corollary of Theorems 2.2 and 2.4.

Proposition 3.3. Condition (2) in Theorem 3.2 is satisfied if P bulk
t is chosen among {Pbri

t ,Pexc
t ,Pexc2

t },
see (2.2) and (2.6), for a random walk satisfying Assumption 2.1.

†In this section the word “excursion” has a more general meaning than in Section 2.
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Remark 3.4. Condition (1) in Theorem 3.2 is satisfied too, if P bulk
t is chosen among {Pbri

t ,Pexc
t ,Pexc2

t }
and P fin

t is chosen among {Pn,Pmea
n ,Pmea2

n }, under Assumption 2.1. Indeed, the diffusive rescalings
of Pn, Pbri

n , Pmea
n and Pexc

n converge weakly to Brownian motion [Don51], bridge [Lig68, DGZ05],
meander [Bol76] and excursion [CC13]; in the discrete case, the diffusive rescalings of Pmea2

n and
Pexc2
n converge weakly to two-sided Brownian meander [Bel72] and excursion [Kai76].

3.2. Pinning and wetting models. An important class of laws PN to which Theorem 3.2 applies
is given by pinning and wetting models (see [Gia07, Gia11, Hol09] for background).

Fix a random walk (Sn)n∈N0 as in Assumption 2.1 and a real sequence ξ = (ξn)n∈N (environment).

For N ∈ N, the pinning model Pξ
N is the law on R[N ] defined as follows.

• Discrete case. We define

Pξ
N

(
(S0, . . . , SN ) = (s0, . . . , sN )

)
P
(
(S1, . . . , SN ) = (s1, . . . , sN )

) :=
e
∑N
n=1 ξn 1{sn=0}

ZξN
,

where ZξN is a suitable normalizing constant, called partition function.

• Continuous case. We assume that ξn ≥ 0 for all n ∈ N and we define Pξ
N by

Pξ
N

(
(S0, . . . , Sn) ∈ (ds0, . . . ,dsn)

)
:= δ0(ds0)

∏N
n=1

(
f(sn − sn−1) dsn + ξn δ0(dsn)

)
ZξN

,

where f(·) is the density of S1 and δ0(·) is the Dirac mass at 0.

Note that Pξ
N fits Definition 3.1 with regeneration epochs {k ∈ [N ] : sk = 0} (the whole zero level

set) and P bulk
t = Pexc2

t , P fin
t = Pmea2

t (which means P bulk
t = Pbri

t , P fin
t = Pt in the continuous case).

Another example of law PN as in Definition 3.1 is the wetting model Pξ,+
N , defined by

Pξ,+
N ( · ) := Pξ

N ( · | s1 ≥ 0, s2 ≥ 0, . . . , sN ≥ 0 ) .

The bulk excursion law is now P bulk
t = Pexc

t , while the final excursion law is P fin
t = Pmea

t .

Finally, constrained versions of the pinning and wetting models also fit Definition 3.1:

Pξ,c
N ( · ) := Pξ

N ( · | sN = 0) , Pξ,+,c
N ( · ) := Pξ,+

N ( · | sN = 0) .

The final and bulk excursion laws coincide (P fin
t = Pexc2

t for Pξ,c
N , P fin

t = Pexc
t for Pξ,+,c

N ).

Proposition 3.3 and Remark 3.4 yield immediately the following result.

Theorem 3.5 (Tightness for pinning and wetting models). Fix a real sequence ξ = (ξn)n∈N.
Under Assumption 2.1, the diffusive rescalings (PN ◦ R−1

N )N∈N of pinning or wetting models PN ∈
{Pξ

N , Pξ,+
N , Pξ,c

N , Pξ,+,c
N } are tight in C([0, 1]).

This result fills a gap in the proof of [DGZ05, Lemma 4], which was also used in the works
[CGZ06], [CGZ07a]. A recent application of Theorem 3.5 can be found in [DO18].

Pinning and wetting models are challenging models, which display a rich behavior. This complexity

is hidden in the regeneration law pN = pξN . This explains the importance of having criteria for
tightness, such as Theorem 3.2, which only looks at excursions.

