ON THE MAXIMUM OF CONDITIONED RANDOM WALKS
AND TIGHTNESS FOR PINNING MODELS

FRANCESCO CARAVENNA

ABSTRACT. We consider real random walks with finite variance. We prove an optimal integrability
result for the diffusively rescaled maximum, when the walk or its bridge is conditioned to stay
positive, or to avoid zero. As an application, we prove tightness under diffusive rescaling for
general pinning and wetting models based on random walks.

1. INTRODUCTION

In this paper we deal with random walks on R, with zero mean and finite variance.

In Section [2| we consider the random walks, or their bridges, conditioned to stay positive on a
finite time interval. We prove that the maximum of the walk, diffusively rescaled, has a uniformly
integrable square. The same result is proved under the conditioning that the walk avoids zero.

In Section [3] we present an application to pinning and wetting models built over random walks.
More generally, we consider probabilities which admit suitable regeneration epochs, which cut the
path into independent “excursions”. We prove that these models, under diffusive rescaling, are tight
in the space of continuous functions. This fills a gap in the proof of [DGZ05, Lemma 4].

Sections [6] contain the proofs.
This paper generalizes and supersedes the unpublished manuscript [CGZ07h].

2. RANDOM WALKS CONDITIONED TO STAY POSITIVE, OR TO AVOID ZERO

We use the conventions N :={1,2,3,...} and Ny := NU{0}. Let (X;);en be i.i.d. real random
variables. Let (S,,)nen, be the associated random walk:

So =0, S, =X1+...+X, forneN.

Assumption 2.1. E[X;] =0, E[X?] = 02 < o0, and one of the following cases hold.
e Discrete case. The law of X is integer valued and, for simplicity, the random walk is
aperiodic, i.e. P(S, = 0) > 0 for large n, say n > ng.
e Continuous case. The law of X1 has a density with respect to the Lebesgue measure, and the
density of S, is essentially bounded for some n € N:

Fulz) = 7P(S”d§ dz)  peo.

It follows that for large n, say n > ng, fn is bounded and continuous, and f,(0) > 0.
Let us denote by P,, the law of the first n steps of the walk:
P, = P((SO,Sl,...,Sn)G ) (21)
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Next we define the laws of the meander, bridge and excursion:
pre() :=P((S0,51,...,5.) € - [51>0,59>0,...,5,>0),
PYri(-) :=P((So, S1,...,5.) € - | S, =0), (2.2)
Poxe(-) :==P((S0,51,..., ) € - |S1>0,5 >0,...,5_1>0,5,=0).

In Remark below we discuss the conditioning on {S,, = 0}, and periodicity issues.

Our main result concerns the integrability of the absolute maximum of the walk:

M, := max |S;|. (2.3)
0<i<n

Theorem 2.2. Let Assumption hold. Then M2 /n is uniformly integrable under any of the laws
Q c {Pna P]r)Lri7 Pgea’ szc}..

M2
lim sup Eq {" ]1{ M2 >K}:| =0. (2.4)

K—00 peN n n

The proof of Theorem given in Section [4 comes in three steps. First we exploit local limit
theorems, to remove the conditioning on {S, = 0} and just deal with P,, P®®. Then we use
martingale arguments, to get rid of the maximum M,, and focus on S,,. Finally we use fluctuation
theory, to perform sharp computations on the law of S,,.

Remark 2.3. For a symmetric random walk, the bound M7} > X2 1(s, >0, x, >0} gives
M? 1 _[X?
n > _E|ZL . .
O ey e )

n

Given n € N, we can choose the law of X1 so that the right hand side vanishes as slow as we wish,
as K — oo. Thus (2.4) cannot be improved, without further assumptions.

We next introduce the laws of the random walk and bridge conditioned to avoid zero:
Prea2() :=P((S0,51,..., ) € - | S1#0,5 #0,...,8, #0),

exc2 (26)
Pn (')::P((SO?SIV")STL)E ' ‘5’17&0,52#0,...,5”_1750,5":0).

In the continuous case P(S, # 0) = 1, so we have trivially P2 = P,, and P2 = PP, In the
discrete case, however, the conditioning on {S,, # 0} has a substantial effect: P42 and P2 are
close to “two-sided versions” of P*® and P¢*¢ (see [Bel72, [Kai76]).

We prove the following analogue of Theorem [2.2]
Theorem 2.4. Let Assumption hold. Then M2 /n under P2 or P12 s yniformly integrable.

