
A NOTE ON DIRECTLY RIEMANN INTEGRABLE FUNCTIONS

FRANCESCO CARAVENNA

Abstract. A non-negative function f , defined on the real line or on a half-line, is said
to be directly Riemann integrable (d.R.i.) if the upper and lower Riemann sums of f
over the whole (unbounded) domain converge to the same finite limit, as the mesh of the
partition vanishes. In this note we show that, for a Lebesgue-integrable function f , very
mild conditions are enough to ensure that some n-fold convolution of f with itself is d.R.i..
Applications to renewal theory and to local limit theorems are discussed.

1. Introduction

1.1. The problem. A non-negative function g : R→ [0,∞) is said to be directly Riemann
integrable (d.R.i.) if its upper and lower Riemann sums over the whole real line converge to
the same finite limit, as the mesh of the partition vanishes:

lim
δ↓0

∑
m∈Z

δ

(
sup

z∈[mδ,(m+1)δ)
g(z)

)
= lim

δ↓0

∑
m∈Z

δ

(
inf

z∈[mδ,(m+1)δ)
g(z)

)
∈ (−∞,+∞) . (1.1)

If the function g may also take negative values, it is said to be d.R.i. if both its positive and
negative parts g+ and g− are so. We refer to [1, §V.4] and [8, §XI.1] for more details.

Every d.R.i. function is necessarily in L1(R, Leb) and vanishes at infinity, but the converse
might fail, even for continuous functions, because of the possible oscillations at infinity. The
aim of this note is to show that very mild conditions on f ∈ L1(R, Leb) are enough to ensure
that some convolution of f with itself is d.R.i., cf. Theorem 1.1 below.

Beyond its intrinsic interest, our main motivations for such a result come from local limit
theorems and renewal theory, where d.R.i. functions play an important role. In particular,
we suggest to keep in mind the special case when f is a probability density function on R.

1.2. The main result. Given a Lebesgue-integrable function f ∈ L1(R, Leb), let us denote
by fk(·) = f∗k(·) the k-fold convolution of f with itself, that is

f1(x) := f(x) , fk+1(x) := (fk ∗ f)(x) =

∫
R
fk(x− y) f(y) dy , ∀k ∈ N . (1.2)

Our main result, that we prove in section 3, reads as follows.

Theorem 1.1. Let f ∈ L1(R, Leb) satisfy the following assumptions:

(1) fk0 ∈ L∞(R, Leb) for some k0 ∈ N;
(2)

∫
R |x|

ε|f(x)| dx < ∞ for some ε > 0.
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Then there exists k1 ∈ N such that for every k ≥ k1 the function x 7→ (1 + |x|ε)fk(x) is
bounded, continuous and directly Riemann integrable. In particular, fk itself is bounded,
continuous and directly Riemann integrable, for every k ≥ k1.

1.3. Organization of the paper. The rest of the introduction is devoted to discussing
the role of the two assumptions of Theorem 1.1. In section 2 we present some applications of
Theorem 1.1 to renewal theory (and, more generally, to local limit theorems, cf. §2.3). We
mention in particular Proposition 2.2, which provides a local version of the renewal theorem
for heavy-tailed renewal processes. The proof of Theorem 1.1 is contained in section 3, while
some technical points are deferred to the appendix.

Henceforth we write Lp := Lp(R, Leb) for short.

1.4. Discussion. A d.R.i. function is necessarily bounded, since otherwise every upper or
lower Riemann sum would be infinite. Therefore assumption (1) is necessary for Theorem 1.1
to hold. Let us now give a standard and more concrete reformulation of this assumption in
terms of the Fourier transform f̂(ϑ) :=

∫
R e

iϑxf(x) dx of f .

Lemma 1.2. A function f ∈ L1 satisfies assumption (1) of Theorem 1.1 if and only if
f̂ ∈ Lp for some p ∈ [1,∞).

From this, we can deduce a very practical sufficient condition.

Lemma 1.3. Assumption (1) of Theorem 1.1 is satisfied if f ∈ L1∩Lp, for some p ∈ (1,∞].

The (quite standard) proofs of these two lemmas are given in §A.1 and §A.2 below.

Remark 1.4. For a function f ∈ L1, the condition f ∈ Lp for some p > 1 is very mild and
shows that assumption (1) is typically verified in concrete situations. Let us mention, however,
that (somewhat pathological) examples of functions f ∈ L1 not satisfying assumption (1)
do exist, cf. Examples (a), (b), (c) in [8, §XV.5].

Remark 1.5. When f is a probability density with zero mean and unit variance, assumption
(1) is a necessary and sufficient condition for the Local Central Limit Theorem, that is, for
limn→∞ supx∈R |

√
nfn(
√
nx)− 1√

2π
e−x

2/2| = 0, cf. [8, Theorem 2] and the following lines.

Let us now discuss assumption (2). This is not necessary for Theorem 1.1 to hold, as the
following example shows: the function f(x) := 1

x (log x)2
1[e,∞)(x) is in L1, it does not satisfy

assumption (2), for any ε > 0, but f is d.R.i.. Only the latter statement requires a proof.
Being Riemann integrable on every compact interval (it is continuous except at the point e),
it suffices to verify that an upper Riemann sum of f is finite, by Lemma 3.1 below. Since
f(x) = 0 for x < e and f is decreasing on [e,∞), we have∑

m∈Z
sup

z∈[m,m+1)
f(z) =

∑
m∈N,m≥2

sup
z∈[m,m+1)

f(z) ≤ 2

e
+

∫ ∞
3

f(z) dz < ∞ ,

where 2
e accounts for the terms m = 2, 3 of the sum, while for m ≥ 4 we have used the

estimate supz∈[m,m+1) f(z) ≤
∫m
m−1 f(z) dz, by monotonicity of f .

