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A model for multiscaling and clustering of volatility
in financial indexes

Alessandro Andreoli, Francesco Caravenna, Paolo Dai Pra and Gustavo Posta

Abstract— We propose a stochastic model which
matches some relevant stylized facts observed in time
series of financial indexes, and that are not fully
captured by the models most often used in this context.
These stylized facts concern with the distribution of
the log-returns (increments of the logarithm of the
index). This distribution is not Gaussian, and its
moments obey peculiar scaling relations (multiscaling).
Moreover, absolute values of log-returns in disjoint
time intervals are positively correlated (clustering of
volatility): their correlation has slow (sub-exponential)
decay for moderate time distances (up to few months),
and have a faster decay for larger distances. The
simplicity of the model allows sharp analytic results,
statistical estimation of its few parameters, and low
computational effort in simulations, allowing its con-
crete use in applications such as option pricing.

I. INTRODUCTION

The stochastic modeling of financial indexes has
challenged the scientific community for decades.
The basic model, that has given rise to the celebrated
Black & Scholes formula [6], [16], assumes that the
logarithm X; of the price of the underlying index,
after subtracting the trend, is given by

dx, = o dw,, (1.1)

where & (the volatility) is a constant and (W;);>¢ is
a standard Brownian motion. This model has been
widely used in practice; it shows, however, several
inconsistencies with the data coming from most real
financial indexes. The following is a partial list of
these[ihconsistencies, that we support with the data
of the Dow Jones Industrial Average (DJIA), cf.
Figure 1. We have also analyzed other aggregate
indexes, such as the NIKKEI, and non-aggregate
ones, such as prices of single stocks; the evidence is
that the following features are typical of aggregate
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indexes, but [y or may not appear in non-aggregate
ones.

(1) Model (I.1) predicts a Gaussian law for the
increments X, —X; of the logdrfthnh of the
price (the log-retur The empirical distri-
butions show heavier tails (Figure 1(A)).

(2) According to model (I.1), log-returns corre-
sponding to disjoint time intervals should be
independent. The empirical evidence is that
log-returns are uncorrelated, but not inde-
pendent: in fact, the correlation between the
absolute values |X;.; —X;| and |X;,; — X
has a slow decay in |t —s|, uf fo_hoderate
values for |# —s|. This phenomenon is known
as clustering of volatility (Figure 1(B)).

(3) The volatility may be estimated by computing
the local empirical average of the absolute
values of daily log-returns. Time depepflenfe
of the volatility may be detected by plot-
ting the simple moving average. Figure 1(C)
reveals a very irregular behavior of these
moving averhgds, which have very localized
peaks, in contrast with the constant volatility

prescribed by (I.1).

In order to have a better fit with real data, many
different models have been proposed to describe the
volatility and the price process. Besides the consis-
tency with the stylizéd facts above, it is desirable
to have a model which preserves the basic diffusive
scaling property of (I.1). Consider in fact the time
series of an index (s;)1<j<r over a period of T > 1
days and denote by pj the empirical distribution
of the (detrended) log-returns corresponding to an
interval of A days:

1 T—h _
ph(') = m Zl 6xi+hfxi<')7 Xi = IOg(S,‘) 7d(l)a

[] (1.2)

where d(i) is the local empirical trend of the series
(log(si))1<i<r (see section III) and &, (-) denotes the
Dirac measure at x € R. The statistical analysis of
various indexes shows that, for 4 within a suitable
time scale, p;, obeys approximately a diffusive scal-
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concave shape (—c-x?).
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FIG. 1: Some features of the DJIA time series (1935-2009)
that are inconsistent with model (1.1).
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F1G. 2: Diffusive scaling of the DJIA time series (opening
prices 1935-2009)

ing relation (cf. Figure 2):
;

"

where g is a probability density with tails heavier
than Gaussian.

A subtler scaling property has been recently
pointed out in [11], [4], [17]. If one considers the
g-th empirical moment

1.3)

my(h):= [ 17 pu(ar). 14
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FIG. 3: Multiscaling of empirical moments of the DJIA
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from relation (I.3) it is natural to guess that m,(h)
should scale as h%/2. This is indeed what one ob-
serves moments of small order g < g (with g ~ 3
for the DJIA). However, for mBnents of higher
order g > g, the different scaling relation KA (q), with
A(g) < g/2, takes place, cf. Figure 3 (see also [11]
for similar pictures concerning other indexes). This
is the so-called multiscaling of moments.