Remark 3.6. There are models where regeneration epochs are a strict subset of the zero level set.
For instance, in presence of a Laplacian interaction [BC10, CD08, CD09], couples of adjacent zeros
are regeneration epochs. Theorem 3.2 can cover these cases.
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4. Proof of Theorem 2.2

We fix a random walk (Sn)n∈N0 which satisfies Assumption 2.1, for simplicity with σ2 = 1. We
split the proof of Theorem 2.2 in three steps. To prove (2.4) we may take n ≥ n0, with n0 as in
Assumption 2.1, because (2.4) holds for any fixed n, by Mn ∈ L2.

Step 1. We use the shorthand UI for “uniformly integrable”. In this step assume that

M2
n

n under Pn (resp. under Pmea) is UI , (4.1)

and we show that
M2
n

n under Pbri
n (resp. under Pexc

n ) is UI . (4.2)

Let us set M[a,b] := maxa≤i≤b |Si|. Since Mn ≤ max{M[0,n/2],M[n/2,n]}, it suffices to prove that

M2
[0,n/2]/n and M2

[n/2,n]/n are UI. By symmetry, (4.2) is equivalent to

M2
n/2

n under Pbri
n (resp. under Pexc

n ) is UI . (4.3)

We take n even (for simplicity). We show that the laws of V n/2 := (S1, . . . , Sn/2) under Pbri
n

(resp. Pexc
n ) and under Pn (resp. Pmea

n ) have a bounded Radon-Nikodym density :

sup
n≥n0

sup
z∈Rn/2

Pbri
n (V n/2 ∈ dz)

Pn(V n/2 ∈ dz)
<∞

(
resp. sup

n≥n0

sup
z∈Rn/2

Pexc
n (V n/2 ∈ dz)

Pmea
n (V n/2 ∈ dz)

<∞

)
. (4.4)

Since Mn/2 is a function of V n/2, it follows that (4.1) implies (4.3) (note that Mn/2 ≤Mn).

It remains to prove (4.4). By Gnedenko’s local limit theorem, in the discrete case

∀n ≥ n0 : P(Sn = 0) ≥ c√
n
, sup

x∈Z
P(Sn = x) ≤ C√

n
, (4.5)

hence
Pbri
n (V n/2 = z)

Pn(V n/2 = z)
=

P(Sn/2 = −zn/2)

P(Sn = 0)
≤ C

c
<∞ ,

which proves the first relation in (4.4) in the discrete case. The continuous case is similar, since
fn(0) ≥ c√

n
and supx∈R fn(x) ≤ C√

n
for n ≥ n0, under Assumption 2.1.

To prove the second relation in (4.4), in the discrete case we compute

Pexc
n (V n/2 = z)

Pmea
n (V n/2 = z)

=
P0(S1 > 0, . . . , Sn > 0) Pzn/2(S1 > 0, . . . , Sn/2−1 > 0, Sn/2 = 0)

P0(S1 > 0, . . . , Sn−1 > 0, Sn = 0) Pzn/2(S1 > 0, . . . , Sn/2 > 0)
,

where Px is the law of the random walk started at S0 = x. For some c1 <∞ we have

P0(S1 > 0, . . . , Sn > 0) ≤ c1√
n
,

by [Fel71, Th.1 in §XII.7, Th.1 in §XVIII.5]. Next we apply [CC13, eq. (4.5) in Prop. 4.1] (with
an =

√
n (1 + o(1))), which summarizes [AD99, VV09]: for some c2 ∈ (0,∞)

P0(S1 > 0, . . . , Sn−1 > 0, Sn = 0) ≥ c2
n3/2 .

As a consequence, if we rename n/2 as n and zn/2 as x, it remains to show that

sup
n≥n0

sup
x≥0

nPx(S1 > 0, . . . , Sn−1 > 0, Sn = 0)

Px(S1 > 0, . . . , Sn > 0)
<∞ . (4.6)

By contradiction, if (4.6) does not hold, there are subsequences n = nk ∈ N, x = xk ≥ 0,
for k ∈ N, such that the ratio in (4.6) diverges as k → ∞. We distinguish two cases: either
lim infk→∞ xk/

√
nk = η > 0 (case 1), or lim infk→∞ xk/

√
nk = 0, i.e. there is a subsequence k` with

xk` = o(
√
nk`) (case 2).