Remark 1.6. The same argument shows that if some convolution fk is bounded, continuous
and dominated in absolute value by g ∈ L1, with g non-increasing in a neighborhood of
infinity, then fk is d.R.i.. Such a condition, however, seems difficult to check in terms of f .
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Remark 1.7. Although not necessary, assumption (2) is very mild and easily satisfied in
most situations. For instance, when f is the probability density of a random variable X, we
can write, for every ε > 0,∫

R
|x|εf(x) dx = E(|X|ε) =

∫ ∞
0

P(|X|ε > s) ds = ε

∫ ∞
0

P(|X| > t)

t1−ε
dt . (1.3)

It follows, in particular, that assumption (2) always holds for the density f of a random
variable X in the domain of attraction of a stable law, of any index α ∈ (0, 2], because it is
well-known that in this case E(|X|ε) <∞ for every 0 < ε < α.

Remark 1.8. We don’t know whether assumption (2) can be completely eliminated from
Theorem 1.1. In other terms, we are not aware of examples of functions f ∈ L1 satisfying
assumption (1) — and necessarily not satisfying assumption (2) — such that no convolution
fk is d.R.i., for any k ∈ N. We point out that, if they exist, such counterexamples can be
found in the class of bounded and continuous functions that vanish at infinity, because
assumption (1) entails that fk0+1 has these properties, by Lemma 3.2 below.

2. Applications to renewal theory

If {Xn}n∈N are independent, identically distributed non-negative random variables, the
associated random walk started at zero, that is S0 := 0 and Sn := X1 + . . .+Xn for every
n ∈ N, is called (undelayed) renewal process. The corresponding renewal measure U(·) is the
σ-finite Borel measure on [0,∞) defined by

U(A) := E
(
#{n ∈ N0 : Sn ∈ A}

)
=
∑
n∈N0

P(Sn ∈ A) , for Borel A ⊆ [0,∞) . (2.1)

When µ := E(X1) ∈ (0,∞) and the law of X1 is non-lattice, Blackwell’s renewal theorem
states that, for every fixed δ > 0,

lim
x→+∞

U
(
[x, x+ δ)

)
=

δ

µ
. (2.2)

This means that, roughly speaking, the measure U(·) is asymptotically close to 1
µ times the

Lebesgue measure. It is therefore natural to conjecture that, for suitable g : [0,∞)→ R,

lim
x→+∞

∫
[0,∞)

g(x− z)U(dz) =
1

µ

(∫
[0,∞)

g(z) dz

)
. (2.3)

This relation indeed holds whenever g is d.R.i. (but can fail for general g ∈ L1) and is
known as the key renewal theorem. This is how d.R.i. functions appear in renewal theory.

Note that taking g = 1(0,δ] one recovers Blackwell’s renewal theorem (2.2). We point out
that relations (2.2), (2.3) hold also when µ = +∞, the right hand side being interpreted as
zero, but of course they give much less information (we come back on this point below). We
refer to [1, §V] for more details on renewal theory.

2.1. On the renewal density theorem. Consider now the case when the law of X1 is
absolutely continuous, with density f , and always assume that µ = E(X1) ∈ (0,∞). Then

U(dx) = δ0(dx) +

( ∞∑
n=1

fn(x)

)
dx =: δ0(dx) + u(x) dx , (2.4)

where we recall that fn = f∗n denotes the n-fold convolution of f with itself, cf. (1.2).
Therefore, excluding the Dirac mass at zero due to S0, the renewal measure U(·) is absolutely
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continuous, with density u(x). It is tempting to deduce from (2.2) the corresponding relation
for the density, namely

lim
x→+∞

u(x) =
1

µ
, (2.5)

sometimes called renewal density theorem. However, additional conditions on f are needed
for (2.5) to hold: for instance, it is necessary that limx→+∞ f(x) = 0, as proved by Smith [12,
§4] (generalizing an earlier result by Feller [7]). This is rather intuitive, because any fixed
term in the sum (2.1) gives no contribution to the asymptotic behavior of U([x, x+ δ)) —
since limx→+∞ P(Sn ∈ [x, x+ δ)) = 0 for every fixed n ∈ N — while this is not the case for
u(x) if the density f does not vanish at infinity, cf. (2.4).

Sharp necessary and sufficient conditions on f for the validity of the renewal density
theorem (2.5) are known [12], but they are quite involved and implicit. A natural sufficient
condition [10, 11] is simply that f ∈ Lp for some p ∈ (1,∞] (in addition to µ =

∫
R x f(x) dx ∈

(0,∞) and limx→+∞ f(x) = 0). It is worth noting that the sufficiency of these conditions is
an immediate corollary of our Theorem 1.1: in fact, if µ <∞, assumption (2) is satisfied
with ε = 1, and if f ∈ Lp with p > 1, assumption (1) is also satisfied, by Lemma 1.3; it
follows that fk is d.R.i. for some k ∈ N, and by the key renewal theorem (2.3) we have

lim
x→+∞

∫
R
fk(x− z)U(dz) = lim

x→+∞

( ∞∑
n=k

fn(x)

)
=

1

µ

∫
R
fk(z) dz =

1

µ
, (2.6)

where in the second equality we have used (2.4) and the fact that fi ∗ fj = fi+j . We can
rewrite this relation as

lim
x→+∞

(
u(x) −

k−1∑
n=1

fn(x)

)
=

1

µ
. (2.7)

It follows easily by (1.2) that

fn+1(x) ≤ sup
y≥x/2

(
f(y) + fn(y)

)
, ∀x ∈ [0,∞), ∀n ∈ N . (2.8)

If limx→+∞ f(x) = 0, relation (2.8) shows by induction that also limx→+∞ fn(x) = 0, for
every fixed n ∈ N, hence relation (2.5) follows from (2.7).