Within the variety of models that have been
proposed, both theorists and practitioners appear to
have selected models that, on the one hand, are
simple enough to allow statistical estimation of pa-
rameters and simulations, on the other hand, reason-
ably explain some of the facts mentioned above. In
discrete-time, autoregressive models such as ARCH
and GARCH [12], [7] have been widely used. In
continuous time, the basic model dX; = ocdW, has
been modified by letting o = o; be a stochastic pro-
cess, often the solution of a Stochastic Differential
Equation driven by a general Lévy process. A sys-
tematic account of these stochastic volatility models
can be found in [5]. More recent developments
along these lines include the generalized Ornstein-
Uhlenbeck processes and the COGARCH (GARCH
in continuous time) [13], [14]. All these models
involve several parameters, whose calibration with
real data is itself a subject of research.

One of the most celebrated, and widely used,
of these model, the GARCH ([12]), exhibits non-
constant volatility, clustering of volatility and non-
Gaussian distribution of log-returns. However, a
closer analysis shows that

e multiscaling of moments is not present, at
least for the range of values of the parameters
that most often occur in practice;

e correlations of log-returns decay exponen-
tially; in contrast, in the DIJIA (cf. Fig-
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ure 1(C)), as well as in other indexes, like
the Nikkei, the decay of correlations is slower
than exponential, up to a time gap of about
100 days.

More refined version of GARCH (for instance FI-
GARCH, see [3], [8]) have been proposed. It should
be stressed that although models with sufficiently
many parameters can be adapted to data, the sound-
ness of the procedure of statistical inference may be
very weak.

In this paper we show that all stylized facts that
we have mentioned can be all accounted for, with
a striking degree of precision, by a model which is
relatively simple and depends on few parameters.
The baslc idea is that non-constant volatility can
be obtained by a (possibly random) time change in
model (I.1), in other words a process of the form

Xl = W[m

for somnegative, increasing process I;. In par-
ticular, localized peaks in the empirical volatility as
in Figure 1(C) could correspond to singular points
of %I,. The idea of using random time changes in
this context is certainly not new, see for example [2],
[9], [10]. In part inspired by [4], [17] we propose
a specific class of time changes, where shocks[at-
urally appear as points of a Poisson processes.[The
full definition of the model will be done in section II,
where our main results are also stated. In section III
we discuss the estimation of the parameters of the
model, and provide comparisons with real data.

II. THE MODEL AND ITS MAIN
PROPERTIES

Given a real number A > 0 and a probability v
on (0,e0), our model is defined upon the following
three sources of alea:

e a standard Brownian motion W = (W;);>0;

e a Poisson point process 7 = (T,)ucz on R
with intensity A;

a sequence X = (0y),>0 of i.i.d. (independent
and identically distributed) positive random
variables. The marginal law of the sequence
will be denoted by Vv (so that ¢, ~ v for all n)
and for conciseness we denote by o a variable
with the same law Vv.

We assume that W, .7, ¥ are defined on some proba-
bility space (Q,.%,P) and that they are independent.
By convention, we label the points of .7 so that
Tp < 0 < 71. We will actually need only the points of
T N [1p,0), that is the variables (1,),>0. We recall
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that the random variables — 1y, Ty, (Ty+1 — Ty )n>1 are
iid. Exp(A) (exponentially distributed with mean
A~1). Although some of our results would hold
for more general distributions of .7, we stick for
simplicity to the (rather natural) choice of a Poisson
process. For ¢ > 0, define

i(t) :=sup{n>0:1, <t} =#{7nN(0,¢]}, (IL1)

so that 7, is the location of the last point in T
before ¢. Consider also a strictly increasing, concave
function 6 : [0, 4o0) — [0,+e0), such that 6(0) = 0.
Now we introduce the process I = (I;),;>0 by

I = Gz%t)e (A(t - Ti(t)))
+) o 0(A(ti—T 1)) — 030 (—A1), (I1.2)
=1

with the agreement that the sum in the right hand
side is zero if i(#) = 0. We can then define our basic
process X = (X;);>0 by setting

X =W,. (I11.3)

Note that [ is a strictly increasing process and is
independent of the Brownian motion W. Thus our
model may be viewed as an independent random
time change of a Brownian motion, and may be
interpreted as follows.

e The points of .7 are the times at which a
“shock” in the market occurs.

e Between two consecutive points of .7, say Ty
and Ty, 1, the log-price X evolves as a Brown-
ian motion with possibly random volatility o,
and subject to the deterministic time change
t—T— 0 (A —11)).