Theorem [2.4]is proved in Section [5} We first use local limit theorems to reduce the analysis to
pmeaz  ag for Theorem but we can no longer apply martingale techniques. We then exploit
direct path arguments to deduce Theorem [2.4] from Theorem [2.2]

Remark 2.5. The laws PP, Pex¢ Pexc2 gre well-defined for n > ng — since P(S,, = 0) > 0 or
fn(0) >0, see Assumption — but not obuviously for n < ng. This is quite immaterial for our
goals, since uniform integrability is essentially an asymptotic property: we can take any definition
for these laws for n < ng, as long as we have M, € L?.

We also stress that we require aperiodicity in Assumption only for notational convenience.
If a discrete random walk has period T > 2, then Theorems[2.9 and [2.4) still hold, with essentially
no change in the proofs, but for the the laws P2, PS¢ P2 to be well-defined we have to restrict
n € TN, to ensure that P(S,, = 0) > 0 for large n.
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3. TIGHTNESS FOR PINNING AND WETTING MODELS

We prove tightness under diffusive rescaling for pinning and wetting models, see Subsection [3.2
exploiting the property that these models have independent excursiong', conditionally on their zero
level set. It is simpler and more transparent to work with general probabilities which enjoy (a
generalization of) this property, that we now define.

3.1. A sharp criterion for tightness based on excursions. Given ¢t € N, we use the shorthands
[t]:=1{0,1,...,t}, RU={z=(zo,21,...,2): 2; € R} =~ R*,

We consider probabilities P on paths = (zg,...,zn) € RV which admit regeneration epochs in

their zero level set. To define Py, we need three ingredients:

e the regeneration law py is a probability on the space of subsets of [N] which contain 0;
e the bulk excursion laws PP, t € N, are probabilities on Rl with PPY(zq = 2, = 0) = 1;
e the final excursion laws Pfi®, t € N, are probabilities on R with Pfin(zo =0) = 1.

Definition 3.1. The law Py is the probability on RNl under which the path x = (0,21, ,ZN)
18 built as follows.

(1) First sample the number n and the locations 0 =: t; < ... < t, < N of the regeneration
epochs, with probabilities py ({t1,...,tn}).
(2) Then write the path x as a concatenation of n excursions D withi=1,...,n:
2@ = (Tgy e Teiy) s with t,11:=N.
(3) Finally, given the regeneration epochs, sample the excursions = independently, with
marginal laws Pt'ﬁllk,ti Jori=1,...,n—1 and (in case t, < N) Pi", fori=n.

Let C([0,1]) be the space of continuous functions f : [0,1] — R, with the topology of uniform
convergence. We define the diffusive rescaling operator Ry : RN — C([0,1])

Ry (z) = {linear interpolation of ﬁamt for t € {0, %, ey %, 1}}

We give optimal conditions under which the laws Py o R&l, called diffusive rescalings of P, are
tight. Remarkably, we make no assumption on the regeneration laws py.

Theorem 3.2. Let Py be as in Definition . The diffusive rescalings (Py o R;,l)NGN are tight
in C([0,1]), for an arbitrary choice of the regeneration laws (pn)nen, if and only if the following
conditions hold:

(1) the diffusive rescalings (PP™ o RV )ien and (P o R en are tight in C([0,1]);
(2) the bulk excursion law satisfies the following integrability bound:

i<t [T 1
sup PPulk (Hmoj[;tlxl > a) = O(a2> as a1 oo. (3.1)

We point out that a slightly weaker version of Theorem ﬂ was proved in [CGZO7h].
To make a link with the previous section, we set M, := maxg<;<; |z;| and observe that

pulk ( MAXo<i<t @l < iEloulk Mg o _
Vi a? t {%i>a}

Thus condition in Theorem is satisfied if M2/t is uniformly integrable under PP"'¥. We then
obtain the following corollary of Theorems [2.2] and [2.4}

Proposition 3.3. Condition (2)) in Theorem is satisfied if PP is chosen among {PP™ P§¥c P§xc2},
see (2.2) and (2.6), for a random walk satisfying Assumption .