In case 1, i.e. for x ≥ η
√
n, the denominator in (4.6) is bounded away from zero:

Px(S1 > 0, . . . , Sn > 0) ≥ Pbη
√
nc(S1 > 0, . . . , Sn > 0) −−−−→

n→∞
Pη(Bt > 0 ∀t ∈ [0, 1]) > 0 ,
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by Donsker’s invariance principle [Don51] (B = (Bt)t≥0 is Brownian motion started at η). For the
numerator, by [CC13, eq. (4.4) in Prop. 4.1] which summarizes [Car05, VV09],

Px(S1 > 0, . . . , Sn−1 > 0, Sn = 0) ≤ c3√
n

P(S1 < 0, . . . , Sn < 0) ≤ c′3
n ,

for suitable c3, c
′
3 ∈ (0,∞). Then the ratio in (4.6) is bounded, which is a contradiction.

In case 2, i.e. for x = o(
√
n), by [CC13, eq. (4.5) in Prop. 4.1] we have

Px(S1 > 0, . . . , Sn−1 > 0, Sn = 0) ∼
n→∞

V −(x) c4
n3/2 , (4.7)

for a suitable V −(x). Since {S1 > 0, . . . , Sn > 0} =
⋃
m>n{S1 > 0, . . . , Sm−1 > 0, Sm = 0} a.s.

(note that the random walk is recurrent), we get

Px(S1 > 0, . . . , Sn−1 > 0, Sn > 0) ∼
n→∞

V −(x) 2 c4√
n
,

see also [Don12, Cor. 3]. Thus the ratio in (4.6) is bounded, which is the desired contradiction.
This completes the proof of the second relation in (4.4) in the discrete case. The continuous case

is dealt with with identical arguments, exploiting [CC13, Th. 5.1]. �

Step 2. In this step we assume that

S2
n

n under Pn (resp. under Pmea
n ) is UI , (4.8)

and we deduce that
M2
n

n under Pn (resp. under Pmea
n ) is UI . (4.9)

Observe that (|Si|)0≤i≤n is a submartingale under Pn. Let us show that (|Si|)0≤i≤n is a sub-
martingale also under Pmea

n (for every fixed n ∈ N). We set for m ∈ N and x ∈ R

qm(x) := P(x+ S1 > 0, x+ S2 > 0, . . . , x+ Sm > 0) ,

with q0(x) := 1. Then we can write, for any n ∈ N, i ∈ {0, 1, . . . , n− 1} and x ≥ 0,

Pmea
n

[
Si+1 ∈ dy

∣∣Si = x
]

=
1(0,∞)(y) qn−(i+1)(y)

qn−i(x)
P(X1 ∈ dy − x) .

Since y 7→ (y − x) and y 7→ 1(0,∞)(y) qn−(i+1)(y) are non-decreasing functions, it follows by the
Harris inequality (a special case of the FKG inequality) and E[X1] = 0 that

Emea
n

[
Si+1 − Si

∣∣Si = x
]
≥
∫
R

(y − x) P(X1 ∈ dy − x) ·
∫ ∞

0

qn−(i+1)(y)

qn−i(x)
P(X1 ∈ dy − x) = 0 .

Since (|Si|)0≤i≤n is a submartingale, also (Zi := (|Si| −K)+)0≤i≤n is a submartingale, for any
K ∈ (0,∞). Doob’s L2 inequality yields, for Pn = Pn or Pn = Pmea

n (recall (2.3)),

En
[
(Mn −K)2 1{Mn>K}

]
= En

[(
max

0≤i≤n
Zi

)2]
≤ 4En

[
Z2
n

]
= 4En

[
(Sn −K)2 1{Sn>K}

]
.

For Mn > 2K we can bound M2
n ≤ 4(Mn −K)2. Since (Sn −K)2 ≤ S2

n for Sn > K, we get

En
[
M2
n 1{Mn>2K}

]
≤ 16En

[
S2
n 1{Sn>K}

]
.

We finally choose K = 1
2

√
tn, for t ∈ (0,∞), to obtain

En
[
M2
n

n 1
{M

2
n
n >t}

]
≤ 16En

[
S2
n

n 1
{S

2
n
n > t

2}

]
, ∀t > 0 .

This relation for Pn = Pn (resp. Pn = Pmea
n ) shows that (4.8) implies (4.9). �

Step 3. In this step we prove that (4.8) holds, completing the proof of Theorem 2.2. We are going
to apply the following standard result, proved below.

Proposition 4.1. Let (Yn)n∈N, Y be random variables in L1, such that Yn → Y in law. Then
(Yn)n∈N is UI if and only if limn→∞ E[|Yn|] = E[|Y |].
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Let us define

Yn :=
S2
n

n .