Remark 2.1. The idea of deriving the renewal density theorem (2.5) from the key renewal
theorem (2.3) is a classical one, dating back at least to Feller, who proved the validity of
(2.7) with k = 2 when f ∈ L∞, showing that f2 is d.R.i., cf. Theorem 2a in [8, §XV.3].
Feller’s proof is based on the simple observation that, by (1.2) and a symmetry argument,

f2(x) = 2

∫
z>x/2

f(z) f(x− z) dz ≤ 2 ‖f‖∞
∫
z>x/2

f(z) = 2 ‖f‖∞ P
(
X1 >

x
2

)
. (2.9)

Since by assumption ∫ ∞
0

P
(
X1 >

x
2

)
dx = 2 E(X1) ∈ (0,∞) ,

the function f2 is dominated by a non-increasing, integrable function, hence it is d.R.i..
We point out that the generalization that we sketched above, in which the assumption

f ∈ L∞ is relaxed to f ∈ Lp for some p > 1, is a rather elementary upgrade: since a
convolution fk of f is bounded, thanks to Lemma 1.3, applying relation (2.9) to fk yields
immediately that f2k is d.R.i., allowing to deduce (2.7) (with k replaced by 2k) from the key
renewal theorem (2.3). Let us stress, however, that to deduce direct Riemann integrability
from (2.9), the finiteness of the mean E(X1) is essential.
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2.2. The heavy-tailed case. The novelty of Theorem 1.1 is that assumption (2) only
requires the finiteness of an arbitrarily small moment, allowing in particular to deal with
cases when the mean is infinite. This is especially interesting from the viewpoint of heavy-
tailed renewal theory. More precisely, keeping the notation of the beginning of this section,
assume that the law of X1 is non-lattice and satisfies the following relation, for some
α ∈ (0, 1]:

P(X1 > x) ∼ L(x)

xα
as x→ +∞ , (2.10)

where L(·) is a slowly varying function [2]. For α < 1, relation (2.10) is the same as requiring
that X1 is in the domain of attraction of the (unique up to multiples) positive stable law
of index α (cf. Theorem 8.3.1 in [2]), while for α = 1 relation (2.10) implies that X1 is
relatively stable (cf. Theorem 8.8.1, Corollary 8.1.7 and the following lines in [2]).

When µ = E(X1) = +∞ (in particular, for every α < 1), Blackwell’s renewal theorem
(2.2) only says that limx→+∞ U([x, x+δ)) = 0. Sharpenings of this relation have been proved
by Erickson [6, Theorems 1–4], extending the corresponding results for lattice distributions
obtained by Garsia and Lamperti [9]. Introducing the truncated mean function

m(x) :=

∫ x

0
P(X1 > y) dy = x P(X1 > x) + E(X11{X1<x}) , ∀x ≥ 0 , (2.11)

it follows from (2.10) that m(x) ∼ 1
1−αL(x)x1−α as x → +∞. The generalized version of

Blackwell’s renewal theorem then reads as follows: for every fixed δ > 0

lim inf
x→+∞

m(x)U
(
[x, x+ δ)

)
=

1

Γ(α)Γ(2− α)
δ , (2.12)

and when α ∈ (12 , 1] the lim inf in this relation can be upgraded to a true limit. A generalized
version of the key renewal theorem is also available: for every d.R.i. function g : [0,∞)→ R

lim inf
x→+∞

m(x)

∫
[0,∞)

g(x− z)U(dz) =
1

Γ(α)Γ(2− α)

(∫
[0,∞)

g(y) dy

)
. (2.13)

Furthermore, when α ∈ (12 , 1] and g(x) = O(1/x) as x → +∞, also in this relation the
lim inf can be upgraded to a true limit. The reason for the presence of lim inf instead of lim
is discussed in Remark 2.4 below. Apart from that, note that relations (2.12), (2.13) match
perfectly with (2.2), (2.3), because µ = E(X1) = m(∞).

Assume now that X1 is absolutely continuous, with a density f . The density u of the
renewal measure U is always defined by (2.4), and it is natural to ask whether the density
version of (2.12) holds true. As a corollary of Theorem 1.1, we obtain the following result,
which seems to be new.

Proposition 2.2. Let X1 be a non-negative random variable satisfying (2.10), for α ∈ (0, 1]
and L(·) slowly varying. Assume that the law of X1 is absolutely continuous, with a density f
such that fk ∈ L∞ for some k ∈ N (cf. Lemmas 1.2 and 1.3). Then, recalling the definitions
(2.4) of u(·) and (2.11) of m(·), there exists k ∈ N such that

lim inf
x→+∞

m(x)

(
u(x) −

k−1∑
n=1

fn(x)

)
=

1

Γ(α)Γ(2− α)
. (2.14)

If furthermore limx→+∞ f(x) = 0, then

lim inf
x→+∞

m(x)u(x) =
1

Γ(α)Γ(2− α)
. (2.15)
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Finally, if α ∈ (12 , 1] and fk(x) = O(1/x) as x→ +∞, for some k ∈ N, relations (2.14) and
(2.15) hold with lim instead of lim inf.

Proof. The density f satisfies the assumptions of Theorem 1.1, hence there exists k1 ∈ N
such that fk is d.R.i. for every k ≥ k1. Choosing k = k1 and applying (2.13) with g = fk, we
obtain immediately (2.14). We have already remarked that, by (2.8), if limx→+∞ f(x) = 0,
then also limx→+∞ fn(x) = 0, for every fixed n ∈ N, hence relation (2.15) follows from
(2.14). Finally, if α ∈ (12 , 1] and fk(x) = O(1/x) for some k ∈ N, then also fnk(x) = O(1/x)
for every n ∈ N, as it follows by induction from (2.8) applied to fk. If n is large enough so
that k := nk ≥ k1, the function fk(x) is both d.R.i. and O(1/x), hence relation (2.13) holds
with lim instead of lim inf and consequently the same is true for (2.14), (2.15). �

Remark 2.3. It is not clear whether the additional condition g(x) = O(1/x), for the validity
of the generalized key renewal theorem (2.13) with lim instead of lim inf when α ∈ (12 , 1],
formulated in [6, Theorem 3], is substantial or just technical. In any case, if that condition
can be removed or relaxed, the same applies immediately to Proposition 2.2.