As we have mentioned above, the idea of modeling
the reaction of the market to a shock by a nonlinear
time change is not new. The prototype of such a
time change, as proposed in [4], [17], is give by the
function 6(s); = s*" for some D < 1/2; see also [15]
for applications of this specific time change.

The key point of this work is that, by specifying
the distribution of the shocks, we obtain a simple
model, for which the agreement with stylized facts
can be checked both numerically and by rigorous
analysis.

In what follows we state the most relevant prop-
erty of the model, under the following assumption
on the function 6.

Assumption A. The function 0 : [0, +o0) — [0, +o0)
satisfies the following properties:
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(1) 6 is concave, strictly increasing, 6(0) =0,
and O(s) — +oo as s — +oo.

(2) 0 is €' on (0,+o), and there exists a con-
stant 0 < D < % such that

!
Jim 28

— — =1.
510 2Ds2D—1

2D

In particular, 0(s) behaves as s= near s = 0.

All proofs can be found in [1].

A. BASIC FACTS

We begin by stating some properties on the dis-
tribution of X,. From now on we write E(c9) for
Jolv(do).

Proposition 1: For every g > 0 we have

E(|X;]?) < oo for some (hence any) ¢ > 0

— E(0%) <. (114
Moreover, regardless of the distribution of o, for
every ¢ > (1 —D)~! we have

[IE [exp (Y)X:|9)] = oo, Vi>0, Vy>0. (L5)
Note that, for D < 1/2, (1—D)~! < 2; thus equation
(IL.5) implies that the tails of X; are heavier that
Gaussian. More detailed relations between the tails
of v and those of X; can be found in[[T]].

The statistical estimation of the parameters of the
model, that will be discussed in section III, is based
on the ergodic behavior of the empirical averages
of log-returns, that is guaranteed by the following
result.

Proposition 2: The process (X;);>0 is a zero-
mean martingale (provided E(o) < +o0), with sta-
tionary and ergodic increments. In particular, for
every 0 >0, k € N and for every choice of the

intervals (aj,b;), ..., (ak,bx) C (0,00), the limit
1 N-1
]\}l_r)nm N nZ:() F<Xn5+b1 _Xn5+a1 PEERS] XnBJrhk _Xn5+ak)

=E[F(Xp, —Xays - Xp, —Xa)],  (IL6)
holds almost surely and in L', provided F : RF —
R is a measurable function such that E[|F (X, —
Xays- s Xp, — Xg,)|] < oo,

We remark that the martingale property of (X;) is
essential for the use of the model in pricing options
in absence of arbitrage.
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B. MAIN RESULTS

The next result shows that the distribution of log-
returns obeys an approximate diffusive scaling, with
a limiting law with power-law tails.

Theorem 3: As h ] 0 we have the convergence in
distribution

Xt _Xt a
Bhien %) - : i W,

where f is a mixture of centered Gaussian densities,

namely
tl/Z*D tl*ZDXZ
6V4Dxw eXp<_ 4Dz ) °
11.8)

We stress that the function f appearing in (IL.7)—
(I1.8), which describes the asymptotic rescaled law
of the increment (X;,;, —X;) in the limit of small
h, has a different tail behavior from the[demsity of
(X;4r — X;) for fixed h. For instance, when[c has
finite moments of all orders, it follows by (II.4) that
the same holds for (X;,, —X;). However, from (I.8)
and a simple change of variables we get

(IL7)

Flx) = /0 " V(do) /0 Cdde M

/R %] £(x) dx = (2D)7/2E(0¥) /0 T Qe o014 g

which is finite if and only if ¢ < ¢* := (1/2 —
D)~!. Therefore the density f has always polyno-
mial tails, independently of the distribution of o©:
Jr 1x|9f (x) dx = oo for g > g".