In this section the word “excursion” has a more general meaning than in Section
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Remark 3.4. Condition (1)) in Theorem is satisfied too, if PPY¥ is chosen among {PP™ P§x, Psxc2}
and P is chosen among {P,,, Pme* Pmea2l ynder Assumption . Indeed, the diffusive rescalings
of P,,, PPl Pmea qngd P converge weakly to Brownian motion [Donbl1], bridge [Lig68l, [DGZO05],
meander [BolT6| and excursion [CC13|; in the discrete case, the diffusive rescalings of P22 and
P*°2 converge weakly to two-sided Brownian meander [Bel72] and excursion [Kai76].

3.2. Pinning and wetting models. An important class of laws Py to which Theorem applies
is given by pinning and wetting models (see [Gia07, [Gialll [Hol09] for background).

Fix a random walk (S, )nen, as in Assumption[2.1]and a real sequence & = (£, )nen (environment).
For N € N, the pinning model P?V is the law on RIV! defined as follows.

e Discrete case. We define

P%((S@,...,SN) = (50,...,$N)) 622;1{”1{5":0}

P((S1,...,Sn) = (s1,...,5n)) 7 7

where va is a suitable normalizing constant, called partition function.

o (Continuous case. We assume that &, > 0 for all n € N and we define Pf\, by

T10, (f(5n = sn—1) sy + €, Go(dsn))
Z
where f(-) is the density of S; and Jy(+) is the Dirac mass at 0.

Note that P%, fits Definition [3.1| with regeneration epochs {k € [N]: s = 0} (the whole zero level
set) and PPulk = pexc2 pfin — pmea2 (which means PPk = PP, Pfin = P, in the continuous case).

Another example of law Py as in Definition is the wetting model Pjg\’,Jr7 defined by

P% ((So,---,Sn) € (dso, ..., dsy,)) = do(dso)

)

PS5 () =P5(+51>0,50>0,...,5v>0).

The bulk excursion law is now PP = P$*¢ | while the final excursion law is P{i" = Pjea,

Finally, constrained versions of the pinning and wetting models also fit Definition [3.1
PY()i=Pi(lsn =0),  PR™()=PF (- |sy =0).

The final and bulk excursion laws coincide (Pf* = P$*2 for P§¢, Pin = Pexc for P§ ).

Proposition [3.3] and Remark [3.4] yield immediately the following result.

Theorem 3.5 (Tightness for pinning and wetting models). Fiz a real sequence £ = (£,)nen-
Under Assumption the diffusive rescalings (Py o R&l)NGN of pinning or wetting models Py €
(P, PST, PSS, PST°) are tight in C([0,1]).

This result fills a gap in the proof of [DGZ05, Lemma 4], which was also used in the works
[CGZ06)], [CGZ0Ta). A recent application of Theorem [3.5| can be found in [DOIS].

Pinning and wetting models are challenging models, which display a rich behavior. This complexity
is hidden in the regeneration law py = p?v. This explains the importance of having criteria for

tightness, such as Theorem [3.2] which only looks at excursions.

Remark 3.6. There are models where regeneration epochs are a strict subset of the zero level set.
For instance, in presence of a Laplacian interaction [BCI0L [CDO8, [CD0O9], couples of adjacent zeros
are regeneration epochs. Theorem|3. can cover these cases.
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4. PROOF OF THEOREM

We fix a random walk (S,)nen, which satisfies Assumption for simplicity with o2 = 1. We

split the proof of Theorem in three steps. To prove (2.4) we may take n > ng, with ng as in
Assumption because (2.4)) holds for any fixed n, by M,, € L.

Step 1. We use the shorthand UI for “uniformly integrable”. In this step assume that

MT’% under P,, (resp. under P™°%) is UI, (4.1)
and we show that )
% under P (resp. under PS°) is UT. (4.2)

Let us set M, ) := maxa<i<p [Si]. Since M,, < max{ Mg, /2], M[n/2,n}, it suffices to prove that
M[%’n/Q]/n and M[2n/2,n]/n are UL By symmetry, (4.2) is equivalent to
2 .
% under PP (resp. under Pe°) is UI. (4.3)

We take n even (for simplicity). We show that the laws of V ,,/5 := (S1,...,5,/2) under P"
(resp. P¢*¢) and under P,, (resp. P*®) have a bounded Radon-Nikodym density:

PRV, 5 € dz) PeXC(Vn/g € dz)
S PV e dn) < ( 2 PV € ) u
Since M, /5 is a function of Vn/g, it follows that (4.1)) implies (4.3) (note that M, o < M,).
It remains to prove . By Gnedenko’s local limit theorem, in the discrete case
Yn > ng : P(S,=0)> f , iléfz) P(S, =2z) < ﬁ , (4.5)
enee PPV, 5=2) P(Spo=-2,2) _C
Po(Vis=2)  PE,=0) ¢ >

which proves the first relation in 1] in the discrete case. The continuous case is similar, since
fn(0) > 7 and sup,cg fulz) < 75 for n > no, under Assumption
To prove the second relation in (4.4)), in the discrete case we compute

P%XC(Vn/Q = z) _ Po(Sl >0,..., Sy > 0) Pzn/2(51 > 0,. ~7Sn/2 1> 07Sn/2 = O)

Pmea(V, o =2)  Po(S1 >0,...,8-1>0,8,=0)P. (S5 >0,...,5,2>0) '
where P, is the law of the random walk started at So = z. For some ¢; < oo we have

Po(S1 >0,...,5,>0) < f’
by [Fel71l Th.1 in §XI1.7, Th.1 in §XVIIL.5]. Next we apply [CCI3| eq. (4.5) in Prop. 4.1] (with
an = v/n(1+0(1))), which summarizes [AD99l [VV09]: for some ¢y € (0, 00)
PQ(S1 >0,. . Sn 1 >0 SH—O) > n3/2 .

As a consequence, if we rename n/2 as n and 2,/ as , it remains to show that

an(Sl >0,...,8,-1>0,5, = 0)
S S < 00. 4.6
T RS S0, 550 9
By contradiction, if (4.6) does not hold, there are subsequences n = ny € N, x = z;, > 0,
for k € N, such that the ratio in (4.6) diverges as k — oo. We distinguish two cases: either
liminfy_ 0o xx/y/Tk = n > 0 (case 1), or iminfy_, o xx/+/7k = 0, i.e. there is a subsequence ky with
xi, = o(y/nk,) (case 2).

In case 1, i.e. for x > ny/n, the denominator in (4.6)) is bounded away from zero:
. > ..
Py(S1>0,...,8,>0)>P, m /(S >0, ,Sn>0)m>Pn(Bt>0Vte[0,1])>0,

Zn/2
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by Donsker’s invariance principle [Don51] (B = (B;)¢>0 is Brownian motion started at 7). For the
numerator, by [CC13| eq. (4.4) in Prop. 4.1] which summarizes [Car05, VV09],

Py(S1>0,...,8,-1> 0,8, =0) < £ P(51 <0,..., 8, <0) < 3,

for suitable c3, ¢4 € (0,00). Then the ratio in (4.6) is bounded, which is a contradiction.
In case 2, i.e. for x = o(y/n), by [CC13] eq. (4.5) in Prop. 4.1] we have

Px(Sl >0,...,5,.1>0,8, = O) ~ V- (Z‘) ﬁ s (47)

n—

for a suitable V™ (x). Since {S1 > 0,...,58, > 0} = U,,on151 > 0,...,8m_1 > 0,5,, = 0} as.
(note that the random walk is recurrent), we get

P,(S; >0,...,8,.1>08,>0) ~ V (z)2a«

n—oo vn?
see also [Donl2, Cor. 3]. Thus the ratio in (4.6]) is bounded, which is the desired contradiction.
This completes the proof of the second relation in (4.4]) in the discrete case. The continuous case
is dealt with with identical arguments, exploiting [CC13, Th. 5.1]. O
Step 2. In this step we assume that

2
Sn
n

under P,, (resp. under P;;°%) is UI, (4.8)

and we deduce that )
My ynder P, (resp. under P;e®) is UI. (4.9)

n
Observe that (|S;|)o<i<n is a submartingale under P,,. Let us show that (|S;|)o<i<n is a sub-
martingale also under P**® (for every fixed n € N). We set for m € N and z € R
gm(x) =Plx+S51>0,2+5,>0,...,2+ S, >0),
with ¢o(z) := 1. Then we can write, for any n € N, i € {0,1,...,n— 1} and x > 0,

(¥) Gn—(i+1)(v)
n—i(x)

Since y — (y — ) and y = 1(g,00)(¥) Gn—(i+1)(y) are non-decreasing functions, it follows by the
Harris inequality (a special case of the FKG inequality) and E[X;] = 0 that

(yx)P(Xledyx)./Ooow

Since (]S;|)o<i<n is a submartingale, also (Z; := (|S;| — K)")o<i<n is a submartingale, for any
K € (0,00). Doob’s L? inequality yields, for P,, = P,, or P,, = P (recall (2.3))),

1
PR [Si1 € dy| S, =] = 2 P(Xi € dy - ).

B[S - Si] Si=a] = [ P(X1 € dy—2) = 0.