Remark 2.4. The presence of lim inf instead of lim, in relations (2.12) and (2.13) when
α ∈ (0, 12 ] but not when α ∈ (12 , 1], may appear strange, but can be explained as follows. By
(2.10), P(X1 ∈ [x, x+ δ)) ≤ P(X1 ≥ x) ∼ L(x)/xα as x→∞, and a similar estimate (up
to a constant) holds for P(Sn ∈ [x, x+ δ)), for every n ∈ N. Since m(x) ∼ 1

1−αL(x)x1−α as
x→ +∞, when α < 1

2 we have P(Sn ∈ [x, x+ δ))� 1/m(x). Recalling (2.12), this means
that any term P(Sn ∈ [x, x + δ)), for fixed n ∈ N, gives a negligible contribution to the
asymptotic behavior of U([x, x+ δ)). This is no longer true when α > 1

2 , as one can build
examples of laws of X1 satisfying (2.10) but such that P(X1 ∈ [x, x + δ)) is anomalously
close to P(X1 ≥ x) ∼ L(x)/xα, for (rare but) arbitrarily large values of x; in this way, the
contribution of the single term P(X1 ∈ [x, x+δ)) can be made much larger than the “typical”
behavior of U([x, x+ δ)), that is 1/m(x), by (2.12). For more details, we refer to [9], [16].

In view of these considerations, it is natural to conjecture that, under some additional
regularity assumptions on the distribution of X1, it should be possible to upgrade the
lim inf in the generalized Blackwell’s renewal theorem (2.12), or in its density form (2.15),
to a true lim also for α ∈ (0, 12 ]. This is indeed the case, as shown recently by Topchii
in [13, Theorem 8.3] (generalizing the analogous results for lattice distributions by Doney [4,
Theorem B]). More precisely, assume that X1 satisfies (2.10); that it has an absolutely
continuous law with density f , such that fk ∈ L∞ for some k ∈ N (that is, assumption (1)
in Theorem 1.1); and furthermore that there exist positive constants C, x0 such that
f(x) ≤ CL(x)/x1+α for all x ≥ x0, where L(·) is the same slowly varying function appearing
in (2.10); then the generalized renewal density theorem (2.15), and consequently also the
generalized Blackwell’s theorem (2.12), holds with lim instead of lim inf.

2.3. Application to local limit theorems. Beyond renewal theory, Theorem 1.1 can be
used to derive local limit theorems for the density of a random walk, even under conditioning,
when the corresponding local limit theorems à la Stone are available.

For instance, let {Xn}n∈N be independent, identically distributed real random variables,
in the domain of attraction of a stable law, and denote by (S = {Sn}n∈N,Px) the associated
random walk started at x ∈ R, that is Px(S0 = x) = 1 and Sn := Sn−1 +Xn for all n ∈ N.
Let us also set Cn := [0,∞)n ⊆ Rn. When the law of X1 is non-lattice, local limit theorems
in the Stone form — that is, for the probabilities of small intervals — for the law of Sn on
the event {(S1, . . . , Sn) ∈ Cn} are available, cf. [15, 5]. For example, there exist diverging
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sequences (an)n∈N, (bn)n∈N and real functions ϕ,ψ such that, for any fixed δ > 0, as n→∞

Px
(
Sn ∈ [y, y + δ) , (S1, . . . , Sn) ∈ Cn

)
= δ

1

bn
ψ(x)ϕ

(
y

an

)(
1 + o(1)

)
, (2.16)

uniformly when x/an → 0 and y/an is bounded away both from 0 and ∞.
Assume now that the law of X1 is absolutely continuous, with density f , and denote by

f+n the density of Sn on the event {(S1, . . . , Sn) ∈ Cn}, i.e.

f+n (x, y) :=
Px
(
Sn ∈ dy , (S1, . . . , Sn) ∈ Cn

)
dy

.

It is then very natural to conjecture that the density version of (2.16) holds, namely

f+n (x, y) =
1

bn
ψ(x)ϕ

(
y

an

)(
1 + o(1)

)
, (2.17)

but some care is needed in order to interchange the limits δ ↓ 0 and n→∞. In fact, (2.17)
is not true in general, as the density of Sn, and hence f+n (x, y), might be unbounded for
every n ∈ N. However, this turns out to be the only possible pathology.

If we assume that the density of Sn is bounded for some n ∈ N, then Theorem 1.1 may be
applied (note that assumption (2) is automatically satisfied, since we assume that X1 is in
the domain of attraction of a stable law, as we already remarked). It follows that the density
fk of Sk, and hence z 7→ f+k (z, y), is d.R.i. for some k ∈ N, and this allows to rigorously
derive (2.17) from (2.16). We refer to [3, §5] for the technical details, but let us sketch the
main idea, which is quite simple. For fixed k ∈ N and n ≥ k we can write

f+n (x, y) =

∫
[0,∞)

dz f+n−k(x, z) f
+
k (z, y) . (2.18)

Since x 7→ f+k (x, y) is d.R.i., we can effectively approximate it with a step function, piecewise
constant over disjoint intervals. The integral in the right hand side of (2.18) then becomes
a sum of terms, each of which is like the left hand side of (2.16), with n− k instead of n.
Since k is fixed, as n→∞ relation (2.16) holds and (2.17) can be recovered from (2.18).

This approximation method is quite general, and may in principle be applied to other
contexts (e.g., for other choices of the conditioning subsets Cn ⊆ Rn). The message is that,
whenever a local limit theorem in the Stone form is available, Theorem 1.1 provides a helpful
tool in deriving the corresponding local limit theorem for the density.

3. Proof of Theorem 1.1

Let us first discuss the strategy of the proof. The starting point is Feller’s observation
(2.9), which shows that f2 can be bounded from above by a non-increasing function, namely,
the integrated tail of f . When f has finite mean (that is, assumption (2) holds with ε = 1),
it follows that f2 is d.R.i., but when the mean is infinite this bound is not enough.