This singular behavior of f]produces peculiar
scaling properties on the moments of X;, in agree-
ment with what shown in Figure 3.

Theorem 4 (Multiscaling of moments): Let g >
0, and assume E(07) < +oo. Then the quantity
mg(h) = E(|X;4+n—X:|?) = E(|Xp|?) is finite and has
the following asymptotic behavior as % | 0:

C, (Ah)? if g<q*
mg(h) ~ { Cy(Ah)*log(F;) ifq=q"
C, (Ah)Patl if g > g*
where g* := ﬁ.

The constant qu € (0,%0) is given by one of the
following expressions

EQWE(") [ (06" e s ifg<q

E(W[*) (%) (20)9" o ra=q

E(|W;|9)E(c?) [/0 ((14x)? —xﬂ’)% dx + W] if g>q*
(IL9)
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It follows, in particular, that the following relation
holds true:

q . *
e logmyg(h) 5 ifg<gq
= 1m - -————- =
7 hlo rogh Dg+1 ifg>g"
o q_gn 10)

The explicit form (I1.9) of the multiplicative constant
C, will be used in section III for the estimation of
the parameters of our model on the DJIA time series.

Our final results establishes the clustering of
volatility. Note that, since (X;);>o iS a zero-mean
martingale, its increments have zero correlation. We
show here sharp asymptotics for the correlations of

the absolute log-returns. We let
Cov(X,Y
Var(X)Var(Y)

denote the correlation between two random variables
X and Y.

Theorem 5 (Volatility autocorrelation): Assume
that E(O'z) < oo, Define, for x > 0

¢(x) := Cov(c1/0'(S), 5 /0'(S+x)),

where 6 ~ v and S ~ Exp(1) are independent. The
correlation of the increments of the process X has
the following asymptotic behavior as 4 | 0:

(IL11)

= Xl [Xisn = Xi])
2

nVar [0'|W1|\/W}

li X
}:ﬁ)l P(‘ s+h

e M=o Al —s)).

(IL.12)
This shows that the volatility autocorrelation of
our process X decays exponentially fast for time
scales greater than the mean distance 1/A between
the epochs 7, while for shorter time scales the
decay is governed by the function ¢(-). Under our
assumptions on 6(-), it can be showr| that for x =
O(1), the decay of ¢(x) is faster than polynomial
but slower than exponential (see Figure 5).

III. ESTIMATION OF PARAMETERS

We now consider some aspects of our model from
a numerical viewpoint. We compare the theoretical
predictions and the simulated data of our model with
the real time series of the Dow Jones Industrial
Average (DJIA) over a period of 75 years: more
precisely, we have taken the DJIA opening prices
from 1 Jan 1935 to 31 Dec 2009, for a total of
18849 data. For the numerical comparison of our
process (X;);>o with the DJIA time series, we have
decided to focus on the following quantities:
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O

(a) Therpultiscaling of moments, cf. Theorem 4.

(b) The volatility autocorrelation decay, cf. The-
orem 5.

(c) The distribution of X;.

Roughly speaking, the idea is to compute empiri-
cally these quantities on the DJIA time series and
then to compare the results with the theoretical
predictions of our model.

In its full generality, the model has one scalar
parameter, A, and two functional parameters, the
measure Vv and the function 6(-). In this paper we
restrict the analysis to the case, proposed in [4], [17],

of
2D

- [

with 0 < D < 1/2. With this choice, the quantities

0(s) :=

A(+) (see (IL.10)), C;,C, (see (IL9)), and the asymp-

totic volatility autocorrelation
2

p&]: nVar {G\Wm/e'(S)}

(see (I1.12)), are all functions of D,A,E(c),E(c?).
We therefore set up the following procedure for
estimating those four scalar parameters.

e Mo(Ar) (IIL1)

Step 1 The DJIA time series is denoted by (s;)o<i<n
(where N = 18848) and the corresponding de-
trended log-DJIA time series will be denoted
by (xi)OSiSNs where

= log(s;) —d(i),

and d(i) is the mean log-DJIA price on the
preV1ous 250 days from time i (in other terms
d() ZSOZk i g( i))-

Step 2 The empirical evaluation of the scaling ex-
ponent A(g), cf. (IL.10), requires some care,
because the DJIA data are in discrete-time
and therefore no /| 0 limit is possible. We
first evaluate the empirical g-moment ()
over h days, defined by

Z i —xi] 7.