R

2
En[(My, — K)2 1 jpr, 1)) = En[( max Zi) } < AE,[Z2] = 4B, [(Sn — K)? s, 5 k)] -

0<i<n
For M,, > 2K we can bound M2 < 4(M,, — K)?. Since (S,, — K)? < 82 for S,, > K, we get
B [M7 L, >20y] S T6En[S71(s,50)] -
We finally choose K = %\/2%, for ¢t € (0,00), to obtain
M; S
B [T Los >t}} =10 E”[ n ]l{i—%%}} ’
This relation for P,, = P,, (resp. P,, = P®) shows that (4.8 implies (4.9). O

Step 3. In this step we prove that (4.8)) holds, completing the proof of Theorem We are going
to apply the following standard result, proved below.

Vt>0.

Proposition 4.1. Let (Y,)nen, Y be random variables in L', such that Y,, — Y in law. Then
(Yo)nen is Ul if and only if lim,,_,o E[|Y,|] = E[|Y]].
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Let us define

S
Yn = o

Since S,,//n under P,, converges in law to Z ~ N(0,1), we have Y,, — Z? in law. Since E,[|V,|] =
= E[Z?] for all n € N, relation (4.8) under P,, follows by Proposition

Next we focus on P2 Tt is known [Bol76] that S,/+/n under P2®* converges in law to-
ward the Brownian meander at time 1, that is a random variable V' with law P(V € dz) :=
ze /2 1(0,00)(x) dz. Therefore Y,, — V2 in law, under P¢2, Since E[V?] = 2, relation under
Pe® is proved once we show that

lim Emea[s } —9. (4.10)

n— oo

To evaluate this limit, we express the law of S,,/y/n under P** using fluctuation theory for
random walks. By [Car(05| equations (3.1) and (2.6)], as n — oo

mea n S n(l—a
P (S € de) = ( / | P (2 € o= B) Ly (9) a0,
where i, is a finite measure on [0, 1) x [0, 00), defined in [Car05] eq. (3.2)]. Then
mea [ Sp ( Ln(l a)J) Ln(l o)) 2p Sin(1—a)]
E" [n} (V27 + o(1 // }HBE{ Uz }+/3 (7ﬁ >O)}dun.

By the convergence in law (under P) S,,/v/n — Z ~ N(0,1), together with the uniform integrability
of (S,/y/n)? that we already proved, we have as n — oo

(Sfna—ay))’ } 21—«
Cha-a] (1 _a)E[(27)?] =
B[ (1 -a)E((27] = 52,
.
E[Lﬁ”] —VI=aB[z) =22, (Sl 5 0) 5 P(Z>0) =1,

uniformly for « € [0,1 — §], for § > 0. By [Car05, Prop. 5] we have the weak convergence

B

_82
Vamarn ¢ A

pin (dar, dB) = p(da,dp) =

2
and note that u is a finite measure on [0,1) x [0, 00). Then lim,,_, ., EP* {%} equals

1 e} 2 1
—a - _8 a
/O (/0 {Le+2pde 4 1p2) Lo e cw)cm:/0 {2+ Vi-a+Valda=
which completes the proof of (4.10)). O

Proof of Proposition[{.1 We assume that Y,, — Y a.s., by Skorokhod’s representation theorem. If
(Yo)nen is UL then Y,, — Y in L', hence E[|Y,|] — E[|Y]].

Assume now that lim,_,. E[|Y,|] = E[|Y]] < co. Since ¥;, — Y a.s., dominated convergence
yields limy, o0 E[|Ya|1q)y, <] = E[[Y [1{y|<ry] for T € (0, 00) with P(]Y'| = T') = 0. Then

Jim E[[Y, |1y, >m] = lim (E[|Yall = E[[Yallqy, <)) = BV Ly is1y] -

Since limz o E[|Y |1y |>7}] = 0, this shows that (Y;,),en is UL O
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5. PROOF OoF THEOREM [2.4]

We fix a random walk (S;,)nen, Which satisfies Assumption in the discrete case (the continuous
case is covered by Theorem [2.2), with 02 = 1. We proceed in two steps.