The natural idea is then to bootstrap the estimate (2.9), deducing an estimate on f4 from
the bound on f2, and so on, hoping that convolutions are regularizing enough so that for
some n ∈ N the bound obtained for f2n yields the direct Riemann integrability. This turns
out to be the case, though in a highly non straightforward way.

For convenience, we organize the proof in four steps.
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3.1. Some preliminary results. Let us give a name to the (translated) upper and lower
Riemann sums of a function g : R→ R: for δ ∈ (0,∞) and x ∈ R we set

Sgδ (x) :=
∑
m∈Z

δ

(
sup

z∈[mδ,(m+1)δ)
g(z−x)

)
, sgδ(x) :=

∑
m∈Z

δ

(
inf

z∈[mδ,(m+1)δ)
g(z−x)

)
. (3.1)

Note that both Sgδ (x) and sgδ(x) are δ-periodic functions of x. Moreover, when g is non-
negative, the following inequality holds, as we prove in §A.3:

Sgδ (x) ≤
(

1 + 2
δ

δ′

)
Sgδ′(x

′) , ∀x, x′ ∈ R , ∀δ, δ′ > 0 . (3.2)

This shows in particular that the finiteness of Sgδ (x) does not depend on δ, x.
Recall that, by equation (1.1), a non-negative function g is d.R.i. if and only if Sgδ (0) and

sgδ(0) converge to the same finite limit as δ ↓ 0. It is an easy exercise to prove the following
lemma, which provides a useful reformulation of the d.R.i. condition.

Lemma 3.1. A function g : R → R is d.R.i. if and only if it is Riemann integrable on
every compact interval [a, b] ⊆ R, and if in addition the upper Riemann sum S

|g|
δ (x) of |g| is

finite for some (hence all) x ∈ R and δ > 0. In particular, every non-negative, continuous
function with a finite upper Riemann sum is d.R.i..

The following standard result will also be useful.

Lemma 3.2. If g ∈ L1 and h ∈ L1 ∩ L∞, then g ∗ f is bounded, continuous and vanishes
at infinity (that is lim|x|→+∞(g ∗ f)(x) = 0).

Proof. If g(x) =
∑n

i=1 ci1(ai,bi](x) is a step function, the theorem holds by direct verification,
since (g ∗ h)(x) =

∑n
i=1 ci

∫
[x−bi,x−ai) h(z) dz and h ∈ L1. For every g ∈ L1, take a sequence

of step functions gn such that ‖g−gn‖1 → 0. Since |(g ∗h)(x)− (gn ∗h)(x)| ≤ ‖h‖∞‖g−gn‖1
for every x ∈ R, g ∗ h is the uniform limit of gn ∗ h and the conclusion follows. �

3.2. Setup. If f ∈ L1(R, Leb) satisfies assumption (1) of Theorem 1.1, it follows by
Lemma 3.2 that that fk = f∗k is bounded and continuous (and vanishes at infinity)
for every k ≥ k0 + 1. By Lemma 3.1, to prove Theorem 1.1 it suffices to show that an upper
Riemann sum of x 7→ (1 + |x|ε)|fk(x)|, say with mesh 1, is finite, that is∑

m∈Z

(
sup

z∈[m,(m+1))
(1 + |z|ε) |fk(z)|

)
< ∞ , (3.3)

for all k large enough. Actually, if this relation holds for k = k, one easily shows that it
holds for every k ≥ k, cf. §A.4. Therefore it suffices to prove (3.3) for some k ∈ N.

Since |fk| ≤ |f |k, that is |f∗k| ≤ |f |∗k, without loss of generality we may assume that the
function f is non-negative (it suffices to replace f by |f |). Moreover, excluding the trivial
case when f = 0 almost everywhere, in which there is nothing to prove, we may also impose
the normalization

∫
R f(x) dx = 1 (it suffices to multiply f by a constant). In this way, f

may be viewed as a probability density. As a consequence, also fk is a probability density:
fk ≥ 0 and

∫
R fk(x) dx = 1, for all k ∈ N. Let us set for convenience (recall assumption (2))

C :=

∫
R
|x|ε f(x) dx < ∞ .
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Since |x1 + . . .+ xk|ε ≤ (k max1≤i≤k |xi|)ε ≤ kε(|x1|ε + . . .+ |xk|ε), for every k ∈ N∫
R
|x|ε fk(x) dx =

∫
Rk

|x1 + . . .+ xk|ε f(x1) · · · f(xk) dx1 · · · dxk ≤ kε(kC) < ∞ . (3.4)

It follows in particular that fk satisfies the hypothesis of Theorem 1.1, for every k ∈ N.
Therefore, we may assume that f ∈ L∞ (it suffices to replace f by fk0).

Summarizing, without any loss of generality, henceforth we assume that f is a bounded
probability density, that is f : R→ R is a measurable function such that

f(x) ≥ 0 ∀x ∈ R ,
∫
R
f(x) dx = 1 , sup

x∈R
f(x) < ∞ , (3.5)

and our goal is to show that (3.3) holds true for some k ∈ N.

3.3. A sequence of upper bounds. By Markov’s inequality, for all t ≥ 0 we can write

g1(t) :=

∫
|x|≥t

f(x) dx ≤ min

{
1,

1

tε

∫
|x|≥t
|x|εf(x) dx

}
≤ min

{
1,
C

tε

}
. (3.6)

Analogously, for every k ∈ N, since 1{|x1+...+xk|≥t} ≤
∑k

i=1 1{|xi|≥t/k}, for all t ≥ 0 we obtain

gk(t) :=

∫
|x|≥t

fk(x) dx =

∫
Rk

f(x1) · · · f(xk) 1{|x1+...+xk|≥t} dx1 · · · dxk

≤ min

{
1, k g1

(
t

k

)}
≤ min

{
1,
k1+εC

tε

}
.