Since Sn/
√
n under Pn converges in law to Z ∼ N(0, 1), we have Yn → Z2 in law. Since En[|Yn|] =

1 = E[Z2] for all n ∈ N, relation (4.8) under Pn follows by Proposition 4.1.

Next we focus on Pmea
n . It is known [Bol76] that Sn/

√
n under Pmea

n converges in law to-
ward the Brownian meander at time 1, that is a random variable V with law P(V ∈ dx) :=

x e−x
2/2 1(0,∞)(x) dx. Therefore Yn → V 2 in law, under Pmea

n . Since E[V 2] = 2, relation (4.8) under
Pmea
n is proved once we show that

lim
n→∞

Emea
n

[
S2
n

n

]
= 2 . (4.10)

To evaluate this limit, we express the law of Sn/
√
n under Pmea

n using fluctuation theory for
random walks. By [Car05, equations (3.1) and (2.6)], as n→∞

Pmea
n

(
Sn√
n
∈ dx

)
=
(√

2π + o(1)
) ∫ 1

0

∫ ∞
0

P
(
Sbn(1−α)c√

n
∈ dx− β

)
1[0,x)(β) dµn(α, β) ,

where µn is a finite measure on [0, 1)× [0,∞), defined in [Car05, eq. (3.2)]. Then

Emea
n

[
S2
n

n

]
=
(√

2π + o(1)
) ∫ 1

0

∫ ∞
0

{
E
[

(S+
bn(1−α)c)

2

n

]
+ 2β E

[
S+
bn(1−α)c√

n

]
+ β2 P

(
Sbn(1−α)c√

n
> 0
)}

dµn .

By the convergence in law (under P) Sn/
√
n→ Z ∼ N(0, 1), together with the uniform integrability

of (Sn/
√
n)2 that we already proved, we have as n→∞

E
[

(S+
bn(1−α)c)

2

n

]
−→ (1− α) E[(Z+)2] =

1− α
2

,

E
[
S+
bn(1−α)c√

n

]
−→
√

1− αE[Z+] =
√

1−α√
2π

, P
(
Sbn(1−α)c√

n
> 0
)
−→ P(Z > 0) = 1

2 ,

uniformly for α ∈ [0, 1− δ], for δ > 0. By [Car05, Prop. 5] we have the weak convergence

µn(dα,dβ) =⇒ µ(dα,dβ) :=
β√

2π α3/2
e−

β2

2α dα dβ ,

and note that µ is a finite measure on [0, 1)× [0,∞). Then limn→∞ Emea
n

[
S2
n

n

]
equals

∫ 1

0

(∫ ∞
0

{
1−α

2 + 2β
√

1−α√
2π

+ 1
2β

2
}

β
α3/2 e

− β
2

2α dβ
)

dα =

∫ 1

0

{
1−α
2
√
α

+
√

1− α+
√
α
}

dα = 2 ,

which completes the proof of (4.10). �

Proof of Proposition 4.1. We assume that Yn → Y a.s., by Skorokhod’s representation theorem. If
(Yn)n∈N is UI, then Yn → Y in L1, hence E[|Yn|]→ E[|Y |].

Assume now that limn→∞ E[|Yn|] = E[|Y |] < ∞. Since Yn → Y a.s., dominated convergence
yields limn→∞ E[|Yn|1{|Yn|≤T}] = E[|Y |1{|Y |≤T}] for T ∈ (0,∞) with P(|Y | = T ) = 0. Then

lim
n→∞

E[|Yn|1{|Yn|>T}] = lim
n→∞

(
E[|Yn|]− E[|Yn|1{|Yn|≤T}]

)
= E[|Y |1{|Y |>T}] .

Since limT→∞ E[|Y |1{|Y |>T}] = 0, this shows that (Yn)n∈N is UI. �



8 FRANCESCO CARAVENNA

5. Proof of Theorem 2.4

We fix a random walk (Sn)n∈N0 which satisfies Assumption 2.1 in the discrete case (the continuous
case is covered by Theorem 2.2), with σ2 = 1. We proceed in two steps.