Step 1. We assume that M2 /n under P¢#2 is Ul and we prove that M2/n under P&*? is UL As
in Section 4} it suffices to show that, with V', )5 := (S1,...,S,/2) and ng as in Assumption

pexc2(y o 4
L P ) < o
If we define T := min{n € N: S, =0}, we can compute (recall (2.6))
P&V, 5 = z) B P(T'>n)P, (T =n/2)
pmea2(V, »=2) P(T=n)P, ,(T>n/2)’

where P, is the law of the random walk started at Sy = z. By [Kes63], as n — oo

? __(1+0(1)), (5.2)

V21 n3/?
hence, summing over n, we get P(T' > n) = 2nP(T =n) (1 + 0(1)). Then (5.1)) reduces to

nP,(T =n)
su sup ———mm—
TLZTIL)U 3;218 PI(T > n)

Arguing as in the lines after (4.6)), we need to show that the ratio in (5.3]) is bounded in two
cases: when x > ny/n for fixed n > 0 (case 1) and when = = x,, = o(y/n) (case 2).
In case 1, i.e. for x > ny/n, the denominator in (5.3 is bounded away from zero:

P(T=n)=

(5.3)

where (B;)¢>0 is a Brownian motion [Don51]. Then the ratio in (5.3)) is bounded because sup,c; P, (T =
n) < %/ for some ¢’ € (0,00), by [Kair5, Cor. 1].
In case 2, i.e. for x = o(y/n), we apply [Uchlll, Thm. 1.1], which generalizes (5.2):

P,(T =n) =a"(x) (1+0(1)) as n — oo, uniformly in xz € Z,

o
V2m n3/2
for a suitable a*(x) (the potential kernel of the walk). Then P, (T > n) = 2nP,(T =n) (1 + o(1)),
hence the ratio in (5.3) is bounded. This completes the proof of ([5.1)). O

Step 2. We prove that M2 /n under P°? is Ul. We argue by contradiction: if this does not hold,
then there are n > 0 and (n;);en, (K;)ien, with lim;_, . K; = oo, such that

mea2 Mi )

We are going to deduce that M?2/n under P,, is not UI, which contradicts Theorem [2.2

We show below that we can strengthen (5.4)), replacing Eﬁf"12 by EZ¢a2 for any m € {n;,...,2n;}:
more precisely, there exists 77/ > 0 such that

Epe? [ S n{Mi%J >y, VieN,Vme{n,...,2n;}. (5.5)

To exploit (5.5), we work on the time horizon 2n, for fixed n € N. We split any path S = (Sp, ..., S2,)
with Sop = 0 in two parts S = (Sp, S1,...,5,) and S = (S5, Syt1,.-.,52), where o := o9, 1=
max{i € {0,...,2n} : S; = 0}. If S is chosen according to the unconditioned law Pg,, then S has
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law P322 | conditionally on o. If we set Ms,, := max \5’| = max,<i<2n |Si|, the bound My, > Mo,

gives

(M 11.)2 (M n) mea2 n—r
E[ B 1 g2 ’;}} > E{ B g } ZE{E2n T[ > ]l{M22:1"">K}} H{U:r}] :
We now restrict the sum to 7 < n, so that M3, . > M2, to get
(M3n,)?
B[S g

K}] > 1P(oan <) inf Eme2[Miq

M.
{ Mol n<m<2n no Ty ">K}}

Note that lim,,_,o P(02,, < n) = P(B, # 0Vt € (1,1]) =: p > 0 (actually p = 1, by the arcsine law),
hence 7 := inf,, ey P(02, < n) > 0. If we take n = 2n; and K = K;, by (5.5 .

: (Mzn;)? o/
(g | 2 f E[C5E 1 (M32'3)2>%}} 5 70

liminf sup E[(
K—00 neN ieN { 2
This means that M2 /n under P,, is not UL, which contradicts Theorem

It remains to prove (5.5). We fix C € (0, 00), to be determined later. We may assume that K; > C
for all i € N. To deduce (5.5)) from (5.4)), we show that for some ¢ > 0

Pmea2 (Mn — Z)

inf P T e 5.6
neN, me{n,....2n}, z€Z: z2>Cy/n PmcaZ(Mn = Z) - ( )
Fix m > n and z > 0. If we sum over the last £ < n for which M,, = |S¢|, we can write
PRet2(M, = 2) = Y PRe(My_y <2, [Se| =z, |Si| <zVi=L+1,...,n).
=1
We write Pea2(.) = P(-|E,,), with E,, := {S1 # 0,...,S,, # 0}, and we apply the Markov
property at time . The cases Sy = z and Sy = —z give a similar contribution and we do not
distinguish between them (e.g. assume that the walk is symmetric). Then
1 n
mea2 _ _ — . ; _
P4 (M, = z) = 7P(T =) Z P(Mi—1 <z,|Se| =2, E))P.(|Si| <2V1<i<nm—1{ En_).