By Theorem 4, for i small the following
relation holds:

BT

(loging(h)) ~ A(g)(log Ah) +1log(Cy)
= A(q)(logh) +log(Ky),
with
K(q) = A9¢, (I11.2)



By plotting (logmiy(h)) versus (logh) one
finds indeed an approximate linear behavior,
for moderate values of & and when ¢ is
not too large (¢ < 5). By a standard linear
regression of (logni,(h)) versus (logh) for
h=1,2,3,4,5 days we therefore determine
the empirical values of A(g) and K, on the
DJIA time series, that we call A(g) and I? .

Step 3 The computation in step 2 provides, in par-
ticular, |the ¢ mstlma@% and Kz, they can be
compared with their theoretical values K, K>
given by (II1.2) and (I1.9), which only depends
on D,A,E(0),E(c?).

Step 4 We théf_compute from data the empirical
volatility autocorrelation p(¢), that i plofted
in Figure 1(B), that has to be Compared with
its theoretical counterpart p(¢) given in (IIL.1).

Step 5 We consider a loss function of the following
form

Alk/4)

20
1\ A

_1>2

20 & \ Aw/a)

o W W(ﬁ(r) )2
=1,

trmer k"

where o, 0, 03,04 are suitable weights and
T controls a discount factor in long-range
correlations. Once «;,0p,03,04 and T are
chosen, we define the estimates of the param-
eters of the model by

(D,X,E(0),E(0?)) := argmin L(D,A,E(),E(c?)).

It should be remarked that the empirical distribution
of log-returns is not fully used in the procedure
above: in fact, we only obtain estimates for the
first two moments of v; in particular, the tails of v
are not estimated. One could alternatively proceed
by choosing v within a certain parametric class,
and estimate the parameters as illustrated above.
For the DIJIA, this turns out to be not relevant
since, for “reasonablg:“ values of oy, 0, 03,04 and
T, E(c?) ~ (E(0)) .

We have then proceeded to the numerical study
of the loss function L(D,A,E(c),E(c?)), with the
choice a; = ap = %, a3 = a4 = 1, T = 40. The

so that ¢ is nearly constant.
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FI1G. 4: Multiscaling of empirical moments of the DJIA:
the red curve is the piecewise linear A(q) in (I1.10).
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FI1G. 5: Volatility autocorrelation of the DJIA (log plot);
the red curve is the graph of the function p in (IIL.1).

function L appears to be quite regular and convex,
and the value of the argmin varies slowly if we
change the choice of o, 00,03,04 and T. We ap-
proximately obtain the following estimates:

D~0.16, 2 ~9.7x107%,

E(0?) ~
In particular, the mean time between two consec-
utive shock is ~ A~ ~ 1000 (working) days, i.e.
about four years.

With these values of the parameters, we can now
check to what extent our model fits the stylized that
have been mentionkdl in the introduction. To begin
with, [the following plots show that multiscaling
of moments (Figure 4) and clustering of volatility
(Figure 5) agree with the corresponding theoretical
behaviors within a striking degree of precision.
Although the agreement with those curves is exactly
what we have aimed for in minimizing the loss L, the
fact of obtaining this precision with the calibration
of four scalar parameters is, we believe, remarkable.

E(0)~ 0.33.
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EIG. 7: Multiscaling of moments in the DJIA time series

(1935-2009) and in a sample from the law of our model.
) The empirical scaling exponent A(q) evaluated in

(B) The integrated right and left tails of the empirical bperiods of 30 years (see legend) and the theoretical

distribution p;(-) and the theoretical prediction (line).