Step 1. We assume that M2
n/n under Pmea2

n is UI and we prove that M2
n/n under Pexc2

n is UI. As
in Section 4, it suffices to show that, with V n/2 := (S1, . . . , Sn/2) and n0 as in Assumption 2.1,

sup
n≥n0

sup
z∈Zn/2

Pexc2
n (V n/2 = z)

Pmea2
n (V n/2 = z)

<∞ . (5.1)

If we define T := min{n ∈ N : Sn = 0}, we can compute (recall (2.6))

Pexc2
n (V n/2 = z)

Pmea2
n (V n/2 = z)

=
P(T > n) Pzn/2(T = n/2)

P(T = n) Pzn/2(T > n/2)
,

where Px is the law of the random walk started at S0 = x. By [Kes63], as n→∞

P(T = n) =
σ√

2π n3/2

(
1 + o(1)

)
, (5.2)

hence, summing over n, we get P(T > n) = 2nP(T = n) (1 + o(1)). Then (5.1) reduces to

sup
n≥n0

sup
x≥0

nPx(T = n)

Px(T > n)
<∞ . (5.3)

Arguing as in the lines after (4.6), we need to show that the ratio in (5.3) is bounded in two
cases: when x ≥ η

√
n for fixed η > 0 (case 1 ) and when x = xn = o(

√
n) (case 2 ).

In case 1, i.e. for x ≥ η
√
n, the denominator in (5.3) is bounded away from zero:

Px(T > n) ≥ Pbη
√
nc(S1 > 0, . . . , Sn > 0) −−−−→

N→∞
Pη(Bt > 0 ∀t ∈ [0, 1]) > 0 ,

where (Bt)t≥0 is a Brownian motion [Don51]. Then the ratio in (5.3) is bounded because supx∈Z Px(T =

n) ≤ c′

n for some c′ ∈ (0,∞), by [Kai75, Cor. 1].
In case 2, i.e. for x = o(

√
n), we apply [Uch11, Thm. 1.1], which generalizes (5.2):

Px(T = n) = a∗(x)
σ√

2π n3/2

(
1 + o(1)

)
as n→∞ , uniformly in x ∈ Z ,

for a suitable a∗(x) (the potential kernel of the walk). Then Px(T > n) = 2nPx(T = n) (1 + o(1)),
hence the ratio in (5.3) is bounded. This completes the proof of (5.1). �

Step 2. We prove that M2
n/n under Pmea2

n is UI. We argue by contradiction: if this does not hold,
then there are η > 0 and (ni)i∈N, (Ki)i∈N, with limi→∞Ki =∞, such that

Emea2
ni

[
M2
ni

ni
1
{
M2
ni
ni

>Ki}

]
≥ η , ∀i ∈ N . (5.4)

We are going to deduce that M2
n/n under Pn is not UI, which contradicts Theorem 2.2.

We show below that we can strengthen (5.4), replacing Emea2
ni by Emea2

m for any m ∈ {ni, . . . , 2ni}:
more precisely, there exists η′ > 0 such that

Emea2
m

[
M2
ni

ni
1
{
M2
ni
ni

>Ki}

]
≥ η′ , ∀i ∈ N , ∀m ∈ {ni, . . . , 2ni} . (5.5)

To exploit (5.5), we work on the time horizon 2n, for fixed n ∈ N. We split any path S = (S0, . . . , S2n)

with S0 = 0 in two parts S̃ = (S0, S1, . . . , Sσ) and Ŝ = (Sσ, Sσ+1, . . . , S2n), where σ := σ2n :=

max{i ∈ {0, . . . , 2n} : Si = 0}. If S is chosen according to the unconditioned law P2n, then Ŝ has
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law Pmea2
2n−σ, conditionally on σ. If we set M̂2n := max |Ŝ| = maxσ≤i≤2n |Si|, the bound M2n ≥ M̂2n

gives

E
[

(M2n)2

2n 1
{ (M2n)2

2n >K
2 }

]
≥ E

[
(M̂2n)2

2n 1
{ (M̂2n)2

2n >K
2 }

]
=

2n∑
r=0

E

[
Emea2

2n−r

[
M2

2n−r
2n 1

{
M2

2n−r
n >K}

]
1{σ=r}

]
.

We now restrict the sum to r ≤ n, so that M2
2n−r ≥M2

n, to get

E
[

(M2n)2

2n 1
{ (M2n)2

2n >K
2 }

]
≥ 1

2 P(σ2n ≤ n) inf
n≤m≤2n

Emea2
m

[
M2
n

n 1
{M

2
n
n >K}

]
.