{=1 A

The same expression holds if we replace P32 by Pmea2 namely

1

P(T>n)z (M1 < 2, [Se| = 2, E) P.(|Si] <2 V1 <i<n—{ E,)

(=1

Pmea2(M, = z) =

B
Since P(T > m) < P(T > n), to prove (5.6)) we show that A > ¢ B, with ¢ > 0. We bound

B<P.(Si<zVi=1,....n—{)=Po(E,_,),
where we set E,_ := {51 <0,...,S5, <0}. Similarly, for z > Cy/n we bound
A>P(S;<zVi=1,....n—4, S;>0Vi=1,....,m—{)
=Po(E,_,, Si>—zVi=1,...,m—10) >Po(E,_,)Po((—5;) <Cy/nVi=1,....m—{|E,_,).

D

It remains to show that D > ¢. Let us set S; := —S; and E,j =E, = {5’1 >0,...,5 > 0}. If we
write r:=n — £, for m € {n,...,2n}, we have m — ¢ =r + (m —n) < r + n, hence

D>P(S;<icyrVi=1,...,r|EF) -P(S;<iCy/nVi=1,...,n), (5.7)

by the Markov property, since (S;);>, under P(-|E;") is the random walk S started at S,..
By [Bol76l, Don51], as r — oo the two probabilities in the right hand side of (5.7)) converge
respectively to P(sup,e(o 1 m < 1C) and P(supyepo,1) Bt < 1C), where B = (By);>¢ is Brownian



10 FRANCESCO CARAVENNA

motion and m = (my).e0,1] is Brownian meander. Then, if we fix C > 0 large enough, the right
hand side of (5.7)) is > ¢ > 0 for all r,n € Np. O

6. PROOF OF THEOREM

Let us set Qn :=Ppy o Rj\,l. We prove that conditions and in Theorem are necessary
and sufficient for the tightness of (Qn)nen-

Necessity. The necessity of condition is clear: just note that, by Definition the law Py
coincides with Pi* (resp. with PRUK) if we choose the regeneration law py to be concentrated on
the single set {0} (resp. on the single set {0, N}).

To prove necessity of condition ([2)), we assume by contradiction that fails. Then there exists
n > 0 and two sequences (t,)nen, ( )neN, with lim,,_, o, a, = 00, such that

M n
ppulk( i > here M, := . 1
v\ Vi >ap | > oz Vn eN, where  M; = max ;] (6.1)

We may assume that a,, € N (otherwise consider |a, | and redefine 7).
Define N,, := t,, a2 and let py,, be the regeneration law concentrated on the single set {0, ¢,,, 2t,,, ..., N, —
tn, N, }. Let Py, be the corresponding probability on RIN"] | see Definition We now show that
Qn =Pn o Ry is not tight on C([0,1]).
Any path f(t) under Qu, vanishes for ¢ € {0, a%, a%, A a%, 1}, which becomes dense in
[0,1] as n — oco. Then, if (Qn, )nen wWere tight, it would converge vgeakly to the law concentrated
on the single path (f; = 0)¢cjo,1]. We rule this out by showing that

lim inf QNn< sup | fi| > 1> >1—-e"7>0. (6.2)
n—o0 te[0,1]
[N,] o 2 (4 ._ o ) )
For x € R and j = 1,...,a; we define M, := max;e(j_1)t,,... jt.} [7i|, so that

M(j)

X L)=P i N, | =P .
Qw, (t;épl] | fe| > > N, (i_oﬁlaXN |z:| > \/7) Nn< max , f > ap,
2

The random variables M, @) for j=1,...,a; are independent and identically distributed, because
they refer to different excursions. Then we conclude by (6.1):

(lz (lz
Mt n 7} n B
QNn(sup f >1>:1— 1—Pb“1k<">an) >1—(1-—+ —— 1—e".
te[0,1]| ol b Vin a2 n—oco