(3.7)

For consistency and for later convenience, for t ≤ 0 we set gk(t) := gk(0) = 1, for all k ∈ N.
It follows from (3.7) that for all k ∈ N∫

R
gk

(
|w|
3
− 1

)p
dw = 6 gk(0) + 2 · 3

∫ ∞
0

gk(t)
p dt < ∞ , ∀p > 1

ε
. (3.8)

For every n ∈ N, we define a map Φn : L∞ → L∞ by

(Φn(h))(x) := 2

∫
|z|>(|x|−3)/2

dz fn(z)h(x− z) , ∀x ∈ R . (3.9)

The reason for such a definition is explained by the following crucial lemma, which will
enable us to bound the left hand side of (3.3) by the integral of a suitable function.

Lemma 3.3. Let h ∈ L∞(R, Leb), with h ≥ 0, and ` ∈ N be such that

sup
x∈[a,a+1)

f`(x) ≤
∫ a+2

a−1
h(w) dw , ∀a ∈ R . (3.10)

Then

sup
x∈[a,a+1)

f2`(x) ≤
∫ a+2

a−1
Φ`(h)(w) dw , ∀a ∈ R . (3.11)

Proof. We start giving a couple of slight generalizations of (3.10). First, by a straightforward
translation argument,

sup
x∈[a,a+1)

f`(x− z) ≤
∫ a+2

a−1
h(w − z) dw , ∀a, z ∈ R . (3.12)
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Next we claim that, for every z ∈ R and t > 0,

sup
x∈[a,a+1)

(
f`(x−z)1{|x|<t}

)
≤
∫ a+2

a−1
h(w−z)1{|w|<t+3} dw , ∀a, z ∈ R , ∀t > 0 . (3.13)

In fact, if t < |a| − 1 then the left hand side of (3.13) is zero and there is nothing to prove.
On the other hand, if t ≥ |a| − 1 the right hand sides of (3.13) and (3.12) coincide, because
1{|w|≤t+3} = 1 for all w in the domain of integration (a− 1, a+ 2), hence (3.13) follows from
(3.12) simply because f`(x− z)1{|x|≤t} ≤ f`(x− z).

Since f2` = f` ∗ f`, for all x ≥ 0 we can write

f2`(x) =

∫
R
f`(z)f`(x− z) dz = 2

∫
z>x/2

f`(z)f`(x− z) dz ,

having exploited the symmetry z ↔ x− z. For x ≤ 0 we can write an analogous formula,
with {z > x/2} replaced by {z < −x/2}. We can combine these relations in the following
single inequality:

f2`(x) ≤ 2

∫
|z|>|x|/2

f`(z)f`(x− z) dz , ∀x ∈ R , (3.14)

hence

sup
x∈[a,a+1)

f2`(x) ≤ 2

∫
R

dz f`(z) sup
x∈[a,a+1)

(
f`(x− z)1{|x|<2|z|}

)
, ∀a, x ∈ R, ∀t > 0 .

We now apply (3.13), getting

sup
x∈[a,a+1)

f2`(x) ≤ 2

∫
R

dz f`(z)

∫ a+2

a−1
dw h(w − z)1{|w|<2|z|+3}

=

∫ a+2

a−1
dw

(
2

∫
R

dz f`(z)h(w − z)1{|w|<2|z|+3}

)
,

which, recalling (3.9), is exactly (3.11). �

Applying iteratively Lemma 3.3 we now obtain a sequence of upper bounds for f2n(·).
Let us start with n = 1, i.e., with f21(·) = f2(·), showing that (3.10) holds for a suitable
choice of h(·). Recalling (3.14) and (3.6), for all x ∈ R we can write

f2(x) ≤ 2

∫
|z|>|x|/2

dz f(z) f(x− z) ≤ 2 ‖f‖∞
∫
|z|>|x|/2

dz f(z) = 2 ‖f‖∞ g1(|x|/2) .

The function x 7→ g1(|x|/2) is non-decreasing for x ≤ 0 and non-increasing for x ≥ 0, hence
for every a ≥ 1 we have

sup
x∈[a,a+1)

f2(x) ≤ 2 ‖f‖∞ g1(a/2) ≤
∫ a

a−1
2 ‖f‖∞ g1(|w|/2) dw ,

and analogously for a ≤ −2

sup
x∈[a,a+1)

f2(x) ≤ 2 ‖f‖∞ g1(|a+ 1|/2) ≤
∫ a+2

a+1
2 ‖f‖∞ g1(|w|/2) dw .

Altogether, for every a ∈ R \ [−2, 1]

sup
x∈[a,a+1)

f2(x) ≤
∫ a+2

a−1
2 ‖f‖∞ g1(|w|/2) dw . (3.15)
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Let us show that an analogous estimate holds also for a ∈ [−2, 1]. Note that the right hand
side of (3.15) is a continuous function of a. Furthermore, it is strictly positive for a ∈ [−2, 1],
because g1(|w|/2) is strictly positive in a neighborhood of w = 0 — it is continuous and
it equals one in zero, cf. (3.6) — and 0 is in the domain of integration [a − 1, a + 2] for
every a ∈ [−2, 1]. Therefore, the infimum of the right hand side of (3.15) over the compact
interval a ∈ [−2, 1], call it B, is strictly positive. As the left hand side of (3.15) is bounded
from above by ‖f2‖∞ ≤ ‖f‖∞, it follows that relation (3.15) holds for a ∈ [−2, 1] provided
we multiply the right hand side by the constant ‖f‖∞/B. Summarizing, for all a ∈ R

sup
x∈[a,a+1)

f2(x) ≤ D
∫ a+2

a−1
g1(|w|/2) dw , where D := 2 ‖f‖∞ max

{
1,
‖f‖∞
B

}
. (3.16)

We have thus shown that (3.10) holds true for f2, with h(·) = Dg1(| · |/2). Applying
iteratively Lemma 3.3, for every n ∈ N we obtain

sup
x∈[a,a+1)

f2n(x) ≤
∫ a+2

a−1
hn(x) dx , ∀a ∈ R , (3.17)

where recalling (3.16) we set

h1(x) := Dg1(|x|/2) ,

hn(x) :=
(
Φ2n−1(hn−1)

)
(x) =

(
(Φ2n−1 ◦ Φ2n−2 ◦ . . . ◦ Φ2)(h1)

)
(x) , ∀n ≥ 2 .