Note that limn→∞ P(σ2n ≤ n) = P(Bt 6= 0 ∀t ∈ ( 1
2 , 1]) =: p > 0 (actually p = 1

2 , by the arcsine law),
hence γ := infn∈N P(σ2n ≤ n) > 0. If we take n = 2ni and K = Ki, by (5.5)

lim inf
K→∞

sup
n∈N

E
[

(Mn)2

n 1{ (Mn)2

n >K
2 }

]
≥ inf

i∈N
E
[

(M2ni
)2

2ni
1
{

(M2ni
)2

2ni
>
Ki
2 }

]
≥ γ η′

2
> 0 .

This means that M2
n/n under Pn is not UI, which contradicts Theorem 2.2.

It remains to prove (5.5). We fix C ∈ (0,∞), to be determined later. We may assume that Ki ≥ C
for all i ∈ N. To deduce (5.5) from (5.4), we show that for some c > 0

inf
n∈N, m∈{n,...,2n}, z∈Z: z≥C

√
n

Pmea2
m (Mn = z)

Pmea2
n (Mn = z)

≥ c . (5.6)

Fix m ≥ n and z > 0. If we sum over the last ` ≤ n for which Mn = |S`|, we can write

Pmea2
m (Mn = z) =

n∑
`=1

Pmea2
m (M`−1 ≤ z, |S`| = z, |Si| < z ∀i = `+ 1, . . . , n) .

We write Pmea2
m ( · ) = P( · |Em), with Em := {S1 6= 0, . . . , Sm 6= 0}, and we apply the Markov

property at time `. The cases S` = z and S` = −z give a similar contribution and we do not
distinguish between them (e.g. assume that the walk is symmetric). Then

Pmea2
m (Mn = z) =

1

P(T > m)

n∑
`=1

P(M`−1 ≤ z, |S`| = z, E`) Pz(|Si| < z ∀1 ≤ i ≤ n− `, Em−`)︸ ︷︷ ︸
A

.

The same expression holds if we replace Pmea2
m by Pmea2

n , namely

Pmea2
n (Mn = z) =

1

P(T > n)

n∑
`=1

P(M`−1 ≤ z, |S`| = z, E`) Pz(|Si| < z ∀1 ≤ i ≤ n− `, En−`)︸ ︷︷ ︸
B

.

Since P(T > m) ≤ P(T > n), to prove (5.6) we show that A ≥ cB, with c > 0. We bound

B ≤ Pz(Si < z ∀i = 1, . . . , n− `) = P0(E−n−`) ,

where we set E−k := {S1 < 0, . . . , Sk < 0}. Similarly, for z ≥ C
√
n we bound

A ≥ Pz(Si < z ∀i = 1, . . . , n− `, Si > 0 ∀i = 1, . . . ,m− `)
= P0(E−n−`, Si > −z ∀i = 1, . . . ,m− `) ≥ P0(E−n−`) P0

(
(−Si) < C

√
n ∀i = 1, . . . ,m− `

∣∣E−n−`)︸ ︷︷ ︸
D

.

It remains to show that D ≥ c. Let us set S̃i := −Si and Ẽ+
k := E−k = {S̃1 > 0, . . . , S̃k > 0}. If we

write r := n− `, for m ∈ {n, . . . , 2n}, we have m− ` = r + (m− n) ≤ r + n, hence

D ≥ P
(
S̃i <

1
2C
√
r ∀i = 1, . . . , r

∣∣ Ẽ+
r

)
· P
(
S̃i <

1
2C
√
n ∀i = 1, . . . , n

)
, (5.7)

by the Markov property, since (S̃j)j≥r under P( · |Ẽ+
r ) is the random walk S̃ started at S̃r.

By [Bol76, Don51], as r → ∞ the two probabilities in the right hand side of (5.7) converge
respectively to P(supt∈[0,1]mt <

1
2C) and P(supt∈[0,1]Bt <

1
2C), where B = (Bt)t≥0 is Brownian
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motion and m = (mt)t∈[0,1] is Brownian meander. Then, if we fix C > 0 large enough, the right
hand side of (5.7) is ≥ c > 0 for all r, n ∈ N0. �

6. Proof of Theorem 3.2

Let us set QN := PN ◦ R−1
N . We prove that conditions (1) and (2) in Theorem 3.2 are necessary

and sufficient for the tightness of (QN )N∈N.