Sufficiency. We assume that conditions and in Theorem hold and we prove that
(QN)NEN is tlght in C([O7 1]), that is

Vn>0: lim sup Qun(T(6) >n) =0, (6.3)
610 NeN
where I'(0)(f) := supj,_ <5 | ft — fs| denotes the continuity modulus of f € C([0,1]).
Given a finite subset U = {u; < ... < u,} C[0,1] and points s,t € [0,1], we write s ~y t iff no
point u; € U lies between s and ¢. Then we define
Lo (8)(f) = sup |fe — fsl-
s,t€[0,1]: s~yut, |[t—s|<8
Plainly, if f(u;) = 0 for all u; € U, then I'(d)(f) < 2T (0)(f). This means that in (6.3) we
can replace F((S)( ) by Ty (8)(f), where U is any subset of [0,1] on which f vanishes. We fix
U={L .. L } where t; are the regeneration epochs of Py. It remains to show that

= {&,
Vn>0: lim sup Qn (fU((S) >n)=0. (6.4)
540 NeN
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We set for short Qfi* := Pfin o R, and QbW := PPulk o R;!. By Definition
N+1

Qn(Tu(6) <n) = Z Z pnv({t1, - tn H Q?ﬁ:}f t; ( mfs) < U\/ﬁ) X

n=1 0=t <...<tn, <N

QT <y )

Note that we have the original continuity modulus I'. Let us set

bulk £y ._ bulk N [N
9y (0) = NeN, 2<n<N+1 H Qi ( (F=wd) =n m) (6.5)

0=t; <. .<t,<N i=1

fin L : fin L
gy"(0) = NEN,H%fgt<N N’t( (7=0) < T N=i )
so that we can bound QN(f‘U(é) <n) > gbulk(é) gf}“(é) (we recall that py(-) is a probability). We

complete the proof of (6.4) by showing that
VY >0: hm gb‘ﬂk(é) gf;“(é) >1.

We first show that lims o g,ﬁin(é) > 1, for every n > 0. We fix 6 € (0,1) and consider two regimes.
For t < (1 — )N we can bound (recall that (Qf"),cy is tight by assumption)

i ﬁﬂ L < / > ) .
NEN, 15{(1—0)1\1 ( N- K ) mf Qi"(I(3) <m) W L
On the other hand, for t > (1 — )N we can bound

| (K < /7 ) 2 ( <12) < h,(0).
v oS aren QTS0 < /75 ) = inf QF (ma 17 < 4%5) = (©)
For any n > 0, we have lims o gﬁn(é) > limgo hy(0) = 1, by the tightness of (Qf")sen.
To complete the proof, we show that lims o gb‘“k((S) > 1, for every n > 0. Note that
inf Qb“lk( max |fs| < a) = inf Ptbulk< max |z;| < ax/??) >1-— LC;),
teN s€[0,1] teN =000t a

where lim,1o €(a) = 0, by assumption . We may assume that a — €(a) is non increasing. Fix
6 € (0,1). Given a family of epochs 0 < t; < ... <t, < N, we distinguish two cases.

e For ON < t;41 —t; < N we can bound

i (G2 < mfit ) 2 imf QM (r) ) = @),

and note that for fixed 1, we have lims o F, 6(6) = 1, because ( bull), y is tight.
e For t;y1 —t; < ON we can bound

bulk N N bulk n N
tip1—t; (F(ti+1—ti 6) < n\/ tiy1—ts ) = Qti+1_ti( gl[(%}i] |f9‘ < 2\ tiyi—ti )

4(t,’, 7t7;) 8(251‘ 725,;)
- Mt e(322) = e (- Mg e(72))
where the last inequality holds for 6 > 0 small, by 1 — z > e~ for z € [0, 1].
We can have t;11 —¢; > ON for at most [1/6] values of ¢, hence

Y

n—1

g?“lk(é) > Hexp( 1“ t)e(ﬁ)) > Fmg(é)% exp(—n%e(zne)).
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Given 1 > 0 and € > 0, we first fix # > 0 small enough, so that the exponential is greater than 1 — ¢;
then we let 6 — 0, so that Fn,g(é)é — 1. This yields limso g};‘llk(é) >1—¢€. As e > 0 was arbitrary,

we get limgo g};ulk(é) > 1. 0
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