We have then compared the theoretical distribu-
tion p;(-):=P(X; €-)=P(X—Xo€-) fort =1
(daily log-return) with the analogous quantity eval-
uated on the DJIA time series, i.e., the empirical
distribution p;(-) of the sequence (Xj+; —X;)o<i<N—r>
defined by

1 N—t
[b:C) = 7= E(,) Sy () -

In Figure 6(A) we have plotted the bulk of the
distributions p;(-) and pi(-) or, more precisely,
the corresponding densities in the range [—38,+34],
where § ~ 0.0095 is the standard deviation of pj(-)
(i.e., [the_émpirical standard deviation of the daily
log returns evaluated on the DJIA time series). In
Figure 6(B) we have plotted the integrated tail of
pi1(+), that is the function z — P(X; >z) = P(X; <
—2z) (note that X; ~ —X; for our model) and the right
and left integrated empirical tails R(z) and L(z) of
pi(+), defined for z > 0 by

~ #{ie{I,N} 1 xi—xio < -z}

~

L(x): N
Rl = #{i € {1,N} :in—xifl >z} ’

in the range z € [$, 65]. As one can see, the agreement
between the empirical and theoretical distributions
is remarkably good for both figures, especially if
one considers that no parameter has been estimated
using these curves.

We now would like to point out a further aspect,
which goes beyond what we have discussed so far.
The parameters estimation has been based on var-
ious estimators. In particular, we have emphasized
the role of A(g) and p(t), which show the main
facts our model fits with. If we compute those

m

scaling exponent A(g) for D =0.16 (line).

(B) The empirical scaling exponent A(g) evaluated in
subperiods of 30 years of a simulated sample, and the
theoretical scaling exponent A(q) for D =0.16 (line).

estimators on different sub-periods of t years
of data, we would observe a remarkable variability,
in particular in the curve A(g). In Figure 7(A) we
have plotted A(g) evaluated in different sub-periods
of 30 years. This shows that whatever model is to
be used for the DJIA, 30 years are not enough for
the empirical measure of increments to get close to
its ergodic limit. This is indeed consistent with the
model we propose. The Poisson process .7 of the
shocks has an estimated mean inter-arrival time of
about 4 . Thus, in a 30 years period there are
too few events for empirical averages to stabilize.
In Figure 7(B) we plot A(g) evaluated in different
sub-periods of 30 years of a single 75-years long
trajectory, sample from our model. We can see that
fluctuations in the simulated path are consistent with
what seen on real data. A similar analysis on p(¢)
leads to a similar conclusion, see [1] for details.

We conclude this section by mentioning some
facts, concerning the DIJIA, that are not properly
reproduced by the model we have just calibrated.
Given the simplicity of the model and the few
parameters in the game, a perfect matching would
be unrealistic.

e One of the stylizéd fabts motivating our work
is the behavior of the empirical volatility,
plotted in Figure 1(C). A similar plot on
simulated paths shows peaks distributed ac-
cording to a Poiskon] law, which is consistent
with data, but having nearly the same height,
unlike in Figure 1(C). The main reason is
that the law v is our model, as calibrated to
the DJIA, is nearly deterministic. We have
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numerical evidence that this mismatch can
be avoided by using a different scaling time
function 6(-) instead of 22, like the following
one:

2D ifo<r<c

ft) =

P opPPi—¢) ift>c
with ¢ a constant parameter to be estimated.

o Figure 6(B) seems to suggest that our model
slightly overestimate tails of the distribution
of the daily log-return. This overestimation
beco elevant for n-days log-returns with
n of the order of few months.

e Figure 6(B) shows also a small but nonzero
skewness in the distribution of the daily log-
return. Skewness has been analyzed for many
indexes, and roughly follows from the evi-
dence that “large log-returns are more likely
to be negative that positive”. In our model,
X; and —X; are equally distributed, so no
skewness is admitted. At the discrete-time
level, and therefore at the level of simulations,
skewness could be easily introduced in the
framework of the model as follows. Condi-
tionally on .7, the increments AX of the log-
returns are Gaussian; one could replace the
distribution of the increments which follow
closely an event of .7 (those that are most
likely to be large) by a skew “deformation”
of a Gaussian.

IV. CONCLUSIONS AND FUTURE WORKS

We have introduced a stochastic model that, on
the one hand, reproduces relevant stylized facts of
several financial indexes, and, on the other hand, is
simple enough to allow estimation and simulations.
Further current studies are concentrated of the fol-
lowing points:

e we apply the model to option pricing, as
alternative to Black & Scholes and related
models; the comparison with market data and
with the results obtained form other models,
could reveal how our model can detect the
essential features of the markets;

e we are considering various modifications of
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the model, in particular by considering differ-
ent time-change functions 0(-);

e we sfudy the asymptotic properties (consis-
tency, normality) of the estimators we use (see
section III).
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