(3.18)

3.4. Conclusion. Let us observe that, for every ε > 0,

cε := sup
a∈R

(
supz∈[a−1,a+2](1 + |z|ε)
infz∈[a−1,a+2](1 + |z|ε)

)
<∞ ,

and we can write (1 + |x|ε) ≤ cε(1 + |x′|ε) for all x, x′ ∈ R with |x−x′| ≤ 3. Applying (3.17),
it follows that we can estimate the left hand side of (3.3) for k = 2n as follows:∑

m∈Z
sup

z∈[m,(m+1))

(
(1 + |z|ε) f2n(z)

)
≤
∑
m∈Z

cε (1 + |m|ε) sup
z∈[m,(m+1))

f2n(z)

≤
∑
m∈Z

cε (1 + |m|ε)
∫ (m+2)

(m−1)
hn(w) dw ≤

∑
m∈Z

c2ε

∫ (m+2)

(m−1)
(1 + |w|ε)hn(w) dw

= 3 c2ε

∫
R

(1 + |w|ε)hn(w) dw .

Therefore to prove (3.3) it suffices to show that there exists n ∈ N large enough such that∫
R

(1 + |w|ε)hn(w) dw < ∞ , (3.19)

where hn(·) is defined in (3.18). To this purpose, we show that the maps Φn are regularizing.

Lemma 3.4. If h ∈ L∞ ∩ Lq, for some q ∈ (1,∞), then Φn(h) ∈ Lp for every p ∈
((1− ε)q,∞) ∩ [1,∞) and for every n ∈ N.

Proof. Recalling the definition (3.9) of the operator Φn, it follows by Jensen’s inequality
that for every h ∈ L∞ and x ∈ R

|Φn(h)(x)|p ≤ 2p
∫
|z|>(|x|−3)/2

dz fn(z) |h(x− z)|p , ∀p ≥ 1 , (3.20)
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hence

‖Φn(h)‖pp =

∫
R

dx |Φn(h)(x)|p ≤ 2p
∫
R

dz fn(z)

∫
|x|<2|z|+3

dx |h(x− z)|p .

Under the change of variables x → w := x − z, the domain {|x| < 2|z| + 3} becomes
{−(2|z|+ 3)− z < w < (2|z|+ 3)− z} ⊆ {−3(|z|+ 1) < w < 3(|z|+ 1)}. Therefore enlarging
the domain of integration and recalling that gn(t) :=

∫
|z|>t dz fn(z) we obtain

‖Φn(h)‖pp ≤ 2p
∫
R

dz fn(z)

∫
|w|<3(|z|+1)

dw |h(w)|p

= 2p
∫
R

dw |h(w)|p
∫
|z|>|w|/3−1

dz fn(z) = 2p
∫
R

dw |h(w)|p gn(|w|/3− 1) ,

where we recall that gn(t) := gn(0) = 1 for t < 0. For every γ ∈ (0, 1), by Hölder’s inequality
we then obtain

‖Φn(h)‖pp ≤ 2p
(∫

R
dw |h(w)|p/(1−γ)

)1−γ (∫
R

dw gn(|w|/3− 1)1/γ
)γ

. (3.21)

Looking back at (3.8), we see that the second integral in the right hand side is finite for
all γ ∈ (0, ε). Now observe that if h ∈ L∞ ∩ Lq then h ∈ Lq′ for all q′ ≥ q, therefore the
first integral in the right hand side is finite whenever p/(1− γ) ≥ q. Summarizing, we have
shown that ‖Φn(h)‖p <∞, that is Φn(h) ∈ Lp, for every p ∈ [1,∞) (recall relation (3.20))
such that p/(1− γ) ≥ q for some γ ∈ (0, ε), i.e., for every p ∈ [1,∞) ∩ ((1− ε)q,∞). �

We are almost done. Recall that we need to show that (3.19) holds true for n large enough,
where hn(·) is defined in (3.18). By (3.6), we know that ‖h1‖q <∞ for q = 2/ε. Applying
iteratively Lemma 3.4, it follows that ‖hn‖p <∞ for all p ∈ ((1− ε)n−1q,∞) ∩ [1,∞). By
choosing n large enough we may assume henceforth that ‖hn−1‖1 =

∫
R hn−1(w) dw <∞.

By definition we have hn = Φ2n−1(hn−1), therefore recalling (3.9) we can write∫
R

(1 + |x|ε)hn(x) dx = 2

∫
R

dx

∫
|z|>(|x|−3)/2

dz (1 + |x|ε) f2n−1(z)hn−1(x− z) .

In the domain {|z| > (|x| − 3)/2} we have |x|ε ≤ (2|z| + 3)ε ≤ 2ε(2ε|z|ε + 3ε), because
(a+ b)ε ≤ (2 max{a, b})ε ≤ 2ε(aε + bε) for all a, b, ε ≥ 0. Therefore∫

R
(1 + |x|)ε hn(x) dx ≤ 2

∫
R

dz (1 + 6ε + 4ε|z|ε) f2n−1(z)

(∫
|x|<2|z|+3

dxhn−1(x− z)
)

≤ 2 ‖hn−1‖1
∫
R

dz (1 + 6ε + 4ε|z|ε) f2n−1(z) < ∞ ,

thanks to (3.4). The proof of (3.3), and hence of Theorem 1.1, is complete.