Necessity. The necessity of condition (1) is clear: just note that, by Definition 3.1, the law PN

coincides with P fin
N (resp. with P bulk

N ) if we choose the regeneration law pN to be concentrated on
the single set {0} (resp. on the single set {0, N}).

To prove necessity of condition (2), we assume by contradiction that (2) fails. Then there exists
η > 0 and two sequences (tn)n∈N, (an)n∈N, with limn→∞ an =∞, such that

P bulk
tn

(
Mtn√
tn

> an

)
≥ η

a2
n

, ∀n ∈ N , where Mt := max
0≤i≤t

|xi| . (6.1)

We may assume that an ∈ N (otherwise consider banc and redefine η).
DefineNn := tn a

2
n and let pNn be the regeneration law concentrated on the single set {0, tn, 2tn, . . . , Nn−

tn, Nn}. Let PNn be the corresponding probability on R[Nn], see Definition 3.1. We now show that
QN = PN ◦ R−1

N is not tight on C([0, 1]).
Any path f(t) under QNn vanishes for t ∈ {0, 1

a2n
, 2
a2n
, . . . , 1 − 1

a2n
, 1}, which becomes dense in

[0, 1] as n→∞. Then, if (QNn)n∈N were tight, it would converge weakly to the law concentrated
on the single path (ft ≡ 0)t∈[0,1]. We rule this out by showing that

lim inf
n→∞

QNn

(
sup
t∈[0,1]

|ft| > 1

)
≥ 1− e−η > 0 . (6.2)

For x ∈ R[Nn] and j = 1, . . . , a2
n we define M

(j)
tn := maxi∈{(j−1)tn,...,jtn} |xi|, so that

QNn

(
sup
t∈[0,1]

|ft| > 1

)
= PNn

(
max

i=0,1,...,Nn
|xi| >

√
Nn

)
= PNn

(
max

j=1,...,a2n

M
(j)
tn√
tn

> an

)
.

The random variables M
(j)
tn for j = 1, . . . , a2

n are independent and identically distributed, because
they refer to different excursions. Then we conclude by (6.1):

QNn

(
sup
t∈[0,1]

|ft| > 1

)
= 1−

(
1− P bulk

tn

(
Mtn√
tn

> an

))a2n
≥ 1−

(
1− η

a2
n

)a2n
−−−−−→
n→∞

1− e−η .

Sufficiency. We assume that conditions (1) and (2) in Theorem 3.2 hold and we prove that
(QN )N∈N is tight in C([0, 1]), that is

∀η > 0 : lim
δ↓0

sup
N∈N

QN

(
Γ(δ) > η

)
= 0 , (6.3)

where Γ(δ)(f) := sup|t−s|≤δ |ft − fs| denotes the continuity modulus of f ∈ C([0, 1]).

Given a finite subset U = {u1 < . . . < un} ⊆ [0, 1] and points s, t ∈ [0, 1], we write s ∼U t iff no
point ui ∈ U lies between s and t. Then we define

Γ̃U (δ)(f) := sup
s,t∈[0,1]: s∼U t, |t−s|≤δ

|ft − fs| .

Plainly, if f(ui) = 0 for all ui ∈ U , then Γ(δ)(f) ≤ 2 Γ̃U (δ)(f). This means that in (6.3) we

can replace Γ(δ)(f) by Γ̃U (δ)(f), where U is any subset of [0, 1] on which f vanishes. We fix
U = { t1N , . . . ,

tn
N }, where ti are the regeneration epochs of PN . It remains to show that

∀η > 0 : lim
δ↓0

sup
N∈N

QN

(
Γ̃U (δ) > η

)
= 0 . (6.4)
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We set for short Qfin
t := P fin

t ◦ R−1
t and Qbulk

t := P bulk
t ◦ R−1

t . By Definition 3.1

QN

(
Γ̃U (δ) ≤ η

)
=

N+1∑
n=1

∑
0=t1<...<tn≤N

pN ({t1, . . . , tn})
n−1∏
i=1

Qbulk
ti+1−ti

(
Γ( N

ti+1−ti δ) ≤ η
√

N
ti+1−ti

)
×

× Qfin
N−tn

(
Γ( N

N−tn δ) ≤ η
√

N
N−tn

)
.

Note that we have the original continuity modulus Γ. Let us set

gbulk
η (δ) := inf

N∈N, 2≤n≤N+1,
0=t1<...<tn≤N

n−1∏
i=1

Qbulk
ti+1−ti

(
Γ( N

ti+1−ti δ) ≤ η
√

N
ti+1−ti

)
(6.5)

gfin
η (δ) := inf

N∈N, 1≤t<N
Qfin
N−t

(
Γ( N

N−tδ) ≤ η
√

N
N−t

)
,

so that we can bound QN

(
Γ̃U (δ) ≤ η

)
≥ gbulk

η (δ) gfin
η (δ) (we recall that pN (·) is a probability). We

complete the proof of (6.4) by showing that

∀η > 0 : lim
δ↓0

gbulk
η (δ) gfin

η (δ) ≥ 1 .

We first show that limδ↓0 g
fin
η (δ) ≥ 1, for every η > 0. We fix θ ∈ (0, 1) and consider two regimes.

For t < (1− θ)N we can bound (recall that (Qfin
` )`∈N is tight by assumption)

inf
N∈N, 1≤t<(1−θ)N

Qfin
N−t

(
Γ( N

N−tδ) ≤ η
√

N
N−t

)
≥ inf

`∈N
Qfin
`

(
Γ( δθ ) ≤ η

)
−−→
δ↓0

1 .

On the other hand, for t ≥ (1− θ)N we can bound

inf
N∈N, (1−θ)N≤t<N

Qfin
N−t

(
Γ( N

N−tδ) ≤ η
√

N
N−t

)
≥ inf

`∈N
Qfin
`

(
max
s∈[0,1]

|fs| ≤ 1
2
η√
θ

)
=: hη(θ) .

For any η > 0, we have limδ↓0 g
fin
η (δ) ≥ limθ↓0 hη(θ) = 1, by the tightness of (Qfin

` )`∈N.

To complete the proof, we show that limδ↓0 g
bulk
η (δ) ≥ 1, for every η > 0. Note that

inf
t∈N

Qbulk
t

(
max
s∈[0,1]

|fs| ≤ a
)

= inf
t∈N

P bulk
t

(
max
i=0,...,t

|xi| ≤ a
√
t
)
≥ 1− ε(a)

a2
,

where lima↑∞ ε(a) = 0, by assumption (2). We may assume that a 7→ ε(a) is non increasing. Fix
θ ∈ (0, 1). Given a family of epochs 0 ≤ t1 < . . . < tn ≤ N , we distinguish two cases.

• For θN < ti+1 − ti ≤ N we can bound

Qbulk
ti+1−ti

(
Γ( N

ti+1−ti δ) ≤ η
√

N
ti+1−ti

)
≥ inf

t∈N
Qbulk
t

(
Γ( δθ ) ≤ η

)
=: Fη,θ(δ) ,

and note that for fixed η, θ we have limδ↓0 Fη,θ(δ) = 1, because (Qbulk
t )t∈N is tight.

• For ti+1 − ti ≤ θN we can bound

Qbulk
ti+1−ti

(
Γ( N

ti+1−ti δ) ≤ η
√

N
ti+1−ti

)
≥ Qbulk

ti+1−ti

(
max
s∈[0,1]

|fs| ≤ η
2

√
N

ti+1−ti

)
≥ 1− 4(ti+1−ti)

η2N ε
(

η

2
√
θ

)
≥ exp

(
− 8(ti+1−ti)

η2N ε
(

η

2
√
θ

))
,

where the last inequality holds for θ > 0 small, by 1− z ≥ e−2z for z ∈ [0, 1
2 ].

We can have ti+1 − ti > θN for at most b1/θc values of i, hence

gbulk
η (δ) ≥ Fη,θ(δ)

1
θ

n−1∏
i=1

exp
(
− 8(ti+1−ti)

η2N ε
(

η

2
√
θ

))
≥ Fη,θ(δ)

1
θ exp

(
− 8

η2 ε
(

η

2
√
θ

))
.
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Given η > 0 and ε > 0, we first fix θ > 0 small enough, so that the exponential is greater than 1− ε;
then we let δ → 0, so that Fη,θ(δ)

1
θ → 1. This yields limδ↓0 g

bulk
η (δ) ≥ 1− ε. As ε > 0 was arbitrary,

we get limδ↓0 g
bulk
η (δ) ≥ 1. �
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