Appendix A. Some technical proofs

A.1. Proof of Lemma 1.2. Observe that f̂ ∈ L∞ for every f ∈ L1. We recall Theorem 3
in [8, §XV.3] and its Corollary, concerning a function g ∈ L1 and its Fourier transform ĝ:

if ĝ ∈ L1, then g ∈ L∞ (and is continuous); if g ∈ L∞ and if ĝ ≥ 0, then ĝ ∈ L1. (A.1)

Assume that f̂ ∈ Lp for some p ∈ [1,∞). Since f̂ ∈ L∞, it follows that f̂ ∈ Lq for every
q ∈ [p,∞]. Since Fourier transform turns convolutions into products, we have f̂n = (f̂)n for
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every n ∈ N, therefore for all n ≥ p we have f̂n ∈ L1 and, by (A.1), fn ∈ L∞. Therefore f
satisfies assumption (1) of Theorem 1.1.

Now assume that fk0 ∈ L∞ for some k0 ∈ N. If we define g(x) := fk0(−x), we have
ĝ = (f̂k0)∗ = ((f̂)k0)∗, where we denote by a∗ the complex conjugate of a ∈ C. It follows
that f̂k0 ∗ g = f̂k0 ∗ ĝ = |f̂ |2k0 ≥ 0. Note that fk0 ∗ g ∈ L∞, because both fk0 and g are in
L1 ∩ L∞, therefore, by (A.1), f̂k0 ∗ g = |f̂ |2k0 ∈ L1, that is f̂ ∈ L2k0 .

A.2. Proof of Lemma 1.3. Let us denote by ‖ · ‖p the norm in Lp, i.e.,

‖h‖p :=

(∫
R
|h(w)|p dw

)1/p

if p ∈ [1,∞) , ‖h‖∞ := ess supx∈R|h(x)| .

Recalling (1.2), by Hölder’s inequality

|f2(x)| ≤
(∫

R
|f(x− y)| |f(y)|p dy

) 1
p

‖f‖
p−1
p

1

≤
(∫

R
|f(x− y)|p |f(y)|p dy

) 1
p2

‖f‖
p−1
p

1 ‖f‖
p−1
p

p ,

therefore f2 ∈ L1 ∩ Lp2 . By iteration, f2k ∈ L1 ∩ Lp2
k

for every k ∈ N. If k is such that
p2

k ≥ 2, it follows that f2k ∈ L2. Since Fourier transform is an isometry on L2, it follows
that f̂2k = (f̂)2

k ∈ L2, that is f̂ ∈ L2k+1 . The conclusion follows by Lemma 1.2.

A.3. Proof of relation (3.2). We recall that g ≥ 0 by assumption. Arguing as in [14, §1.8],
for fixed x, x′ ∈ R and δ, δ′ > 0, let A denote the set of (m,m′) ∈ Z2 such that

[m′δ′ − x′, (m′ + 1)δ′ − x′) ∩ [mδ − x, (m+ 1)δ − x) 6= ∅ .

For every m′ ∈ Z, there are at most (δ′/δ) + 2 values of m ∈ Z for which (m,m′) ∈ A, hence∑
m∈Z

sup
z∈[mδ,(m+1)δ)

g(z − x) ≤
∑
m∈Z

max
m′∈Z: (m,m′)∈A

sup
z∈[m′δ′,(m′+1)δ′)

g(z − x′)

≤
∑

(m,m′)∈A

sup
z∈[m′δ′,(m′+1)δ′)

g(z − x′) ≤
(
δ′

δ
+ 2

) ∑
m′∈Z

sup
z∈[m′δ′,(m′+1)δ′)

g(z − x′) .

Now denote by B the set of (m,m′) ∈ Z2 such that

[mδ − x, (m+ 1)δ − x) ⊆ [m′δ′ − x′, (m′ + 1)δ′ − x′) .

Plainly, for every m there is at most one value of m′ such that (m,m′) ∈ B, while for every
m′ there are at least (δ′/δ)− 2 values of m ∈ Z for which (m,m′) ∈ B. Therefore∑

m∈Z
inf

z∈[mδ,(m+1)δ)
g(z − x) ≥

∑
m∈Z

∑
m′∈Z

1{(m,m′)∈B} inf
z∈[mδ,(m+1)δ)

g(z − x)

≥
∑
m′∈Z

inf
z∈[m′δ′,(m′+1)δ′)

g(z − x′)

( ∑
m′∈Z

1{(m,m′)∈B}

)

≥
(
δ′

δ
− 2

) ∑
m′∈Z

inf
z∈[m′δ′,(m′+1)δ′)

g(z − x′) .
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The previous relations shown that, for all x, x′ ∈ R and δ, δ′ > 0,

Sgδ (x) ≤
(

1 + 2
δ

δ′

)
Sgδ′(x

′) , sgδ(x) ≥
(

1− 2
δ

δ′

)
sgδ′(x

′) , (A.2)

which implies in particular (3.2).

A.4. Bootstrapping relation (3.3). Let us set gk(x) := (1 + |x|ε)|fk(x)|, so that the left
hand side of (3.3) can be expressed as Sgk1 (0) (recall (3.1)). Since (a+ b)ε ≤ 2ε(aε + bε) for
a, b, ε ≥ 0, recalling (1.2) we can write

S
gk+1

1 (0) ≤ 2ε
∫
R
|f(y)|

∑
m∈Z

(
sup

z∈[m,(m+1))
(1 + |z − y|ε + |y|ε) |fk(z − y)|

)
dy

= 2ε
{(∫

R
|f(y)|Sgk1 (z − y) dy

)
+

(∫
R
|y|ε |f(y)|S|fk|1 (z − y) dy

)}
≤ 3 · 2ε

{(∫
R
|f(y)|dy

)
+

(∫
R
|y|ε |f(y)|dy

)}
Sgk1 (0) ,

where the last inequality follows from (3.2) with x = z − y, x′ = 0 and δ = δ′ = 1. The term
in brackets is finite, by the assumptions of Theorem 1.1, hence Sgk+1

1 (0) <∞ if Sgk1 (0) <∞.
This shows that if (3.3) holds for k = k, then it holds for all k ≥ k.
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